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STRUCTURE OF PARTIALLY HYPERBOLIC HÉNON MAPS

MISHA LYUBICH AND HAN PETERS

Abstract. We consider the structure of substantially dissipative complex
Hénon maps admitting a dominated splitting on the Julia set. The dom-

inated splitting assumption corresponds to the one-dimensional assumption

that there are no critical points on the Julia set. Indeed, we prove the corre-
sponding description of the Fatou set, namely that it consists of only finitely

many components, each either attracting or parabolic periodic. In particular

there are no rotation domains, and no wandering components. Moreover, we
show that J = J? and the dynamics on J is hyperbolic away from parabolic

cycles.

1. Introduction

Complex Hénon maps are polynomial automorphisms of C2 with non-trivial dy-
namical behavior,

f : (x, y) 7→ (p(x)− by, x), where deg p ≥ 2, b = Jac f 6= 0.

For a small Jacobian b, it can be viewed as a perturbation of the one-dimensional
polynomial p : C → C. Though some initial aspects of the 2D theory resembles
the 1D theory, quite quickly it becomes much more difficult, exhibiting various new
phenomena.

Dynamics of 1D polynomials on the Fatou set is fully understood, due to the
classical work of Fatou, Julia and Siegel, supplemented with Sullivan’s No Wander-
ing Domains Theorem from the early ’80s [Su85] . This direction of research for
Hénon maps was initiated by Bedford and Smillie in the early ’90’s. In particular,
they gave a description of the dynamics on “recurrent” periodic Fatou components
[BS91b]. The “non-recurrent” case was recently treated by the authors [LP14],
under an assumption that the Hénon map is “substantially dissipative”, i.e.

|Jacf | < 1

(deg p)2
.

It completed the classification of periodic Fatou components in this setting: Any
such component is either an attracting or parabolic basin, or a rotation domain,
which is analogous to the one-dimensional classification. ∗

The situation with the problem of wandering components is more complicated.
In fact, wandering Fatou components can exist for polynomial endomorphisms
g : C2 → C2, as was recently demonstrated in [ABDPR16]. It is probable that
wandering components can exist for Hénon maps as well, but one can hope that
“generically” they do not.

It is quite clear that Sullivan’s proof of the Non-Wandering Domains Theorem,
based upon quasiconformal deformations machinery, is not generalizable to higher
dimensions. At the same time, for various special classes of 1D polynomial maps, one
can give a direct geometric argument that has a chance to be generalized to the 2D

∗One fine pending issue still unresolved for Hénon maps is whether Herman rings can exist.
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setting. The simplest class of this kind comprises hyperbolic polynomials, for which
absence of wandering component was known classically. The Hénon counterpart of
this result was established by Bedford and Smillie in the ’90s, resulting in a complete
description of the dynamics on the Fatou set for this class [BS91a]: a hyperbolic
Hénon map has only finitely many Fatou components, each of which is an attracting
basin. Moreover, in this case, the Julia set J is the closure of saddles: J = J∗.

Until now, hyperbolic maps remained the only class of Hénon maps for which
these problems were settled down. In this paper, we are making one step further,
resolving these problems for substantially dissipative Hénon maps that admit a
“dominated splitting” over the Julia set:

Theorem 1.1. Let f : C2 → C2 be a substantially dissipative Hénon map that
admits a dominated splitting over the Julia set J . Then:

• f does not have wandering Fatou components;

• f has only finitely many periodic Fatou components, each being either an attracting
or a parabolic basin;

• J = J∗, i.e., the Julia set is the closure of saddles.

Hénon maps with dominated splitting are 2D counterparts of 1D polynomial
maps without critical points on the Julia set. Our initial observation was that for
such a polynomial, the No Wandering Domains Theorem can be proven by means
of Mañé’s techniques (refined in [CYJ94] and [STL00]) treating maps with non-
recurrent critical points. However, an adaptation of these techniques to the Hénon
setting is not straightforward: in particular, it required to impose an assumption of
substantial dissipativity, to develop an appropriate version of the λ-lemma, and to
bound the iterated degrees of wandering components.

The main work in this paper is to show that, away from the parabolic cycles, f
is expanding in the horizontal direction. (In particular, if there are no parabolic
cycles then f is hyperbolic.) The non-existence of wandering Fatou components and
periodic rotation domains follows easily, and it also follows that J = J∗. Moreover,
we show that if there are parabolic cycles, then f lies on the boundary of the
hyperbolicity locus, at least when viewed in the parameter space of Hénon-like
maps.

Non-hyperbolic complex Hénon maps admitting a dominated splitting have been
constructed by Radu and Tanase [RT14]. These examples are perturbations of 1D
parabolic polynomials.

The structure of the paper is as follows. In section (2) we will review Mañé’s
Theorem analysing the dynamics of 1D polynomials without recurrent critical points
(except possible superattracting cycles). We give a detailed proof that follows ideas
from a paper of Shishikura and Tan Lei [STL00]. However, we have chosen to
present an argument that will be a closest possible model to the two-dimensional
proof we give later. This means that the one-dimensional argument is not the most
efficient. For instance, naturally we do not assume the non-existence of wandering
components.

In section (3) we recall Hénon maps and the substantial dissipativity condition,
and in section (4) we define the dominated splitting and make some elementary
observations. The dominated splitting on J induces a lamination on J+ ∩ ∆2

R by
vertical disks. In section (5) this lamination is extended to a neighborhood of J+,
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introducing the artificial vertical lamination. While this lamination is not invariant,
it plays an important role in our proofs.

In wandering Fatou components we can consider both the artificial and the dy-
namical lamination given by strong stable manifolds. These two laminations may
not agree on orbits of wandering domains that leave the region of dominated split-
ting, leading to interpretations of degree, discussed in sections (6) and (7).

In section (8) we make the final preparations and in section (9) we prove the
main technical result, Proposition 9.3. In section (10) we prove the consequences
of this proposition, including Theorem 1.1 above.

In conclusion, let us note that dominated splitting is an important classical notion
going back to the works of Pliss and Mañé from the ’70s. Dynamics of real surface
diffeomorphisms with dominated splitting was described by Pujals and Samborino
[PS09]. This result inspired our work.

Acknowledgment. It is our pleasure to thank Enrique Pujals, Vladlen Timorin,
Remus Radu and Raluca Tanase for very interesting discussions of the dominated
splitting theme. This work has been partially supported by the NSF, NSERC, and
the Simons Foundation.

2. The one-dimensional argument

Let f : C → C be a polynomial, and assume that there are no critical points
on J , the Julia set of f . We let Ω be a backward invariant open neighborhood
of J \ {parabolics}, constructed by removing closed forward invariant sets from
a finite number of (pre-) periodic Fatou components. We will assume that Ω is
arbitrarily thin, i.e. contained in an arbitrarily small neighborhood of the union of
J \ {parabolics} with the wandering Fatou components.

The wandering Fatou components can contain only a finite number of critical
points x1, . . . , xν , having respective local degrees d1, . . . , dν . We denote

degcrit =

ν∏
s=1

ds.

The constant degcrit functions as a maximal local degree on the wandering compo-
nents for all iterates, i.e. if V 0, V 1, . . . , V n is a orbit of open connected sets, each V n

is contained in a wandering domain and has sufficiently small Euclidean diameter,
then fn : V 0 → V n has degree at most degcrit.

We will use the following shorthand notation. For a connected set V , we denote
by V −j a connected component of f−j(V ). If V ⊂ W then we will always assume
that V −j ⊂W−j . When working with both V −i and V −j , for j > i, we will assume
that f j−i(V −j) = V −i, i.e. that V −i and V −j are contained in the same backward
orbit.

We will show that there exist an integer M ∈ N such that the following holds
whenever Ω is sufficiently thin.

Proposition 2.1. Let z ∈ Ω and let r > 0 be such that DM ·r(z) ⊂ Ω. Then for
every j ∈ N we have that

deg(j) : deg
(
f j : D−jr (z)→ Dr(z)

)
≤ degcrit,

diam(j) : diamΩD
−j
r (z) ≤ N0(2K) · C(

1

2
,degcrit).
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The constants C(·, ·) and N0(·) will be introduced in Lemmas 2.2 and 2.4 below.

Our proof will closely resemble the proof of a theorem of Mañé, presented in
[STL00]. In fact, readers familiar with this reference will likely find our proof
needlessly complicated. The reason for these complications is that the proof given
here will model the forthcoming 2-dimensional proof. In particular, we will not
use that there are no wandering domains. In fact, the non-existence of wandering
domains follows, in our setting, from the above Proposition. The a priori possibility
of wandering domains makes the proof significantly more involved.

The fact that Fatou components of one-dimensional polynomials are simply con-
nected is quite useful when dealing with degrees. It follows that if a Fatou compo-
nent U does not contain critical points, then f : U → f(U) is univalent. This is
another fact that we will not be able to use in higher dimensions, so we will not use it
here either. In this respect the setting is more analogous to the iteration of rational
functions, where Fatou components may not be simply connected. An elementary
proof however shows that for every wandering component U there exists an N ∈ N
such that fn(U) is simply connected for n ≥ N , a result known as Baker’s Lemma,
see for example [Za]. Thus, if such fn(U) does not contain critical points, then
f : fn(U)→ fn+1(U) is univalent. We can use the fact that f : fn(U)→ fn+1(U)
is univalent for n large enough, as we will prove the corresponding statement for
Hénon maps. Note that nowhere else in the one-dimensional argument will we use
simple connectivity to conclude univalence.

A third difference with the argument in [STL00] concerns the induction proce-
dure. Instead of applying the induction hypothesis to fn : D−nr (z) → Dr(z), and
then mapping backward one more step with f : D−n−1

r (z)→ D−nr (z), we will first
apply one iterate f : D−1

r (z) → Dr(z), cover D−1
r (z) with smaller disks Drk(zk),

and applying the induction hypothesis to each fn : D−nrk (zk)→ Drk(zk). The reason
for this will become apparent when the proof is discussed in the Hénon setting.

2.1. Preliminaries. The following basic lemma (see e.g., [LM99, STL00]) will be
used repeatedly:

Lemma 2.2. Let d ∈ N and r > 0. Then there exists a constant C(r, d) > 0 such
that for every proper holomorphic map f : D → D of degree at most d, every con-
nected component of f−1Dr(0) has hyperbolic diameter at most C(r, d). Moreover,
C(r, d)→ 0 as r → 0.

The first step in the proof is the construction of the backwards domain Ω where
the argument of 2.1 will take place.

Lemma 2.3. Given any ε > 0, there exists a backward invariant domain Ω con-
tained in the ε-neighborhood of

(J \ {parabolic cycles}) ∪
(⋃

wandering domains
)
,

which further has the property that for every z ∈ J there exist points w /∈ Ω with
|z − w| < ε.

Proof. We are done if we can remove sufficiently large forward invariant subsets
from a finite number of (pre-) periodic Fatou components. By the classification of
periodic Fatou components those periodic components are either attracting basins,
parabolic basins or Siegel domains. In an immediate basin of an attracting periodic
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cycle we can construct an arbitrarily large forward invariant compact subset. In a
cycle of Siegel domains we can find an arbitrarily large completely invariant compact
subset. Finally, in a cycle of parabolic domains we can find an arbitrarily large
forward invariant compact subset that intersects J only in parabolic fixed points.
By taking the union of sufficiently large preimages of these subsets we obtain a
forward invariant compact subset K disjoint from J \ {parabolic cycles}, for which
Ω = C \K satisfies the conditions required in the lemma. �

The domain Ω will later be fixed for a constant ε > 0 chosen sufficiently small.
In particular, we may assume that the only critical points in Ω lie in wandering
Fatou components.

Lemma 2.4. For each t > 1 there exists an integer N0 = N0(t) such that for every
disk Dr(z) ⊂ Dt·r(z) ⊂ Ω we can cover D−1

r (z) with at most N0 disks Drk(zk)
satisfying

D2t·rk(zk) ⊂ Ω.

If Dt·r(z) is contained in a wandering domain U0, then the disks Dt·rk(zk) can be
chosen so that

D2t·rk(zk) ⊂ U−1.

In all other cases the disks Dt·rk(zk) can be chosen so that

D2t·rk(zk) ⊂ D−1
t·r (z).

Proof. If Dr(z) is sufficiently small and close to a critical point, it must be contained
in a wandering Fatou component U . The statement follows immediately.

For sufficiently small disks bounded away from critical values the existence of
a uniform bound is clear, as the map f : D−1

t·r (z) → Dt·r(z) is close to linear.
Therefore it is sufficient to consider disks Dr(z) ⊂ Dt·r(z) of radius bounded away
from zero. This is a compact family of disks, hence the existence of a uniform N0

is immediate. �

We note that while N0(t) will play a similar role as the constant N0 in [STL00],
its definition differs as the disks Drk(zk) cover a preimage D−1

r (z) instead of the
original Dr(z). In particular, the constant N0 from [STL00] is a universal, while
the constants N0(t) introduced here depend on f .

Remark 2.5. Since the disks D2t·rk(z) are contained in either a wandering domain
U−1 or in the preimage D−1

t·k (z), it follows that the constant N0(t) does not depend
on Ω. To be more precise, when Ω is made smaller, the constant N0(t) does not
need to be changed.

The domain Ω is a Riemann surface whose universal cover is the unit disk, hence
Ω is equipped with a Poincaré metric dΩ. We will prove that all inverse branches
D−ir (z) of sufficiently protected disks, i.e. disks Dr(z) ⊂ D2K·r(z) ⊂ Ω for a suffi-
ciently large constant K to be determined later, have Poincaré diameter bounded
by

diammax := N0(2K) · C(
1

2
,degcrit).

By choosing Ω sufficiently thin, i.e. the constant ε in Lemma 2.3 sufficiently small,
it therefore follows that the Euclidean diameter of each D−ir (z) is arbitrarily small,
unless D−ir (z) is contained in a wandering Fatou component. In that case we cannot
control the Euclidean diameter of D−ir (z) by making Ω thinner.
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If D−ir (z) does have sufficiently small Euclidean diameter, and is bounded away
from the critical values, then it follows that the map f : D−i−1

r (z) → Di
r(z) is

univalent. Notice that simple connectivity is not used here.
By choosing Ω sufficiently thin we can guarantee that there are only finitely many

wandering domains for which the bound on the Poincaré diameter domain does not
imply the necessary bound on the Euclidean diameter.

Definition 2.6 (domain with hole). We say that a wandering domain U is a domain
with hole if there exist a domain V ⊂ U with

diamΩ(V ) ≤ N0(2) · C(
1

2
,degcrit)

for which f : V −1 → V is not univalent. Note that in particular any wandering
domain that contains a critical value is a wandering domain with hole.

Since the wandering domains are all disjoint and contained in a bounded region,
it follows from Lemma 2.3 that if Ω is chosen sufficiently thin, then there are only
finitely many wandering domains with hole.

Definition 2.7 (critical wandering domain). Given a bi-infinite orbit of wander-
ing components (U j), we say that a wandering domain U j is critical if U j+1 is a
wandering component with hole, but U i is not for i ≤ j.

Since there are only finitely many domains with hole, there are also only finitely
many critical domains. We say that a wandering domain is post-critical if it is
contained in the forward orbit of a critical domain, and regular if it is not. Thus
wandering domains in a grand orbit that does not contain critical components are
all called regular.

Definition 2.8 (degmax). Since there are only finitely many critical domains, and
Baker’s Lemma implies that for each orbit (Un)n∈Z of wandering domains we have
that f : Un → Un+1 is univalent for n sufficiently large, it follows that there exist
an upper bound on the degree of all maps fn : U0 → Un for U0 critical. We denote
this upper bound by degmax.

2.2. Disks deeply contained in wandering domains. Let us write (Un)n∈Z
for a bi-infinite orbit of wandering Fatou components, i.e. f(Un) = Un+1. We will
separate several distinct cases. The simplest case occurs when Dr(z) is contained
in what we have called a regular component.

Lemma 2.9. Let U be a regular wandering component, and consider a protected
disk Dr(z) ⊂ D2r ⊂ U . Then

deg
(
f j : D−jr (z)→ Dr(z)

)
= 1

and

diamΩ

(
D−jr (z)

)
≤ N0(2) · C(

1

2
, 1)

for all j ≥ 0.

