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Abstract

We give a combinatorial analysis of rational rotation subsets of
the circle. These are invariant subsets that have well-defined rational
rotation numbers under the standard self-covering maps of S'. This
analysis has applications to the classification of dynamical systems
generated by polynomials in one complex variable.

Section 0: Introduction

Late in the 1800’s, Poincare showed showed that every homeomorphism of
the circle has a well defined rotation number which measures asymptotically,
the average distance each point is moved by the map. Since its inception, this
concept has played an fundamental role in the theory of dynamical systems
in one and two dimensions.

This article focuses on dynamical systems generated by the standard d-
fold self-coverings of the circle S'. We give a combinatorial classification
of rational rotation subsets of S'. By definition, these are invariant sub-
sets that have well defined rational rotation numbers. For d = 2, these sets
are always periodic cycles, and they arise in a variety of different contexts
[B][Bu][GH][GLT][V1][V2]. Other points of view that are not, to my knowl-
edge, in the literature, have been taught to me by Charles Tresser.

* Research supported in part By the Alfred P. Sloan Foundation, the
National Science Foundation, and by a PSC-CUNY Research Award.



There is an important application of rotation sets to the problem of clas-
sifying dynamical systems generated by polynomials in a single complex vari-
able. A repelling fixed point of a degree d polynomial admits a set of external
arguments © = {6o,...,0,-1} which constitute a degree d rotation subset of
the circle [DH]. This application will be explored at length in a joint project
with John Milnor, that makes up Part II of this work.

Acknowledgement: The author wishes to thank John Milnor for nu-
merous and significant contributions to this article.

Section 1: Notation and Definitions

Parameterize the unit circle S! by the interval [0,1). Let d > 2 and
consider the d-fold covering map

fa:0— df mod 1

Let m and n be non-negative integers satisfying 0 < m < n. We will
adopt the convention throughout that an indexed subset © = {6, ..., 0._1}
of S? satisfies

0<by<...<b,_1<1.

Definition: A finite subset © = {f,...,0,-1} of S? is a degree d m/n-
rotation set if f4(6;) = 0itm moa 1 for ¢ =0,...,n — 1.

In general the numbers m and n need not be relatively prime, so that
m/n = kp/kq for some k > 1 with p and ¢ relatively prime. In this case, we
say that the rotation number of the set © is p/q. It follows that the set © is
a union of k cyclic orbits which are regularly interspersed, each of which has
the order type of any orbit of the rotation 6 — (6+p/q) mod 1. Hence, each
of these k cyclic subsets of © will be called a degree d p/q-rotation cycle.

Remark: Most finite sets invariant under fa are not rotation sets. Con-
sider the 4-cycle generated by the angle 1/5 whose base 2 expansion is
.00110011... ! ‘

To begin our analysis, we isolate the special case of rotation number zero.
Here a rotation set is any non-vacuous set of fixed points of the map fa.
These fixed points are precisely the angles =15 with 0 <j <d — 1.
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Figure 1. Three Quadratic Rotation Sets.

Henceforth, we will assume 0 < p < g.

Lemma 1: For ¢ > 2, the g-cycles under fy are in one-to-one correspon-
dence with orbits of period ¢ under the one-sided d-shift.

Sketch Proof: Label the d arcs obtained by removing the points {ﬁ}
from S! counterclockwise from 0 with the digits 0,1,...,d — 1. Let 6 be
a period ¢ periodic point for fg. If 6 € S! is not a fixed point of fy, let
~(8) € {0,...,d — 1} denote the label of the arc containing 0. Define the
word

a = 7(6),7(fab),- .., 1(f:0710).

The base d expansion of 6; is then given by § = .aaaaa... O

Section 2: Existence and Uniqueness of Rotation Sets

As we will see below, rotation sets with all possible rotation numbers
exist in all degrees d > 2; furthermore, quadratic rotation sets are completely
classified by their rotation numbers. This is not true in higher degrees, as is
indicated by examples in Figure 2. Two of the rotation sets in Figure 2 can
be distinguished from the remaining three by the number of elements they
contains, however a finer invariant is needed to distinguish all five examples.
For each degree d rotation set, we will record the deployment of the elements
with respect to the fixed points of the map fq.

Definition: Let
@ = {90,. . .,0.,1_1}
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Figure 2. The Five Cubic Rotation Sets with Rotation Number 1/2.

be a finite subset of S!. The degree d deployment sequence of © is the
nondecreasing sequence of non-negative integers (s, ...,84-1), where s; is
the number of 6;’s in the interval [0, 75).

The cubic rotation sets in Figure 2 have deployment sequences
(2,2), (3,4), (1,2), (1,4), (0,2)

respectively. (Thus the proportion s;/s; of angles in the upper half-circle 1s
1,3/4,1/2, 1/4, 0 respectively.)

Remarks:
1. The last entry sq_; is just the cardinality of ©. In the case of a rotation

set, it is always a product kg with 1 < k < d — 1. (Compare Corollary
6.)

SV

. This invariant contains no information for d = 1. (It is just the single
number (q).)

3. The degree d deployment sequence of a rotation set locates the compo-
nents of the set with respect to the fixed points of fs, not with respect
to the f;-preimages of 0. Therefore it does not, a priori, determine the
base d expansions of the components.

Lemma 2: (Uniqueness) A degree d rotation set is completely deter-
mined by its rotation number p/q together with its deployment sequence

0<5 <8 <...<84-1 = kg
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Figure 3. Intervals of Advancing and Retreating for fy.

The proof depends on the interplay between the fixed points of f; and its
preimages of zero.

Definition: A point § € S! is advancing if f4(6) > 0, retreating if
f4(8) < 6. (Remember that all angles are reduced modulo 1 so as to lie
in the half-open interval [0,1).

