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ABSTRACT

Let f be a two dimensional area preserving twist map. For each
irrational rotation number in a certain (non trivial). interval, there is an
f-invariant minimal set which preserves order with respect to that rotation
number. For large nonlinearity these sets are, typically, Cantor sets and
they are referred to as Aubry Mather sets.

We prove that under some assumptions these sets are ordered vertically
according to ascending rotation number ("Monotonicity"). Furthermore, if £
satisfies certain conditions, the right hand points of the gaps in an
irrational Cantor set lie on a single orbit ("Single Gap") and diffusion
through these Aubry Mather sets can be understood as a limit of resonance
overlaps ("Convergence of Turnstiles"). These conditions essentially
establish the existence of a hyperbolic structure and limit the number of
homoclinic minimizing orbits.

Some other results along similar lines are given, such as the

continuity at irrational rotation numbers of the Lyapunov exponent on Aubry
Mather sets.



I __INTRODUCTION

Let f be an area preserving monotone twist map on the cylinder A = S1 X
R. For each number a in the rotation interval I of f, Aubry [1986] and

Mather [1986] have constructed f-invariant sets Ma' that have the given

number as rotation number. These jnvariant sets are constructed as the
global minima of a certain action functional. The topologically minimal sets

Ea with irrational rotation number are precisely the Aubry Mather sets.
These sets are well-defined [Mather, 1986], lie on Lipschitz graphs

over S1 and on them the dynamics preserves the circular ordering [Katok,
1982a). They can be smooth invariant, homotopically non-trivial curves, so-
called KAM curves. For large enough non-linearity, though, one expects them
to be broken up into Cantor sets [Goroff, 1985]. In fact, the parameter
value at which a set breaks up depends to a large extent on the nuﬁber-
theoretical properties of the rotation number in question [MacKay, 1986,
Mather, 1987]. These Cantor sets are then the 'remnants’ of the invariant
KAM curves of the nearly integrable case.

Aubry Mather sets play an important role in the global dynamics of the
map, especially in stability questions. As invariant curves, they confine
the dynamics of all orbits to narrow regions. However, numerical experiments
indicate, that even as Cantor sets, these sets continue to restrict vertical
motion [MacKay, Meiss, and Pércival, 1984). Their attempts to understand

this, led to a geometrical construction they called "turnstiles". The idea



was to construct the stable and unstable manifolds in the gaps of the Cantor
sets, thus capturing the area per iterate that diffuses across the set.
In this article, we prove a number of fundamental theorems. One of

these (the Monotonicity theorem) states that the Ep admit a vertical

ordering in the cylinder. Another has been conjectured before on the basis
of numerical evidence: this is the theorem that asserts that the diffusion
through an Aubry Mather set can be considered as a limit of resonance
overlaps. Finally, the Single Gap theorem which says that Aubry Mather sets
generically have only one gaporbit in them, has not appeared in the |
literature, és far as we are aware.

It is often convenient to consider the rotation number as being an

element of the extended rotation interval I+ defined as follows. Replace
each rational number p/q with the set (p/q-, p/4q, P/qt) with the natural

ordering between them. With this ordering, the ordering on I induces an
ordering on 17, The topology on 17 is the order topology. Notice, that p/q

is an isolated point. We will often use I and ol interchangeably.

If p is rational, say p/q, then Ep/q will denote a minimizing q-
periodic orbit with rotation number p/q. Katok [1982b] proved the existence
of minimizing orbits that are homoclinic to Ep/q' one advancing, Ep/q+’ and
one receding, Ep/q-’ In this work, the only Ck generic, k = 1, properties of
f that we use, are the following. First of all, Ep/q consists of a single

hyperbolic periodic orbit. Second, M nsists of E lus a single
yP P c econ 0/q consis /q P g



advancing orbit, Ep/ homoclinic to Ep/q' and a single receding orbit,

q+’

E , also homoclinic to E (in the sense that q-th iterates of points
p/q- _ P/q
move between successive points in Ep/q)' The proof of this is standard and

an outline is given in the appendix. (In a forthcoming work [Veerman and
Tangerman, 1989] we prove uniqueness of these orbits in the case of the
standard map with large enough non-linearity parameter.)

