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Abstract

We prove a version of the classical λ-lemma for holomorphic families

of Riemann surfaces. We then use it to show that critical loci for complex

Hénon maps that are small perturbations of quadratic polynomials with

Cantor Julia sets are all quasiconformally equivalent.

1 Introduction

A holomorphic motion in dimension one is a family of injections hλ : A → Ĉ

of some set A ⊂ Ĉ holomorphically depending on a parameter λ (ranging over
some complex manifold Λ). It turned out to be one of the most useful tools in
one-dimensional complex dynamics. First it was used to prove that a generic
rational endomorphism f : C̄ → C̄ is structurally stable (see [9, 12]), and then
has found numerous further applications.

Usefulness of holomorphic motions largely comes from their nice extension
and regularity properties usually referred to as the λ-lemma. The simplest
version of the Extension λ-lemma asserts that the holomorphic motion of any
subset X ⊂ Ĉ extends to a holomorphic motion of the closure X̄ [9, 12]. A
more advanced version says that it extends to the whole Riemann sphere over a
smaller parameter domain [5, 14]. The strongest version asserts that if Λ is the
disk D ⊂ C then the extension is globally defined, over the whole D. Moreover,
the maps hλ are automatically continuous [9, 12] and in fact, quasiconformal
[12].

In dimension two, holomorphic motions hλ : A → C
2, A ⊂ C

2, do not
have such nice properties: in general, they do not admit extension even to
the closure Ā, and the maps hλ are not automatically continuous (let alone,
quasiconformal). Still, under some circumstances, holomorphic motions turn
out to be useful in higher dimensions as well, see [2, 7].

In this paper, we prove a version of the λ-lemma for a class of holomor-
phic motions in C2 that naturally arise in the study of complex Hénon maps.
Namely, we consider a holomorphic family of Riemann surfaces Sλ ⊂ C2 that fit
into a complex two-dimensional manifold such that the boundaries of Sλ move
holomorphically in C2. We show that under suitable conditions, the holomor-
phic motion of the boundary can be extended to a holomorphic motion of the
surfaces. The proof is based upon Teichmüller Theory.
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This work is motivated by study of the geometry of the critical locus C for
the Hénon automorphisms

f : (x, y) 7→ (x2 + c− ay, x)

of C2. This locus was introduced by Hubbard (see [4]) as the set of tangencies
between two dynamically defined foliations outside the “big” Julia set. It was
studied in [6, 10] in the case of small perturbations (i.e., with a small Jacobian
a) of one-dimensional hyperbolic polynomials Pc : x 7→ x2 + c. In case when c
is outside the Mandelbrot set (and a is small enough), the critical locus has a
rich topology described in [6]. Our version of the λ-lemma implies that all these
critical loci are quasiconformally equivalent.

2 Background

2.1 Notations

We will use the following notations throughout the paper: ∆ for the unit disk,
H for the hyperbolic plane, Ĉ for the Riemann sphere.

2.2 λ-lemma

Let M be a complex manifold, and let ∆ ⊂ C be a unit disk.

Definition 2.1. Let A ⊂ M . A holomorphic motion of A over ∆ is a map
f : ∆×A→M such that:

1. For any a ∈ A, the map λ 7→ f(λ, a) is holomorphic in ∆;

2. For any λ ∈ ∆, the map a 7→ f(λ, a) =: fλ(a) is an injection;

3. The map f0 is the identity on A.

Holomorphic motions in one-dimensional dynamical context first appeared
in [9, 12]. The following simple but important virtues of one-dimensional holo-
morphic motions are usually referred to as λ-lemma:

Extension λ-lemma ([9, 12]). Let M = Ĉ, A ⊂ Ĉ. Any holomorphic motion

f : ∆×A→ Ĉ extends to a holomorphic motion ∆× Ā→ Ĉ.

Definition 2.2. Let (X, dX), (Y, dY ) be two metric spaces. A homeomorphism
f : X → Y is said to be η-quasisymmetric, if there exists an increasing contin-
uous function η : [0,∞) → [0,∞), such that for any triple of distinct points x,
y and z :

dY (f(x), f(y))

dY (f(x), f(z))
≤ η

(

dX(x, y)

dX(x, z)

)

A quasisymmetric map between two open domains is quasiconformal.
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Qc λ-lemma ([12]). Under the circumstances of the Extension λ-lemma, for
any λ ∈ ∆, the map fλ : Ā→ Ā is quasisymmetric.