Proof of Lemma 2: Forj = 1,...,d—1, let U; denote the arc (ﬁ, d—i—l .
Each arc U; contains exactly one fy-preimage of zero j/d that divides it into

a pair of subarcs

1
Ujedv = (-JdTI’%l)

R A
Uirt = 13 727)
These are labeled to reflect the fact that ‘E <0< f(6) <1 on Ujew and
0 < f(8) < 0 < 7 on Ujrer-
Let © = {6, ...,0k-1} be a degree d kp/kg-rotation set with deployment

sequence (81,82, - . ,84-1 = kg). Since O is a kp/kg-rotation set, fq advances
6o, - . . ,Okg—kp—1 and retreats the other 6;’s. If 0 <z < kq — kp — 1, then
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Gier.adv=(d—__1,2)C(_d_a2)
andifg—p<i1<g-1,

. 7 ) o +1

eiebj,reiz(:l’ E%T)C(]Ea _-Cl_)

so that the location of the 6;’s vis-a-vis the f; preimages of 0 is determined.
Now, as in Lemma 1, the action of f; yields the base d expansions of the 0,’s.
O

We now turn to the question of existence. An examination of the proof
of Lemma 2 gives an algorithm for constructing angles from the data con-
sisting of a rotation number p/g, and a candidate deployment sequence
(s1,...,84-1 = kq). It is not difficult to check that the angles 0; resulting
from this construction satisfy

0<8y<-- <l <1

However, these inequalities need not be strict, so the angles 6; will not be
distinct in general. We give below, a necessary and sufficient condition for
strict inequality, and hence for the existence of a set of angles fitting the
given combinatorial data. "

Let © = {fo,61,...,0k-1} C S* be disjoint from the fixed points of fg.
The complement of © in S* consists of kg arcs Ao, A1, ..., Akg—1 labeled so
that the arcs A; is bounded by §; and ;41 mod k- We define the weight w(A;)
of the arc A; to be the number of f, fixed points it contains. Note that the
length, £(A;) of A; equals the difference 8;41 — 6; when i < kg — 1 and equals
1+ 60 — g1 when ¢ = kg — 1.

Lemma 3: Let © = {6o,01,...,0k-1} be a degree d rotation set with
rotation number p/q and complementary arcs Ao, A1, ... , Agg—1. Then the
following equation holds:

dé(A,) = [(Ai-f-kp n-‘nod kq) + w(Ai) (*)

Furthermore, the map f; carries A; homeomorphically onto Aitkp mod kq
if and only if the weight w(A;) is zero.
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Proof: The image of an arc A; under f; covers the (disjoint) arc A4 kp mod kq
and then winds some number N times around the circle. It is easy to check

that each of these circumnavigators of S? in A; contains a unique fixed point
of fq. Therefore, N = w(A;). O

We can solve these linear equations (*) for the angles £(A;) as functions
of the critical weights w(A;). If we sum these equations over a residue class
modulo k, we obtain the equation

(d=1)(L(A)HL(Aipr)+- - H(Airrg-1))) = W(Ai)Fw(Aipr)+. . F@(Aigre-1)

for each 7 between 0 and k — 1. That is, the total angular width of these
g sectors is directly proportional to the total weight. In particular, at least
one of these ¢ sectors must contain a fixed point of f;. (More directly, if
the w(Aiynk) were all zero, then each of these sectors would map homeo-
morphically onto a sector with strictly greater length, which is impossible.)

Lemma 4: For each i between 0 and k — 1, the ¢-fold sum

wW(Ai) + w(Aigr) + .o+ W(Aigrg-1))

must be strictly positive. In other words, each of the arcs A; either contains
a fixed point, or is mapped homeomorphically by an iterate of f; onto an A;
that does contain a fixed point. ]

Remark: In the sequel to this article, we will show that the weight w(A;)
is equal to the number of critical points contained in an associated region of
the dynamical plane of a polynomial map. (Compare Part II, §2.)

An equivalent formulation of Lemma 4 in terms of deployment sequences
is the following. Fix any p/q # 0.

Lemma 5: A sequence 0 < 51 < 59,<...,< 84_1 = kq is realized by a
degree d rotation set if and only if every residue class modulo k is realized
by at least one of the s;’s. :

Corollary 6: We have k£ < d — 1. That is, a degree d rotation subset
with rotation number p/q contains at most (d — 1)g¢ points. O

7



We summarize the results from this section as

Theorem 7: A degree d rotation subset of the circle is uniquely deter-
mined by its rotation number and its deployment sequence. Conversely, a
lowest terms fraction p/q and candidate deployment sequence

0§51§52§---§5d—1=kq

determine a rotation subset of S! only if every residue class modulo k is
realized by at least one of the s;’s. O

Corollary 8: Quadratic rotation cycles are in one to one correspondence
with the set of rational numbers modulo one. o

Section 3: Counting Rotation Cycles
Recall that the number of ways to deploy ¢ indistinguishable balls in N
labeled boxes is equal to the binomial coefficient (N +:'l).

Proposition 9: The map f; has (d"";'?) rotation cycles with rotation
number p/q.

Proof: The conditions of Theorem 7 are satisfied for every candidate
deployment sequence (sy, 82, ...,84-1 = ) corresponding to a rotation cycle.
Consequently, the number of p/g-rotation cycles in degree d is precisely to

the number of ways to deploy ¢ indistinguishable balls in d —1 labeled boxes.
(]
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Fixed Points of Polynomial Maps
Part Il - Fixed Point Portraits

Lisa R. Goldberg and John Milnor
Brooklyn College & Institute for Mathematical Sciences
CUNY Graduate Center SUNY Stony Brook

Abstract. Douady, Hubbard and Branner have introduced the
concept of a “limb” in the Mandelbrot set. A quadratic map
f(z) = 2% + ¢ belongs to the p/q-limb if and only if there exist
q external rays of its Julia set which land at a common fixed
point of f, and which are permuted by f with combinatorial
rotation number p/q € Q/Z, p/q # 0. (Compare Figure 1
and Appendix C, as well as Lemma 2.2.) This note will make a
similar analysis of higher degree polynomials by introducing the
concept of the “fixed point portrait” of a monic polynomial map.

Introductiqn.

The object of this paper is to classify polynomial maps in one complex
variable in terms of the external rays which land at their fixed points. To
each monic polynomial we assign a fixed point portrait, which is a list of the
angles of the rational external rays which land at the various fixed points.
(See Section 1 for details.) Except in the three appendices, we consider only
polynomials with connected Julia set. The paper is organized as follows:

Section 1 contains a more detailed outline of subsequent sections, as well
as an overview of the relevant concepts from complex dynamical systems. (A
basic reference for this is [M2].)

Section 2 defines the rational type T of a fixed point z as the set of all
angles of rational external rays which land at z. In the terminology of Part
1, such a rational fixed point type T C Q/Z is an example of a rotation set.

In Section 3, we introduce the fixed point portrait of a polynomial. By
definition, this is the collection {T%, ..., Tx} consisting of all rational types
T; # 0 of its fixed points. We outline a set of combinatorial conditions
that a fixed point portrait must satisfy, and we formulate our Main



Conjecture 3.9: These necessary conditions are also sufficient. In other
words, we conjecture that every ‘candidate’ fixed point portrait satisfying
certain combinatorial conditions can actually be realized by a polynomial.