Hausdorff limits (Hlim) of these sets are well-defined [Mather, 1986]:

Hlim E =E_, UE = clos(E
HHD L By = Epjq U Bpyqe = S105(Ey /q4)

(1.1a)
Hli E =E UE = clos{E
HHm . Eq = By q U Bpjq. = clostEp )
For w irrational:
E € Hlim E (1.1b)
w a—w o3

In order to avoid notational complications, results will be stated and
proved, where possible, in the universal covering space of the cylinder

without further comment. For the lift of f, the notation F will be used.



II MONOTONICITY

In this section, the monotonicity result will be proven. This result
restricts the region that Aubry Mather sets with irrational rotation number

can inhabit.

Let £ be a Ck (k = 1) area preserving monotone twist map on the

cylinder A = S1 x R. Fix a lifc F : R2 -+ R2 of f£. When necessary, we will

use coordinates (x,y) on R2. Note that F commutes with the unit translation
in the x direction. Each point p = (xo,yo) defines an orbit {Fl(p)} and the
projections n(xi,yi) on the x-coordinate are called X Denote by Ma the set

of minimizing points of rotation number a, ie: lim xi/i = a.

We define the local stable and unstable manifolds Wi/u(x) and their

inverse resp. forward images as the stable and unstable manifolds in the
usual way (see for example Lanford, [1985]).

Let V denote the foliation of A = R2 by vertical lines, so that F(V)

and F'l(V) are the corresponding images of V under F. At a point p in A, we

can now define the open cone Cp = C; U C; bounded by F(V)p and F'l(V)p and

containing Vp (see figure 2.1). Here Vp denotes the leaf of the foliation

V through p and T or * i{ndicates the downward respectively, the upward
component. Define:
1=ﬁao C+ / -

/ey =
N L)



Similarly, define tangent cones TCp = TC% U TC; as the cone in the tangent
space to p whose boundary is formed by the tangent lines to Cp .

The fundamental wisdom that underlies this section, is that two

e s s.2 . : . . +F .
minimizing points, s and p, with different rotation numbers in I, satisfy a

geometrical inequality. Aubry's fundamental lemma [Aubry, 1986] implies,

that s cannot lie in C; if its rotation number in I is greater than or equal

to that of p. But then, of course, s cannot lie in iterates of C; either,

and the same is true for iterates of s.

Lemma 2.1: Let p be a point of Ep/q+ or Ep/q- , the tangent to the stable

and unstable manifolds Ws(p) and Wu(p) at p is given by %ig ti/lcil , resp.,
. u, ,u s _ -nq,-Nnq (0

lim t2/|€2] , where t] =DF (F(P) °,) . and

e = DF“q(F'“q(p)).(?l]

Proof: This follows directly from the definition of the local stable and

unstable manifolds plus the fact that for n large enough the vector (0,-1)
does not lie on Wt(an(p)) nor on Wi(F-nq(p)) . The latter claim is proved

as follows.

The points fnq(p) and f'nq(p) are close t« points x and y in Ep/q'

By general hyperbolic theory (see also section 3. agents to their (local)



invariant manifolds are nearly parallel to those of x and y. But the

tangents at x and y cannot be contained in IC, because if they were,

Aubry’s fundamental lemma would be violated since Ep/ and E accumulate

q- p/q+

onto x and y along those tangents. : a

The following lemma shows that the invariant manifolds emanating from a

oint e E , E , E can never be very close to vertical, and that
P P € ®p/q’ “p/q-’ “p/a+ Y

the upper right branch is an unstable manifold. For clarity, we number the
branches clockwise, starting from the vertical (see figure 2.2).

Lemma 2.2: If p ¢ E , E , or then the first clockwise branch,
= p/q4’ "p/q-

E )
p/q+

Wl, is an unstable one. Moreover, corresponding branches on the orbit of p

map into each other.