Proof. The proof follows by induction on j. Suppose that the statement holds for
certain j, we will proceed with the proof for j + 1. We can cover D−1

r (z) with at
most N0(2) disks Drk(zk) satisfying

D4rk(zk) ⊂ D−1
2r (z) ⊂ U−1.
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Hence we can apply the induction hypothesis for each of the disks D2rk(zk) ⊂
D4rk(zk), obtaining

deg
(
f j : D−j2rk

(z)→ D2r(z)

)
= 1,

and thus

diamΩ

(
D−irk (zk)

)
≤ C(

1

2
, 1)

for i = 0, . . . , j. We claim that for each i = 0, . . . , j we obtain

diamΩ

(
D−ir (z)

)
≤ N0(2) · C(

1

2
, 1),

and

deg
(
f i : D−ir (z)→ Dr(z)

)
= 1.

The proof follows by induction on i. Both statements are immediate for i = 0.
Suppose that the statements hold for 0, . . . , i. Since U is regular, the hyperbolic
diameter bound on D−ir (z) implies that f : D−i−1

r (z)→ D−ir (z) is univalent. Thus
D−i−1
r (z) is covered by at most N0(z) sets D−irk (zk). The diameter bound for i+ 1

follows, completing the induction step. �

We now consider the case when Dr(z) is contained in a wandering domain Un

that may be post-critical. By renumbering we may assume that U0 is the criti-
cal component. The definition of degmax immediately gives diameter bounds for
preimages of protected disks Dr(z) ⊂ DK·r(z) ⊂ Un, namely

diamΩ

(
D−jr (z)

)
≤ C(

1

K
,degmax)

for j ≤ n. We obtain the following consequence.

Lemma 2.10. We can choose K ∈ N, independent of the wandering domain Un,
so that for any Dr(z) ⊂ DK·r(z) ⊂ Un one has

deg
(
f j : D−jr (z)→ Dr(z)

)
≤ degcrit

and

diamΩ

(
D−jr (z)

)
≤ N0(2) · C(

1

2
,degcrit)

for all j ∈ N.

Proof. By the previous lemma, we have obtained the required estimates for K = 2
in regular components, i.e. when n ≤ 0.

Let n > 0 and first consider j ≤ n. Since the degree of f j : Un−j → Un is
bounded by degmax and the disk DK·r(z) is assumed to lie in Un it follows that

diamΩD
−j
r (z) < C(

1

K
,degmax).

The required diameter and degree bounds follow when K is chosen sufficiently large.
When j > n we cannot assume a uniform degree bound on the maps f j : Un−j →

U−n. However, since the domain U0 is simply connected, there is a universal bound
from below on the Poincaré distance from the point w ∈ U0 to the circle centered
at w of radius 1

2d(w, ∂U0). Choosing K such that diamU0D−nr (z) is strictly smaller
than this universal bound implies that D−nr (z) is contained in a disk Dρ(w) for
which D2ρ(w) ⊂ U0. The statement of the previous lemma completes the proof.

�
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2.3. Disks that are not deeply contained. We restate and prove the main one-
dimensional result using the constant M = 2K.

Proposition 2.1 Let z ∈ Ω and let r > 0 be such that D2K·r(z) ⊂ Ω. Then for
every j ∈ N we have that

deg(j) : deg
(
f j : D−jr (z)→ Dr(z)

)
≤ degcrit,

diam(j) : diamΩD
−j
r (z) ≤ diammax.

Proof. We assume the statement holds for given j, and proceed to prove the state-
ment for j + 1.

Recall that we have already proved the proposition, with a stronger diameter
estimate, in the case where DK·r(z) is contained in a wandering Fatou component.
Thus, we are left with two possibilities: either Dr(z) is not contained in a wandering
Fatou component, or Dr(z) is contained in a wandering component Un but DK·r(z)
is not. We will first prove the induction step for the former case, where Dr(z) is
not contained in a wandering domain. The conclusion for the former case will be
used in the proof of the latter case.

Suppose z0 ∈ Dr(z) ⊂ D2Kr(z) is not contained in a wandering component.
Then, by making Ω sufficiently thin, it follows that any backward image of z0 can
be assumed to lie arbitrarily close to ∂Ω.

Cover D−1
r (z) by at most N0(2K) disks Drk(zk) for which D4Krk(zk) ⊂ D−1

2Kr(z).
The induction hypothesis gives that

deg
(
f j : D−j2rk

(zk)→ D2rk(zk)
)
≤ degcrit,

and hence

diamΩD
−j
rk

(zk) ≤ C(
1

2
,degcrit).

It follows by induction on i, for i = 0, . . . , j, that

diamΩD
−j−1
r (z) ≤ N0(2K) · C(

1

2
,degcrit),

and

deg
(
f j : D−j−1

r (z)→ Dr(z)
)

= 1.

Here we used that each D−ir (z) contains exactly one i-th preimage of z0, denoted
by z−i0 , and by making Ω sufficiently thin the hyperbolic distance between the

preimages of z−i0 can be assumed to be strictly larger than twice the proven diameter
bound. Thus, we have completed the proof in the case where Dr(z) is not contained
in a wandering domain.

In the remainder of this proof we will therefore assume that Dr(z) is contained
in a Fatou component Un, but the larger disk DKr(z) is not. Let w ∈ ∂Un be such
that |z − w| is minimal, and write [z, w] ⊂ C for the closed interval, see Figure 1.

Since DKr(w) ⊂ D2Kr(z) it follows that DKr(w) ⊂ Ω. Hence the disk D r
2
(w)

satisfies the conditions of the previously discussed case, and we obtain the estimates

diamΩD
−i
r
2

(w) ≤ N0(2K) · C(
1

2
,degcrit).

The interval [z, w] can be covered by the disk D r
2
(w) and a bounded number of

disks Ds1(w1), . . . , DsN1
(wN1

) satisfying DKsν (wν) ⊂ Un for a universal constant
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Figure 1. The interval [z, w] covered by N1 smaller disks

N1 ∈ N. Thus the disks Dsν (wν) satisfy the conditions of Lemma 2.10, and it
follows that

diamΩD
−i
sν (wν) ≤ diammax.

Thus, we obtain a bound from above on the hyperbolic distance of each D−ir (z)
to ∂Un−i. By choosing Ω sufficiently thin, the bounds on the hyperbolic distance
to the boundary gives arbitrarily small bounds on the Euclidean distance to the
boundary, which in turn means that hyperbolic diameter estimates give arbitrarily
small bounds on the Euclidean diameters of the disks D−irk (zk). We can conclude
the argument by using the same induction on i used in the previously discussed
cases. �

2.4. Consequences. The obtained degree and diameter estimates imply a number
of consequences. The first is the non-existence of wandering domains.

Lemma 2.11. There are no wandering Fatou components.

Proof. Suppose U is a wandering Fatou component. We can construct the domain Ω
as above sufficiently thin so that the Poincaré diameter of U can be made arbitrarily
large. In particular, we can find a relatively compact K ⊂ U whose Poincaré
diameter in Ω is strictly larger than diammax. Let nj such that fnj (K) converges
to a point p ∈ J . Without loss of generality we may assume that p does not lie
in a parabolic cycle. Let Dr(p) be such that D2r(p) ⊂ Ω. Then fnj (K) ⊂ Dr(p)
for sufficiently large j, which by Proposition 2.1 implies that diam(K) < diammax,
giving a contradiction. �

Lacking wandering domains the proof of Proposition 2.1 becomes considerably
simpler. An immediate consequence is the following.

Corollary 2.12. The constant degcrit can be taken equal to 1, and the constant M
equal to 2.
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Proposition 2.13. Let z ∈ J not be contained in a parabolic cycle, choose r > 0
so that Dr(z) ⊂ D2r(z) ⊂ Ω, and let V 1, V 2, . . . be such that f(V 1) = Dr and
f(V n+1) = V n. Then

diamΩV
n → 0.

Proof. By Corollary 2.12 the maps fn : V n → Dr are all univalent, hence we can
consider the inverse branches (fn)−1 : Dr → V n. These inverse branches form a
bounded, and thus normal, family of holomorphic maps. Let h be a limit map.
Since z ∈ J and J is invariant, the image h(Dr) must contain a point q in J . But
since any neighborhood of q contains points in the basin of infinity, h(Dr) cannot
contain an open neighborhood of q, and hence h is constant. �

The non-existence of rotation domains is an immediate consequence.

Corollary 2.14. The polynomial f does not have any Siegel disks.

Corollary 2.15. If f does not have any parabolic cycles then f is hyperbolic.

Proof. When f lacks parabolic cycles the set J is contained in Ω. Since J is compact
it follows from Proposition 2.13 that there exist N ∈ N and r > 0 such for any z ∈ D
and any connected component V N of (fn)−1(Dr(z)) the Euclidean diameter of V N

is less than r/2. The Schwartz Lemma therefore implies that |(fN )′| ≥ 2 on J . �

Corollary 2.16. The polynomial f lies on the boundary of the hyperbolicity locus.

Proof. By [DH85] the number of parabolic cycles is bounded by the degree of f . It
follows that we can perturb the parameters f slightly in a direction where J changes
continuously, and so that all parabolic cycles split into repelling and attracting
cycles. If the perturbation is sufficiently small then there are still no critical points
on J , while the parabolic cycles have disappeared. Hence by the previous Corollary
the perturbed function is hyperbolic. �

We note that the bound on the number of parabolic cycles in terms of the degree
is not needed if one allows perturbations into the infinite dimensional space of
polynomial like maps.

3. Hénon maps: Background and preliminaries

Recall from [FM89] that the dynamical behavior of a polynomial automorphism
of C2 is either dynamically trivial, or the automorphism is conjugate to a finite
composition of maps of the form

(x, y) 7→ (p(x) + b · y, x),

where p is a polynomial of degree at least 2 and b 6= 0. We will refer to such
compositions as Hénon maps. Given R > 0 we define the following sets.

∆2
R := {(x, y) : |x|, |y| < R},

V + := {(x, y) : |x| ≥ max(R, |y|)}, and

V − := {(x, y) : |y| ≥ max(R, |x|)}

By choosing R sufficiently large we can make sure that f(V +) ⊂ V +, f−1(V −) ⊂
V − and f(∆2

R) ⊂ ∆2
R ∪ V +. One can also guarantee that if (x0, y0) ∈ V + and

(x1, y1) = f(x0, y0) then |x1| > 2|x2|. Similarly one obtains |y−1| > 2|y0| for
(x0, y0) ∈ V −. It follows that every orbit that lands in V + must escape to infinity,
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and every orbit that does not converge to infinity must eventually land in ∆2
R in a

finite number of steps.

We write K+ for the set with bounded forward orbits, K− for the set with
bounded backward orbits, and K = K+ ∩K−. As usual we define the forward and
backward Julia sets as J± = ∂K±, and the Julia set as J = J+ ∩ J−. Let us recall
the existence of the Green’s currents T+ and T−, supported on J+ and J−, and the
equilibrium measure µ = T+∧T−, whose support J? is contained in J . Whether J∗

always equals J is one of the main open questions in the area, and was previously
only known for hyperbolic Hénon maps [BS91a].

3.1. Wiman Theorem and Substantially dissipative Hénon maps. Recall
that a subharmonic function g : C→ R is said to have order of growth at most ρ if

g(ζ) = O(|z|ρ) as ζ →∞.
Given E ∈ R, let us call the set {g < E} subpotential (of level E), and its

components subpotential components.

Theorem 3.1 (Wiman). Let g be a non-constant subharmonic function with order
of growth strictly less than 1

2 . Then subpotential components of any level E are
bounded.

Let us describe how it was used in the setting of Hénon maps in recent works
of the first author and Dujardin [DL15], and in [LP14]. Suppose that p ∈ C2 is a
hyperbolic fixed point, and let W s(p) be its stable manifold, corresponding to the
stable eigenvalue λ. Then there exists a linearization map ϕ : C→W s(p) satisfying
ϕ(λ · ζ) = f(ϕ(ζ)). As usual we let G± be the plurisubharmonic functions defined
by

G±(z) = lim
n→∞

1

(deg f)n
· log+ ‖f±n(z)‖.

We have the functional equations

G±(f(z)) = (degf)±1 ·G±(z).

Combining the functional equations for G− and φ we obtain that the non-constant
subharmonic function g = G− ◦ ϕ satisfies

g(λ · ζ) = G− ◦ f ◦ ϕ(ζ) =
1

deg f
g(ζ).

Note that |λ| < |Jacf |. Hence under the assumption that |Jacf | < 1
degf2 it fol-

lows that g is a subharmonic function of growth strictly less than 1
2 , and therefore

according to Wiman’s Theorem all its subpotential components are bounded.

Let us point out that the above discussion also holds when p is a neutral fixed
point, i.e. having one neutral and one attracting multiplier. One considers the
strong stable manifold with corresponding eigen value λ, satisfying |λ| = |Jacf |.
The subharmonic function g still has order of growth strictly less than 1

2 . The idea
can also be applied when p is not a periodic point but lies in a invariant hyperbolic
set, or under the assumption of a dominated splitting, which will be discussed in
the next section.

A particular consequence of Wiman’s Theorem is that all connected components
of intersections of (strong) stable manifolds with ∆2

R are bounded in the linearization
coordinates. By the Maximum Principle they are also simply connected, hence
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they are disks. The filtration property of Hénon maps tells us that every connected
component of the intersection of a stable manifold with ∆2

R is actually a branched
cover over the vertical disk ∆w(R). This will be used heavily in what follows.

3.2. Classification of periodic components.

3.2.1. Ordinary components. We recall the classification of periodic Fatou compo-
nents U from [LP14], building upon results of Bedford and Smillie [BS91b]. For
a dissipative Hénon map f , there exist three types of ordinary invariant† Fatou
components U :

(i) Attracting basin: All orbits in U converge to an attracting fixed point p ∈ U .
Moreover, U is a Fatou-Bieberbach domain (i.e., it is biholomorphically
equivalent to C2).

(ii) Rotation basin: All orbits in U converge to a properly embedded Riemann
surface Σ ⊂ U , which is invariant under f and biholomorphically equivalent
to either an annulus or the unit disk. The biholomorphism from Σ to an
annulus or disk can be chosen so that it conjugates the action of f |Σ to
an irrational rotation. The stable manifolds through points in Σ are all
embedded complex lines, and the domain U is biholomorphically equivalent
to Σ× C.

(iii) Parabolic basin: All orbits in U converge to a parabolic fixed point p ∈ ∂U
with the neutral eigenvalue equal to 1. Moreover, U is a Fatou-Bieberbach
domain.

In the literature a periodic point whose multipliers λ1 and λ2 satisfying |λ1| < 1
and λ2 = 1 may be called either semi-parabolic or semi-attracting, depending on
context. Since we are working with dissipative Hénon maps, where there is always
at least one attracting multiplier, we chose to refer to these points as parabolic,
and we use analogues terminology for Fatou components. Similarly, we will call a
periodic point with one neutral multiplier neutral.

In each case, we let A = AU be the attractor of the corresponding component
(i.e., the attracting or parabolic point p, or the rotational curve Σ).

Along with global Fatou components U , we will consider semi-local ones, which
are components U i of the intersection U ∩∆2

R. (Usually there are infinitely many
of them.) Each U i is mapped under f into some component U j , j = j(i), with
“vertical” boundary ∂U i ∩∆2

R being mapped into the vertical boundary of U j , but
the correspondence i 7→ j(i) is not in general injective. This dynamical tree of
semi-local components resembles closely the one-dimensional picture. In particular,
cycles of ordinary semi-local components can be viewed as the immediate basins of
the corresponding attractors AU .

3.2.2. Absorbing domains. Given a compact subset Q ⊂ U , let us say that an
invariant domain D ⊂ U is Q-absorbing if there exist a moment n ∈ N such that
fn(Q) ⊂ D. If this happens for any Q (with n depending on Q) then D is called
absorbing.

For instance, in the attracting case, any forward invariant neighborhood of the
attracting point is absorbing. In the parabolic case, there exists an arbitrary small

†A description of periodic components readily follows. Note also that since f is invertible, there

is no such thing as a “preperiodic” Fatou component.
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absorbing “attracting petal” P ⊂ U with ∂P ∩ ∂U = {p} (see [BSU17]). To con-
struct a Q-absorbing domain in the rotation case, take a sufficiently large invariant
subdomain Σ′ ⊂ Σ compactly contained in Σ and let

D =
⋃
z∈Σ′

W s
loc(z).