Sections 4, 5, 6 are devoted to establishing Conjecture 3.9 in the special
case of a degree d polynomial which has d distinct repelling fixed points.
Our proof relies on the study of the critical portrait of a polynomial: This is
our name for a basic concept which was introduced and studied in the thesis
of Yuval Fisher. Fisher gives a set of necessary and sufficient conditions
for a collection of sets of angles to be the critical portrait of some critically
pre-periodic polynomial. Section 4 summarizes basic facts about critical
portraits, and recalls theorems from Fisher’s thesis that we use.

Section 5 describes an algorithm that determines the fixed point portrait
of a polynomial from its critical portrait.

Section 6 contains our main result. For each fixed point portrait satisfying
suitable conditions we construct a compatible critical portrait satisfying all
of Fisher’s conditions. It then follows by Fisher’s thesis that each such fixed
point portrait can be realized by some critically pre-periodic polynomial.

Section 7 discusses the two main questions left open in this paper:

(1) The Main Conjecture 3.9. Show that every candidate fixed point portrait
occurs as the portrait of a polynomial, even when not all of the fixed points
are distinct and rationally visible.

(2) Parameter Space. In the connectedness locus Cq, consisting of all monic
centered polynomials of degree d with connected Julia set, describe the struc-
ture of “limbs” consisting of polynomials with equivalent fixed point portrait.,
and explain how these limbs fit together.

The paper concludes with three appendices. Appendix A extends the
exposition to polynomials whose Julia sets may not be connected. Appendix
B considers the transition between different fixed point portraits as we vary
the polynomial within parameter space, and Appendix C applies these ideas
to prove known results about parameter space in the degree two case.

The authors want to thank Douady for suggesting the circle of ideas
studied in this paper.
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Figure 1. Julia sets for two quadratic maps in the 1/3-limb.
The external rays to the two fixed points have been plotted.



§1. Overview.

Let f:C — C be a polynomial map of degree d > 2, and let K = K (f)
be its filled Julia set, consisting of all z € C for which the orbit of z under f
remains bounded. To simplify the discussion, we will assume that f is monic,
and that K(f) is connected, or equivalently that the Julia set J = OK is
connected. (For a discussion of the case where K (f) is not connected, see
the three Appendices.) It follows from this assumption that the complement
C\K(f) is isomorphic to the complement of the closed unit disk D under
a unique conformal isomorphism '

¥ : C\D = CNK(f)
which is asymptotic to the identity map at infinity; and furthermore that
P(z%) = f(¥(z)) forall zE€ C\D. (1)

For each angle t € R/Z, the external ray R, C CNK(f) is defined to be
the image under @ of the half-line

(1,00) e¥™ = {re?™ : 1< r < oo}

which extends from the point e?** out to infinity in C\D . It follows from
(1) that f(R,) = R . In particular, note that f(R;) = R, if and only if t
is a fraction of the form j/(d—1). In this case, R; will be called a fixed ray.
Similarly, some iterate of f maps R, onto itself if and only if t is rational
with denominator prime to d. In this case, R, will be called a periodic ray.
Note that ¢ is rational if and only if some image f°*(R,) is periodic.

We are interested in the limiting values of an external ray f; as r de-
creases to 1. By definition, the ray R, lands at a well defined point a;
whenever this limit exists and is equal to a,. Such a landing point always
belongs to the Julia set J = 8K . Putting together results due to Douady,
Hubbard, Sullivan, and Yoccoz, we have the following. (Compare [M2]. For
definitions, discussion and further references, see §2.)



Theorem 1.1. If f is a polynomial of degree two or more, with
K(f) connected, then every periodic ezternal ray R, lands at a
well defined periodic point

a; = lim P(re¥™) € K(f),

which is either repelling or parabolic. Conversely, every repelling
or parabolic periodic point of f is the landing point of a finite
number (not zero) of external rays, all of which are necessarily
periodic with the same period.

More generally, every rational external ray lands at a well defined point
of the Julia set. Evidently the landing point a; is pre-periodic; in fact some
forward image f°"(a;) belongs to a repelling or parabolic cycle.

Now consider an arbitrary fixed point f(z) = z.

Definition 1.2. By the rational type T = T(f,z) of a fixed point z of a
monic polynomial f will be meant the set of angles of the rational external
rays of K(f) which land at z. In other words, T(f,2) is the finite subset
of Q/Z consisting of all rational numbers ¢ modulo 1 for which the landing
point a; of R, is equal to z.

The possible fixed point types fall into three distinct classes, which we
briefly describe below. (For further details see Part I, as well as §2.)

We will say that a fixed point f(z) = z is rationally invisible if there are
no rational rays at all which land at z, so that the type T is vacuous. Such
a point is either attracting, or Cremer, or is surrounded by a Siegel disk.
We will largely ignore such points, concentrating rather on the “rationally
visible” points.

A fixed point has rotation number p = 0 if it is the landing point of at
least one of the fixed rays Rj/4-1). In this case the type T is some non-
vacuous subset of the set of fixed angles {0, 1/(d—1),..., (d—2)/(d—=1)}.
It will follow from Theorem 6.1 that all 24! — 1 such subsets can actually
occur. Fixed points of rotation number zero always exist, and will play an
organizing role in our discussion.

Finally, if T is non-vacuous and does not consist of fixed angles j/(d—1),
then it is uniquely determined by three invariants, namely the cardinality #T,
the combinatorial rotation number

0#p=p/qg € Q/Z,

)
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Degree d =2

Figure 2. Schematic diagram for the fixed point portrait corre-
sponding to Figure 1. Fixed points are indicated by heavy dots.
The location of the critical point is indicated by a star.

and the deployment of the elements of T with respect to the fixed angles
j/(d = 1). Here we can take 0 < p/q < 1 to be a fraction in lowest
terms. The cardinality #7T can then be expressed as a product of the
form kg with 1 < k < d—1. Thus we can number the elements of T as
0 <t <-++ <ty <1, with dt; = tiysp (mod 1). Finally, the deployment
of the elements of T with respect to the fixed angles can be described, for
example, by specifying the cardinality s; = #(T N[0, E—Ll)) of the intersec-
tion of T' with each half-open interval [0, 31_1) When k > 1, the resulting
sequence 0 < s; < -+ < 841 = kq is subject to certain mild restrictions.
(See Part 1.)

The principal concept which we propose to study is the following.

