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Abstract

We extend the renormalisation operator introduced in [3] from period-
doubling Hénon-like maps to Hénon-like maps with arbitrary stationary
combinatorics. We show the renormalisation picture holds also holds in
this case if the maps are taken to be strongly dissipative. We study in-
finitely renormalisable maps F and show they have an invariant Cantor
set O on which F acts like a p-adic adding machine for some p > 1. We
then show, as for the period-doubling case in [3], the sequence of renormal-
isations have a universal form, but the invariant Cantor set O is non-rigid.
We also show O cannot possess a continuous invariant line field.

1 Introduction

1.1 Hénon Renormalisation

In [3], de Carvalho, Lyubich and Martens constructed a period-doubling renor-
malisation operator for Hénon-like mappings of the form

F (x, y) = (f(x) − ε(x, y), x). (1.1)

Here f is a unimodal map and ε was a real-valued map from the square to the
positive real numbers of small size (we shall be more explicit about the maps
under consideration in Sections 2 and 3). They showed that for |ε| sufficiently
small the unimodal renormalisation picture carries over to this case. Namely,
there exists a unique renormalisation fixed point (which actually coincides with
unimodal period-doubling renormalisation fixed point) which is hyperbolic with
codimension one stable manifold, consisting of infinitely renormalisable period-
doubling maps, and dimension one local unstable manifold. They later called
this regime strongly dissipative.

In the same paper they then studied the dynamics of infinitely renormalisable
Hénon-like maps F . They showed that such a map has an invariant Cantor set,
O, upon which the map acts like an adding machine. This allowed them to
define the average Jacobian given by

b = exp

∫

O

log |JaczF |dµ(z) (1.2)
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where JaczF = detDzF is the Jacobian determinant and µ denotes the unique
F -invariant measure on O induced by the adding machine. This quantity played
an important role in their study of the local behaviour of such maps around the
Cantor set. They took a distinguished point τ of the Cantor set O called the tip.
They examined the dynamics and geometry of the Cantor set asymptotically
around τ . Their two main results can then be stated as follows.

Theorem 1.1 (Universality at the tip). There exists a universal constant 0 <
ρ < 1 and a universal real-analytic real-valued function a(x) such that the fol-
lowing holds: Let F be a strongly dissipative, period-doubling, infinitely renor-
malisable Hénon-like map. Then

RnF (x, y) = (fn(x) − b2
n

a(x)y(1 + O(ρn)), x) (1.3)

where b denotes the average Jacobian of F and fn are unimodal maps converging
exponentially to the unimodal period-doubling renormalisation fixed point.

Theorem 1.2 (Non-rigidity around the tip). Let F and F̃ be two strongly
dissipative, period-doubling, infinitely renormalisable Hénon-like maps. Let their
average Jacobians be b and b̃ and their Cantor sets be O and Õ respectively.
Then for any conjugacy π : O → Õ between F and F̃ the Hölder exponent α
satisfies

α ≤
1

2

(
1 +

log b

log b̃

)
(1.4)

In particular if the average Jacobians b and b̃ differ then there cannot exist a
C1-smooth conjugacy between F and F̃ .

For a long time it was assumed that the properties satisfied by the one-
dimensional unimodal renormalisation theory would also be satisfied by any
renormalisation theory in any dimension. In particular, the equivalence of the
universal (real and complex a priori bounds) and rigid (pullback argument)
properties in this setting made it natural to think that such a relation would
hold more generally. That is, if universality controls the geometry of an attractor
and we have a topological conjugacy between two attractors it was expected that
such a conjugacy could be promoted to a smooth map, since the geometry of
infinitesimally close pairs of orbits cannot differ too much. The above shows
that this intuitive reasoning is incorrect.

Let us now outline the structure of the present work. After recalling pre-
liminary results in Section 2, in Section 3 we generalise this renormalisation
operator to other combinatorial types. We show that in this case the renormal-
isation picture also holds if ε̄ is sufficiently small. Namely, for any stationary
combinatorics there exists a unique renormalisation fixed point, again coincid-
ing with the unimodal renormalisation fixed point, which is hyperbolic with
codimension one stable manifold, consisting of infinitely renormalisable maps,
and dimension-one local unstable manifold.

We then study the dynamics of infinitely renormalisable maps of stationary
combinatorial type and show that such maps have an F -invariant Cantor set
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O on which F acts as an adding machine. We note that the strategy to show
that the limit set is a Cantor set in the period-doubling case does not carry over
to maps with general stationary combinatorics. In both cases the construction
of the Cantor set is via ‘Scope Maps’, defined in sections 2 and 3, which we
approximate using the so-called ‘Presentation function’ of the renormalisation
fixed point. In the period-doubling case this is known to be contracting as the
renormalisation fixed point is convex (see the result of Davie [2]) and the unique
fixed point lying in the interior of the interval is expanding (see the theorem
of Singer [5, Ch. 3]). In the case of general combinatorics this is unlikely to
be true. The work of Eckmann and Wittwer [6] suggests the convexity of fixed
points for sufficiently large combinatorial types does not hold. The problem of
contraction of branches of the presentation function was also asked in [8].

Once this is done we can define the average Jacobian and the tip of an
infinitely renormalisable Hénon-like map in a way analogous to the period-
doubling case. This then allows us, in Section 6, to generalise the universality
and non-rigidity results stated above to the case of arbitrary combinatorics. We
also generalise another result from [3], namely the Cantor set of an infinitely
renormalisable Hénon-like map cannot support a continuous invariant line field.
Our proof, though, is significantly different. This is because in the period-
doubling case they observed a ‘flipping’ phenomenon where orientations were
changed purely because of combinatorics. Their argument clearly breaks down
in the more general case where there is no control over such things.

Acknowledgements. Firstly, I thank my thesis adviser Marco Martens for
suggesting these problems and giving many useful insights into renormalisation.
Secondly, I would like to thank Misha Lyubich for many useful comments about
my work and for reading a draft of this manuscript. Finally, I also thank Michael
Benedicks, André de Carvalho and Sebastian van Strien for their insights on the
contents of this paper and for their continuing interest in my work.

1.2 Notations and Conventions

Given a function F we denote by Dom(F ) its domain of definition. Typically this
will be a subset of Rn or Cn. For i ≥ 0 we denote its i-th iterate by F ◦i whenever
it exists. For S ⊂ Dom(F ) we denote its i-th preimage by F ◦−i : F ◦i(S) → S ⊂
Rn whenever this exists.

Now we restrict our attention to the one- and two-dimensional cases, both
real and complex. Let πx, πy : R2 → R denote the projections onto the x- and
y- coordinates. We will identify these with their extensions to C2. (In fact we
identify all real functions with their complex extensions whenever they exist.)

Given a, b ∈ R, denote the closed interval between them by [a, b] = [b, a].
Denote the interval [0, 1] by J . For any interval T ⊂ R denote its boundary by
∂T , its left endpoint by ∂−T and its right endpoint by ∂+T . Given two intervals
T0, T1 ⊂ J denote an affine bijection from T0 to T1 by ιT0→T1 . Typically it will be
clear from the situation whether we are using the unique orientation preserving
or orientation reversing bijection.
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Let us denote the square [0, 1]×[0, 1] = J2 by B. We call S ⊂ B a rectangle if
it is the Cartesian product of two intervals. Given two rectangles B0, B1 ⊂ B we
will denote an affine bijection from B0 to B1 preserving horizontal and vertical
lines by IB0→B1 . Again the orientations of its components will be clear from
the situation.

Let Ωx ⊆ Ωy ⊂ C be simply connected domains compactly containing J and
let Ω = Ωx × Ωy denote the resulting polydisk containing B.

If F : R2 → R2 is differentiable at a point z ∈ R2 we will denote the derivative
of F at z by DzF . The Jacobian of F is given by

JaczF = det DzF (1.5)

Given a bounded region S ⊂ R2 we will define the distortion of F on S by

Dis(F ;S) = sup
z,z̃∈S

log

∣∣∣∣
JaczF

Jacz̃F

∣∣∣∣ . (1.6)

2 Unimodal Maps

Let us now briefly review some parts of one-dimensional unimodal renormali-
sation theory. In particular, the presentation function theory associated with
it developed by Rand [11], Feigenbaum [7], Sullivan [12] and Birkhoff, Martens
and Tresser [1].

2.1 The Space of Unimodal Maps

Let β > 0 be a constant, which we will think of as being small. Let UΩx,β denote
the space of maps f ∈ Cω(J, J) satisfying the following properties:

(i) there is a unique critical point c0 = c0(f), which lies in (0, 1 − β];

(ii) f is orientation preserving to the left of c and orientation reversing
to the right of c;

(iii) f(∂+J) = f(∂−J) = 0 and c1 = f(c0) > c0;

(iv) there is a unique fixed point α = α(f) lying in int(J). Both fixed
points are expanding;

(v) f admits a holomorphic extension to the domain Ωx, upon which
it can be factored as ψ ◦ Q, where Q : C → C is given by Q(z) =
4z(1 − z) and ψ : Q(Ωx) → C is an orientation preserving univalent
mapping which fixes the real axis;

Such maps will be called unimodal maps. Given any interval T ⊂ R we will say
a map g : T → T is unimodal on T if there exists an affine bijection h : J → T
such that h−1 ◦ g ◦ h ∈ UΩx,β. We will identify all unimodal maps with their
holomorphic extensions.
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We make following observations: first, this extension will be R-symmetric
(i.e. f(z̄) = f(z) for all z ∈ Ωx) and secondly, there are two fixed points, one
with positive multiplier lying in ∂J and the other lying in the interior with
negative multiplier.

2.2 The Renormalisation Operator

Definition 2.1. Let p > 1 be an integer and let W = Wp denote the set
{0, 1, . . . , p − 1}. A permutation υ of W is said to be unimodal of length p if
there exists an order preserving embedding i : W → J and a unimodal map
f : J → J such that f(i(k − 1)) = i(k mod p).

Definition 2.2. Let p > 1 be an integer. A map f ∈ UΩx,β has a renormalisa-
tion interval of period p if

(i) there is a closed subinterval J0 ⊂ J such that f◦p
(
J0
)
⊂ J0;

(ii) there exists an affine bijection h : J → J0 such that

RUf = h−1 ◦ f◦p ◦ h : J → J (2.1)

is an element of UΩx,β. Note there are exactly two such affine bijec-
tions, but there will only be one such that RUf ∈ UΩx,β ;

The interval J0 is called a renormalisation interval of period p for f . The
collection {Jw}w∈W is called the renormalisation cycle.

Definition 2.3. Let p > 1 be an integer and let υ be a unimodal permutation
of length p. A map f ∈ UΩx,β is renormalisable of combinatorial type υ if,

(i) f has a renormalisation interval J0 of type p which contains the
critical point c0;

(ii) letting Jw denote the connected component of f◦p−w
(
J0
)

con-

taining f◦w
(
J0
)
, the interiors of the subintervals Jw, w ∈ W , are

pairwise disjoint;

(iii) f acts on the set
{
J0, J1, . . . Jp−1

}
, embedded in the line with

the standard orientation, as υ acts on the symbols in W . More
precisely, if J ′, J ′′ ∈ {Jw}w∈W are the i-th and j-th sub-intervals
from the left endpoint of J respectively, then f (J ′) lies to the left
of f (J ′′) if and only if υ(i) < υ(j).

In this case the map RUf is called the renormalisation of f and the operator
RU the renormalisation operator of combinatorial type υ.

Definition 2.4. Given a renormalisable f ∈ UΩx,β of combinatorial type υ the
renormalisation interval J0 is called the central interval. Given Jw, w ∈ W , the
maximal extension of Jw is the largest open interval J ′w containing Jw such
that f◦p−w|J ′w is a diffeomorphism onto its image.
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J0 J1J2

y = f(x)

y = f◦3(x)

Figure 1: The graph of a renormalisable period-three unimodal map f with
renormalisation interval J0 and renormalisation cycle {J i}i=0,1,2. Note that for
p = 3 there is only one admissable combinatorial type.

Remark 2.5. The assumption that RUf lies in UΩx,β implies that the boundary
of J0 consists of a pn-periodic point and one of its preimages. Moreover, in J0

there is no other preimage of this point and there is at most one periodic point
of period pn.

Let UΩx,β,υ denote the subspace consisting of unimodal maps f ∈ UΩx,β

which are renormalisable of combinatorial type υ. If f ∈ UΩx,β,υ is infinitely
renormalisable there is a nested sequence J = {Jw}w∈W∗ of subintervals such
that

(i) f (Jw) = J1+w for all w ∈ W ∗;

(ii) intJw ∩ intJw̃ = ∅ for all w 6= w̃ ∈W ∗ of the same length;

(iii)
⋃
w∈W Jww ⊂ Jw for each w ∈W ∗.

where W ∗ denotes the totality of all finite words w = w0 . . . wn over W and

6



1 + w denotes the adding machine map,

1 + w0 . . . wn =

{
(1 + w0)w1w2 . . . wn w0 6= p− 1
0k(1 + wk)wk+1 . . . w0, . . . , wk−1 = p− 1, wk 6= p− 1

(2.2)
We will denote by Wn ⊂W ∗ the subset of words of length n > 0 and by W̄ the
set of all infinite words over W . (Note that W ∗ corresponds to the space of all
cylinder sets of W̄ .) We will call this indexing of J the spatial indexing.

There is a second indexing of J given as follows: any J ′ ∈ J is the m-th
preimage of J0n

for some m,n > 0 satisfying 0 ≤ m < pn. This indexing we
will call the dynamical indexing and the quantity n will be called the depth of
Jw. We note that this indexing is used in [5, Chapter VI.3].

For each depth n ≥ 0 the correspondence is given by the map q : Wn →
{0, 1, . . . , pn−1} where if w = w0 . . . wn then1 q(w) =

∑
0≤i≤n p

i(p−wi) . More

explicitly, if w = w0 . . . wn then Jw = f◦r(w)(J0n

) where r(w) =
∑

0≤i≤n p
iwi

and so, as the first return time of J0n

is pn, we find the transfer time of Jw to
J0n

is pn − r(w) = q(w).

Notation 2.6. If f ∈ UΩx,β,υ is an infinitely renormalisable unimodal map let
fn = Rn

Uf . Then all objects associated to fn will also be given this subscript.
For example we will denote by Jn = {Jw

n }w∈W∗ the nested collection of intervals
constructed for fn in the same way that J was constructed for f .

The following plays a crucial role in the renormalisation theory of unimodal
maps. (See [5] for the proof and more details.)

Theorem 2.7 (real C1-a priori bounds). Let f ∈ UΩx,β,υ be an infinitely
renormalisable unimodal map. Then there exist constants L(f),K(f) > 1 and
0 < k0(f) < k1(f) < 1, such that for all w ∈ W ∗, w, w̃ ∈ W and each
i = 0, 1 . . . , pn − q(w) the following properties hold,

(i-a) Dis(f◦i; Jw) ≤ L(f);

(i-b) the previous bound is beau: there exists a constant L > 1 such
that for each f as above L(Rn

Uf) < L for n sufficiently large;

(ii-a) K(f)−1 < |Jww|/|Jww̃| < K(f);

(ii-b) the previous bound is beau: there exists a constant K > 1 such
that for each f as above K(Rn

Uf) < K for n sufficiently large;

(iii-a) k0(f) < |Jww|/|Jw| < k1(f);

(iii-b) the previous bound is beau: there exist constants 0 < k0 < k1 <
1 such that for each f as above k0 < k0(Rn

Uf) < k1(Rn
Uf) < k1 < 1

for n sufficiently large.

1This is since Jw are indexed by images but φw is constructed from the preimage of J0 to
Jw.
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The term beau for such a property was coined by Sullivan - being an acronym
for bounded eventually and universally. Now we show some properties of the
renormalisation operator and renormalisable maps. The Proposition below fol-
lows directly by observing that the renormalisation cycle of a renormalisable
unimodal map is determined by a hyperbolic periodic orbit and a collection of
its preimages. The proof of injectivity can be found in [5, Chapter VI].

Proposition 2.8. Let p > 1 be an integer. Let 0 < γ < 1. Let υ be a unimodal
permutation of length p. If f ∈ UΩx,β has renormalisation interval J0 of type p
and satisfies the following conditions,

• f◦p(J0) ( J0;

• f is renormalisable with combinatorics υ;

then there exists a neighbourhood N ⊂ UΩx,β of f such that for any f̃ ∈ N the
following properties hold,

(i) f̃ is renormalisable with combinatorics υ;

(ii) there exists a constant C > 0, depending upon f only, such that

|RUf −RU f̃ |Ωx
< C|f − f̃ |Ωx

; (2.3)

(iii) the operator RU is injective.

2.3 The Fixed Point and Hyperbolicity

As was noted in the introduction, real a priori bounds was an important compo-
nent in Sullivan’s proof of the following part of the Renormalisation conjecture.
For the proof we refer the reader to [5, Chapter VI]. This also contains substan-
tial background material and references.

Theorem 2.9 (existence of fixed point). Given any unimodal permutation υ
and any domain Ωx ⊂ C containing J , if β > 0 is sufficiently small there exists
an f∗ = f∗,υ ∈ UΩx,β,υ such that

RUf∗ = f∗. (2.4)

Notation 2.10. Henceforth we assume that the unimodal permutation υ and
the positive real number β > 0 are fixed, with β small enough to ensure UΩx,β,υ

contains the renormalisation fixed point. We therefore drop β from our notation.

Sullivan’s result was then strengthened by McMullen. See [10].

Theorem 2.11 (weak convergence). Given any unimodal permutation υ and
any domain Ωx ⊂ C containing J , there exists

(i) a domain Ω′
x ⋐ Ωx containing J ;

(ii) an integer N > 0;
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both dependent upon υ and Ωx, such that for any n > N if f ∈ UΩx,υ is n-times
renormalisable then

|Rn
Uf − f∗|Ω′

x
≤ 1

4 |f − f∗|Ω′
x
. (2.5)

Proof of the full renormalisation conjecture was then completed by Lyubich
in [9].

Theorem 2.12 (exponential convergence). Given any unimodal permutation υ
and any domain Ωx ⊂ C containing J , there exists

(i) a domain Ω′
x ⋐ Ωx, containing J ;

(ii) an RU -invariant subspace, Uadapt ⊂ UΩ′
x,υ

;

(iii) a metric, dadapt, on Uadapt which is Lipschitz-equivalent to the
sup-norm on UΩ′

x,υ
;

(iv) a constant 0 < ρ < 1;

such that, for all f ∈ Uadapt,

dadapt(RUf, f∗) ≤ ρdadapt(f, f∗). (2.6)

Theorem 2.13 (codimension-one stable manifold). For any unimodal permu-
tation υ and any domain Ωx ⊂ C containing J , the renormalisation operator
RU : UΩx,υ → UΩx

has a codimension-one stable manifold Wυ at the renormali-
sation fixed point f∗,υ.

Corollary 2.14. Let υ be a unimodal permutation on W . Let f ∈ UΩx,υ be
an infinitely renormalisable unimodal map. Then the cycle, {Jwn }w∈W , of the
central interval of fn converges exponentially, in the Hausdorff topology, to the
corresponding cycle, {Jw∗ }w∈W , of the renormalisation fixed point f∗.

2.4 Scope Maps and Presentation Functions

Now we rephrase the renormalisation of unimodal maps in terms of convergence
of their scope maps defined below. Again the statements here are well known
and we make no claim to the originality of their proofs. We merely collect them
here for completeness.

Scope maps were studied initially by Rand [11], then by Sullivan [12], Feigen-
baum [7] and Birkhoff, Martens and Tresser [1]. Mostly this was in the case of
the so-called presentation function, which is the scope map of the renormalisa-
tion fixed point (so called because they permute the presentation of the invariant
Cantor set). See also the paper of Jiang, Sullivan and Morita [8].

