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Abstract

We give a combinatorial analysis of rational rotation subsets of
the circle. These are invariant subsets that have well-defined rational
rotation numbers under the standard self-covering maps of S'. This
analysis has applications to the classification of dynamical systems
generated by polynomials in one complex variable.

Section 0: Introduction

Late in the 1800’s, Poincare showed showed that every homeomorphism of
the circle has a well defined rotation number which measures asymptotically,
the average distance each point is moved by the map. Since its inception, this
concept has played an fundamental role in the theory of dynamical systems
in one and two dimensions.

This article focuses on dynamical systems generated by the standard d-
fold self-coverings of the circle S'. We give a combinatorial classification
of rational rotation subsets of S'. By definition, these are invariant sub-
sets that have well defined rational rotation numbers. For d = 2, these sets
are always periodic cycles, and they arise in a variety of different contexts
[B][Bu][GH][GLT][V1][V2]. Other points of view that are not, to my knowl-
edge, in the literature, have been taught to me by Charles Tresser.

* Research supported in part By the Alfred P. Sloan Foundation, the
National Science Foundation, and by a PSC-CUNY Research Award.



There is an important application of rotation sets to the problem of clas-
sifying dynamical systems generated by polynomials in a single complex vari-
able. A repelling fixed point of a degree d polynomial admits a set of external
arguments © = {6o,...,0,-1} which constitute a degree d rotation subset of
the circle [DH]. This application will be explored at length in a joint project
with John Milnor, that makes up Part II of this work.

Acknowledgement: The author wishes to thank John Milnor for nu-
merous and significant contributions to this article.

Section 1: Notation and Definitions

Parameterize the unit circle S! by the interval [0,1). Let d > 2 and
consider the d-fold covering map

fa:0— df mod 1

Let m and n be non-negative integers satisfying 0 < m < n. We will
adopt the convention throughout that an indexed subset © = {6, ..., 0._1}
of S? satisfies

0<by<...<b,_1<1.

Definition: A finite subset © = {f,...,0,-1} of S? is a degree d m/n-
rotation set if f4(6;) = 0itm moa 1 for ¢ =0,...,n — 1.

In general the numbers m and n need not be relatively prime, so that
m/n = kp/kq for some k > 1 with p and ¢ relatively prime. In this case, we
say that the rotation number of the set © is p/q. It follows that the set © is
a union of k cyclic orbits which are regularly interspersed, each of which has
the order type of any orbit of the rotation 6 — (6+p/q) mod 1. Hence, each
of these k cyclic subsets of © will be called a degree d p/q-rotation cycle.

Remark: Most finite sets invariant under fa are not rotation sets. Con-
sider the 4-cycle generated by the angle 1/5 whose base 2 expansion is
.00110011... ! ‘

To begin our analysis, we isolate the special case of rotation number zero.
Here a rotation set is any non-vacuous set of fixed points of the map fa.
These fixed points are precisely the angles =15 with 0 <j <d — 1.
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Figure 1. Three Quadratic Rotation Sets.

Henceforth, we will assume 0 < p < g.

Lemma 1: For ¢ > 2, the g-cycles under fy are in one-to-one correspon-
dence with orbits of period ¢ under the one-sided d-shift.

Sketch Proof: Label the d arcs obtained by removing the points {ﬁ}
from S! counterclockwise from 0 with the digits 0,1,...,d — 1. Let 6 be
a period ¢ periodic point for fg. If 6 € S! is not a fixed point of fy, let
~(8) € {0,...,d — 1} denote the label of the arc containing 0. Define the
word

a = 7(6),7(fab),- .., 1(f:0710).

The base d expansion of 6; is then given by § = .aaaaa... O

Section 2: Existence and Uniqueness of Rotation Sets

As we will see below, rotation sets with all possible rotation numbers
exist in all degrees d > 2; furthermore, quadratic rotation sets are completely
classified by their rotation numbers. This is not true in higher degrees, as is
indicated by examples in Figure 2. Two of the rotation sets in Figure 2 can
be distinguished from the remaining three by the number of elements they
contains, however a finer invariant is needed to distinguish all five examples.
For each degree d rotation set, we will record the deployment of the elements
with respect to the fixed points of the map fq.

Definition: Let
@ = {90,. . .,0.,1_1}
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Figure 2. The Five Cubic Rotation Sets with Rotation Number 1/2.

be a finite subset of S!. The degree d deployment sequence of © is the
nondecreasing sequence of non-negative integers (s, ...,84-1), where s; is
the number of 6;’s in the interval [0, 75).

The cubic rotation sets in Figure 2 have deployment sequences
(2,2), (3,4), (1,2), (1,4), (0,2)

respectively. (Thus the proportion s;/s; of angles in the upper half-circle 1s
1,3/4,1/2, 1/4, 0 respectively.)

Remarks:
1. The last entry sq_; is just the cardinality of ©. In the case of a rotation

set, it is always a product kg with 1 < k < d — 1. (Compare Corollary
6.)

SV

. This invariant contains no information for d = 1. (It is just the single
number (q).)

3. The degree d deployment sequence of a rotation set locates the compo-
nents of the set with respect to the fixed points of fs, not with respect
to the f;-preimages of 0. Therefore it does not, a priori, determine the
base d expansions of the components.

Lemma 2: (Uniqueness) A degree d rotation set is completely deter-
mined by its rotation number p/q together with its deployment sequence

0<5 <8 <...<84-1 = kg
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Figure 3. Intervals of Advancing and Retreating for fy.

The proof depends on the interplay between the fixed points of f; and its
preimages of zero.

Definition: A point § € S! is advancing if f4(6) > 0, retreating if
f4(8) < 6. (Remember that all angles are reduced modulo 1 so as to lie
in the half-open interval [0,1).

Proof of Lemma 2: Forj = 1,...,d—1, let U; denote the arc (ﬁ, d—i—l .
Each arc U; contains exactly one fy-preimage of zero j/d that divides it into

a pair of subarcs

1
Ujedv = (-JdTI’%l)

R A
Uirt = 13 727)
These are labeled to reflect the fact that ‘E <0< f(6) <1 on Ujew and
0 < f(8) < 0 < 7 on Ujrer-
Let © = {6, ...,0k-1} be a degree d kp/kg-rotation set with deployment

sequence (81,82, - . ,84-1 = kg). Since O is a kp/kg-rotation set, fq advances
6o, - . . ,Okg—kp—1 and retreats the other 6;’s. If 0 <z < kq — kp — 1, then
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Gier.adv=(d—__1,2)C(_d_a2)
andifg—p<i1<g-1,

. 7 ) o +1

eiebj,reiz(:l’ E%T)C(]Ea _-Cl_)

so that the location of the 6;’s vis-a-vis the f; preimages of 0 is determined.
Now, as in Lemma 1, the action of f; yields the base d expansions of the 0,’s.
O

We now turn to the question of existence. An examination of the proof
of Lemma 2 gives an algorithm for constructing angles from the data con-
sisting of a rotation number p/g, and a candidate deployment sequence
(s1,...,84-1 = kq). It is not difficult to check that the angles 0; resulting
from this construction satisfy

0<8y<-- <l <1

However, these inequalities need not be strict, so the angles 6; will not be
distinct in general. We give below, a necessary and sufficient condition for
strict inequality, and hence for the existence of a set of angles fitting the
given combinatorial data. "

Let © = {fo,61,...,0k-1} C S* be disjoint from the fixed points of fg.
The complement of © in S* consists of kg arcs Ao, A1, ..., Akg—1 labeled so
that the arcs A; is bounded by §; and ;41 mod k- We define the weight w(A;)
of the arc A; to be the number of f, fixed points it contains. Note that the
length, £(A;) of A; equals the difference 8;41 — 6; when i < kg — 1 and equals
1+ 60 — g1 when ¢ = kg — 1.

Lemma 3: Let © = {6o,01,...,0k-1} be a degree d rotation set with
rotation number p/q and complementary arcs Ao, A1, ... , Agg—1. Then the
following equation holds:

dé(A,) = [(Ai-f-kp n-‘nod kq) + w(Ai) (*)

Furthermore, the map f; carries A; homeomorphically onto Aitkp mod kq
if and only if the weight w(A;) is zero.

6



Proof: The image of an arc A; under f; covers the (disjoint) arc A4 kp mod kq
and then winds some number N times around the circle. It is easy to check

that each of these circumnavigators of S? in A; contains a unique fixed point
of fq. Therefore, N = w(A;). O

We can solve these linear equations (*) for the angles £(A;) as functions
of the critical weights w(A;). If we sum these equations over a residue class
modulo k, we obtain the equation

(d=1)(L(A)HL(Aipr)+- - H(Airrg-1))) = W(Ai)Fw(Aipr)+. . F@(Aigre-1)

for each 7 between 0 and k — 1. That is, the total angular width of these
g sectors is directly proportional to the total weight. In particular, at least
one of these ¢ sectors must contain a fixed point of f;. (More directly, if
the w(Aiynk) were all zero, then each of these sectors would map homeo-
morphically onto a sector with strictly greater length, which is impossible.)

Lemma 4: For each i between 0 and k — 1, the ¢-fold sum

wW(Ai) + w(Aigr) + .o+ W(Aigrg-1))

must be strictly positive. In other words, each of the arcs A; either contains
a fixed point, or is mapped homeomorphically by an iterate of f; onto an A;
that does contain a fixed point. ]

Remark: In the sequel to this article, we will show that the weight w(A;)
is equal to the number of critical points contained in an associated region of
the dynamical plane of a polynomial map. (Compare Part II, §2.)

An equivalent formulation of Lemma 4 in terms of deployment sequences
is the following. Fix any p/q # 0.

Lemma 5: A sequence 0 < 51 < 59,<...,< 84_1 = kq is realized by a
degree d rotation set if and only if every residue class modulo k is realized
by at least one of the s;’s. :

Corollary 6: We have k£ < d — 1. That is, a degree d rotation subset
with rotation number p/q contains at most (d — 1)g¢ points. O

7



We summarize the results from this section as

Theorem 7: A degree d rotation subset of the circle is uniquely deter-
mined by its rotation number and its deployment sequence. Conversely, a
lowest terms fraction p/q and candidate deployment sequence

0§51§52§---§5d—1=kq

determine a rotation subset of S! only if every residue class modulo k is
realized by at least one of the s;’s. O

Corollary 8: Quadratic rotation cycles are in one to one correspondence
with the set of rational numbers modulo one. o

Section 3: Counting Rotation Cycles
Recall that the number of ways to deploy ¢ indistinguishable balls in N
labeled boxes is equal to the binomial coefficient (N +:'l).

Proposition 9: The map f; has (d"";'?) rotation cycles with rotation
number p/q.

Proof: The conditions of Theorem 7 are satisfied for every candidate
deployment sequence (sy, 82, ...,84-1 = ) corresponding to a rotation cycle.
Consequently, the number of p/g-rotation cycles in degree d is precisely to

the number of ways to deploy ¢ indistinguishable balls in d —1 labeled boxes.
(]
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Fixed Points of Polynomial Maps
Part Il - Fixed Point Portraits

Lisa R. Goldberg and John Milnor
Brooklyn College & Institute for Mathematical Sciences
CUNY Graduate Center SUNY Stony Brook

Abstract. Douady, Hubbard and Branner have introduced the
concept of a “limb” in the Mandelbrot set. A quadratic map
f(z) = 2% + ¢ belongs to the p/q-limb if and only if there exist
q external rays of its Julia set which land at a common fixed
point of f, and which are permuted by f with combinatorial
rotation number p/q € Q/Z, p/q # 0. (Compare Figure 1
and Appendix C, as well as Lemma 2.2.) This note will make a
similar analysis of higher degree polynomials by introducing the
concept of the “fixed point portrait” of a monic polynomial map.

Introductiqn.

The object of this paper is to classify polynomial maps in one complex
variable in terms of the external rays which land at their fixed points. To
each monic polynomial we assign a fixed point portrait, which is a list of the
angles of the rational external rays which land at the various fixed points.
(See Section 1 for details.) Except in the three appendices, we consider only
polynomials with connected Julia set. The paper is organized as follows:

Section 1 contains a more detailed outline of subsequent sections, as well
as an overview of the relevant concepts from complex dynamical systems. (A
basic reference for this is [M2].)

Section 2 defines the rational type T of a fixed point z as the set of all
angles of rational external rays which land at z. In the terminology of Part
1, such a rational fixed point type T C Q/Z is an example of a rotation set.

In Section 3, we introduce the fixed point portrait of a polynomial. By
definition, this is the collection {T%, ..., Tx} consisting of all rational types
T; # 0 of its fixed points. We outline a set of combinatorial conditions
that a fixed point portrait must satisfy, and we formulate our Main



Conjecture 3.9: These necessary conditions are also sufficient. In other
words, we conjecture that every ‘candidate’ fixed point portrait satisfying
certain combinatorial conditions can actually be realized by a polynomial.

Sections 4, 5, 6 are devoted to establishing Conjecture 3.9 in the special
case of a degree d polynomial which has d distinct repelling fixed points.
Our proof relies on the study of the critical portrait of a polynomial: This is
our name for a basic concept which was introduced and studied in the thesis
of Yuval Fisher. Fisher gives a set of necessary and sufficient conditions
for a collection of sets of angles to be the critical portrait of some critically
pre-periodic polynomial. Section 4 summarizes basic facts about critical
portraits, and recalls theorems from Fisher’s thesis that we use.