Definition 1.3. The fixed point portrait of a monic polynomial is the
collection of types of its rationally visible fixed points. Thus two monic
polynomials f and g of degree d have the same fized point portrait if and
only if there is a one-to-one correspondence between the rationally visible
fized points of f and the rationally visible fized points of g which preserves
the type.

6
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Figure 3. Four cubic Julia sets, each with one fixed point of rotation number 1/2.
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Figure 4. Schematic diagrams for the fixed point portraits of Figure 3.



As examples, Figure 1 shows the Julia sets for the quadratic polynomials
fi(z) =22+ €z and  folz) =241,

These have the same fixed point portrait, which consists of the type
T, = {0} with rotation number zero and the type Tz = {3,2,4} with
rotation number 1/3. This portrait is indicated schematically in Figure 2.
Figure 3 shows the Julia sets for four cubic polynomials. Each of these has
one fixed point of rotation number 1/2. The right center Julia set also has
one rationally invisible fixed point; while the other three have two distinct
fixed points of rotation number zero. Figure 4 shows schematic diagrams for
these four fixed point portraits. Note that the last portrait can be described
as the union of the first two.

Definition 1.4. It is often convenient to compactify C by adding a circle
of points at infinity, with one point lim;_ i re*™* corresponding to each
angle t € R/Z. We denote this compactified plane by © , and denote the
circle at infinity by 0@ = R/Z.

In order to understand a general fixed point portrait, first consider the
fixed points of rotation number p = 0. These are precisely the landing points
of the d—1 fixed rays R;/a-1). Suppose that there are n such fixed points,
and let Ty, ..., T, be their types. Thus the T, are disjoint non-vacuous
sets with union equal to {0,1/(d=1),...,(d —2)/(d —1)}. Evidently
1 <n <d-1. Note that any two of these sets T}, are “unlinked”, in the
following sense.

Definition 1.5. We will say that two subsets T and T’ of the cir-
cle R/Z are unlinked if they are contained in disjoint connected subsets of
R/Z, or equivalently if T" is contained in just one connected component of
the complement R/Z\T'. (In particular, T and T’ must be disjoint.) If we
identify R/Z with the boundary of the unit disk, then an equivalent condi-
tion would be that the convex closures of these sets are pairwise disjoint. As
an example, if T and T" are the types for any two distinct fixed points of
f, then evidently T and T” are unlinked.

The d — 1 fixed rays Rjj4-1y will cut the complex plane into
m = d —n connected open subsets, say Uy, ..., Un, which we will call
basic regions. Compare Figure 5, which illustrates the degree six case with
m =n =3 and with

le{O,%}) T2={%}7 T3={%’§}

9
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Figure 5. Partial schematic diagram for a typical map of degree
d = 6. In this example, the five fixed rays cut the plane into three
“basic regions” Uj;, each of which contains exactly one interior
fixed point (indicated by a solid dot), and as many critical points
(stars) as boundary fixed points.

To simplify the discussion, let us assume for now that the d finite fixed
points of f are all distinct. The following will be proved in §3.

Lemma 1.6. With this hypothesis, each basic region U; contains
at least one critical point of f, and ezactly one fized point of f.

Let T} be the type of the fixed point in the region U;. This fixed point
may be rationally invisible, so that T; = 0. However, if T/ # 0 then it has
a well defined rotation number p;/g;, which is an arbitrary non-zero rational
modulo 1. In order to describe which fixed point types T are possible, for
given U; and given rotation number, we need further definitions.

By the critical weight 1 < w(U;) < d—1 we mean the number of critical
points of f, counted with multiplicity, which are contained in the region
U;. Closely related is the angular size o(U;) of Ui at infinity, which is
defined as follows. We think of U; as a region in the circled plane ©, and
define a(U;) to be the length of the intersection of OU; with the circle at
infinity 8@ = R/Z. By definition, the circle at infinity has total length
equal to 1. Thus the sum of the angular sizes of these m = d — n regions is

10



S a(U;) = 1, while the sum of the critical weights is 3 w(U;) = d—1. Note
that the intersection OU; N 8(@© corresponds to a union of non-overlapping
intervals I; = [47, £57], each of length 1/(d —1),in R/Z.

Lemma 1.7. The number of critical points w(U;) is equal to the
number of intervals I;, 0 < j < d — 1 which are contained in
the boundary of U; at infinity. Thus the angular size is given by
o(U;) = w(U;)/(d—1). When the critical weight w = w(U;)
equals one, there is one and only one possible fized point type T}
with given rotation number p/q which can be placed in the basic
region U;. However, when w =2 there are ¢+ 1 possible types

of cardinality q, and q types of cardinality 2q.

Compare Part I, as well as §2. For each fixed higher value of w, one
can show that the number N of distinct types can be expressed analogously
as a polynomial N,(q) of degree w —1 in ¢. Note that the number of
possible types is completely independent of the numerator p, the degree d,
and the precise shape of the region U;. It depends only on the denominator
g and the weight w. The proof, in Part I, shows more explicitly that each
type T/ is uniquely determined by its rotation number, together with the
cardinalities of the various intersections T} N I;. Of course only w of these
intersections can be non-vacuous.

Example. If the d — 1 fixed rays Rj/4-1) all land at distinct points,
then there is only one basic region U, and its critical weight is w=d —1.

The main result of this paper, Theorem 6.1, gives a complete charac-
terization of just which fixed point portraits can occur, providing that we
assume that the d fixed points are all distinct and rationally visible. Our
proof depends essentially on work by Yuval Fisher, which is developed in §4.

The final section, §7, gives a brief discussion of the corresponding problem
where we do not require that all fixed points must be rationally visible. There
is an obvious conjecture, which is surely true. (Compare 3.9.) However,
we do not have a proof. There are three appendices. The first discusses
non-connected Julia sets, the second studies the transition between different
fixed point portraits, and the third describes parameter space in the classical
degree two case.

11



§2. Classification of Fixed Points.

We continue to assume that f is a monic polynomial map of degree d > 2
with K(f) connected. Recall that the dynamics of f in a neighborhood of a
fixed point f(z) = z is controlled by the eigenvalue or multiplier f'(z). The
fixed point is said to be repelling if |f'(z)| > 1, attracting if |f'(z)| <1, and
to be parabolic if f'(z) is a root of unity. Combining arguments of Douady,
Hubbard, Sullivan, and Yoccoz, we have the following. (Compare 1.1.)

Lemma 2.1. A fized point is rationally visible (that is, admaits at
least one rational external ray) if and only if it is either repelling
or parabolic.