Let f ∈ UΩx,υ have cycle {Jw}w∈W . Consider the functions

h−1
0 : J0 → J, w = 0,

h−1
0 ◦ f◦p−w : Jw → J, w = 1, . . . , p− 1,

(2.7)
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. . .

ψ0

f0

J0
0

J1
0

J2
0

ψ1

f1

J0
1

J1
1

J2
1

ψ2

f2

J0
2

J1
2

J2
2

Figure 2: The collection of scope maps ψwn for an infinitely renormalisable
period-tripling unimodal map. Here fn denotes the n-th renormalisation of
f

where h0 is the affine map satisfying RUf = h−1
0 ◦ f◦p ◦ h0. The inverses of

these maps are called the scope maps of f which we denote by ψwf : J → Jw.
For each w ∈ W we call ψwf : J → Jw the w-scope map. We denote the multi-
valued function they form by ψf : J →

⋃
w∈W Jw. Similarly, given an n-times

renormalisable f ∈ UΩx,υ let ψwn = ψwfn
denote the w-th scope function of fn and

the multi-valued function they form by ψn. The multi-valued function ψ∗ =
ψf∗ associated to the renormalisation fixed point f∗ is called the presentation
function.

If f ∈ UΩx,υ is infinitely renormalisable we can extend this construction
by considering, for each w = w0 . . . wn ∈ W ∗, the function ψw

f = ψw0
0 ◦ · · · ◦

ψwn
n : J → Jw and we set ψf = {ψw

f }w∈W∗ .

Proposition 2.15. Let f∗ denote the unimodal fixed point of renormalisation
with presentation function ψ∗. Then, for each w ∈Wm, the following properties
hold,

(i) ψw
∗ = f

−q(w)
∗ ◦ ιJ→J0n ;

(ii) ψw
∗ (
⋃

w∈Wn Jw
∗ ) ⊂

⋃
w∈Wn+m Jw

∗ ;

Proof. We show the first item inductively. Trivially it is true for m = 0. Assume
it holds for w ∈ Wm, some m ≥ 0, and consider ww ∈ Wm+1. Since RUf∗ = f∗
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implies fp∗ ◦ ιJ→J0
∗

= ιJ→J0
∗
◦ f∗, we find

ψww
∗ = ψw∗ ◦ ψw

∗

= f
◦−(p−w)
∗ ◦ ιJ→J0

∗
◦ f

◦−q(w)
∗ ◦ ιJ→J0m

= f
◦−(p−w)
∗ ◦ f

◦−pq(w)
∗ ◦ ιJ→J0 ◦ ιJ→J0m

= f
◦−q(ww)
∗ ◦ ι

J→J0m+1 (2.8)

This proves the first statement. The second statement then follows from the
first since, given w ∈ Wn and w̃ ∈ Wm, the image of Jw

∗ under ψw
∗ can be

expressed as a preimage of J0m+n

∗ under f∗.

Corollary 2.16. Let f∗ denote the unimodal fixed point of renormalisation with
presentation function ψ∗. Let O∗ denote the invariant Cantor set for f∗. Let
J∗ = {Jw

∗ }w∈W∗ denote the collection of all central cycles of all depths. Then,
for each w ∈ W , the following properties hold,

(i) ψw
∗ (J∗) ⊂ J∗;

(ii) ψw
∗ (O∗) ⊂ O∗;

Proof. Simply take limits in the previous Proposition.

Lemma 2.17. Let f∗ denote the unimodal fixed point of renormalisation with
presentation function ψ∗. Then, for each w ∈W , the following properties hold,

(i) ψw∗ has a unique attracting fixed point α;

(ii) if [ψw
n

∗ ] denotes the orientation preserving affine rescaling of ψw
n

∗

to J then uw∗ = limn→∞[ψw
n

∗ ] exists, and the convergence is expo-
nential in the sup-norm on some complex domain containing J .

Proof. It is clear that there exists a fixed point α, as ψw∗ maps J into itself. It is

also unique, since by construction Jw
n+1

∗ = ψw∗ (Jw
n

∗ ), and all images of J must
contain all fixed points. However, Theorem 2.7 implies |Jw

n

∗ | → 0 as n → ∞,
and hence there can be only one fixed point.

Now let us show α is attracting. Theorem 2.7 tells us, since Jw
n+1

∗ ⊂ Jw
n

∗ ,

that |Jw
n+1

∗ |/|Jw
n

∗ | < k1 < 1. By the Mean Value Theorem this implies there

are points αn ∈ Jw
n

∗ such that |(ψw∗ )′(αn)| = |Jw
n+1

∗ |/|Jw
n

∗ | < k1. Also, since
α ∈ Jw

n

∗ for all n > 0 and |Jw
n

∗ | → 0 as n → ∞ , we have αn → α. As ψw∗ is
analytic we must have |(ψw∗ )′(α)| < k1. Hence α if α has multiplier σw, |σw | < 1
and so α is attracting.

For the second item let uwn = ιJwn
∗

→J◦ψ
wn

∗ : J → J . First we claim that there
is a domain U ⊂ C containing J on which uwn has a univalent extension. This
follows as α is an attracting fixed point and ψw∗ is real-analytic on J , so there
exists a domain V ⊂ C containing α on which ψw∗ is univalent and ψw∗ (V ) ⊂ V .
By Theorem 2.7 there exists an integer N > 0 such that (ψw∗ )◦n(J) ⊂ V for
all n ≥ N . Therefore take any domain U containing J such that (ψw∗ )◦n(U) is
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bounded away from the set of the first pN critical values of f∗ for all n < N .
Then uwn will be univalent on U .

Observe that, letting vwn = ZJwn
∗
ψw∗ where ZT denotes the zoom operator

on the interval T , we can write

uwn = vwn ◦ · · · ◦ vw0 (2.9)

Also observe that the argument above gives a domain W containing J on which
each of these composants has a univalent extension. Therefore

|uwn − uwn+1|W = |vwn ◦ · · · ◦ vw0 − vwn+1 ◦ v
w
n ◦ · · · ◦ vw0 |W

= | id−vwn+1|uw
n (W ). (2.10)

Theorem 2.7 implies |Jw
n

∗ | → 0 exponentially as n→ ∞. Analyticity of ψw∗ then
implies Dis(ψw∗ ; Jw

n

∗ ) → 0 exponentially as well. Moreover, also by analyticity,
this holds on a subdomain Wn of W containing Jw

n

∗ . Hence, by the Mean Value
Theorem, ∣∣∣∣1 −

|Jw
n

∗ |

|Jwn+1

∗ |
(ψw∗ )′

∣∣∣∣
Jwn

→ 0 (2.11)

exponentially, and this will also hold on Wn if n > 0 is sufficiently large. Inte-
grating then gives us

| id−vwn |uw
n (W ) → 0 (2.12)

exponentially, and hence |uwn − uwn+1|W → 0 exponentially. This implies the
limit uw∗ exists and is univalent on W .

Remark 2.18. In the period-doubling case more precise information was given
by Birkhoff, Martens and Tresser in [1]. Since f∗ is convex in this case (see [2]),
we know f∗|J1

∗ is expanding and hence ψ1
∗ is contracting. This simplified the

construction of the renormalisation Cantor set for a strongly dissipative nonde-
generate Hénon-like map given by de Carvalho, Lyubich and Martens in [3].

Remark 2.19. For (ii) of the above it is clear this can be extended from words
w∞ to words w = w0w1 . . . which are eventually periodic. For arbitrary words
a different strategy must be used, see [1].

Proposition 2.20. Let υ be a unimodal permutation and let υ(n) be the uni-
modal permutation satisfying Rn

U ,υ = RU ,υ(n). Given an n-times renormalisable
f ∈ UΩx,υ let

fυ,i = Ri
U ,υf and fυ(n) = RU ,υ(n)f (2.13)

for all i = 0, 1, . . . , n. Let ψυ,i denote the presentation function for fυ,i with
respect to RU ,υ and let ψυ(n) denote the presentation function for fυ(n) with
respect to RU ,υ(n). Then

ψυ(n) = {ψw0
υ,0 ◦ . . . ◦ ψ

wn
υ,n}w0,...,wn∈W . (2.14)

Proof. This follows from the fact that RU ,υfυ,i = fυ,i+1 implies fpυ,i ◦ ιJ→J0
i

=
ιJ→J0

i
◦ fυ,i+1 and the fact that the central interval of f under RU ,υ(n) is equal

to J0n

.
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Since the renormalisation interval J0 of f is determined by a p-periodic point
and its preimage and the scope maps ψw are compositions of preimages of f ,
and all of these vary continuously with f we get the following Proposition.

Proposition 2.21. Let υ be a unimodal permutation. There exists a constant
C > 0 such that for any f0, f1 ∈ UΩx,υ, and any w ∈W ,

|ψwf0 − ψwf1 |Ωx
≤ C|f0 − f1|Ωx

(2.15)

The following corollary follows directly from the above Proposition 2.21 and
convergence of renormalisation, Theorem 2.12.

Corollary 2.22. There exist constants C > 0 and 0 < ρ < 1 such that the
following holds: given any infinitely renormalisable f ∈ Uadapt,

|ψwn − ψw∗ |Ωx
≤ Cρn. (2.16)

2.5 A Reinterpretation of the Operator

Let us now consider HΩ(0), defined to be the space of maps F ∈ Cω(B,B) of the
form F = (f ◦πx, πx) where f ∈ UΩx

. Let us also consider the subspace HΩ,υ(0)
of maps F = (f ◦ πx, πx) where f ∈ UΩx,υ. These will be called the space of
degenerate Hénon-like maps and the space of renormalisable degenerate Hénon-
like maps of type υ respectively. The reasons for this will become apparent in
Section 3 when we introduce non-degenerate Hénon-like maps. Observe there
is an imbedding i : UΩx

→ HΩ(0), given by i(f) = (f ◦ πx, πx), which restricts
to an imbedding i : UΩx,υ → HΩ,υ(0). We will construct an operator R, defined
on HΩ(0), such that the following diagram commutes.

UΩx,υ

i

��

RU
// UΩx

i

��

HΩ,υ(0)
R

// HΩ(0)

(2.17)

Let f ∈ UΩx,υ, let {Jw}w∈W be its renormalisation cycle and let {J ′w}w∈W be
the set of corresponding maximal extensions. Let F = i(f) be the corresponding
degenerate Hénon-like map, let

Bw = Jw+1 × Jw, B′w = J ′w+1 × J ′w (2.18)

and let
Bwdiag = Jw × Jw, B′w

diag = J ′w × J ′w, (2.19)

where w ∈ W is taken modulo p. Observe Bw is invariant under F ◦p for each
w ∈ W .

Consider the map H : B → B defined by H = (f◦p−1, πy). Since H pre-
serves horizontal lines, if it is not injective Rolles’ theorem implies between any

13



two points with the same image there exists a solution to (f◦p−1)′ = 0. By
the Inverse Function Theorem this will be locally invertible on any connected
open set bounded away from set of points for which DH is singular. This set
coincides the critical locus Cp−1 = {(x, y) : (f◦p−1)′(x) = 0}. Hence H is a
diffeomorphism onto its image on any connected open set bounded away from
Cp−1. In particular, since the box B0 is bounded away from Cp−1 whenever the
maximal extensions are proper extensions, the map H will be a diffeomorphism
there. We call B0 the central box. We call the map H the horizontal diffeomor-
phism. Observe that B0

diag = H(B0). Define H̄ : B0
diag → B0 to be the inverse

of H restricted to B0
diag.

Remark 2.23. More generally given any map T which we do not iterate but
which is related to the dynamics of a map F : B → B, if it is invertible we
denote its inverse by T̄ . We use this unconventional notation for following
reason: later we consider maps of the form F = (φ, πx) : B → B and we define
φw : B → J by F ◦w(x, y) = (φw(x, y), φw−1(x, y)) for all w > 0 and for w < 0
whenever they exist. Plain superscripts index objects related to the number
of iterates of F and plain subscripts index objects related to the number of
renormalisations performed. However, we define H = (φp−1, πy), whose inverse
is related to the p− 1-st preimage of F , not the first preimage.

Since H̄ is well-defined on B0
diag the map

G = H ◦ F ◦p ◦ H̄ : B0
diag → B0

diag, (2.20)

is also well defined. We call this map the pre-renormalisation of F around B0.
Let I denote the affine bijection from B0

diag onto B such that the map

RF = I ◦G ◦ Ī : B → B (2.21)

is again a degenerate Hénon-like map where Ī denotes the inverse of I. Then RF
is called the Hénon renormalisation of F aroundB0 and the operator R is called
the renormalisation operator on HΩx,υ(0). Observe that RF = (RUf ◦πx, πx) .

Remark 2.24. By the same argument as above, H will be a diffeomorphism onto
its image when restricted to any Bw. Since Bwdiag = H(Bw) and Bw is invariant
under F ◦p by construction, the maps

Gw = H ◦ F ◦p ◦ H̄ : Bwdiag → Bwdiag. (2.22)

are well defined. We call Gw the w-th pre-renormalisation. There are affine
bijections Iw from Bwdiag to B such that

RwF = Iw ◦Gw ◦ Īw : B → B (2.23)

is again a degenerate Hénon-like map (where, as above, Īw denotes the inverse of
Iw). Then the map RwF is called the Hénon renormalisation of F around Bw

and the operator Rw is called the w-th renormalisation operator on HΩx,υ(0).
Observe that RwF = (RU ,wf ◦πx, πx), where RU ,w denotes the renormalisation
around Jw.

14
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B0
diag

B1
diag
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diag

H

H̄
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Im(F ) or Im(RF )

Im(G)

Figure 3: A period-three renormalisable unimodal map considered as a degenerate Hénon-like map. In this case the period is
three. Observe that the image of the pre-renormalisation lies on the smooth curve (f◦3(x), x).
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Remark 2.25. The affine bijections Iw in the remark above map squares to
squares. Hence the linear part of Iw has the form

±

(
σ[w] 0
0 ±σ[w]

)
(2.24)

for some σ[w] > 0. Here the sign depends upon the combinatorial type of υ only.
We call the quantity σ[w] the w-th scaling ratio of F .

Remark 2.26. Since ι is an imbedding preserving the actions of RU and R
it is clear that R also has a unique fixed point F∗. It must have the form
F∗ = (f∗ ◦ πx, πx) where f∗ is the fixed point of RU . Then F∗ also has a
codimension one stable manifold and dimension one local unstable manifold in
HΩx

(0).

Given F = i(f) ∈ HΩ,υ(0) let Ψ = H̄ ◦ Ī : B → B0 and Ψw = F ◦w ◦Ψ: B →
Bw. Then Ψw is called the w-th scope map of F . The reason for this terminology
is given by the following Proposition.

Proposition 2.27. Let F = i(f) ∈ HΩ,υ(0). Then

Ψw
F (x, y) =





(ψ0
f (x), ψ

p−1) w = p− 1

(ψw+1
f (x), ψwf (x)) 0 < w < p− 1

(ψ1
f (x), ψ

0
f (y)) w = 0

, (2.25)

where ψwf denotes the w-th scope function for f .

Proof. Observe that H̄(x, y) = (f◦−p+1(x), y) and

F ◦w(x, y) =

{
(f◦w(x), f◦w−1(x)) w > 0
(x, y) w = 0

(2.26)

which implies

F ◦w ◦ H̄(x, y) =

{
(f◦−p+w+1(x), f◦−p+w(x)) w > 0
(f◦−p+1(x), y) w = 0

(2.27)

where appropriate branches of f◦−p+w+1 and f◦−p+w are chosen. Also observe
Ī(x, y) = (ιJ→J0 (x), ιJ→J0 (y)). Composing these gives us the result.

Remark 2.28. Only the zero-th scope map Ψ = Ψ0 is a diffeomorphism onto its
image.

Now assume F ∈ HΩ,υ is n-times renormalisable and denote its n-th renor-
malisation RnF by Fn. For each Fn we can construct the w-th scope map
Ψw
n = Ψw(Fn) : Dom(Fn+1) → Dom(Fn), where Dom(Fn) = B denotes the

domain of Fn. For w = w0 . . . wn ∈W ∗ the function

Ψw = Ψw0
0 ◦ . . . ◦ Ψwn

n : Dom(Fn+1) → Dom(F0) (2.28)

is called the w-scope map. Let Ψ = {Ψw} denote the collection of all scope maps.
The following Corollary is an immediate consequence of the above Proposition.
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Corollary 2.29. Let F = i(f) ∈ HΩ,υ(0) be an n-times renormalisable degen-
erate Hénon-like map. Then given a word w = w0 . . . , wn−1 ∈ Wn,

Ψw
f (x, y) =

{
(ψw+1n

f (x), ψw
f (x)) w 6= 0

(ψw+1n

f (x), ψw
f (y)) w = 0

, (2.29)

where ψw
f denotes the w-th scope map for f .

In particular we may do this for F∗, the renormalisation fixed point. This
gives

Ψw
∗ (x, y) =

{
(ψw+1

∗ (x), ψw∗ (x)) w > 0
(ψw+1

∗ (x), ψw∗ (y)) w = 0
, (2.30)

where ψw∗ are the branches of the presentation function. We will denote the
family of scope maps for F∗ by Ψ∗ = {Ψw

∗ }w∈W∗ where Ψw
∗ : B → Bw

∗ is
constructed as above.

3 Hénon-like Maps

In this section we construct a space of Hénon-like maps and a Renormalisation
operator acting on it which coincides with the renormalisation operator on de-
generate maps. We show that the standard unimodal renormalisation picture
can be extended to the space of such maps if the Hénon-like maps are sufficiently
dissipative. We then examine the dynamics of infinitely renormalisable maps in
more detail.

3.1 The Space of Hénon-like Maps

Let ε̄ > 0. Let TΩ(ε̄) denote the space of maps ε ∈ Cω(B,R), which satisfy

(i) ε(x, 0) = 0 for all x ∈ J ;

(ii) ε(x, y) ≥ 0 for all (x, y) ∈ B;

(iii) ε admits a holomorphic extension to Ω;

(iv) |ε|Ω ≤ ε̄, where |−|Ω denotes the sup-norm on Ω.

Such maps will be called thickenings or ε̄-thickenings. Let B′ = J ′×J ′ ⊂ R2 for
some closed interval J ′ ⊂ R. Given ε′ ∈ Cω(B′,R) let E′(x, y) = (x, ε′(x, y)).
If there is an affine bijection I : B′ → B such that E(x, y) = I ◦ E′ ◦ Ī(x, y) =
(x, ε(x, y)) where ε is a thickening, then we say ε′ is a thickening on B′.

Let f ∈ UΩx
be a unimodal map and let ε̄ > 0 be a constant. Let

H−
Ω(f, ε̄) = {F ∈ Embω(B,R2) : F (x, y) = (f(x) + ε(x, y), x), ε ∈ TΩ(ε̄)} (3.1)

and

H+
Ω(f, ε̄) = {F ∈ Embω(B,R2) : F (x, y) = (f(x)−ε(x, y), x), ε ∈ TΩ(ε̄)}. (3.2)
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Note that such maps to not necessarily leave B invariant. Typically we take
extensions of these F to some rectangular domain B′ ⊂ Ω containing B on
which F is invariant. Also note that H−

Ω(f, ε̄) consists of orientation reversing
maps and H+

Ω(f, ε̄) consists of orientation preserving maps.
Given these spaces, let

H±
Ω(ε̄) =

⋃

f∈UΩx

H±
Ω(f, ε̄) (3.3)

and
H±

Ω =
⋃

ε̄>0

H±
Ω(ε̄). (3.4)

and finally set HΩ = H+
Ω ∪H−

Ω . Observe that the condition ε(x, 0) = 0 ensures
that each Hénon-like map F has a unique representation as F = (f −ε, πx). We
will call this representation the parametrisation of F . We will write F = (φ, πx)
when the parametrisation is not explicit. Observe that the degenerate Hénon-
like maps considered in Section 2 lie in a subset of the boundary of HΩ(ε̄) for
all ε̄ > 0. Given a square B′ ⊂ R2 a map F ∈ Embω(B′, B′) is Hénon-like on
B′ if there exists an affine bijection I : B′ → B such that I ◦ F ◦ Ī : B → B is a
Hénon-like map.