This implies:

Lemma 3.2. Let f be a dissipative Hénon map, and let U be an ordinary invariant
Fatou component with an attractor A. Then any compact set Q ⊂ U is contained
in a forward invariant domain W ⊂ U such that W ∩ ∂U ⊂ A. (In particular, W
is relatively compactly contained in U in the attracting or rotation cases.)

Let us say that a subset Ω ⊂ ∆2
R is relatively backward invariant if

f−1(Ω) ∩∆2
R ⊂ Ω.

Corollary 3.3. Given any compact set Q contained in the union of periodic Fatou
components, there exists an open and relatively backward invariant subset Ω of ∆2

R

containing

∆2
R ∩ (wandering components ∪ J+ \ {parabolic cycles})

and avoiding Q.

Proof. There exist only finitely many periodic Fatou components U i intersecting Q.
For each of them, let Wi be the neighborhood of (Q ∩ U i) from Lemma 3.2. Note
that J+ ∩ (

⋃
Wi) is contained in a finite number of parabolic cycles. Take now a

small ε > 0 and let

Ω = ∆2
R ∩ {G+ < ε} \ (

⋃
Wi).

�

3.2.3. Substantially dissipative maps.

Theorem 3.4 ([LP14]). For a substantially dissipative Hénon map, any periodic
Fatou component is ordinary.

Remark 3.5. In fact, for Hénon maps with dominated splitting, this classification
holds without assuming that dissipation is substantial, see Proposition 4.1 below.

4. Dominated splitting

4.0.1. Definition. We say that a Hénon map f admits a dominated splitting if there
is an invariant splitting of the tangent bundle on J = J+ ∩ J−

(1) TJ(C2) = Es ⊕ Ec

with constants 0 < ρ < 1 and C > 0 such that for every p ∈ J and any unit vectors
v ∈ Esp and w ∈ Ecp one has

‖dfnv‖
‖dfnw‖

< C · ρn.

From now on we will assume that f is dissipative, from which it immediately
follows that Es is stable. We cannot conclude that Ec is unstable, though.
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4.0.2. Cone fields. Let p ∈ J and let v ⊂ Esp have unit length. Given 0 < α < 1 we
can define the cone

Csp(α) := {w ∈ Tp(C2) : | < w, v > | ≥ α‖w‖}.

It follows from the dominated splitting that we can choose α continuously, depend-
ing on p ∈ J , so that

dfCsp(α(p)) ⊃ Csf(p)(r · α(f(p)))

for some r < 1 which can be chosen independently of p ∈ J . We refer to the
collection of these cones as the (backward) invariant vertical cone field on J .

Since both Esp and α vary continuously with p, and the set J is closed, we can

extend the vertical cone field continuously to ∆2
R. It follows automatically that

the extension of the cone field to ∆2
R is backward invariant for points lying in a

sufficiently small neighborhood N (J).
Note that all accumulation points of the forward orbit of a point in J+ must lie

in K− = J−, and therefore in J = J+ ∩ J−. Writing J+
R = J+ ∩ ∆2

R as before,

it follows from compactness that there exists an N ∈ N such that fn(J+
R ) ⊂ N (J)

for all n ≥ N . Thus we can pull back the vertical cone field to obtain a backwards
invariant cone field on a neighborhood of J+

R . We will denote this neighborhood by

N (J+
R ), and refer to it as the region of dominated splitting.

4.0.3. Strong stable manifolds. Let us consider the following completely invariant
set:

(2) V+ := {p : ∃ n0 = n0(p) fnp ∈ N (J) for n ≥ n0}.

Let U(p) be a small ball centered at p. For p ∈ V+, consider a straight complex
line through fn(p) whose tangent space at fn(p) is contained in the vertical cone,
and pull back this line by fn, keeping only the connected component through p in
the neighborhood U(p). By the standard graph transform method, this sequence of
holomorphic disks converges to a complex submanifold W s

loc(p), the so-called local
strong stable manifold through p. By pulling back the local stable manifolds through
fn(p) by f−n we obtain in the limit the global strong stable manifold through p,
denoted by W s(p). In line with our earlier introduced notation we will write W s

R(p)
for the connected component of W s(p) ∩ ∆2

R that contains p, and refer to it as a
semi-local stable manifold.

We will refer to the collection of these semi-local strong stable manifolds as the
(semi-local) dynamical vertical lamination.

For p ∈ V+, we let Esp be the tangent line to W s(p), which can be also constructed
directly as

Esp =
⋂
n≥0

df−nCsfnp(α).

The lines Esp form the stable line field over V+, extending the initial stable line (1)
field over J .

Similarly to V+ we can consider

(3) V− := {p : ∃ n0 = n0(p) f−np ∈ N (J) for n ≥ n0}.

For p ∈ V− we cannot guarantee the existence of a horizontal center manifold,
but there does exist a unique central line field, i.e. a tangent subspace whose
pullback under fn is contained in the horizontal cone field for all n ≥ n0. For
points p ∈ V+ ∩ V− we can consider both the vertical and the central line field.
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Tangencies between those two line fields play the role of critical orbits. By the
dominated splitting these can only occur for orbits that leave and come back to the
domain of dominated splitting. A major part of this paper is aimed at obtaining a
better understanding of such tangencies.

4.0.4. Linearization coordinates. The global strong stable manifoldsW s(p) of points
p in the dynamical vertical lamination can be uniformized as follows. Denote by
πp : W s(p) → Tp(W

s(p)) the projection to the tangent plane. The projection is
locally a biholomorphism, as local stable manifolds are graphs over the tangent
plane. The size of the local stable manifolds can be taken uniform over all p in the
dynamical vertical lamination. Define ϕp : W s(p)→ Tp(W

s(p)) by

ϕp = lim
n→∞

[Dfn(p)]−1 ◦ πfn(p) ◦ fn.

Identifying the tangent plane with C we can view ϕp as a biholomorphic map from
W s(p) to C. This identification is canonical up to a choice of argument. The
identifications can locally be chosen to vary continuously with p. As the tangent
planes to the dynamical vertical lamination vary continuously with p, and the above
convergence to ϕp is uniform over p in the dynamical vertical lamination, one can
locally obtain a continuous family of linearization maps ϕ : W s(p)→ C.

The composition of the Green’s function G− with the linearization map gives a
subharmonic function on the C-coordinates of W s(p), which, provided the neigh-
borhood NR(J+) is made sufficiently thin, has order of growth strictly less than
1
2 . Hence for each point p ∈ NR(J+) the local stable manifold W s

R(p) is a properly

embedded disk in ∆2
R, with the projection to the second coordinate giving branched

covers of uniformly bounded degrees.

4.0.5. Fatou components. While the substantial dissipativity assumption plays an
important role in the current paper, the bound on the Jacobian in terms of the
degree is not needed for the classification of periodic Fatou components in the
dominated splitting setting:

Proposition 4.1. For a dissipative Hénon map with dominated splitting, any pe-
riodic Fatou component is an ordinary component.

Proof. In [LP14] the assumption that the Hénon map is substantially dissipative
plays a role in only an isolated part of the proof, namely to prove the uniqueness
of limit sets on non-recurrent Fatou components. We note that in order to prove
this uniqueness, one does not need to assume substantial dissipativity for Hénon
maps admitting a dominated splitting. Recall that the only point in the proof
where substantial dissipativity is used, is to rule out a one-dimensional limit set
Σ contained in the strong stable manifold of a hyperbolic or neutral fixed point.
Suppose that there exists a dominated splitting near J , and that such a Σ does
exist. As was pointed out in [LP14], the restriction of {fn} to Σ is a normal family.
Recall also that Σ must lie in J , hence through each point q ∈ Σ there exists a
strong stable manifold W s(q). If Σ is transverse to the stable field {Es} at some
point q ∈ Σ, then the union of the stable manifolds contains an open neighborhood
of q, on which the family of iterates is necessarily a normal family. This gives a
contradiction with Σ ⊂ J . On the other hand, if Σ is everywhere tangent to the
stable field, then for any q ∈ Σ, it is a domain in the stable manifold W s(q). Being
backward invariant, Σ must coincide with W s(q). However, W s(q) is conformally
equivalent to C, while Σ cannot, giving a contradiction. �
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It is a priori not clear that there are only finitely many periodic components. In
the substantially dissipative case finiteness is a consequence of our main result.

4.0.6. Rates. We will show now that the rate of contraction on the central line
bundle is subexponential.

Lemma 4.2. Given any r1 < 1 there exists a C > 0 such that for any p ∈ J and
any unit vector w ∈ Ecp we have

‖dfnw‖ > 1

C
· r1

n.

Proof. Let us for the purpose of a contradiction suppose that for some r1 < 1 there
exist for arbitrarily large n ∈ N unit vectors wn ∈ Ec with

‖dfnwn‖ < rn1 .

Let r1 < r2 < 1. Then there exists an ε > 0 and for every n ∈ N an integer
k ∈ {0, 1, . . . n− 1} such that

‖df j(dfkwn)‖ < rj2 · ‖dfkwn‖
for j ≤ ε · n. It follows that for every m ∈ N there exists a unit vector um ∈ Ec for
which

‖df jum‖ < rj2
for j = 0, . . .m. Here um can be chosen a multiple of a vector dfkwn.

Since the set of unit vectors in Ec is compact, there exists an accumulation point
w ∈ Ec of the sequence (um). Let p ∈ J be such that w ∈ Ecp. By continuity of the
differential df it follows that

‖df jw‖ ≤ rj2
for all j ∈ N. Since Tp(C2) = Esp ⊕ Ecp, and by the definition of the dominated
splitting, there exists a C > 0 such that

‖Df j(z0)‖ < C · rj2
for all j ∈ N. Here we have used that there is a uniform bound from below on the
angle between the vertical and horizontal tangent spaces.

Let ξ > 1 be sufficiently small such that ξ · r2 < 1. By compactness of ∆2
R there

exists a ρ > 0 such that if x, y ∈ ∆2
R with ‖x− y‖ < ρ then

‖f(x)− f(y)‖ ≤ ξ · ‖Df(x)‖ · ‖x− y‖.
Let z ∈ ∆2

R be such that ‖z − p‖ < ρ
C . Then it follows by induction on n that

‖fn(z)− fn(p)‖ ≤ ρ(ξ · r2)n

for every n ∈ N. Hence there is a neighborhood U of p such that

‖fn(z)− fn(p)‖ → 0,

uniformly over all z ∈ U . But then {fn}n∈N is a normal family on U , which
contradicts the fact that p ∈ J+. �

It follows that the exponential rate of contraction on the stable subbundle is at
least δ.

Lemma 4.3. Given any r > |δ| we can find C > 0 such that for any unit vector
v ∈ Es we have

‖dfnv‖ < C · rn.
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Proof. Write v ∈ Esp, and let w ∈ Ecp be a unit vector. The inequality follows
immediately from Lemma 4.2 and the fact that

‖dfnv‖ · ‖dfnw‖ ≤ C1|δ|n,

where the constant C1 depends on minimal angle between the spaces Es and Ec. �

5. Dynamical lamination and its extensions

5.1. Dynamical lamination. Now let us assume that the map f is substantially
dissipative. Then the rate r in Lemma 4.3 can be assumed to be strictly smaller
than 1/d2.

It follows that for any point p ∈ J , the composition G− ◦ ϕp is a subharmonic
function of order bounded by ρ < 1

2 , so the Wiman Theorem can be applied. It
implies that W s

R(p) is an embedded holomorphic disk, and that the projection to
the second coordinate π2 : W s

R(p)→ ∆R gives a branched covering of finite degree.

Lemma 5.1. The degrees of the branched coverings π2 : W s
R(p) → ∆R are uni-

formly bounded, and

J+
R =

⋃
p∈J

W s
R(p).

Proof. Let q ∈ J+
R . Note that the sets

Vn(q) = {(x, y) ∈W s
R(q) : f−n(x, y) ∈ ∆2

R}

form a nested sequence of non-empty compact sets, so they have a non-empty
intersection. Hence each W s

R(q) intersects K− = J−. Therefore we have

J+
R =

⋃
p∈J

W s
R(p).

Note that the degree of W s
R(p) depends lower semi-continuously on p; the degree

may drop at semi-local stable manifolds tangent to the boundary of ∆2
R. However,

when we consider the restriction of such a stable manifold to a strictly larger bidisk
∆2
R′ , its degree, which is still finite, is at least as large as the degree of sufficiently

nearby stable manifolds restricted to the smaller bidisk ∆2
R.

To argue that the degrees of the branched coverings are uniformly bounded,
suppose for the purpose of a contradiction that there is a sequence (W s

R(pj)) for
which the degrees converge to infinity. Without loss of generality we may assume
that the sequence (pj) converges to a point p ∈ J+

R . Let R′ > R. Then for j
sufficiently large the degree of W s

R(pj) is bounded by the degree of W s
R′(p), which

gives a contradiction. �

We will refer to the lamination on J+ ∩ ∆2
R given by these local strong stable

manifolds as the (semi-local) dynamical lamination. In what follows we will extend
this lamination, in a non-dynamical way, to a larger subset of ∆2

R.

5.2. Local and global extensions of the vertical lamination. We note that
the dynamical vertical lamination discussed previously consists of local leaves LR(a)
that are connected components of global leaves L(a) intersected with ∆2

R. These
leaves all have natural linearization parametrizations that vary continuously with
the base point a.

Let us recall the λ-lemma, in this version due to Slodkowski [Sl91].
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Lemma 5.2. Let A ⊂ Ĉ. Any holomorphic motion f : D × A → Ĉ of A over D
extends to a holomorphic motion D× Ĉ 7→ Ĉ of Ĉ over D.

Let LR(a) be a dynamical leaf, with a linearization map ϕa : C → L(a). Recall
that by the assumption that f is substantially dissipative we have that LR(a) =
ϕa(D), for some bounded simply connected set D ⊂ C. Let D be compactly
contained in a slightly larger simply connected set D′, and let ξ : D → D′ be
the Riemann mapping. Define ψa = ϕa ◦ ξ : D → LR(a). Then there exists
a biholomorphic map Ψ from ∆ε × D → C2 with Ψ(ζ, 0) = ψa(ζ), mapping to
a tubular neighborhood of the “core” LR(a). Consider all dynamical leaves that
intersect a small neighborhood Ψ(∆δ×D→ C2), where δ is chosen sufficiently small
so that these dynamical leaves are completely contained in Ψ(∆ε×D→ C2). If ε is
sufficiently small then the inverse images under Ψ of these leaves form a collection
of pairwise disjoint “dynamical” graphs over D in ∆ε×D, thus giving a holomorphic
motion of a set A ⊂ ∆ε.

By the λ-lemma the motion extends to a holomorphic motion over ∆ε. The
graphs over D that are completely contained in ∆ε×D can be mapped back by Ψ. By
restricting to a slightly smaller vertical disk D1−η, we can guarantee that all graphs
that intersect a sufficiently small neighborhood of the core {0}×D1−η are completely
contained in ∆δ × D1−η, and can therefore be mapped back to C2 by Ψ. We
obtain a collection of pairwise disjoint ”graphs” over LR(a), filling a neighborhood
and all remaining in the neighborhood sufficiently close to LR(a). Moreover, by
construction the newly constructed graphs cannot intersect any dynamical graphs.

We will refer to such an extension as a flow box, and to the leaves as vertical.
Note that the dynamical leaves were globally defined, while the new leaves in the
flowboxes are only defined in ∆2

R.
By compactness the Euclidean radii of the tubular neighborhoods of the dynam-

ical leaves can be chosen uniformly, and hence the dynamical vertical lamination is
contained in a finite number of flow boxes. One could apply the λ-lemma to each
of these, but a priori there is no reason why new leaves coming from different flow
boxes should not intersect transversely. The main result in this section is Propo-
sition 5.8, where a single extension to a neighborhood of the dynamical vertical
lamination is constructed. Let us give an outline of the argument before going into
details.

The extension of the lamination will be constructed by applying the λ-lemma to
a finite number of tubular neighborhoods, each time taking into account the leaves
that have been considered in previous steps.

A difficulty is that the leaves that we construct in a local extension are not
global, they only are defined in some the tubular neighborhood. In particular, even
if we can guarantee that all new leaves, are graphs over the core of other tubular
neighborhoods they intersect, they may not be graphs over the entire core, see
Figure 3a. We can deal with this by starting with a strictly larger bidisk ∆2

R′ , and
reducing the radius R′ after each local extension by twice the radius of the tubular
neighborhood. The goal is therefore to reduce the radius by at most the difference
R′ −R we start with.