Later, Bers & Royden [5] and Sullivan & Thurston [14] proved that there
exists a universal δ > 0 such that under the circumstances of the Extension λ-
lemma, the restriction of f to the parameter disk Dδ of radius δ can be extended
to a holomorphis motion ∆δ × Ĉ → Ĉ (“BRST λ-lemma”). Though this version
of the λ-lemma will be sufficient for our dynamical applications, let us also state
the strongest version asserting that δ is actually equal to 1:

Slodkowski’s λ-lemma. Let A ⊂ Ĉ. Any holomorphic motion f : ∆×A→ Ĉ

extends to a holomorphic motion ∆× Ĉ → Ĉ.

In what follows, we will use the same notation f for the extended holomor-
phic motion.

2.3 Elements of Teichmüller Theory

We assume that the reader is familiar with the basics of Teichmüller Theory. To
set up terminology and notation, we recall some basic definitions and statements
and refer to [11] for details.

Given a base Riemann surface S, let QC(S) stand for the set of all Riemann
surfaces quasiconformally equivalent to S.

Definition 2.3. Let X1, X2 ∈ QC(S), and let φi : S → Xi be quasiconformal
mappings. The pairs (X1, φ1) and (X2, φ2) are called Teichmüller equivalent if
there exists a conformal isomorphism α : X1 → X2 such that φ2 is homotopic
to α ◦ φ1 relative to the ideal boundary I(S). The class of equivalent pairs is
called a marked by S Riemann surface.1

Definition 2.4. The Teichmüller space T (S) modeled on S is the space of
marked by S Riemann surfaces.

The space T (S) can be endowed with a natural Teichmüller metric.
Any marked Riemann surface (S̃, ψ) ∈ T (S) defines an isometry

ψ∗ : T (S) → T (S̃), ψ∗ : (X,φ) → (X,φ ◦ ψ−1), (1)

called a change of the base point of the Teichmüller space.

Definition 2.5. A Beltrami form µ on S is a measurable (−1, 1)-differential
form with |µ(z)| < 1 a.e. It is called bounded if ‖µ‖∞ < 1.

Locally, µ can be represented as µ(z)
dz̄

dz
, where µ(z) is a measurable function

with |µ(z)| < 1 a.e. (Notice that the latter condition is independent of the choice
of the local coordinate.)

1Somewhat informally, we will use notation (X,φ), or just X, for the equivalence class.
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Any Beltrami form µ determines a conformal structure on S, i.e., the class
of metrics conformally equivalent to dz + µ(z) dz̄. (In what follows, Beltrami
forms and the corresponding conformal structures will be freely identified.) The
standard structure σ corresponds to µ ≡ 0.

Let M(S) be the space of bounded Beltrami forms on S. It is identified
with the unit ball in the complex Banach space L∞(S), from which it inherits
a natural complex structure.

Any quasiconformal map f : S → X induces the pullback

f∗ : M(X) → M(S). (2)

Measurable Riemann Mapping Theorem. Let µ be a bounded Beltrami
form on S with ‖µ‖∞ = k < 1. Then there exists a Riemann surface Sµ ∈
QC(S) and a K-quasiconformal map fµ : S → Sµ with K = (1 + k)/(1 − k)
such that f∗µσ = µ. Moreover, it is unique up to postcomposition with some
conformal map h : Sµ → S′

µ.

Analytically, f = fµ gives a solution to the Beltrami equation

∂f

∂z̄
= µ

∂f

∂z
. (3)

By the Measurable Riemann Mapping Theorem, there is a natural projection

ΦS : M(S) → T (S).

The pullback operator from equation (2) descends to f∗ : T (X) → T (S). It
is the inverse of the change of the base point f∗.

Theorem 2.1. There exists a unique complex structure on T (S) such that the
projection ΦS is holomorphic.

Notice that the change of the base point (1) is a biholomorphism T (S) →
T (S̃), so the complex structure on the Teichmüller space is independent of the
choice of S.

Proposition 2.1 (Slodkowski’s λ-lemma restated [11]). Every holomorphic
map γ : ∆ → T (S) lifts to a holomorphic map γ̃ : ∆ → M(S).

Let S be a hyperbolic Riemann surface, and let p : H → S be its universal
covering with the group of deck transformations Γ.