Section 5 describes an algorithm that determines the fixed point portrait
of a polynomial from its critical portrait.

Section 6 contains our main result. For each fixed point portrait satisfying
suitable conditions we construct a compatible critical portrait satisfying all
of Fisher’s conditions. It then follows by Fisher’s thesis that each such fixed
point portrait can be realized by some critically pre-periodic polynomial.

Section 7 discusses the two main questions left open in this paper:

(1) The Main Conjecture 3.9. Show that every candidate fixed point portrait
occurs as the portrait of a polynomial, even when not all of the fixed points
are distinct and rationally visible.

(2) Parameter Space. In the connectedness locus Cq, consisting of all monic
centered polynomials of degree d with connected Julia set, describe the struc-
ture of “limbs” consisting of polynomials with equivalent fixed point portrait.,
and explain how these limbs fit together.

The paper concludes with three appendices. Appendix A extends the
exposition to polynomials whose Julia sets may not be connected. Appendix
B considers the transition between different fixed point portraits as we vary
the polynomial within parameter space, and Appendix C applies these ideas
to prove known results about parameter space in the degree two case.

The authors want to thank Douady for suggesting the circle of ideas
studied in this paper.
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Figure 1. Julia sets for two quadratic maps in the 1/3-limb.
The external rays to the two fixed points have been plotted.



§1. Overview.

Let f:C — C be a polynomial map of degree d > 2, and let K = K (f)
be its filled Julia set, consisting of all z € C for which the orbit of z under f
remains bounded. To simplify the discussion, we will assume that f is monic,
and that K(f) is connected, or equivalently that the Julia set J = OK is
connected. (For a discussion of the case where K (f) is not connected, see
the three Appendices.) It follows from this assumption that the complement
C\K(f) is isomorphic to the complement of the closed unit disk D under
a unique conformal isomorphism '

¥ : C\D = CNK(f)
which is asymptotic to the identity map at infinity; and furthermore that
P(z%) = f(¥(z)) forall zE€ C\D. (1)

For each angle t € R/Z, the external ray R, C CNK(f) is defined to be
the image under @ of the half-line

(1,00) e¥™ = {re?™ : 1< r < oo}

which extends from the point e?** out to infinity in C\D . It follows from
(1) that f(R,) = R . In particular, note that f(R;) = R, if and only if t
is a fraction of the form j/(d—1). In this case, R; will be called a fixed ray.
Similarly, some iterate of f maps R, onto itself if and only if t is rational
with denominator prime to d. In this case, R, will be called a periodic ray.
Note that ¢ is rational if and only if some image f°*(R,) is periodic.

We are interested in the limiting values of an external ray f; as r de-
creases to 1. By definition, the ray R, lands at a well defined point a;
whenever this limit exists and is equal to a,. Such a landing point always
belongs to the Julia set J = 8K . Putting together results due to Douady,
Hubbard, Sullivan, and Yoccoz, we have the following. (Compare [M2]. For
definitions, discussion and further references, see §2.)



Theorem 1.1. If f is a polynomial of degree two or more, with
K(f) connected, then every periodic ezternal ray R, lands at a
well defined periodic point

a; = lim P(re¥™) € K(f),

which is either repelling or parabolic. Conversely, every repelling
or parabolic periodic point of f is the landing point of a finite
number (not zero) of external rays, all of which are necessarily
periodic with the same period.

More generally, every rational external ray lands at a well defined point
of the Julia set. Evidently the landing point a; is pre-periodic; in fact some
forward image f°"(a;) belongs to a repelling or parabolic cycle.

Now consider an arbitrary fixed point f(z) = z.

Definition 1.2. By the rational type T = T(f,z) of a fixed point z of a
monic polynomial f will be meant the set of angles of the rational external
rays of K(f) which land at z. In other words, T(f,2) is the finite subset
of Q/Z consisting of all rational numbers ¢ modulo 1 for which the landing
point a; of R, is equal to z.

The possible fixed point types fall into three distinct classes, which we
briefly describe below. (For further details see Part I, as well as §2.)

We will say that a fixed point f(z) = z is rationally invisible if there are
no rational rays at all which land at z, so that the type T is vacuous. Such
a point is either attracting, or Cremer, or is surrounded by a Siegel disk.
We will largely ignore such points, concentrating rather on the “rationally
visible” points.

A fixed point has rotation number p = 0 if it is the landing point of at
least one of the fixed rays Rj/4-1). In this case the type T is some non-
vacuous subset of the set of fixed angles {0, 1/(d—1),..., (d—2)/(d—=1)}.
It will follow from Theorem 6.1 that all 24! — 1 such subsets can actually
occur. Fixed points of rotation number zero always exist, and will play an
organizing role in our discussion.

Finally, if T is non-vacuous and does not consist of fixed angles j/(d—1),
then it is uniquely determined by three invariants, namely the cardinality #T,
the combinatorial rotation number

0#p=p/qg € Q/Z,

)
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Degree d =2

Figure 2. Schematic diagram for the fixed point portrait corre-
sponding to Figure 1. Fixed points are indicated by heavy dots.
The location of the critical point is indicated by a star.

and the deployment of the elements of T with respect to the fixed angles
j/(d = 1). Here we can take 0 < p/q < 1 to be a fraction in lowest
terms. The cardinality #7T can then be expressed as a product of the
form kg with 1 < k < d—1. Thus we can number the elements of T as
0 <t <-++ <ty <1, with dt; = tiysp (mod 1). Finally, the deployment
of the elements of T with respect to the fixed angles can be described, for
example, by specifying the cardinality s; = #(T N[0, E—Ll)) of the intersec-
tion of T' with each half-open interval [0, 31_1) When k > 1, the resulting
sequence 0 < s; < -+ < 841 = kq is subject to certain mild restrictions.
(See Part 1.)

The principal concept which we propose to study is the following.

Definition 1.3. The fixed point portrait of a monic polynomial is the
collection of types of its rationally visible fixed points. Thus two monic
polynomials f and g of degree d have the same fized point portrait if and
only if there is a one-to-one correspondence between the rationally visible
fized points of f and the rationally visible fized points of g which preserves
the type.

6
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Figure 3. Four cubic Julia sets, each with one fixed point of rotation number 1/2.
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Figure 4. Schematic diagrams for the fixed point portraits of Figure 3.



As examples, Figure 1 shows the Julia sets for the quadratic polynomials
fi(z) =22+ €z and  folz) =241,

These have the same fixed point portrait, which consists of the type
T, = {0} with rotation number zero and the type Tz = {3,2,4} with
rotation number 1/3. This portrait is indicated schematically in Figure 2.
Figure 3 shows the Julia sets for four cubic polynomials. Each of these has
one fixed point of rotation number 1/2. The right center Julia set also has
one rationally invisible fixed point; while the other three have two distinct
fixed points of rotation number zero. Figure 4 shows schematic diagrams for
these four fixed point portraits. Note that the last portrait can be described
as the union of the first two.

Definition 1.4. It is often convenient to compactify C by adding a circle
of points at infinity, with one point lim;_ i re*™* corresponding to each
angle t € R/Z. We denote this compactified plane by © , and denote the
circle at infinity by 0@ = R/Z.

In order to understand a general fixed point portrait, first consider the
fixed points of rotation number p = 0. These are precisely the landing points
of the d—1 fixed rays R;/a-1). Suppose that there are n such fixed points,
and let Ty, ..., T, be their types. Thus the T, are disjoint non-vacuous
sets with union equal to {0,1/(d=1),...,(d —2)/(d —1)}. Evidently
1 <n <d-1. Note that any two of these sets T}, are “unlinked”, in the
following sense.

Definition 1.5. We will say that two subsets T and T’ of the cir-
cle R/Z are unlinked if they are contained in disjoint connected subsets of
R/Z, or equivalently if T" is contained in just one connected component of
the complement R/Z\T'. (In particular, T and T’ must be disjoint.) If we
identify R/Z with the boundary of the unit disk, then an equivalent condi-
tion would be that the convex closures of these sets are pairwise disjoint. As
an example, if T and T" are the types for any two distinct fixed points of
f, then evidently T and T” are unlinked.

The d — 1 fixed rays Rjj4-1y will cut the complex plane into
m = d —n connected open subsets, say Uy, ..., Un, which we will call
basic regions. Compare Figure 5, which illustrates the degree six case with
m =n =3 and with

le{O,%}) T2={%}7 T3={%’§}

9
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Figure 5. Partial schematic diagram for a typical map of degree
d = 6. In this example, the five fixed rays cut the plane into three
“basic regions” Uj;, each of which contains exactly one interior
fixed point (indicated by a solid dot), and as many critical points
(stars) as boundary fixed points.

To simplify the discussion, let us assume for now that the d finite fixed
points of f are all distinct. The following will be proved in §3.

Lemma 1.6. With this hypothesis, each basic region U; contains
at least one critical point of f, and ezactly one fized point of f.

Let T} be the type of the fixed point in the region U;. This fixed point
may be rationally invisible, so that T; = 0. However, if T/ # 0 then it has
a well defined rotation number p;/g;, which is an arbitrary non-zero rational
modulo 1. In order to describe which fixed point types T are possible, for
given U; and given rotation number, we need further definitions.

By the critical weight 1 < w(U;) < d—1 we mean the number of critical
points of f, counted with multiplicity, which are contained in the region
U;. Closely related is the angular size o(U;) of Ui at infinity, which is
defined as follows. We think of U; as a region in the circled plane ©, and
define a(U;) to be the length of the intersection of OU; with the circle at
infinity 8@ = R/Z. By definition, the circle at infinity has total length
equal to 1. Thus the sum of the angular sizes of these m = d — n regions is

10



S a(U;) = 1, while the sum of the critical weights is 3 w(U;) = d—1. Note
that the intersection OU; N 8(@© corresponds to a union of non-overlapping
intervals I; = [47, £57], each of length 1/(d —1),in R/Z.

Lemma 1.7. The number of critical points w(U;) is equal to the
number of intervals I;, 0 < j < d — 1 which are contained in
the boundary of U; at infinity. Thus the angular size is given by
o(U;) = w(U;)/(d—1). When the critical weight w = w(U;)
equals one, there is one and only one possible fized point type T}
with given rotation number p/q which can be placed in the basic
region U;. However, when w =2 there are ¢+ 1 possible types

of cardinality q, and q types of cardinality 2q.

Compare Part I, as well as §2. For each fixed higher value of w, one
can show that the number N of distinct types can be expressed analogously
as a polynomial N,(q) of degree w —1 in ¢. Note that the number of
possible types is completely independent of the numerator p, the degree d,
and the precise shape of the region U;. It depends only on the denominator
g and the weight w. The proof, in Part I, shows more explicitly that each
type T/ is uniquely determined by its rotation number, together with the
cardinalities of the various intersections T} N I;. Of course only w of these
intersections can be non-vacuous.

Example. If the d — 1 fixed rays Rj/4-1) all land at distinct points,
then there is only one basic region U, and its critical weight is w=d —1.

The main result of this paper, Theorem 6.1, gives a complete charac-
terization of just which fixed point portraits can occur, providing that we
assume that the d fixed points are all distinct and rationally visible. Our
proof depends essentially on work by Yuval Fisher, which is developed in §4.

The final section, §7, gives a brief discussion of the corresponding problem
where we do not require that all fixed points must be rationally visible. There
is an obvious conjecture, which is surely true. (Compare 3.9.) However,
we do not have a proof. There are three appendices. The first discusses
non-connected Julia sets, the second studies the transition between different
fixed point portraits, and the third describes parameter space in the classical
degree two case.

11



§2. Classification of Fixed Points.

We continue to assume that f is a monic polynomial map of degree d > 2
with K(f) connected. Recall that the dynamics of f in a neighborhood of a
fixed point f(z) = z is controlled by the eigenvalue or multiplier f'(z). The
fixed point is said to be repelling if |f'(z)| > 1, attracting if |f'(z)| <1, and
to be parabolic if f'(z) is a root of unity. Combining arguments of Douady,
Hubbard, Sullivan, and Yoccoz, we have the following. (Compare 1.1.)

Lemma 2.1. A fized point is rationally visible (that is, admaits at
least one rational external ray) if and only if it is either repelling
or parabolic.

Proof Outline. In the attracting case the point z cannot be rationally
visible since z is in the interior of K(f). Similarly, if there is a Siegel disk
around z, then z cannot be rationally visible. If f’(z) is any point on the
unit circle, which is not a root of unity (in particular, if z is a Cremer point),
then an argument of Douady and Sullivan shows that no rational external
ray can land at z. Compare [Su], [DH2 p.70]. On the other hand, if z is
repelling then an unpublished argument of Douady and Yoccoz shows that
at least one rational external ray lands at z (compare [Pe]); and it is not
difficult to adapt their methods to prove the corresponding statement in the
parabolic case. (See [M2].) D

For the rest of this section, we consider only fixed points which are ratio-
nally visible.

Lemma 2.2. If at least one rational external ray lands at the
fized point z of f, then there are only finitely many external
rays landing at z, and all are rational and are permuted by f.
More precisely, if we number these rays as Ry;) where

0<t0)<---<t(n—-1)<1,

then there is a unique residue class m modulo n so that f maps
each ray Ry;) onto Ry with ! =i+ m (mod n) .