Proof: The region

TC, =DF(F'1(

- - -1 -
1 p))(CF_l ) U TCp U DF "(F(p))(C )

(p) F(p)

forms a new local cone (each originél cone has V; in its closure). It is
then easy to see, that TC;,-defined in the obvious way, contains TC;-I’ for
all n. By lemma 2.1, the boundary of Tc;q (q fixed) must accumulate on a

stable and an unstable direction. Observe that TC;q cannot contain any



stable or unstable directions and further that interior of Tc;q is

connected. Therefore, its boundaries can only accumulate onto W2 and W3.

The second statement follows from the fact that C (p) is mapped to

C (£f(p)). Thus the tangents to the boundaries at p and f(p) are also mapped

to one another. 0

For each p/q+ or p/q-, separating curves v(p/q+) or v(p/q-) on the

cylinder can be defined as follows. For each pair of neighboring points 121

and in E , pick one point s in E or E between them. Connect
Py ' Bpyq » P P p/ar T Fp/q-)
s to the points Py and P, along their invariant manifolds. We define y(p/q+)

(or v(p/q-)) as the closed curve obtained as the union of the segments (see
figure 2.3). An orientation along the curve can be defined in such a way

that the orientation has a component to the right on the points of E /q for

the construction of y(p/q+) and to the left for the construction of y(p/q-).

With this orientation, there is now a slight extension of lemma 2.2.:

Corollary 2.3: At a hyperbolic minimizing point in Ep/q+ the first clockwise

branch is unstable and oriented with a component to the right, the second is

stable and oriented to the right, and so on. The orientation is opposite for

E
P/q-



The curves y are not necessarily Jordan. Clearly, v(p/q+) separates A
in an upper component containing +=, a lower component containing -« and
finitely many other components. Note, that these curves and components

depend on the choice of q points sl,...sq in Ep/q+, respectively, E . In

P/q-

the following we will make a simplifying assumption on the character of
these curves (which will be proved to hold in the case of the standard map
with large enough k in a forthcoming work [Veerman and Tangerman, 1989]).

Let G be a pair of two neighboring points a and b of Ep/q+ such that in
the plane n(a) < w(b) . The segment v(p/q+) that connects them is called

Wu(G) if it is an unstable segment, or WS(G) if is a stable one. Let 1a and -

1b the left boundary Ca resp. Cb and r, and ry the right sides.

Condition 2.4: For each neighboring pair G of points a and b in Ep/q+ (a to

left of b):
Wu(G) ] (1aU1b) = ¢ 1if the connecting segment is unstable,

WS(G) n (raUrb) = ¢ 1if the connecting segment is stable.

Similarly for v(p/q-).

We remark that some types of intersection are a priori excluded.
Suppose for example that we are interested in an unstable connecting segment

of vy(p/q+) which we parametrize, starting at the point a, by y(t). Let
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¥(v(t)) be the angle of the tangent to v(t) with the positive vertical.

Counting clockwise as positive, define $(y(t)) as

p(1(0) = J§ SppCre) dt .

If i_ is an intersection in w2 (G) 1, and iy in "l e)) 1, ., the remark is
that ¢(i,) > 0 and 4(i,) >0 .

One proves this by showing that if for example ¢(ia) < 0 , then the

. . u . : . .
inverse image under f of W (G) has an intersection point with the same

property. But we know that inverse images of Wu(G) eventually land in the

local unstable manifolds to Ep/q which do not have this property.

Suppose we choose points Sy o sq in the construction of v(p/q+) such
that condition 2.4 holds. The figure consisting of W' (G), 1a' and 1b (see

figure 2.4) then separates the plane in two components (similarly for w3 (G),

L and rb). Only one of these components contains +®. The other one is

called 'below ab’. We now define ’'below y(p/q+)’ as follows: a point x is

'below y(p/q+)’' if

x € C for some a ¢ E
a p/a+

or % ¢ 'below ab’ for some neighboring pair a and b in Ep/q+ .

‘Above v(p/q+)’' 1is the complement of {y U 'below vy(p/q+)’). One gives a
similar definition for 'above y(p/q-)' and 'below v(p/q-)'. We will use the

symbols ‘<’ and '>’ for 'below’ and 'above’, respectively.
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Remark: Note, that the definition of above and below y(p/q+) is not
symmetric. The same holds for v(p/q-). Note further, that in the case that 7v
is a Jordan curve, this notion coincides with the standard interpretation

interpretation of 'above’ and 'below’.