Given a Hénon-like map F = (φ, πx) : B → F (B) its inverse will have the
form F ◦−1 = (πy, φ

−1) : F (B) → B where φ−1 : F (B) → J satisfies

πy = φ−1(φ, πx); πx = φ(πy , φ
−1). (3.5)

More generally, given an integer w > 0 let us denote the w-th iterate of F by
F ◦w : B → B, and the w-th preimage by F ◦−w : F ◦w(B) → B. Observe that
they have the respective forms F ◦w = (φw, φw−1) and F ◦−w = (φ−w+1, φ−w)
for some functions φw : B → J and φ−w : F ◦w(B) → J . We then define the w-th
critical curve or critical locus to be the set Cw = Cw(F ) = {∂xφw(x, y) = 0}.

3.2 The Renormalisation Operator

Let us consider the operators RU and R from Section 2.5. Observe that RU is
constructed as some iterate under an affine coordinate change whereas R uses
non-affine coordinate changes. That they are equivalent is a coincidence that
we now exploit.

Our starting point is that non-trivial iterates of non-degenerate F ∈ HΩ will
most likely not have the form (f ◦ πx ± ε, πx) after affine rescaling. Therefore,
unlike the one dimensional case, we will need to perform a ‘straightening’ via a
non-affine change of coordinates.

Definition 3.1. Let p > 1 be an integer. A map F ∈ HΩ is pre-renormalisable
with period p if there exists a closed topological disk B0 ⊂ B with F ◦p(B0) ⊂ B0.
The domain B0 is called the central box. The topological disks Bw = F ◦w(B0),
w ∈ W , will be called the boxes and the collection B = {Bw}w∈W will be called
the cycle.
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Definition 3.2. Let p > 1 be an integer. A map F ∈ HΩ is renormalisable
with period p if the following properties hold,

(i) F is pre-renormalisable with period p;

(ii) there exists diffeomorphism onto its imageH : B0 → B0
diag, where

B0 is the pre-renormalisation domain of F and B0
diag is a square

symmetric about the diagonal, such that

G = H ◦ F ◦p ◦ H̄ : B0
diag → B0

diag (3.6)

is Hénon-like on B0
diag.

The map G is called the pre-renormalisation of F with respect to H . By defi-
nition, there exists an affine map I : B0

diag → B such that

RF = I ◦G ◦ Ī : B → B (3.7)

is an element of HΩ, where G denotes the pre-renormalisation of F . The map
RF is called the Hénon-renormalisation of F . We denote the space of all renor-
malisable maps by HΩ,p. The operator R : HΩ,p → HΩ is called the Hénon-
renormalisation operator or simply the renormalisation operator on HΩ. The
absolute value of the eigenvalues of the linear part of Ī (which coincide as it
maps a square box to a square box) is called the scaling ratio of F .

Remark 3.3. We denote the subspace of HΩ,p consisting of renormalisable maps
expressible as F = (f ± ε, πx), where |ε|Ω < ε̄, by HΩ,p(f, ε̄) and let HΩ,p(ε̄) =⋃
f∈UΩx

HΩ,p(f, ε̄) denote their union.

There are, a priori, many coordinate changes H satisfying these properties.
However, we now choose one canonically which has sufficient dynamical mean-
ing. By analogy with the degenerate case, consider the map H = (φp−1, πy).
As H preserves horizontal lines between two preimages of the same point there
lies a solution to ∂xφ

p−1 = 0. The Inverse Function Theorem then tells us this
is a local diffeomorphism away from the critical locus Cp−1 = {(x, y) ∈ B :
∂xφ

p−1(x, y) = 0}. Also, since it maps horizontal lines to horizontal lines, it
must be a diffeomorphism onto its image. Hence, abusing terminology slightly,
we will call this map the horizontal diffeomorphism associated to F .

Also consider the map V = F ◦p−1 ◦ H̄ : H(B0) → Bp−1. Since F ◦p−1 is a
diffeomorphism onto its image everywhere and H is a diffeomorphism onto its
image when restricted to B0 we find that V is also a diffeomorphism onto its
image. We will call V the vertical diffeomorphism. The reason for considering
the maps H and V is given by the following Proposition.

Proposition 3.4. Let F = (φ, πx) ∈ HΩ. Assume that, for some integer p > 1,
the following properties hold,

(i) B0 ⊂ B is a subdomain on which F ◦p is invariant;

(ii) the horizontal diffeomorphism H = (φp−1, πy) is a diffeomor-
phism onto its image when restricted to B0.
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Then H ◦ F ◦p ◦ H̄ : H(B0) → H(B0) has the form

H ◦ F ◦p ◦ H̄(x, y) = (φp ◦ V (x, y), x) (3.8)

where V is the vertical diffeomorphism described above. Moreover, the vertical
diffeomorphism has the form V (x, y) = (x, v(x, y)) for some v ∈ Cω(B, J).

Proof. Observe H̄ has the form H̄ = (φ̄p−1, πy) for some φ̄p−1 : H(B0) → R.
Equating F ◦p−1 ◦ F with F ◦p implies φp−1(φ, πx) = φp. Equating H ◦ H̄ and
H̄ ◦H with the identity implies

πx = φp−1(φ̄p−1, πy) = φ̄p−1(φp−1, πy). (3.9)

Hence, by definition of H and V ,

H ◦ F = (φp−1(φ, πx), πx) = (φp, πx) (3.10)

and

V = F ◦p−1 ◦ H̄ = (φp−1(φ̄p−1, πy), φ
p−2(φ̄p−1, πy)) = (πx, φ

p−2(φ̄p−1, πy)).
(3.11)

Therefore, if we set v(x, y) = φp−2(φ̄p−1, πy) the result is shown.

We now show that maps satisfying the hypotheses of the above Proposition
exist, are numerous and in fact renormalisable in the sense described above.
More precisely, we show that R is defined on a tubular neighbourhood of HΩ,υ(0)
in the closure of HΩ. This is essentially a perturbative result. To do this we
need the following.

Proposition 3.5 (variational formula of the first order). Let F ∈ HΩ be ex-
pressible as F = (φ, πx) where φ(x, y) = f(x) + ε(x, y). Then, for all w ∈W ,

φw(x, y) = f◦w(x) + Lw(x) + ε(x, y)(f◦w)′(x) + O(ε̄2) (3.12)

where

Lw(x) =ε(f◦w−1(x), f◦w−2(x)) + ε(f◦w−2(x), f◦w−3(x))f ′(f◦w−1(x))

+ . . .+ ε(f(x), x)

w−1∏

i=1

f ′(f◦i(x)) (3.13)

Proof. We proceed by induction. Assume this holds for all integers 0 < i < w
and let Lw(x) be as above. Then

φw(x, y) = φ(φw−1(x, y), φw−2(x, y))

= f(φw−1(x, y)) + ε(φw−1(x, y), φw−2(x, y)) (3.14)

but observe, by Taylors’ Theorem,

f(φw−1(x, y)) = f(f◦w−1(x) + Lw−1(x) + ε(x, y)(f◦w−1)′(x) + O(ε̄2))

= f◦w(x) + f ′(f◦w−1(x))Lw−1(x) + ε(x, y)(f◦w)′(x) + O(ε̄2)
(3.15)
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Figure 4: A renormalisable Hénon-like map which is a small perturbation of a degenerate Hénon-like map. In this case the
combinatorial type is period tripling. Here the lightly shaded region is the preimage of the vertical strip through B0

diag. The

dashed lines represent the image of the square B under the pre-renormalisation G. If the order of all the critical points of f◦2

is the same it can be shown that G can be extended to an embedding on the whole of B, giving the picture above.
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and

ε(φw−1(x, y), φw−2(x, y)) = ε((f◦w−1(x), f◦w−2(x)) + O(ε̄))

= ε(f◦w−1(x), f◦w−2(x)) + O(ε̄2), (3.16)

where we have used, since ε is analytic, that all derivatives of ε are of the order
ε̄. Combining these gives us the result.

Proposition 3.6. Let p > 1 be an integer. Let F ∈ HΩ, let B0 ⊂ B be a
pre-renormalisation domain of period p and let G be its pre-renormalisation.
Assume

• πxG(B0
diag) ( πx(B

0
diag);

• G is Hénon-like on B0
diag.

Then there exists a neighbourhood N ⊂ HΩ of F such that F̃ ∈ N implies

(i) F̃ has a pre-renormalisation domain with the same properties;

(ii) there exists a constant C > 0, depending upon f only, such that

distHaus(B
0
diag, B̃

0
diag) < C|F − F̃ |Ω; (3.17)

and
distHaus(Ω

0
diag, Ω̃

0
diag) < C|F − F̃ |Ω; (3.18)

Proof. Given F = (φ, πx) satisfying our hypotheses let H denote its horizontal
diffeomorphism and V its vertical diffeomorphism. Let G = (ϕ, πx) denote its
pre-renormalisation. Let B0

diag = J0 × J0. Let g±(x) = ϕ(x, ∂±J0) be the two
bounding curves of the image of G.

Similarly, given F̃ = (φ̃, πx) ∈ HΩ let H̃ denote its horizontal diffeomor-
phism and Ṽ its vertical diffeomorphism. Let G̃ = (ϕ̃, πx) denote its pre-
renormalisation. These all vary continuously with F̃ .

Observe that G has a fixed point (α, α) ∈ ∂B0
diag. Observe also that α ∈ ∂J0

is a fixed point for g− which, by assumption, is expanding. Let β ∈ ∂J0 be the
other boundary component. Then β is a preimage of α under g− and has non-
zero derivative. The image of the horizontal line through (α, α) intersects the
diagonal {x = y} tranversely at (α, α). These properties are all open conditions.
Hence there exists a neighbourhood N0 ⊂ HΩ of F such that F̃ ∈ N0 implies
F̃ also has these properties once we set g̃−(x) = ϕ̃(x, α̃). If we let J̃0 = [α̃, β̃]
then it is clear g̃− is unimodal on J̃0.

Now let B̃0
diag = J̃0 × J̃0 and g+(x) = ϕ̃(x, β̃). Since πx(G(B0

diag)) (

πx(B
0
diag), the critical value of g+ lies in int(J0). Since the critical value of

g+ and ∂J0 depend continuously on F , there exists a neighbourhood N1 ⊂ N0

such that F̃ ∈ N1 implies the critical value of g̃+ lies in int(J0). Hence B̃0
diag is

G̃-invariant and πx(G̃(B̃0
diag)) ⊂ πx(B̃

0
diag).
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For the second statement observe the horizontal diffeomorphisms H and H̃
will map diffeomorphically onto B0

diag and B̃0
diag. Hence the Hausdorff distance

will only depend on the distance betweenB0 and B̃0 and on the distance between
H and H̃. Both of these, in turn depend on |F − F̃ |Ω. Finally, the existence of
the affine bijection Ĩ : B̃0

diag → B is clear.

Proposition 3.7. Let p > 1 be an integer. Let F ∈ HΩ,p be renormalisable of
combinatorial type p. Let B0 ⊂ B be the pre-renormalisation domain of period
p and let G be its pre-renormalisation. Assume

• πxG(B0
diag) ( πx(B

0
diag);

• G is Hénon-like on B0
diag.

Then there exists a neighbourhood N ⊂ HΩ of F and a constant C > 0, depend-
ing upon F only, such that F ∈ N implies

(i) F̃ is p-renormalisable with the same properties;

(ii) there exists a constant C > 0, depending upon f only, such that

|RF −RF̃ |Ω < C|F − F̃ |Ω. (3.19)

Proof. Given F ∈ HΩ,p let B0 denote its pre-renormalisation domain and H
denote its horizontal diffeomorphism. For each w ∈ W let Bw = F ◦w(B0). Let
N0 denote the neighbourhood of F from Proposition 3.6. Given F̃ ∈ N0 let B̃0

denote its pre-renormalisation domain, let H̃ denote the horizontal diffeomor-
phism and for each w ∈ W let B̃w = F̃ ◦w(H̃(B̃0)). Let C̃p−1 denote its critical
curve.

For the first assertion observe the set C̃p−1 and the domain B̃0 vary contin-
uously with F̃ . As Cp−1 and the domain B0

diag are separated by some distance

γ, there is a neighbourhood N1 ⊂ N0 of F such that F̃ ∈ N1 implies C̃p−1 and
B̃0

diag are separated by a distance of γ/2 or greater.

For the second assertion observe that H̃ and B̃0 vary continuously with F̃ .
Hence B̃0

diag, and therefore Ĩ, will also vary continuously with F̃ . As B0 is

bounded away from C̃p−1 for ε̄ > 0 sufficiently small the result follows.

The previous two results are quite general, in that they deal with pertur-
bations of any renormalisable Hénon-like map, not just perturbations of the
degenerate maps. However, now we turn our attention to this particular case.

Corollary 3.8. Let υ be a unimodal permutation of length p > 1. Let F =
i(f) ∈ HΩx,υ(0). Then there exist constants C, ε̄f > 0 and a domain Ω′ ⊂ C2

such that for any 0 < ε̄ < ε̄f , F̃ ∈ HΩ(f, ε̄) implies:

(i) F̃ ∈ HΩ,p(f, ε̄);

(ii) RF̃ ∈ HΩ′(Cε̄p).

23



Notation 3.9. Given a unimodal permutation υ of length p > 1 let

HΩ,υ =
⋃

f∈UΩx,υ

HΩ,p(f, ε̄f ). (3.20)

When restricting to ε̄-thickenings we will use the notation HΩ,υ(ε̄).

Proof. The first property follows from Proposition 3.7. We now show the second
property. Let F ∈ HΩ,p(0) be as above and let F̃HΩ,υ denote the thickening of F

by ε ∈ TΩ(ε̄). Let H and H̃ denote their respective horizontal diffeomorphisms.
Let

G(x, y) = (g(x) ± δ(x, y), x), G̃(x, y) = (g̃(x) ± δ̃(x, y), x) (3.21)

denote their respective pre-renormalisations. To simplify notation we only con-
sider the orientation preserving case. The orientation reversing case is the same.
Observe

∂yδ(x, y) = Jac(x,y)G = JacH̄(x,y)F
◦p

JacF◦p(H̄(x,y))H

JacH̄(x,y)H
(3.22)

and

∂y δ̃(x, y) = Jac(x,y)G̃ = Jac ¯̃
H(x,y)

F̃ ◦p
Jac

F̃◦p( ¯̃
H(x,y))

H̃

Jac ¯̃
H(x,y)

H̃
. (3.23)

Now observe that |JacH̄(x,y)F
◦p|Ω = 0 and |Jac̄̃H(x,y)F̃

◦p|Ω ≤ |ε|pΩ. Next recall

Jac(x,y)H = ∂xφ
p−1(x, y), so by the Variational Formula in Proposition 3.5

there is a constant C0 > 0 such that, for |ε|Ω sufficiently small,

∣∣∣∣∣
JacF◦p(H̄(x,y))H

JacH̄(x,y)H
−

Jac
F̃◦p( ¯̃

H(x,y))
H̃

Jac ¯̃
H(x,y)

H̃

∣∣∣∣∣ ≤ C0|ε|Ω. (3.24)

Since f is renormalisable, f◦p−1 is a diffeomorphism on J1. Therefore
∣∣∣∣∣
JacF◦p(H̄(x,y))H

JacH̄(x,y)H

∣∣∣∣∣ ≤ exp(Dis(H ;B0
diag)) ≤ exp(Dis(f◦p−1; J1)) (3.25)

is bounded and we find there exists a constant C1 > 0 such that, for |ε|Ω
sufficiently small, ∣∣∣∣∣

Jac
F̃◦p( ¯̃

H(x,y))
H̃

Jac ¯̃
H(x,y)

H̃

∣∣∣∣∣ < C1. (3.26)

Hence |∂y δ̃(x, y)| < C1|ε|
p
Ω. By construction the renormalisation, F̃1, of F̃ has

parametrisation (f̃1, ε̃1) which is an affine rescaling of (g̃, δ̃). There exists a
constant C2 > 0 such that the affine rescaling has scaling ratio σ + C2|ε|Ω,
where σ is the scaling ratio for F . This implies there exists a constant C3 > 0
such that |∂y ε̃1|Ω′ ≤ C3|ε|

p
Ω. Moreover, ε̃1 satisfies ε̃1(x, 0) = 0 by construction.

Therefore |ε̃1|Ω′ ≤ C3|ε|
p
Ω and the result is shown.
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Theorem 3.10. Let υ be a unimodal permutation of length p > 1. Then there
are constants C, ε̄0 > 0 and a domain Ω′ ⊂ C, depending upon υ and Ω, such
that the following holds: for any 0 < ε̄ < ε̄0 there is a subspace HΩ,υ(ε̄) ⊂ HΩ(ε̄)
containing HΩ,υ(0) and a dynamically defined continuous operator,

R : HΩ,υ(ε̄) → HΩ̃(Cε̄p), (3.27)

which extends continuously to R on HΩ,υ(0). Moreover ε̄0 > 0 can be chosen
so that

R : HΩ,υ(ε̄) → HΩ̃(ε̄). (3.28)

Proof. By Corollary 3.8, for each f ∈ UΩ,υ there exists a ε̄f > 0 and a Cf > 0
such that R has an extension R : HΩ(f, ε̄f ) → HΩ(Cf ε̄

p
f ). By compactness of

UΩ,υ these constants can be chosen uniformly, so setting

HΩ,υ(ε̄) =
⋃

f∈UΩ,υ

HΩ(f, ε̄f ) (3.29)

we find that R : HΩ,υ(ε̄) → HΩ(Cε̄p). Choosing ε̄0 > 0 sufficiently small so that
ε̄ < Cε̄p for all 0 < ε̄ < ε̄0 gives the final claim.

3.3 The Fixed Point and Hyperbolicity

We now consider Hénon-like maps that are infinitely renormalisable. Through-
out the rest of this section we fix a unimodal permutation υ of length p. Denote
by IΩ,υ(ε̄) the subspace of HΩ(ε̄) consisting of infinitely renormalisable Hénon-
like maps, where each renormalisation has the same combinatorial type υ. We
call IΩ,υ(ε̄) the space of infinitely renormalisable Hénon-like maps with station-
ary combinatorics υ. Given any F ∈ IΩ,υ(ε̄) we write Fn = RnF . We will use
subscripts to denote quantities associated with the n-th Hénon-renormalisation.
(For example, φn = φ(Fn) will denote the function satisfying Fn = (φn, πx).)

Theorem 3.11. Let υ be a unimodal permutation of length p > 1. Let Ω =
Ωx × Ωy ⋐ C2 be a polydisk containing B. Let f∗ ∈ UΩx,υ denote the unimodal
renormalisation fixed point of type υ, and let F∗ = (f∗ ◦ πx, πx) denote the
associated degenerate Hénon-like map.

Then F∗ is a hyperbolic fixed point of R : HΩx,υ → HΩx
with codimension-

one stable manifold and dimension-one unstable manifold.

