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§0. Introduction. Parabolic bifurcations in one complex dimension demonstrate a wide
variety of interesting dynamical phenomena [D, DSZ, L, Mc, S]. Consider for example the
family of dynamical systems fε(z) = z + z2 + ε2. When ε = 0 then 0 is a parabolic fixed
point for f0. When ε 6= 0 the parabolic fixed point bifurcates into two fixed points. (The
use of the term ε2 in the formula allows us to distinguish these two fixed points.)

We can ask how the dynamical behavior of fε varies with ε. One way to capture this
is to consider the behavior of dynamically significant sets such as the Julia set, J , and the
filled Julia set, K, as functions of the parameter.

Theorem. ([D,L]) The functions ε 7→ J(fε) and ε 7→ K(fε) are discontinuous at ε = 0 when
viewed as mappings to the space of compact subsets of C with the Hausdorff topology.

In this paper we consider parabolic bifurcations of families of diffeomorphisms in two
complex dimensions. Specifically we consider a two variable family of diffeomorphisms
Fε : M →M given locally by

Fε(x, y) = (x+ x2 + ε2 + · · · , bεy + · · ·)

where |bε| < 1, and the ‘· · ·’ terms involve x, y and ε. When ε = 0 this map has the
origin as a fixed point and the eigenvalues of the derivative at the origin are 1 and b0. We
say that F0 is semi-parabolic at the origin. In [U1,2] it is shown that the set of points
attracted to O in forward time can be written as B ∪W ss(O), where B is a two complex
dimensional basin of attraction and W ss(O) is the one complex dimensional strong stable
manifold corresponding to the eigenvalue b0. The point O is not contained in the interior
of its attracting set, and we describe this by saying that the point is semi-attracting. The
set of points attracted to O in backward time can be written as Σ ∪ O where Σ is a one
complex dimensional manifold.

A convenient two dimensional analog of the class of polynomial maps in one dimension
is the family of polynomial diffeomorphisms of C2. According to [FM] any dynamically
interesting polynomial diffeomorphism is conjugate to a composition of generalized Hénon
maps; the degree 2 Hénon map is given in (1.1). (For general discussions of such maps
see [BS], [FS] and [HO].) Polynomial diffeomorphisms have constant Jacobian and to be
consistent with the assumptions above we assume that the Jacobian is less than one in
absolute value. Analogs of the filled Julia set are the sets K+ and K−, consisting of points
p so that Fn(p) remains bounded as n → ±∞. Analogs of the Julia set are the sets
J± = ∂K±. We also consider K = K+ ∩K− and J = J+ ∩ J−. It is a basic fact that the
one variable Julia set J is the closure of the set of expanding periodic points. We define J∗

to be the closure of the set of periodic saddle points. The set J∗ is contained in J and has
a number of other interesting characterizations: it is the Shilov boundary of K and is the
support of the unique measure of maximal entropy. It is an interesting question whether
these two sets are always equal.
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Theorem A. For X = J∗, J , J+, K, K+ the function ε 7→ X(Fε) is discontinuous at
ε = 0. For X = J−,K− the function ε 7→ X(Fε) is continuous.

Our approach follows the outlines of the approach of the corresponding result in one
variable. In the one variable case the first step is to analyze certain sequences of maps f

nj
εj ,

where the parameter εj and the number of iterates nj are both allowed to vary. The idea
is the following. Let p be a point in the basin of 0 for f0. When ε is small but non-zero the
fixed point at 0 breaks up into two fixed points. As n increases, the point fnε (p) will come
close to 0 and may pass between these two fixed points and exit on the other side. Following
standard terminology we refer to this behavior as “passing through the eggbeater”. In this
way it is possible to choose sequences εj and nj so that f

nj
εj (p) will converge to some point

on the other side of the eggbeater, in particular some point other than 0. The limit maps
which arise this way have a convenient description in terms of Fatou coordinates of the
map f0. A Fatou coordinate is a C-valued holomorphic map ϕ defined on an attracting
or repelling petal which satisfies the functional equation ϕ(f(p)) = ϕ(p) + 1. There is an
“incoming” Fatou coordinate ϕι on the attracting petal and an “outgoing” Fatou coordinate
ϕo on the repelling petal. Let τα(ζ) = ζ + α be the translation by α, acting on C, and let
tα := (ϕo)−1 ◦ τα ◦ ϕι for some α. Thus tα maps the incoming petal to the repelling petal.

Theorem. (Lavaurs) If εj → 0 and nj →∞ are sequences such that nj − π/εj → α, then
limj→∞ f

nj
εj = tα.

A sequence (εj , nj) as in this Theorem will be called an α-sequence. Shishikura [S] gives
a careful proof of this Theorem using the Uniformization Theorem in one dimension. In
Section 2, we re-prove the 1-dimensional result without using the Uniformization Theorem.
In Section 3 of this paper we prove the analogous result in two complex dimensions.

The existence of Fatou coordinates in the semi-parabolic case was established in [U1,2].
Let ϕι : B → C denote the Fatou coordinate on the attracting basin and ϕo : Σ → C the
Fatou coordinate on the repelling leaf. Note that unlike the one variable case the function
ϕι has a two complex dimensional domain. In fact the map ϕι is a submersion and defines
a foliation whose leaves are described in Theorem 1.2. Define Tα : B → Σ by the formula
Tα = (ϕo)−1 ◦ τα ◦ ϕι. We introduce a useful normalization (3.1), and Theorem 3.1 shows
that Fε can be put in this form. This simplifies the statement of the following:

Theorem 3.9. If Fε satisfies (3.1), and if εj → 0 and nj → ∞ are sequences such that
nj − π/εj → α, then limj→∞ F

nj
εj = Tα at all points of B.

We note that we are taking very high iterates of a dissipative diffeomorphism, so the
limiting map must have one-dimensional image.

When ε is small, a point may pass through the eggbeater repeatedly. We may use the
map Tα to model this behavior. In case Tα(p) happens to lie in B, we may define the iterate
T 2
α(p). A point for which Tnα can be defined for n iterations corresponds to a point which

passes through the eggbeater n times.
Following the approach of [D, L] in one dimension we may introduce sets J∗(F0, Tα)

and K+(F0, Tα) which reflect the behavior points in B under the maps F0 and Tα.

Theorem 1. Suppose that Fε is normalized as in (3.1). If εj is an α-sequence, then

lim inf
j→∞

J∗(Fεj ) ⊃ J∗(F0, Tα),
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where ‘lim inf’ is interpreted in the sense of Hausdorff topology.

Though we have stated Theorem 1 for polynomial diffeomorphisms in fact the definition
of the set J∗(Fε) makes sense for a general holomorphic diffeomorphism and Theorem 1 is
true in this broader setting.

Figure 1. Discontinuity of ε 7→ K+(Fa,ε) illustrated by complex linear slices in C2.
Fa,ε is given by equation (1.1) with a = .3; ε = 0 (left), a = .3, ε = .05 (right).

Theorem 2. Suppose that Fε is conjugate to a composition of generalized Hénon maps,
and Fε is normalized as in (3.1). If εj is an α-sequence, then we have

B ∩ lim sup
j→∞

K+(Fεj ) ⊂ K+(F0, Tα).

If the function ε 7→ J∗(Fε) were continuous at ε = 0, then the limit of J∗(Fεj ) along an
α-sequence would be independent of α and would be equal to J∗(F0). Theorem 1 implies
that J∗(F0) would have to contain every set J ∗α . Theorem 2 implies that J∗(F0) would
have to be contained in every set K+(F0, Tα). Our next result shows that these conditions
are incompatible.

Theorem 4.4. For each p ∈ B there are constants α and α′ such that p ∈ J∗(F0, Tα) but
p /∈ K+(F0, Tα′).