In practice, we may think of the indices i as integers modulo n, and
simply write

f(Rt(i)) = Rt(i+m)-

12



By definition, the ratio m/n in Q/Z is called the rotation number p(f, z).
Here m and n need not be relatively prime. We will usually write the
rotation number as a fraction p/q in lowest terms, where m = kp and
n = kg, and where k > 1 is the greatest common divisor. Note that
the collection T(f,z) of external rays landing at z then splits up into &
subsets of g rays, where each of these subsets is permuted cyclically by
f. The integer k > 1 can be described as the number of cycles of external
rays which land at z. The set T = T(f,z) is called the type of the fixed
point z.

Caution. By definition, our rotation numbers are always rational. Of
course an infinite subset of R/Z may well have a rotation number which is
well defined but irrational. (See Figure 16, and compare [Ve].) Such rotation
numbers are briefly considered in the three Appendices, and are surely worthy
of further study. One step in this direction, a study of irrational rotation sets,
has been carried out by A. Poirier (unpublished).

Proof of Lemma 2.2. Clearly the map f carries each ray R, landing
at z to aray f(R;) = Ry landing at z. Furthermore, since f is a local
diffeomorphism near z, this correspondence must preserve the cyclic order of
these rays around z, which is the same as the cyclic order of the correspond-
ing angles t € R/Z. First suppose that the zero ray Ro lands at z. Then
we claim that any other ray R; which lands at z must also be mapped into
itself by f, and hence must satisfy td =t (mod Z), or in other words have
the form ¢t = j/(d — 1). For otherwise the successive images f(R:) = Rv,
f(Ry) = Ry, ... would satisfy either 0 <t <t' <t <--- <1 or
0<---<t"<t <t<]l;since cyclic order is preserved by f. In either
case, the angles of these successive images would tend to a limit of the form
j/(d = 1). But this is impossible, since j/(d — 1) is a repelling fixed point
of the map t — td (mod 1) . Thus the rays which land at z are all rational,
and there are at most d — 1 of them.

Now assume only that some arbitrary rational ray lands at the fixed point
z. After applying the map f a sufficient number of times, we may assume
that the angle ¢ of this ray has denominator prime to the degree d. In other
words, we map assume that this ray R, is periodic under f, with period
say ¢q. Let F be the ¢-fold iterate f°¢, of degree d?, so that R, is fixed
by F. Evidently ¢ has the form j/(d? — 1). Now consider the conjugate -
polynomial map w +— A~'F(\w), where XA = e2™*. This fixes the zero ray;

13



hence the argument above shows that at most d? —1 external rays of F', or
equivalently of f, land at the point z, and that the corresponding angles
are all rational, of the form j/(d? —1). Further details are straightforward,
and will be left to the reader. O

We can restate Lemma 2.2 in the language of Part I of this paper as
follows. Recall that a finite subset of R/Z with well defined rational rotation
number is called a rational rotation subset.

Corollary 2.3. The type T(f,z) of any rationally visible fized
point z is a rational rotation subset of the circle.

A complete combinatorial classification of rotation subsets T C R/Z
may be found in Theorem 7 of Part I. Such rotation subsets exist for all
rotation numbers in all degrees d > 2. Furthermore: The rotation subset T'
is uniquely determined by its rotation number p/q and its cardinality kq,
together with the “deployment” of its elements with respect to the fized angles
j/(d —1). When k > 1, this deployment is subject to certain restrictions.
More explicitly, for small values of the degree d we have the following.

Degree 2. The rotation number p/q € Q/Z~{0} is a complete invariant.

Degree 3. There are 2¢+ 1 possible types T for each rotation number
p/q # 0. A convenient complete invariant is the ratio s,/k, which can be
any integer or half-integer between zero and ¢. Closely related is the ratio
s1/kq, which measures what fraction of the elements of T lie between 0
and 1/2. As examples, for the four maps of Figure 3 with a fixed point
of rotation number 1/2, this fraction s;/kg is respectively 1/2,1.1. and

3/4.

Similarly, in higher degrees, the analogous ratios
0<s1/kg< - < sa-2/kg <1

form a complete invariant. Here s;/kq measures what fraction of the ele-
ments of T lie between zero and i/(d — 1) . See Part I for details.

In the parabolic case, there is a very close relationship between multiplier
and rotation number, which we explain in the next Lemma.

Lemma 2.4. If z is a parabolic fized point with multiplier
f'(z) = €*™?/9 | then the rotation number p(f,z) € Q/Z is equal

to p/q.

14



Remark. In the case of a repelling fixed point, the rotation number
p/q is not precisely equal to the argument of the corresponding multiplier
f'(2) in most cases. However, the still unpublished Yoccoz inequality asserts
that log f'(z) must lie in a certain open disk Do in the right half-plane. By
definition, Dy has radius log(d)/(kq) where kq is the number of rays landing
at z, and this disk is tangent to the imaginary axis at the boundary point
2mip/q. (Compare [Pe].) In particular; suppose that we fix p/q and choose a
sequence of maps f; for which the multiplier f;(z;) at some repelling fixed
point of rotation number p/q converges towards the unit circle. Then it
follows that these multipliers fj(z;) must converge towards the point e?mirla,
Thus Lemma 2.4 can be described as an easy limiting case of the Yoccoz
inequality.

Outline Proof of 2.4. According to the Leau-Fatou Flower Theorem, for
some integer r > 1 there exist rq simply connected regions U, ..., U
numbered in counterclockwise order around z , so that f(U;) C U; with
j = i+ rp (modrq), and so that an orbit under f converges towards
z (without actually hitting z) if and only if it eventually lands in one of
the U; . Compare [M2], [Bl, §3]. Evidently any external ray which lands
at z must be disjoint from these U; . However, since f is an orientation
preserving homeomorphism near z, an argument similar to the proof of
Lemma 2.2 shows that the combinatorial rotation number for these external
rays cannot be different from the combinatorial rotation number p/q for
these petals. O

To conclude this section, let us supplement the discussion in Part I Lemma
3 by describing how rotation sets and their associated external rays are re-
lated to critical points. Let z be a rationally visible fixed point of type
T = {to,...,ts1} and rotation number p/q, where n = kg. Then the
external rays R, divide the circled plane © into n pie slices Sy, ..., Sa
which we will call sectors. The boundary 85; consists of the two rays Ry,_,
and Ry, together with an arc A; on the circle at infinity 6© = R/Z. By
the critical weight w(S;) we mean the number of critical points of f within
S; counted with multiplicity, so that Y w(S;) =d —1.

Lemma 2.5. The critical weight w(S;) is equal to the number

of fized points h/(d — 1) € R/Z = 0© which are contained in
the boundary at infinity A; = S; N 0©. (For the special case
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p/q = 0, see the comment below.) If this weight w(S;) is zero,
then the polynomial map f carries S; homeomorphically onto
the sector S;, where j =i+ kp mod kq. On the other hand, if
w(S;) > 0 then f carries S; onto the entire plane ©.

Since there are exactly d—1 fixed points at infinity, this gives the correct
total count. However, in the special case of a fixed point of rotation number
zero, this statement needs to be interpreted with care. The two end points
t;_, and t; of the boundary at infinity A; are themselves fixed points at
infinity in this case; and we must count each with weight one-half in order
to get the correct number.

Remark 2.6. If there is a critical point in the sector S;, then there must
be at least one critical value in the sector S;, where j = ¢+ kp mod kq. For
otherwise, every one of the d branches of f~! would be well defined and
smooth throughout S;, which is clearly impossible.

Definition. The angular size £(S;) will mean the length of the boundary
at infinity A;. Thus £(S;) =t; —t;, for 1 <i<n,and YL(S)=1.

Proof of 2.5. Suppose that we traverse the boundary 85; in three steps:
first out to infinity along the ray R;_, then along the arc A; and then back
to the fixed point along Ry, . The image of this loop under f will first follow
the boundary of the corresponding S; out along the ray R;_, and along
A;. But then it will continue all the way around the circle for some number
N of times, where df(S;) = £(S;) + N, before returning to the fixed point
along R, . As noted in Part I Lemma 3, this N is the number of fixed
points at infinity in A;. Let us round off the corners of S; so that 0S; has
a smoothly turning tangent vector, which rotates through one full turn as
we circumnavigate this boundary. Evidently the tangent vector of the image
of 8S; under f will rotate through N + 1 full turns. It follows easily that
there are exactly N critical points, counted with multiplicity, in the interior

of S,' . O
The proof shows also that

(2.7) d0(S:) = £(S;) + w(S:)

with j = i+kp mod kq as above. (This is of course just a mild restatement
of Lemma 3 of Part I.) In the special case of rotation number zero, this reduces
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to the formula

08

(@-1)HS) = w(S).
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§3. Fixed Point Portraits.

In this section we consider all of the fixed points of the polynomial map
f of degree d . The first step is to consider the landing points of the d — 1
external rays R;/(—1) which are fixed by f . Suppose that n of these landing
points, say 2, ... , Zn, are distinct. Then the rays Rj/(4-1) , together with
their landing points, cut the plane of complex numbers into m = d—n basic
regions, which we will denote by Uy, ..., U,. ,in some arbitrary order. Here
1 < m < d—1. We can roughly locate the critical points of f ,and also the
m remaining fixed points, as follows. As in §1, the critical weight w(U;)
will mean the number of critical points in U; , counted with multiplicity.

Recall that © stands for the compactification of the complex numbers
by adding a circle © = R/Z of points at infinity. This circle at infinity
has length +1 by definition. The boundary of U; in this completed plane is
made up out of a finite part consisting of rays Rj/(-1), and also a union of
one or more arcs on the circle at infinity. (Compare Figure 5.)

Lemma 3.1. The critical weight of each basic region U; 1is equal
to the number of fized points (necessarily of rotation number
zero) on the finite part of OU;, or to d — 1 times the length
of that part of 8U; which lies on 8©.

Proof. (Compare the proof of 2.5.) Let N be the number of fixed points
on the finite part of oU;. As we traverse the boundary of U;, starting at
one of these finite fixed points, we first travel out along a ray Rj/-1) » then
traverse an arc of angle 725 at infinity, and then come in to the next fixed
point along Rj41)/-1) - This pattern is repeated N times. The image of
OU; under f has a similar description. The only change is that each arc
of AU; N d© of length $35 is mapped to an arc which wraps all the way
around the circle, so as to have total length 3%; =1+ . Let us round
off the corners of AU; so as to obtain a smooth curve whose tangent vector
has winding number +1. Evidently the tangent vector of the image of this
curve under f will have winding number N +1. It then follows easily that
the number of critical points w(U;) enclosed by this curve must be equal to

N. O

If the d finite fixed points of f are all distinct, then we will show that
each basic region U; contains exactly one interior fixed point. More generally,
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we will modify this statement so that it remains correct even when there are
multiple fixed points. However, to do this we will need some definitions.

A fixed point f(z0) = zo is said to have multiplicity p if the Taylor
expansion of f(z) — z about 2o has the form

f(2) —z = a(z — z)* + (higher terms),

with @ # 0 and g > 1. The sum of the multiplicities of the fixed points is
always equal to the degree d. By definition, 2z is a multiple fixed point if
i > 2. Such a multiple fixed point is the center of a Leau-Fatou flower with
i — 1 attracting petals, each contained in an immediate attracting basin.
(See for example [M2].)

Definition 3.2. Each one of these u —1 immediate basins about a fixed
point of multiplicity p > 2 will be called a virtual fixed point of f.

Thus the total number of fixed points and virtual fixed points for f in
the finite plane C is always equal to the degree d. For our purposes, virtual
fixed points are very much like rationally invisible fixed points: neither one
makes any contribution to the fixed point portrait. In fact the following
seems very likely: ‘

Conjecture. Any virtual fixed point can be converted to an attracting
fixed point by a small perturbation of the polynomial, without affecting the
fixed point portrait. Further, we conjecture that it is possible to choose
this perturbed polynomial so that, when restricted to its Julia set, it is
topologically conjugate to the original polynomial on its Julia set.

The following is an important topological restriction on the distribution

of fixed points.

Theorem 3.3. Each one of the basic regions U; contains exactly
one interior fized point or virtual fized point.

Evidently a fixed point has a well defined non-zero rotation number if
and only if it is rationally visible and interior to some U;. As an immediate

consequence of 3.3:

Corollary 3.4. Fach basic region U; contains at most one ra-
tionally visible interior fized point.
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Before proving 3.3, let us state one further corollary, which has been
pointed out to us by A. Poirier.

Corollary 3.5. Let V be any bounded invariant Fatou domain
for the polynomial f, that is any bounded component of C\J(f)
which is mapped to itself by f. Then any fized point on the
boundary OV must be either parabolic or repelling, with rotation
number zero. There cannot be any Cremer point on the boundary.

Proof (assuming 3.3). First recall that the region V must be either
a Siegel disk, or the immediate basin of an attractive fixed point, or an
immediate basin of a parabolic fixed point. (See for example [M2, §13].)In
the first two cases, V contains an interior fixed point, while in the parabolic
case it contains a virtual fixed point. Evidently V must be contained in
some basic region U;. Hence it follows from 3.3 that any fixed point on the
boundary of V must also be in the boundary of U;. The conclusion follows.

O
The proof of 3.3 will depend on the following ideas.
Definition 3.6. Let A C C be a topologically embedded closed disk

with interior A. A map f: A — C will be called weakly polynomial-like of
degree d if f(AA)N A =0, and if the induced map on integer homology

f.:Hy(A,0A) =2 Z — Hy(C,C\{2}) = Z

is multiplication by d. Here 2o can be any base point in A.