Starting with an even larger constant R′ is not of help, as that would affect
the size and geometry of the flowboxes. Just reducing the radii of the flow boxes
seems useless as well, as that would increase the number of flow boxes needed. The
solution is to carry out the λ-lemma on large numbers of pairwise disjoint flow boxes
simultaneously. By a covering lemma a la Besicovitch it follows that we can finish
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Figure 2. Local extension of the lamination on slightly smaller bidisk

the process in a number of steps N that is independent of the radii of the flow
boxes. By starting with a slightly larger bidisk ∆2

R′ and choosing the radii ε so that
N · 2× ε < R′ −R we will obtain the desired extension.

The version of Besicovitch Covering Theorem that we will use relies on the fact
that the dynamical vertical lamination is Lipschitz, which follows from the following:

Lemma 5.3. The holonomy maps of the dynamical vertical lamination are C1+ε

smooth.

Proof. The analogous statement in the uniformly hyperbolic case was proved in
[L99], with a similar proof. It is sufficient to prove that under the holonomy maps
induced by the dynamical vertical lamination, the dilatation of images of small disks
of radius r > 0 is 1 + rε, for some ε > 0.

We consider holonomy between horizontal transversals through two points z, w
with w ∈ W s

loc(z). Let η > 0 be such that any horizontal disk through any point
fn(z) or fn(w) of radius at most η is a graph over the horizontal tangent line.

Let D(z) and D(w) be horizontal transversal disks, let 0 < r < η, and let
∆r(z) ⊂ D(z) be a graph over the disk of radius r. We choose n ∈ N be so that

‖dfn|Esz‖ ∼
r

η
.

Note that
‖dfn|Ecz‖ · ‖df

n|Esz‖ ∼ |Jac(f)|n,
and thus decreases exponentially fast. It follows that for r sufficiently small, the
disks ∆n

r (z) = fn∆r(z) have size < η, so they are graphs over the horizontal
tangent line at fn(z). Hence the composition of fn : ∆r(z) → ∆n

r (z) with the
respective projections to and from the respective horizontal tangent lines at z and
fn(z) produces a univalent function.

Consider the disks ∆r2(z) ⊂ ∆r(z). By the Koebe Distortion Theorem, the
dilatation of ∆n

r2(z) is bounded by 1 + O(r). By our choice of n it follows that
‖zn − wn‖ is of order r. Hence the holonomy from ∆n

r (z) to its image ∆n
r (w) is

quasiconformal of order r, and the dilatation of ∆n
r2(w) is bounded by 1 +O(r).

The modulus − log(r) of the annulus ∆r(z)\∆r2(z) is preserved under conformal
maps, hence Mod(∆n

r (z) \∆n
r2(z)) = − log(r). Since the distance between the disks
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∆r(z) and ∆r(w) is of order r, the holonomy map from one to the other changes
the modulus of the respective annuli by at most a factor of order 1− r, hence

Mod(∆n
r (w) \∆n

r2(w)) =≥ ((1−O(r)) · log(
1

r
)) =≥ log(

1

r1−O(r)
).

Therefore, we can again apply the Koebe Distortion Theorem to conformal map
f−n : ∆n

r (w)→ ∆r(w), and it follows that the dilatation of ∆n
r2(w) is bounded by

1 + r1−O(r).
Note that restricted to the dynamical vertical lamination, the holonomy maps

that we considered by mapping back and forth by fn are all equal, hence the
dilatation bound of 1 + r1−O(r) applies to the holonomy in the original flow box as
well. Letting r2 = ρ, it follows that the dilatation on a disk of radius ρ is 1 +ρε, for
ε > 0 that can in fact be chosen arbitrarily close to 1

2 . This completes the proof. �

In the real differentiable setting there have been a number of results regarding
the smoothness of holonomy maps in the partially hyperbolic setting, see for exam-
ple ([PSW97, PSW00]). Often smoothness holds when the center eigen values are
sufficiently close to each other, i.e. satisfy some “center-bunching condition”. Such
condition is trivially satisfied when the center direction is one-dimensional, or as
here, in the conformal setting.

We note that the above proof shows that the holonomy C1+ε on the dynamical
vertical lamination for any ε < 1

2 . We will not use this estimate. In fact, we will
only use that the dynamical vertical lamination is Lipschitz.

Note that in later steps of the procedure, after having already found a partial
extension of the dynamical vertical lamination by a number of applications of the
λ-lemma, the lamination under consideration may no longer be Lipschitz. However,
we will see that this does not present difficulties when only the leaves in sufficiently
small neighborhoods of dynamical leaves are kept.

Definition 5.4. Since the holonomy maps of the dynamical vertical lamination
are Lipschitz, there exists a constant k > 0, independent of ε > 0 for ε sufficiently
small, such that any dynamical leaf that intersects an ε-tubular neighborhood of a
dynamical leaf must be contained in the corresponding (k ·ε)-tubular neighborhood.
Note that ε and k · ε refer to the Euclidean radius of the tubular neighborhoods in
C2.

For given ε > 0 we will consider tubular neighborhoods of three different radii:
ε, k · ε and k2ε. Given a collection of leaves {LR(ai)}, we will denote the tubular
neighborhood of radius ri centered at LR(ai) as Ti(ri). In what follows we consider
tubular neighborhoods in different bidisks ∆2

R′ , where R′ > R decreases in each
step. Without loss of generality we may assume that the constant k > 0 defined
above will be sufficiently large for the maximal bidisk ∆2

R′ as well. We will write
Ti(ri, R

′) to clarify the radius R′ of the bidisk we consider.
Let us fix a straight horizontal line

L0 = {(x, y) : y = y0, }

for some |y0| < R.

Lemma 5.5. The dynamical vertical lamination has only finitely many horizontal
tangencies in L0.
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Proof. Apply the λ-lemma to a given tubular neighborhood of a dynamical leaf, and
consider the holonomy map from L0 to a small disk transverse to the lamination.
Such holonomy maps are quasi-regular, hence critical points are isolated. The
critical points are exactly given by the tangencies to L0, thus finiteness follows
from compactness of J+

R . �

We may assume, by either increasing R or by changing y0, that if a global leaf has
more than one tangency with L0, then those tangencies are all contained in a single
semi-local leaf. This is not necessary for what follows but makes the statement and
proof of the Tubular Covering Lemma below more convenient.

We first consider a planar covering lemma. Let K ⊂ C be compact, let γ > 1
and s ∈ N. For each α ∈ K let Λ(α) ⊂ K be a set of order at most s, defining an
equivalence relation, i.e. α ∈ Λ(β) if and only if β = Λ(α).

We assume that the sets Λ(α) vary lower semi-continuously with α, i.e.

Λ(α) ⊂ lim inf
αj→α

Λ(αj).

We assume moreover that

Λ̂(α) = lim sup
β→α

Λ(β)

is also finite and of order at most s. Finally, we assume that there exists a Lipschitz
constant C > 1 for the equivalence relation. That is, for δ > 0 sufficiently small
and α ∈ K, the set ⋃

β∈Dδ(α)

Λ(β)

is contained in at most s disks of radius C · δ. Here we write Dδ(α) as usual for the
disk centered at α of radius ε.

We define the sets

E(α, ε) =
⋃

β∈Λ(α)

Dγ·ε(β).

Lemma 5.6 (Planar Covering Lemma). There exists N such that for every suffi-
ciently small ε > 0 the set K can be covered by a finite collection {Dε(α)}, whose set
of centers A can be partitioned into subcollections A1, . . . , AN , such that for every
j = 1, . . . , N and every α, β ∈ Aj, the sets Eε(α) and Eε(β) are disjoint.

Proof. Recursively construct finite collection A = {α} for which the disks Dε(α)
cover K, by at each step selecting a center α that is not yet contained in the previous
disks. It follows that there is an upper bound, independent of ε, on the number
of centers α ∈ A contained in any disk of radius ε. For γ · ε < δ it follows from
the Lipschitz bound C that given α ∈ K, the set of points β ∈ K for which Eε(β)
and Eε(α) intersect is contained in at most s2 disks of radius 2C · γε. Therefore
there is also an upper bound, again independent of ε, on the number of centers in
A contained in those larger disks.

It follows that for any α ∈ A the number of centers β ∈ A for which Eε(β) ∩
Eε(α) 6= ∅ is bounded by a constant M that does not depend on ε. Recursively
partition A into sets A1, . . . , AN , at each step taking a maximal number of the
remaining centers α ∈ A for which the sets Eε(α) are pairwise disjoint. This process
must end in at most N ≤M + 1 steps. �

We stress that the bound N is allowed to depend on C, γ and s.
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Lemma 5.7 (Tubular Covering Lemma). Let R′ > R. Given ε1 > 0 sufficiently
small, there exists an N ∈ N such that for any sufficiently small ε2 > 0 we can cover
the dynamical vertical lamination in ∆2

R with finitely many tubular neighborhoods
{Ti(ri)} centered at dynamical leaves, satisfying the following:

(i) The finite set of tubular neighborhoods can be partitioned into N collections
A1, . . . , AN .

(i) The tubular neighborhoods in A1 have radius ri = ε1, and all other tubular
neighborhoods have radius ri = ε2.

(ii) For α = 1, . . . , N and Ti(ri), Tj(rj) ∈ Aα one has

Ti(k
2 · ri, R′) ∩ Tj(k2 · rj , R′) = ∅.

Proof. Note that each leaf of the dynamical vertical lamination must pass through
the line L0, so it is sufficient to consider tubular neighborhoods that cover the
intersection of the dynamical vertical lamination with L0.

By lemma 5.5, there are only finitely many semi-local leaves with horizontal
tangencies in L0. We may assume that ε1 > 0 is sufficiently small such that the
corresponding tubular neighborhoods Ti(k

2 · ε1, R′) do not intersect. Let A1 be
the set of corresponding tubular neighborhoods Ti(ε1). From now on we consider
tubular neighborhoods centered at leaves not contained in these finitely many tubular
neighborhoods.

We claim that we are left with the situation of the Planar Covering Lemma.
The set K is the intersection of the remaining dynamical vertical lamination with
L0. The equivalence classes L(α) are given by the intersection points of semi-local
dynamical leaves in the bigger bidisk ∆2

R′ .
Recall from Lemma 5.1 that the semi-local leaves are branched covers with uni-

formly bounded degrees. The lower semi-continuity, and upper bound on L̂(α)
follow as in the proof of Lemma 5.1.

We can choose ε2 > 0 sufficiently small so that for any tubular neighborhood
Ti(ε2, R) not contained in one of the tubular neighborhoods in A1, the intersec-
tion Ti(k

2 · ε2, R′) ∩ L0 consists of a finite number of connected components, each
containing an intersection point of the core leaf.

Each connected component of the intersection closely resembles an ellipse, whose
direction and eccentricity is determined by the tangent vector of the leaf at the
corresponding intersection point with L0. Since we consider only sufficiently small
tubular neighborhoods of points bounded away from the tangencies in L0, the eccen-
tricity of these ellipses is bounded. In other words, there exists ` > 1 independent
of ε2 sufficiently small, such that each component of each Ti(k

2 · ε2, R′) ∩ L0 is
contained in a disk of radius ` · ε2, and contains the concentric disk of radius 1

` ε2.

Thus, each intersection Ti(ε2) ∩ L0 contains a disk of radius 1
` ε2 centered at a

point α ∈ K, while the intersection of Ti(k
2ε2, R

′) is contained in a bounded number
of disks of radius `k2ε2, thus we are in the situation of the Planar Covering Lemma
for γ = `2k2. The existence of the Lipschitz constant C follows from the fact that
the holonomy maps are Lipschitz and the bound from below on the angle between
the transversal L0 and the remaining dynamical vertical lamination.

The existence of the partition A1, . . . , AN therefore follows from the Planar Cov-
ering Lemma. The constants C and γ depend on ε1, hence so does N , but N is
independent of ε2. �
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(a) Two tubular neighborhoods (b) From above: thin neighborhood

Proposition 5.8. The dynamical vertical lamination in ∆2
R can be extended to an

open neighborhood.

Proof. We consider R′ > R and apply the previous lemma to the dynamical vertical
lamination in ∆2

R′ . Let 2k2 · ε1 < (R′ − R)/2, let N be as in the previous lemma,
and let ε2 > 0 be sufficiently small such that

2k2 · ε2 ·N < (R′ −R)/2,

where as before k is an upper bound for the Lipschitz constant of the holonomy
maps. We can cover the dynamical vertical lamination in ∆2

R by tubular neighbor-
hoods as in the previous lemma, and write A1, . . . , AN for the partition into pairwise
disjoint tubular neighborhoods. We may assume that ε1 and ε2 are chosen suffi-
ciently small such that the λ-lemma can be applied to each tubular neighborhood
of radius k · ei, for i = 1, 2.

We first apply the λ-lemma to each of the tubular neighborhoods Ti(k
2 ·ε1, R′) in

A1, keeping only the leaves that intersect the tubular neighborhood of radius k · ε1.
Since the tubular neighborhoods of radius k2 · e1 are pairwise disjoint, it follows
that the new leaves are all pairwise disjoint as well.

Note that while the dynamical leaves were global leaves, the new leaves are semi-
local, and contained in the tubular neighborhoods in A1. In order to guarantee that
the new leaves are still graphs over the entire cores of the tubular neighborhoods in
A2, . . . , AN that they intersect, we reduce the radius of the bidisk ∆2

R′ by 2k2 · ε1.
Note that the laminations constructed using the λ-lemma may not be Lipschitz.

In order to guarantee preserve the modulus of continuity k for each of the selected
tubular neighborhoods that will be used in later steps, we keep only the newly
constructed leaves that intersect a sufficiently thin neighborhood of the dynamical
vertical lamination, see the two tubular neighborhoods illustrated in Figure 3b,
where the dynamical leaves are represented by the blue continuum, and only the
new leaves in the small green neighborhood are kept. Since the holonomy maps
will still be continuous, choosing a thin enough neighborhood of the dynamical
vertical lamination will still guarantee that the leaves that intersect the tubular
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neighborhoods of radii ε2 and k · ε2 will still be contained in the corresponding
tubular neighborhoods of radii k · ε2 and k2 · ε2 respectively.

We continue with the tubular neighborhoods in A2, A3, . . . , AN−1, and finally to
those in AN , each time following the same procedure as above: first apply the λ-
lemma to each tubular neighborhood of radius k2 · ε2 in the current bidisk, keeping
only those leaves that intersect the tubular neighborhood of radius k · ε2, then
decrease the radius of the bidisk by k2 · ε2, and finally only keeping the newly
constructed leaves in a very thin neighborhood of the dynamical vertical lamination
in order to maintain the modulus of continuity.

By our choice of ε2 we end up with the required extended lamination on a bidisk
of radius at least R. �

We will refer to this extension of the dynamical vertical lamination as the artificial
vertical lamination, and denote it by L. By slight abuse of terminology, we will also
write L for the union of the vertical leaves, which gives a neighborhood of J+

R . We
may assume that the dynamical vertical lamination is extended to a thin enough
neighborhood such that L is contained in the region where the dominated splitting
is defined, and by continuity we may assume that its tangent bundle lies in the
vertical cone field. From now on we write N (J+

R ) for the region where both the cone
field and the artificial vertical lamination are defined.

5.3. Adjusting the artificial vertical lamination on wandering domains.
Note that there is no reason for the artificial vertical lamination L to be invari-
ant under f . Here we discuss how to define and modify the lamination on the
(hypothetical) wandering Fatou components.

Figure 4. The pullback is not continuous in the limit

Recall the set V+ (2) foliated by stable manifolds W s(z). Let U be a wandering
Fatou component of f . As fnz → J for any z ∈ U , we have: U ⊂ V+. So, U
is foliated by strong stable manifolds; we call it the dynamical foliation FU of U .
Putting these foliations together, we obtain the invariant dynamical foliation on the
union U of all wandering components.
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(a) Artificial vertical lamination (b) Dynamical vertical lamination

Figure 5. Conflicting laminations in a wandering component

However, in general, this foliation cannot be extended to the closure of this union
(see Figure 4). To deal with this problem, we combine this dynamical foliation on
some “semi-local” wandering components with the non-dynamical extension on the
others, to obtain a lamination of U ∩ ∆2

R which is invariant everywhere except
finitely many semi-local wandering components.