Theorem 2.5: For any v(p/q+), v(p/q-) for which condition 2.4 holds, we

have: (i) I1f « > p/q, then Ma > v(p/q+) and Ma > v(p/q-) and (ii) if a <

p/q, then M_ < v(p/q-) and M < v(p/q+) .

Proof: We only prove the first half of the first statement. The statement

will follow from a contradiction by supposing that there is a point X ¢ Ma

such that x lies on the ’‘wrong’ side of v(p/q+).
Suppose without loss of generality that the segment that connects the

neighboring points aj and b0 of a 'gap’ G0 , is unstable. Let x ¢ Ma with a

> p/q . As noted before, x cannot lie in € or C. . It remains to be
3 Po

proved that x is not contained in the region S0 (possibly consisting of more

than one component) bounded by Wu(G ), r. , and 1 .
0 a, b0

Iterate by f-l. Then S is mapped into the region bounded by Wu(Gl),

r, and V. - By Aubry's fundamental lemma, the point X e So cannot be
1 1

mapped to a cone. Therefore it must land in S1 which is the region bounded
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by Wu(Gl) 2 and lb . We can continue this, inductively defining S
1 1 n

containing f-n(x), until, for some n, Sn lies in an e-neighborhood of a

hyperbolic periodic point.

But this neighborhood can be chosen so small that £f9 restricted to it

is very nearly linear. By lemma 2.2, we know the orientations of the local
invariant manifolds (see figure 2.5). Orbits of points in Sn under £f4 lie on
hyperbolae. Any order preserving orbit in Sn with rotation number greater

than p/q must satisfy

x(£3(y)) > n(y)

These requirements are iﬁcompatible and thus X cannot map to Sn' a

Notice, that we ca~ compare two irrational sets as well, since there

are always pairs of y(p/q+) and v(p/q-) that separate them. So, theorem 2.6

follows immediately.

Theorem 2.6 "Monotonicity": If for all p/q+ and p/q- in I, v(p/q+) and

v(p/q-) can be constructed that satisfy condition 2.4, then a > B implies E

lies above Eﬁ‘
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IIT HYPERBOLICITY

Here, we prove that the invariant minimizing sets close enough to
rationals are hyperbolic (and thus for irrational rotation numbers Cantor
sets). One expects these sets to be hyperbolic as soon they break up (see Li
and Bak [1986]). The rest of the section is devoted to a corollary stating
that such sets have Hausdorff dimension zero.

We start with some generalities concerning the hyperbolic sets that we

are interested in. Again, we assume f to be generic, so that equations 1.1
hold. The set HN = pgN Ep is compact if N is a closed interval in .

According to Lanford (1985}, a compact invariant set H is a (uniformly)
hyperbolic set, if the tangent space of each point x of the set is spanned

by stable and unstable spaces and if the following holds. The tangent
vectors in the stable space must be contracted exponentially (as pn, u<l1
uniformly on the set) under Dfn(x), and the same holds for vectors in the
unstable spaces under Df ™(x). These requirements imply that the local
stable and unstable manifolds Wj(x) and W:(x), tangent to the stable and
unstable spaces, are continuous as functions of x ¢ H, and that their
diameter is uniformly bounded away from zero [Lanford, 1985]. That, in turn,

implies, that there is a 60 > 0, so that for any pair x and y in H whose

distance is less than 80, W:(x) and W:(y) have a unique intersection point

[Lanford, 1985].
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In the following, we will establish the genericity of hyperbolicity. To
do that, we use a cone field criterion as also described in Le Calvez

(1987].

Theorem 3.1 "Hyperbolicity": Let h be a hyperbolic set for f, then there

1) ® fi(H) is also a hyperbolic

exists a compact neighborhood H of h so that 0.

set for f.