We can use Theorem 4.4 to prove the discontinuity statement of the maps ε 7→ J∗(Fε)
and ε 7→ K+(Fε), but in fact the same argument shows the discontinuity of any dynamically
defined set X which is sandwiched between J∗ and K+. Using this idea, we now give a
proof of Theorem A.

Proof of Theorem A. We begin by proving the statement concerning discontinuity. Let
X be one of the sets J , J∗, J+, K, K+. Assume that the function ε 7→ X(Fε) is con-
tinuous at ε = 0. Choose a p in B and let α and α′ be as in Theorem 3. Let εj be
an α sequence and let ε′j be an α′ sequence. Since J∗(Fε) ⊂ X(Fε) ⊂ K+(Fε) we have
that J∗(F0, Tα) ⊂ lim infj→∞ J∗(Fεj ) ⊂ lim infj→∞X(Fεj ) = X(F0) by Theorem 1 and
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K+(F0, Tα′) ⊃ lim infj→∞K+(Fε′j ) ⊃ lim infj→∞X(Fε′j ) = X(F0) by Theorem 2. This
gives J∗(F0, Tα) ⊂ K+(F0, T

′
α). On the other hand p ∈ J∗(F0, Tα) but p /∈ K+(F0, T

′
α) by

Theorem 3 so we arrive at a contradiction.
The fact that J− and K− vary continuously follows from the fact that for polynomial

diffeomorphisms which contract area the sets J− and K− are equal (see [FM]). We combine
this with the facts from Proposition 4.7 that J− varies lower semi-continuously and K−

varies upper semi-continuously.

Computer pictures illustrate the behaviors described in Theorems 1 and 2. Consider
the family of quadratic Hénon diffeomorphisms of C2:

Fa,ε(x, y) = ((1 + a)x− ay + x2 + ε2, x+ ε2). (1.1)

The parameters are chosen so that F is semi-parabolic when ε = 0; the origin O is the
unique fixed point and has multipliers 1 and a. Figure 1 shows the slice K+ ∩ T , where T
is the complex line passing through O and corresponding to the eigenvalue 1 when ε = 0.
We color points according to the value of the Green function. The set K+ = {G+ = 0} is
colored black. It is hard to see black in the right hand of Figure 1 because the set T ∩K+

is small. But we note that G+ is harmonic where it is nonzero, so points of T ∩K+ must be
present in the apparent boundaries between regions of different color. In the perturbation
shown in Figure 1, there is not much change to the “outside” of K+, whereas the “inside”
shows the effect of an “implosion.” Further discussion of the figures in this paper is given
at the end of §1.

Acknowledgements. We thank M. Shishikura for his generous advice and encouragement
throughout this work. This project began when E.B. and J.S. visited RIMS for a semester,
and they wish to thank Kyoto University for its continued hospitality. We also wish to
thank H. Inou and X. Buff.

§1. Fatou coordinates and transition functions. Let M be a 2-dimensional complex
manifold, and let F be an automorphism of M . Let O be a fixed point which is a semi-
attracting, semi-parabolic. By [U1] we may choose i and j and change coordinates so that
O = (0, 0), and F has the form

x1 = x+ a2x
2 + . . .+ aix

i + ai+1(y)xi+1 + . . .

y1 = by + b1xy + . . .+ bjx
jy + bj+1(y)xj+1 + . . .

(1.2)

We will suppose that a2 6= 0, and thus by scaling coordinates, we may assume a2 = 1.
(In the case where a2 = . . . = am = 0, am+1 6= 0, the results analogous to [U1] have been
treated by Hakim [H].) We may choose coordinates so that the local stable manifold is given
by W s

loc(O) = {x = 0, |y| < 1}. For r, η0 > 0, we set Bιr,η0 = {|x + r| < r, |y| < η0}. If

we take r, η0 small, then the iterates FnB
ι

r,η0 shrink to O as n→∞. Further, Bιr,η0 plays
the role of the “incoming petal” and is a base of convergence in the sense of [U1], which
is to say that B :=

⋃
n≥0 F

−nBιr,η0 is the set of points where the forward iterates converge
locally uniformly to O.
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With a3 as in (1.2), we set q = a3 − 1 and choosing the principal logarithm, we set

wι(x, y) := − 1

x
− q log(−x). (1.3)

It follows (see [U1]) that for p ∈ B the limit

ϕι(p) = lim
n→∞

(wι(Fn(p))− n)

converges to an analytic function ϕι : B → C satisfying the property of an Abel-Fatou
coordinate: ϕι ◦ F = ϕι + 1. Further,

ϕι(x, y)− wι(x) = B(x, y) (1.4)

where B is bounded on Bιr,η0 , and in fact this condition defines ϕι up to additive constant.
Let us note a result from [U1]:

Theorem 1.1. There is an entire function Φ2(x, y) such that Φ = (ϕι,Φ2) is biholomorphic
Φ = (X,Y ) : B → C2, and f corresponds to (X,Y ) 7→ (X + 1, Y ).

By Theorem 1.1, ϕι has nonvanishing gradient and thus defines a foliation of B whose
leaves are closed complex submanifolds which are holomorphically equivalent to C. We
conclude from (1.4) that if we take r small, then for fixed |y0| < η0, x 7→ ϕι(x, y0) is
univalent on {|x + r| < r}, and the image is approximately Gr := {wι(|x + r| < r). It
follows that there is a domain G ⊂ C such that if ξ ∈ G, then there is an analytic function
ψξ(y) for |y| < η0 such that

{(x, y) ∈ Br,η0 : ϕι(x, y) = ξ} = {x = ψξ(y) : |y| < η0}.

We may choose 0 < r1 < r2 such that Br1,η0 is contained in the union of such graphs, and
each of these graphs is contained in Br2,η0 . We use this to prove that the fibers {ϕι = const}
are strong stable manifolds in the sense of exponential convergence in (1.5), whereas the
convergence in the parabolic direction is quadratic (cf. [Mi, Lemma 10.1]).

Figure 2a. Unstable slices of K+ for Fa,ε. a = .3, ε = 0 (left); a = .3, ε = .05 (right).
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Figure 2b. Zooms of Figure 2a.

Theorem 1.2. For p1, p2 ∈ B such that p1 6= p2 and ϕι(p1) = ϕι(p2), we have

lim
n→+∞

1

n
log dist(Fnp1, F

np2) = log |b|. (1.5)

Conversely, if ϕι(p1) 6= ϕι(p2), then limn→+∞
(
n2 · dist(Fnp1, F

np2)
)
6= 0.

Proof. If we iterate the points forward, they will enter the set Br,η0 , so we may assume
that p1, p2 ∈ Br,η0 . If ϕι(p1) = ϕι(p2) we may assume that they are contained in a graph
{x = ψξ(y) : |y| < η0}. The behavior in the y-direction is essentially a contraction by a
factor of approximately |b|, so the distance from Fnp1 to Fnp2 is essentially contracted by
|b|, which gives the first assertion.

For the second assertion, we note that along a forward orbit we have

ϕι(x, y) = − 1

x
− q log(−x) + γ + o(1),

where o(1) refers to a term which vanishes as the orbit tends toO. Without loss of generality,
we may suppose that γ = 0. From this we find

x− qx2 log(−x) + · · · = − 1

ϕι
.

Now we substitute this expression into itself and obtain

x = − 1

ϕι
+

q

(ϕι)2
log

(
1

ϕι

)
+ · · · .