Proof. As was noted in Remark 2.26 we can canonically embed UΩx,υ into
HΩx,υ(0). By definition, R restricted to HΩx,υ(0) is given by R(f ◦ πx, πx) =
(RUf ◦ πx, πx). Therefore it is clear that the fixed point of RU induces a
fixed point of R. That is, if f∗ denotes the fixed point of RU then the point
F∗ = (f∗ ◦ πx, πx) in HΩx,υ(0) is a fixed point of R. It is also clear that, when
restricted to HΩ(0), the fixed point is unique and hyperbolic, with codimension
one stable manifold and dimension-one unstable manifold.

25



Next observe that, by Theorem 3.10, R : HΩx,υ ∩ Bε̄(F∗) → HΩx
(Cε̄p) is

super-exponentially contracting in the ε-direction if ε̄ = ε̄(Ωx, υ) > 0 is suffi-
ciently small. This implies DF∗

R is hyperbolic in the ε-direction, and moreover
has zero spectrum.

Combining the conclusions of each of the two preceding paragraphs we find
F∗ is hyperbolic, with a unique expanding direction. Therefore the Stable Man-
ifold Theorem in [4] implies there exists a codimension-one stable manifold and
dimension-one unstable manifold. (The Stable Manifold Theorem in [4] is stated
for diffeomorphisms but the argument holds for endomorphisms as well.)

3.4 Scope Maps and The Renormalisation Cantor Set

We now recast the renormalisation theory we have just developed for Hénon-
like maps in terms of scope maps and presentation functions (defined below)
in a way analogous to that in Section 2.4. We show using these that, similar
to the unimodal case, infinitely renormalisable Hénon-like maps also possess an
invariant Cantor set on which the Hénon-like map acts as the adding machine.

Throughout this section, υ will be a fixed unimodal permutation of length
p > 1, ε̄0 > 0 will be a constant and Ω ⊂ C2 will be a complex polydisk
containing the square B in its interior such that IΩ,υ(ε̄) is invariant under
renormalisation for all 0 < ε̄ < ε̄0.

If F ∈ HΩ,υ(ε̄) let {Bw}w∈W denote its cycle. Let H : B0 → B0
diag denote its

horizontal diffeomorphism and G : B0
diag → B0

diag its pre-renormalisation. Let

I : B0
diag → B denote the affine rescaling such that RF = IGĪ. Then we call

the coordinate change Ψ = Ψ(F ) : B → B0, given by Ψ = H̄ ◦ Ī, the scope map
of F . More generally, for w ∈W we will call the map Ψw = F ◦w ◦ Ψ: B → Bw

the w-scope map of F .
If F is n-times renormalisable we denote the n-th renormalisation RnF by

Fn. For w ∈ W let Ψw
n = Ψw(Fn) : Dom(Fn+1) → Dom(Fn) be the w-scope

map for Fn. Then, if w = w0 . . . wn ∈W ∗, the function

Ψw = Ψw0
0 ◦ . . . ◦ Ψwn

n : Dom(Fn+1) → Dom(F0) (3.30)

is called the w-scope map for F . Let Ψ = {Ψw}w∈Wn denote the collection of
all scope functions for F .

Similarly if F ∈ IΩ,υ(ε̄), let Ψ = {Ψw}w∈W∗ denote the family of scope
maps associated to F . Let Ψn = {Ψw

n }w∈W∗ denote the family of scope maps
associated with Fn. For any n ≥ 0, let Bw

n = Ψw
n (B). These are closed simply-

connected domains which we call the pieces for Fn. Finally let Bw
∗ = Ψw

∗ (B).
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Figure 5: The sequence of scope maps for a period-three infinitely renormalisable Hénon-like map. In this case the maps has
stationary combinatorics of period-tripling type. Here the dashed line represents the bounding arcs of the image of the square
B under consecutive renormalisations Fn.
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Proposition 3.12. Let fn ∈ UΩx,υ be a sequence of renormalisable unimodal
maps and let ψn = {ψwn }w∈W denote the presentation function of fn. Assume

(i) the central cycle {Jwn }w∈W has uniformly bounded geometry for
all n > 0;

(ii) Dis(ψwn ; z) is uniformly bounded;

(iii) there exists an integer N > 0 such that the Schwarzian derivative
Sψw

n
> 0 for all integers n > N and w ∈W .

Then
O =

⋂

n≥0

⋃

w∈Wn

ψw(J) (3.31)

is a Cantor set.

Proof. Given closed intervals J ⊂ T , with J properly contained in T , consider
their cross-ratio,

D(J, T ) =
|J ||T |

|L||R|
(3.32)

where L and R are the left and right connected components of T \J respectively.
We recall the following properties:

(i) maps with positive Schwarzian derivative contract the cross-ratio;

(ii) for all K > 0 there exists a 0 < K ′ < 1 such that D(J, T ) < K

implies |J|
|T | < K ′.

The first assumption implies there is some K > 0 such that D(Jwn , J) <
K for all w ∈ W , and n ∈ N. The third assumption implies the intervals
JwN ...wn

N = ψwN

N ◦ · · · ◦ wψn
n (J) are images of Jwn under positive Schwarzian

maps for all n > N . Hence the first property of the cross-ratio implies
D(JwN ...wn

N , J
wN ...wn−1

N ) < K for all n > N . By the second property of the

cross ratio this implies
|J

wN ...wn
N

|

|J
wN ...wn−1
N

|
< K ′ < 1. The same argument applies to

the images of the gaps between the Jwn . Therefore

ON =
⋂

n≥N

⋃

w∈Wn

ψwN ...wn

N (J) (3.33)

is a Cantor set. By the second assumption ψ
w0...wN−1

0 has bounded distortion for
all w0 . . . wN−1 ∈ WN . The image of a Cantor set under a map with bounded
distortion is still a Cantor set. Hence

O =
⋂

n≥0

⋃

w∈Wn

ψw(J) (3.34)

is a Cantor set and the result is shown.
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We rephrase the above Proposition in terms of scope maps for degenerate
Hénon-like maps in the following.

Corollary 3.13. Let Fn = i(fn) ∈ HΩ,υ be a sequence of renormalisable de-
generate Hénon-like maps, let Ψn = {Ψw

n}w∈W denote the scope function of Fn
and let ψn = {ψwn }w∈W denote the scope function for fn. Assume

(i) the central cycle {Bwn }w∈W has uniformly bounded geometry;

(ii) Dis(Ψw
n ; z) is uniformly bounded;

(iii) there exists an integer N > 0 such that Sψw
n
> 0 for all n >

N,w ∈W .

Then
O =

⋂

n≥0

⋃

w∈Wn

Ψw(B) (3.35)

is a Cantor set.

The following is the main result of this section. It states that, under suitable
conditions, a perturbation of a family of scope maps whose limit set is a Cantor
set will also have a limit set which is a Cantor set.

Proposition 3.14. Let Fn ∈ HΩ,υ be a sequence of renormalisable Hénon-like
maps and let Ψn = {Ψw

n}w∈W denote the presentation function of Fn. Assume

(i) the set O =
⋂
n≥0

⋃
w∈Wn Ψw(B) is a Cantor set;

(ii) for w = w0w1 . . . ∈ W ∗ the cylinder sets Ψw0,...wn(B) ‘nest
down exponentially’: there exists a constant 0 < δ < 1 such that
diam(Ψw0,...wn(B)) < δ diam(Ψw0,...wn−1(B)) for all n > 0;

(iii) ‖DzΨ
w
n‖ < K for all z ∈ Ω, w ∈ W and n > 0.

Then there exists an ε̄ > 0 such that for any sequence F̃n ∈ HΩ,υ of renormal-
isable Hénon-like maps with presentation functions Ψn = {Ψw

n}w∈W satisfying
|Fn − F̃n|Ω < Cε̄p

n

the set

Õ =
⋂

n≥0

⋃

w∈Wn

Ψ̃w(B) (3.36)

is also a Cantor set.

Proof. It is clear that Õ is closed and non-empty, hence we are just required
to show it is totally disconnected and contains no isolated points. Let us first
introduce some notation. Define functions En by F̃n = Fn +En. By hypothesis
|En|Ω ≤ C0ε̄

pn

. This implies we can write Ψ̃w
n = Ψw

n +Λwn where |Λwn |Ω ≤ C1ε̄
pn

for some constant C1 > 0. For w = w0 . . . wn ∈ W ∗ let

Ψw0...wn = Ψw0
0 ◦ · · · ◦ Ψwn

n , Ψ̃w0...wn = Ψ̃w0
0 ◦ · · · ◦ Ψ̃wn

n . (3.37)
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Then define Λw0...wn to be the function satisfying Ψ̃w0...wn = Ψw0...wn +Λw0...wn .
From Proposition B.2 we find for each z ∈ B, if we set zi = Ψwi...wn(z) and
Ψ̃∅ = id, that

Λw0...wn(z) =
∑

i≥1

Dzi
Ψw0...wi−1(Λwi(zi+1)) + O(|DΛwi ||Λwj |, |Λwi |2). (3.38)

Now fix w = w0w1 . . . ∈ W̄ and let z, z′ ∈ B be any distinct fixed pair of points.
Observe that for any 0 < m < n,

|Ψ̃w0...wn(z) − Ψ̃w0...wn(z′)| ≤ sup
ξ∈B

‖DξΨ̃
w0...wm−1‖|Ψ̃wm...wn(z) − Ψ̃wm...wn(z′)|.

(3.39)
Since the derivatives of Ψw

n are uniformly bounded and |F̃n − Fn|Ω decreases
super-exponentially there is a constant ε̄ > 0 such that ‖DξΨ

w
n ‖ < 2K for all

ξ ∈ B. Hence

‖DξΨ̃
w0...wm‖ ≤

m−1∏

0

‖Dξi
Ψ̃wi

i ‖ ≤ (2K)m. (3.40)

Now we consider the splitting

|Ψ̃wm...wn(z) − Ψ̃wm...wn(z′)|

≤ |Ψwm...wn(z) − Ψwm...wn(z′)| + |Λwm...wn(z) − Λwm...wn(z′)|. (3.41)

By hypothesis |Ψwm...wn(z) − Ψwm...wn(z′)| ≤ δn−m while Proposition B.2 in
the appendix implies there exists a constant C3 > 0 such that

|Λwm...wn(z) − Λwm...wn(z′)| ≤ C(2K)n−mε̄p
m

. (3.42)

Therefore

|Ψ̃w0...wn(z) − Ψ̃w0...wn(z′)| ≤ (2K)m
(
δn−m + C(2K)n−mε̄p

m
)
. (3.43)

By Proposition A.4 this can be made arbitrarily small by taking m,n/m > 0
sufficiently large.

Next we show that O does not have any isolated points. Assume there is a
word w = w0w1 . . . ∈ W̄ for which the associated cylinder set Bw is isolated.
Then for any other word w̃ ∈ W̄ we must have dist(Bw, Bw̃) > ρ for some ρ > 0
which we may assume satisfies ρ < 1. We know that for any 0 < ρ < 1 there
is an integer N > 0 such that for all n > N , diam(Bw0...wn) < ρ. In particular
dist(Bw0...wnwn+1 , Bw0...wnw̃) < ρ for any w̃ ∈ W , which is a contradiction.
Hence O does not have any isolated points.

Using these last two results we can now prove the following.

Proposition 3.15. Let υ be a unimodal permutation of length p > 1. There
exists a constant ε̄0 > 0, depending upon υ, for which the following holds: given
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any F ∈ IΩ,υ(ε̄0) let Ψ = {Ψw}w∈W∗ denote its family of scope maps. Then
the set

O =
⋂

n≥0

⋃

w∈Wn
p

Ψw(B), (3.44)

has the following properties:

(i) it is an F -invariant Cantor set;

(ii) F acts as the adding machine upon O, i.e. there exists a map
h : W p → O such that the following diagram commutes:

W p

h

��

w 7→1+w
// W p

h

��

O
F

// O

(3.45)

(iii) there is a unique F -invariant measure, µ, with support on O.

The set O will be called the renormalisation Cantor set for F , or simply the
Cantor set for F when there is no risk of confusion.

Proof. The only thing that needs to be shown is that the limit set is actually a
Cantor set. The rest follow by standard arguments.

Let F ∈ IΩ,υ and let Fn denote it’s n-th renormalisation. Then for n > 0
sufficiently large the unimodal part fn of Fn will be renormalisable and they
will converge exponentially to f∗. Therefore the corresponding degenerate maps
i(fn) will satisfy the conditions of Corollary 3.13 and hence the limit set of their
scope maps will be a Cantor set that nests down exponentially. Applying the
Proposition above shows the limit set of the scope maps for the Fn is also a
Cantor set.

Remark 3.16. Let us denote the cylinder sets of O under the action of F by
Ow. That is, Ow = O ∩ Ψw(B). Then the collection O = {Ow}w∈W∗ has the
following structure

(i) F (Ow) = O1+w for all w ∈W ∗;

(ii) Ow and Ow̃ are disjoint for all w 6= w̃ of the same length;

(iii) the disjoint union of the Oww is equal to Ow, for all w ∈W ∗, w ∈
W ;

(iv) O =
⋃

w∈Wn Ow for each n ≥ 1.

This will play an important role in studying the geometry of the Cantor set O.
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Remark 3.17. For any integer n > 0 we can construct the functions Ψw
n =

Ψw(Fn) and the sets Ow
n = Ow(Fn) in the same way as above. Let Ψn =

{Ψw
n }w∈W∗ and On = {Ow

n }w∈W∗ .
The number n is called the height of Ψw

n and Ow
n and the length of w is

called the depth. We use the terms height and depth to reflect a kind of duality
in our construction. We will also use these adjectives for all associated objects.

Corollary 3.18. Let υ be a unimodal permutation of length p > 1. There exist
constants C > 0 and 0 < ρ < 1 such that the following holds: Let F ∈ IΩ,υ(ε̄)
and let w ∈ W̄ be an arbitrary infinite word. Then the points Ow

n and Ow
∗

satisfy
|Ow

n −Ow
∗ | < Cρn. (3.46)

Definition 3.19. Let F ∈ IΩυ(ε̄) be an infinitely renormalisable Hénon-like
map with renormalisation Cantor set O with F -invariant measure µ. Then the
Average Jacobian of F is defined by

bF = exp

∫

O

log |JaczF | dµ(z). (3.47)

The remainder of this work can be considered as a study of this quantity.
The following result was given in [3] for period doubling, but the proof is valid
for any υ. We state it here without proof.

Lemma 3.20 (Distortion Lemma). Let υ be a unimodal permutation of length
p > 1. Then there exist constants C > 0, and 0 ≤ ρ < 1 such that the following
holds: Let F ∈ IΩ,υ(ε̄) and let Bw denote the piece associated to the word
w ∈W ∗. Then for any Bw, where w ∈Wn, and any z0, z1 ∈ Bw,

log

∣∣∣∣
Jacz0F

◦m

Jacz1F
◦m

∣∣∣∣ ≤ Cρn (3.48)

for all m = 1, p, . . . , pn.

Corollary 3.21. Let υ be a unimodal permutation of length p > 1. Then
there exists a universal constant 0 < ρ < 1 such that the following holds: given
0 < ε̄ < ε̄0, let F ∈ IΩ,υ(ε̄). Then for any integer n ≥ 0, any w ∈ Wn, and any
z ∈ Bw,

JaczF
◦pn

= bp
n

F (1 + O(ρn)). (3.49)

Remark 3.22. The constant ρ may be taken as the universal constant from
Theorem 3.11.

Proof. Observe that, as µ has support on O,
∫

Bw

log |JaczF
◦pn

|dµ(z) =

∫

Ow

log |JaczF
◦pn

|dµ(z)

=

∫

O

log |JaczF |dµ(z)

= log bF . (3.50)
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Therefore, there is a ξ ∈ Bw such that

log |JacξF
◦pn

| =
log bF
µ(Bw)

= pn log bF (3.51)

so the result follows from the Lemma 3.20.

Proposition 3.23 (Monotonicity). Let υ be a unimodal permutation of length
p > 1. Let Ft ∈ IΩ,υ(ε̄0) be a one parameter family of infinitely renormalisable
Hénon-like maps such that the average Jacobian bt = b(Ft) depends strictly
monotonically on t. Let F̃t = RFt and let b̃t = b(F̃t). Then b̃t is also strictly
monotone in t.

Proof. Let F̃t = RFt, Õt = O(F̃t), and µ̃t = µ(F̃t). Recall that, by definition,

log bt =

∫

Ot

log |JaczFt|dµt(z), log b̃t =

∫

Õt

log |JaczF̃t|dµ̃t(z). (3.52)

Then by construction F̃t = Ψ−1
t F ◦p

t Ψt and Õt = Ψ̄t(O0
t ), where O0

t = Ot ∩B0
t .

Since µt and µ̃t are determined by the adding machine actions on Ot and Õt

respectively we also have µ̃t = pµt ◦ Ψt. Therefore

∫

Õt

log |JaczF̃t|dµ̃t(z)

= p

∫

Ψ̄t(O0
t )

log

(
∣∣JacΨt(z)F

◦p
t

∣∣
∣∣∣∣∣

JaczΨt

JacF̃t(z)
Ψt

∣∣∣∣∣

)
d(µt ◦ Ψt)(z) (3.53)

hence2

∫

Õt

log |JaczF̃t|dµ̃t(z) (3.54)

= p

∫

O0
t

log

(
∣∣JaczF

◦p
t

∣∣
∣∣∣∣∣

JacΨ̄t(z)Ψt

JacΨ̄tF
◦p
t (z)Ψt

∣∣∣∣∣

)
dµt(z)

= p

∫

O0
t

p−1∑

i=0

log |JacF◦i
t (z)Ft|dµt(z) + p

∫

O0
t

log

(
JacΨ̄t(z)Ψt

JacΨ̄F◦p
t (z)Ψt

)
dµt(z).

Now observe, by definition of µt,

∫

O0
t

p−1∑

i=0

log |JacF◦i
t (z)Ft|dµt(z) =

∫

Ot

log |JaczFt|dµt(z) (3.55)

2here we use the integral substitution fomula, namely if (X,B), (X′,B′) are measurable
spaces, µ is a measure on X, T : X → Y surjective then for all µ ◦ T−1-measurable φ on Y ,

Z

X

φ ◦ Tdµ =

Z

Y

φd(µ ◦ T−1)
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and
∫

O0
t

log |JacΨ̄F◦p
t (z)Ψt|dµt(z) =

∫

O0
t

log |JacΨ̄(z)Ψt|dµt(z). (3.56)

Together these imply

log b̃t =

∫

Õt

log |JaczF̃t|dµ̃t(z) = p

∫

Ot

log |JaczFt|dµt = p log bt (3.57)

which depends monotonically on t if log bt depends monotonically. Since the
logarithm function is monotone the proof is complete.

4 Asymptotics of Scope Functions

We study affine rescaling of scope functions and their compositions. We only
consider the case when wi = 0 for all i > 0 as this is the simplest to deal with
and the most relevant in the next sections. However, we believe a large portion
of the results below can be extended to the more general case. As before, unless
otherwise stated, throughout this section υ will be a fixed unimodal permutation
of length p > 1 and ε̄0 > 0 will be a constant and Ω ⊂ C2 will be a complex
polydisk containing the square B in its interior such that IΩ,υ(ε̄) is invariant
under renormalisation for all 0 < ε̄ < ε̄0.

