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Abstract

In this paper we consider one parameter families of circle maps with non linear flat spot
singularities. Such circle maps were studied in [Circles I] where in particular we studied the
geometry of closest returns to the critical interval for irrational rotation numbers of constant
type. In this paper we apply those results to obtain exact relations between scalings in the
parameter space to dynamical scalings near parameter values where the rotation number is the
golden mean. Then results on [Circles I] can be used to compute the scalings in the parameter
space. As far as we are aware, this constitutes the first case in which parameter scalings can be

rigorously computed in the presence of highly nonlinear (and non—hyperbolic) dynamics.



0 INTRODUCTION

In this paper we consider one parameter families of circle maps with nonlinear flat spot
singularities. Such circle maps were studied in [Circles I] where in particular we investigated
the geometry of closest returns to the critical interval for irrational rotation numbers of
constant type. In this paper we apply those results to relate scalings in the parameter space to
dynamical scalings near parameter values where the rotation number has constant type. That
one should be able to establish such a relation is part of the renormalization philosophy for
one—dimensional dynamical systems. The case we study here constitutes the first example in
the presence of nonlinear singularities where such relations can be rigourously established.

We restrict ourselves to the case where the rotation number is the golden mean.

Let f0 be a circle map with a flat spot singularity which has bounded nonlinearity on the

left side of the singular interval and has a power—law (x + xyr) singularity on the right side.
Assume that fO has golden mean rotation number Let ft be a one parameter family of such
maps such that %t{ t=0ft(x) is nonvanishing. Such families occur naturally as truncations of
families of smooth bimodal maps.

Denote by In the set of parameter values where ft has rotation number p n/ Qs the n—th
continued fraction approximant to the golden mean. The length |I | of the interval I tends to
zero as n tends to infinity. Define the parameter scaling §(n) as
2

o) = o

Define the collection of dynamical scalings {o(n)} for the map f; as:

o(n) := d(qy, qn+2)
d{ap 5, ap)

Here d(q 29y +2) denotes the distance between the q —th and the q +2—nd iterate of the flat

spot. These scalings were studied in [Circles I]. To state the main theorem of this paper we

introduce some notation:



Let {a(n)} and {b(n)} be sequences. We write
a(n) & b(n) iff im a :11 =1 and
a(n) 2< b(n) iff {|In £=41} is bounded.

Main Theorem: If fo has golden mean rotation number then:
6(n) ¢ [o(n-1))" ,
where v = 1 if o(n—1) is a scaling on the bounded nonlinearity (left) side of the singularity and

v = v, when o(n—1) is a scaling on the powerlaw (right) side of the singularity.
Comparing this with theorem 6.2 of [Circles I] we see that

Corollary: §(2n) & o(2n-1) >< exp{— C A"}

6(2n+1) & [cr(2n)]uI 2< exp{—y, C (A-1) Ahy

1 2 4 1/2
where A=§(1+V—+(1+—2)/)
r v
T
and C is a constant depending on the first iterates of the critical orbit.

In more pictorial terms, the meaning of §(n) can be explained as follows. In ﬁgure 0.1 we
have drawn, the parameter plane for a 'typical' two parameter family of circle maps, for
example: ft,k txax+t+ 12(—7r si‘n27rx (mo.d 1) .

If t in [0,1] and k fixed and greater than one, then the monotone maps F;,k and F-:,k , which
are obtained from from ft,k by "truncating" it at the level of the local minimum respectively
the local maximum, satisfy all hypotheses of section 1 (interchange £ and r for F+). Denote by
T p(f) the regions where ft,k has a well-ordered orbit of rotation number p . It is easy to see
that the left boundaries of T p(f) and Tp(Fj are the identical and the same holds for the right
boundaries of Tp(f) and T p(F+) - Now let p_/q_ be the continued fraction approximants of the

golden mean. In effect, the §(n) are the rates at which the boundaries of the left boundaries of



onverge to the left boundary of T (the region where f, | hasa

Tpn/ a4, ¢ golden mean
well—ordered orbit with rotation number golden mean). When one changes k, the new
convergence rates will be determined by the corollary but with different C (increasing k