Remark. If f is holomorphic, and satisfies the sharper condition that
f(0A)N A = 0, then it is called polynomial-like. Compare [DH3].

Lemma 3.7. If f: A — C is weakly polynomial-like of degree
d, with isolated fized points, then each fized point f(z:) = =
can be assigned a Lefschetz index «(f,z;) € Z which is a local
invariant, so that the sum of these Lefschetz indices is equal to
the degree d. '

Proof. For presentations of the Lefschetz Fixed Point Theorem, see for

example [Brn), [DGr], [Gr] or [Ji]. In the case of an interior fixed point, the
Lefschetz index can be defined as the local degree of the map z — f(z) — z
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at the fixed point. That is, if U is a small neighborhood of z;, then the
induced homomorphism

(f —identity). : Ho(U, UN{z}) — H,(C, C\{0})

is multiplication by ¢. If there are no boundary fixed points, then the sum
of these indices is the degree of

(f — identity). : Hy(A,8A) — Hy(C,CN{0}).

But the identity map of A is homotopic to the constant map 2z — 2o, sO
this sum of indices is equal to d.

If there are boundary fixed points, then we can first modify the map in
a neighborhood of each one so as to push all of the fixed points inside, and
then apply the construction above. The resulting index does not depend on
the local modification, since the global degree cannot change. O

Proof of 3.3. Let U; be one of the regions of 3.1, and let A be the
topological disk which is obtained by intersecting U; with a large round disk
centered at the origin. Then it is easy to check that f restricted to A is
weakly polynomial-like of degree w+1 = w(U;) +1, and that it has exactly
w boundary fixed points. If U; contains no virtual fixed point, then we
will show that each of these boundary fixed points has Lefschetz index +1.
Therefore, it will follow from 3.7 that there must be an interior fixed point
as well.

First consider a boundary fixed point z; which is repelling, |f'(z;)| > 1.
Then a small open disk D, centered at z; maps diffeomorphically onto
a strictly larger disk. Let A; be that component of AN D, which has
z; as boundary point. Then the closure A; is a relative neighborhood of
z; in A, and the map f restricted to A; is weakly polynomial-like of
degree +1, with unique fixed point at 2;. Hence by 3.7 the local index
UfIA, z;) = «(fIA;, 2) is equal to +1, as asserted.

Now suppose that z; is a parabolic fixed point. Then by 2.4 the multiplier
f'(z;) must be equal to +1. The two external rays of U; which land at z;
must be contained in a common repelling petal as they approach z;, since
otherwise U; would contain an attracting petal or “virtual fixed point”,
contrary to our hypothesis. In this case, we let A; be one component of
the intersection of A with a small repelling petal at z;. Proceeding just as
above, we again see that the Lefschetz index is +1.
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To complete the proof, let v be the number of virtual fixed points. Then
at least m — v of the m = d — n regions U; have no virtual fixed point,
and hence have one interior fixed point. Thus, between the n fixed points
of rotation number zero and the d — n — v interior fixed points, we have
accounted for all of the d — v fixed points. There can be no others. Fur-
thermore, no region U; can contain more than one virtual fixed point, since
then our count would be off. O

We are now in a position to give a conjectured description of all possi-
ble fixed point portraits. Recall from 1.3 that the fixed point portrait for a
polynomial f which has k rationally visible fixed points is the collection

P = {T],...,Tk}

consisting of the types of these rationally visible fixed points. Here
1 < k < d. Assembling previous results, we have the following.

Theorem 3.8. If P = {Tv, ..., Tx} is the fized point portrait
for some polynomial map of degree d, then the following four
conditions must be satisfied.

Pl. Each T; is a rational rotation set. In particular, it has a
well defined rotation number p;/q; .

P2. The T; are disjoint and pairwise unlinked.

P3. The union of those T; which have rotation number zero
is precisely equal to the set {0, 755, ..., j—:%} consisting of all
angles which are fized by the d -tupling map.

P4. Each pair T; # T; with non-zero rotation number is sep-
arated by at least one T, with zero rotation number. That 1s,
T; and T; must belong to different connected components of the

complement. (R/Z)\T; .

Proof. P1 follows from 2.3, P2 follows from 1.4, P3 is clear from the
discussion in §1 or above, and P4 is an easy consequence of 3.4. D

Main Conjecture 3.9. These necessary conditions are also sufficient.
In other words, given sets T; satisfying these four conditions, there exist a
polynomial of degree d having {T;} as fixed point portrait.

(™)
o
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In the special case where k = d (so that the d fixed points are distinct
and rationally visible) a proof will be given in §6. We firmly believe that 3.9
is true also when k < d, although we do not have a proof.

In order to illustrate 3.9, let us look at the low degree cases.

Degree 2. In this case, we always have Ty = {0}. If there is also a
fixed point with rotation number p/q # 0, then the resulting fixed point
portrait might be denoted by the symbol P(p/q). A corresponding centered
polynomial map is said to belong to the p/q-limb of the Mandelbrot set. If
the other fixed point is invisible (as for z — z?) or is only a virtual fixed
point, then we could use the symbol P(e). Such maps are said to belong to
the central core of the Mandelbrot set. For further details, see Appendix C.

Degree 3. Here there are two subcases. If the rays Ry and Ry, land
at distinct points, then we have T) = {0}, T, = {1/2}, and there is at
most one further fixed point. If this further fixed point is distinct and ratio-
nally visible, the corresponding portrait might be indicated by the symbol
P(p/q; s1/k). (Compare the discussion following 2.3.) Here ¢ > 2, p is
relatively prime, and s,/k is an integer or half-integer between zero and ¢.
With this notation, three of the portraits of Figure 4 would be represented
by the symbols P(1/2; 1), P(1/2; 2) and P(1/2; 3/2) respectively. If the
third fixed point is rationally invisible (as for z — z%), or is virtual (as for
z — 23 — 22 + 2 ), then some notation such as P(e;) might be used.

On the other hand, if Ry and Ry, land at a common point, of type
T, = {0, 1}, then these two rays divide the plane into an upper half and
a lower half. Each of these two halves must contain a fixed point or virtual
fixed point. If the upper half contains a fixed point of rotation number p/q
and the lower half a fixed point of rotation number p'/q’, then the symbol
’P(;’ljf’—,) might be used. If either the top or bottom fixed point is rationally
invisi%le or is only a virtual fixed point, then the corresponding rotation
number should be replaced by a heavy dot. For example, with this notation,
the right hand portrait of Figure 4 would be written as ’P(y.—2); while the
portrait for the map z — 2% + z with two virtual fixed points, or the map
z — 28422 with two superattracting fixed points would be written as P(2).
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§4. Critical Portraits: Fisher’s Thesis.

This section will develop a complementary concept of “critical portrait”
for certain polynomial maps. The exposition is based on the work of Yuval
Fisher, and will omit proofs which are contained in Fisher’s thesis. (See [Fi],
as well as [BFH].)

~ In 85 we will show that the fixed point portrait of a polynomial is uniquely

determined by its critical portrait, whenever the latter is defined. In fact, we
describe an algorithm that effectively computes the fixed point portrait of a
polynomial whose critical portrait is given. These results will be used in §6
to construct polynomials with specified fixed point portrait.

Hypothesis. We will assume that f is a monic polynomial of degree
d > 2 with the property that each critical point is the landing point for at
least one external ray Rp. Choose some fixed numbering for the distinct
critical points wi,...,ws, and let p; be the multiplicity of the critical
point w;. Thus p; > 1 for each j, and the sum S p; isequal to d—1.

Definition. By a critical portrait for f we will mean a sequence
© = {6;,...,0;} where each ©; C R/Z is a finite set of angles sat-
isfying three conditions:

(1) Each ray Ry, with 0 € ©;, must land at the critical point w; .

(2) Any two angles in the same ©; must be congruent modulo 1/d, so
that ©; maps to a single point under the correspondence 6 — df (mod 1).

(3) Each ©; must have (the largest possible) cardinality #0; = p; +1.

Thus for any two angles 8,7 € ©;, the corresponding rays Ry and R,
must have the same image R4 under the map f. Since the correspondence
z — f(z) preserves external rays, and is exactly (g; + 1)-to-one in a
neighborhood of w; (with the point w; itself deleted), it follows that O;
is precisely the set of all external rays which land at the critical point wj;,
and which map to one common ray Ry landing at the critical value fwj)-
Consequently, the map f possesses a unique critical portrait if and only if
each critical value f(w;) is the landing point of one and only one external
ray. : ,
The elements of ©; U---U Oy will be called the preferred critical angles,
and the corresponding Ry the preferred critical rays. Following Fisher, the
pair (f,®) is called a marked polynomial. Evidently any critical portrait
{©1, ..., O} must satisfy the following three conditions:
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Cl. The ©; are pairwise disjoint and unlinked. (See 1.4.)
C2. Any two angles in the same ©; are congruent modulo 1/d.
C3. The cardinalities of these sets satisfy #0; > 2 and

Z(#@j—1)=d—l.

By definition, any collection of sets of angles satisfying these three conditions
will be called a formal critical portrait. Fisher’s Thesis is concerned with formal
critical portraits which satisfy the following further condition:

C4. Each critical angle § € ©; U--- U O is strictly preperiodic
under the map 6 — df (mod 1). In other words, each such 6 is
rational, and the denominator of 6 is never relatively prime to
the degree d.

His main theorem asserts that a formal critical portrait satisfying C4 is ac-
tually realized by a polynomial map f with J = J(f) connected if and
only if it satisfies one further condition C5, which will be described below.
Fisher’s method is constructive, and has been implemented on a computer
by Bielefeld, Fisher and Hubbard as the so-called “spider algorithm”. An
example of this procedure is illustrated in Figures 6 and 7: If we start with
the degree 3 critical portrait which is illustrated schematically in Figure 6,
then the spider algorithm yields the cubic polynomial of Figure 7.

Remark. Fisher’s work is based on Thurston’s theory of post-critically
finite rational maps. Hence condition C4 is essential for his proofs, although
his results may actually be true in much greater generality.

Consider a marked polynomial with critical portrait {©;, ..., ©x}. The
critical rays Ry, 6 € ©; U--- U Oy, together with their landing points w;,
cut the plane C up into d regions Q, with boundary. In particular, they
cut the Julia set J of f up into d compact connected subsets J;, ..., Ja,
where J, = JNQ,. These d sets are nearly disjoint, in the sense that each
intersection J, N J, consists of at most a single point, which is necessarily
one of the critical points w;.

Lemma 4.1. The map f carries each of these d subsets J,
homeomorphically onto the entire Julia set J .
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Figure 6. Diagram for the cubic critical portrait © = {5,241, {1,213,
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Figure 7. Julia set for the associated polynomial

2z 723 — (.309 + .3961)z — (.216 — .9951).
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This can be proved by first checking that f is univalent on the interior
of each region §,, and maps the closed region onto the entire plane ©. In
fact the boundary ), maps to a loop which simply traverses the circle at
infinity 8©), and doubly traverses an external ray leading to each critical
value f(w;) with w; a critical point in the boundary of §,. Furthermore,
these particular critical values are all distinct. Details will be omitted. O

Lemma 4.2. If Condition C4 is satisfied, then this partition of
J has the following much sharper property: Given an arbitrary

sequence Pg, p1, ... of indices between 1 and d, there exists
one and only one point z = z(pg, p1, ...) which belongs to the
intersection

Jpoﬂf’l.]p,ﬂf"z.]mﬂ--- )

or equivalently satisfies f°"(z) € Jp, for every n > 0.

[We don’t know whether this statement remains true when Condition C4
is not satisfied.]

Proof outline (with help from Ben Bielefeld). We will make use of the
Thurston orbifold metric associated with f. This is a Riemannian metric
on C, which has singularities exactly at the post-critical points of f. (See
for example [M2, §14.5].) Let M; be the surface with boundary which is
obtained by cutting C open along each of the preferred external rays landing
at critical values, and along every forward image of such a ray. Condition
C4 guarantees that there are only finitely many such cuts. (Thus each point
along such an external ray corresponds to two distinct boundary points of
M;.) The landing points of these rays correspond to boundary points at
which M; is usually not smooth. In fact, if more than one such ray lands at
some given post-critical point, then M; will consist locally of two or more
connected surfaces with boundary which have been pasted together at this
boundary point. It is important to note that these boundary curves have
locally finite length with respect to the orbifold metric, even at the post-
critical points. ‘

Define the distance p(z, z') between two points of My to be the infimum
of the lengths, with respect to the orbifold metric, of smooth paths joining z
to 2’ within M;. If z and 2’ belong to the same subset J, C J, then any
such path from f(z) to f(z') can be lifted back uniquely to a path from z.
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to 2’ within §,. Since the orbifold metric is locally strictly expanding, a
compactness argument then shows that

p(f(2), f(2)) 2 cp(z, 7)
for some constant ¢ > 1. Therefore the inverse map
fo LI5S,

contracts lengths by at least 1/c. Hence the iterated image f;'o---0f; 1(J)
has diameter less than some constant divided by c¢*. Taking the limit as

n — 0o, we obtain the required unique point. O

Corollary 4.3. Still assuming C4, each J, contains a unique

fized point of f.
This follows by taking po=p1=---=p. U

The sequence po, p1, ... of 4.2 will be called an itinerary for the point
z with respect to the partition {Ji, ..., Jq}. If there is no critical point
in the orbit {z, f(z), f°*(z), ...}, then evidently this itinerary is uniquely
determined by z. However, if z is pre-critical, that is if there is at least one
critical point in its orbit, then z has more than one itinerary.