Proposition 4.1. Let υ be a unimodal permutation of length p > 1. Then there
exists a constant ε̄0 > 0 such that the following holds: given 0 ≤ ε̄ < ε̄0, for
any F ∈ IΩ,υ(ε̄) let Ψn : B → B denote its n-th scope map. Explicitly, for any
(x, y) ∈ B, let

F (x, y) = (φn(x, y), x); Ψn(x, y) = (ψ1
n, ψ

0
n). (4.1)

Then there is a constant C > 0, depending upon F only, such that

|∂xiψ1
n(x, y)| < C, |∂xiyjψ1

n(x, y)| < Cε̄p
n

(4.2)

for any (x, y) ∈ B and any integers i, j ≥ 1.

Proof. By Theorem 3.11 we know there exists a constant C0 > 0 and, for each
integer n > 0, a degenerate F̃n ∈ HΩ,υ(0) such that |Fn− F̃n|Ω ≤ C0ε̄

pn

and Fn
converges exponentially to F∗. Let Ψ̃n denote the scope function for Fn. Then
this implies there exists a constant C1 > 0 such that |Ψn − Ψ̃n|Ω ≤ C1ε̄

pn

and
Ψ̃n converges exponentially to Ψ∗. Since Ψ∗ is analytic there exists a constant
C2 > 0 such that |∂xiψ1

∗ | < C2 and as F∗ is degenerate ∂xiyjψ1
∗ = 0 for j > 0.

Hence the result follows.

The next Lemma is a simple application of Taylor’s Theorem.
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Lemma 4.2. For any F ∈ IΩ,υ(ε̄) let Ψ: B → B0 denote its n-th scope map.
Explicitly, for (x, y) ∈ B let

F (x, y) = (φ(x, y), x); Ψ(x, y) = (ψ1(x, y), ψ0(x, y)). (4.3)

Then, for z0 ∈ B and z1 ∈ R satisfying z0 + z1 ∈ B, Ψ can be expressed as

Ψ(z0 + z1) = Ψ(z0) + Dz0Ψ ◦ (id +Rz0Ψ)(z1) (4.4)

where Dz0Ψ denotes the derivative of Ψ at z0 and Rz0Ψ is a nonlinear remainder
term. The maps Dz0Ψ and Rz0Ψ take the form

Dz0Ψ = σ

(
s(z0) t(z0)

0 1

)
; Rz0Ψ(z1) =

(
r(z0)(z1)

0

)
(4.5)

for some functions s(z) and t(z). Here σ denotes the scaling ratio of Ψ.

Remark 4.3. There are two related quantities that will henceforth play an im-
portant role. The first is the scaling ratio of F∗, defined to be the unique
eigenvalue, of multiplicity two, of the affine factor of Ψ∗ = Ψ0

∗. The second
is the derivative of Ψ0

∗ at the tip τ∗ of F∗. By Lemma 2.17 the derivative of
ψ1
∗ at its fixed point is also this scaling ratio (up to sign, which depends on

the combinatorics), but the fixed point of ψ1 is the critical value, which is the
projection onto the x axis of τ∗. Hence these two quantities coincide and shall
be denoted by σ.

Definition 4.4. The functions s(z) and t(z) given by the Lemma 4.2 above are
called the squeeze and the tilt of Ψ at z respectively.

Proposition 4.5. Let F ∈ HΩ,υ(ε̄) and F̃ ∈ HΩ,υ(0) satisfy |F − F̃ |Ω < ε̄. Let

Ψ = (ψ1, ψ0) and Ψ̃f = (ψ̃1, ψ̃0) denote their respective scope maps. Assume
there is a constant C > 1 such that, for all i > 0,

C−1 <
∣∣∂xψ1

∣∣
Ω

and

∣∣∣∣
∂xiψ1

∂xψ1

∣∣∣∣
Ω

< C (4.6)

Then there is a constant K > 0 such that, if R(z0)(z1) = Rz0Ψ(z1) is defined
as above,

|∂xr(z0)(z1)|, |∂xxr(z0)(z1)| < K(1 + |F − F∗| + ε̄) (4.7)

and
|∂yr(z0)(z1)|, |∂xyr(z0)(z1)|, |∂yyr(z0)(z1)| < Kε̄. (4.8)

for any z0 ∈ B and z1 ∈ R2 satisfying z0 + z1 ∈ B.

Proof. Let zi = (xi, yi) for i = 0, 1. Expanding Ψ in power series around z0 and
equating it with the above representation gives

r(z0)(z1) =
∑

i,j≥0;i+j≥2

(
i+ j

j

)
xi1y

j
1

∂xiyjψ1(z0)

∂xψ1(z0)
. (4.9)
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and we get a similar expression for r̃(z0)(z1) and r∗(z0)(z1). We may write
r(z0)(z1) = A0(x1) + y1A1(x1) + y2

1A2(x1, y1) where

A0(x1) =
∑

i≥2;j=0

xi1
∂xiψ1(z0)

∂xψ1(z0)
(4.10)

A1(x1) =
∑

i≥1;j=1

(
i+ 1

1

)
xi1
∂xiyψ

1(z0)

∂xψ1(z0)
(4.11)

A2(x1, y1) =
∑

i≥0;j≥2

(
i+ j

j

)
xi1y

j
1

∂xiyjψ1(z0)

∂xψ1(z0)
. (4.12)

Define Ã0(x1), Ã1(x1) and Ã2(x1, y1) for r̃(z0)(z1) and A∗,0(x1), A∗,1(x1) and
A∗,2(x1, y1) for r∗(z0)(z1) similarly. We claim there exists a constant K0 > 0
such that

|A′
0(x1)|, |A

′′
0 (x1)| ≤ K0

|x1|2

1 − |x1|
(1 + |F̃ − F∗|Ω + |F̃ − F |Ω). (4.13)

First, as F∗ is fixed we may assume, without loss of generality, that the constant

C > 0 satisfies
∣∣∣∂xiψ

1
∗

∂xψ1
∗

∣∣∣ < C. Also observe that C−1 < |∂xψ1| implies |∂xψ̃1|−1 <

C(1 + κε̄) for some κ > 0. Therefore, by Lemma A.5,

∣∣∣∣∣
∂xi ψ̃1

∂xψ̃1
−
∂xiψ1

∗

∂xψ1
∗

∣∣∣∣∣
Ω

≤ C(1 + κε̄)max (1, C)max
i

(
|∂xiψ̃1 − ∂xiψ1

∗ |Ω
)
. (4.14)

The same argument, this time using the assumption
∣∣∣∂xiψ

1

∂xψ1

∣∣∣ < C, also implies

∣∣∣∣∣
∂xi ψ̃1

∂xψ̃1
−
∂xiψ1

∂xψ1

∣∣∣∣∣
Ω

≤ C(1 + κε̄)max (1, C)max
i

(
|∂xiψ̃1 − ∂xiψ1|Ω

)
, (4.15)

so analyticity of F, F̃ and F∗ implies there is a constant C0 > 0 such that
∣∣∣∣∣
∂xi ψ̃1

∂xψ̃1
−
∂xiψ1

∗

∂xψ1
∗

∣∣∣∣∣
Ω

≤ C0|F̃ − F∗|Ω (4.16)

and ∣∣∣∣∣
∂xiψ̃1

∂xψ̃1
−
∂xiψ1

∂xψ1

∣∣∣∣∣
Ω

≤ C0|F̃ − F |Ω. (4.17)

Hence, by the summation formula for a geometric progression,

|Ã0(x1) −A∗,0(x1)| ≤
∑

i≥2

|x1|
i

∣∣∣∣∣
∂xiψ̃1(x0)

∂xψ̃1(x0)
−
∂xiψ1

∗(x0)

∂xψ1
∗(x0)

∣∣∣∣∣ ≤
C0|x1|2

1 − |x1|
|F̃ − F∗|Ω

(4.18)
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and similarly

|Ã0(x1) −A0(x1)| ≤
∑

i≥2

|x1|
i

∣∣∣∣∣
∂xiψ̃1(x0)

∂xψ̃1(x0)
−
∂xiψ1

∗(x0)

∂xψ1
∗(x0)

∣∣∣∣∣ ≤
C0|x1|2

1 − |x1|
|F̃ − F |Ω.

(4.19)

Secondly, observe that analyticity and degeneracy of F∗ implies there exists a

constant C1 > 0 such that |A∗,0(x1)| <
C1|x1|

2

1−|x1|
. Therefore there exists a K0 > 0

such that

|A0(x1)| ≤ |A∗,0(x1)| + |Ã0(x1) −A∗,0(x1)| + |A0(x1) − Ã0(x1)| (4.20)

≤
K0|x1|2

1 − |x1|

(
1 + |F̃ − F∗|Ω + |F̃ − F |Ω

)

and, by analyticity of A0, this implies the bound on its derivatives. Next we
claim there is are constants C2, C3 > 0 such that

|A1(z1)|, |A
′
1(z1)|, |A

′′
1 (z1)| ≤ C2ε̄|z1|, (4.21)

and

|∂xA2(z1)|, |∂yA2(z1)|, |∂xxA2(z1)|, |∂xyA2(z1)|, |∂yyA2(z1)| ≤ C3ε̄|z1|. (4.22)

This can be seen by observing that all the coefficients of A1(z1) and A2(z1) are
of the form ∂xiyjψp−1(z0)/∂xψ

p−1(z0), but from the Variational Formula there
exists a constant C4 > 0 such that

C−1
4 < |∂xψ

1| < C4; |∂xiyjψ1| < C4ε̄, (4.23)

hence all coefficients are bounded by C2
4 ε̄ in absolute value. Therefore, assuming

|z1| ≤ γ < 1, the above estimates must hold by setting C3 = C2
4/(1 − γ).

Now differentiating r(Ψ; z0) and applying the above estimates we find there
exists a C > 0 such that, for |z1| ≤ γ < 1,

|∂xr(Ψ; z0)(z1)| ≤ |A′
0(x1)| + |y1||A

′
1(x1)| + |y1|

2|∂xA2(x1, y1)|

≤ C(1 + |f − f∗| + ε̄) (4.24)

|∂yr(Ψ; z0)(z1)| ≤ |A1(x1)| + 2|y1||A2(x1, y1)| + |y1|
2|∂yA2(x1, y1)|

≤ Cε̄ (4.25)

|∂xxr(Ψ; z0)(z1)| ≤ |A′′
0 (x1)| + |y1||A

′′
1 (x1)| + |y1|

2|∂xxA2(x1, y1)|

≤ C(1 + |f − f∗| + ε̄) (4.26)

|∂xyr(Ψ; z0)(z1)| ≤ |A′
1(x1)| + 2|y1||∂xA2(x1, y1)| + |y1|

2|∂xyA2(x1, y1)|

≤ Cε̄ (4.27)

|∂yyr(Ψ; z0)(z1)| ≤ 2|A2(x1, y2)| + 4|y1||∂yA2(x1, y1)| + |y1|
2|∂yyA2(x1, y1)|

≤ Cε̄ (4.28)

and hence the result is proved.

37



5 Asymptotics around the Tip

As before, unless otherwise stated, throughout this section υ will be a fixed
unimodal permutation of length p > 1 and ε̄0 > 0 will be a constant and
Ω ⊂ C2 will be a complex polydisk containing the square B in its interior such
that IΩ,υ(ε̄) is invariant under renormalisation for all 0 < ε̄ < ε̄0.

For a given F ∈ IΩ,υ(ε̄) we now wish to study the Cantor set O, and the
behaviour of F around it, in more detail. We will do this locally around a
pre-assigned point. Let

τ = τ(F ) =
⋂

n≥0

B0n

. (5.1)

We call this point the tip. The study of the orbit of this point is analogous to
studying the critical orbit for a unimodal map. The remainder of our work can
be viewed as the study of the behaviour of F around τ .

For F ∈ IΩ,υ(ε̄), as usual, let Fn denote the n-th renormalisation and let
Ψn : B → B0

n denote the scope map for Fn. Explicitly, Fn(x, y) = (φn(x, y), x)
and Ψn(x, y) = (ψ1

n(x, y), ψ
0
n(x, y)). Now let Ψm,n = Ψm ◦ . . . ◦ Ψn. Then

Ψm,n(x, y) = (ψ1
m,n(x, y), ψ

0
m,n(x, y)) from height n + 1 to height m. By this

convention we let Ψn,n = Ψn. Observe that ψ0
m,n is affine and depends upon y

only. Let us define points τn inductively by τ0 = τ and τn+1 = Ψ−1
n (τn). We

will call τn the tip at height n. We wish to use the decompositions

Ψn(τn+1 + z) = Ψn(τn+1) + Dτn+1Ψm,n ◦ (id +Rτn+1Ψn)(z) (5.2)

= τn + Dτn+1Ψn ◦ (id +Rτn+1Ψn)(z)

and

Ψm,n(τn+1 + z) = Ψm,n(τn+1) + Dτn+1Ψm,n ◦ (id +Rτn+1Ψm,n)(z1) (5.3)

= τm + Dτn+1Ψm,n ◦ (id +Rτn+1Ψm,n)(z1),

whenever τn+1 + z is in Dom(Ψn) or Dom(Ψm,n) respectively. For notational
simplicity let us denote the derivatives Dτn+1Ψn,Dτn+1Ψm,n and remainder
terms, Rτn+1Ψn and Rτn+1Ψm,n, by Dn, Dm,n, Rn and Rm,n respectively.

It will turn out to be fruitful to change to coordinates in which the tips are
situated at the origin. Therefore let Tn(z) = z − τn and consider the maps
Ψ̂n = Tn ◦ Ψn ◦ T

−1
n+1 and their composites

Ψ̂m,n = Ψ̂m ◦ · · · ◦ Ψ̂n = TmΨm,nT
−1
n+1. (5.4)

From Proposition B.1 we know, since Tn is a translation, that Rz0Ψ̂n = R
T

−1
n+1z0

Ψn.

Therefore using the same decomposition as above we find,

Ψ̂n(z) = Ψ̂n(0 + z) (5.5)

= Ψ̂n(0) + D0Ψ̂n(id +R0Ψ̂n)(z)

= Dτn+1Ψn(id +Rτn+1Ψn)(z)

38



and similarly

Ψ̂m,n(z) = Ψ̂m,n(0 + z) (5.6)

= Ψ̂m,n(0) + D0Ψ̂m,n(id +R0Ψ̂m,n)(z)

= Dτn+1Ψm,n(id +Rτn+1Ψm,n)(z)

For notational simplicity let us denote the quantities D0Ψ̂n, D0Ψ̂m,n, R0Ψ̂n

and R0Ψ̂m,n, by D̂n, D̂m,n, R̂n and R̂m,n respectively. Observe that, because our
coordinate changes were translations, these quantities are equal to Dn, Dm,n, Rn
and Rm,n respectively. The following follows directly from Lemma 4.2.

Lemma 5.1. For any F ∈ IΩ,υ(ε̄0) let the linear map Dn and the function
Rn(z) be as above. Then Dn and Rn(z) have the respective forms

Dn = σn

(
sn tn
0 1

)
; Rn(z) =

(
rn(z)

0

)
. (5.7)

Definition 5.2. The quantities sn and tn from the preceding Lemma will be
called, respectively, the squeeze and tilt of Ψn at τn+1.

Proposition 5.3. For F ∈ IΩ,υ(ε̄), let Bw
n denote the box of height n with word

w ∈W ∗. Then

(i) for each w ∈ W ∗, distHaus(B
w
n , B

w
∗ ) → 0 exponentially;

(ii) for each w ∈W , distHaus(Ow
n ,O

w
∗ ) → 0 exponentially.

Proposition 5.4. There exist constants C > 1, and 0 < ρ < 1 such that the
following holds: given 0 < ε̄ < ε̄0 let F ∈ IΩ,υ(ε̄) and for each integer n > 0 let
σn, sn, tn be the constants and rn(z) the function defined above. Then for any
z ∈ B,

σ(1 − Cρn) < |σn| < σ(1 + Cρn) (5.8)

σ(1 + Cρn) < |sn| < σ(1 + Cρn) (5.9)

C−1ε̄p
n

< |tn| < Cε̄p
n

(5.10)

|∂xrn(z)| < C|z|, |∂yrn(z)| < Cε̄p
n

|z| (5.11)

|∂xxrn(z)| < C|z|, |∂xyrn(z)| < Cε̄p
n

|z|, |∂yyrn(z)| < Cε̄p
n

|z| (5.12)

Proof. Observe that σn is the eigenvalue of DI−1
n , the affine bijection between

B0
n,diag and B. By Proposition 5.3 there exists a constant C0 > 0 such that

distHaus(B
0
n, B

0
∗) < C0ρ

n we see that |σn − σ∗| < C0ρ
n. Next observe that

sn = ∂xψ
1
n(τn+1) and, by Lemma 2.17, σ = ∂xψ

1
f∗

(τ∗) which implies

|sn − σ| ≤ |∂xψ
1
n(τn+1) − ∂xψ

1
∗(τn+1)| + |∂xψ

1
∗(τn+1) − ∂xψ

1
∗(τ∗)| (5.13)

≤ |ψ1
n − ψ1

∗|Ω + |∂xxψ
1
∗|Ω|πx(τn+1) − πx(τ∗)|.
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Again by Proposition 5.3 |τn−τ∗| < C0ρ
n. Also, a consequence of Theorem 3.11

is that there exists a constant C1 > 0 such that |ψ1
n−ψ

1
∗|Ω < C1ρ

n. Since fixing
the combinatorial type fixes the map ψ1

∗, we may assume |∂xxψ1
∗ |Ω < C2 for

some constant C2 > 0. Therefore

|sn − σ| ≤ C1ρ
n + C0C2ρ

n = (C1 + C0C2)ρ
n. (5.14)

Now for each n > 0 choose a F̃n ∈ HΩ,υ(0) such that |Fn− F̃n|Ω < C3ε̄
pn

, where
C3 > 0 is the constant from Theorem 3.10. A consequence of convergence of
Renormalisation, Theorem 3.11, is that there exists a constant C4 > 0 such that
|∂yψ1

n| = |∂yψ1
n − ∂yψ

1
fn
| < C4ε̄

pn

. This concludes the first item. For the next
two items we apply Proposition 4.5.

Lemma 5.5. For any F ∈ IΩ,υ(ε̄0) let the linear map Dm,n and the function
Rm,n(z) be as above. Then Dm,n and the function Rm,n(z) have the respective
form

Dm,n = σm,n

(
sm,n tm,n

0 1

)
; Rm,n(z) =

(
rm,n(z)

0

)
, (5.15)

respectively, and so if τm = (ξm, ηn),

Ψm,n(z) = τm + σm,n

(
sm,n ((x − ξm) + rm,n(z − τm)) + tm,n(y − ηm)

y − ηm

)
.

(5.16)
Moreover,

σm,n =

n∏

i=m

σi; sm,n =

n∏

i=m

si; tm,n =

n∑

i=m

sm,i−1ti. (5.17)

Proof. From Lemma 5.1 we know it holds for m = n. For m < n the chain rule
Dm,n = Dm,n−1Dn implies Dm,n is again upper triangular and

σm,n = σm,n−1σn, sm,n = sm,n−1sn, tm,n = sn−1tn + tm,n−1, (5.18)

from which the lemma immediately follows by induction.