A semi-local wandering component V is a connected component of U ∩∆2
R. Note

that there are at most finitely many semi-local wandering components V ⊂ U ∩∆2
R

not contained in N (J+
R ). We refer to such a component V as a component with

hole.
Let V be a semi-local component with hole, let V −1 be a connected component

of f−1(V ) ∩ ∆2
R, and assume that neither V −1 nor any connected component of

f−n(V −1) ∩ ∆2
R has a hole. Then V −1 is contained in L and hence foliated by

vertical leaves. Note that vertical leaves in L sufficiently close to the (vertical)
boundary of V −1 are necessarily dynamical leaves, and recall that the dynamical
vertical lamination is invariant under f . We modify the vertical lamination L by
pulling back the leaves in V −1 to all components of f−n(V −1) ∩∆2

R for all n ≥ 2.
If V n lies in N (J+

R ) for all n ≥ n0, then the artificial vertical lamination on V n0 is
dynamical, and we can pull back the dynamical lamination on V n0 to all components
V j with 0 ≤ j ≤ n0. See Figure 5 for a sketch of the two conflicting laminations that
one obtains by pulling back the dynamical vertical lamination to V −1. Note that
the artificial vertical lamination near the boundary of the component is dynamical,
and is therefore identical in both pictures.

By following this procedure for all grand orbits of Fatou components with holes,
we obtain a lamination that is invariant on all but finitely many components, and
for each bi-infinite orbit of components there is at most one step in which the
lamination is not invariant. To be more precise, if V nn∈Z is a sequence of semi-local
wandering components with f(V n) ⊂ V n+1, then there is at most one n ∈ Z for
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which the leaves of the artificial vertical lamination in V n are not mapped into
leaves of the lamination in V n+1, and this can only occur when V j lies in the region
of dominated splitting for j ≤ n but not for j = n+ 1.

5.4. Choice of horizontal line. In the one-dimensional argument we considered
iterated inverse images of a given disk Dr(z). This is problematic in the Hénon case.
The reason is that such preimages are very likely to land at least partially outside
of the bidisk ∆2

R. Instead, we will start with a flat horizontal complex line L0, map
it forward by fn, consider a small disk V 0 inside fn(L0) ∩ ∆2

R, and consider the
pullbacks V 1, . . . V n of this disk. Of course instead of working with a full horizontal
line L0 it is equivalent to work with a disk of radius R.

We will now make a suitable choice for the horizontal line:

Lemma 5.9. There exists y0 ∈ C with |y0| < R such that the artificial vertical
lamination of J+ is transverse to {y = y0}.

Proof. For each horizontal complex plane, the tangencies of this plane with the ar-
tificial vertical lamination are isolated, thus, by restricting the neighborhood of J+

if necessary, there are at most finitely many tangencies. We can remove the tangen-
cies one by one by making arbitrarily small perturbations for which the tangencies
are transferred to nearby leaves in the Fatou set. More precisely, if a leaf is tan-
gent to a horizontal plane, then each nearby vertical leaf is tangent to some nearby
horizontal plane. Locally the number of tangencies, counted with multiplicities, is
constant. Thus, we can take any nearby leaf in the Fatou set, take the horizontal
plane for which that leaf is tangent, and reduce the number of tangencies in J+ by
at least one. After a finite number of perturbations we obtain a desired horizontal
line {y = y0}. �

Definition 5.10. [choice of L0] From now on we fix y0 so that the dynamical
lamination of J+ is transverse to L0, and so that L0 does not contain any parabolic
periodic points.

It follows that the line L0 is transverse to the artificial vertical lamination in a
sufficiently small neighborhood of J+.

6. Uniformization of wandering components

In this section we will show that any wandering component U can be uniformized
by the straight cylinder D × C in such a way that the dynamical foliation of U
becomes vertical. It will imply a bound for the (appropriately understood) degrees
of the maps fn|U .

6.1. Contraction.

Lemma 6.1. For any wandering component U , the derivatives ‖dfn‖ converge to
0 uniformly on compact subsets of U .

Proof. Replacing U with its iterated image, if needed, we can ensure that all the
images Un = fn(U) lie in the domain of dominate splitting. Hence U is filled with
global strong stable manifolds W s(z).

Arguing by contradiction, we can find a sequence of unit vectors vm ∈ Ec(zm)
converging to a vector v ∈ Ec(z), z ∈ U0, and a sequence of moments nm → ∞
such that

(4) ‖dfnm(vm)‖ ≥ ε > 0.
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Take a small horizontal disk D 3 z tangent to v, and find a sequence of horizontal
disks Dm 3 zm tangent to the vm and converging to D. Since the family of iterates
is normal near z, the derivatives d(fn|Dm) have a uniformly bounded distortion.
Together with (4), this implies

‖dfnm(w)‖ ≥ ε′ > 0, ∀ w ∈ TDm,

so the images fnm(Dm) are horizontal disks of definite size. Hence the local stable
manifolds through each of them fill a ball of definite radius. This contradicts the
fact that these infinitely many balls must be disjoint yet bounded. �

Recall the set V+ (2) foliated by the strong stable manifolds W s(z). For z ∈ V+,
let φz : C→W s(z) be a uniformization of W s(z), normalized so that φz(0) = z and
‖dφz(0)‖ = 1. We note that φz is unique up to multiplication in C by a constant
eiθ. Hence for ζ = φz(u) ∈W s(z) we can define the (asymmetric) intrinsic distance
as

disti(z, ζ) = |u|,
which is independent of the choice of φz.

Lemma 6.2. (i) For ζ ∈W s
loc(z), we have: disti(z, ζ) � ‖z − ζ‖;

(ii) There exists an ε > 0 with the following property: For any ζ ∈W s(z)\W s
loc(z),

there exists n � 1 + log+(ε−1disti(z, ζ)) such that ‖fnz − fnζ‖ ≥ ε.

Proof. (i) The linearizing maps φz are locally bi-Lipschitz with a constant contin-
uously depending on z, which implies the first assertion.

(ii) Let us select ε > 0 so that each φz maps the disk ∆ε into W s
loc(z). Since

(5) fn ◦ φz(u) = φzn(λnu) with λn = ‖dfnz |Es‖,

the intrinsic distance is contracted at an exponential rate. Hence the number of
iterates it takes for it to become of order ε depends logarithmically on disti(z, ζ).
Application of (i) concludes the proof. �

6.2. Global transversals. Recall from §5.3 that given a wandering component U ,
FU stands for the dynamical vertical lamination of U by the global stable manifolds
W s(z) ≈ C.

Let us say that D is a global transversal to a wandering component U if

(T1) D is a non-singular holomorphic disk properly embedded into U ;

(T2) D is relatively compactly contained in a non-singular holomorphic curve D′;

(T3) For any z ∈ D̄, the curve D′ is transverse to the stable line Esz (see §4.0.3).

Lemma 6.3. If D is a global transversal to a wandering component U , then for n
large enough the images fn(D) are horizontal with respect to the cone field.

Proof. By assumption (T3), the angle between the tangent line TzD and the stable
line Esz is bounded below by some α > 0 independent of z ∈ D. Hence it takes a
bounded amount of iterates to bring TzD to a horizontal cone. �

Lemma 6.4. Let U be a wandering component, let z ∈ U ∩∆2
R. Then W s(z) ⊂ U

intersects a global transversal.

In particular, any wandering domain contains a global transversal.
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Proof. By Lemma 5.9, there exists a horizontal line L0 transverse to the dynamical
vertical lamination on J+. For large n ∈ N connected components of fn(U) ∩
∆2
R will be contained in an arbitrarily small neighborhood of J+, and hence the

dynamical vertical lamination in those components is transverse to L0. Since f is
substantially dissipative, the semi-local strong stable manifold wsR(fn(z)) intersects
L0 in a connected component Dn ⊂ L0 ∩ fn(U).

Since fn(U) is a Fatou component, the maximum principle implies that Dn is
simply connected. Let D′n ⊂ L0 be a slightly larger domain where the dynamical
vertical lamination is still transverse to L0. Pulling back by fn gives the required
D ⊂ D′. �

Select a continuous unit vector field v(z) ∈ Esz on D′, and for z ∈ D, let φz :
C → W s(z) be the uniformization of W s(z) normalized so that φz(0) = z and
φ′z(0) = v(z). Then we obtain a continuous map

(6) Φ : D × C→ U, (z, u) 7→ φz(u).

Our goal is to prove that Φ is a homeomorphism.

6.3. Holonomy group. Let D and ∆ be global transversals to U , let z ∈ D1, and
suppose that the global stable manifold W s(z) intersects D2 in point w∆. Then
holonomy induces a map h from a neighborhood of z in D to a neighborhood of w
in ∆.

Lemma 6.5. The map h admits a unique extension along any path γ in D1.

Proof. Assume there exists a path γ : [0, 1] → D, z0 = γ(0), such that h extends
along γ : [0, 1)→ D but does not extend to z1 = γ(1) ∈ D. We let

zt = γ(t), h(zt) = Φ(zt, ut), t ∈ [0, 1).

Since h does not extend to z1 it follows that

disti(zt, h(zt)) = |ut| → ∞ as t→ 1.

Otherwise we would have a subsequence tk → 1 with bounded utk . Then we could
take a limit point u1 of the utk and obtain a local holonomy from z1 to h(z1) =
Φ(z1, u1). This local holonomy must then agree with the holonomy along γ for t
close to 1, giving a contradiction.

For t ∈ [0, 1), let δt be the “intrinsically straight” path in W s(zt) connecting zt

with h(zt):

δt : [0, ut]→W s(zt), δt(·) = Φ(zt, ·).
Let Dn = fn(D), γn = fn(γ), ztn = fn(zt), δtn = fn(δt), and let hn = fn ◦ h ◦ f−n
be the push-forward holonomy defined on γn : [0, 1)→ Dn. By Lemma 6.1,

length γn → 0 and length δ0
n → 0 as n→∞,

where length stands for the Euclidean length. In particular, the path δ0
n lies in

W s(z0
n) for n sufficiently big. On the other hand, there exists an ε > 0 such that

for any given n and t ∈ [1 − ηn, 1) with ηn → 0, length δtn ≥ ε. Let us select the
smallest t = tn with this property.

Let us use a local coordinate system near z0
n with axes Ec and Es at that point.

Then the holonomy hn on the short path γn(t)), 0 ≤ t ≤ tn, quickly goes from
a small height (equal to length δ0

n) to a definite height (of order ε), so it has a
big average slope. It follows that somewhere either ∆n or Dn must have a small
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angle with the stable direction, contradicting the property that for large n they are
horizontal with respect to the cone field. �

Corollary 6.6. Any local holonomy map h extends to a homeomorphism D → ∆.

Proof. Since D is simply connected and any h extends uniquely along all paths, the
usual argument of the Monodromy Theorem implies that h extends uniquely to a
global continuous map D → ∆. Since the same is true for h−1, it is a homeomor-
phism. �

In particular, we note that when ∆ = D, the holonomy maps form a group HD
of homeomorphisms of D.

Denote by W s(D) the union of the strong stable manifolds through D.

Lemma 6.7. Let D be a global transversal to a wandering component U . Then
U = W s(D).

Proof. It is immediate that W s(D) is an open subset of U . Let z ∈ U ∩W s(D). Let
n ∈ N such that fn(U)∩∆2

R is contained in V+. By Lemma 6.4 there exists a global
transversal ∆ ⊂ L intersecting W s

R(zn), or equivalently zn is contained in the semi-
local strong stable manifold of some w ∈ ∆. Then W s(∆) contains a neighborhood
of zn, and hence intersects fn(D). Thus, we obtain a local holonomy map from ∆ to
fn(D), which by Corollary 6.6 extends to a homeomorphism h : ∆→ Dn. It follows
that W s(Dn) = W s(∆), implying zn ∈ W s(Dn). We conclude that z ∈ W s(D),
completing the proof. �

6.4. Uniformization.

Proposition 6.8. Let D be a global transversal to a wandering component U . Then
any stable manifold intersects D in at most one point.

Proof. Suppose for the purpose of a contradiction that a strong stable manifold in-
tersects D in two distinct points, and denote the induced holonomy homeomorphism
by h : D → D. Let us consider push-forward holonomies

hn = fn ◦ h ◦ f−n : Dn → Dn, where Dn = fn(D).

For any point z ∈ D and n big enough (depending on z), it is the holonomy along
the local stable foliation in some flow box Bi containing zn = fnz. By the λ-lemma
[MSS83], hn is locally quasiconformal (“qc”) near zn. Since a biholomorphic map
fn does not change the dilation, h is locally qc near z, with the same local dilatation
(depending only on Bi but not on h, z and n). Since there are only finitely many
flow boxes Bi covering the whole domain of the dominated splitting, these local
dilatations are uniformly bounded for all h ∈ H ≡ HD and z ∈ D. Hence each
h ∈ H is globally qc on D with uniformly bounded dilatation, so the holonomy
group H acts uniformly qc on D.

Furthermore, H acts freely on D since fixed points of the action would be tan-
gencies between the stable foliation and D.

Moreover, for any point z ∈ D, the intersection W s(z) ∩ D is discrete in the
intrinsic topology of W s(z). Otherwise, there would exist distinct points wm =
φz(u

m) ∈ D with bounded um. Then we could select a subsequence converging to a
point w = φz(u) ∈ D ⊂ D′, which would be a non-isolated point of the intersection
W s(z) ∩D′.

In fact, this discreteness is uniform in the following sense: For any M and any
z ∈ D, disti(z, hz) > M for all but finitely many holonomy homeomorphisms h ∈ H.
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Indeed, if there is sequence wm = hm(zm) = Φ(zm, um) with bounded um, then we
can select a converging subsequence um → u, zm → z ∈ D, wm → w ∈ D so that
w = Φ(z, u) = h(z) for some h ∈ H. Then h(zm) = Φ(zm, tm) with tm → u, and
hence |tm − um| → 0. But for m big enough, both Φ(zm, tm) and wm = Φ(zm, um)
lie in the same flow box B around w. It follows that they lie in the same local leaf
of B. Since the latter intersects D at a single point, we conclude that wm = h(zm),
and hence hm = h (for all big enough m).

Let us now show that H acts properly discontinuously on D, i.e, for any two
neighborhoods Z and W compactly contained in D, we have h(Z) ∩W = ∅ for all
but finitely many h ∈ H. Indeed, assume there is a sequence of distinct hm ∈ H and
of points zm ∈ Z, wm = hm(zm) ∈ W . As we have just shown, disti(zm, wm) →
∞. Now we can apply our usual argument to arrive to a contradiction. Namely,
there exist moments nm → ∞ that bring the points zm and wm to the same local
stable manifold, implying that ‖fnm(zm) − fnm(wm)‖ � 1, which contradicts to
Lemma 6.1.

Hence the quotient S = D/HD is a qc surface (i.e., a surface endowed with qc
local charts with uniformly bounded dilatation). Taking any conformal structure
(a Beltrami differential) µ on S and pulling it back to D, we obtain an H-invariant
conformal structure on D. By the Measurable Riemann Mapping Theorem, there
exists a qc map ψ : D → D such that g = ψ ◦ h ◦ ψ−1 is Möbius for any h ∈ HD.

Let ζ ∈ D and denote its orbit by ζn = gn(ζ). Then the hyperbolic distance
between ζn and ζn+1 is independent of n since it is preserved under holomorphic
automorphisms. Let zn = ψ−1(ζn) ∈ D. Since ψ is quasiconformal, it is a quasi-
isometry, that is, ψ expands the hyperbolic distance by a bounded factor for scales
bounded away from zero. It follows that the hyperbolic distance between zn and
zn+1 is bounded for all n.

Since g does not have fixed point in D, the ζn converge to a Denjoy-Wolff point
in ∂D. Hence the sequence (zn)n∈N escapes to the boundary ∂D. Since near the
boundary the hyperbolic metric of D explodes relatively the Euclidean metric of
D′, we conclude that

(7) ‖zn − zn+1‖ → 0.

Note that all the points zn lie in the same stable manifolds W s(z), so we can mea-
sure the intrinsic distance between them. Property (7), together with Lemma 6.2,

imply that disti(zn, zn+1)→ 0. It follows that any limit point q ∈ D ⊂ D′ for (zn)
is a tangency between D′ and W s(q), and this contradiction completes the proof.

�

Remark 6.9. The above application of the Measurable Riemann Mapping Theorem
is a special case of Sullivan’s Theorem concerning uniformly qc group actions [Su81],
[Tu86].