Lemma 2.1 ([11]). Let ν be an infinitesimal Beltrami form on S, then ν ∈
Ker dΦS if and only if p∗ν = ∂̄η, where η is a continuous Γ-invariant vector
field on H̄ such that the distributional derivative ∂̄η has bounded L∞-norm and
η = 0 on R.

Corollary 2.1. Assume that S is a bounded type Riemann surface with the
boundary ∂S = γ1 ∪ . . . γn, where γi are smooth Jordan curves. Let ν be an
infinitesimal Beltrami form. Then ν ∈ Ker dΦS if and only if ν = ∂̄ξ, where
ξ a continuous vector field on S such that the distributional derivative ∂̄ξ has
bounded L∞ norm and ξ = 0 on ∂S.
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Proof. Let p−1(ξ) be a lift of the vector field ξ to H. Let D be a fundamental
domain of the group Γ. The vector field ξ vanishes on the boundary. Therefore,
p−1(ξ)|D is bounded in the hyperbolic metric. Since Möbius transformations
preserve the the hyperbolic metric, p−1(ξ) is bounded in hyperbolic metric on
H. Thus, it vanishes on the boundary in the Euclidean metric.

The group Γ is Fuchsian, so it acts on the whole Riemann sphere Ĉ. Let
MΓ(Ĉ) ⊂ M(Ĉ) be the space of Γ-invariant Beltrami forms on Ĉ. We can map
M(S) to MΓ(C) by lifting µ ∈ M(S) to the Beltrami form µ̂ = p∗µ on H and

then extending it by 0 to the rest of Ĉ. By the Measurable Riemann Mapping
Theorem, there exists a unique solution fµ̂ : Ĉ → Ĉ of Beltrami equation (3)
for µ̂, fixing 0, 1 and ∞. It conjugates the Fuchsian group Γ to a quasi-Fuchsian
group Γµ preserving the quasidisk fµ(H). Hence it induces a quasiconformal
map S → Sµ (for which we will keep the same notation fµ).

Consider the map

Ψ : M(S)× Ĉ → M(S)× Ĉ, (µ, z) 7→ (µ, fµ̂(z)).

The image Ψ(M(S)× H) is an open subset of M(S)× Ĉ called the Bers fiber
space. Fiberwise actions of quasi-Fuchsian groups Γµ induce an action of Γ on
the Bers fiber space.

Definition 2.6. The quotient Ψ(M(S) × H)/Γ is called the Universal Curve
over M(S).

3 λ-Lemma for families of Riemann surfaces

Let us consider a complex 3-fold ∆×C2, and let π1 : ∆×C2 → ∆ be the natural
projection to ∆. Let S̄ ⊂ ∆×C2 be a complex 2-fold with boundary such that
π1 : S̄ → ∆ is a smooth locally trivial fibration with fibers S̄λ. We assume that
the fibers S̄λ are compact Riemann surfaces with boundary ∂Sλ = γ1λ∪· · ·∪γnλ ,
where the γiλ are smooth Jordan curves that move holomorphically over ∆.
Intrinsic interior of S̄ is a complex 2-fold S = S̄ \ ∂S that fibers over ∆. The
fibers are open Riemann surfaces

Sλ = int S̄λ = S̄λ \ ∂S̄λ.

Note that since ∆ is contractible, the fibration π1 : S → ∆ is globally trivial in
the smooth category.

Theorem 3.1. Let f : ∆ × ∂S0 → C2 be a holomorphic motion of ∂S0 over
∆, and let fλ(z) = f(λ, z), Im fλ = ∂Sλ. Moreover, assume that the maps
fλ : ∂S0 → ∂Sλ are diffeomorphisms. Then there exists a holomorphic motion
f̃ of S̄0 over ∆, such that

1. f = f̃ |∂S0
;

2. for any λ ∈ ∆, Im f̃λ = Sλ.
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We will show that a family Sλ can be realized as a holomorphic curve in the
Universal Curve over the Teichmüller space T (S0).

Let us first extend the holomorphic motion f to a smooth motion of S0 → Sλ

over ∆, for which we will use the same notation fλ as for the original motion.
It defines a smooth curve τλ := (Sλ, fλ) in the Teichmüller space T (S0).

Lemma 3.1. The elements τλ ∈ T (S0) do not depend on the choice of exten-
sion.