Proposition 5.6. There exist constants C > 0, and 0 < ρ < 1 such that
the following holds: for F ∈ IΩ,υ(ε̄), let σm,n, sm,n, tm,n be the constants and
rm,n(z) the function defined above. Then

σn−m(1 − Cρm) < |σm,n| < σn−m(1 + Cρm) (5.19)

σn−m(1 − Cρm) < |sm,n| < σn−m(1 + Cρm) (5.20)

|tm,n| < Cε̄p
m

(5.21)

|∂xrm,n(z)| < C|z|, |∂yrm,n(z)| < Cε̄p
m−1

|z| (5.22)

|∂xxrm,n(z)| < C|z|, |∂xyrm,n(z)| < Cσ2(n−m)ε̄p
m

|z|, |∂yyrm,n(z)| < Cε̄p
m

|z|.
(5.23)
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Proof. Throughout the proof C0 > 0 will denote the constant from Proposi-
tion 5.4. From Lemma 5.5, Proposition 5.4 and Proposition A.1 respectively,
we find there exists a constant C1 > 0 such that

|σm,n| =

n∏

i=m

|σi| ≤ σn−m
n∏

i=m

(1 + C0ρ
i) ≤ σn−m(1 + C1ρ

m) (5.24)

and similarly

|sm,n| =
n∏

i=m

|si| ≤ σn−m
n∏

i=m

(1 + C0ρ
i) ≤ σn−m(1 + C1ρ

m). (5.25)

Again by Lemma 5.5 and Proposition 5.4 above we find, for i > m,

∣∣∣∣
ti
tm

∣∣∣∣ =

∣∣∣∣∣
∂yφ

p−1
i (τi+1)

∂yφ
p−1
m (τm+1)

∣∣∣∣∣

∣∣∣∣∣
∂xφ

p−1
m (τm+1)

∂xφ
p−1
i (τi+1)

∣∣∣∣∣ ≤ C4
0 ε̄
pi+1−pm

. (5.26)

Therefore, by Lemma A.3 there exists a constant C2 > 0 such that

|tm,n| ≤ |tm|
n∑

i=m

|sm,i−1|

∣∣∣∣
ti
tm

∣∣∣∣ (5.27)

≤ C2
0 ε̄
pm

n∑

i=m

σi−m−1ε̄p
i+1−pm

(1 + C1ρ
i).

≤ C2ε̄
pm

.

This concludes the first item. For the second and third items we will proceed
by induction. The case when m = n is shown in Proposition 5.4 so, for m+1 ≤
n, assume the inequalities hold for rm+1,n and consider rm,n. Choose z =
(x, y) ∈ R2 such that τn+1 + z ∈ Dom(Ψm,n). Then since Ψm,n = Ψm ◦Ψm+1,n,
decomposing the left hand side gives

Ψm,n(τn+1 + z) = τm +Dm,n(id +Rm,n)(z) (5.28)

and decomposing the right hand side and applying Proposition B.1 gives us

Ψm(Ψm+1,n(τn+1 + z)) (5.29)

= Ψn(τm+1 +Dm+1,n(id +Rm+1,n)(z))

= τm +Dm(id +Rm) (Dm+1,n(id +Rm+1,n)(z))

= τm +Dm,n(id +Rm+1,n)(z) +Dm (Rm(Dm+1,n(id +Rm+1,n)(z))) .

Equating these and making appropriate cancellations then gives

Rm,n(z) = Rm+1,n(z) +D−1
m+1,n (Rm(Dm+1,n(id +Rm+1,n)(z))) . (5.30)

By definition, Rm,n(z) = (rm,n(z), 0), Rm+1,n(z) = (rm+1,n(z), 0) and Rm(z) =
(rm(z), 0). Therefore setting z′ = (x′, y′) = Dm+1,n(id +Rm+1,n)(z), that is

(x′, y′) = (σm+1,nsm+1,n(x + rm+1,n(x, y)) + σm+1,ntm+1,ny, σm+1,ny), (5.31)
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we find that

rm,n(x, y) = rm+1,n(x, y) + σ−1
m+1,ns

−1
m+1,nrm(x′, y′). (5.32)

Differentiating this with respect to x and y gives

∂xrm,n(x, y) = ∂xrm+1,n(x, y) + (1 + ∂xrm(x, y))∂xrm(x′, y′) (5.33)

∂yrm,n(x, y) = ∂yrm+1,n(x, y) + s−1
m+1,n (tm+1,n∂xrm(x′, y′) + ∂yrm(x′, y′)) .

(5.34)

Now let C4 > 1 be the maximum of the constant from Proposition 5.4 and the
constant from the first item above which ensures

|sm+1,n| > C−1
4 σn−m−1, |tm+1,n| < C4ε̄

pm+1

, (5.35)

and

|∂xrm(z)| < C4|z|, |∂yrm(z)| < C4ε̄
pm

|z|, |∂xyrm(z)| < C4ε̄
pm

|z|. (5.36)

As a consequence of our induction hypothesis, there exists a constant C5 > 0
such that |z′| < C5σ

n−m−1|z|. Together these imply the existence of a constant
C6 > 0 such that

|∂xrm,n(z)| ≤ |∂xrm+1,n(z)| + |∂xrm(z′)|(1 + |∂xrm(z)|) (5.37)

≤ |∂xrm+1,n(z)| + C4|z
′|(1 + C4|z|)

≤ |∂xrm+1,n(z)| + C4C5σ
n−m−1|z|(1 + C4|z|)

≤ |∂xrm+1,n(z)| + C6σ
n−m−1|z|

and a constant C7 > 0 such that

|∂yrm,n(z)| ≤ |∂yrm+1,n(z)| + |sm+1,n|
−1 (|∂xrm(z′)||tm+1,n| + |∂yrm(z′)|) .

(5.38)

≤ |∂yrm+1,n(z)| + C4σ
−(n−m−1)(C2

4 ε̄
pm+1

|z′| + C4ε̄
pm

|z′|)

≤ |∂yrm+1,n(z)| + C2
4C5(C4ε̄

pm+1

+ ε̄p
m

)|z|

≤ |∂yrm+1,n(z)| + C7ε̄
pm

|z|

Next we consider the second order derivatives. As all functions are analytic
the estimates for ∂xxrm,n and ∂yyrm,n follow from those of ∂xrm,n and ∂yrm,n
respectively. Therefore we only need consider the mixed second order partial
derivative. This is given by

∂xyrm,n(z) = ∂xyrm+1,n(z) + σm+1,n∂xyrm(z) (∂xxrm(z′)tm+1,n + ∂xyrm(z′))
(5.39)

and hence, using the above estimates, there exists a constant C8 > 0 such that

|∂xyrm,n(z)| (5.40)

≤ |∂xyrm+1,n(z)| + |σm+1,n||∂xyrm(z)| (|∂xxrm(z′)||tm+1,n| + |∂xyrm(z′)|)

≤ |∂xyrm+1,n(z)| + C2
4σ

n−m−1ε̄p
m

|z|
(
C2

4 ε̄
pm+1

|z′| + C4ε̄
pm

|z′|
)

≤ |∂xyrm+1,n(z)| + C8σ
2(n−m)ε̄2p

m

|z|.
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Therefore invoking the induction hypothesis and setting C = maxi Ci we achieve
the desired result.

Proposition 5.7. There exists a constant 0 < ρ < 1 such that that following
holds: for F ∈ IΩ,υ(ε̄), let rm,n(x, y) denote the functions constructed above for
integers 0 < m < n. Then there exists a constant C > 0 such that for any
(x, y) ∈ B,

|[x+ rm,n(x, y)] − v∗(x)| < C(ε̄p
m

y + ρn−m) (5.41)

and
|[1 + ∂xrm,n(x, y)] − ∂xv∗(x)| < Cρn−m (5.42)

where v∗(x) is the affine rescaling of the universal function u∗ so that its fixed
point lies at the origin with multiplier 1.

Proof. Given F ∈ IΩ,υ(ε̄) let Fn : B → B denote the n-th renormalisation

and let Ψn : B → B denote the n-th scope function. Let F̂n : B̂n+1 → B̂n
and Ψ̂n : B̂n+1 → B̂n denote these maps under the translational change of
coordinates described above.

First, let us consider the functions Ψ̂m : B̂m+1 → B̂m. By construction these
preserve the x-axis, since they preserve the family of horizontal lines and the
origin is a fixed point for each of them. This implies there exists a functions
ψ̂m : Ĵm+1 → Ĵm such that Ψ̂m(x, 0) = (ψ̂m(x), 0). Next observe there is a
constant C0 > 0 such that for each n ≥ 0 there exists fnUΩx,υ satisfying |Fn −

(fn ◦ πx, πx)|Ω < C0ε̄
pn

. Let f̂n : Ĵn → Ĵn denote fn under the translational

change of coordinates and let ψ̂1
n : Ĵn → Ĵ1

n be the branch of its presentation
function corresponding to the interval Ĵ1

n. Proposition 2.21 implies there is a

constant C1 > 0 such that |ψ̂1
n − ψ̂n|C2 < C1ε̄

pn

and Proposition 2.21 and

Theorem 3.11 implies there is a constant C2 > 0 such that |ψ̂1
n− ψ̂1

∗|C2 < C2ρ
n.

Combining these we find there is a constant C3 > 0 such that

|ψ̂n − ψ̂1
∗|C2 < C3ρ

n. (5.43)

Now observe there exist functions ψ̂m,n : Ĵn+1 → Ĵ0
m,n ⊂ Ĵm, where Ĵ0

m,n =

ψ̂m,n(Ĵn+1), such that Ψ̂m,n(x, 0) = (ψ̂m,n(x), 0). Moreover, since Ψ̂m,n =

Ψ̂m◦· · ·◦Ψ̂n we must have ψ̂m,n = ψ̂m◦· · ·◦ψ̂n. Also observe that, since Ψ̂m,n =

Tm ◦Ψm,n ◦T
−1
n+1, there are translations Tm such that ψ̂m,n = Tm ◦ψm,n ◦T

−1
n+1.

Now let [ψm,n] and [ψ∗,m,n] denote, respectively, the orientation preserving

affine rescalings of the maps ψ̂m ◦· · ·◦ ψ̂n and ψ̂∗◦· · ·◦ ψ̂∗ to the interval J . Here
the composition of ψ̂∗ with itself is taken n−m times. Then Lemma 7.3 in [3]
implies there exists a constant C4 > 0 such that |ψm,n − ψ∗,m,n|C1 < C4ρ

n−m.
This then implies, together with the second part of Lemma 2.17, that there is
a constant C5 > 0 such that

|[ψm,n] − u∗|C1 ≤ |[ψm,n] − [ψ∗,m,n]|C1 + |[ψ∗,m,n] − u∗|C1 (5.44)

≤ C5ρ
n−m.
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where u∗ is the universal function from that Lemma. Next we perform an
translational change of coordinates on [ψm,n] and u∗ so that the fixed point lies
at the origin. Observe that these coordinate changes also converge exponentially.
Therefore, if [ψ̂m,n], and û∗ denote these functions in the new coordinates, there
exists a constant C6 > 0 such that

|[ψ̂m,n] − û∗|C1 < C6ρ
n−m. (5.45)

Now observe that, since multipliers of fixed points have uniform Lipschitz-type
dependence (by the Cauchy estimates), this implies the difference between the

multiplier µm,n of the fixed point 0 for [ψ̂m,n] and the multiplier µ∗ of the fixed
point 0 for û∗ decreases exponentially in n−m at the same rate. This implies
there exists a constant C7 > 0 such that

|µ−1
m,n[ψ̂m,n] − µ−1

∗ û∗|C1 < C7ρ
n−m. (5.46)

Now we claim that µ−1
m,n[ψ̂m,n] = x+rm,n(x, 0). Both come from affinely rescal-

ing Ψm,n so that the origin is fixed, the horizontal line {y = 0} is fixed and their
derivatives in the x-direction are 1. Hence they are equal. Also, by definition,
µ−1
∗ û∗ = v∗. This then implies, by the above and Proposition 5.6, that there is

a constant C > 0 such that

|[x+ rm,n(x, y)] − v∗(x)| (5.47)

≤ |[x+ rm,n(x, y)] − [x+ rm,n(x, 0)]| + |[x+ rm,n(x, 0)] − v∗(x)|

≤ |∂yrm,n||y| + |µ−1
m,n[ψ̂m,n] − µ−1

∗ û∗|C0

≤ C(ε̄p
m−1

|y| + ρn−m)

which gives the first bound while

|[1 + ∂xrm,n(x, y)] − ∂xv∗(x)| (5.48)

≤ |[1 + ∂xrm,n(x, y)] − [1 + ∂xrm,n(x, 0)]| + |[1 + ∂xrm,n(x, 0)] − ∂xv∗(x)|

≤ |∂xyrm,n||y| + |µ−1
m,n[ψ̂m,n] − µ−1

∗ û∗|C1

≤ C(σn−mε̄p
m

|y| + ρn−m)

which, since z lies in a bounded domain and ε̄p
m

is bounded from above, gives
us the bound for the derivate.

Proposition 5.8. There exist constants C > 0, 0 < ρ < 1 such that the fol-
lowing holds: given F ∈ IΩ,υ(ε̄), for each integer m > 0 there exists a constant
κ(m) = κ(m)(F ) ∈ R, satisfying |κ(m)| < Cε̄p

m

, such that

|[x+ rm,n(x, y)] − [v∗(x) + κ(m)y
2]| < Cρn−m (5.49)
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Proof. Observe that, since v∗(0) = 0, Proposition 5.7 tells us there exists a
constant C0 > 0 and a point ξ0,x ∈ [0, x] such that

|[x+ rm,n(x, y)] − [v∗(x) + rm,n(0, y)]| (5.50)

= |[x + rm,n(x, y) − v∗(x)] − [0 + rm,n(0, y) − v∗(0)]|

≤ |1 + ∂xrm,n(ξ0,x, y) − ∂xv∗(ξ0,x)||x|

≤ C0ρ
n−m|x|

We now claim there exists a constant κ(m) such that |κ(m)| < Cε̄p
m

and

|rm,n(0, y) − κ(m)y
2| < C1ρ

n. (5.51)

To show this we use induction. Recall that Ψm,n(z) = Ψm,n−1◦Ψn(z) for z ∈ B.
This implies

Rm,n(z) = Rn(z) +D−1
n (Rm,n−1(Dn(id +Rn(z)))). (5.52)

Since Rm,n, Rn and Dn have the forms given by Lemmas 5.1 and 5.5, we find
that, setting z′ = Ψn(z),

(x′, y′) = (σnsn(x+ rn(x, y)) + σntny, σny), (5.53)

where we write (x′, y′) for z′. This then gives us

rm,n(x, y) = rn(x, y) + σ−1
n s−1

n rm,n−1(x
′, y′). (5.54)

Let ωn(y) = σn(snrn(0, y) + tny). Then in particular, this together with the
Mean Value Theorem implies there exists a ξ ∈ [0, ωn(y)] such that

rm,n(0, y) = rn(0, y) + σ−1
n s−1

n rm,n−1(ωn(y), σny) (5.55)

= rn(0, y) + σ−1
n s−1

n (rm,n−1(0, σny) + ∂xrm,n−1(ξ, σny)ωn(y)) .

Next observe that, by construction, rn(x, y) consists of degree two terms or
higher. Therefore, by the above equation, so too must rm,n(x, y). Thus, we
may write rn(0, y) and rm,n(0, y) in the forms

rn(0, y) = κny
2 +Kn(y); rm,n(0, y) = κm,ny

2 +Km,n(y), (5.56)

where κn, κm,n are real constants and Kn(y),Km,n(y) are functions of the third
order in y. This implies together with equation (5.55), that

κm,ny
2 +Km,n(y) = κny

2 +Kn(y) (5.57)

+ σ−1
n s−1

n

(
κm,n−1y

2 +Km,n−1(y) + ∂xrm,n−1(ξ, σny)ωn(y)
)

By Proposition 5.4 there exists a constant C1 > 0 such that |∂yrn(z)| < C1ε̄
pn

|z|
for all suitable z. Therefore κn is satisfies |κn| < C1ε̄

pn

and Kn satisfies
|Kn(y)| < C1ε̄

pn

|y|3. Proposition 5.4 also implies there exists a constant C2 > 0
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such that |ω(y)| < C2ε̄
pn

|y|. Proposition 5.6 implies there exists a constant
C3 > 0 such that |∂xrm,n−1(x, y)| < C3. These imply, there is a constant
C4 > 0 such that

|κm,n| ≤ |κn| + |σns
−1
n ||κm,n−1| + C4ε̄

pn

(5.58)

≤ 2C4ε̄
pn

+ (1 + C4ρ
n)|κm,n−1|

|Km,n(y)| ≤ |Kn(y)| + |σ2
ns

−1
n ||Km,n−1(y)| + C4ε̄

pn

(5.59)

≤ σ(1 + C4ρ
n)|Km,n−1(y)| + 2C4ε̄

pn

which implies κm,n converges as n tends to infinity and Km,n(y) decreases ex-
ponentially if n is sufficiently large. Moreover, by Proposition A.3, κ(m) =

limn→∞ κm,n satisfies |κ(m)| ≤ C5ε̄
pn

for some constant C5 > 0. Hence the
Proposition is shown.

6 Three Applications

We extend three the results in [3] to the case of arbitrary combinatorics using
the results of the previous section. First we will show that universality holds at
the tip. By this we mean the rate of convergence to the renormalisation fixed
point is controlled by a universal quantity. In the unimodal case this is a positive
real number, but here the quantity is a real-valued real analytic function. This
universality is then used to show our two other results, namely the non-existence
of continuous invariant linefields on the renormalisation Cantor set and the non-
rigidity of these Cantor sets.

6.1 Universality at the Tip

Theorem 6.1. There exists a constant ε̄0 > 0, a universal constant 0 < ρ < 1
and a universal function a ∈ Cω(J,R) such that the following holds: Let F ∈
IΩ,υ(ε̄0) and let the sequence of renormalisations be denoted by Fn. Then

Fn(x, y) =
(
fn(x) + bp

n

a(x)y (1 + O (ρn)) , y
)

(6.1)

where b = b(F ) denotes the average Jacobian of F and fn are unimodal maps
converging exponentially to f∗.

Proof. Let Fn = (φn, πx) denote the n-th renormalisation of F . Let τn denote
the tip of height n and let ς ∈ Dom(Fn) be any other point. Applying the chain
rule to Fn = Ψ−1

0,n−1 ◦ F
◦pn

◦ Ψ0,n−1 at the point ς gives

∂yφn(ς) = JacςFn = JacΨ0,n−1(ς)F
◦pn JacςΨ0,n−1

JacFn(ς)Ψ0,n−1
. (6.2)

By the Distortion Lemma 3.20, since Ψ0,n−1(ς) ∈ B0n

, there exists a constant
C0 > 0 such that

∣∣∣JacΨ0,n−1(ς)F
◦pn
∣∣∣ ≤ bp

n

(1 + C0ρ
n) . (6.3)
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It is clear from the decomposition in Lemma 5.5 that

JacςΨ0,n−1 = Jacτn
Ψ0,n−1Jacς−τn

(id +R0,n−1) (6.4)

and
JacFn(ς)Ψ0,n−1 = Jacτn

Ψ0,n−1JacFn(ς)−τn
(id +R0,n−1) . (6.5)

Let δ0n = ς − τn and δ1n = Fn(ς) − τn. Observe that, by Theorem 3.11 and
Corollary 3.18, there exists a constant C1 > 0 such that |τn − τ∗|, |Fn − F∗|Ω <
C1ρ

n. Therefore there exists a constant C2 > 0 such that, if ς∗ = τ∗ + (ς − τn),
δ0∗ = ς∗ − τ∗ and δ1∗ = F∗(ς∗) − τ∗,

∣∣δ0n − δ0∗
∣∣ = |[ς − τn] − [ς∗ − τ∗]| = 0 (6.6)

and ∣∣δ1n − δ1∗
∣∣ = |[Fn(ς) − τn] − [F∗(ς∗) − τ∗]| < C2ρ

n. (6.7)

By Proposition 5.7 there is a constant C3 > 0 such that

|1 + ∂xr0,n−1 − v′∗|C0 < C3ρ
n. (6.8)

Combining these and observing that v∗ has bounded derivatives and δ0n and δ1n
both lie in a bounded domain gives us a constant C4 > 0 satisfying

∣∣Jacδ0n (id +R0,n−1) − v′∗
(
πx
(
δ0∗
))∣∣ (6.9)

≤
∣∣Jacδ0n (id +R0,n−1) − v′∗

(
πx
(
δ0n
))∣∣+

∣∣v′∗
(
δ0n
)
− v′∗

(
δ0∗
)∣∣

≤
∣∣1 + ∂xr0,n−1

(
δ0n
)
− v∗

(
πx
(
δ0n
))∣∣ |τn − τ∗| + |v′′∗ |C0 |τn − τ∗|

≤ C2C3ρ
2n + C2 |v∗|C2 ρ

n

≤ C4ρ
n

and

∣∣Jacδ1n (id +R0,n−1) − v′∗
(
πx
(
δ1∗
))∣∣ (6.10)

≤
∣∣Jacδ1n (id +R0,n−1) − v′∗

(
πx
(
δ1n
))∣∣+

∣∣v′∗
(
πx
(
δ1n
))

− v′∗
(
πx
(
δ1∗
))∣∣

≤
∣∣1 + ∂xr0,n−1

(
δ1n
)
− v′∗

(
πx
(
δ1n
))∣∣ ∣∣δ1n

∣∣+ |v′′∗ |C0

∣∣δ1n − δ1∗
∣∣

≤ C4ρ
n.