corresponds to increasing C).
In-2

T /’ T/ /
Fa-2’ ooz Po/ 9, TP n+2 79 ., t——
Figure 0.1

Remarks: If the rotation number of fO is irrational and of constant type, one can, using
the same method, also obtain asymptotic relations between é(n) and various dynamical
scalings. These relations depend on the combinatorics and are algebraically very awkward (see
[Circles I]). Work in progress is to find the right scalings so that such relations become more

transparent. In particular we expect to find simple relations in the case where the continued

fraction expansion is periodic.



I ASSUMPTIONS AND NOTATIONS

We consider one parameter families {ft} 1 Of circle maps with flat spot singularities,
where J is a closed interval in R . We make the following assumptions.
1. For each t the map ft:SI-v s! has degree one.
2. There exists an interval U = (L, 1] such that {,(U) is a point and {, is strictly monotone in
the complement of U. (Note that U is independent of t. This involves no loss of generality.)
3. In the complement of the flat spot U, {, is C3 and has negative Schwarzian derivative.

4. In a small left neighborhood of £, f, has bounded nonlinearity; in a small right neighborhood

v
of r we have ft = At ox T ,where At has bounded nonlinearity and the power vz 1

5. The map t + f,(x) is c! and Af,(x) := %tft(x) is Clin x and positive.

Remark: The conditions that ft be C3 and Sft < 0 can be relaxed to the requirement that ft be

Cz, at the cost of extra technicalities.

For most of the notation weé refer to [Circles I].
1. Itinerg,ries: denote frtl(U) by n(t) forn > Oi(thus 0(t) = U and 1(t) is the critical value);
denote the interval f,;n(U) by U,(n).

2. d(a,b) denotes the distance from a to b. If b is a set then d(a,b) denotes inf

x€b
3. Scalings: o(n,t) := d(qq(t), qn+2(t)).
d(q, o(t), q(t)

4. We denote spatial derivatives of maps by D: Dfltl(x)(t) = gi frtl(x) .

d(a,x).

5. We denote spatial derivatives evaluated at the critical value by: D(n)(t) = Dfxt’(l(t)) .
6. We denote derivatives with respect to the parameter by A: Afi’(x):: ‘alf ff:(x).
7. We denote derivatives with respect to the parameter at the critical interval U as:
d
A(n)(t):=Af(U)= F nt)-
8. If it is clear that t=0, we will often write D(n) or A(n) instead of D(n)(t) or A(n)(t) .



In the rest of this article we will make use of a result which has been proved in the
course of proving theorem 7.1 in [Circles I]. Let f0 satisfy the above hypotheses and suppose

further that it has irrational rotation number of bounded type. The set sl-u, U, (i)
ie{0,...q } 70

consists of q_+1 closed intervals denoted by AIil ,i€{0,...,q n} . The one interval whose

boundary contains the critical point (r) is called Ag , all the others will be denoted by _A_li1 .

AT

Lemma 1.1: For all j such that A? C Alil_2 , we have lim_ :—1-11—127 = 0 (uniform in i).
A
14 1



oI CALCULATION OF DERIVATIVES

Consider a one parameter family ft as defined in éection I. We define natural scalings in
the parameter space and show how they are related to scalings in the 'configuration—space’. The
crucial part is the relation between configuration scalings and the long term derivative of the
critical value.

Suppose that at parameter value t = 0 the rotation number of ft is the golden mean.
Denote by the sequence {q, } the succesive denominators of the continued fraction convergents
to the golden mean. Recall that . =a _,q _; +q, o, wherea, =1foralli. Thea, are
called the continued fraction coefficients. Consider the following interval in parameter space:

I = {t | {, has rotation number p _/q }
One observes that this interval has a subinterval I
I ={t1q,() € U} ={t1q,_y(t) € Uyay ;)
where a periodic point is contained in the critical interval. Finally we consider an interval 1;1
which contains I |
D= [tn,O] ,

where fO has rotation number golden mean and ft has rotation number whose continued
'n

fraction coefficients are given by
a, =1 foralli # n—2 ,
a, _9=2 .
(Note that we have assumed that n is even so that t, < 0.) Figure 2.1 shows a sketch of the
location of various points and intervals at time t=0. The fat arrows indicate the direction of
movement as the parameter increases.
Because %t f, > 0, upon decreasing (increasing) the parameter, inverse images of U move

to the right (left), forward images move to the left (right). In particular for t in I , any point in

the forward orbit of the critical interval and any interval in the backward orbit of the critical



interval such that the sum of indices is smaller than q, ,do not intersect, because otherwise one
would have periodic points of period lower than q- Therefore for k < n—2, the points qk(t) are _
sandwiched between the intervals U,(q +1) and Ut(qk—l) . In [Circles I] we proved that there
is very little space between these intervals. As the point qk(t) also moves in the opposite

direction to that of these adjacent intervals without intersecting them, the actual length of the

trajectory of qk(t) is somewhat smaller than the length of the gap at time t=0.

u Uo(qn_1) _

e

=gq_, (0 =4 _(0) = q9,,(0

figure 2.1
The concern of this section is to prove that for t € I; the velocity at which qn_z(t)
travels is essentially constant and equals, up to a constant, a spatial derivative. These results
are stated in theorem 2.4 and proposition 2.5.
The spatial derivative D(n)(t) has been considered extensively in [Circles I). We recall
the main relations (established in sections IV,V and VI). Recall that for n even q, is to the

right of U, for n odd q q is to the left of U. These relations are evaluated at t=0:

elation 1: o(n) v g 0)
‘ Ap-2°
: e SIS T
Relation 2: D(q,) ¥ — T = 7(a) (since v, = 1).

n
v a(2n+lg o(2n)
Relation 3: [o(2n+2)] T o

o(2n) o(2n-1)

I

v , o(2n+1)n
One observes that Relation 3 implies that the scalings {o(n)} tend to zero at least

exponentially fast [see also Circles I, section VIJ.



Fortel) and k < n—2, we can define a t—dependent scaling:

_ d(qk(t),qk+2(t))
7kt = Ty o), a8 °

Lemma 2.1: Fori€ {1, ...,q,_o—1} we have

DEEZ (g +)(0) 2 DEEE (0]
uniformly in i.

Yo

Figure 2.2

In figure 2.2 we have drawn the case in which k is even. (But the proof is independent of the

qQy_o—i
parity of k.) The inverse of k=2 " pas positive Schwarzian derivative on the interval
(qk_:,‘,qk _4)- Theorem 5.3 of [Circles I] states that scalings decrease to zero, and theorem 6.2
states that they do so very fast. Applying the "one—sided Koebe principle" (3.7) of [Circles I

then gives us that

. DL K2 (g +i)(0)

qk—2—i ) !
D2 ((1)(0))

is uniformly small in i . o



Lemma 2.2: There is a C > 0 such that
:I;“ <C d(qn_2(0),U) .

Proof: By definition of I; , we have
. -1
i < [mlnlg Agy_o)(t)] " -d(q,_5(0),U) .
By using the chainrule, one obtains

qun—z(o(t)) = zqnf Df, 027 ( (£)) AL(-1(8)) .

Recall that all derivatives are strictly positive, so that Af, Il_2(0(t)) is bounded from below. o

: "o -
Lemma 2.3: Fort eIt i€ {l,...,q, o1}

D7 (i) 2 D230

uniformly in i and t.

Proof:

Dfiln—ff(i(t)) _ fnz DA, ((i+K)(0) (dn gl DA, ((i-+k)(t)) |
ngn_2—l(i(0)) SLDR(e+©) ST DE(E+k)(0)

To evaluate the first of these two terms (denoted by I) we use the mean value theorem together

with assumption 5.
ADf,((0))
9p- 2 t
j=1 (1 +t maxyern DIOMOH )
ADf, (x)

By assumption 4, the quotient m-—z;)— is bounded. Since t € I;'l , lemma 2.2 together with the
0

estimates for d(q,_,(0),U) of [Circles I] and corollary A.2 (see appendix) imply that this is

I < 1.