Proof. Let fλ and gλ be two extensions as above. Then

g−1
λ ◦ fλ : S̄0 → S̄0, g−1

λ ◦ fλ| ∂S0
= Id, λ ∈ ∆.

Hence the maps g−1
λ ◦ fλ are homotopic to identity rel ∂S0, and thus define the

same element of the Teichmuüller space T (S0).

Lemma 3.2. There exists a holomorphic 1-form ω on S0 that extends smoothly
to the boundary and ω(z) 6= 0 for all z ∈ S̄0.

Proof. Let R be a Shottky double cover of S0 [1]. There is a holomorphic
embedding φ : S0 → R such that φ extends smoothly to the boundary ∂S0.
By Riemann-Roch theorem, we can take a meromorphic form u on R such
that zeroes and poles of u belong to R\S̄0. The form ω = u|S0

is a desired
holomorphic 1-form.

Theorem 3.2. The curve τλ is an analytic curve in T (S0).

Proof. Let us show that
∂τλ

∂λ
= 0.

Fix some λ0 ∈ ∆. Consider the map fλ ◦ f−1
λ0

: Sλ0
→ Sλ. This map defines

a family µλ of Beltrami forms on Sλ0
:

µλ =
∂
(

fλ ◦ f−1
λ0

)

∂
(

fλ ◦ f−1
λ0

) ∈ M(Sλ0
)

Consider the projection map

Φλ0
: M(Sλ0

) → T (Sλ0
)

The map (fλ0
)∗ provides an isomorphism between T (Sλ0

) and T (S0).
Moreover,

(fλ0
)∗ ◦ Φλ0

: M(Sλ0
) → T (S0),

(fλ0
)∗ ◦ Φλ0

(µλ) = τλ.

Then we have:
∂τλ
∂λ̄

∣

∣

∣

∣

λ=λ0

= df∗λ0
◦ dΦλ0

∂µλ

∂λ̄

∣

∣

∣

∣

λ=λ0
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Let us show that
∂µλ

∂λ
(λ0) ∈ Ker dΦλ0

. To simplify the notations, we assume

below λ0 = 0. We construct a vector field ξ on S0, such that
∂µλ

∂λ
(0) = ∂ξ, and

ξ = 0 on ∂S0 and apply Corollary 2.1. Let ν :=
∂µλ

∂λ
(0), κ :=

∂µλ

∂λ
(0). Since

µ0 = 0,
µλ = λν + λ̄κ+ o(λ, λ̄).

Let (g1, g2) : S0 → C
2 be the defining functions of the Riemann surface S0. The

functions g1, g2 extend smoothly to the boundary, and

fλ =

(

g1 + λu1 + λ̄v1 + o(λ, λ̄)
g2 + λu2 + λ̄v2 + o(λ, λ̄)

)

Since fλ is a holomorphic motion on the boundary, functions v1 and v2 are
equal to zero on the boundary. Let w be a local coordinate on S0, ∂f = ∂f

∂w
dw,

∂̄f = ∂f
∂w̄
dw̄. By Lemma 3.2 there is a holomorphic non-zero 1-form ω on S0

that extends smoothly to the boundary ∂S0.
The functions g1 and g2 are holomorphic. Thus, ∂g1 = h1ω, ∂g2 = h2ω,

where h1, h2 are holomorphic functions on S0 that extend smoothly to ∂S0.

∂fλ =

(

h1ω + λ∂u1 + λ̄∂v1 + . . .
h2ω + λ∂u2 + λ̄∂v2 + . . .

)

∂̄fλ =

(

λ∂̄u1 + λ̄∂̄v1 + . . .
λ∂̄u2 + λ̄∂̄v2 + . . .

)

µλ∂fλ = ∂̄fλ

(

λν + λ̄κ+ . . .
)

(

h1ω + . . .
h2ω + . . .

)

=

(

λ∂̄u1 + λ̄∂̄v1 + . . .
λ∂̄u2 + λ̄∂̄v2 + . . .