Proof Outline. In the attracting case the point z cannot be rationally
visible since z is in the interior of K(f). Similarly, if there is a Siegel disk
around z, then z cannot be rationally visible. If f’(z) is any point on the
unit circle, which is not a root of unity (in particular, if z is a Cremer point),
then an argument of Douady and Sullivan shows that no rational external
ray can land at z. Compare [Su], [DH2 p.70]. On the other hand, if z is
repelling then an unpublished argument of Douady and Yoccoz shows that
at least one rational external ray lands at z (compare [Pe]); and it is not
difficult to adapt their methods to prove the corresponding statement in the
parabolic case. (See [M2].) D

For the rest of this section, we consider only fixed points which are ratio-
nally visible.

Lemma 2.2. If at least one rational external ray lands at the
fized point z of f, then there are only finitely many external
rays landing at z, and all are rational and are permuted by f.
More precisely, if we number these rays as Ry;) where

0<t0)<---<t(n—-1)<1,

then there is a unique residue class m modulo n so that f maps
each ray Ry;) onto Ry with ! =i+ m (mod n) .

In practice, we may think of the indices i as integers modulo n, and
simply write

f(Rt(i)) = Rt(i+m)-

12



By definition, the ratio m/n in Q/Z is called the rotation number p(f, z).
Here m and n need not be relatively prime. We will usually write the
rotation number as a fraction p/q in lowest terms, where m = kp and
n = kg, and where k > 1 is the greatest common divisor. Note that
the collection T(f,z) of external rays landing at z then splits up into &
subsets of g rays, where each of these subsets is permuted cyclically by
f. The integer k > 1 can be described as the number of cycles of external
rays which land at z. The set T = T(f,z) is called the type of the fixed
point z.

Caution. By definition, our rotation numbers are always rational. Of
course an infinite subset of R/Z may well have a rotation number which is
well defined but irrational. (See Figure 16, and compare [Ve].) Such rotation
numbers are briefly considered in the three Appendices, and are surely worthy
of further study. One step in this direction, a study of irrational rotation sets,
has been carried out by A. Poirier (unpublished).

Proof of Lemma 2.2. Clearly the map f carries each ray R, landing
at z to aray f(R;) = Ry landing at z. Furthermore, since f is a local
diffeomorphism near z, this correspondence must preserve the cyclic order of
these rays around z, which is the same as the cyclic order of the correspond-
ing angles t € R/Z. First suppose that the zero ray Ro lands at z. Then
we claim that any other ray R; which lands at z must also be mapped into
itself by f, and hence must satisfy td =t (mod Z), or in other words have
the form ¢t = j/(d — 1). For otherwise the successive images f(R:) = Rv,
f(Ry) = Ry, ... would satisfy either 0 <t <t' <t <--- <1 or
0<---<t"<t <t<]l;since cyclic order is preserved by f. In either
case, the angles of these successive images would tend to a limit of the form
j/(d = 1). But this is impossible, since j/(d — 1) is a repelling fixed point
of the map t — td (mod 1) . Thus the rays which land at z are all rational,
and there are at most d — 1 of them.

Now assume only that some arbitrary rational ray lands at the fixed point
z. After applying the map f a sufficient number of times, we may assume
that the angle ¢ of this ray has denominator prime to the degree d. In other
words, we map assume that this ray R, is periodic under f, with period
say ¢q. Let F be the ¢-fold iterate f°¢, of degree d?, so that R, is fixed
by F. Evidently ¢ has the form j/(d? — 1). Now consider the conjugate -
polynomial map w +— A~'F(\w), where XA = e2™*. This fixes the zero ray;

13



hence the argument above shows that at most d? —1 external rays of F', or
equivalently of f, land at the point z, and that the corresponding angles
are all rational, of the form j/(d? —1). Further details are straightforward,
and will be left to the reader. O

We can restate Lemma 2.2 in the language of Part I of this paper as
follows. Recall that a finite subset of R/Z with well defined rational rotation
number is called a rational rotation subset.

Corollary 2.3. The type T(f,z) of any rationally visible fized
point z is a rational rotation subset of the circle.

A complete combinatorial classification of rotation subsets T C R/Z
may be found in Theorem 7 of Part I. Such rotation subsets exist for all
rotation numbers in all degrees d > 2. Furthermore: The rotation subset T'
is uniquely determined by its rotation number p/q and its cardinality kq,
together with the “deployment” of its elements with respect to the fized angles
j/(d —1). When k > 1, this deployment is subject to certain restrictions.
More explicitly, for small values of the degree d we have the following.

Degree 2. The rotation number p/q € Q/Z~{0} is a complete invariant.

Degree 3. There are 2¢+ 1 possible types T for each rotation number
p/q # 0. A convenient complete invariant is the ratio s,/k, which can be
any integer or half-integer between zero and ¢. Closely related is the ratio
s1/kq, which measures what fraction of the elements of T lie between 0
and 1/2. As examples, for the four maps of Figure 3 with a fixed point
of rotation number 1/2, this fraction s;/kg is respectively 1/2,1.1. and

3/4.

Similarly, in higher degrees, the analogous ratios
0<s1/kg< - < sa-2/kg <1

form a complete invariant. Here s;/kq measures what fraction of the ele-
ments of T lie between zero and i/(d — 1) . See Part I for details.

In the parabolic case, there is a very close relationship between multiplier
and rotation number, which we explain in the next Lemma.

Lemma 2.4. If z is a parabolic fized point with multiplier
f'(z) = €*™?/9 | then the rotation number p(f,z) € Q/Z is equal

to p/q.
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Remark. In the case of a repelling fixed point, the rotation number
p/q is not precisely equal to the argument of the corresponding multiplier
f'(2) in most cases. However, the still unpublished Yoccoz inequality asserts
that log f'(z) must lie in a certain open disk Do in the right half-plane. By
definition, Dy has radius log(d)/(kq) where kq is the number of rays landing
at z, and this disk is tangent to the imaginary axis at the boundary point
2mip/q. (Compare [Pe].) In particular; suppose that we fix p/q and choose a
sequence of maps f; for which the multiplier f;(z;) at some repelling fixed
point of rotation number p/q converges towards the unit circle. Then it
follows that these multipliers fj(z;) must converge towards the point e?mirla,
Thus Lemma 2.4 can be described as an easy limiting case of the Yoccoz
inequality.