(uniformly) close to one.
The second term (denoted by II) requires a bit more work. Recall that by the

monotonicity of f, fork < q _,—iandt € I, we have (see section 1 for definitions of Ali1 , Alil,

10



and Ag): |
(i+k)(t) € [r(—q,_o+i+k)(0),(i+k)(0)] ¢ A’jl—z ,
for some j . So
—i-1
I} < lexp{ 2:3_{2 [In Df,((i+k)(t)) —1n D, ((i+k)(0))] };

D2f,(x)

x
t
<exp{! | | dx .
UAT 2T DL
Denote the distance (measured in the positive direction from the critical point) by z. Then by
using assumption 4 and bounded non-linearity away from the critical point, we obtain that

there is a constant C such that:

~ Thus I! < exp{ C | ldz/z) } .
U

AD2
1—1
The integral in this expression has two contributions. One comes from the integral over a small
subset of é_li‘—‘l (namely, (V; _A;il_z) n (Y Aril"l) ). Lemma 1.1 implies that this part decreases
rapidly to zero. The other contribution comes from the integral over

(u A‘i“2) n A3‘4 :
This set consists of finitely many intervals aésociated with closest returns studied in [Circles IJ.
The fact that all the relevant scalings tend to zero implies that this contribution tends to zero
as well.

Thus the second term (II) tends to one. u!

Theorem 2.4: There exists a K > 0 such that for all t € I; and k < n—2 but large

Proof: In this proof t = 0 and we omit any reference to it. From the definition of A we obtain

(chainrule):

11



kK ke
Af¥(x) = B¥_, DI7x)- Af(x_)

and 50 A(k+2) = Aft(K) + Dit(k)- A(K) .
We then obtain a recursion relation similar to the one defining the Fibonacci sequence (qk =
Yo+ Q)
Aa)  Dlay D) A1 g ) DI ) Alg)
D(q-1) ~ D(q-1) ° D(qy_5-1) quk—z(qk—l) D(q_;-1)

gy _
_ D(g yl) Af gy Algy) “
= Do) " Dlg -1 ' Dlg_,0

A(q)
Now observe that all terms on the right are positive. In particular the sequence {F(Ek%l_)-} is

positive and increasing with k. Use the chainrule as before to write

9k . .
() =TI q_;H)-Af(qy_;+i-1) .

Note that max, d(q; _,+i—1,i—1) converges to zero (uniformly in i) as k goes to infinity

Q. _ Q) _o-i
Af k=2 fk2(

-2
1D

according to lemma 1.1. Therefore, by proposition A.3 and A.4 (appendix) we obtain

Q. _ Ay o Qo , qp_
AT E2(q ) e s X2 DR (h). Afli-1) = AF K2(0) = A(gy_y) -

Thus we obtain from (*) that
A(qk) N D(qk_g_l) A(qk_g) + A(qk_]_)
D(q-1)= D(q-1) "D(q_o-1) = D(q,_4-1) -
We now study the coefficient in this recursion relation. Using Relation 2 we obtain that for all
k | D(q,-1) = oo v
| k™7~ Di{aqy) = o(k).Di{qy)
D(qy 9-1)  o(k) Df(qy)
2 £ 5 C.ofk-1)
D(qy-1) = o(k-2) Di(q, o)

Therefore,

(using Relation 3) tends to zero very fast. Now apply Corollary A.2 (see Appendix) and we

A(q
obtain that {m——j} is also bounded from above. Since the sequence is increasing we obtain
" (q)
A(q
that K:= limk_’oo ]T(q_fl)' is finite. o
k

12



“

Proposition 2.5: Fort € I,
A(qn_z)(t) ¥ A(qn_z)(O) .

Proof: We have

Af(tlk"z(o(t)) = 2?2‘1'2 fok—z_i(i(t)).Aft((i-l)(t)) .