If we write ϕι(xi, yi) = ci for i = 1, 2, then ϕι(fn(xi, yi)) = ci + n, and fn(xi, yi) =
(xi,n, yi,n) satisfies

xi,n = − 1

ci + n
+

q

(ci + n)2
log(ci + n)−1 + · · ·

Thus x1,n−x2,n = (c1−c2)/ ((c1 + n)(c2 + n))+O(n−3 log n), so limn→∞ n2|x1,n−x2,n| =
|c1 − c2|.
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We may also define the asymptotic curve

Σ := {p ∈M − {O} : f−np→ O as n→∞)}. (1.6)

This is a Riemann surface which is equivalent to C. Let us define Bor := {|x− r| < r, |y| <
η0}, which is the analogue of the “outgoing petal.” By [U2], there is a component Σ0 of
Σ∩Bor such that Σ0 is a smooth graph {ψ(x) = y, |x− r| < r}, and ψ(0) = 0. Thus O is in
the boundary of a smooth piece of Σ. If ψ extended analytically past x = 0, then Σ ∼= C
would be contained in a larger complex manifold, which would have to be P1. Thus M
would contain a compact, complex curve. Stein manifolds (C2, for instance) do not have
such curves, so we have:

Proposition 1.3. If M is Stein, then Σ cannot be extended analytically past O.

Examples. The first example is the product M0 = P1 ×C. Let F act as translation on
P1 × {0} with fixed point O = (∞, 0) ∈ P1 × {0}, and let F multiply the factor C by b.
Then Σ = P1 × {0} −O, and B = Σ×C, so we see that Σ ⊂ B.

For the second example, we start with the linear map L(x, y) = (b(x + y), by) on C2,
so the x-axis X = {y = 0} is invariant. The origin is an attracting fixed point, and we let
M1 denote C2 blown up at the origin. Thus L lifts to a biholomorphic map of M1. We
write the exceptional fiber as E and note that E is equivalent to P1, and L is equivalent to
translation on E. The fixed point of L|E is E ∩X. We have Σ = E −X and B = M1 −X,
and B contains Σ. The second example is different from the first because E has negative
self-intersection.

Both M0 and M1 fail to be Stein because they contain compact holomorphic curves.
Similar examples can be constructed for all of the Hirzebruch surfaces.

Figure 3. Basin B in Fatou coordinates; a = .3; 10 periods (left) and detail (right).

In order to define the outgoing Fatou coordinate, we set

wo(x, y) := − 1

x
− q log(x)
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and we define a map ϕo : Σ→ C by setting

ϕo(p) = lim
n→∞

(wo(F−n(p)) + n)

This satisfies ϕo(f) = ϕo + 1, and it is a bijection (see [U2]). For α ∈ C we define the
translation τα : C→ C by τα(ζ) = ζ + α. We define

Tα := (ϕo)−1 ◦ τα ◦ ϕι : B → Σ

We have
F ◦ Tα = Tα+1 = Tα ◦ F.

Since ϕι and ϕo are defined up to additive constants, the family {Tα} is independent of the
choice of ϕι and ϕo.

Let us set Ω := ϕo(B ∩ Σ) ⊂ C. Thus we have a family of maps hα : Ω→ C given by

hα := τα ◦ ϕι ◦ (ϕo)−1

These maps all agree up to an additive constant, so the maps {hα} all have the same
set of critical points; changing α serves to change the critical values. The critical points
correspond to the points ζc where (ϕo)−1(ζc) is a point of tangency between Σ and the
strong stable fibration {ϕι = const}.

Since we may iterate the map hα as long as the point stays inside Ω, this yields a family
of partially defined dynamical systems. Each map hα satisfies hα(ζ + 1) = hα(ζ) + 1. For
R > 0, let us write Ω±R := {ζ ∈ C : ±=ζ > R}, and choose R large enough that Ω±R ⊂ Ω.
On Ω±R we have

hα(ζ) = ζ + α+ c±0 +
∑
n>0

c±n e
±2nπiζ .

In particular hα is injective on Ω±R if R is sufficiently large. Since hα is periodic, it defines
a map of the cylinder C/Z; we see that the upper (resp. lower) end of the cylinder will be
attracting if =(α+ c+0 ) > 0 (resp. =(α+ c−0 ) < 0).

In the construction of the Fatou coordinates we have

ϕι(x, y) = − 1

x
− q log(−x) + o(1), (x, y) ∈ Bloc,

ϕo(x, y) = − 1

x
− q log(x) + o(1), (x, y) ∈ Σloc.

Thus if we compare the values of log at the upper and lower ends of the cylinders and use
this in the formula for hα, we find c±0 = ±πiq, which gives the normalization c+0 + c−0 = 0.
For comparison, we note that Shishikura [S] uses the normalization c+0 = 0. In the case
of the semi-parabolic map (1.1) with ε = 0, we find that if we normalize the form (1.2) so
that a2 = 1, then we have a3 = 2a/(a− 1) and q = a3 − 1, so

c+0 = πi
a+ 1

a− 1
(1.7)

We make an elementary observation:

8



Proposition 1.5. If M is Stein, then B is a component of normality of the family {fn :
n ≥ 0}, and thus B is polynomially convex in M . Since Σ is simply connected, it follows
that every component of B ∩ Σ is simply connected.

Let Ω± denote the component of Ω which contains Ω±R.

Theorem 1.6. Assume that M is Stein, and Ω 6= C. If Ω′ is a connected component of Ω,
then the function hα|Ω′ cannot be continued analytically over any boundary point of Ω′. In
particular, since Ω± 6= C, the derivative h′α is nonconstant on both Ω+ and Ω−, and there
exist points in both of these sets where |h′α| < 1 and where |h′α| > 1.

Proof. Let us fix a boundary point ζ0 ∈ ∂Ω′. Let ∆ be a disk containing ζ0, and let ∆1 be
a component of ∆∩Ω′. We will show that hα is not bounded on ∆1. We know that (ϕo)−1 :
C → Σ is entire, so (ϕo)−1(ζ) → Σ ∩ ∂B as Ω 3 ζ → ∂Ω. If Φ = (ϕι,Φ2) is the map from
Theorem 1.1, then we have ||Φ((ϕo)−1(ζ))||2 = |ϕι((ϕo)−1(ζ))|2 + |Φ2((ϕo)−1(ζ))|2 → ∞
as ζ ∈ ∆1 approaches ∂Ω ∩ ∆1. If hα is bounded near ζ0, then so is ϕι. It follows that
|Φ2(ζ)| → ∞ as ζ → ∂∆1 near ζ0. But this is not possible, since by Proposition 1.5, Ω′ is
simply connected, so ∂∆1 has no isolated boundary points.

Thus hα cannot be constant on any component of Ω. In particular, the derivative is
not constantly zero on Ω±. Since limζ→∞ h′α = 1, by the Maximum Principle there must
be points near infinity where |h′α| > 1 and where |h′α| < 1.

We let Ω̄ denote the image of Ω in the cylinder C/Z. Then hα passes to an analytic
map h̄α : Ω̄→ C/Z. Further, h̄α extends analytically past each of the ends of the cylinder.
For instance, at the upper end of the cylinder, h̄α is analytic, as a function of the variable
z = e2πiζ , in a neighborhood of z = 0.

Let us close this section with the comment that certain aspects of this construction are
local at O. In case F is defined in a neighborhood U of O, we may define the local basin

Bloc := {p : fnp ∈ U ∀n ≥ 0, fnp→ O locally uniformly as n→∞},

as well as the local asymptotic curve Σloc. Similarly, we have Fatou coordinates ϕι and ϕo

on Bloc and Σloc. In this case there is an R such that

ϕι(Bloc) ⊃ {ζ ∈ C : −<ζ +R < |=ζ|}, ϕo(Σloc) ⊃ {ζ ∈ C : <ζ +R < |=ζ|}.

We define WR := {ζ ∈ C : |<ζ|+R < |=ζ|}, so for R sufficiently large,

ϕι/o(Bloc ∩ Σloc) ⊃WR,

and possibly choosing R even larger, hα = τα ◦ϕι ◦H is defined as a map of WR to C. Note
that we have hα(ζ + 1) = hα(ζ) + 1 for ζ ∈ WR such that both sides of the equation are
defined. If we shrink the domain U of F , we may need to increase R, but the germ of hα
at infinity is unchanged. Let h•α we denote the germ at infinity of hα on WR. It is evident
that:

9



Theorem 1.7. If F and F ′ are locally holomorphically conjugate at O, then there is a
translation on C which conjugates the families of germs {h•α} to {h′•α}.