Observe that there exists a constant C5 > 0 such that |v′∗(x)| ≥ C5 > 0, as v∗
is a rescaling of a diffeomorphism onto its image. Observe also that there exists
an N > 0 such that |1 + ∂xr0,n|C0 ≥ 1

2 inf |v′∗(x)| ≥ C5 for all n > N . Therefore
there exists a constant C6 > 1 such that for all n > N ,

max

(
1,

∣∣∣∣∣
v′∗
(
πx
(
δ0∗
))

v′∗ (πx (δ1∗))

∣∣∣∣∣

)
< C6; C−1

6 <
∣∣Jacδ1nΨ0,n

∣∣ . (6.11)
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Therefore, applying Lemma A.5 we find
∣∣∣∣∣
Jacδ0nΨ0,n−1

Jacδ1nΨ0,n−1
−
v′∗
(
πx
(
δ0∗
))

v′∗ (πx (δ1∗))

∣∣∣∣∣ =
∣∣∣∣∣
Jacδ0n (id +R0,n−1)

Jacδ1n (id +R0,n−1)
−
v′∗
(
πx
(
δ0∗
))

v′∗ (πx (δ1∗))

∣∣∣∣∣ (6.12)

≤ C2
6 max
i=0,1

(∣∣1 + ∂xr0,n−1

(
δin
)
− v′∗

(
πx
(
δi∗
))∣∣)

≤ C4C
2
6ρ
n.

Together with equation 6.2 and 6.3 this implies,

∂yφn (ς) = bp
n

a(ξ) (1 + O(ρn)) (6.13)

where ς = (ξ, η) and

a(ξ) =
v′∗ (ξ − πx (τ∗))

v′∗ (f∗ (ξ) − πx (τ∗))
. (6.14)

This implies that, if z = (x, y) ∈ B, upon integrating with respect to the y-
variable we find

φn(x, y) = gn(x) + ybp
n

a(x) (1 + O(ρn)) , (6.15)

for some function gn independent of y. But now let (fn, εn) be any parametri-
sation of Fn such that |εn| ≤ C7ε̄

pn

and |fn − f∗| < C8ρ
n. Here C7 > 0 is the

constant from Theorem 3.10 and C8 > 0 is the constant from Theorem 3.11.
Then there is a constant C9 > 0 such that |gn − fn| = |εn − bp

n

πy ◦ a| ≤ C9ρ
n.

Therefore, for n > 0 sufficiently large gn will also be unimodal and |gn − f∗| ≤
|gn − fn| + |fn − f∗| ≤ (C9 +C8)ρ

n. Hence we may absorb their difference into
into the O(ρn) term.

The following is an immediate consequence of the proof of above Theorem.

Proposition 6.2. Let F ∈ IΩ,υ(ε̄), let Ψm,n denote the scope function from
height n+ 1 to height m. Let tm,n denote the tilt of Ψm,n and let τm+1 denote
the tip at height m+ 1. Let a = a(τ∗) where a(x) is the universal function from
Theorem 6.1 above. Then exists constants C > 0 and 0 < ρ < 1 such that for
all 0 < m < n sufficiently large,

abp
m

(1 − Cρm) < |tm(τm+1) | < abp
m

(1 + Cρm) (6.16)

abp
m

(1 − Cρm) < |tm,n(τn+1)| < abp
m

(1 + Cρm). (6.17)

Moreover tm,∗ = limn→∞ tm,n(τn+1) exists and the convergence is exponential.

Proof. Let τm = (ξm, ηm). Recall that

tm = ±
∂yφ

p−1
m (τm)

∂xφ
p−1
m (τm)

, (6.18)

but by the Variational Formula 3.5 we know

φp−1
m (ξm, ηm) = f◦p−1

m (ξm) + Lp−1
m (ξm) + εm (ξm, ηm)

(
f◦p−1
m

)′
(ξm) + O(ε̄2p

m

)
(6.19)
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which implies

∂xφ
p−1
m (ξm, ηm) =

(
f◦p−1
m

)′
(ξm) +

(
Lp−1
m

)′
(ξm) + ∂xεm (ξm, ηm)

(
f◦p−1
m

)′
(ξm)

+ εm (ξm, ηm)
(
f◦p−1
m

)′′
(ξm) + O(ε̄2p

m

) (6.20)

∂yφ
p−1
m (ξm, ηm) = ∂yεm(ξm, ηm)(f◦p−1

m )′(ξm, ηm) + O(ε̄2p
m

) (6.21)

Therefore, by the fact that (f◦p−1
m )′(ξm) is uniformly bounded from zero if n is

sufficiently large,

∂yφ
p−1
m (ξm, ηm)

∂xφ
p−1
m (ξm, ηm)

=
∂yεm (ξm, ηm)

(
f◦p−1
m

)′
(ξm, ηm) + O(ε̄2p

m

)
(
f◦p−1
m

)′
(ξm) + O(ε̄pn)

(6.22)

=
(
∂yεm (ξm, ηm) + O(ε̄2p

m

)
)(

1 + O(ε̄p
m

)
)

= ∂yεm (ξm, ηm) + O(ε̄2p
m

).

Theorem 6.1 above and observing that the O(ε̄2p
m

) term can be absorbed into
the O(ρm) then tells us

|tm(τm+1)| = a (ξm) bp
m

(1 + O(ρm)) , (6.23)

but by Proposition 5.3 we know that ξm converges to ξ∗ exponentially and so
analyticity of a implies a(ξm) = a(ξ∗)(1+O(ρm)). Hence we get the first claim.
Secondly, observe by Lemma 5.5,

tm,n−1(τn) =

n−1∑

i=m

sm,i−1(τi)ti(τi+1) (6.24)

= tm(τm+1)

n−1∑

i=m

sm,i−1(τi)

(
∂xφ

p−1
m (τm)

∂xφ
p−1
i (τi)

)(
∂yφ

p−1
i (τi)

∂yφ
p−1
m (τm)

)

= tm(τm+1)

n−1∑

i=m

sm+1,i(τi+1)

(
∂yφ

p−1
i (τi)

∂yφ
p−1
m (τm)

)

Therefore we can write tm,n−1(τn) = tm(τm+1)(1 +Km,n−1(τn+1)) where

Km,n−1

n−1∑

i=m+1

sm+1,i(τi+1)

(
∂yφ

p−1
i (τi)

∂yφ
p−1
m (τm)

)
. (6.25)

By Proposition 5.6 and the Variational Formula 3.5, there exists a constant
C7 > 0 such that |Km,n−1(τn+1)| ≥ Cε̄p

m+1−pm

. Absorbing this error into the
O(ρm) term gives us the second claim. The third claim follows as the terms in
Km,n decrease super-exponentially as n tends to infinity, but τm only converges
exponentially to τ∗.
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Proposition 6.3. Let F ∈ IΩ,υ(ε̄) be as above, let τn denote the tip of Fn and
let ςn = F ◦p

n (τn). Then there exists a constant C > 1 for all 0 < m < n

C−1|sm,n−1(τn)| ≤ |sm,n−1(ςn)| ≤ C|sm,n−1(τn)| (6.26)

C−1|tm,n−1(τn)| ≤ |tm,n−1(ςn)| ≤ C|tm,n−1(τn)| (6.27)

|sm,n−1(ςn) − sm,n−1(τn)| > C−1|ςn − τn| (6.28)

|tm,n−1(ςn) − tm,n−1(τn)| > C−1|ςn − τn| (6.29)

Proof. These follow from the estimates on the second order terms (i.e. the
functions rm,n) given by Proposition 5.6 and the observation that τn, ςn ∈ B0

n

implies, for n sufficiently large, that the derivatives of sm,n−1, tm,n−1 in the
rectangle spanned by τn, ςn will be uniformly bounded.

6.2 Invariant Line Fields

Let F ∈ IΩ,υ(ε̄) and let O denote its renormalisation Cantor set. We will now
consider the space of F -invariant line fields on O. As we are considering line
fields, let us projectivise all the transformations under consideration. Let us take
the projection onto the line {y = 1}, and let us denote the projected coordinate
by X . Then the maps D(Ψm,n; z) and D(F ◦p

n ; z) induce the transformations

D̃zΨm,n(X) = sm,n(z)X + tm,n(z) (6.30)

D̃zF
◦p
n (X) = ζn(z)

X + ηn(z)

X + θn(z)
. (6.31)

where sm,n(z), tm,n(z) are as in Section 3.4 and ζn(z), ηn(z), θn(z) are given by

ζn(z) =
∂xφ

p
n(z)

∂xφ
p−1
n (z)

, ηn(z) =
∂yφ

p
n(z)

∂xφ
p
n(z)

, θn(z) =
∂yφ

p−1
n (z)

∂xφ
p−1
n (z)

. (6.32)

Proposition 6.4. Let F ∈ IΩ,υ(ε̄) be as above. Then there exists a constant
C > 1 such that for all n > 0

C−1 < |ζn(τn)| < C (6.33)

|ηn(τn)| < Cε̄p
n+1

(6.34)

|θn(τn)| < Cε̄p
n

(6.35)

Proof. Let (fn, εn) be a parametrisation for Fn. Let vn denote the critical value
of fn. Observe, by convergence of renormalisation 3.11, that vn and πxτn are
exponentially close and so there is a constant C0 > 0 such that

∣∣∣
(
f◦p−1
n

)′
(vn)

∣∣∣ ,
∣∣∣
(
f◦p−1
n

)′
(πxτn)

∣∣∣ > C0, (6.36)

if n > 0 is sufficiently large. Therefore by the variational formula, there is a
constant C1 > 0 such that

∣∣∣∣
∂xφ

p
n (τn)

∂xφ
p−1
n (τn)

−
(f◦p
n )′ (vn)

(f◦p−1
n )′ (vn)

∣∣∣∣ ≤ C1ε̄
pn

. (6.37)
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Now observe, by Theorem 3.11, that there is a C2 > 0 such that
∣∣∣∣

(f◦p
n )′ (vn)

(f◦p−1
n )′ (vn)

−
(f◦p

∗ )′ (v∗)

(f◦p−1
∗ )′ (v∗)

∣∣∣∣ < C2ρ
n. (6.38)

Therefore there exists a C3 > 0 such that

|ζn (τn) − f ′
∗ (f◦p

∗ (v∗))| (6.39)

≤

∣∣∣∣
∂xφ

p
n(z)

∂xφ
p−1
n (z)

−
(f◦p
n )′ (vn)

(f◦p−1
n )′ (vn)

∣∣∣∣+
∣∣∣∣

(f◦p
n )′ (vn)

(f◦p−1
n )′ (vn)

−
(f◦p

∗ )′ (v∗)

(f◦p−1
∗ )′ (v∗)

∣∣∣∣

≤ C3ρ
n.

Since f ′
∗

(
f◦p
∗ (v∗)

)
6= 0 (infinitely renormalisable maps are never postcritically

finite), this implies for n > 0 sufficiently large the first item is true.
For the second item, taking the Jacobian of F ◦p

n at τn, applying Proposi-
tion 5.4 and making the same observation regarding f ′

∗

(
f◦p
∗ (v∗)

)
6= 0 as above,

gives us the result.
The third item follows directly from Proposition 5.4.

Theorem 6.5. Let F ∈ IΩ,υ(ε̄) and let O denote its renormalisation Cantor
set. Then there do not exist any continuous invariant line fields on O. More
precisely, if X is an invariant line field then it must be discontinuous at the tip,
τ , of F .

Proof. Let X be a continuous invariant line field on O. Let τn denote the tip of
Fn and let ςn = F ◦p

n (τn) denote its first return, under Fn, to B0
n.

Before we begin let us define some constants that shall help our exposition.
Let C0 > 0 satisfy |θn (τn)| < C0ε̄

pn

and |ηn (τn)| < C0ε̄
pn+1

for all n > 0. Such
a constant exists by Proposition 6.4. Let C1 > 1 satisfy C−1

1 < |ζn (τn)| < C1

for all n > 0. Such a constant exists by Proposition 6.4. Let C2 > 0 satisfy
|tm (τm+1)| , |tm,n−1 (τn)| < C2ε̄

pm

for all 0 < m < n. Such a constant exists by
Propositions 5.4 and 5.6. Let C3 > 0 satisfy |sm,n−1 (τn)| > C3σ

n−m−1 for all
0 < m < n. Finally let C4 > 1 satisfy

C−1
4 |sm,n−1 (τn)| ≤ |sm,n−1 (ςn)| ≤ C4 |sm,n−1 (τn)| (6.40)

C−1
4 |tm,n−1 (τn)| ≤ |tm,n−1 (ςn)| ≤ C4 |tm,n−1 (τn)| (6.41)

|sm,n−1 (ςm) − sm,n−1 (τm)| > C−1
4 |ςm − τm| (6.42)

|tm,n−1 (ςm) − tm,n−1 (τm)| > C−1
4 |ςm − τm| (6.43)

for all 0 < m < n. Such a constant exists by Proposition 6.3 above.
Observe that X induces continuous invariant line fields Xn for Fn on On,

the induced Cantor sets. Thus

Xm(τm) = D̃τΨ
−1
0,mX(τ) = (X(τ) − t0,m(τm)) /s0,m(τm). (6.44)

There are two possibilities: either X(τ) = t0,∗(τ∗) = lim t0,m−1(τm), and so
Xm(τm) converges to zero (since t0,m converges super-exponentially to t0,∗ but
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s0,m converges only exponentially to 0), or X(τ) 6= t0,∗(τ∗), and so Xm(τm)
tends to infinity.

First, let us show the second case cannot occur. Let K,κ > 0 be constants.
Choose M > 0 such that |Xm(τm)| > K for all m > M . Fix such an m >
M . By continuity of Xm there exists a δ > 0 such that |x − y| < δ implies
|Xm(x) − Xm(y)| < κ for any x, y ∈ Om. Choose N > m such that, for all
n > N , |Ψm,n−1(τn) − Ψm,n−1(ςn)| < δ. This then implies |Xm(Ψm,n−1(τn)) −
Xm(Ψm,n−1(ςn))| < κ.

By invariance of the Xn,

|Xn (ςn)| =
∣∣∣D̃τn

F ◦p
n (Xn (τn))

∣∣∣ = |ζn (τn)|

∣∣∣∣
Xn (τn) + ηn (τn)

Xn (τn) + θn (τn)

∣∣∣∣ . (6.45)

By our above hypotheses we know |θn(τn)|, |ηn(τn)| < C0ε̄
pn

. Since n > m, we
also know |Xn(τn)| > K. Therefore

∣∣∣∣
Xn (τn) + ηn (τn)

Xn (τn) + θn (τn)

∣∣∣∣ ≤
1 + |ηn (τn) /Xn (τn) |

1 − |θn (τn) /Xn (τn) |
(6.46)

≤
1 + C0ε̄

pn

/K

1 − C0ε̄p
n/K

Therefore, combining this with the above equation 6.45 and the hypotheses of
the second paragraph we find

|Xn (ςn)| ≤ C1

(
1 + C0ε̄

pn

/K

1 − C0ε̄p
n/K

)
(6.47)

Now we apply D̃ςnΨm,n−1. Then by the definition of the constant C4 > 0 in
the second paragraph and Proposition 5.6

|Xm (Ψm,n−1 (ςn))| = |sm,n−1 (ςn)Xn (ςn) + tm,n−1 (ςn)| (6.48)

≤ |sm,n−1 (ςn)| |Xn (ςn)| + |tm,n−1 (ςn)|

≤ C4 (|sm,n−1 (τn)| |Xn (ςn)| + |tm,n−1 (τn)|)

≤ C4σ
n−m−1(1 + |Xn (ςn)|)

and hence

|Xm (Ψm,n−1 (τn)) −Xm (Ψm,n−1 (ςn))| (6.49)

≥
∣∣|Xm (Ψm,n−1 (τn))| − |Xm (Ψm,n−1 (ςn))|

∣∣

≥ K − C4σ
n−m−1

[
1 + C1

(
1 + C0ε̄

pn

/K

1 − C0ε̄p
n/K

)]
.

But, by our continuity assumption, this must be less than κ. For K > 0
sufficiently large this cannot happen.

So now let us assume X(τ) = t0,∗. Then the induced line fields must satisfy
Xm(τm) = tm,∗, for all m > 0. The idea is, as before, to look at the first returns
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under Fm of B0
m. We will apply D̃τm

F ◦p
m to the line Xm(τm) = tm,n and take

the limit as n tends to infinity.
Proposition 6.2 implies, as tm(τm+1) = ±∂yφp−1

m (τm)/∂xφ
p−1
m (τm) = ±ηm,

that there exists a constant C5 > 0 for which

|tm,n−1 (τn) + θm (τm)| ≤ |tm (τm+1)| |Km,n−1 (τn+1)| ≤ C5ε̄
pm+1

. (6.50)

On the other hand, we know |ηm(τm)| < C0ε̄
pm+1

and |tm,n−1(τn)| < C2ε̄
pm

and hence

|tm,n−1 (τn) + ηm (τm)| ≥
∣∣|tm,n−1(τn)| − |ηm(τm)|

∣∣ ≥ C2ε̄
pm

− C0ε̄
pm+1

(6.51)

We also know |ζm(τm)| > C−1
1 . Therefore there exists a constant C6 > 0 such

that
∣∣∣D̃τm

F ◦p
m (tm,n−1(τn))

∣∣∣ = |ζm(τm)|

∣∣∣∣
tm,n−1(τn) + ηm(τm)

tm,n−1(τn) + θm(τm)

∣∣∣∣ (6.52)

≥ C−1
1 C−1

5 ε̄−p
m+1

(C2ε̄
pm

− C0ε̄
pm+1

)

≥ C6ε̄
−pm+1

.