Proof: Since h is compact and hyperbolic, ome can comstruct a cone field

{Cx}xeh which is mapped strictly into itself by Df. One does this by

constructing a norm on the tangent bundle restricted to h such that Df is

expanding on the unstable bundle (choose unit vector eu(x) ) and contracting
on the stable bundle (choose unit vector es(x) ), see lemma 2.1 of Nitecki
[1971]. Then choose the cone field Cx as follows: a vector
v = ae (x) + be_(x) is in C_ if |a] = |b] .

By continuity of Df, we can extend this cone field C to a cone field
{c;}xeﬂ defined on a sufficiently small neighborhood H of h such that Df
maps the cone field C’' on f'l(H) A H strictly into C’' on H. Consequently,

any invariant compact set in 18 o fl(H) is also a hyperbolic set. ]
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Corollary 3.2 (see Le Calvez [1987]): For generic £, there exists an open
neighborhood U of the rational rotation numbers such that the collection of

minimizing sets with rotation number in U forms a hyperbolic set.

Proof: Take H = E U E UE d pick H as above. For generic f, the
o/q © Bp/q+ U Pp/q- ENC PIC &

set H is hyperbolic. ]

We let A(p) denote the Lyapunov coefficient = 1 for an order preserving

minimal set Ep. Since these sets are uniquely ergodic with invariant

probability measure p(p) (see Mather [1986]), A(p) is well-defined and

constant p almost everywhere.

Proposition 3.3: Let Ma be a hyperbolic minimizing set with irrational

rotation number, then A(p) is continuous at p = a.

Proof: Let h be a hyperbolic set for f with one-dimensional unstable bundle

u u . . . 4 .
EY. Assume E is orientable. Choose a continuous nowhere zero section v of

EY and consider the function

D(x) = ‘--l----

One observes that D is continuous on h. For an ergodic probability measure u
on h, its Lyapunov coefficient A(p) equals

A(p) = exp [ In D du



16

Since Ma is hyperbolic, we have by theorem 3.1 that 15_@ fi(H) is also

hyperbolic where H is a sufficiently small neighborhood of Mp. One knows

that (Mather [1986]), for a irratiomal, i§-m £f1(H) contains nearby
minimizing sets Mp with invariant probability measures up(p) and that

%32 p(p) = p(a) , in the weak topology. Consequently %33 A(p) = Aa) . o

Remark: The function D(x) is not canonical. If one chooses a different

section v'(x) = ¢(x) v(x), then

D' (x) = ¢(x) D(x)

However, the Lyapunov coefficient is insensitive to this: one easily checks

that [ 1nD du= [ 1nD dp

Finally, a simple result that follows from hyperbolicity. Let X be a

point in E_ where both forward and backward images of the gap G accumulate.

In a neighborhood of x one can connect these tiny gaps by local stable and
unstable manifolds which are almost straight segments that make a positive
angle with each other. From the accumulation of these different gaps, one

concludes the following.

Remark: The set Ea cannot be imbedded in a C1 curve.
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IV _SINGLE GAP

Consider the projections of the Aubry Mather sets on the x-axis. By a

'gap’' G in Ep, we mean [Katok, 1982] a pair of points in Ep, whose

projections bound an interval that contains no point of the projection of

Ep. The length |G| of the gap is simply the length of that interval. The

. i . . . . .
meaning of F (G) is then also clear. The main result of this section 1s

that, under certain assumptions, Ea has only one gaporbit.

Before we embark on the general discourse, we first formulate the
Single Intersection hypothesis, which will be needed in theorem 4.3. Denote

the finite pieces of invariant manifolds to Ep that connect the endpoints of

a gap J in Ep by WS(J) and W'(J). We will say that £ satisfies the Single

Intersection hypothesis if all E E and E are unique (true for

p/a’ p/q-’ p/a+

neric f, ti 1), d if, for J in E r E ,
gene see section 1), and 1 or a gap in p/q+ o 0/q-

Wu(J)l7 WS(J) contains single point (which then has to be the minimax), see

figure 4.1.

Lemma 4.1: If Ea is hyperbolic, then it has at most finitely many gaporbits.