Since stable manifolds in U0 intersect D in a unique point, we conclude:

Corollary 6.10. Let D be a global transversal to a wandering component U . Then
the uniformization Φ : D × C→ U is a vertically holomorphic homeomorphism.

6.5. Degree bound. Let U0 be a semi-local wandering component of a wandering
component U , and let Un be the component of fn(U)∩∆2

R containing fn(U0). we
define the degree of fn : U0 → Un as the maximal number of semi-local dynamical
leaves in U0 that are mapped into a single semi-local dynamical leaf in Un.
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Lemma 6.11. For any semi-local wandering component U0, the degree of fn :
U0 → Un is uniformly bounded over all n (with a bound depending on U0).

Proof. By replacing U0 with an appropriate Um, we can ensure that all the do-
mains Un, n ≥ 0, are contained in the neighborhood N (J+), so the dynamical
and the artificial vertical laminations coincide on these domains. Note that de-
grees of compositions are sub-multiplicative, so a bound on the degrees of the maps
fn : Um → Um+n implies a bound on the degrees of the maps fm+n : U0 → Um+n.

Let us consider a horizontal line L = L0, and let t be the number of tangencies
between L0 and the artificial vertical lamination. Let L0 := U0 ∩ L, and let Ln :=
fn(L0).

As each semi-local dynamical leaf of U0 intersects L0, the degree of fn : U0 → Un

is bounded by the maximal number of intersections between Ln and the vertical
leaves of Un. Since the artificial vertical lamination of Un coincides with the (in-
variant) dynamical vertical lamination, the degree of fn : U0 → Un is bounded by
the maximal number of intersections between Ln and dynamical leaves of fn(U).

Let Dn be a global transversal to fn(U) and let Φn : Dn × C → fn(U) be the
corresponding uniformization. Then the maximal number of intersections between
Ln and dynamical leaves of fn(U) is equal to the degree d of the horizontal projec-
tion Φ−1

n (Ln) → Dn. This projection is a branched covering since Ln is properly
embedded into Un. By the Riemann-Hurwitz formula, d equals at least one plus the
number of tangencies (counted with multiplicities) between Ln and the dynamical
foliation. But the latter is preserved by the dynamics, so it equals the number of
tangencies between L0 and the dynamical foliation of U0, which is bounded by t.
The conclusion follows. �

7. Horizontal lamination and degcrit

We let U0 be a semi-local wandering Fatou component, and for n ∈ N we write
U−n for a semi-local wandering components satisfying fn(U−n) ⊂ U0.

Assumption A. Let us say that a semi-local wandering component U0 satisfies
Assumption A if all possible choices of the domains U−n, n ≥ 0, are contained in
N (J+

R ) (defined at the end of §5.2), and thus in the domain of dominated splitting.

In what follows, through Corollary 7.5, we will assume that U0 satisfies Assump-
tion A.

We write W−n for a connected component of U−n∩L0, and consider holomorphic
disks fn(W−n) ⊂ U0, ranging over all n ∈ N and all choices of U−n and W−n.
Since the horizontal line L0 is chosen so that it is transverse to the artificial vertical
lamination near J+, for n sufficiently large the tangent spaces to the holomorphic
disks fn(W−n) are contained in the horizontal cone field. In fact, by taking n
sufficiently large we may assume that the horizontal cone field is arbitrarily thin.

Let z ∈ U0, and consider small bidisks ∆2
ρ(z) ⊂ ∆2

r(z) ⊂ U0, with respect to
affine coordinates contained in the horizontal respectively vertical cone field, and
with boundary bounded away from J+. For ρ � r � 1 any connected component
of fn(W−n)∩∆2

r(z) intersecting ∆2
ρ(z) is a horizontal graph. The collection of these

graphs form a normal family, hence any sequence has a subsequence that converges
locally uniformly. We consider the Riemann surfaces Sν that are locally given as
uniform limits of these horizontal graphs.

Lemma 7.1. If two limits S1 and S2 intersect, then they are equal.
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Proof. Assume for the purpose of a contradiction that S1 and S2 intersect in a
point z0, but that they locally do not coincide. Let us assume that S1 and S2 are
locally given as limits of graph in respectively fnj (W−nj ) and fml(W−ml). In local
coordinates ∆2

R(z0) we can write S1 = {y = ϕ(x)} and S1 = {y = ψ(x)}.
It follows that for large enough j and l the horizontal graphs in fnj (W−nj ) and

fml(W−ml) intersect at a point near z0.
Let j and l be large with, say, nj larger than ml. Then it follows that there

exists a point

ζml ∈ fnj−ml(W−nj ) ∩W−ml

for which fml(ζml) lies near z0. As discussed above, for some large fixed N inde-
pendent of l and j the local graphs in fN ◦fnj−ml(W−nj ) and fN (W−ml) are both
horizontal. Given that the map f acts as an exponential contraction in the verti-
cal direction, while being at most sub-exponentially contracting in the horizontal
direction (by Lemma 4.2), it follows that near the point fml(ζml) the distance be-
tween the horizontal graphs in fnj (W−nj ) and fml(W−ml) shrinks exponentially
fast as l → ∞. Therefore, the limits ϕ(Dr) and ψ(Dr′) coincide locally. Since
they are both proper holomorphic disks, they must coincide globally, which gives a
contradiction. �

We will refer to the collection of Riemann surfaces Sν as the horizontal lamination
in U0. It is clear that this lamination is contained in the backward Julia set J−.
Since U0 is Kobayashi hyperbolic, each leaf is a hyperbolic Riemann surface. The
leaves are locally given as limits of horizontal graphs, hence are themselves also
horizontal.

Lemma 7.2. The horizontal and the vertical laminations do not share leaves.

Proof. Indeed, vertical leaves intersect the boundary of ∆2
R, while horizontal do

not. �

Corollary 7.3. For any semi-local component U0 satisfying Assumption (A) the
order of tangencies between horizontal and vertical leaves in U0 is bounded.

Proof. It follows from two observations:

• The order of tangencies between the leaves depends upper semi-continuous on the
intersection point.

• Near J+ the laminations are transverse. �

Corollary 7.4. For any semi-local component U0 satisfying Assumption (A), any
preimage U−j, and any component W−j of the horizontal slice L0∩U−j, the orders
of tangency of the holomorphic disk f j(W−j) with the dynamical vertical foliation
FU0 is bounded.

Proof. It is obvious for small j. For a large j, the disk f j(W−j) is a small per-
turbation of some horizontal leaf L in U0, so the order of its tangencies between
f j(W−j) and FU0 is bounded by the order of tangencies between L and FU0 . �

For a component U0 satisfying Assumption (A), let us define degcrit(U
0) as the

maximum of the order of tangency between the above holomorphic disks f j(W−j)
and the dynamical vertical foliation FU0 .

Corollary 7.5. degcrit(U
0) is bounded over all components U0 satisfying Assump-

tion A.
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Proof. In the case where all forward components Un are contained in N (J+) then
the dynamical vertical lamination FU0 is tangent to the vertical line field Ev, which
is transverse to the horizontal lamination. Hence degcrit U

0 = 1 in this case.
Therefore we only need to consider the case where some forward component Un

is not contained in N (J+). Since degcrit(U
0) is defined by means of two dynamical

laminations, both invariant under f , it remains the same for all semi-local preimages
U−j of U0. Thus, it suffices to consider only those semi-local components Un for
which Un+1 does not satisfy Assumption A. Since there are only finitely many such
components, the conclusion follows. �

Finally, let us get rid of Assumption A:

Lemma 7.6. For an arbitrary semi-local component U , any component W of the
horizontal slice L0 ∩ U , and any integer n ≥ 0, the orders of tangency of the holo-
morphic disk fn(W ) with the dynamical vertical foliation FUn are bounded (where
Un is the semi-local component containing fn(U)).

Proof. We already know this for components satisfying Assumption A, so let us
deal with other components.

Assume Un ⊂ N (J+), n = 0, 1, . . . . Then the vertical dynamical foliations on
the Un are tangent to the vertical line field Ev. On the other hand, by the choice
of L0, the slice W is transverse to this line field. Thus, W is transverse to FU . By
invariance of the dynamical foliation, the forward iterates fn(W ) are transverse to
FUn : no tangencies in play.

This leaves us with finitely many components U . For each of them, W has finitely
many tangencies with FU counted with multiplicities (by construction of L). By
invariance of the dynamical foliations, fn(W ) has the same number of tangencies
with FUn for any integer n ≥ 0. The conclusion follows. �

Definition 7.7. [degcrit] Let degcrit be the maximum of the orders of tangency
that appear in the above lemma.

Corollary 7.8. For any semi-local component U0, any preimage U−j, and any
component W−j of the horizontal slice L0 ∩ U−j, the order of tangency of the
holomorphic disk f j(W−j) with the dynamical vertical foliation FU0 is bounded by
degcrit.

8. Final preparations

The following is a rephrasing of Corollary 3.3.

Lemma 8.1. Let ε > 0. Then there exists a domain Ω ⊂ ∆2
R for which

f−1(Ω) ∩∆2
R ⊂ Ω,

and(
J+ ∩∆2

R

)⋃
(semi− local wandering components) \ { parabolic cycles } ⊂ Ω,

and which satisfies two conditions:

(i) For any z ∈ J+ there exist w ∈ ∆2
R with |z−w| < ε such that the semi-local

leaf though w does not intersect Ω.
(ii) Any z ∈ Ω that does not lie in a wandering Fatou component lies ε-close to

J+.
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In several instances of the proof the value of the constant ε > 0 must be suffi-
ciently small, which we will refer to by saying that Ω should be sufficiently thin.
The domain Ω will only be fixed after all bounds on degrees and diameters are
determined. To avoid a circular argument we should take care that the constants
that appear in those bounds can be defined independently of the exact choice of Ω.
At this time we only guarantee that Ω is chosen sufficiently thin so that every point
z ∈ Ω lies on a semi-local leaf of the artificial vertical lamination.

Lemma 8.2. Given constants d ∈ N, r < 1 and µ > 0 there exists a constant
C = C(r, d, µ) with the following property. For any hyperbolic Riemann surface V ,
and any proper quasiregular map f : V → D of degree at most d whose dilatation is
bounded by µ, the hyperbolic diameter of any connected component of f−1Dr(0) is
bounded by C. For fixed d, µ the constant C(r, d, µ) converges to 0 as r → 0.

Proof. The quasiregular map can be written as the composition of a proper quasi-
conformal homeomorphism with dilation bounded by µ, with a proper holomorphic
map of degree at most d. The statement holds for both of these maps, and hence
also for the composition. �

Definition 8.3 (protected lifts). Let S ⊂ ∆2
R be a properly embedded holomorphic

disk, bounded away from the horizontal boundary {|y| = R}. For a disk D ⊂
L0 consider all artificial vertical leaves through points in D. Write V ⊂ S for
a connected component of the set of intersection points of these artificial vertical
leaves with S.

We say that V is a lift of D if the holonomy correspondence is proper, i.e. for any
compact E ⊂ D the intersection points of the leaves through E with V is compact.

We will consider lifts in f jL0 ∩ Ω. Let t > 1 and consider two concentric disks
Dr(z) ⊂ Dt·r(z) ⊂ L0. If the disks Dr(z) and Dt·r(z) can be lifted to Vr(z) ⊂
Vt·r(z) ⊂ f jL0 ∩ Ω, then we say that Vr(z) is a protected lift of Dr(z). We define
the degree of Vr(z) as the maximal number of intersections with artificial vertical
leaves.

Recall that the artificial vertical leaves intersect L0 transversally near J+. Thus,
for sufficiently small disks Dr(z) ⊂ L0 sufficiently close to J+ the lift is traditional:
a pullback under the holonomy map. However, if Dr(z) intersects an artificial leaf
non-transversally then the holonomy from Vr(z) to Dr(z) cannot be single valued,
so we talk about the holonomy correspondence.

The properness of lifts is not automatic, and may be violated when an artificial
vertical leaf through a disk D is tangent to the boundary of ∆2

R. It is therefore
possible that a disk Dr(z) ⊂ L0 that cannot be lifted, even when all artificial
vertical leaves through D are contained in Ω. However, for every point z ∈ L0 for
which the vertical leaf through z intersects f jL0 ∩ Ω there is a sufficiently small
disk that can be lifted. Conversely every point in f jL0 ∩Ω is contained in some lift
Vr(z).

Lemma 8.4. Let Vr(z) ⊂ Vt·r(z) be a protected lift of degree d. Then there exist a
constant C1( 1

t , d) > 0 such that

diamΩVr(z) ≤ C1(
1

t
, d),

and given d the constant C1( 1
t , d) converges to 0 as t→∞.
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Proof. If Dt·r intersects artificial vertical leaves at most once, then the holonomy
defines a proper quasi-regular map from Vt·r to Dt·r. The degree of the holonomy
map is then exactly the maximal number of intersections of Vt·r with leaves of
the artificial lamination, which is d. It follows from Lemma 8.2 that the Poincaré
diameter

diamVt·r(z)Vr(z)

is then bounded by C( 1
t , d, µ), for a bound µ on the order of qc-dilatation of the

holonomy maps induced by the artificial vertical lamination. By definition of pro-
tected lifts we have Vt·r(z) ⊂ Ω, which implies the same bound on the Kobayashi
diameter in Ω.

Recall that the vertical lamination of J+ is transverse to L0, hence the above
discussion applies to sufficiently small disks in a sufficiently small neighborhood
of J+. By choosing Ω sufficiently thin, it follows that Dt·r(z) ⊂ L0 intersects
each vertical leaf in a unique point, unless Dt·r(z) intersects one of finitely many
wandering Fatou components.

It is clear that for each given Dr(z) ⊂ Dt·r(z) ⊂ L0 there does exist a bound on

diamVt·r(z)Vr(z),

depending only on the degree of Vt·r(z). Hence by compactness we obtain a bound
when the radius r is bounded away from zero. But when r is sufficiently small,
the disk Dt·r(z) either lies in a neighborhood of J+ that guarantees that Dt·r(z)
intersects each artificial vertical leaf at most once, or Dt·r(z) lies well inside one
of a semi-local wandering Fatou component U , where U is one of at most finitely
many such components. It follows that

diamUVr(z)→ 0

as r → 0. Since U ⊂ Ω, this completes the proof. �

Lemma 8.5. There exists a constant ε > 0 such that the following holds. Let
V ⊂ L0 be a holomorphic disk, and write V j = f j(V ). Suppose that for j = 0, . . . , n
we have V j ∈ ∆2

R and

sup
z∈V j

d(z, J+) < ε,

where d(·, ·) refers to the Euclidean distance in C2. Then each V j is transverse to
the artificial lamination. If the Euclidean diameter of each V j is sufficiently small
then it follows moreover that each V j has degree 1.

Proof. Recall that L0 is transverse to the artificial vertical lamination in a small
neighborhood of J+. Since the disks V j remain in the region of dominated split-
ting, their tangent spaces lie in some large horizontal cone field, while in a small
neighborhood of J+ the tangent spaces to the vertical leaves do not intersect those
horizontal cones. Thus transversality follows, in fact with uniform bounds on the
angles between the tangent spaces of the disks V j and the leaves of the artificial
vertical lamination. It follows that sufficiently small disks will have degree 1. �

Lemma 8.6. Let t > 1. There exists an N0 = N0(t) ∈ N such that the following
holds. For each protected lift Vr(z) ⊂ Vt·r(z) of disks Dr(z) ⊂ Dt·r(z) ∈ L0, the
preimage V −1

r (z) can be covered by protected lifts of at most N0 disks Drk(zk) ⊂
D2t·rk(zk).
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Moreover, in the particular case where the disk Dt·r(z) lies in a semi-local wan-
dering component U , the lifts V2t·rk(zk) are all contained in the component U−1. In
all other cases, the lifts V2t·rk(zk) are all contained in V −1

tr (z).

Proof. It is clear that for every r > 0 and z ∈ L0 and every choice of protected lift
Vr(z) ⊂ Vt·r(z), the disk V −1

r (z) can be covered with a finite number of protected
lifts Vrk(zk) for which V2trk(zk) ⊂ V −1

tr (z). Suppose for the purpose of a contradic-
tion that there exists a sequence (r, z, Vr(z)) for which the minimal number of lifts
needed converges to infinity.

By restricting to a subsequence we may assume that the lifts Vt·r(z) are either
contained in wandering Fatou components, in periodic Fatou components, or all
intersect J+. We consider theses cases separately.