Outline Proof of 2.4. According to the Leau-Fatou Flower Theorem, for
some integer r > 1 there exist rq simply connected regions U, ..., U
numbered in counterclockwise order around z , so that f(U;) C U; with
j = i+ rp (modrq), and so that an orbit under f converges towards
z (without actually hitting z) if and only if it eventually lands in one of
the U; . Compare [M2], [Bl, §3]. Evidently any external ray which lands
at z must be disjoint from these U; . However, since f is an orientation
preserving homeomorphism near z, an argument similar to the proof of
Lemma 2.2 shows that the combinatorial rotation number for these external
rays cannot be different from the combinatorial rotation number p/q for
these petals. O

To conclude this section, let us supplement the discussion in Part I Lemma
3 by describing how rotation sets and their associated external rays are re-
lated to critical points. Let z be a rationally visible fixed point of type
T = {to,...,ts1} and rotation number p/q, where n = kg. Then the
external rays R, divide the circled plane © into n pie slices Sy, ..., Sa
which we will call sectors. The boundary 85; consists of the two rays Ry,_,
and Ry, together with an arc A; on the circle at infinity 6© = R/Z. By
the critical weight w(S;) we mean the number of critical points of f within
S; counted with multiplicity, so that Y w(S;) =d —1.

Lemma 2.5. The critical weight w(S;) is equal to the number

of fized points h/(d — 1) € R/Z = 0© which are contained in
the boundary at infinity A; = S; N 0©. (For the special case
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p/q = 0, see the comment below.) If this weight w(S;) is zero,
then the polynomial map f carries S; homeomorphically onto
the sector S;, where j =i+ kp mod kq. On the other hand, if
w(S;) > 0 then f carries S; onto the entire plane ©.

Since there are exactly d—1 fixed points at infinity, this gives the correct
total count. However, in the special case of a fixed point of rotation number
zero, this statement needs to be interpreted with care. The two end points
t;_, and t; of the boundary at infinity A; are themselves fixed points at
infinity in this case; and we must count each with weight one-half in order
to get the correct number.

Remark 2.6. If there is a critical point in the sector S;, then there must
be at least one critical value in the sector S;, where j = ¢+ kp mod kq. For
otherwise, every one of the d branches of f~! would be well defined and
smooth throughout S;, which is clearly impossible.

Definition. The angular size £(S;) will mean the length of the boundary
at infinity A;. Thus £(S;) =t; —t;, for 1 <i<n,and YL(S)=1.

Proof of 2.5. Suppose that we traverse the boundary 85; in three steps:
first out to infinity along the ray R;_, then along the arc A; and then back
to the fixed point along Ry, . The image of this loop under f will first follow
the boundary of the corresponding S; out along the ray R;_, and along
A;. But then it will continue all the way around the circle for some number
N of times, where df(S;) = £(S;) + N, before returning to the fixed point
along R, . As noted in Part I Lemma 3, this N is the number of fixed
points at infinity in A;. Let us round off the corners of S; so that 0S; has
a smoothly turning tangent vector, which rotates through one full turn as
we circumnavigate this boundary. Evidently the tangent vector of the image
of 8S; under f will rotate through N + 1 full turns. It follows easily that
there are exactly N critical points, counted with multiplicity, in the interior

of S,' . O
The proof shows also that

(2.7) d0(S:) = £(S;) + w(S:)

with j = i+kp mod kq as above. (This is of course just a mild restatement
of Lemma 3 of Part I.) In the special case of rotation number zero, this reduces
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to the formula

08

(@-1)HS) = w(S).
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§3. Fixed Point Portraits.

In this section we consider all of the fixed points of the polynomial map
f of degree d . The first step is to consider the landing points of the d — 1
external rays R;/(—1) which are fixed by f . Suppose that n of these landing
points, say 2, ... , Zn, are distinct. Then the rays Rj/(4-1) , together with
their landing points, cut the plane of complex numbers into m = d—n basic
regions, which we will denote by Uy, ..., U,. ,in some arbitrary order. Here
1 < m < d—1. We can roughly locate the critical points of f ,and also the
m remaining fixed points, as follows. As in §1, the critical weight w(U;)
will mean the number of critical points in U; , counted with multiplicity.

Recall that © stands for the compactification of the complex numbers
by adding a circle © = R/Z of points at infinity. This circle at infinity
has length +1 by definition. The boundary of U; in this completed plane is
made up out of a finite part consisting of rays Rj/(-1), and also a union of
one or more arcs on the circle at infinity. (Compare Figure 5.)

Lemma 3.1. The critical weight of each basic region U; 1is equal
to the number of fized points (necessarily of rotation number
zero) on the finite part of OU;, or to d — 1 times the length
of that part of 8U; which lies on 8©.

Proof. (Compare the proof of 2.5.) Let N be the number of fixed points
on the finite part of oU;. As we traverse the boundary of U;, starting at
one of these finite fixed points, we first travel out along a ray Rj/-1) » then
traverse an arc of angle 725 at infinity, and then come in to the next fixed
point along Rj41)/-1) - This pattern is repeated N times. The image of
OU; under f has a similar description. The only change is that each arc
of AU; N d© of length $35 is mapped to an arc which wraps all the way
around the circle, so as to have total length 3%; =1+ . Let us round
off the corners of AU; so as to obtain a smooth curve whose tangent vector
has winding number +1. Evidently the tangent vector of the image of this
curve under f will have winding number N +1. It then follows easily that
the number of critical points w(U;) enclosed by this curve must be equal to

N. O

If the d finite fixed points of f are all distinct, then we will show that
each basic region U; contains exactly one interior fixed point. More generally,
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we will modify this statement so that it remains correct even when there are
multiple fixed points. However, to do this we will need some definitions.

A fixed point f(z0) = zo is said to have multiplicity p if the Taylor
expansion of f(z) — z about 2o has the form

f(2) —z = a(z — z)* + (higher terms),

with @ # 0 and g > 1. The sum of the multiplicities of the fixed points is
always equal to the degree d. By definition, 2z is a multiple fixed point if
i > 2. Such a multiple fixed point is the center of a Leau-Fatou flower with
i — 1 attracting petals, each contained in an immediate attracting basin.
(See for example [M2].)

Definition 3.2. Each one of these u —1 immediate basins about a fixed
point of multiplicity p > 2 will be called a virtual fixed point of f.