Graphical representation. In Figure 1, we saw slices of sets by planes. For an invariant
picture, we may slice by unstable manifolds of periodic saddle points. If Q is a periodic
point of saddle type, then the unstable manifold Wu(Q) may be uniformized by C so that
Q corresponds to 0 ∈ C. The restriction of F to Wu(Q) corresponds to a linear map of C
in the uniformizing coordinate, so the slice picture is self-similar. The unstable slice picture
cannot be taken at the fixed point O when ε = 0 because it is not a saddle. Instead, we can
use the unique 2-cycle {Q,F (Q)} which remains of saddle type throughout the bifurcation.

The left hand side of Figure 2a shows this for a = .3; the point Q corresponds to the
tip at the rightmost point, and the factor for self-similarity is approximately 8. The two
pictures, Figure 1 left and Figure 2a left, are slices at different points O and Q of ∂B.
However, the “tip” shape of the slice Wu(Q) ∩ B at Q appears to be repeated densely at
small scales in the slice T ∩ B as well as in Wu(Q) ∩ B. This might be explained by the
existence of transversal intersections between the stable manifold W s(Q) and T at a dense
subset of T ∩ ∂B Similarly the “cusp” at O of the slice T ∩ B appears to be repeated at
small scales in the slice Wu(Q) ∩ B as well as in T ∩ B. A similar result, showing that
all unstable slices have features in common has been formulated and proved for hyperbolic
maps in [BS7].

In general, the set K+ where the orbits are bounded, coincides with {G+ = 0}. This
set is of primary interest, even if B = ∅ . In Figures 1 and 2, B seems to have “exploded”
leaving K+ = ∂K+ = J+ without interior when ε 6= 0. On the other hand, the computer
detail in Figure 2b persists as ε → 0. This means that ε 7→ J+(Fε) will appear to have
“exploded” a little bit as ε 6= 0. We will see a marked similarity between Figures 2b and 5,
which corresponds to Theorems 1 and 2.

We may use ϕι,o to represent B∩Σ graphically for the Hénon family F (x, y) discussed
above. We may use ϕo to parametrize Σ. In Figure 3 we have drawn part of the slice B∩Σ,
with level sets of the real and imaginary parts of ϕι. One critical point for hα (as well as its
complex conjugate and translates) is clearly evident on the left hand picture, and at least
two more critical points are evident on the right. Figures 1 and 3 give invariant slices of
the same basins and share certain features, but Figure 3, which is specialized to parabolic
basins, has more focus on the interior; and the two pictures are localized differently.

§2. “Almost Fatou” coordinates: dimension 1. Consider a family of maps

fε(x) = x+ (x2 + ε2)αε(x), αε(x) = 1 + p ε+ (q + 1)x+ · · · . (2.1)

We are interested in analyzing fnε (x) for n large and ε small and fnε (x) near 0. The first
step is to introduce a change of coordinates in which fε is close to a translation. If we
change coordinates to (x̂, ε̂) given by x = (1− p ε̂)x̂, with ε = ε̂− p ε̂2, then we have p = 0.
Define

γε(x) =
αε(x)

1 + xαε(x)
= 1 + qx+ · · · (2.2)

Let ε ∈ C be such that
0 < <ε, |=ε| ≤ const. |ε|2 (2.3)
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We consider the coordinate change

x 7→ uε =
1

ε
arctan

x

ε
=

1

2iε
log

iε− x
iε+ x

(2.4)

4
__

2
__

2
__ +

4
__

2
__

2
__  

Figure 4. Mapping of the slit region by uε for ε > 0.

To describe this coordinate change, we let S(ε, R) be the union of two disks of radius
R as in Figure 4. R will be chosen small enough that the · · · terms in (2.1) and (2.2) are
small. Note, however, that the proportions in Figure 4 may be misleading because R will be
fixed while ε→ 0, so S(ε, R) will be of a fixed diameter while D(ε) shrinks. Let Hι

ε denote
the half-space to the left of the line εiR; this is the space of “incoming” points. Since ε is
almost real, Hι

ε is approximately the left half plane. Figure 4 shows the boundary of Hι
ε

(dashed) and its image (also dashed). We let S(ε, R)ι = S(ε, R) ∩Hι
ε denote the incoming

half of S(ε, R). The image uε(S(ε, R)ι) is bounded by of two parallel lines: one of them
passes through − π

2ε + ρ, and the other is inside the shaded strip. Similarly, we define Ho
ε

to be the half-plane to the right, and S(ε, R)o = S(ε, R) ∩Ho
ε to be the “outgoing” points.

The image of Dε := {|x| < |ε|} (shaded) is the shaded strip on the right hand side. An
important feature of this picture is that if R is fixed, then ρ stays bounded as ε→ 0.

From (2.1) and (2.2) we have

iε− fε(x)

iε+ fε(x)
=

(iε− x){1 + (x+ iε)αε(x)}
(iε+ x){1 + (x− iε)αε(x)}

=
(iε− x)(1 + iεγε(x))

(iε+ x)(1− iεγε(x))

Thus we have

uε(fε(x))− uε(x) =
1

2iε
log

1 + iεγε(x)

1− iεγε(x)

=
1

iε

{
iεγε(x) +

1

3
(iεγε(x))3 + · · ·

}
= γε(x)− ε2

3
γε(x)3 + · · ·

= 1 + qx+O(|ε|2 + |x|2)

(2.5)

Proposition 2.1. For any compact subset C ⊂ Sι(R), there are ε0 > 0 and C0,K0 > 0
such that for |ε| < ε0 and x ∈ C, the following hold:

11



(i) f jε (x) ∈ Sι(ε, R) ∪Dε, for 0 ≤ j ≤ 3π
5|ε| −K0

(ii) |f jε (x)| ≤ C0 max
{

2
j , |ε|

}
, for 0 ≤ j ≤ 3π

5|ε| −K0

(iii) f j(x) ∈ Dε for π
3|ε| ≤ j ≤

3π
5|ε| −K0.

Proof. First we note that

uε(x) +
π

2ε
→ − 1

x
(ε→ 0)

uniformly on compact subsets of Sι(0, R). So there is a K0 > 0 such that

− π

2|ε|
< <

(
ε

|ε|
uε(x)

)
< − π

2|ε|
+K0

on C. We have
3

4
< <

(
ε

|ε|
uε(fε(x))

)
−<

(
ε

|ε|
uε(x)

)
<

5

4

and so it follows that

− π

2|ε|
+

3j

4
< <

(
ε

|ε|
uε(f

j
ε (x))

)
< − π

2|ε|
+

5j

4
+K0. (2.6)

If 0 ≤ j < 3π/5|ε| −K0, then

<
(
ε

|ε|
uε(f

j
ε (x))

)
<

π

4|ε|

and hence f jε (x) ∈ Sι(ε, R) ∪Dε, which proves (i).
For (ii) we note that the function tan z maps any line <z = a (a ∈ R) to the circular

arc with endpoints ±i and passing through the point tan a. It follows that |<z| < π
2 ⇒

| tan z| ≤ 1, and π
4 ≤ |<z| <

π
2 implies that | tan z| ≤ tan |<z| < 1

π
2−|<z|

. By (2.4) we have

−π
2
≤ <(εuε) ≤ −

π

4
⇒ |x| ≤ |ε| tan |<(εuε)| <

|ε|
π
2 + <(εuε)

and |<(εuε)| ≤ π
4 implies that |x| ≤ |ε|. Now by (2.6) we have

π

2|ε|
+ <

(
ε

|ε|
uε(fε(x)

)
≥ cj

for some c. This shows (ii).
If π/(3|ε|) ≤ j < 3π/(5|ε|)−K0, then by (2.6)

− π

4|ε|
< <

(
ε

|ε|
uε(f

j
ε (x))

)
<

π

4|ε|

and hence f jε (x) ∈ Dε, which proves (iii).
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Next, with q as in (2.2), we define

wε(x) = uε(x)− q

2
log

(
1 +

x2

ε2

)
=

1

2iε
log

iε− x
iε+ x

− q

2
log(ε2 + x2) + q log ε

The corresponding incoming and outgoing versions are obtained by adding terms that
depend on ε but do not depend on x:

wι/oε : = wε(x)− q log ε± π

2ε

=
1

ε

(
±π

2
+ arctan

x

ε

)
− q

2
log(ε2 + x2)

Lemma 2.2. limε→0 w
ι
ε = wι0, and limε→0 w

o
ε = wo0.