First suppose that the lifts Vt·r(z) are contained in wandering Fatou components.
Suppose first that Vt·r(z) is contained a wandering domain U where the artificial
lamination is backwards invariant. By invariance the image of V −1

t·r (z) in L0 under
holonomy is independent of the choice of lift, and the argument is the same as in
the one-dimensional setting: For disks of radius bounded away from zero the bound
on N0 follows from compactness. But sufficiently small disks are either contained
in a small neighborhood of J+, where the lamination is transverse to L0, or well
inside wandering domains. In the latter case it is clear that V −1

r (z) can in fact be
covered by a single lift. In the former case holonomy induces a quasiconformal map
of bounded dilatation, which gives a bound on the distortion and thus on N0.

Since the vertical lamination is invariant except in finitely many components,
we may therefore assume that all Vt·r(z) are in one of the wandering components
for which the vertical lamination is not backwards invariant. Recall that in this
wandering Fatou component the vertical lamination is still invariant in a neighbor-
hood of the boundary J+. The bound on N0 follows again when r remains bounded
away from zero, hence we may assume that r → 0. But in that case the lifts are
either very close to J+, where the lamination is invariant and the bound on N0

follows as above, or the lifts are bounded away from J+. But then for sufficiently
small r the preimage V −1

r (z) can again be covered by a single lift Vρ(w) for which
V2t·ρ(w) ⊂ U−1.

Now suppose that the lifts Vt·r(z) are contained in periodic Fatou components.
Recall that L0 was chosen to be transverse to the dynamical lamination near J+.
Thus, by making Ω sufficiently thin, we may assume that both Vt·r(z) and V −1

t·r (z)
are transverse to the vertical lamination, with angles bounded from below, see
Lemma 8.5. Again it follows that holonomy from L0 to V −1

t·r (z) and from Vt·r(z)
back to L0 induces a quasiconformal map of bounded dilatation, which implies a
bound on N0.

The last case to be considered is when the lift Vt·r(z) intersects J+. Suppose first
that there exists a subsequence for which r converges to zero. In that case n must
converge to infinity, since otherwise the preimages V −it·r (z) are all contained in the
domain of dominated splitting, which implies that the lifts Vt·r are horizontal, giving
a bound on N0. In fact, by Lemma 4.2 the contraction in the horizontal direction
is sub-exponential, and hence in backwards time the expansion is sub-exponential,
therefore we may assume that

n ≥ logα(r)

for any α > 1 and r sufficiently small.
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Figure 6. The set V −1
r is covered by lifts of disks Drk(zk) ⊂ Dt·rk(zk).

Since n is large the disks Vt·r(z) must intersect J+ in a point where G− is very
close to zero, which implies that there is a nearby point x ∈ J on the same local
stable manifold. For each x ∈ J there exists a small closed loop γ around x in
W s(p) where G− is strictly positive. Consider a small disks through each point in
γ, normal to W s(p), and therefore in particular horizontal, and denote the union
of these horizontal disks by Γ. By making these horizontal disks sufficiently small,
we can guarantee that G− is strictly positive on Γ. It follows that there exists an
N such that

f−N (Γ) ∩∆2
R = ∅.

By compactness of J , we can find a uniform bound from above on the diameter of
the γ, a uniform bound from below on the size of the horizontal disks through γ,
and a uniform bound on N .

By the exponential contraction in the vertical direction and the fact that the
inverse images f−j(Vtr(z)) are all contained in the bidisk ∆2

R, it follows that Vtr(z)
is contained in a tubular neighborhood with radius of order rα around the forward
image of a horizontal disk D, (with radius of order t · r) in a fn−NΓ(p), for some
point p ∈ J , with similar estimates for V −1

t·r (z) and f−1(D). Therefore it is sufficient
to consider the respective lifts in D and f−1(D), and the fact that these disks are
horizontal implies a bound on N0 by the same argument as above.

Thus the remaining lifts Vt·r(z) we need to consider have radius bounded away
from zero and intersect J+. By making Ω sufficiently thin we can therefore guaran-
tee that for some 1 < t2 < t the lift Vt2·r(z) is contained in a wandering domain U .
The existence of the bound N0 follows by the same argument as when Vt·r(z) ⊂ U .

�

Figure 6 illustrates the covering of V −1
r (z) by lifts of disks Drk(zk) ⊂ Dt·rk(zk).

The lift Vr(z) and its inverse image V −1
r (z) are depicted in blue; the rest of the

larger Vtr(z) and V −1
t·r (z) in red. In the sketch the vertical lamination is given by

straight vertical lines. Two distinct lifts of a single disk Vrk(zk) are depicted in
green.

Remark 8.7. By construction the bound N0 is independent of Ω, that is, N0 does
not need to be changed when Ω is made smaller.
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Let U be a semi-local wandering domain on which the artificial lamination is not
equal to the dynamical lamination. We will compare lifts of disks Dr(z) ⊂ L ∩ U
with respect to both laminations.

Proposition 8.8. There exists δ = δ(U) > 0 such that the following holds. Let
D ⊂ L0 ∩ U be a holomorphic disk of hyperbolic diameter (in L0 ∩ U) at most
δ, and let V ⊂ f jL0 be a lift with respect to the dynamical lamination. Then V
is contained in a lift with respect to the artificial lamination of a protected disk
Dρ(w) ⊂ D2·ρ(w) ⊂ L0 ∩ U .

Proof. Note that any connected component of L0∩U is simply connected. Therefore,
as in the proof of Lemma 2.10, a subset E ⊂ L0 ∩U of sufficiently small hyperbolic
diameter is contained in a disk Dr(w) satisfying Dr(w) ⊂ D2·r(w) ⊂ U . Hence
the proof is completed by showing that V is a lift (with respect to the artificial
lamination) of a set E ⊂ L0 ∩ U of sufficiently small hyperbolic diameter.

Since the dynamical and artificial laminations coincide near the boundary of U ,
the statement holds trivially when V is sufficiently close to the boundary. We will
therefore consider lifts of disks D that are bounded away from ∂U .

Recall from the previous section that the holomorphic disks fn(W−n) converge
to the horizontal lamination. Both the horizontal leaves and the disks fn(W−n)
cannot coincide with vertical dynamical leaves, hence for a sufficiently small tubular
neighborhood N of a dynamical leaf, the intersection fn(W−n)∩N have arbitrarily
small Euclidean diameters. Since we consider leaves that are bounded away from
the boundary, small Euclidean diameters imply small Kobayashi diameters in U ,
and thus V can be assumed to be a lift of some E ⊂ L0 ∩ U of arbitrarily small
hyperbolic diameter, which completes the proof.

�

Definition 8.9. [β] Let ΛR(a) be a vertical leaf that is either contained in J+ or
in a semi-local wandering domain, and assume that ΛR(a) is not one of the finitely
many parabolic leaves in J+ that were removed from Ω. Then the leaf ΛR(a) is
contained in Ω. Note that the sets f jL∩∆2

R stay bounded away from the horizontal
boundary {|w| = R}. It follows that there exists an upper bound β, independent
from j ∈ N, on the Kobayashi diameter in Ω of the intersection of any vertical leaf
ΛR(a) with any f jL0. We note in particular that the constant β can be chosen
independently of Ω.

Definition 8.10. [diammax] For t > 1 and an integer d ≥ 2 we define

diammax(t, d) := 2N0(t) · C1(
1

2
, d) + β.

In what follows t will equal either 2 or 2K, where the constant K will be introduced
in Proposition 9.2. The integer d will equal either 1 or degcrit.

Definition 8.11. [big wandering domain] We say that a semi-local wandering do-
main U is a big wandering domain if the vertical lamination on U is not backwards
invariant, or if there exist j ∈ N and S ⊂ U ∩ f jL0 of Kobayashi diameter

diamUS ≤ diammax(2, 1)

intersecting a vertical leaf ΛR(a) for which f−1ΛR(a) ∩ ∆2
R has more than one

component intersecting f−1S.

We note that there are at most finitely many big wandering domains.
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Definition 8.12. [Regular wandering domains] A semi-local wandering domain U
is said to be regular if none of the components U−n for n ≥ 0 are big wandering
domains.

There exists only finitely many bi-infinite orbits of semi-local wandering domains
that are not regular. A component that is not regular is called post-critical. Note
that there at most finitely many grand orbits of semi-local wandering Fatou compo-
nents that contain post-critical domains. If Un is regular but Un+1 is post-critical
then we say that Un is critical.

Definition 8.13. [degmax] Recall from Lemma 6.11 that the degree of the maps
fn : U0 → Un is bounded from above by a constant independent of n. Thus, such
a forward degree bound exists for each critical wandering component. Since there
are only finitely many critical components, there exists a uniform bound, which we
will denote by degmax, analogously to the one-dimensional setting.

9. Diameter and degree bounds - proof for Hénon maps

Let us recall the constants and objects that play a role in the upcoming proofs,
listed in the order of their dependency.

degcrit : The maximal local degree (Def 7.7).
L0 : Convenient choice of horizontal line (Def. 5.10).
β : Upper bound on the Kobayashi diameter in artificial vertical leaves
(Def. 8.9).
N0(t) : Maximal number of t-protected disks whose lifts cover V −1

r (z)
(Lemma 8.6).
C1( 1

t , d) : Upper bound on the Kobayashi diameter for lifts in Ω (Lemma
8.4).
degmax : Bound on global degrees of iterates on critical wandering domains
(Def. 8.13).
K: Defined in Prop. 9.2 below. We will consider protected lifts Vr(z) ⊂
V2K·r(z).
diammax(t, d) := 2N0(t) · C1( 1

2 , d) + β (Def. 8.10).
Ω : Domain of consideration, chosen sufficiently thin (Lemma 8.1).

In this section we prove the main estimates on the diameters and degree of lifts
Vr(z) and their preimages. Just as in the one-dimensional argument we distinguish
between three different kinds of lifts. First we consider lifts that are deeply contained
in wandering components, i.e. lifts of disks Dr(z) for which DK·r(z) is contained
in the same component for a sufficiently large constant K. Afterwards we consider
the two remaining cases, namely lifts of disks that are not contained in wandering
components, and lifts of disks Dr(z) that are contained in wandering components
but for which the protecting disks DK·r(z) are not.

9.1. Lifts deeply contained in wandering domains. In what follows we let
(Un)n∈Z be a bi-infinite orbit of semi-local wandering Fatou components, and con-
sider protected lifts Vr ⊂ Vt·r for which Vt·r is contained in one of the domains Un.
As post-critical components are harder to deal with than regular components, we
start with the latter.

Lemma 9.1. Let Un be a regular wandering semi-local Fatou component and let
Vr(z) ⊂ V2r(z) ⊂ f jL0 ∩ Un be protected lifts of disks Dr(z) ⊂ D2r(z) ⊂ L0. Then
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for i = 0, . . . , j we have

diamΩV
−i
r (z) ≤ diammax(2, 1)

and

degV −ir (z) = 1.

Proof. We will assume the statement holds for a given j ∈ N, and proceed to prove
it for j + 1. By Lemma 8.6 the holomorphic disk V −1

r (z) can be covered by lifts
Vrk(zk) of at most N0 disks Drk(zk) ⊂ D4·rk(zk) ⊂ L0 ∩ Un−1. By the induction
assumption each V −i2·rk(zk) has degree 1, and thus we obtain the estimates

diamUn−i−1V −irk
(zk) ≤ C1(

1

2
, 1).

Note that a priori we do not have a bound on the number of lifts Vrk(zk). Since Un

is regular, the vertical lamination on the components (Un−i)i≥0 is invariant. Let
x ∈ Vr(z), and write x−i = f−i(x). Each point in a lift Vrk(zk) can be connected
to the semi-local leaf Λ(x−1) by a path that travels through at most N0 other lifts
Vrl(zl). Hence it follows that

diamUn−1V −1
r (z) ≤ diammax(2, 1).

Recall that by Definitions 8.11 and 8.12 of respectively big and regular Fatou com-
ponents, this bound on the hyperbolic diameter in Un−1 of V −1

r (z) implies that
Λ(x−2) is the unique semi-local leaf in f−1Λ(x−1) ∩ ∆2

R that intersects V −2
r (z).

The same argument as above gives the same bound on the hyperbolic diameter in
Un−2 of V −2

r (z). Continuing by induction on i gives

diamUn−iV
−i
r (z) ≤ diammax(2, 1),

for all i ≤ j. We obtain the required bounds on the hyperbolic diameters in Ω, as Ω
contains all semi-local wandering components. Since the semi-wandering component
U is regular it follows that

degV −ir (z) = 1

for i = 0, . . . , j. �

Proposition 9.2. There exists a constant K > 0 such that the following holds. Let
Un be a semi-local wandering component, and let Vr(z) ⊂ VK·r(z) ⊂ f jL0 ∩ Un be
protected lifts of disks Dr(z) ⊂ DK·r(z) ⊂ L0. Then for all i ≤ j we have

diamΩV
−i
r (z) ≤ diammax(2, 1),

and

degV −ir (z) ≤ degcrit.

Proof. Write Un−i for the semi-local wandering Fatou component in f−iUn ∩∆2
R

that contains the lift V −ir (z). By renumbering the orbit U j we may assume that
U0 is critical. It follows from the previous lemma that K ≥ 2 suffices when n ≤ 0,
so let us suppose that n > 0.

We first consider the hyperbolic diameters in components Un−i, for i ≤ n. We
write Dr(z) ⊂ Dk·r(z) ⊂ Un ∩L0 for the disks giving the lifts Vr(z) ⊂ VK·r(z). We
also consider the lifts these disks to f iL0.

Recall from the proof of Lemma 6.4 that for n sufficiently large any connected
component D of L0 ∩ Un is a global transversal. The composition of f i with ho-
lonomy from f i(L0 ∩ Un−i) → D, induces quasi-regular maps, whose degrees are
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bounded by degmax and have bounded dilatation. It follows that by making K suf-
ficiently large, the hyperbolic diameter of the preimage in L0 ∩ Un−i can be made
arbitrarily small. Note that V −ir (z) is a lift of this pre-image with respect to the
dynamical lamination. It follows that the Kobayashi diameter of V −ir (z) in U−i,
and thus also in Ω, can therefore be made arbitrarily small by choosing K large.

Let us consider the finitely many values of n for which we do not know that D is a
global transversal. For any fixed n, making K sufficiently large implies that V −ir (z)
is contained in an arbitrarily small neighborhood of a dynamical leaf, and thus
we immediately obtain the same bounds on the hyperbolic diameter in L0 ∩ Un−i.
Therefore we can drop the assumption that n is sufficiently large.

We now consider the artificial vertical lamination on U0. We have seen that
V −ir (z) is the lift with respect to the dynamical lamination of a set E ⊂ L0 ∩ U0,
whose hyperbolic diameter can be made arbitrarily small by choosing K suffi-
ciently large. Lemma 8.8 implies that V −ir (z) is contained in the lift of a disk
Dρ(w) ⊂ D2·ρ(w) ⊂ L0 ∩ U0 with respect to the artificial lamination when the
hyperbolic diameter of E is less than δ = δ(U0). Since there are only finitely many
critical components U0, the constant δ can be chosen independently of the critical
component, and thus K can be chosen independently as well.

By applying Lemma 9.1 to the lift of the disk Dρ(w) we obtain the required
diameter bounds on V −ir (z) for n ≤ i ≤ j, as well as

degV −ir (z) = 1

for n ≤ i ≤ n. Hence if K is chosen sufficiently large it follows that

degV −ir (z) ≤ degcrit

for all i ≤ j. �

9.2. Lifts that are not deeply contained. We are ready to prove the main
technical result:

Proposition 9.3. Let z ∈ Ω and let r > 0 be such that D2K·r(z) ⊂ Ω. Then for
every j ∈ N and any lift Vr(z) ⊂ fnL0 one has:

diamΩV
−j
r (z) ≤ diammax(2K,degcrit),

and

degVr(z) ≤ degcrit.

Proof. Having previously dealt with lifts that are sufficiently deeply contained in
wandering domains, we only need to consider the two other cases: lifts are either not
contained in a wandering component, or those that are contained in a wandering
component, but lifts of disks Dr(z) for which DK·r(z) intersects J+.

We again assume the induction hypothesis that both bounds hold for all i ≤ j,
and proceed to prove the statements for j + 1. We will first prove the induction
step under the assumption that Dr(z) is not contained in a wandering domain, and
afterwards deal with the case where Dr(z) is contained in a wandering domain. The
result in the former case will be used to prove the latter.