Thus the total number of fixed points and virtual fixed points for f in
the finite plane C is always equal to the degree d. For our purposes, virtual
fixed points are very much like rationally invisible fixed points: neither one
makes any contribution to the fixed point portrait. In fact the following
seems very likely: ‘

Conjecture. Any virtual fixed point can be converted to an attracting
fixed point by a small perturbation of the polynomial, without affecting the
fixed point portrait. Further, we conjecture that it is possible to choose
this perturbed polynomial so that, when restricted to its Julia set, it is
topologically conjugate to the original polynomial on its Julia set.

The following is an important topological restriction on the distribution

of fixed points.

Theorem 3.3. Each one of the basic regions U; contains exactly
one interior fized point or virtual fized point.

Evidently a fixed point has a well defined non-zero rotation number if
and only if it is rationally visible and interior to some U;. As an immediate

consequence of 3.3:

Corollary 3.4. Fach basic region U; contains at most one ra-
tionally visible interior fized point.
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Before proving 3.3, let us state one further corollary, which has been
pointed out to us by A. Poirier.

Corollary 3.5. Let V be any bounded invariant Fatou domain
for the polynomial f, that is any bounded component of C\J(f)
which is mapped to itself by f. Then any fized point on the
boundary OV must be either parabolic or repelling, with rotation
number zero. There cannot be any Cremer point on the boundary.

Proof (assuming 3.3). First recall that the region V must be either
a Siegel disk, or the immediate basin of an attractive fixed point, or an
immediate basin of a parabolic fixed point. (See for example [M2, §13].)In
the first two cases, V contains an interior fixed point, while in the parabolic
case it contains a virtual fixed point. Evidently V must be contained in
some basic region U;. Hence it follows from 3.3 that any fixed point on the
boundary of V must also be in the boundary of U;. The conclusion follows.

O
The proof of 3.3 will depend on the following ideas.
Definition 3.6. Let A C C be a topologically embedded closed disk

with interior A. A map f: A — C will be called weakly polynomial-like of
degree d if f(AA)N A =0, and if the induced map on integer homology

f.:Hy(A,0A) =2 Z — Hy(C,C\{2}) = Z

is multiplication by d. Here 2o can be any base point in A.

Remark. If f is holomorphic, and satisfies the sharper condition that
f(0A)N A = 0, then it is called polynomial-like. Compare [DH3].

Lemma 3.7. If f: A — C is weakly polynomial-like of degree
d, with isolated fized points, then each fized point f(z:) = =
can be assigned a Lefschetz index «(f,z;) € Z which is a local
invariant, so that the sum of these Lefschetz indices is equal to
the degree d. '

Proof. For presentations of the Lefschetz Fixed Point Theorem, see for

example [Brn), [DGr], [Gr] or [Ji]. In the case of an interior fixed point, the
Lefschetz index can be defined as the local degree of the map z — f(z) — z

20



at the fixed point. That is, if U is a small neighborhood of z;, then the
induced homomorphism

(f —identity). : Ho(U, UN{z}) — H,(C, C\{0})

is multiplication by ¢. If there are no boundary fixed points, then the sum
of these indices is the degree of

(f — identity). : Hy(A,8A) — Hy(C,CN{0}).

But the identity map of A is homotopic to the constant map 2z — 2o, sO
this sum of indices is equal to d.

If there are boundary fixed points, then we can first modify the map in
a neighborhood of each one so as to push all of the fixed points inside, and
then apply the construction above. The resulting index does not depend on
the local modification, since the global degree cannot change. O

Proof of 3.3. Let U; be one of the regions of 3.1, and let A be the
topological disk which is obtained by intersecting U; with a large round disk
centered at the origin. Then it is easy to check that f restricted to A is
weakly polynomial-like of degree w+1 = w(U;) +1, and that it has exactly
w boundary fixed points. If U; contains no virtual fixed point, then we
will show that each of these boundary fixed points has Lefschetz index +1.
Therefore, it will follow from 3.7 that there must be an interior fixed point
as well.

First consider a boundary fixed point z; which is repelling, |f'(z;)| > 1.
Then a small open disk D, centered at z; maps diffeomorphically onto
a strictly larger disk. Let A; be that component of AN D, which has
z; as boundary point. Then the closure A; is a relative neighborhood of
z; in A, and the map f restricted to A; is weakly polynomial-like of
degree +1, with unique fixed point at 2;. Hence by 3.7 the local index
UfIA, z;) = «(fIA;, 2) is equal to +1, as asserted.

Now suppose that z; is a parabolic fixed point. Then by 2.4 the multiplier
f'(z;) must be equal to +1. The two external rays of U; which land at z;
must be contained in a common repelling petal as they approach z;, since
otherwise U; would contain an attracting petal or “virtual fixed point”,
contrary to our hypothesis. In this case, we let A; be one component of
the intersection of A with a small repelling petal at z;. Proceeding just as
above, we again see that the Lefschetz index is +1.
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To complete the proof, let v be the number of virtual fixed points. Then
at least m — v of the m = d — n regions U; have no virtual fixed point,
and hence have one interior fixed point. Thus, between the n fixed points
of rotation number zero and the d — n — v interior fixed points, we have
accounted for all of the d — v fixed points. There can be no others. Fur-
thermore, no region U; can contain more than one virtual fixed point, since
then our count would be off. O

We are now in a position to give a conjectured description of all possi-
ble fixed point portraits. Recall from 1.3 that the fixed point portrait for a
polynomial f which has k rationally visible fixed points is the collection

P = {T],...,Tk}

consisting of the types of these rationally visible fixed points. Here
1 < k < d. Assembling previous results, we have the following.

Theorem 3.8. If P = {Tv, ..., Tx} is the fized point portrait
for some polynomial map of degree d, then the following four
conditions must be satisfied.

Pl. Each T; is a rational rotation set. In particular, it has a
well defined rotation number p;/q; .

P2. The T; are disjoint and pairwise unlinked.

P3. The union of those T; which have rotation number zero
is precisely equal to the set {0, 755, ..., j—:%} consisting of all
angles which are fized by the d -tupling map.

P4. Each pair T; # T; with non-zero rotation number is sep-
arated by at least one T, with zero rotation number. That 1s,
T; and T; must belong to different connected components of the

complement. (R/Z)\T; .

Proof. P1 follows from 2.3, P2 follows from 1.4, P3 is clear from the
discussion in §1 or above, and P4 is an easy consequence of 3.4. D

Main Conjecture 3.9. These necessary conditions are also sufficient.
In other words, given sets T; satisfying these four conditions, there exist a
polynomial of degree d having {T;} as fixed point portrait.

(™)
o
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In the special case where k = d (so that the d fixed points are distinct
and rationally visible) a proof will be given in §6. We firmly believe that 3.9
is true also when k < d, although we do not have a proof.