Let us define Aε(x) := wε(fε(x)) − wε(x) − 1, which measures how far wε(x) is from
being a Fatou coordinate.

Proposition 2.3. Aε(x) = O(|ε|2 + |x|2).

Proof. First we observe that

ε2 + fε(x)2 = ε2 + {x+ (ε2 + x2)αε(x)}2

= ε2 + x2 + 2x(ε2 + x2)αε(x) + (ε2 + x2)αε(x)2

= (ε2 + x2)
(
1 + 2xαε(x) + (ε2 + x2)αε(x)2

)
Thus

log

(
1 +

fε(x)2

ε2

)
− log

(
1 +

x2

ε2

)
= log(1 + 2xαε(x) + · · ·)

= 2xαε(x) +O(x2)

= 2x+O(|(ε, x)|2)

It follows that

wε(fε(x))− wε(x) =

= (uε(fε(x))− uε(x)) +
q

2

(
log

(
1 +

f2
ε (x)

ε2

)
− log

(
1 +

x2

ε2

))
= (1 + qx+O(|ε|2 + |x|2)− q

2

(
2x+O(|ε|2 + |x|2)

)
= 1 +O(|ε|2 + |x|2)

which gives the desired result.

We note, too, that
Aε(x) = A0(x) + εÃ(x) +O(ε2) (2.7)

where Ã(x) = O(x).
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Corollary 2.4. w
ι/o
ε (fε(x))− wι/oε (x)− 1 = O(|ε|2 + |x|2)

Lemma 2.5. There exists K0 > 0 such that: If x, fε(x), · · · , fnε (x) ∈ S(ε, R), then

|wε(fnε (x))− wε(x)− n| ≤ K0

and hence
|woε (fnε (x))− wιε(x) +

π

ε
− n| ≤ K0

Proof. We have

wε(f
n
ε (x))− wε(x)− n =

n−1∑
j=0

Aε(f
j
ε (x)).

Choose 0 < n1 < n2 < n such that

f jε (x) ∈ Sι(ε, R)−Dε, 0 ≤ j ≤ n1 − 1

f jε (x) ∈ Dε, n1 ≤ j ≤ n2 − 1

f jε (x) ∈ So(ε, R)−Dε, n2 ≤ j ≤ n

Then n2 − n1 ≤ const/|ε|, and

|Aε(f jε (x))| ≤ const/j2, 0 ≤ j ≤ n1 − 1

|Aε(f jε (x))| ≤ const |ε|2, n1 ≤ j ≤ n2 − 1

|Aε(f jε (x))| ≤ const/(n− j)2, n2 ≤ j ≤ n

This proves the Lemma.

We will use the following condition:

{ni, εi} is a sequence such that
π

2εi
− ni is bounded (2.8)

Recall that {ji, εi} is an α-sequence if εi → 0, and ji − π
εi
→ α as i → ∞. For instance,

(m, εm) with εm = π
m−α is an α sequence. Every α-sequence satisfies (2.3), and if {ji, εi}

is an α-sequence, then {ji/2, εi} satisfies (2.8)

Proposition 2.6. If (2.8) holds, and if C is a compact subset of Sι(R), then {fniεi } is
uniformly bounded and forms a normal family on C.

We define an almost Fatou coordinate in the incoming direction:

ϕιε,n(x) = wιε(f
n
ε (x))− n = wιε(x) +

n−1∑
j=0

Aε(f
j
ε (x)).

We recall that B denotes the parabolic basin of points where the iterates f j converge locally
uniformly to O = (0, 0).
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Theorem 2.7. If (2.8) holds, then on B we have

lim
j→∞

ϕιεj ,nj = ϕι.

Proof. If x ∈ B, we may assume that x ∈ S(ε, R)ι, where ε and R are as above. If we set

ϕι0,n = wι0 +
∑n−1
j=0 A0(f j0x), we have ϕι = limn→∞ ϕι0,n. We consider

ϕιε,n − ϕι0,n = wιε(x)− wι0(x) +

n−1∑
j=0

(
Aε(f

j
ε (x))−A0(f j0 (x))

)
.

We will show that this difference vanishes as ε = εj → 0 and n = nj → ∞. We have
wιε − wι0 → 0 by Lemma 2.2. The summation is estimated by∣∣∣∑∣∣∣ ≤∑∣∣∣A0(f jε (x))−A0(f j0 (x))

∣∣∣+
∑∣∣Aε(f jε (x))−A0(f jε (x))

∣∣ =
∑

1
+
∑

2

For the first sum, we recall that A0(x) = O(x2), and so by Proposition 2.1 we have that
the two series are summable:

n−1∑
j=1

∣∣A0(f jε )
∣∣+
∣∣∣A0(f j0 )

∣∣∣ ≤ K π
2|ε|∑
j=1

(
1

j2
+ |ε|2

)
≤ K

π|ε|
2

+

∞∑
j=1

1

j2

 ≤ B
as n → ∞ and ε → 0. For δ > 0 we choose J such that

∑∞
J j−2 < δ. If we write∑

1 =
∑J

1 +
∑∞
J+1, then we see that

∑∞
J+1 ≤ πK|ε|/2 + δ. On the other hand, for fixed j

we have A0(f jε )→ A0(f j0 ) as ε→ 0, so we conclude that

J∑
1

=

J∑
1

∣∣∣A0(f jε )−A0(f j0 )
∣∣∣→ 0

as ε→ 0. In conclusion, we see that limε→0

∑
1 ≤ Kδ for all δ, so that

∑
1 → 0.

For the second part, we use (2.7) so that

∑
2
≤
n−1∑
j=0

∣∣Aε(f jε )−A0(f jε )
∣∣ =

n−1∑
j=0

∣∣∣εÃ(f jε )
∣∣∣+

π
2|ε|∑
j=0

K|ε|2

≤ K ′|ε|+K ′|ε|

π
2|ε|∑
j=1

1

j
≤ K ′′|ε| log

(
π

2|ε|

)

and this last term vanishes as ε→ 0, which completes the proof.

Using f−1
ε and woε , we may also define almost Fatou coordinates in the outgoing direc-

tion, and the direct analogue of Theorem 2.7 holds:
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Corollary 2.8. The inverse maps (ϕoεj ,nj )
−1 converge uniformly to (ϕo)−1 on compact

subsets of ϕo(S(R)o).

Let us consider Tα := (ϕo)−1 ◦ τα ◦ ϕι. For α ∈ C, we define Dα ⊂ C to be the
set where Tα is defined. The quantities ϕι/o − wι/o are bounded, so the range of ϕι is
approximately {<(ζ) < K} and the range of ϕo is approximately {<(ζ) < −K}. Thus, for
each x ∈ S(R)ι, we have Dα 6= ∅ if <(α) is sufficiently negative.

From Theorem 2.7 we have:

Theorem 2.9. If (εj , nj) is an α-sequence, then limj→∞ f
nj
εj = Tα on Dα.