)

Therefore, κ

(

h1ω
h2ω

)

=

(

∂̄v1
∂̄v2

)

. It follows from [15] that the space of

maximal ideals in the algebra A of holomorphic functions on S0 that extend
continuously to the boundary is isomorphic to S̄0. The functions h1, h2 do not
have common zeroes on S̄0. So the ideal generated by h1 and h2 coincide with
A, in particular function 1 belong to the ideal. Hence there exists a pair of
holomorphic functions s1 and s2 on S0 that extend continuously to ∂S0 so that
s1h1+ s2h2 = 1. Let η be a holomorphic vector field on S0, such that ω(η) = 1.
Since ω extends smoothly to ∂S0, η extends smoothly to ∂S0. Set

ξ = (s1v1 + s2v2)η,

then κ = ∂̄ξ. Functions v1 and v2 are smooth in S̄0, so ∂̄v1 and ∂̄v2 are bounded
in L∞-norm. They are also equal to 0 on the boundary of S0, so by Corollary 2.1
κ ∈ Ker dΦλ0

.

Proof of Theorem 3.1: By Slodkowski’s λ-lemma, there exists a holomorphic
family νλ on S0, so that Φλ0

νλ = τλ. Notice that S is the preimage of the
family {νλ| λ ∈ ∆} in the Universal Curve over M(S0).
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4 Application to dynamics

4.1 Background on Hénon maps

Complex Hénon maps are biholomorphisms fλ : C2 → C2 of the form

fλ

(

x
y

)

=

(

x2 + c− ay
x

)

,

where λ = (a, c), a ∈ C∗, c ∈ C.
In the one-dimensional holomorphic dynamics, the global phase portrait is

to a large extent determined by the behavior of the critical points. Being diffeo-
morphisms, Hénon maps do not have critical points in the usual sense. However,
they possess an interesting analogous object, the critical locus.

Let us recall the following dynamically significant sets:

U+
λ = {(x, y) : fnλ (x, y) → ∞ as n→ +∞}, K+

λ = C
2\U+

λ , J+
λ = ∂K+

λ ,

U−

λ = {(x, y) : f−n
λ (x, y) → ∞ as n→ +∞}, K−

λ = C
2\U−

λ , J−

λ = ∂K−

λ ,

Jλ = J+
λ ∩ J−

λ .

Domains U+
λ and U−

λ are called (forward and backward) escape loci; Jλ is
called the Julia set of the Hénon map.

In the one-dimensional polynomial dynamics, critical points of the polyno-
mial are critical points of the Green’s function on the complement of the filled
Julia set. For a complex Hénon map, one can define the forward and backward
Green’s functions that measure the escape rate of the orbits under forward and
backward iterations of the map [8]:

G+
λ (x, y) = lim

n→∞

log+ |fnλ (x, y)|

2n
,

G−

λ (x, y) = lim
n→∞

log+ |f−n
λ (x, y)|

2n
+ log |a|.

Let pc(x) = x2+c. When a→ 0, Hénon maps degenerate to a 1-dimensional
map x 7→ pc(x), acting on parabola x = pc(y). When a → 0, the Green’s
functions G+

λ converge to G+
(0,c)(x, y) = Gpc

(x), where Gpc
(x) is the Green’s

function of the map x 7→ pc(x). The functions G+
λ , G

−

λ are pluriharmonic on
the escape loci U+

λ , U−

λ respectively. Therefore, their level sets are foliated by
Riemann surfaces. We denote by F+

λ , F−

λ the corresponding foliations. These
Riemann surfaces are in fact copies of C [8].

There are also analogues φλ,+, φλ,− of the Böttcher coordinates. The func-
tion φλ,+ is well defined and holomorphic in a neighborhood V +

λ of (x = ∞, y =

0) in the Ĉ2-compactification of C2, and φλ,+ ∼ x as x → ∞. Moreover, it
semiconjugates f to z 7→ z2, φλ,+(fλ) = φ2λ,+.
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In V +
λ , the foliation F+

λ consists of the level sets of φλ,+. It can be propagated
to the rest of U+

λ by the dynamics. One can also extend φλ,+ to U+
λ as a multi-

valued function, and then use any branch of it to define F+
λ . Moreover, any

branch is related to the Green’s function by G+
λ = log |φλ,+|.

The function φλ,− is defined in an analogous way.

4.2 Critical Locus

Definition 4.1. The critical locus Cλ is the set of tangencies between foliations
F+

λ and F−

λ .

The critical locus is given by the zeroes of the 2-form

w = d log φλ,+ ∧ d log φλ,−.

It is a non-empty proper analytic subset of U+
λ ∩ U−

λ which is invariant under
the maps fλ, f

−1
λ .