Corresponding to this partition of the Julia set into nearly disjoint closed
subsets J; , ..., Ja, thereis a partition of the circle R/Z into nearly disjoint
closed subsets L;,...; Lq, each of total length 1/d. By definition, L,
consists precisely of those angles t such that the ray R, lands on some
point of J,. In many cases, each L, will consist of one or more closed
intervals. However, if one of the critical points in J, has higher multiplicity,
so that three or more preferred external rays land at this point, then the
corresponding L, will also have isolated points.

More generally, let © = {O;,.... O} be an arbitrary formal critical
portrait. First consider two points ¢ and t' in the complement

R/Z~(0,U---UGy).

By definition, ¢ and t' are “unlink equivalent” if they belong to the same
connected component of R/Z~\0; for each j, so that the £+ 1 sets

©:,..., 0, {t,t'}

28

fa



Figure 8. A degree 5 critical portrait.

are pairwise unlinked. (Compare 1.4.) Let L§, ..., L be the resulting
“unlink equivalence classes” with union R/Z\(©; U ---U ©;). It is easy
to check that each L2 is a finite union of open intervals with total length
1/d. Now define L, to be the union of the closure L_; together with all of
the sets ©; which intersect this closure. Thus L; consists of L2, which is
a finite union of closed intervals, possibly with finitely many isolated points
adjoined, as explained above. As an example, consider the critical portrait
sketched in Figure 8. Here the set L; consists of three closed intervals as
shown, together with one isolated point at the bottom of the circle.

We will say that the sequence pg, p1, ... is an itinerary for the angle
t € R/Z under the map t — dt (mod 1) if the orbit £ =t > ¢, — ---
satisfies the condition that t, € L, for each n > 0. Evidently each angle ¢
has at least one itinerary, and this itinerary is uniquely defined if and only if
no t, belongs to the set ©; U---U O, of critical angles. Using these ideas,
Fisher gives a precise criterion in order to decide when two rays land at a
common point. We assume that C4 is satisfied, so that all critical orbits are
strictly pre-periodic, and we assume that the Julia set is connected. Let s
and t be two angles, and let s =sp+— 8 — - and t = tp = t; — -
be their orbits under the map t +— dt (mod 1). Since the itinerary of any
angle 0 under the d-tupling map must be compatible with the itinerary of
the landing point of the corresponding ray Ry under f, Lemma 4.2 takes
the following form.
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Lemma 4.4. The two rays R, and R; land at a common point
of the Julia set J if and only if they have some itinerary in
common, or in other words if and only if, for each n > 0, there
ezxists an index p, for which both s, € L, and t, € L,, .

Fisher’s fifth condition is needed in order to guarantee that distinct ©; cor-
respond to distinct critical points of f:

C5. If 6 € ©, and @ € ©; with h # j, then we require that 6 '
and 6’ do not have any itinerary in common.

If all five conditions are satisfied, then he calls {©1,...,0;} a
“polynomial determining family of angles”. [Here is an example to show that
condition C5 is independent of the other four conditions. In degree d = 4 let
0, = {1/60, 46/60} , ©, = {19/60, 34/60} , and ©3 = {1/16, 5/16} . Then
C1 through C4 are satisfied, but C5 is not.]

Definitions. Following Branner and Hubbard, we define the degree d
connectedness locus to be the compact set consisting of all monic centered
degree d polynomials with connected Julia set. The polynomial f will be
called critically pre-periodic if the orbit of every critical point is strictly pre-
periodic. That is, each such orbit eventually hits a periodic cycle, but no
critical point itself lies on a periodic cycle.

We can now state Fisher’s main Theorem.

Theorem 4.5. If a formal critical portrait satisfies all of the
conditions C1 through C5, then there is one and only one
polynomial f in the degree d connectedness locus which, when
suitably marked, realizes this critical portrait. Furthermore this
polynomial f is critically pre-periodic.

It follows, according to Douady and Hubbard, that f has locally con-
nected Julia set, and has the property that all periodic orbits are strictly
repelling. (See for example [M2; 11.6, 14.4 and 17.5].) In particular, f must
have d distinct repelling fixed points.
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§5. From Critical Portrait to Fixed Point Portrait.

Given a critical portrait ® = {®1, ..., O} satisfying Fisher’s five
conditions, he constructs a unique associated polynomial f € C; which
is critically pre-periodic, and hence has d distinct repelling fixed points
(Theorem 4.5). In principle, we can determine the fixed point portrait of
f from the given data. In fact it follows easily from 4.4 that:

Lemma 5.1. The fized point type T; of the unique fized point
which lies in the set J; C J is just the set of all angles whose orbit

under the d-tupling map lies strictly within the corresponding set
L;CcR/Z. '

In this section, we will describe how to effectively compute this fixed point
portrait. Our analysis depends on some facts about monotone maps of the
circle which we briefly review. (Compare [De], [dM].)

By definition, a continuous self map ¢ : R/Z — R/Z is monotone if
some, and hence any lift ® : R — R is non-decreasing. Every monotone
map ¢ of degree 1 has a well defined rotation number

p(¢) = lim ()

n—oo n

mod 1

which is independent of the choice of t € R and of the lift ® of ¢.

Lemma 5.2. If ¢ : R/Z — R/Z is monotone of degree 1, then:
(1) Each ¢~1(t) is either a point or a closed interval in R/Z .

(2) The rotation number p(@) is rational if and only if ¢ has a
periodic point.

(3) If p(¢) = p/q, then every periodic point of ¢ has period
q and rotation number p/g, or in other words corresponds to a
fized point of the map t — ®°(t)—p for suitable choice of the
lift ®. Furthermore, every orbit under ¢ is either itself periodic
or tends asymptotically to an attracting or one-sided attracting
periodic orbit.
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Proof: If ¢ : R/Z — R/Z is monotone of degree n > 1, then it 1s
easy to check that each pre-image ¢~*(t) C R/Z has n distinct connected
components. Specializing to n = 1 we obtain assertion (1). The proofs of

assertions (2) and (3) are essentially the same as for circle homeomorphisms.
Details may be found in [De] and [dM]. O

Fix d > 2 and let ® be a degree d formal critical portrait. In other
words, we temporarily assume only conditions C1, C2, C3. As in §4, let
LS, ..., LS be the corresponding unlink equivalence classes, with union
equal to R/Z\(©; U---UB;) . We associate to each L; a monotone map
¢; from the circle to itself. (Compare Figure 9.)

Lemma 5.3. For each L? there is one and only one continuous
map ¢; from R/Z to itself which is given by the formula

$;(t) =dt (mod1) for t in the closure of L?,

and is constant on each component V of the complement R/Z~\L3 .
Furthermore, this map ¢; is monotone of degree one. In partic-
ular, it has a well defined rotation number.

The proof is immediate. We need only note that the two endpoints of each
such complementary interval V necessarily belong to the same set ©;, and
hence share a common value of dt (mod 1). The resulting map is piecewise
linear, with slope d > 1 throughout the open set L2, and with slope zero
throughout the complement R/Z~\L;. This map has degree 1, since the
various components of L; have total length 1/d. O

Using these piecewise linear maps ¢;, we can compute the fixed point
portrait of f as follows. Let z; be the unique fixed point of f which lies in
the subset J; C J.

Lemma 5.4. With f as in 4.5, the angles of the ezternal rays
which land at the fized point z; € J; are ezactly the repelling
periodic points of the associated circle map ¢; .

The proof, based on the following lemma, will give an effective procedure
for computing these periodic points.



_ _/

Ly Ly L, Ly Ly

Figure 9. Graphs of ¢, ¢, and ¢3 for the critical portrait of Figure 6. The
repelling periodic points 0, {3, 2} and § are indicated by heavy dots.

Definition. It will be convenient to say that a periodic point ¢°¢(%0) = to
is ultra-attracting if the map ¢* is constant throughout some neighborhood
of to . ‘

Note that ultra-attracting orbits are very easy to find: Every ultra-
attracting orbit must intersect some component V' of the complement
R/Z~L}. To locate such an orbit of period g, we can simply start at any
point of V and iterate the map g times. We will see that these ultra-
attracting orbits can then be used to locate the repelling orbits, which ac-
cording to 5.4 are those of primary interest.

Lemma 5.5. Suppose that conditions C1 through Cj are
satisfied. Then each monotone map @; satisfies the following
conditions: '

(a) The rotation number of ¢; is a rational number pj/qj :
(b) Every periodic point is either repelling or ultra-attracting.

(c) These two types of periodic points alternate around the
circle, and the number 'k of orbits of each type satisfies
1<k<d-1.

(d) Every point of the circle is either periodic or pre-periodic. In
fact, any orbit which is not actually periodic must eventually land
on an ultra-attracting periodic orbit.
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Proof. Recall that there are finitely many disjoint intervals, say
Vi, ..., V., on which ¢, is constant, and that ¢; coincides with the d-
tupling map outside of the union V; U---UV;,. Let us fix some interval of
constancy V, . Since the endpoints of each Vj are preperiodic under the d-
tupling map by C4, it follows that the forward orbit of Vo under ¢; is finite.
In fact this orbit either hits some interval of constancy Vj twice and there-
after must repeat periodically, or else hits V; U---V, for a last time and
thereafter coincides with an eventually periodic orbit under the d-tupling
map. (Actually, by assertion (d) the latter case cannot occur.)

This proves that ¢; has a periodic point. Hence ¢; has rational rotation
number p;/g; and every periodic orbit has period g;, by Lemma 5.2. Since
the slope of the g;-fold iterate of ¢; is alternately zero and d%¥ > 1, we
see that every periodic orbit must be either ultra-attracting, or repelling, or
mixed — ultra-attracting on one side and repelling on the other. However,
using condition C4 we see easily that such mixed cases cannot occur. This
proves assertions (a) and (b).

Since the graph of t — ®°%(t) — p; crosses from above the diagonal to
below the diagonal at every ultra-attracting periodic point, and from below
to above at every repelling periodic point, these two types of periodic point
must alternate around the circle. Evidently the number k of ultra-attracting
orbits is dominated by the number r of intervals of constancy V,. There
are at most d — 1 such intervals, since they are disjoint and each one has
length at least 1/d. This proves assertion (c). '

By 5.2(3), every orbit under ¢; is either periodic, or tends asymptotically
to an attracting periodic orbit. However our attracting periodic orbits are
all ultra-attracting, so such a non-periodic orbit must actually land on an
ultra-attracting orbit after finitely many iterations. O

Proof of 5.4. We now suppose that conditions C1 through C5 are sat-
isfied, so that there is an associated map f in the connectedness locus. We
can compute the associated fixed point portrait, which we will write simply
as {Ty, ..., T4}, as follows. According to 4.4, the type T; of the fixed point
which belongs to the compact set J; C J consists of all angles ¢ whose orbit
under the d-tupling map lies completely within the corresponding closed set
L; C R/Z. Using 5.5, we see that this type consists of the repelling periodic
orbits of @;. There are at most d — 1 such orbits, and they all have the
same rational rotation number, say p;/g¢;. O
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Remark 5.6. Recall that the fixed point type T} is the set of repelling
periodic points of the monotone map ¢;. The argument above shows how
to compute the rotation number of ¢;, and the number of points in T}, and
also shows how to locate these points approximately. To actually compute
these repelling periodic points, it is probably easiest to iterate the inverse
function ¢~!, since the points of T; are strongly attracting fixed points of
¢;q’ . As a check, one can use the fact that these points are all rational
numbers of the form m/(d% —1).

If p;/g; =0, then the type T; is precisely the set of all angles d—';l- con-
tained in L;. If p;/q; is non-zero, then each of the fixed angles 7-; must
be contained in one of the components V of R/Z~L;. In this case, the de-
ployment sequence of T; could be determined, without computing its actual
elements, as follows. For each such component V we must check whether
the graph of the constant function ®% — p; on V crosses the diagonal, or
lies strictly above or strictly below the diagonal. Further, we must compute
all of the ultra-attracting periodic orbits by starting in each component of
R/Z~L; and iterating ¢; times. Now, proceeding as in 5.5, we can locate
each point of T; with respect to the fixed angles ?i_1 , and hence compute
the associated deployment sequence.

Examples: A formal critical portrait in degree 2 takes an especially
simple form; it consists of a single subset ©; = {#, 6 + 3} of R/Z where
0 <6 < 1/2. Condition C4 says that § must be rational with denominator
divisible by 4 (so that 6+ also has even denominator), and condition C5 is
trivially satisfied. The sets L; and L, are the closed intervals [6—3, 6] and
[0, 6+ 1] modulo 1. The map ¢; is the doubling map mod 1 on L;, and
takes the constant value 20 on the complementary interval. The correspond-
ing rotation numbers are p; = 0 and p, # 0 respectively. Evidently the

corresponding fixed point portrait has the form

{{0}, T(p/9)}

where T(p/q) is the unique quadratic rotation cycle with rotation number
p/g#0.

The possibilities are of course much more diverse in degree 3. (Compare
Figures 3, 4, as well as the discussion following 3.9.)
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§6. Realizing Fixed Point Portraits.