Proof. We may assume that x ∈ S(ε, R)ι. Write x′ = f
nj
εj (x). Choose mj and m′j so

that nj = mj + m′j , and (2.8) holds for {mj} and {m′j}. Thus fmj (x) = f−m
′
j (x′j), so

wεjf
mj (x) = wεjf

−m′
j (x′j). We rewrite this as

ϕιεj ,mj (x) +mj −
π

2εj
= ϕoεj ,m′

j
(x′j)−m′j +

π

2εj
,

or
ϕιεj ,mj (x) + nj −

π

εj
= ϕoεj ,m′

j
(x′j). (2.9)

By Theorem 2.7, ϕιεj ,mj (x) converges to ϕι(x) = ζ0 ∈ C. Since x ∈ Dα, we know

that ζ0 + α is in the range ϕo(S(R)o). If we replace x by a preimage f−kx, we will have
ϕι(x) = ζ0−k. We may assume that ζ0−k is in the range of ϕo, and so (ϕoεj ,m′

j
)−1 converges

to (ϕo)−1 in a neighborhood of ζ0−k. It follows that the points x′j = fkεj (ϕ
o
εj ,m′

j
)−1(ζ0−k)

converge to a limit x′. As j → ∞, we may pass to a limit in (2.9) to obtain ϕι(x) + α =
ϕo(x′). Applying (ϕo)−1 to both sides of the equation, we see that Tαx = x′.

§3. Two-dimensional case: Convergence of the “Almost Fatou” coordinate.
We consider a one-parameter family Fε, varying analytically in ε, such that F0(x, y) =
(x + x2 + · · · , by + · · ·). The fixed point O = (0, 0) has multiplicity 2 as a solution of the
fixed point equation, and we will assume that for ε 6= 0 the fixed point O will split into
a pair of fixed points. We parametrize so that the fixed points are (±iε, 0) + O(ε2). We
consider here only fixed points of multiplicity two. We suspect that perturbations of fixed
points of higher multiplicity might be quite complicated, since this is already the case in
dimension 1, as was shown by Oudkerk [O1,2].

Theorem 3.1. By changing coordinates and reparametrizing ε, we may suppose that our
family of maps has the local form

Fε(x, y) =
(
x+ (x2 + ε2)αε(x, y), bε(x)y + (x2 + ε2)βε(x, y)

)
(3.1)

where αε = 1+(q+1)x+ry+O(|x|2+|y|2+|ε|2), b0(0) = b. In particular, the points (±iε, 0)
are fixed, the lines {x = ±iε} are local stable manifolds, and the map is locally linear on the
stable manifolds. Further, the multipliers at the fixed points are (1± 2iε, bε(±iε)) +O(ε2).

Proof. By a change of variables, we may assume that the fixed points are (±iε, 0). Each
fixed point will have eigenvalues 1 + O(ε) and b + O(ε). There will be local strong stable
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manifolds corresponding to the eigenvalue b + O(ε). We apply the graph transform as in
[HPS, §5A] in order to obtain a domain for the stable manifold which is uniformly large in
ε. Rescaling coordinates, we may assume that we have graphs

W s
loc(±iε, 0) = {x = ψ±(ε, y) : |y| < 1},

where ψ± is analytic in ε and y. Let us consider new coordinates X,Y defined by x =
χ0(ε, y) + Xχ1(ε, y), Y = y, where we set χ0 = − 1

2 (ψ+ + ψ−) and χ1 = 1
2iε (−ψ

+ + ψ−).
Since ψ± are uniquely determined and analytic in ε, we have limε→0(ψ+(ε, y)−ψ−(ε, y)) = 0,
from which we conclude that χ1 is analytic in (ε, y).

In order for F to have the desired form in the y-coordinate, we need to change coor-
dinates so that y 7→ Fε(±iε, y) is linear in y. We set b±ε = ∂F

∂y (±iε, 0). There is a unique

function ξ±ε (y) = y + O(y2) such that F (±iε, ξ±ε (y)) = b±ε ξ
±
ε (y). We note that ξ±ε is holo-

morphic in ε, and ξ+
0 = bξ−0 . Thus ε 7→ (ξ−ε − ξ+

ε )/ε is analytic, and we may define a new
coordinate system (X,Y ) with X = x and Y = [(iε−x)ξ−ε (y) + (x+ iε)ξ+

ε (y)]/(2iε). F has
the desired form in the new coordinate system.

Our map now has the form (3.1) with αε = 1+p ε+(q+1)x+ry+O(|x|2 + |y|2 + |ε|2).
We can make p = 0 using the coordinate change x = (1−p ε̂)x̂, with ε̂ defined by ε = ε̂−p ε̂2.
The remaining statements in the Theorem are easy consequences of (3.1).

One motivation for the normalization in (3.1) is that for the map z 7→ z + z2 + ε2, the
fixed points are ±iε, and the multipliers are 1 + 2iε.

Remarks about α-sequences. If we wish to use Theorems 1 and 2 for a specific family
of mappings, we need first to make the changes of coordinates involved with Theorem 3.1.
This influences the value of α which appears in the α-sequence {εj}. That is, if εj is an
α-sequence, and if ε = ε̂− pε̂2, then ε̂j is an α̂-sequence with α̂ = α+ πp.

Let us discuss how the normalization relates to the Hénon maps Fa,ε in (1.1). If we
first make a linear change of coordinates so that the axes are the eigen-directions of Dfε at
O, then Fa,ε becomes (x+ x2/(1− a) + ε2 + ay(2x+ ay)/(1− a), ay +O(|x|2 + |y|2)); and
in particular the p ε term, discussed above, vanishes. Now in order to have the form (3.1)
we conjugate with the dilation x 7→ (1− a)x. This gives us (x+ x2 + ε2/(1− a), ay) + · · ·.
Thus for condition (3.1) we use the parameter ε′ = ε/(1 − a)1/2, and this means that for
Theorems 1, 2, and 3.9, it is ε′ which must be part of an α-sequence.

As in the 1-dimensional case we define

γε(x, y) =
αε(x, y)

1 + αε(x, y)
= 1 + qx+ ry + · · · .

If we define ỹε(x, y) = yε(x), then as in §2 we will have

ỹε(Fε(x, y))− ỹε(x, y) = γε(x)− ε2

3
γε(x)3 + · · ·

= 1 + qx+ ry +O(|ε|2 + |x|2 + |y|2)

(3.2)

We use the notation (xj , yj) := F jε (x, y), and we let R and ε be as in §2. For η0, we define

S̃(ε, R)ι = S(ε, R)ι × {|y| < η0}. Arguing as in Proposition 2.3, we have
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Proposition 3.2. We may choose η0 > 0 small enough that if |ε| < ε0, and C ⊂ S̃(ε, R)ι

is compact, then there exists K < ∞ such that |xε,j | ≤ K max( 1
j , |ε|, |b|

n) for j ≤ π
2|ε| and

(x, y) ∈ C.

Following §2, we define

w̃ε(x, y) = wε(x) + ry/(b− 1), w̃ι/oε (x, y) = wι,oε (x) + ry/(b− 1).

As in Proposition 2.3, we have:

Proposition 3.3. Ãε := w̃ε(Fε(x, y))− w̃ε(x, y) = 1 +O(|ε|2 + |x|2 + |y|2).

We define the incoming almost Fatou coordinate:

ϕιε,n(x, y) := w̃ιε(F
n
ε (x, y))− n

and as in §2, we obtain:

Theorem 3.4. If εj → 0, and if nj satisfies (2.8), then limj→∞ ϕιεj ,nj = ϕι0 locally uni-
formly on B.

We omit the proof since it is essentially the same as in the 1-dimensional case. By
the Center Stable Manifold Theorem, there is a 1-parameter family of manifolds W cu

ε,loc,
|ε| < ε0, the (local) center unstable manifolds of the fixed points of Fε, corresponding to
the (larger) eigenvalue, which is near 1. We denote them by Mε and note that there is a
neighborhood U of O, with the property that U ∩ fε(Mε) ⊂Mε. The manifolds Mε can be
taken to be C1 smooth and to vary in a C1 fashion with respect to ε.