Recall that Af is uniformly continuous. In view of lemma 2.3, we can now apply propositions

A.3 and A 4 (appendix) to obtain the result. o

13



111 PARAMETER SCALINGS

From proposition 2.5 we conclude that qn_2(t), tel = [tn,O] , travels at roughly
constant velocity to the left as the parameter decreases. From the topological considerations at
the beginning of section 2, we know that the endpoint of the journey, q n_2(t n) , is situated to
the right of r(0) (see figure 3.1). On its journey q__,(t) traverses the entire interval U.(a,_;)
which itself moves to the right. Notice that at t = o the number Q1 =9y o+, 318 not
a continued fraction denominator of the rotation number of the map ft anymore. By definition
of the interval I; , the continued fraction denominator now is equal to

Q1=29 5+ 3 -
(In figure 3.1, only "new" continued fraction denominators are used.)

From this information we will now deduce that the distance travelled by qn_z(t) fort €
I7 is roughly equal to d(r(0),q,_5(0)) . In other words: U,(q,,_;) does not move appreciably.
That result together with proposition 2.5 is sufficient to prove our main result about parameter
scalings (theorem 3.4).

To have a convenient notation we define:

x(t) = L(—qy_4(t)) ifniseven
x(t) = r(—qn_3(t)) if n is odd.

We will assume that n is even, the analysis for n odd is analogous.

a7. lim Ax(t _
Lemma.3.l.»FortEI;'1, n N—q—(—hfy—o .
n-2

a,_.
Proof: Since ftn 3(x(t)) = L(0) (is constant), we obtain by differentiation with respect to t:

Af(tln_3(x(t)) + Df(:n-3(x(t))-Ax(t) =0 .

-3
—Af " 3(x(t))
S x(t) = 1 . .
i AR €0) RS rrrsy

14



«Q

<

We now claim that for t € Ia ,
q. o—i . q _3-i .
DE (E(x(1) 2 DE" (1))

4371
D" (i(0))
uniformly in i and t. To prove the claim, observe first that

£7737 (R x(1))) = L(0)

t

£78(1(6) = a_g(t)

q i
and that ftn 3 ,1 2 1, is invertible on (q,_,(t),q,_x(t)) . The reasoning of lemma 2.1 can
now be applied to yield the first equality of the claim. The second equality is directly implied
by lemma 2.3.

Using the claim and theorem 2.4, one easily derives that

| I'n K K
18x()} & prrx)y < Df(q, 5(0)) °

where for the inequality we have used assumption 4. Thus using proposition 2.5 and theorem

2.4, one finds:

AX(t) 1 _ 1 N .
& a0 S Dla._,~ IO DIyl 5(0)) ~ Dla, gy 2 7220 - e

d(qn_2(0),qn_2(t1))

Lemma 3.2: d(q, _o(0),r(0))

1.

ne

Proof: Since the rotation number of ft is an irrational number of bounded type, theorem 5.3
n

and lemma's 4.3, 4.4, and 5.2 of [Circles I] apply (these results say that scalings converge to
zero). Thus the interval U (q,_o+q,_g) occupies almost all of the interval (q_o(t,).x(t,)) -
We have (see figure 3.1)

dlay_(t)x(t,)) ¥ d(x(0)x(ty))
which implies:

d(a,_o(t;),ap_o(0)) + d(q,_5(0),x(0)) + d(x(0)x(tp))

15



v d(x(0),q,_o(0)) + d(a,_5(0),x(0)) + d(x(0),x(t )) .
We divide both sides of the equation by d(r(0),q Il_2(0)) . The lemma is now obtained by noting

that lemma 3.1 implies that
Ax(O)ly))
d(qn_g(o)»qn_z(tn)) =7
and that lemma 4.4 in [Circles I] gives:
d(q,_5(0),x(0))
d(q,_5(0),x(0)

0. o

ne

d(q,_,(0), U)

| |
2l K D(q_,1)

'
!