Recall that a polynomial map is critically pre-periodic if every critical orbit
is eventually periodic, but no critical point actually lies in a periodic orbit. In
§4 we described Fisher’s characterization of the critical portraits of critically
pre-periodic maps, and in §5 we showed how to compute the corresponding
fixed point portraits. This section will exploit these results to prove the
following.

Theorem 6.1. A collection P = {Ty, ..., Tu} of ezactly d
non-vacuous subsets of Q/Z can actually occur as the fized point
portrait of some critically pre-periodic polynomial of degree d if
and only if it satisfies the four conditions of Theorem 3.8, that is:

Pl. Each T; is a rational rotation set.
P2. The T; are disjoint and pairwise unlinked.

P3. The union of those T; which have rotation number zero

is precisely equal to {0, 2, ..., 53}

P4. Each pair T; # T; with non-zero rotation number is sep-
arated by at least one T, with zero rotation number.

In fact Theorem 3.8 asserts that these four conditions are necessary for
any fixed point portrait. In the critically pre-periodic case, there must be d
distinct repelling fixed points, so the number of sets Tj in P must be equal
to d. 4

Conversely, suppose that we start with a collection Py of d non-vacuous
subsets satisfying all of these conditions. We will call such a Py a
“candidate fixed point portrait”. Then we will construct a critical portrait
©® which satisfies Fisher’s five conditions, and hence determines a critically
pre-periodic polynomial f. The construction will be carried out in such a
way that the associated fixed point portrait P(f) is equal to the given can-
didate portrait P,, thereby completing the proof of 6.1. It should be noted
that this construction is not at all unique: there are infinitely many differ-
ent © which would do the job. Hence, there are infinitely many different
critically pre-periodic polynomials with any given fixed point portrait.

The essence of the construction lies in the case where P has d—1 distinct
rotation number zero fixed points. A fixed point portrait with this property
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will be called elementary. We first consider the elementary case, and then
adapt the argument to the general case.

An elementary fixed point portrait takes the form

Po={{z%}, .., {£2}, T}

where T = {to,...,tkg-1} is a degree d rotation set with non-zero rotation
number p/q. Here £k < d—1, and T can have any deployment sequence
0 < s <8y <...< 891 = kq such that every residue class mod k is

realized by at least one of the s;. (Compare Part I, Lemma 5.)

We recall definitions and notation from Part I. The subset T C R/Z
divides its complement into kq arcs Ag,Ai,...,Ak—1 labeled so that A; is
bounded by %; and %i41 mod kg- The length of A; is denoted by [(A;).
Here the whole circle has length 1, so that 3 ¢(A ) 1. The weight
w(A;) is by definition equal to the number of points F_ fixed by the map
{ +— dt mod 1, which are contained in A;. Thus Y w(A;)=d—-1.

Let j(z) = i 4+ kp mod kg, so that the d-tupling map carries the end
points of the interval A; onto the end points of the interval Aj;g;). According
to formula (2.7) or Part I, Lemma 3, we have

dl(A;) = £(Aj) + w(Ai) .

It follows that the d-tupling map carries A; homeomorphically onto Aj(;
if and only if w(A;) =0. Since w(A;) is an integer and 0 < £(A;) <1, the
following is an immediate consequence.

Lemma 6.2. The product dl(A;) necessarily lies strictly be-
tween w(A;) and w(A;) + 1. Hence the weight w(A;) is equal
to the integer part of this ratwnal number dl(A;). If 0 € A; s
sufficiently close to the left hand endpoint t;, it follows that A;
contains precisely w(A;) +1 angles of the form 6 + % .

Choosing 6 € A; even closer to t; if necessary, we can further suppose
that the interval (¢;,6] is disjoint from any of the p/q rotation cycles in

degree d (since there are only finitely many such cycles), and from any

points of the form 25 — % .
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0+3/d

Figure 10. Construction of ©; in the elementary case.

Let i1,72,...,im be those indices for which the weight w(A;) is posi-
tive. For each j = 1,...,m, choose §; € A;, subject to the following two
conditions:

O1. The point §; is sufficiently close to the left endpoint ¢; in the senses
mentioned above.

©2. Under iteration of t — dt mod 1 the point 6; eventually maps to a
fixed point 325 which is contained in this same interval A;; .

Note that these conditions can always be satisfied, since the backward orbit
of any point —£; under the map ¢+ d¢t mod1 is dense in R/Z. Yor
7=1,2,...,m,let

h
@J — {01+2 : h—_—'o,l,-'-,w(Aij)}

be the set of all angles of the form ; +% which are contained in the
interval A;; . :

This construction is illustrated in Figure 10. Here the candidate fixed
point portrait Pp = E{O} {31, {3), 3}, f—;,%,-};—i}} of degree d =5
is indicated with solid lines. The set T in this case has rotation number
1/3, and cuts the circle into arcs A, A;, As of weights 3,1, 0 respectively.
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Corresponding sets ©; = {0;,0; +1/d, ..., 6; + w/d}, constructed as
above, are indicated by dotted lines. (Only the first set ©; has been labelled
in the figure.) We will see that this schematic diagram can be realized by an
actual polynomial map, having a critical point of multiplicity 3 in the upper
sector S;, a simple critical point in the lower left sector 5>, and no critical
points in S3. The main step in the proof is as follows.

Lemma 6.3. The collection ® = {0,,0,,...,0,.}, as con-
structed above, satisfies all of the conditions C1 through C5 of

84, and hence determines a unique critically pre-periodic polyno-
mial [ of degree d.

In fact it is straightforward to check that © satisfies the conditions Cl
through C4. The proof that it satisfies C5 will depend on a subsidiary lemma.
Let {LS, ..., L3} be the decomposition of

R/Z~\(0,U---U0Oy)
into d unlink equivalence classes, as discussed in §4 and §5.

Lemma 6.4. Each L? contains precisely one of the fized point
types T; of the given portrait Po = {{0}, {1} -, {42}, T} )

Proof of 6.4. Since P, is elementary, the unlink equivalence classes
determined by © take a special form: Exactly d —1 of the L? are open
intervals (6 + 2,6+ 2+l) | while the d-th is the union of the remaining m
disjoint intervals. Each of these d sets has total length 1/d. Furthermore,
the last set L3 contains the specified rotation set T', with rotation number
p/q# 0. Since © satisfies conditions C1 through C4, Lemmas 5.3 and 5.5
imply that there is a well defined rotation number associated with each L?.
The last set LS has rotation number p/q # 0, and hence cannot contain any
point —&= with rotation number zero. Since none of the other L7 is long
enough to contain more than one such point, we conclude that the points

k

e ge e e R e
<=, must lie in distinct intervals LS, ..., L3_;. O

Proof of 6.3. To verify that © satisfies condition C5, we must show that
the sets Oy, ..., ©,, have distinct itineraries. But condition ©2 implies
that the d-tupling map sends these m sets eventually to distinct fixed points
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k/(d—1), and these fixed points lie in distinct intervals L? by 6.4. Thus all
of Fisher’s conditions C1 through C5 are satisfied. O

Proof of 6.1 in the “elementary” case. In 6.3, we have used Fisher’s
Theorem to show that that @ is the critical portrait of a unique critically
pre-periodic polynomial f. It remains to show that the corresponding fixed
point portrait P(f) is equal to the required portrait Pp. From Lemma 6.4
we conclude that the fixed rays R;/4-1) have distinct itineraries with respect
to the sets L;, and so land at distinct fixed points of f by Lemma 5.1. No
other rays can land at these points, since we have accounted for all of the rays
of rotation number zero. Similarly, the rays R; with t € T have a common
itinerary and hence land at a common fixed point of f. This proves that the
fixed point portrait P(f) has the form

o), (5250 s (551 T,

where T” is a rotation set containing T . To complete the proof of Theorem
6.1, we need only show that T must be precisely equal to T.

Suppose to the contrary that T were strictly larger than T'. Then some
of the intervals A; complementary to T must be split by 7" into two or more
subintervals. For each such A;,let A! be the rightmost of these subintervals.
Thus A/ is an open interval of the form (', tiy;) with ¢’ € T'NA; . We claim
that the weight w(A!) of such a subinterval must be zero; or equivalently
(by 6.2) that the length £(A!) must be strictly less than 1/d. In fact, if A;
itself has weight zero, then this is clear. But if A; = A;; has weight w > 0,
then we have inserted a set ©; = {0,0+ 3,...,0 4+ %} of © into the
arc A;. By the construction of 6, the point t' cannot lie to the left of 0.
(Condition ©1.) Furthermore, since T” is unlinked with ©;, t' cannot lie
between 6 and 6+ % . Hence t' must lie in the open interval (0+%, i 41)-
This interval has length less than £(A;) — w/d, which is less than 1/d by
Lemma 6.2. Therefore, the subarc A! has length less than 1/d, and hence
has weight zero as asserted. It follows that A} maps homeomorphically onto
another arc of the same form under the d-tupling map. (Compare 2.5.)
Similarly, this image arc must have length less than 1/d, even though it is
strictly longer than A}. Continuing this construction ¢ times, we return to
our starting point and conclude that Aj is strictly longer than itself, which
is impossible. This completes the proof of 6.1 in the elementary case.
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6+3/d

Figure 11. Construction of ©; , general case.

The proof in the general case is essentially the same; however the
~ bookkeeping is a little more complicated. The rotation sets T split the circle
into unlink equivalence classes Uj,...,Un, where two points of
R/ZN(Ty U --- U Ty) belong to the same Uy if and only if they belong to
the same component of R/Z\T; for every j. Note that each such U, must
have ezactly one T; with non-zero rotation number intersecting its boundary:
There cannot be more than one by P4, and there must be at least one since
otherwise there could not be d distinct sets T,. (Compare 3.3.)

Evidently this U, is contained in just one arc A; of the complement
R/Z — T;. In fact either Uy = A, or else U, can be obtained from this
complementary arc A; by removing one or more (possibly degenerate) inter-
vals of the form [7%5, -d_iT] C A;, where a < b. The weight w of this set
U, can be defined as the number of such missing intervals. If w > 0, we can
choose a point @ near the left end of U, exactly as in the argument above.
These points 8 € Uy for different sets U, must be chosen so that their orbits
under the d-tupling map end up on different rotation sets T; € Po. Given
such a choice of 8, let O, be the set of all angles of the form 6+ 72 which
are contained in U, . Just as in the argument above, this set has cardinality
#0; = w(Uy) + 1. The resulting critical portrait @ = {0, ..., 04} sat-
isfies Fisher’s five conditions, and hence determines a critically pre-periodic
polynomial f. Again, it can be shown that the associated portrait P(f) is

equal to the given P,. Details will be left to the reader. O
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This construction is illustrated in Figure 11 for the candidate fixed point
portrait P, = ﬂ{O,;}}, {11, & (&2 {5 % 1 } . Here one of
the fixed points of rotation number zero of Figure 10 has been replaced by a
fixed point of rotation number 1/2. The rays to the three rotation number
zero fixed points, indicated schematically by heavy lines, now cut the plane
into two “basic regions”. Each of these contains a unique fixed point, which
necessarily has non-zero rotation number. The rays to all five fixed points
cut the plane into a number of regions, and correspondingly cut the circle
into the same number of unlink equivalence classes. In this example, two of
these regions have critical weight zero, two have critical weight one, and the
remaining region has critical weight two. The construction of a compatible
critical portrait, with just one critical point in each region of positive weight,
is illustrated by the dotted lines in the figure.
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§7. Further Discussion.

The proof in §6 leaves open the problem of establishing Conjecture 3.9 in
the case of a portrait P which contains fewer than d non-empty rotation
sets, so that some of the fixed points must be rationally invisible or virtual.
We are aware of two possible techniques for carrying out the proof. Either
method of proof would quite likely have applications extending well beyond
the conjecture itself.

The first would be by means of Hubbard trees. (Compare [DH2].) As
in the case of Fisher’s Theorem, these provide an indirect way of invoking
Thurston’s theory of post-critically finite rational maps. To each candidate
fixed point portrait, it is not difficult to construct a unique simplest possible
Hubbard tree which is critically periodic, and whose associated polynomial
would seem to have the required fixed point portrait. The problem in carrying
out this program is to prove that this associated polynomial really does have
the specified fixed point portrait.

The second procedure would be to build up more complicated polynomi-
als starting with the “elementary” ones by an “intertwining” or “marriage”
construction. (Compare [Bi].) Given two monic polynomials of degrees d,
and d,, we would like to construct a new polynomial of degree d;+d, —1 by
cutting each dynamic plane open along its zero ray, and then pasting the two
planes together along these rays. It would then be necessary to make further
cuts along the iterated pre-images of these zero rays and to put a compatible
conformal structure on the resulting topological map. Finally, it would be
necessary to prove that the resulting polynomial map has the expected fixed
point portrait. This would surely be a useful construction, but we do not
know how to carry it out.

There are a number of other loose ends which are left open by this paper.
For example, it would be useful to develop the concept of critical portrait for
polynomials which are not critically pre-periodic. Also, it would be useful to
develop the concept of an irrational rotation set. (Compare [Ve].) This might
be helpful in understanding Siegel disks or Cremer points. Recent work of
Yoccoz emphasizes the importance of understanding not only fired points, but
also all of the iterated pre-images of fized points. Another natural problem
would be to understand how the fixed point portrait for the n-th iterate f°"
behaves as we increase the integer n.
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Here is a final basic problem. (Compare Appendix C.) In the degree d
connectedness locus Cg, let C4(P) be the subset realizing some given fixed
point portrait P . Is this subset contractible; or even connected? Is its closure
a cellular set (ie., is it the intersection of a strictly nested family of closed
topological cells) ?