Proposition 3.5. Let us fix a compact W ⊂ U . There are constants β < 1 and C < ∞
such that for each p ∈W , dist(F jε p,Mε) ≤ Cβj for 1 ≤ j ≤ j0 if f jε p ∈ U for 1 ≤ j ≤ j0.

Let π(x, y) = x be the projection to the x-axis. The tangent space to Mε is close to the
x-axis, so there is a function hε such that Mε = {(x, hε(x)) : |x| < R}. By [U2] there is an
analytic function h on {|x− r| < r} which extends continuously to the closure, and which
satisfies h(0) = 0, and Σ0 := {(x, y) : |x− r| < r, y = h(x)} is contained in Σ. Further, Σ0

is invariant in negative time, so h coincides with the function h0, and Σ0 ⊂M0.

Proposition 3.6. With the hypotheses of Proposition 3.5, let us suppose that p ∈W and
F jp ∈ U for 1 ≤ j ≤ j0. Then dist(F jp,Σ0) ≤ C(|ε| + βj) for those values of j for which
1 ≤ j ≤ j0, and πF jε p ∈ {|x− r| < r}.

Let T (ε,−n) = {p ∈ U : F−jε p ∈ U : 0 ≤ j ≤ n}. We define an outgoing almost Fatou
coordinate for p ∈ T (ε,−n) ∩Mε by setting

ϕoε,n(p) = woε (F
−np) + n

Proposition 3.7. Suppose that the sequence (εj , nj) satisfies (2.8) and that |x − r| < r.
Then

lim
j→∞

ϕoεj ,nj (x, hεjx) = ϕ0(x, h0x).

Proof. By §2, we have that p will belong to T (εj ,−nj) for j sufficiently large. The proof of
this Proposition is then essentially the same as the proof of Theorem 2.7.
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Proposition 3.8. Suppose that p ∈Mε and that the projection x = π1(p) satisfies |x+r| <
r. Suppose, further, that Tαp ∈ Σ0. If {εj} is an α-sequence, then F

nj
εj p converges to Tαp.

Proof. Shrinking U if necessary, we may choose β and β̂ such that β < 1, β2β̂ < 1 with
the following properties: in the vertical direction, F contracts with a factor of β; and
dist(F−1q1, F

−1q2) ≤ β̂ dist(q1, q2). Now let us write q = F
nj
εj p, and let q′ := (πq, hεj (πq))

denote the projection to Mεj . By Proposition 3.6, we have dist(q, q′) = O(βnj ). Now we
write nj = m′j +m′′j , where m′j and m′′j are both essentially nj/2. We have

F
m′
j

εj p = F
−m′′

j
εj q = F

−m′′
j

εj q′ + β̂m
′′
j βnj = F

−m′′
j

εj q′ + o(1)

Adding and subtracting π/(2εj) and nj to wεjF
m′
j

εj p = wεjF
−m′′

j q′ + o(1), we have

wιεjF
m′
jp−m′j = woεjF

−m′′
j

εj q′ +m′′j +
[π
ε
− nj + o(1)

]
As we let j → ∞, the left hand side will converge to ϕιp. The term [· · ·] will converge to

−α. Thus we conclude that woεjF
−m′′

j
εj q′ +m′′j will converge to ϕιp+ α. By hypothesis, we

have Tαp ∈ Σ0, and ϕo is a coordinate on Σ0. Thus ϕo is a coordinate on Mε for ε small.

By Proposition 3.7, q̂ 7→ woεjF
−m′′

j
εj q̂ +m′′j gives a uniform family of coordinates on Mεj , so

we conclude that q′ must converge to a point q0 ∈ Σ. By the condition that ϕιp = ϕoq0−α,
we conclude that q0 = Tαp.

Theorem 3.9. If {εj} is an α-sequence, then F
nj
εj converges to Tα uniformly on compact

subsets of B.

Proof. We recall that B and Σ are invariant in both forward and backward time. Further
Tα+1 = Tα ◦ f . Thus for an arbitrary point p ∈ B and arbitrary α ∈ C we may map p
and add an integer to α so that the projection πp = x satisfies |x+ r| < r, and Tαp ∈ Σ0.
Finally, if we iterate p forward, it will approach M0. Thus we may also assume that p ∈Mε,
and now we are in the hypotheses of Proposition 3.8.

§4. Semi-continuity of Julia sets. We say that ζ0 ∈ C is a periodic point for hα if ζj :=

hjα(ζ0) ∈ Ω for all j, and hnα(ζ0) = ζ0. By the chain rule we have (hnα)′(ζ0) =
∏n−1
j=0 h

′
α(ζj).

We say that ζ0 is a repelling periodic point if |(hnα)′(ζ0)| > 1. Let Rα denote the set of
repelling periodic points of hα, and define J∗(F, Tα) to be the closure in M of (ϕo)−1(Rα).

Theorem 4.1. Let ζ0 be a repelling (resp. attracting) periodic point of period µ for hα,
and let p0 = (ϕo)−1(ζ0) ∈ B ∩ Σ be its image. Then there exists j0 such that for j ≥ j0,
there is a point pj near p0, which has period νj for Fεj , with εj = π

j+α and which is a saddle

(resp. sink). Further, νj divides jµ, and νj →∞.

Proof. We will prove the repelling case; the attracting case is similar. If ζ0 is a repelling
periodic point, any the closure of any small disk ∆0 containing ζ0 will be contained in hµα∆0.
Let us write ∆0 for the image of ∆0 under (ϕo)−1, and let us consider a neighborhood of p0

which is essentially a product neighborhood, which we may write as ∆0×∆′. It follows that
Rµα maps ∆0×∆′ to a disk in Σ0 with the following properties: Rµα(∂∆0×∆′)∩∆0 ×∆′ = ∅,

19



and Rµα(∆0 ×∆′)∩ (∆0 ×∆′)∩∆0×∂∆′ = ∅. By Theorem 3.9, the sequence F jεj converges

uniformly on compacts to Rα, and thus F jµεj converges uniformly on ∆0 ×∆′ to Rµα. It

follows that F jµεj has the same mapping properties on the product ∆0×∆′. Thus F jµεj has a
saddle point pj in ∆0×∆′. The period νj of pj must divide jµ. Since ∆0×∆′ can be taken
arbitrarily small, we see that the pj will converge to p0. Finally, νj cannot have a bounded
subsequence, or else p0 would be periodic for F0. But this is impossible since p0 ∈ B.

For an automorphism F , we define J∗ = J∗(F ) to be the closure of the saddle periodic
points of F . In general the sets J∗(Fε) are lower semicontinuous as a function of ε. Since
J∗(F ) ∩ B = ∅, the following result gives a lower estimate for the discontinuity of the sets
J∗ and gives a proof of Theorem 1:

Theorem 4.2. If {εj} is an α-sequence, then lim infj→∞ J∗(Fεj ) ⊃ J∗(F, Tα).

Proof. Let p0 be a periodic point in J ∗α . It will suffice to show that for every ε > 0 there
is a j0 such that for j ≥ j0 there is a saddle point pj for Fεj which is within ε of p0. This
property is given by the previous Theorem.

Now let us suppose that M = C2 and F : M →M is a composition F = F1 ◦ · · · ◦ Fk,
where Fj(x, y) = (y, Pj(y)− δjx) is a generalized Hénon map. We define K± as the points
with bounded forward/backward orbits. The set K := K+ ∩K− is bounded and contains
B ∩ Σ, so we have:

Proposition 4.3. If F is a composition of generalized Hénon maps, then Σ 6⊂ B. Further-
more, every component of B ∩ Σ is conformally equivalent to the disk.