Proof: From the generalities mentioned in section 2, one can deduce, that

for a hyperbolic set, there is a 80 > 0 with the property, that if x and y

are points in Ea, then
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if aFrex),Fi(y)) <6 for all i e Z,
then X =Y.
So, each gaporbit must have a gap of length greater than §. o

Remark: A different proof of this fact was given by MacKay [1987].

Proposition 4.2: For f generic, there is a neighborhood N of p/q, such that

if « € N, then Ea has one gaporbit.

Proof: If £ generic, then E and E consist of a single homoclinic
p/q+ P/9q-

orbit (see section 1), and thus have one single gaporbit. According to
proposition 1.3, for a close enough to p/q (without loss of generality a >

P/, Ea is hyperbolic. Pick any gap in Ep/q+' There is an m > 0, such that

i=+m

. . . i
all gaps in Ep/q+ with length greater the §/3 are contained in ( F'(G)};___-

By equation 1.1, we can pick a so close to p/q, that d(Ea,Ep/q+) < §/3.

Then, by uniform continuity of (fl)iztg , every gap with length greater than

§ is shadowed by a gap in Ep/q and vice versa. o

This result is somewhat unsatisfactory, since one would like to have a
statement for a fixed. In studying the global stability of these systems,
numerical work indicates that the curve with rotation number (1+/5)/2 (or a

related diophantine number, see MacKay [1986]) is the last one to break up.
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By assumption c, we can choose an interval K™ in I' of rotation numbers
p such that the set E=1U Ep (union over K" is uniformly hyperbolic. By
assumption b, we can choose the interval K' so that in addition we have:
Hdlst(Ep, E) < § << &g , (4.1)

where 80 is a lower bound for the diameter of the local jnvariant manifolds

(see section 3) to E_with p e K+. Thus each E , E in E is contained
P p/q+’ p/a-

in the local stable and unstable manifolds to E . Also each gaporbit in E

P/4

must have a gap which is larger than 60. Denote the two 'big’ independent

gaps in Ea by Ga and Ha. According to equation 4.1, we can uniquely define
by taking Gp and Hp to be approximating gaps in Ep. If p is rational,

rational+, or rational-, then, of course, we have that there exists an m(p)

with:
m(p) = 4
f (Gp) Hp' (4.2)

By the continuity of £, it is clear that m(p) has to become unbounded as
f - a.

The question we address now, is, how does m(p) change as a function of

p in K¥? From relation 1.1b and the continuity of f, it transpires that if w

+ . . . . .
e K is irrational, then either m(w) = o or m(p) is continuous at w.

As a consequence, m(p) can make finite jumps only at rational values of
p. This situation is depicted in figure 4.2, where m(p/q-) is not equal to

m(p/q+). Because m(p/q) is unique, we have:
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As a consequence, one is especially interested in the gap structure of this

set, being, as it were, a 'bottleneck’ for the dynamics of f.

We are now in a position to prove the main result.

Theorem 4.3 "Single Gap": Let a be irrational. 1f

a) f satisfies Single Intersection,

and b) Hlim E = E_,
pa p (Y
and c) Ea is hyperbolic,

then Ea has only one gaporbit.

Remark: To prove the result for a single a, it is enough to require that f
satisfy a local variant of the Single Intersection hypothesis.

Remark: Numerical work suggests that a) holds for the standard map. The more
general.case is commented upon after the proof. As stated before, c) has
been proved only in a restricted setting [Goroff, 1985] ,but appears to hold

more generally. One suspects that b) is generically true, see Bangert

[1986].

Proof: We will assume from now on that there are two independent gaps in Ea

and eventually deduce from that a contradiction with the Single Intersection

hypothesis.
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m(p/q+) = m(p/q-) + kq. (4.3)
Without loss of generality, we take m(p/q-) > 0 .
We will now argue that k is negative. Suppose, then, that k is

positive. Relations 4.1 and 4.2 together with the well ordered character of
Ep, imply that fm(p/q')(Gp/q+) lies in a local unstable manifold. Upon

iterating this m(p/q-) times back to the original gap, as in figure 4.2a,

one encounters a contradiction (namely, that points have left the local

unstable manifold under the application of f'l). So k is negative.
1f m(p/q+) > 0, then (recall that m(p/q-) is positive) (4.3) implies
that |m(p/aq+)| < |m(p/q-)|. So, in order to allow m(p) to become unbounded,j
we need:
m(p/q-) > 0 and m(p/q+) < O.
This is the situation sketched in figure 4.2b, and it is here that the final

contradiction with Single Intersection arises. It can be seen as follows
that in this case WS(H ) and Wu(H ) intersect at least two times.
p/a- p/q+