Appendix A. Disconnected Julia Sets.

It is frequently useful to consider polynomials which do not belong to
the connectedness locus. (See for example [Atl, At2].) This appendix will
briefly describe fixed point theory for such polynomials. For a more complete
treatment, see [DH2).

Let f:C — C be an arbitrary monic polynomial map of degree d > 2 .
Even if the filled Julia set K(f) is not connected, we can define external rays,
as the orthogonal trajectories of the level curves for the Green's function or
canonical potential function

G(z) = lim d™" log" |f*(2)].

This function G is smooth, harmonic, strictly positive outside of K(f) , and
tends to zero as we approach K(f). If K(f) is not connected, then this
potential function will have critical points outside of K(f ). In fact G is
critical precisely at the pre-critical points of f, that is at all points which are
critical for some iterate fo" = fo---o f . Whenever K(f) (or equivalently
J(f)) is not connected, there must be at least one critical point of f outside
of K(f), and hence infinitely many critical points of G outside of K(f).
Evidently critical points of G lead to bad behavior in the external rays. On
the other hand, if K(f) is connected, then it contains all of the pre-critical
points, and none of this deviant behavior can occur.

Every degree d polynomial g is conjugate to the d-th power map near
infinity. That is, there exists a conformal isomorphism z — ¢(z) , defined
throughout a neighborhood of infinity, which satisfies ¢(g(z)) = o(z)? , with
log |¢(2)| = G(2) . In general, there are d — 1 distinct possible choices for
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¢ . However, in the case of a monic polynomial f, there is one preferred
¢(z) which is asymptotic to z as |z| — oo . Thus we can label each external
ray by an angle t € R/Z , just as in §1.

As we follow such an external ray R;, starting out near infinity and
working inward by analytic continuation, it may happen that it hits a critical
point of G, or equivalently a pre-critical point of f . If this happens, then
two or more external rays crash together at this point, and then bounce
off in the same number (two or more) of new directions, so that there is
no single well defined continuation. However, we can still define the left
hand limit ray R, and the right hand limit ray R,, . For this purpose, it
is convenient to parametrize the subset R, C C. In fact we can use the
potential function G(z) > 0 as a canonical parameter along each R;. Hence
we can define Ry, , for example, as the pointwise limit of the parametrized
curve R, as s = t, s >t . These two limit rays R,y and R;_ are no longer
smooth everywhere, but have abrupt changes in direction at all pre-critical
points: one turns always to the left while the other turns always to the right.
(Compare Figures 15 and 16 below.) Note again that this behavior occurs
whenever the Julia set J of f is not connected.

If the angle ¢ is rational, then just as in [DH2, p. 70] the ray R; , or the
two limit rays R, and R,_ if R, bounces off a pre-critical point, tend to
well defined limit points in K(f) as the parameter G(z) tends to zero. We
will say that the ray or limit ray /ands at the limit point a; or a:;x in K (f) .
If this landing point is fixed under f , then just as in Lemma 2.2 there is a
well defined rotation number in Q/Z .

In general, as we follow such a ray in from infinity, its set of accumulation
points will be a compact and connected subset of J. Here is an important
special case: If the Julia set J of f is totally disconnected, then every smooth
ray, and also every left or right limit ray, must land at a single well defined
point of J . For in this case, any connected set of accumulation points in J
must reduce to a single point.

Definition A.1. Let £ C R/Z be the set of all of the angles of external
rays which crash on critical or pre-critical points of f. Clearly ¥ is a
countable dense subset of the circle, whenever it is non-vacuous. Let us
construct a Cantor set Cy out of the circle R/Z by cutting the circle open
at all points of X. In other words, each point o € X is to be replaced by
two distinct points o~ < o, and the union Cg = (R/Z~\EZ)U{o~}U{o"}
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is to be topologized as a (locally) ordered set.

Lemma A.2. If the Julia set J is totally disconnected, then the
correspondence t — a, which assigns a landing point to each an-
gle in R/Z\X eztends to a continuous mapping from this Cantor
set Cy onto the Julia set J. Hence every point of the Julia set
is the landing point of at least one ray or limit ray.

Proof. The image of Cg in J is a compact fully invariant subset, and
hence must coincide with the full Julia set. O

Corollary A.3. Each fized point zo of f is the landing point of
one or more such rays. These rays are permuted by f , preserving
their cyclic order; hence they have a well defined rotation number.

However this rotation number need not be rational: It can be any element
of the circle R/Z . (Compare Appendix C.)
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Appendix B. Transition Between Fixed Point Portraits.

The concept of fixed point portrait turns out to be a fairly robust one.
That is, the fixed point portrait of a polynomial usually does not change as
we perturb the polynomial. However, there are exceptions, as detailed in the
discussion below.

All of our polynomials are to be monic of some fixed degree d. As in
the preceding Appendix, we do not necessarily assume that our Julia sets
are connected. Let z, be any fixed point of the polynomial fo, . If the
multiplier Ao = fj(20) satisfies Ao # 1, then for all f in some neighborhood
of fo, the implicit function theorem implies that we can solve the equation
f(2) = z for the fixed point z = z(f) as a holomorphic function of f, with
2(fo) = 2o -

Lemma B.1. Suppose that |\g| > 1 so that z is a repelling
fized point, and suppose that some rational ezternal ray
R, = Ri(fo) lands at zo. Then for any f sufficiently close to
fo the corresponding ray Ri(f) lands at the corresponding fized
point 2(f). In particular, it follows that the rotation number
p(f,2(f)) at the fized point z(f) remains constant as f varies
through some neighborhood of fo.

Remark B.2. We cannot weaken the hypotheses of this Lemma. For
example, if zo is a parabolic fixed point, or more generally any fixed point
with |Ao| = 1, then within any neighborhood of fo this fixed point can
become a parabolic or repelling point with any rotation number p' which
is sufficiently close to p(fo, z0). In particular, there are infinitely many
possible choices for p'. Similarly, within any neighborhood of fo, the fixed
point can become an attracting or Cremer point or the center of a Siegel
disk, and hence rationally invisible.

Outside the connectedness locus, it may well happen that a repelling fixed
point admits an external ray R, with t irrational. (See Figure 16. This
case cannot occur when K(f) is connected by Theorem 1.1.) Here again,
the rotation number p(f,z(f)) can take on infinitely many distinct values
within any neighborhood of fo. Similarly, whenever a left or right limit ray
lands on 2o, the rotation number can change within any neighborhood of

fo. (Figure 15.)
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Proof of B.1. By the Koenigs Linearization Theorem (see for example
[M2)), there exists a local coordinate { = h(z) near zo so that h(fo(z)) =
Ah(z) for all z and so that h(z) = 0. Since the angle t is rational, and
since the external ray Ry(fo) for fo lands at the fixed point 2o, it is easy
to check that t is periodic under the d-tupling map, say with period gq.
(Compare 1.1.) Therefore, we can choose a segment of R;(fo) which joins
some point 2z’ to fg?(2') , and which lies completely within the domain of
h . These conditions will still be satisfied if we perturb fo slightly, and it
follows that the corresponding ray Ry(f) for the perturbed map f must
land at the corresponding fixed point z(f) . O

Recall that the type T(f,z) is the finite set consisting of all rational
angles t € Q/Z for which R; lands at z . Thus Lemma B.1 asserts that

T(fv Z(f)) ) T(fO’ 20),

whenever the appropriate hypotheses are satisfied. In the degree two
case it follows that these two sets are equal, since one quadratic rotation
set cannot properly contain another. It is natural to ask whether
T(f, 2(f)) = T(fo,z) in all cases. The following shows that this is
not true.

Example B.3. The polynomial fo(z) = z+z(z — 1)? has connected
Julia set, and has a repelling fixed point of rotation number zero and type
T = {1} at the origin. However, polynomials f(z) = (1+¢€)fo(z) arbitrarily
close to fo have a fixed point of strictly larger type T = {0, %} at the
origin. This phenomenon can be explained as follows. The polynomial fo
has a parabolic fixed point of type T = {0} at z =1. As we perturb fo,
multiplying it by 1 + €, there is a “parabolic implosion” of the filled Julia
set. For the perturbed polynomial, the parabolic fixed point splits into two
complex fixed points, and the zero ray squeezes between them and continues
all the way to the origin.

Figure 12 shows a similar example for a repelling fixed point of rotation
number 1/2. In this case the type jumps from {3,2} to {13, 3,2
under an arbitrarily small perturbation. We show next that such examples

are essentially the only possible ones.
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Figure 12. Above: Julia set for f(z) = 23 — z 4 1/—4/27; the 1/8 and 3/8 rays
land on a parabolic period 2 orbit. Below: After an arbitrarily small perturbation
of f, these rays land at a repelling fixed point.
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Let ¢ be a rational angle, and suppose that for polynomials f arbitrarily
close to fo the external ray R.(f) lands at the fixed point 2(f). We want
to analyze the possible landing points for the external ray R:(fo). According
to [DH2] this ray must either bounce off a pre-critical point, or land on a
parabolic or repelling periodic point. We claim that this last case cannot
occur, unless Ry(fo) lands at the fixed point zo = z(fo) itself. For if R;(fo)
lands on a repelling point 2z; # 2z, then Lemma B.1 implies that R.(f)
must stay bounded away from z(f) for all f near fo, contradicting our
hypothesis. This proves the following.

Lemma B.4. Fiz some rational angle t, and suppose that, for
polynomials f arbitrarily close to fo, the external ray R:(f)
lands at the fized point z(f). Then either:

(1) the ray Ry(fo) lands at the corresponding fized point zo,
" (2) Ry(fo) bounces off some pre-critical point, or else

(3) Ry(fo) lands at some parabolic periodic point z; #z.

Remark. In case (3) above, we conjecture that the period of the point
z; must be equal to the period g of the angle ¢ under the d -tupling map.
The following Lemma implies at least that z; must be either a fixed point
or a period ¢ periodic point.

Lemma B.5. If a collection of q angles forms a rotation cycle
of period q, and if the corresponding rays R,(f) do not bounce
off pre-critical points, then these rays must land either at a single
fized point or at q distinct points. 4

Proof. Let 0 < (1) < --- < t(g) < 1 be the elements of the ro-
tation cycle, and let 2, ..., 2, be the corresponding landing points. By
hypothesis, the d-tupling map permutes these angles t(¢) cyclically, while
preserving their cyclic order. If 2y = 2z or 23 = z, then it follows easily
that z1 = z3 = ++» = z;. On the other hand, if z; = 2, with 2 < h < g,
then the rays Ry1) and Ryp) cut the plane into two halves, one containing
Ry(3) and the other containing Ry(24s). But these last two rays must land
at a common point, so it follows that z; = z; and hence 2y =z, =+ = 24.
0
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Appendix C. The Mandelbrot set.

This appendix will describe the “classical” theory of limbs in the Man-
delbrot set A1 . (Compare [Br], [BD], [D2], [At2].)

Let P, = C be the quadratic parameter space consisting of all polynomials
of the form f(z) = 22+ ¢, and let M = C, C P, be the compact subset
consisting of those polynomials with connected Julia set. (Figure 13.) Note
that every f € M is a polynomial map having one and only one fixed point
with rotation number zero, namely the landing point of the ray Ro = Ro(f) -
If the remaining fixed point is distinct, and is the landing point of at least
one rational ray, then it has a well defined rotation number p = p/q# 0 in

Q/Z by Lemma 2.2.

Definition. Whenever f € M has a fixed point of rotation number
plq # 0, we say that f belongs to the p/q-limb M(p/q) C M . Otherwise,
if there is no such fixed point, we will say that f belongs to the central core

M@)cM.

This last set is quite easy to describe explicitly. It will be convenient to
use the notation Fy for the unique map in P; which has a fixed point with
multiplier f'(z) equal to X. A brief computation shows that

E\(Z) = 22 + ¢ with c), = %/\(2 — ,\), (.2)

and that the two fixed points z = X and z =1—3X of F) have multipliers
equal to A and 2 — X respectively. The set

M°(Q) = {F\: |A] <1}

forms an open toplogical disk consisting exactly of those polynomials F) € M
which possess an attracting fixed point. Similarly, the Fy with A on the
unit circle are those which possess an indifferent fixed point. As A = e2mit
traverses the unit circle, the corresponding values ¢y = €™ (2 — e?rit) /4
traverse a cardioid, and it follows easily that the closure

M(©Q) = {Fx:|]A[ <1}

is a closed toplogical disk bounded by this cardioid. The set M (Q) itself can
now be described as the interior M°(Q), together with all boundary points
Fexp(anity for which t is either irrational or zero.
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Figure 13. Degree 2 parameter space picture, with OM emphasized.
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Figure 14. Julia set for a polynomial f(z)= 2?+0.4 which belongs to the ray Ro(M) in
parameter space. The right hand limit ray Ro4(f) bounces off infinitely many pre-critical
points as it spirals in to the upper fixed point. Both fixed points have rotation number
Z€ero.
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Now consider any polynomial f(z) = z? + ¢ which does not belong to
M . Then the Julia set J(f) is totally disconnected. Such an f has two
distinct fixed points, each with a well defined rotation number by Corollary
A.3. Again, at least one of these two fixed points must have rotation number
zero. We let p(f) € R/Z be the rotation number of the other fixed point.
More generally:

Definition C.1. For any f € P, which does not belong to the central
core M(Q), let p(f) € R/Z be the unique number such that 0 and p(f)
are the rotation numbers of the two fixed points of f. (Thus we set p(f) =0
only if both fixed points have rotation number zero.)