In order to illustrate 3.9, let us look at the low degree cases.

Degree 2. In this case, we always have Ty = {0}. If there is also a
fixed point with rotation number p/q # 0, then the resulting fixed point
portrait might be denoted by the symbol P(p/q). A corresponding centered
polynomial map is said to belong to the p/q-limb of the Mandelbrot set. If
the other fixed point is invisible (as for z — z?) or is only a virtual fixed
point, then we could use the symbol P(e). Such maps are said to belong to
the central core of the Mandelbrot set. For further details, see Appendix C.

Degree 3. Here there are two subcases. If the rays Ry and Ry, land
at distinct points, then we have T) = {0}, T, = {1/2}, and there is at
most one further fixed point. If this further fixed point is distinct and ratio-
nally visible, the corresponding portrait might be indicated by the symbol
P(p/q; s1/k). (Compare the discussion following 2.3.) Here ¢ > 2, p is
relatively prime, and s,/k is an integer or half-integer between zero and ¢.
With this notation, three of the portraits of Figure 4 would be represented
by the symbols P(1/2; 1), P(1/2; 2) and P(1/2; 3/2) respectively. If the
third fixed point is rationally invisible (as for z — z%), or is virtual (as for
z — 23 — 22 + 2 ), then some notation such as P(e;) might be used.

On the other hand, if Ry and Ry, land at a common point, of type
T, = {0, 1}, then these two rays divide the plane into an upper half and
a lower half. Each of these two halves must contain a fixed point or virtual
fixed point. If the upper half contains a fixed point of rotation number p/q
and the lower half a fixed point of rotation number p'/q’, then the symbol
’P(;’ljf’—,) might be used. If either the top or bottom fixed point is rationally
invisi%le or is only a virtual fixed point, then the corresponding rotation
number should be replaced by a heavy dot. For example, with this notation,
the right hand portrait of Figure 4 would be written as ’P(y.—2); while the
portrait for the map z — 2% + z with two virtual fixed points, or the map
z — 28422 with two superattracting fixed points would be written as P(2).
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§4. Critical Portraits: Fisher’s Thesis.

This section will develop a complementary concept of “critical portrait”
for certain polynomial maps. The exposition is based on the work of Yuval
Fisher, and will omit proofs which are contained in Fisher’s thesis. (See [Fi],
as well as [BFH].)

~ In 85 we will show that the fixed point portrait of a polynomial is uniquely

determined by its critical portrait, whenever the latter is defined. In fact, we
describe an algorithm that effectively computes the fixed point portrait of a
polynomial whose critical portrait is given. These results will be used in §6
to construct polynomials with specified fixed point portrait.

Hypothesis. We will assume that f is a monic polynomial of degree
d > 2 with the property that each critical point is the landing point for at
least one external ray Rp. Choose some fixed numbering for the distinct
critical points wi,...,ws, and let p; be the multiplicity of the critical
point w;. Thus p; > 1 for each j, and the sum S p; isequal to d—1.

Definition. By a critical portrait for f we will mean a sequence
© = {6;,...,0;} where each ©; C R/Z is a finite set of angles sat-
isfying three conditions:

(1) Each ray Ry, with 0 € ©;, must land at the critical point w; .

(2) Any two angles in the same ©; must be congruent modulo 1/d, so
that ©; maps to a single point under the correspondence 6 — df (mod 1).

(3) Each ©; must have (the largest possible) cardinality #0; = p; +1.

Thus for any two angles 8,7 € ©;, the corresponding rays Ry and R,
must have the same image R4 under the map f. Since the correspondence
z — f(z) preserves external rays, and is exactly (g; + 1)-to-one in a
neighborhood of w; (with the point w; itself deleted), it follows that O;
is precisely the set of all external rays which land at the critical point wj;,
and which map to one common ray Ry landing at the critical value fwj)-
Consequently, the map f possesses a unique critical portrait if and only if
each critical value f(w;) is the landing point of one and only one external
ray. : ,
The elements of ©; U---U Oy will be called the preferred critical angles,
and the corresponding Ry the preferred critical rays. Following Fisher, the
pair (f,®) is called a marked polynomial. Evidently any critical portrait
{©1, ..., O} must satisfy the following three conditions:
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Cl. The ©; are pairwise disjoint and unlinked. (See 1.4.)
C2. Any two angles in the same ©; are congruent modulo 1/d.
C3. The cardinalities of these sets satisfy #0; > 2 and

Z(#@j—1)=d—l.

By definition, any collection of sets of angles satisfying these three conditions
will be called a formal critical portrait. Fisher’s Thesis is concerned with formal
critical portraits which satisfy the following further condition:

C4. Each critical angle § € ©; U--- U O is strictly preperiodic
under the map 6 — df (mod 1). In other words, each such 6 is
rational, and the denominator of 6 is never relatively prime to
the degree d.

His main theorem asserts that a formal critical portrait satisfying C4 is ac-
tually realized by a polynomial map f with J = J(f) connected if and
only if it satisfies one further condition C5, which will be described below.
Fisher’s method is constructive, and has been implemented on a computer
by Bielefeld, Fisher and Hubbard as the so-called “spider algorithm”. An
example of this procedure is illustrated in Figures 6 and 7: If we start with
the degree 3 critical portrait which is illustrated schematically in Figure 6,
then the spider algorithm yields the cubic polynomial of Figure 7.

Remark. Fisher’s work is based on Thurston’s theory of post-critically
finite rational maps. Hence condition C4 is essential for his proofs, although
his results may actually be true in much greater generality.

Consider a marked polynomial with critical portrait {©;, ..., ©x}. The
critical rays Ry, 6 € ©; U--- U Oy, together with their landing points w;,
cut the plane C up into d regions Q, with boundary. In particular, they
cut the Julia set J of f up into d compact connected subsets J;, ..., Ja,
where J, = JNQ,. These d sets are nearly disjoint, in the sense that each
intersection J, N J, consists of at most a single point, which is necessarily
one of the critical points w;.

Lemma 4.1. The map f carries each of these d subsets J,
homeomorphically onto the entire Julia set J .
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Figure 6. Diagram for the cubic critical portrait © = {5,241, {1,213,
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Figure 7. Julia set for the associated polynomial

2z 723 — (.309 + .3961)z — (.216 — .9951).
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This can be proved by first checking that f is univalent on the interior
of each region §,, and maps the closed region onto the entire plane ©. In
fact the boundary ), maps to a loop which simply traver<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>