Proof. We have B ⊂ K+ and Σ ⊂ K−, so B ∩ Σ ⊂ K, which is bounded. Thus B ∩ Σ
cannot be uniformized by C. By Proposition 1.5 it is simply connected, so it must be a
disk.

Figure 5. Slice K+(F, Tα) ∩ Σ, a = .3, α = 0: 44 periods, |=ζ| < 22 (left); detail (right).
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We define an analogue of a “Julia-Lavaurs set”: we define K+(F, Tα) to be the set of
points p ∈ K+(F ) which satisfy one of the following two properties:
(i) Tnα (p) is defined and belongs to B for all n ≥ 0.

(ii) There is an integer n ≥ 0 such that T kα(p) ∈ B for k ≤ n− 1, and Tnα (p) ∈ K+ − B.
Thus the complement of K+(F, Tα) consists of the points satisfying the condition:

there is an n ≥ 0 such that T kα(p) ∈ B for k ≤ n− 1 and that Tnα (p) /∈ K+. It is immediate
from the definition that

K+(F, Tα)− B = K+(F )− B ⊂ K+(F, Tα) ⊂ K+(F ).

Theorem 4.4. There exist p ∈ B and α′ such that p ∈ J∗(F0, Tα). Further, for each p ∈ B
there is an α′ such that p /∈ K+(F0, Tα′). In particular, we may choose p ∈ B, α and α′

such that p ∈ J∗(F0, Tα), but p /∈ K+(F0, Tα′).

Proof. Since F0 is a Hénon map, there is a point q ∈ Σ−K+. Thus, given p, we choose α
so that α = ϕo(q)− ϕι(p) ∈ C. It follows that p /∈ K+(F0, Tα).

Next, we consider the partially defined map h0 := ϕι ◦ (ϕo)−1 : C → C. By §1, we
know that h0 is a well-defined map of the cylinder C/Z, and h′0(ζ) → 1 as ζ approaches
either end of the cylinder. By Proposition 4.3, h0 cannot be holomorphic in a neighborhood
of either end of the cylinder. Thus we must have both |h′0| > 1 and |h′0| < 1 at points near
either end of the cylinder. Chose a point ζ0 such that |h′0(ζ0)| > 1. Then we may choose
α ∈ C such that hα(ζ0) = τα(h0(ζ0)) = ζ0. It follows that ζ0 is a repelling fixed point for
hα. Thus (ϕo)−1(ζ0) ∈ J∗(F0, Tα).

Figure 6a. Slices K+(F, Tα) ∩ Σ; a = .3, α = πi; 44 periods, |=ζ| < 22 (left), detail (right).

To illustrate K+(F, Tα) graphically, we return to the Hénon family defined in (1.1).
The pictures in Figure 5 correspond to Figure 2. That is, they are slices of K+(F, Tα)∩Σ,
with the values a = .3 and α = 0, which corresponds to real ε. The gray region is the
complement of K+(F ), the set K+(F, Tα) is black, and K+(F )−K+(F, Tα) is white. All
pictures are invariant under the translation ζ 7→ ζ+1. The viewboxes on the left hand sides
of Figures 5 and 6 are taken to be symmetric around the real axis {=ζ = 0}; the viewboxes
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are taken to have side = 44 in order to show what happens when =ζ is large. We see a
number of horizontal “chains” in the left hand pictures in Figures 5 and 6. In the upper half
of each of these pictures, the map hα acts approximately as a vertical translation, moving
each chain to the one below it, until it reaches the chain just above the gray region, which
corresponds to the complement of B. By (1.7) the amount of vertical translation in the
upper region is approximately c+0 ≈ −5.83. This fits with the height of the box in Figure
5, since there are 8 ≈ 44/5.83 horizontal strips. In Figure 6, the vertical translation in the
upper part is c+0 + =α ≈ −2.69. In the chains bordering the complement of the basin, the
map is not like a translation and is more complicated. The bottom half of the left hand
side of Figure 5 and 6 is analogous, with the approximate translation near the bottom of
the figures being approximately c−0 +=α. In fact, the symmetry in Figure 5 comes because
hα commutes with complex conjugation. The pictures on the right of Figures 5 and 6a,b
give a detail from the edge of the gray region, spanning a little more than 1 period. The
implosion phenomenon corresponding to Figure 6 is given in Figures 7b,c, where we see all
three pictures from Figure 6.

Figure 6b. Detail of 6a: one period from top of the bottom component of Σ ∩ B

Proposition 4.5. K+(F, Tα)∩B is a union of fibers {ϕι = const}, and K+(F, Tα)∩B 6= B.

Proof. The first statement follows from the definition Tα := (ϕo)−1◦τα◦ϕι. For the second
statement, we recall that Σ 6⊂ K+. So choose a point p0 = (ϕo)−1(ζ0) /∈ K+. It follows
that the fiber {ϕι = ζ0 − α} is mapped to p0. Thus this fiber is outside of K+(F, Tα).

Remark. Let p ∈ Σ∩K+(F, Tα)∩B be a point which is not critical for hα (which means
that Σ is not tangent to the fibers of ϕι at p). Then in a neighborhood of p, K+(F, Tα)
will be a product of a disk with the slice K+(F, Tα) ∩ Σ.

We also have the following elementary observation:
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Proposition 4.6. K+(F, Tα) = FK+(F, Tα) = K+(F, Tα+1), so K+(F, Tα) depends only
on the equivalence class of α modulo Z.

Proposition 4.7. In general, F 7→ K+(F ) is upper semicontinuous: lim supεj→0K
+(Fεj ) ⊂

K+(F0), and F 7→ J+(F ), F 7→ J(F ) are lower semicontinuous, lim infj→∞ J+(Fε) ⊂
J+(F0). Similar statements hold for K− and J−.

Proof. This follows because the Green function G+ε is continuous and depends continu-
ously on ε. Thus K+

ε = {G+
ε = 0} is upper semicontinuous. On the other hand the measure

µε and the current µ+
ε depend continuously on ε, thus their supports J+ = supp(µ+

ε ) and
J = supp(µε) are lower semicontinuous.

The following gives a sharpening of the semicontinuity and gives a proof of Theorem 2:

Theorem 4.7. If {εj} is an α-sequence, then B ∩ lim supj→∞K+(Fεj ) ⊂ K+(F, Tα).

Proof of Theorem 2. Let us choose a point p /∈ K+(F, Tα). Thus there exists an m such
that Tmα (p) /∈ K+(F0). It will suffice to show that p /∈ K+(Fεj ) for large j. By Theorem
3.9, it follows that f

njm
εj p is approximately Tmα (p), and thus f

njm
εj p /∈ K+(F0). By the

semicontinuity of K+, it follows that f
njm
εj p /∈ K+(Fεj ). Thus p /∈ K+(Fεj ).

Since F is a polynomial automorphism, the Jacobian is constant, and since the parabolic
point is semi-attracting, F contracts volume. A consequence is J−(F ) = K−(F ). We define

K(F, Tα) : = J−(F ) ∩K+(F, Tα) = K−(F ) ∩K+(F, Tα),

J(F, Tα) : = J−(F ) ∩ ∂K+(F, Tα).

Thus we have J ∗α ⊂ J(F, Tα). Since K−(Fε) is upper semicontinuous, we have:

Corollary 4.8. If {εj} is an α-sequence, then B ∩ lim supj→∞K(Fεj ) ⊂ K(F, Tα).

Figure 7a. Slices of K+ for f in (1.1), with a = .3, ε = π/(n− iα), n = 1000, α = 4.3:
Linear slice K+ ∩ T (left), unstable slice K+ ∩Wu(q) (right)
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Figure 7b. Slices of K+ for f in (1.1), with a = .3, ε = π/(n− iα), n = 1000, α = 4.3: Further zooms.

Figure 7c. Details of right side of Figure 7b.
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