If fe M\M(Q),then p(f) must be a rational number p/¢ # 0, and,
as noted above, we say that f belongs to the p/q-limb. If f & M, then the
number p(f) can be any element of R/Z. The case p(f) =0 is illustrated
in Figure 14. This case occurs whenever the constant f(0) = ¢ is real with
¢ > 1. An example with p(f) rational and non-zero is shown in Figure 15,
and an example with p(f) irrational is shown in Figure 16.

Up to this point, we have considered external rays only in the dynamic
plane C\K(f). Following Douady and Hubbard, we can consider external
rays also in the parameter plane P;\M . Again these can be described
as the orthogonal trajectories of a suitable “canonical potential function”,
which now vanishes precisely on the Mandelbrot set M . Every polynomial
f € P,aM belongs to some unique external ray R,(M). Here the angle t is
characterized by the fact that the corresponding ray R,(f) in the dynamic
plane passes through the critical value f(0) = c. (See [DH1] or [DH2].)

Lemma C.2. For a polynomial f € P; which does not belong
to M, the rotation number p(f) depends only on the external
ray Ri(M) which contains f. Furthermore, the correspondence
t — p(f) defines a map from the circle R/Z to itself which is
continuous and monotone of degree one.

Proof. Since the ray R;(f) passes through f(0), it follows that the two
pre-images of this ray, namely Ry/s(f) and Rs41)/2(f) must crash together
at the critical point 0. As in Lemma 4.2, these two rays (truncated at the
critical point) cut the plane into two halves, and hence partition the Julia set
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Figure 15. Julia set for a polynomial f(z) = 22 4+ 1.1¢ which belongs to
the “wake” of the (1/3)-limb in parameter space. (Compare Figure 1.) Here
f € Ry(M) with t ~.1870.

6+)/16

(+)/4

a+t)i2

(6+1)/8

(2+1)74 (5+1)/8

Figure 16. Quadratic Julia set with fixed point of rotation number (V5 —1)/2. Here
¢t = .70980344. The corresponding rotation set is a Cantor set obtained from R/Z by
removing open intervals of lengths 1/2,1/4,1/8, ....
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into two subsets J, and J;. In the present case however, the intersection
Jo N Jy is vacuous, since the critical point is not in the Julia set. It follows
that every point of J(f) has a unique itinerary

(io,11,...) € II {0,1}

0<n<o0

with respect to this partition, and that f restricted to the Julia set is
topologically conjugate to the one sided 2-shift (ig, i1, ...) (21,22, ...)-
As in Lemmas 4.7 through 4.9, we can compute p(f) as the rotation number
of an associated monotone circle map ¢, which is defined by

b(u) = {Qu (mod 1) for t/2<u<(1+41t)/2

t otherwise.
Further details of the proof are straightforward. 0O

If a polynomial f(z) = z?+ ¢ has a fixed point of rotation number p/q,
then the ¢ rays landing at this point cut the complex plane into ¢ comple-
mentary sectors. According to Corollary 2.3 and Part I, the angles belonging
to these rays comprise the unique quadratic rotation set T(p/q) with rotation
number p/q. Denote by So the narrowest of these complementary sectors,
that is the one whose angular width is smallest, and let S, = fom(So) beits
n-th forward image for 0 < n < g— 1. It follows from Lemma 2.5 that the
sequence of angular widths £(So), £(51), .- -, £(S,-1) forms a geometric
progression with ratio 2 and sum 1; hence £(S,) = 2"/(27 — 1). Here the
widest sector S,_; contains the critical point, and the narrowest sector So
contains the critical value. (See 2.6.)

Definition. Let 0 < 0_(2) < 64(%) <1 be the angles of the two
external rays spanning the sector So. Thus each 0.(p/ q) is a rational num-
ber of the form m/(2? — 1), and the difference 0.(p/q) —0-(p/q) is equal
to 1/(27-1).

Definition. If p(f) takes a rational value p/q # 0 for f & M, then
following Atela, we say that f belongs to the wake of the (p/gq)-limb.

Lemma C.3. A polynomial f belonging to the external ray
R.(M) belongs to the p/q)-wake if and only if the angle t lies
in the closed interval [6_(p/q), 0+(p/q)]-
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Proof. As noted above, for any polynomial having a fixed point of ro-
tation number p/q, the critical value must lie in the narrowest sector So .
Hence its external angle ¢ must lie in the corresponding interval. Conversely,
if ¢ lies in this narrowest interval of R/Z~\T(p/q), then both of its two pre-
images must lie in the corresponding widest interval of R/Z~T(p/q). Thus
every element of the rotation set T(p/q) lies on just one side of the asso-
ciated critical portrait {t/2, (t + 1)/2}. Therefore, the corresponding rays
land at a single fixed point of f. O

Remark C.4. The special case of Lemma C.3 in which ¢ is one of the
two end points 04(p/q) is of particular interest. In this case, the external
rays correspond to the angles in T(p/q) all crash into pre-critical points of
f . However, the left and right limit rays exist. One of these two sets of limit
rays lands on the required fixed point, while the other lands on an orbit of
period q.

Remark C.5. Evidently these intervals [0_(p/q, 0+(p/q)] are pairwise
disjoint. Note that their union contains Lebesgue almost every poinl of thc
circle. In other words, the sum

> 1@-1) (3)

0<p/q<1

of their lengths is equal to one. To prove this, we consider the auxiliary sum

D (4)

o<m<n

If we sum first over n and then over m, we see that this auxiliary sum is
equal t0 ¥,,502™™ = 1. On the other hand, if we sum first over all pair
0 < m < n with some given ratio m/n, expressed as a fraction in lowest
terms as p/q, we obtain 279427294273 4... = 1/(29—1). Now summing
over all such ratios p/q we obtain the required expression (3). It follows that:
For Lebesgue almost every polynomial f(z) = z2+c in the complement of the
Mandelbrot set, the rotation number p(f) is rational. Veerman has proved
the sharper assertion that the set of angles ¢ which correspond to irrational
rotation numbers under the correspondence t — p(f) of C.2 is a set of
- Hausdorff dimension zero. Douady and Sentenac (unpublished) have shown
that every such angle t is a transcendental number.
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Now suppose that we fix some number p € (0,1) and sum these lengths
1/(2¢ — 1) only over those intervals [0_(p/q), 0+(p/q)] for which p/g < p.
Evidently the sum must be equal to 6. (p) whenever p is rational. We take
this formula as a definition when p is irrational:

6.(p) = Y 1/(2-1). (5)

0<p/g<p

The function . is monotone and continuous from the right, being the inverse
of the correspondence t — p(f) of C.2 in the sense that

0,(c) = sup{t € (0,1) : p(R(M))=a}.

There is an associated function 6_(p) = 1 — 64(1 — p) which is continuous
from the left, and coincides with 6,(p) whenever p is irrational.

Proceeding to manipulate this expression (5), just as in the discussion
above, we see that 0,(p) = Socmezpn 27", Which yields the following nicely
convergent series expansion.

Corollary C.6. For every p € (0,1) we have

0+(p) = i [pn]277,

where [pn] stands for the largest integer < pn .

In the rational case p = p/q, note that this sum must itself be a rational
number of the form A/(27 —1).

Let us take a closer look at external rays in parameter space. We next
prove an important result of Douady and Hubbard.

Theorem C.7. If t € Q/Z is rational with odd denominator,
then the external ray Ry(M) for the Mandelbrot set lands at a
well defined polynomial f € M, which possesses a parabolic pe-
riodic orbit. More precisely: the corresponding ray R:(f) in the
dynamic plane lands at a parabolic periodic point in the Julia set

J(f)-
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Remark. If t is rational with even denominator, then Douady and
Hubbard show that R,(M) lands at a critically pre-periodic polynomial f,
and furthermore that the corresponding ray R;(f) lands at the critical value
£(0) € J(f). We will not try to give a proof of this. For arbitrary values of
t there is no known proof that R;(M) necessarily lands.

Proof of C.7. (We are indebted to discussions with Hubbard.) We
must compare external rays R;(M) in parameter space with external rays
Ry(f) for the Julia set J(f). Recall from [DH1] or [DH2] that a polynomial
f(z) = 2% + ¢ belongs to the external ray R,(M) in parameter space if and
only if the corresponding ray R,(f) in the dynamic plane passes through
the critical value f(0) = c¢. Let fo € M be any accumulation point for
the ray Ry(M). According to 1.1, the corresponding external ray Ri( fo)
necessarily lands at a periodic point z € J(fo) which is either parabolic or
repelling. Suppose that this point were repelling. Then according to B.1, for
any polynomial f(z) = 2% + ¢ sufficiently close to fy the corresponding ray
R,(f) would land at a periodic point z(f) close to 2. In particular, this ray
Ry(f) could not bounce off any pre-critical point for f. But if we choose any
f belonging to R,(M), then the ray Ry(f) does bounce off some pre-critical
point of f. (In fact it bounces off infinitely many. Compare Figure 14.) For
the angle t is periodic under the doubling map, with period say ¢, and it
follows that the forward image f°9~Y(R,(f)) bounces off the critical point
zero. Since such an f € Ri(M) can be chosen arbitrarily close to fo, this
yields a contradiction. _

Therefore, zo must be a parabolic periodic point for fo. Since the ray
Ri(fo) is fixed by the g-fold iterate fg?, it follows from 2.4 that its landing
point z, must be a fixed point of multiplier +1 for fg°.

There are only finitely many polynomials f(z) = z% + ¢ for which f*
possesses a fixed point of multiplier one. In fact, the set of all such ¢ € C
forms an algebraic variety, which is certainly not all of C. Since the set of all
limit points of Ry(M) in M is connected, and is contained in this finite set,
it follows that R,(M) must land at a single uniquely defined point fo € M.
0 :

Recall that F) denotes the unique polynomial in P, which has a fixed
point of multiplier A.
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Theorem C.8. If either t = 0_(p) or t = 6.(p), then the asso-
ciated ray Ry,(M) in parameter space lands at the point Fexp(arip)
on the cardioid OM (V) C M.

Proof in the rational case. We first suppose that p is a rational angle
p/q. Then each t = 64(p/q) is a rational number of the form A/(27 —1),
with odd denominator. Hence Ry(M) lands at some point fo, € M by
Theorem C.7, and furthermore the ray R;(fo) lands at a parabolic periodic
point of fo. The orbit of the unique critical point for fo must converge to
this parabolic orbit; and it follows that fo cannot have any Siegel disk or
Cremer point, and cannot have a disjoint parabolic orbit. (See for example
[M2, §11].) First suppose that fy belongs to the cardioid dM(QV). Then
fo has the form Fexp(onin) , where 7 must be precisely equal to p/q, since
otherwise fo would have a Siegel disk, Cremer point, or disjoint parabolic
fixed point. (Compare Lemma 2.4.)

Now suppose that fo lies outside the cardioid, and hence has a repelling
fixed point with rotation number p’/q’ # 0. We must have p’/q’ # p/q, since
the ray Ry(fo) of rotation number p/q lands on a parabolic orbit. According
to Lemma B.1, it follows that every f € P, which is sufficiently close to fo
also has a fixed point of rotation number p’/q’. But this is impossible, since
by construction there are points f € R,(M) arbitrarily close to fo with a
fixed point of rotation number p/q. This proves C.8 in the rational case.

Before continuing with the proof of C.8, let us prove a closely related
result, which is a sharper form of Lemma C.3. Evidently the two rays
Re_(pje)(M) and Ry, (p/q)(M), together with their common landing point
Fexp(2rip/q) » cut the plane P, into two halves.

Lemma C.9. One of these two complementary components,
together with the common boundary

Ro_(pja)(M) U {Fexp(arip/a)} U Ro,(w/q)(M) ,

consists precisely of all maps f € P, which possess a fized point
of rotation number p/q. The other complementary component
consists of all f which do not have a fized point of rotation num-

ber p/q.
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Proof of C.9. For f ¢ M, this follows from C.3. For any f € M which
possesses a repelling fixed point, it follows from Lemma B.1, together with
the rational case of C.8. Finally, for f in the closure of the central core
M(9Q), it follows from Theorem 1.1. O

The proof of C.8 continues as follows. We now suppose that p is irra-
tional, so that 64 (p) = 0_(p). Choose rational numbers a < p < 8 which
are arbitrarily close to p, and let a = 64(a) <t < b= 0_(B). Then the
ray R.(M) lies in a region bounded by the rays Ro(M), Rs(M) and a short
segment of the cardioid. Using Lemma C.9, we see that any limit point must
either be on this cardioid segment or on a limb M(p/q) with o <p/q < B.
Since o and B can be arbitrarily close to p, the conclusion follows. O

Corollary C.10. The wvarious limbs M(p/q) are disjoint
compact connected sets, while the intersection M(p/q) N M(9)
consists of a single point Fexp(arip/q) 0N the cardioid.

Corollary C.11. Let M°(Q) be the open set consisting of maps
in M with an attracting fized point. The correspondence
f — p(f) of Definition C.1 extends to a continuous mapping
from the complement PyM°(Q) onto the circle R/Z, taking
the values

p(Fexp(21rin)) =10

on the boundary cardioid.

Proofs are easily supplied. O
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