Proposition 3.3: T ERIuy

ne

n

Proof: From proposition 2.5, we deduce that qn—2(t) moves at roughly constant velocity

through almost all of the interval [6U, q_,(0)] Therefore the previous lemma implies
d(a,_5(0), U) d(a, 5(0),0)
A(q, 00 S KD(q, 1)

While q__(t) moves from q,_,(0) towards dU, almost all of its time is spent in the interval

i

U,(q,_4)- This then shows that [I '} & |I}]. Since << I1}, the claim then follows. o

Define the scalings {é(n)} in the parameter space as
1T |
| |
b(n) = HLr

n-2!

Theorem 3.4: Let v = v, if nis odd; » =1 if nis even. Then

§(n) 2 {o(n-1)}" ,

Proof: These scalings can be expressed in terms of dynamical scalings for the map { = fO' We
will express the value of the scaling in derivatives and scalings taken at t = 0, and omit

reference to t. Using the previous lemmas and the relations between the scalings and

16



derivatives mentioned in the beginning of section 2, we obtain.:

—IIK | propos1t10n33 D(q 1) d(q

d(q,,U) D(ay o) Df(qn)
d(a,_,U) D(q;) Di(ayy)
V'
N d(q,,0) a(n) , a(n)y' o(n
= y o(n=2) = o(n-2
d(qn_2 ,U)
Finally, applying Relation 3 twice:

fa+2) 2 o)’ figyx Akt (o(asn))

n2’)

ne

where o' denotes 1 if n is odd (the linear side of the singularity), v_ if n is even (the powerlaw

side); v denotes 1 if n+1 is odd, v_if n+1 is even. Therefore §(n+2) & {o(n+1)}". @

10) r(0) ()
n2 l 7 : l Qo -9 5 +903) l

11

a9 - M 9., (0)

Figure 3.1

17



APPENDIX

The first part of this appendix is concerned with the solutions {xk} to the recursion
relation:

X = Xg9 + Xy
Here the sequence of coefficients {a, } is fixed and positive.

Proposition A.1: If x; and x,, are positive then the sequence {x, } is positive and increasing.
Moreover there exists a constant C so that for all k:

k
x <C. I (1+4a)

Proof: The first statements follow from the positivity of the sequence {ak}. We prove the
inequality by induction. Choose C such that the inequality holds for k = 1 and k = 2. Assume
that the inequality holds up to k—1. Then we obtain for Xy :
k—2
x, <(a +1+2 ;) CI (1+3)<
(1+a_)A+a)Cl 21 +a)=Ccli(1+a) = o

Under the assumptions to the previous proposition we obtain the following corollary.
Corollary A.2: If the sequence {a, } is summable then the sequence {x} converges.

Proof: Since the sequence {ak} is summable, the sequence {xk} is bounded. Since the sequence

{xk} is also increasing, the limit then exists and is finite. ©

Let a, (i € N) and b be strictly positive continuous functions from a compact metric
space X to R . Let x_ = {x(i)};¢y and y, = {y(i)};¢y be infinite sequences of points in X . Let

x, and Yk be sequences of sequences converging uniformly to X0 and y U respectively. Define

18



«

e (xy) = Bl (x(1)-b(y(3)) -

Proposition A.3: ¢y (X7 ) & o (xpy ob) .
lim %Y &)
Proof: -1=
| ko (XY o)

lim g 3y (x(1))b(y (1)) blyy(i)) — by, ()
k i . Ty 1
Pm e (% (1) b (74,(0) Pl oo())
Since X is compact and b is uniformly continuous and bounded from below, we have that
b(yy (1)) — by, (1))

converges to zero uniformly in i. The above summation is a weighted

B (1))

average over terms that converge uniformly to zero. Thus
lim %) ]
k ck(xk’yoo)

ak—i(yk( 1)) - ak—i(yoo(i))
3 (1))

Proposition A.4: If »0 uniformly ini as k + co , then

¢ (XY 1)
. e . k\kY k .
: Usi .3, b that —1lisa
Proof: Using the same method as in proposition A.3, we obtain tha CNENN i
ak_i(yk(l)) = ak—i(yoo(l))

: hich converge to zero uniformly.
ak-i(yoo(l)) which converg zZer y

weighted average of terms

19
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