Case 0. Let us first consider the situation where Vr(z) is contained in a periodic
Fatou component. By choosing Ω sufficiently thin we can guarantee that Vr(z) is
horizontal and that the disks Dr(z) and D2k·r(z) are arbitrarily small. It follows
that Vr(z) must have degree 1. Hence we can cover V −1

r (z) with at most N0(2K)



42 MISHA LYUBICH AND HAN PETERS

protected lifts Vrk(zk) ⊂ V4K·rk(zk) ⊂ V2K·r(z). It follows by the induction assump-
tion that the disks V2·rk(zk) all have degree at most degcrit. Recall from the proof
of Lemma 8.4 that the Poincaré diameter of Vrk(zk)ν with respect to V2·rk(zk)ν is
bounded by C1( 1

2 ,degcrit). Since f is an automorphism, we obtain the same bounds

for the pairs V −irk
(zk)ν ⊂ V −i2·rk(zk)ν , and since each V −i2·rk(zk)ν ⊂ Ω, therefore we

have the bounds

diamΩV
−i
rk

(zk) ≤ C1(
1

2
,degcrit).

This implies that

diamΩV
−i
r (z) ≤ N0(2K) · C1(

1

2
,degcrit),

which in turn gives the necessary degree bounds.

Case 1. Now assume that Vr(z) is not contained in a Fatou component. Then
there exists y0 ∈ Dr(z) ∩ J+, and we let x0 ∈ Vr(z) lie in the semi-local vertical
leaf through y0, which we denote by ΛR(x0). We similarly write Λ−iR (x0) for the
semi-local leaf through f−i(x0), which by invariance of the vertical lamination on
J+ equals the connected component of f−i(ΛR(x0)) that contains f−i(x0).

Cover V −1
r (z) by protected lifts Vrk(zk)ν ⊂ V4K·rk(zk)ν ⊂ Ω of at most N0(2K)

disks Drk(zk) ⊂ D4K·rk(zk) ⊂ L0. The induction hypothesis implies that the degree
of each lift V2·rk(zk)ν is bounded by degcrit, hence as above we obtain

diamΩV
−i
rk

(zk)ν ≤ C1(
1

2
,degcrit).

As before we do not have an a priori estimate on the number of lifts Vrk(zk)ν . We
apply the same induction argument as in Proposition 9.2. By choosing Ω sufficiently
thin we can guarantee that the Euclidean diameter of Vr(z) is sufficiently small, so
that for each vertical leaf ΛR(a) intersecting Vr(z) there is a unique component of
f−1ΛR(a) ∩∆2

R intersecting V −1
r (z).

Any point in V −1
r (z) can then be connected to a point in Λ−1

R (x0) by a path that
passes through at most N0(2K) lifts Vrk(zk)ν . By the definition of β it follows that

diamΩV
−1
r (z) ≤ diammax(2K,degcrit).

Hence we can continue the induction procedure, and obtain

diamΩV
−i
r (z) ≤ diammax(2K,degcrit)

for all i ≤ j.
By choosing Ω sufficiently thin it follows from Lemma 8.5 that each V −ir (z) is

transverse to the artificial vertical lamination and that

degV −ir (z) = 1

for all i ≤ j, completing the proof for disks Dr(z) that are not contained in a
wandering component.

Case 2. In the remainder of this proof we assume that Dr(z) is contained in a
semi-local wandering component U , but that DK·r(z) is not contained in U . We
again cover V −1

r (z) with protected lifts Vrk(zk)ν ⊂ V4K·r(zk)ν ⊂ f j−1L0 ∩ Ω of
at most N0(2K) disks Drk(zk) ⊂ D4K·r(zK) ⊂ L0, and by induction obtain the
diameter bounds

diamΩV
−i
rk

(zk)ν ≤ diammax(2K,degcrit).

Again the difficulty lies in the fact that a priori we do not have a bound on the
number of lifts Vrk(zk)ν . As before we will obtain the diameter bounds for each
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inverse image V −ir (z) by connecting the disks V −i+1
rk

(zk)ν to a single semi-local
vertical leaf.

Write W for the component of U ∩ L0 that contains Dr(z), and let w ⊂ ∂W be
such that |z − w| is minimal, and write [z, w] ⊂ L0 for the closed interval.

Consider the disk D r
2
(w). Since DK·r(w) ⊂ D2K·r(z) it follows that DK·r(w) ⊂

Ω. Hence the disk D r
2
(w) satisfies the conditions of the previously discussed case,

and we obtain the estimates

diamΩV
−i
r
2

(w) ≤ diammax(2K,degcrit)

for any protected lifts V r
2
(w) ⊂ VK·r(w) ⊂ f jL0∩Ω of the disks D r

2
(w) ⊂ DK·r(w).

The interval [z, w] can be covered by the disk D r
2
(w), plus a bounded number of

disks
Ds1(w1), . . . , DsN1

(wN1),

each satisfying DK·sν (wν) ⊂ Un. The maximal number of disks needed is bounded
by a constant N1 ∈ N that only depends on K, see Figure 1.

Write
Vsν (wν)ξ ⊂ VK·sν (wν)ξ ⊂ f jL0 ∩ Ω

for protected lifts of the disks Dsν (wν) ⊂ DK·sν (wν). It follows that these lifts
satisfy the conditions of Proposition 9.2, and hence their preimages satisfy

diamΩV
−i
sν (wν)ξ ≤ diammax(2K, degcrit).

As in case 1 we obtain a bound on the hyperbolic distance of each point f−i(z) to
∂U−i ⊂ J+. By choosing Ω sufficiently thin, it follows that the points f−i(z) can
all be assumed to lie arbitrarily close to J+. In particular we may assume that the
vertical leaf through each f−i(z) is dynamical, and these semi-local leaves Λ−iR (z)
are in particular invariant under f . Recall from Definition 8.9 that

diamΩf
j−iL0 ∩ Λ−iR (z)

is bounded by β. Hence we can use the same argument as in case (1), using Λ−iR (z)
instead of a semi-local leaf in J+, to obtain the required diameter and degree bounds.

�

10. Consequences

As before we will assume that the Hénon map f is substantially dissipative and
admits a dominated splitting on J .

Lemma 10.1. There are no wandering Fatou components.

Proof. Suppose for the purpose of a contradiction that there does exist a wandering
Fatou component U . Without loss of generality we may assume that U intersects
∆2
R. Since U ∩∆2

R is foliated by semi-local strong stable manifolds, the intersection
U ∩ L0 is a non-empty relatively open set. Let D be a holomorphic disk relatively
compactly contained in U∩L0. By construction, we may assume that Ω is sufficiently
thin and D ⊂ U ∩L0 is sufficiently large such that the hyperbolic diameter of D in
Ω′ is larger than diammax.

Since U lies in the Fatou set there exists a sequence (nj) for which fnj converges
uniformly on compact subsets of U to a map h : U → J . By the dominated splitting
the image h(U) is a point p ∈ J , and without loss of generality we may assume that
p is not contained in a parabolic cycle. Let Dr(p) ⊂ D2r(p) ⊂ Ω be a transverse
disk. Since D is relatively compact in U , it follows that for sufficiently large j the
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image fnj (D) is contained in a lift of Dr(p) in fnj (L0. But then it follows from
Proposition 9.3 that the hyperbolic diameter of D in Ω′ is bounded by diammax,
leading to a contradiction. �

Lacking wandering domains the proof of Proposition 9.3 becomes considerably
simpler. An immediate consequence is a better degree bound.

Corollary 10.2. The constant degcrit can be taken equal to 1.

Proof. Since there are no wandering Fatou components, it follows from the proof of
Proposition 9.3 that the degree of the disk Vr is bounded by the degree of the disk
Vn, which is a small straight disk contained in L0. Recall that y0 was chosen so that
there are no tangent intersections between L0 and the dynamical vertical lamination
on J+. Now that we know that there are no wandering Fatou components, the set
Ω can be constructed as an arbitrarily thin neighborhood of J+

R . Hence we may
assume that there are no tangencies in L0 with the artificial vertical lamination in
Ω. Since the disks Vn may be assumed to have arbitrarily small Euclidean diameter,
it follows that Vn intersects each vertical leaf in at most one point. �

Proposition 10.3. Let x ∈ Ω ∩ J . Then there exists a local unstable manifold
through x.

Proof. For each n ∈ N, the semi-local strong stable manifold W s
R(f−n(x)) must

intersect the horizontal disk L0. Let yn be such an intersection point. Since the
degree of the semi-local strong stable manifolds is uniformly bounded and f is
uniformly contracting on the family of strong stable manifolds, it follows that fn(yn)
converges exponentially fast to x. Moreover, by the exponential contraction in the
vertical direction, it follows that locally the disks Dn ⊂ fnL0 passing through
fn(yn) converge to a holomorphic disk through x, which we denote by D.

We claim that D must be an unstable manifold, i.e. that the diameter of f−n(D)
converges to 0. By the exponential contraction in the vertical direction it suffices to
show that the diameter of f−n(Dn) converges to zero. Suppose that this is not the
case. Recall that the diameters of the disks f−n(Dn) are uniformly bounded, hence
are given by images of a normal family of holomorphic maps. Hence if the diameters
do not converge to zero, then there is a subsequence (nj) for which f−nj (Dnj ) ⊂ L0

converges to a holomorphic disk E, necessarily intersecting J+. By construction L0

is transverse to J+, hence it follows that E must intersect vertical leaves through
points in the basin of infinity, say in a point t. Since those vertical leaves must be
contained in the basin of infinity, so must t. Note that since t ∈ E, it follows that
t ∈ f−nj (Dnj ) for j large enough. This however leads to a contradiction, as the
forward orbit t must escape the bidisk in finite time, and hence fnj (t) cannot be
contained in Dnj for j large. The contradiction finishes the proof. �

Since D is a uniform limit of holomorphic disks with horizontal tangent bundles,
it follows that the tangent bundles to D must also lie in the horizontal cone field.
The size of the local unstable manifolds is uniform on any subset of J that is
bounded away from the parabolic cycles.

Corollary 10.4. The map f does not have any attracting-rotating Fatou compo-
nents.

Proof. Suppose there does exist an attracting rotating Fatou component, and let U
be the connected component of the intersection with ∆2

R that contains the rotating
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disk Σ. Let x ∈ ∂Σ, which implies that x ∈ J . The local unstable manifold
D through x is horizontal and thus intersects all nearby strong stable manifolds.
Since U is foliated by strong stable manifolds, D must intersect U in a point y local
strong stable manifold through Σ. The sets f−n(D) may all be assumed to have
arbitrarily small diameters, from which it follows that f−n(y) remains arbitrarily
close to Σ. It follows that y ∈ Σ. But while the backwards orbits of points on
this local unstable manifold converge to J , backwards orbits in Σ do not, giving a
contradiction. �

Proposition 10.5. If f does not have any parabolic cycles then f is hyperbolic.

Proof. If f does not have parabolic cycles, then there exist local unstable manifolds
through any point in J , and the family of these unstable manifolds is invariant
under f . By compactness of J there are uniform estimates on the rate at which
these unstable manifolds are contracted, hence the center direction of the dominated
splitting is actually unstable, proving that the map is hyperbolic. �

Proposition 10.6. The Julia set J+ has zero Lebesgue measure.

Proof. The one-dimensional counterpart of this result was proven in [L82, DH85b].
The 1D argument can be adapted to our setting as follows. Take any point x ∈ J+

that does not belong to strong stable manifolds of the parabolic points. Then there
is a sequence of moments nk → ∞ for which fnkx stays away from the parabolic
points. Let L be a complex horizontal line through x. Proposition 10.3 implies that
there exists a shrinking nest of ovals Vk ⊂ L of bounded shape around x (i.e., with
bounded ratio of the inner and outer radii centered at x) such that:

(i) Each Dk := fnk(Vk) is a horizontal-like oval of a definite size and bounded shape
around fnkx;

(ii) The maps fnk : Vk → Dk have a bounded distortion.

It follows from (i) that the ovals Dk contain gaps in J+ of definite relative size.
Then (ii) implies that so do the ovals Vk. Hence x is not a Lebesgue density point
for L ∩ J+.

By the Lebesgue Density Points Theorem, the horizontal slices of J+ have zero
area. Since the dynamical vertical lamination of J+ is smooth (Lemma 5.3), J+

has zero volume. �

In the complex line the fact that a rational function has only finitely many
attracting or parabolic cycles is a direct consequence of there only being finitely
many critical points. For complex Hénon maps this kind of argument cannot be
used. Indeed, there do exist Hénon maps with infinitely many attracting cycles, see
for example [B97]. It was shown in [BS91a] that a hyperbolic Hénon map has only
finitely many Fatou components, each contained in the basin of an attracting cycle.

Corollary 10.7. There are at most finitely many attracting cycles.

Proof. This follows from the fact that an attracting cycle cannot be completely
contained in the neighborhood of J+ where the dominated splitting exists. But the
complement of this neighborhood is contained in only finitely many Fatou compo-
nents. �

Corollary 10.8. There are at most finitely many parabolic cycles.
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Proof. By the existence of unstable manifolds through any point in J ∩Ω it follows
that there can be no parabolic cycles in Ω, which implies that the only parabolic
cycles can be those finitely many that were removed from J in the construction of
Ω. �

Corollary 10.9. The map f lies on the boundary of the hyperbolicity locus in the
family of Hénon like maps.

Proof. Under perturbation of the Hénon map the parabolic cycles bifurcate. Since
we consider the infinite dimensional family of Hénon like maps, we can work in
a finite dimensional analytic parameter space whose dimension is as large as the
number of parabolic cycles, and for which all parabolic cycles bifurcate for nearby
parameters. For each parabolic cycle there is a suitable half-space in the parameter
space which leads to stable perturbations. We consider sufficiently nearby param-
eters in the intersection of those half-spaces. The Julia set J changes continuously
in the Hausdorff dimension for such perturbations, hence the dominated splitting
on J is preserved. Moreover, by the fact that the horizontal direction is uniformly
stable for points in J bounded away from the parabolic cycles, it follows that no
new parabolic cycles are constructed under sufficiently small perturbations. Thus
the �

We would like to state that f lies on the boundary of the hyperbolicity locus
even in the family of polynomial Hénon maps of the same degree. In order to follow
the one-dimensional proof one needs to prove that the number of parabolic cycles is
bounded by the degree, as was proved for one dimensional polynomials by Douady
and Hubbard [DH85], and for rational functions by Shishikura [Sh87]. We are not
aware of any bound on the number of parabolic cycles for complex Hénon maps.

Corollary 10.10. The two Julia sets J? and J are equal.

In [GP07] the assertion J = J? is proved using different methods, under the
weaker assumption that the substantially dissipative Hénon map f admits a domi-
nated splitting on the potentially smaller set J?.

Proof. Let x ∈ J be a point that is not contained in one of the parabolic cycles. Let
p be a saddle periodic point. By [BS91b] the stable manifold W s(p) accumulates
on all of J+, and hence also on x, and similarly Wu(p) must accumulate on x. Note
that the tangent space to W s(p) must be vertical at all points.

A sufficiently small local unstable manifold Wu
loc(p) is contained in Ω. Since

Ω is relatively backwards invariant, it follows that if y ∈ Wu
loc(p) is such that

fn(y) contained in Ω for some n ∈ N, then f j(y) ∈ Ω for j = 0, . . . n. Since Ω is
contained in the region of dominated splitting and the tangent bundle to Wu

loc(p)
is horizontal, and the horizontal cone field is forward invariant, it follows that the
tangent space to Wu

loc(fn(p)) at fn(y) is horizontal. Thus Wu(p) is horizontal in a
small neighborhood of x.

Since both W s(p) and Wu(p) accumulate at x and are respectively vertical and
horizontal near p, it follows that there exist intersection points of W s(p) and Wu(p)
arbitrarily close to x. By standard construction there are saddle periodic points
arbitrarily close to homoclinic intersection points, and hence also arbitrarily close
to x. Since J? is the closure of the set of saddle points, it follows that x ∈ J?.

Since J? is closed and we proved that all but finitely many points of J are
contained in J?, the fact that J does not have isolated points implies that J ⊂
J?. �
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at arXiv:1411.3824 (2014).

[Sh87] Shishikura, M. On the quasiconformal surgery of rational functions, Ann. scient. Éc. Norm.
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