Under forward iterates, the number of intersections involving the local
stable manifolds along with the relative orientations (use corollary 2.3 to

determine the orientations) is conserved. One concludes that the point

marked p in the figure is mapped under fm(p/q-) (with m(p/q-) > 0) to the

point labelled p’, with the orientation as indicated. So

v wheem(P/at) s, (m(p/q-) = s g-ka
p' e W(E (€, /.0 N W (E (G ) = WICHL g ) O W (ETCH, 000
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where k is negative. Let a’ be the image under fm(p/q-). Since wu(Gp/q+)

does not intersect the a-p (by Single Intersection) its image under fm(p/q-)

does not intersect a'-p’. Therefore, if Wu(Hp/ _) intersects p’, it is

q

caught in an unstable ’'lobe’ of fm(p/q')(ﬂp/q+) and must intersect the local

stable manifold to Ep/q again in order to leave the ’'lobe’. By uniform
hyperbolicity Wu(Hp/q_) then must intersect fm(p/q')(Hp/q+) another time.

The intersections with Ws(Hp/q_) follow by the hyperbolicity of the two thus

constructed points (and hence the existence of their local unstable

manifolds). ]

From the last paragraph of this proof, it is clear, that it is

sufficient to replace condition a in the theorem by the requirement
* s u . . . +
a) W (Hp) nw (Hp) is bounded away (uniformly in K ) from the
endpoints of Hp.

This requirement appears to be borne out (Percival, private communication)

by extensive numerical experiments for the standard map. (If this were not
so, one would have ever longer and thinner lobes formed by Wu(Hp/q_) as the
Hp/q- accumulate on the gap Ha‘) We suspect that Single Gap is a persistent

property for an open neighborhood of maps around the standard map but can

only prove that for large values of the non-linearity parameter [Veerman and

Tangerman, 1989].
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V__TURNSTILES

Let a be an irrational rotation number in I and assume that Ea is

hyperbolic. This section is dedicated to proving that the leakage of orbits
through an Aubry Mather set can be understood in terms of overlap criteria.
It is somewhat speculative in nature, since we have to assume all the
conditions that are required for theorem 4.3 to be true. Nevertheless, as
stated, there is good reason to believe that the result holds for an opén
set of maps containing the standard map. This confidence is partly based on
numerical results by various authors, especially MacKay, Meiss and Percivalj
[1984]. We will thus proceed to elaborate on some of the consequences of th;
theorem.

We define turnstiles as follows [MacKay, Meiss, and Percival, 1984].

Let G denote a gap in Ea. Connect the endpoint of £f7(G) with a straight line
segment Ai. Similarly, connect the endpoints of £ (G) with a straight line

segment Az. Clearly, f+n(A§) and f'n(Ai) connects the endpoints of the gap

G.
Note, that by hyperbolicity the endpoints of every gap G are connected
by a branch of stable manifold, and by a branch of the unstable manifold

(the future and past iterates of G collapse the gap). We will denote finite

branches that connect a gap J by w5(J) and whJ).

. N . : -i,.8, _ {sS '
Proposition 5.1: i): %lém £ (Ai) = W (G)
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. : +i,.u, _ U
ii): gl%m f (Ai) = W (G)

Proof: It suffices to prove i only. Because the gaps fi(G) do not overlap,

the sum of their lengths is less or equal to one. So there is an N such that
fN+i . . s

the length | (G)| < € for all i = 0. Then, by uniform hyperbolicity, for

each i. the left and the right endpoint of fN+i(G) have to lie on the same

local stable manifold. But then we also have Hlim f-i(As ) = WS(fN(G)).
N+1i

because A§+i is transversal to the local stable manifold of f°1. ]

As in section 3, we can define a hyperbolic set HN that contains Ep

with p in N, a neighborhood of a. We now take {pi/qi} to be a sequence in N

with a as its limit. Define G;/° as the gaps in Ep /q. - and Ep /ag+ that

i’ i i
have limit (as i -+ =) G.