Lyubich and Robertson ([10]) gave a description of the critical locus for
Hénon mappings

(x, y) 7→ (p(x)− ay, x),

where p(x) is a hyperbolic polynomial with the connected Julia set, a is suffi-
ciently small. They showed that for each critical point c of p there is a com-
ponent the critical locus that is asymptotic to the line y = c. The rest of the
components are iterates of these ones, and each is a punctured disk. In this
case, all critical loci are obviously conformally equivalent.

A topological description of the critical locus for complex Hénon maps that
are perturbations of quadratic polynomials with disconnected Julia sets is given
in [6]. The critical locus is a connected Riemann surface with rich topology.
It is composed of countably many Riemann spheres Sn with holes, that are
connected to each other by handles. There are 2k−1 handles between Sn and
Sn+k. On each sphere Sn the handles accumulate to two Cantor sets.

We are ready to formulate the main result of this paper:

Theorem 4.1. The critical loci of the Hénon maps that are small perturba-
tions of quadratic polynomials with disconnected Julia sets are quasiconformally
equivalent.

4.3 Topological description of the critical locus

In this section we will give, following [6], a precise description of the critical
locus.

Let A be the space of one-sided sequences of 0’s and 1’s (“infinite strings”),
and let An be the space of n-strings of 0’s and 1’s.

Let us describe truncated spheres that will serve as the building blocks for
the critical locus. Consider a 2-sphere S ≡ S2 and a pair of disjoint Cantor sets
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Σ,Θ ⊂ S. Let us fix a nest of figure-eight curves Γn
α and Ln

α, n = 0, 1, 2, . . . ,
α ∈ An, respectively generating these Cantor sets in the following natural way2.

Let us start with a single figure-eight curve Γ0 bounding two domains D1
0 and

D1
1 (with an arbitrary assignment of labeling). The curve Γ1

0 ⊂ D1
0 bounds two

domains D2
00 and D2

01 compactly contained in D1
0 (with an arbitrary assignment

of the second label) , and similarly, Γ1
1 ⊂ D1

1 bounds two domains D2
10 and D2

11

inside D1
1, etc. See Figure 1.

We assume that
⋃

αD
n
α ⊃ Σ and diamDn

α → 0 as n → ∞ (uniformly in
α ∈ An), so for each sequence α ∈ A, there is a unique point

σα =
∞
⋂

n=1

Dn
αn

∈ Σ,

where αn ⊂ An is the initial n-string of α. That gives us a one-to-one coding
of points σ ∈ Σ by sequences α ∈ A.

Similarly, Θ is generated by a hierarchical nest of figure-eights Ln
α. We

assume that these two nests are disjoint in the sense that figure-eight L0 lies in
the unbounded component of C \ Γ0, and the other way around.

The singular points σn
α and θnα of the figure-eights Γn

α and Ln
α respectively

are called their centers. For each figure-eight Γn
α, select a disk V n

α ∋ σn
α whose

closure is disjoint from all other figure-eights Γm
β and from L0. Then select a

disk Un
α ∋ θnα with similar properties for each figure-eight Ln

α. Moreover, make
these choices so that the closures of all these disks are pairwise disjoint.

Σ Σ

V 0

V 1
0 V 1

1

Γ0Γ1
0 Γ1

1

Figure 1: The geometry of a truncated sphere

For each n ∈ N, α ∈ An, we choose a homeomorphism hnα between the
boundaries of V n

α and Un
α . Finally, we mark a point p ∈ S in the exterior of

both figure-eights and the disks Ū0, V̄ 0. With all these choices in hand, we call

S \X, where X := Σ ∪Θ ∪ {p}
⋃

n

(

⋃

α∈An

Un
α ∪ V n

α

)

,

a truncated sphere. Note that for any two truncated spheres S \ X and S′ \
X ′ there is a homeomorphism (S,X) → (S′, X ′) that restricts to the natural
homeomorphisms between the corresponding marked sets.

2For n = 0, we let A0 = ∅.
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Theorem 4.2. Assume that the quadratic polynomial x 7→ x2 + c has discon-
nected Julia set. Then there exists δ > 0 such that for any |a| < δ the critical
locus of the Hénon map

fλ :

(

x
y

)

7→

(

x2 + c− ay
x

)

is a non-singular Riemann surface that admits the following topological model.
Take countably many copies Sm\Xm, m ∈ Z, of the truncated sphere S \X, and
glue the boundary of V n

α of Sk to the boundary of Un
α of Sn+k+1 by means of the

homeomorphism hnα. The model map acts by translating Sn\Xn to Sn+1\Xn+1.