The main result of this section is:

Theorem 5.2 "Convergence of Turnstiles": Let f satisfy the same conditions

as in theorem 4.3, then:

ey . . s, +, _ S

i): %llm W (Gi) = W (G),
cen L L uSceTy = ws
ii): gl a2 W (Gi) W (G),
. ) . u, +, _ MU
iii): gllm w (Gi) =W (G),
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iv):  Hlim W(G)) = W@,

Proof: It suffices to prove the first statement only. Since we are dealing

S

with gaps G; and Hi only, we will drop the unnecessary superscripts * and ®

on them.
By the Single Gap theorem (4.3), we can choose an integer N such that
jetN j )
j§-N | £9¢(G) | > 1 - €/2.

By the equations 1.1 and the continuity of £, it follows that, for i

sufficiently big:

jetN j .
jg-N | £ (Gi) | >1 €.

So, if l-l1 = f+2N(Gi), its length and that of its forward images is smaller

than ¢. Thus, by uniform hyperbolicity, its endpoints lie on the same local

stable manifold. Let H = f+2N(G). Then, by taking 2N (N fixed) inverse

jiterates, one concludes that i) is true, if and only if Ws(Hi) converges to

Wo(H), But that follows directly from the fact that uniform hyperbolicity
implies that local stable and unstable manifolds vary continuously as

function of their base-point. So the theorem is proved. a

This theorem immediately implies, that the diffusion through an Aubry
Mather set can be understood as a limit of "resonance overlaps". The way to

see this, is to construct curves 7(pi/qi+), with pi/qi t a, as in section 2,
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except that now we take s; to be the left endpoint of the gaps Gi’ defined

as in the proof of the previous theorem. The other points needed in the

construction are taken to be the qi-l images of S5 (see figure 5.1). Iterate

the area Bi below 1(pi/qi+) once, and it is clear that one can define a
+ .
region Ii with:
-1, .+ +

£ (1) > v(p;/9;+) and I, < v(p;/951) -
Similarly, a region O; can be defined by:

+ +1, +

0, < v(p;/q;+) and £7(0;) > v(p;/q5%) -
Theorem 5.2 immediately implies that I; converges in the Hausdorff limit to
I and 0; to 0, and I and O are the areas enc}osed by WS(G) and Wu(G). The

corresponding statement holds also for 7(ri/si-), if we define O; ;nd I; in
a similar vein and if s; mow accumulates to the right endpoint of the gap G.
By Convergence of Turnstiles, it follows, that the 'resonance overlaps’
0; N 0; and I; N I; limit on O and I, respectively. We summarize this

loosely with the following corollary:

Corollary 5.3: Under the conditions of theorem 4.3, the diffusion through

an Aubry Mather se- is a limit of resonance overlaps, if E, is hyperbolic.
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If one assumes that E, is hyperbolic whenever it is a Cantor set, it is

also clear that the above proves the following (geometric) criterion for the
non-existence of an invariant circle with rotation number a (compare

[Mather, [1986], whose result is more general but less geometric).

Corollary 5.4: If Ea is hyperbolic whenever it is a Cantor set, then, under

- . AT - s
the conditions of theorem 4.3, Hlim 0i n 0i converges and has positive area

if and only if Ea is not (contained in) an invariant circle.
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VI CONCLUDING REMARKS

We ha&e argued, that one of our main results, the Single Gap theorem,
holds for f satisfying a number of conditions (see theorem 4.3).
Nevertheless, it is not hard to find a counter-example. Suppose f is a twist
map for which the Single Gap theorem holds and let [MacKay, private

communication] g = f2, then we have the equality Ea(f) = Eza(g) (as sets).

If G and £(G) are gaps in Ea(f)’ they can never be mapped into each<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>