S0
S1 Sk

S−1

2
k−1

S−k

2
k−1

Figure 2: Critical Locus.

4.4 Proof of Theorem 4.1

In [6] we gave a detailed description of the position of the critical locus Cλ
in C2 for λ ∈ Λ, where Λ is a set of parameters of a small perturbation of
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quadratic polynomials with disconnected Julia set. Below we fix a parameter
λ0 = (a0, c0) ∈ Λ and use the description from [6] to construct a holomorphic
motion of the critical loci Cλ, for λ that belong to 1-parameter family in a
neighborhood of λ0. Let us first describe a fundamental domain of the critical
locus in C2. Let

Ωλ

x

y

Υλ

x = ∞

|a|α

Figure 3: Domains Ωλ and Υλ

Ωλ = {(x, y) ∈ C
2 : G+

a ≤ r, |y| ≤ α, |pc(y)− x| > |a|α}

Υλ = {(x, y) ∈ C
2 : G+

a (x, y) ≥ r, |y| ≤ ǫ}.

When a→ 0, domains Ωλ converge in Hausdorff topology to Ω(0,c). In [6] we
choose r, α and ǫ, depending on c, so that for c′ close to c and a small enough,
Cλ ∩ (Ωλ ∪Υλ) form a fundamental domain for the map fλ on the critical locus.
We further cut Ωλ∩U

+
λ into subdomains Ωα

λ , where α goes over all finite diadic
strings.

We recursively encode the n-th preimages ξα of 0 under the map z 7→ z2 + c
by diadic n-strings α. We assume that 0 itself is parametrized by ∅. Let α0,
α1 ∈ An+1 be the strings obtained by adding 0, 1 correspondingly to α on
the right. We encode preimages of ξα by α0 and α1. Since each connected
component of

{
r

2n+1
≤ Gpc

≤
r

2n
}

contains a unique n-preimage of the critical point, they are encoded by diadic
n-strings as well.

Ωα
(0,c) = {a connected component of {

r

2n+1
≤ G+

(0,c) ≤
r

2n
} ∩ Ω(0,c)}

that contains a line x = ξα, α ∈ An.
By the choice of r in [6], the connected components of

{
r

2n+1
≤ G+

λ ≤
r

2n
} ∩ Ωλ
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|y| = α

G+
a = r

2n

G+
a = r

2n+1

|uc| = aα
x

y

Figure 4: Domain Ωα
a

depend continuously on a in the Hausdorff topology. We denote by Ωα
λ contin-

uation of Ωα
(0,c).

Let uc = y2 + c− x.

Lemma 4.1 ([6, Lemma 11.4]). In Ωα
λ , where α ∈ An, n = 0, 1, . . . , the critical

locus is a connected sum of two disks D1 and D2 with two holes each. The
boundary of D1 belongs to {|y| = α}, and the holes of D1 have boundaries on
{|uc| = |a|α}. The boundary of D2 belongs to {G+

λ = r
2n } and the holes to

{G+
λ = r

2n+1 }.

A holomorphic motion near the boundaries {G+
λ = 2−nr} and {G+

λ = 2−(n+1) r }

is defined so that it preserves the values of the functions φ2
n

λ,+ and φ2
n+1

λ,+ respec-
tively. Similarly, the holomorphic motion of the boundaries {|y| = α} and
{|uc| = |a|α} preserves the values of y and uc.

We apply Theorem 3.1 to the piece of the critical locus inside Ωα
λ and extend

the holomorphic motion to the interior.

Lemma 4.2 ([6, Lemma 13.1]). There exists δ such that ∀|a| < δ the critical
locus Cλ in Υλ is a punctured disk, with a hole removed. The puncture is at the
point (∞, 0), the boundary of the hole belongs to {|pc(y)− x| = |a|α}.

We apply Theorem 3.1 to Cλ ∩ Υλ and extend the holomorphic motion to
the interior. We propogate the holomorphic to the rest of Cλ by dynamics. The
space Λ is path connected. Therefore, the critical loci Cλ for all maps that are
small perturbations of quadratic polynomials with disconnected Julia set are
quasiconformally equivalent.

13
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