Now recall |tm,n−1(τn)| < C2ε̄
pm

. Also observe that both of these estimates are
independent of n. Therefore they still hold when passing to the limit, as n tends
to infinity, giving

|Xm(ςm)| > C6ε̄
−pm+1

, |Xm(τm)| < C2ε̄
pm

. (6.53)

Finally, applying Ψ0,m−1 and setting ς = Ψ0,m−1(ςm) we find that

|X(ς) −X(τ)| (6.54)

=
∣∣[s0,m−1(ςm)Xm(ςm) + t0,m−1(ςm)] − [s0,m−1(τm)Xm(τm) + t0,m−1(τm)]

∣∣

≥
∣∣|s0,m−1(ςm)Xm(ςm) − s0,m−1(τm)Xm(τm)| − |t0,m−1(ςm) − t0,m−1(τm)|

∣∣

but by our assumptions in the second paragraph

|s0,m−1(ςm)Xm(ςm) − s0,m−1(τm)Xm(τm)| (6.55)

≥
∣∣|s0,m−1(ςm)| |Xm(ςm) −Xm(τm)| − |s0,m−1(ςm) − s0,m−1(τm)| |Xm(τm)|

∣∣

≥ C−1
4 |s0,m−1(τm)| |Xm(ςm) −Xm(τm)| − C4 |ςm − τm| |Xm(τm)|

and
|t0,m−1(ςm) − t0,m−1(τm)| ≤ C4|ςm − τm| . (6.56)

Therefore again by our assumptions in the second paragraph, |s0,m−1(τm)| >
C3σ

m. Hence, by our bounds on |Xm(ςm)| and |Xm(τm)| and the above we find

|X(ς) −X(τ)| (6.57)

≥ C−1
4 C3σ

m |Xm(ςm) −Xm(τm)| − C4 |ςm − τm| |Xm(τm)| − C4 |ςm − τm|

≥ C−1
4 C3σ

m
(
C2ε̄

−pm+1

− C6ε̄
pm
)
− C4 |ςm − τm|

(
1 + C6ε̄

pm
)
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However, since |ςm − τm| is bounded from above there is a constant C7 > 0 such
that

|X(ς) −X(τ)| ≥ C7σ
mε̄−p

m+1

. (6.58)

Therefore, as we increase m > 0 the points τ and ς get exponentially closer but
the distance between X(τ) and X(ς) diverges superexponentially. In particular
X cannot be continuous at τ as required.

We now need to define the following type of convergence, which is stronger
than Hausdorff convergence.

Definition 6.6. Let O∗ ⊂ M be a Cantor set, embedded in the metric space
M , with presentation B∗ = {Bw

∗ }w∈W∗ . Let Ow
∗ denote the cylinder set for

O∗ associated to the word w ∈ W . Let On ⊂ M denote a sequence of Cantor
sets, also embedded in M , with presentations Bn = {Bw

n }w∈W∗ combinatorially
equivalent to B∗. Then we say On strongly converges to O∗ if, for each w ∈W ,
Ow
n → Ow

∗ .

Definition 6.7. Let Xn be a line field on On. Then we say Xn strongly con-
verges to a line field X∗ on O∗ if, for each w ∈W , Xn(O

w
n ) converges to X∗(O

w
∗ )

in the projected coordinates.

Proposition 6.8. Let F ∈ IΩ,υ(ε̄) and let O denote its renormalisation Cantor
set. Given any invariant line field X on O the induced line fields Xn on On do
not strongly converge to the tangent line field X∗ on O∗.

Proof. Let us denote the correspondence between elements of On and O∗ by πn.
Then a sequence of line fieldsXn strongly converges to X∗ if Xn◦πn converges to
X∗, where we have identified the line fields with their projectivised coordinates.

Assume convergence holds and let ǫ > 0 and choose N > 0 such that |Xn ◦
πn −X∗|O∗

< ǫ for all n > N . Take any m > N and let n > m be chosen so
that σn−m+1 ≤ bp

m

≤ σn−m. Then

|Xm(τm) −X∗(τ∗)| , |Xm(Fm(τm)) −X∗(F∗(τ∗))| < ǫ, (6.59)

and the same holds if we replace m by n. Let us denote the points Fi(τi) by ςi.
Observe that X∗(ς∗) = ∂xφ∗(τ∗). Therefore, as convergence of renormalisa-

tion implies |∂xφm(τm) − ∂xφ∗(τ∗)| < Cρm, this tells us

|Xm(ςm) − ∂xφm(τm)| < ǫ+ Cρm. (6.60)

We will now show they must differ by a definite constant and achieve the required
contradiction. We will show this by evaluating Xm at a point near to ςm.
Consider the points ς = Ψm,n(ςn) and ς ′ = FmΨm,n(ςn). First let us evaluate
Xm at ς ′. By invariance this must be

D̃ςnFmΨm,n (Xn(ςn)) = ∂xφm(ς) +
∂yφm(ς)

sm,n(ςn) + tm,n(ςn)Xn(ςn)
. (6.61)
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The second term must be bounded away from zero as Xn(ςn) is bounded from
above if n is sufficiently large and the hypothesis on m,n tells us sm,n and tm,n
are both comparable to bp

m

, as is the numerator ∂yφm(ς). It is clear this bound
can be made uniform in m.

Second, observe that |ς ′ − ςm| can be made arbitrarily small by choosing
m and n −m sufficiently large, by the assumption that On converges strongly
to O∗. Combining these gives us the required contradiction, as our hypothesis
implies increasing m leads to an exponential increase in n.

6.3 Failure of Rigidity at the Tip

Using the same method as for the period doubling case we show that given two
Cantor attractors O and Õ for some F, F̃ ∈ IΩ,υ(ε̄0) with average Jacobian b, b̃
respectively, there is a bound on the Holder exponent of any conjugacy that
preserves ‘tips’.

Theorem 6.9. Let F, F̃ ∈ IΩ,υ(ε̄) be two infinitely renormalisable Hénon-like

maps with respective renormalisation Cantor sets O and Õ, and tips τ and τ̃ .
If there is a conjugacy π : Õ → O mapping τ̃ to τ then the Hölder exponent α
of π satisfies

α ≤
1

2

(
1 +

log b̃

log b

)
(6.62)

Proof. We will denote all objects associated with F without tilde’s and all ob-
jects associated with F̃ with them. For example Ψ and Ψ̃ will denote the scope
function for F and F̃ respectively.

Let K > 0 be a positive constant which we will think of as being large. Let
us choose an integer m > 0 which ensures that b̃p

m

> Kbp
m

and take an integer
n > m which satisfies σn−m+1 ≤ bp

m

< σn−m. This will be the depth of the
Cantor sets O and Õ that we will consider. So let us consider F and O. Let us
denote the tip of Fn+1 by τ and let ς be its image under Fn+1. Let τ̇ and ς̇ be
the respective images of these points under Ψm,n. Let τ̈ and ς̈ be the respective
images of τ̇ and ς̇ under Fm. Let

...
τ and

...
ς be the respective images of τ̈ , ς̈ under

Ψ0,m−1. The equivalent points for F̃ will be denoted by with tilde’s. Finally, τ∗
denotes the tip of F∗ and ς∗ denotes its image under F∗.

Observe that τ∗ and ς∗ will not lie on the same vertical or horizontal line.
Therefore we know that the following constant

C0 = 1
2 min (|πx(ς∗) − πx(τ∗)| , |πy(ς∗) − πy(τ∗)|) (6.63)

is positive. By Theorem 3.11 there exists an integer N > 0 such that

|πx(ς) − πx(τ)| , |πy(ς) − πy(τ)| , |πx(ς̃) − πx(τ̃ )| , |πy(ς̃) − πy(τ̃ )| > C0 > 0,
(6.64)

for all integersm > N . Let δ = (δx, δy) = ς−τ and δ̃ =
(
δ̃x, δ̃y

)
= ς̃−τ̃ . Clearly

we also have an upper bound for each of these quantities, namely C1 = diam(B).
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First we will derive an upper bound for the distance between
...
ς and

...
τ , then

we will derive a lower bound for the distance between
...
ς̃ and

...
τ̃ .

Applying Ψm,n to ς and τ gives ς̇ − τ̇ = Dm,n (id +Rm,n) (ς − τ). Let

δ̇ =
(
δ̇x, δ̇y

)
= ς̇ − τ̇ . Hence by Proposition 5.6 and the above paragraph there

exists a constant C2 > 0 such that,
∣∣∣δ̇x
∣∣∣ = |σm,nsm,n [δx + rm,n (δx, δy)] + σm,ntm,nδy| (6.65)

≤ C2σ
n−m

(
σn−m + bp

m
)

∣∣∣δ̇y
∣∣∣ = |σm,nδy| (6.66)

≤ C2σ
n−m

Next we apply Fm = (φm, πx) which gives ς̈ − τ̈ = Fm (ς̇) − Fm (τ̇ ). Let

δ̈ =
(
δ̈x, δ̈y

)
= ς̈ − τ̈ . First observe that by convergence of renormalisation,

i.e. Theorem 3.11, there is a constant C2 > 0 such that |∂xφm| < C2. Second
observe, by Theorem 3.10 there exists a constant C3 > 0 such that |∂yφm| <
C3b

pm

. Then by the Mean Value Theorem, if ξ = (πx (τ̇ ) , πy (ς̇)), there exist
points ξy ∈ [ς̇ , ξ] , ξx ∈ [ξ, τ̇ ] such that

∣∣∣δ̈x
∣∣∣ =

∣∣∣∂xφm (ξy) δ̇x + ∂yφm (ξx) δ̇y

∣∣∣ (6.67)

≤ C3

∣∣∣δ̇x
∣∣∣+ C4b

pm
∣∣∣δ̇y
∣∣∣

≤ C2σ
n−m

(
C2

(
σn−m + bp

m
)

+ C3b
pm
)

≤ C5σ
n−m

(
σn−m + bp

m
)

∣∣∣δ̈y
∣∣∣ =

∣∣∣δ̇x
∣∣∣ (6.68)

≤ C2σ
n−m

(
σn−m + bp

m
)

Now we apply Ψ0,m which gives
...
ς −

...
τ = D0,m (id +R0,m) (ς̈ − τ̈ ). Let...

δ = (
...
δ x,

...
δ y) =

...
ς −

...
τ . Hence, by Proposition 5.6 and the above paragraph,

there is a constant C6 > 0 such that

|
...
δ x| =

∣∣∣σ0,ms0,m

[
δ̈x + r0,m

(
δ̈x, δ̈y

)]
+ σ0,mt0,mδ̈y

∣∣∣ (6.69)

≤ C2σ
m
∣∣∣σm

[∣∣∣δ̈x
∣∣∣+ |∂xr0,m|

∣∣∣δ̈
∣∣∣
]

+ bp
m
∣∣∣δ̈y
∣∣∣
∣∣∣

≤ C6σ
2mσn−m

(
σn−m + bp

m
)

+ C2
2σ

nbp
m
(
σn−m + bp

m
)

≤
(
C6σ

n+m + C2
2σ

nbp
m
)(

σn−m + bp
m
)

|
...
δ y| =

∣∣∣σ0,mδ̈y

∣∣∣ (6.70)

≤ C2
2σ

n
(
σn−m + bp

m
)
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From the second inequality we find there exists a constant C7 > 0 such that
dist(

...
ς ,

...
τ ) ≤ C7σ

2n−m.
Now we wish to a find a lower bound for dist(

...
ς̃ ,

...
τ̃ ). Applying Ψ̃m,n to

these points gives ˙̃ς − ˙̃τ = D̃m,n(id +R̃m,n)(ς̃ − τ̃). Let ˙̃δ = ( ˙̃δx,
˙̃δy) = ˙̃ς − ˙̃τ .

Hence, as before, by Proposition 5.6 and the second paragraph there exists a

constant C2 > 0 such that, | ˙̃δy| = |σ̃m,nδ̃y| ≤ C2σ
n−m. Let C8 > 1 be constants

satisfying

|σ̃m,n| > C−1
8 σn−m,

∣∣t̃m,n
∣∣ > C−1

8 b̃p
m

, |sm,n| < C8σ
n−m, |r̃m,n| < C8.

(6.71)
But, since b̃p

m

> Kσn−m+1, Proposition 5.6 tells us
∣∣∣ ˙̃δx
∣∣∣ =

∣∣∣σ̃m,ns̃m,n
[
δ̃x + r̃m,n

(
δ̃x, δ̃y

)]
+ σ̃m,n t̃m,nδ̃y

∣∣∣ (6.72)

≥ |σ̃m,n|
∣∣∣|s̃m,n|

∣∣∣δ̃x + r̃m,n

(
δ̃x, δ̃y

)∣∣∣−
∣∣∣t̃m,nδ̃y

∣∣∣
∣∣∣

≥ C−1
8 σn−m

(
C−1

8 C0b
pm

− C8 (C0 + C8) σ
n−m

)

≥ C−1
8 σn−mbp

m (
C−1

8 C0 −K−1σ−1C8 (C0 + C8)
)
.

Since K > 0 was assumed to be large (and the constants C8 had no de-
pendence upon m and n) we find there exists a constant C9 > 0 such that∣∣∣ ˙̃δx
∣∣∣ > C9b

pm

σn−m.

Applying F̃m to ˙̃ς and ˙̃τ gives ¨̃ς − ¨̃τ = Fm
(
˙̃ς
)
− Fm

(
˙̃τ
)
. Let

¨̃
δ =

(
¨̃
δx,

¨̃
δy

)
=

¨̃ς − ¨̃τ . Then, ignoring the difference in the x-direction, we find
∣∣∣¨̃δy
∣∣∣ =

∣∣∣ ˙̃δx
∣∣∣ ≥

C11b
pm

σn−m.

Now we apply Ψ̃0,m which gives
...
ς̃ −

...
τ̃ = D̃0,m

(
id +R̃0,m

) (
¨̃ς − ¨̃τ

)
. Let

...
δ̃ =

(...
δ̃ x,

...
δ̃ y

)
=

...
ς̃ −

...
τ̃ . Then from Lemma 5.5 we find

∣∣∣
...
δ̃ y

∣∣∣ =
∣∣∣σ̃0,m

¨̃
δy

∣∣∣. But

Proposition 5.6 implies there exists a constant C10 > 0 such that |σ̃0,m| ≥
C10σ

m, so combining this with the estime from preceding paragraph gives∣∣∣
...
δ̃ y

∣∣∣ ≥ C9C10σ
nbp

m

.

Now let us combine these upper and lower bounds. Let C11, C12 > 0 be con-
stants satisfying dist

(...
ς̃ ,

...
τ̃
)
> C11σ

nbp
m

and dist (
...
ς ,

...
τ ) < C12σ

2n−m. Then,
assuming the Hölder condition holds for some C13, α > 0 we have

C11σ
nb̃p

m

≤ dist
(...
τ̃ ,

...
ς̃
)
≤ C dist (

...
τ ,

...
ς )
α ≤ C13C

α
12(σ

2n−m)α (6.73)

which implies, after collecting all constant factors, that there is a C > 0 such
that

σmbp
m

b̃p
m

≤ C
(
σmbp

m

bp
m
)α

(6.74)

and hence after taking the logarithm of both sides and passing to the limit gives

α ≤
1

2

(
1 +

log b̃

log b

)
. (6.75)
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and hence the theorem is shown.

Appendices

A Elementary Results

Proposition A.1. Let C > 0 and 0 ≤ ρ ≤ δ < 1. Then the product
∏∞
i=0(1 +

Cρi) converges and, moreover there exists a C0 > 0 such that

∞∏

i=m

(1 + Cρi) < 1 + C0ρ
m (A.1)

Proof. First let us show convergence. Observe that concavity of log implies
log(1 + Cρi) < log(1) + log′(1)Cρi = Cρi. Therefore taking logarithms gives

log

[
n∏

0

(1 + Cρi)

]
≤

n∑

i=0

log(1 + Cρi) ≤ C

n∑

i=0

ρi ≤
C

1 − ρ
. (A.2)

Therefore, since the partial convergents are increasing, Bolzano-Weierstrass im-
plies log

[∏∞
i=0(1 + Cρi)

]
exists. Hence, applying exp gives us convergence.

Now let Fm,n(ρ) =
∏n
i=m(1 + Cρi). Observe that, by the product rule,

d

dρ
Fm,n(ρ) =

n∏

i=m

(1 + Cρi)
n∑

i=m

Ciρi−1

1 + Cρi
(A.3)

= CFm,n(ρ)ρm−1
n−m∑

i=0

(m+ i)ρi

1 + Cρi
(A.4)

but since C, ρ > 0,

n−m∑

i=0

(m+ i)ρi

1 + Cρi
≤ m

n−m∑

i=0

ρi + ρ

n−m∑

i=0

iρi−1 (A.5)

≤ m

∞∑

i=0

ρi + ρ
d

dρ

(
∞∑

i=0

ρi

)

≤
m

1 − ρ
+

ρ

(1 − ρ)2

So, setting M = CFm,n(δ)
(

m
1−δ + δ

(1−δ)2

)
and Gm(ρ) = (1 + M

m
ρm), we find

d

dρ
Fm,n(ρ) ≤Mρm−1 ≤

d

dρ
Gm(ρ). (A.6)

Hence, as Fm,n(0) = 0 = Gm(0) the result follows by setting C0 = M/m.
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Lemma A.2. Let C > 0 and 0 < ρ < 1. Then there exists a constant C0 > 0
such that

1 + Cρ

1 − Cρ
< 1 + C0ρ

2. (A.7)

The following Lemma and Proposition are straightforward and are left to
the reader.

Lemma A.3. Given constants 0 ≤ ε̄, ρ, σ < 1 and C0, C1 > 0 and a fixed integer
p > 1 there exists a constant C > 0 such that for all integers 0 < m < M ,

(i) C0ε̄
pm

+ C1ε̄
pm+1

≤ Cε̄p
m

;

(ii) C0ε̄
pm

+ C1ρ
m ≤ Cρm

(iii)
∑
m<n<M σi−m−1ε̄p

n−pm

(1 + C0ρ
n) < C

(iv)
∑
n>M ε̄p

n

≤ Cε̄p
M

Proposition A.4. Given any ρ > 0 there exists a ε > 0 such that
∑

i>0 ρ
iεp

i

converges for all ε < ε. Moreover for 0 < ε < ε there exists a constant C =
C(ε) > 0 such that

∑
i>0 ρ

iεp
i

< Cε for all 0 < ε < ε.

Lemma A.5. Let P,Q, P ′, Q′ ∈ R with P,Q′ non-zero. Then

∣∣∣∣
P

Q
−
P ′

Q′

∣∣∣∣ ≤ Cmax (|P − P ′|, |Q−Q′|) (A.8)

where C = 2|Q|−1 max(1, |P ′/Q′|).

Proof. This is immediate given the following inequality,

∣∣∣∣
P

Q
−
P ′

Q′

∣∣∣∣ =

∣∣∣∣
1

Q
(P − P ′) + P ′

(
1

Q
−

1

Q′

)∣∣∣∣ (A.9)

≤
1

|Q|

[
|P − P ′| +

∣∣∣∣
P ′

Q′

∣∣∣∣ |Q
′ −Q|

]
.

B Variational Properties of Composition Oper-

ators

In this section we derive properties of the composition operator. We show how
the remainder term from Taylor’s Theorem behaves under composition and we
derive the first variation of the n-fold composition operator. Although we only
state these for maps on R2 or C2 these work in full generality.
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Proposition B.1. Let F,G ∈ Emb2(R2,R2). For any z0, z1 ∈ R2, consider the
decompositions

F (z0 + z1) = F (z0) + Dz0F (id +Rz0F )(z1) (B.1)

and
G(z0 + z1) = G(z0) + Dz0G(id +Rz0G)(z1). (B.2)

Then

Rz0FG(z1) = Rz0G(z1) + Dz0G
−1RG(z0)F (Dz0G(id +Rz0G)(z1)) (B.3)

Proof. Observe that

FG(z0 + z1) = FG(z0) + Dz0FG(z1) + Dz0FG(Rz0FG)(z1) (B.4)

must be equal to

F (G(z0 + z1)) = F (G(z0) + Dz0G(id +Rz0G)(z1)) (B.5)

= F (G(z0)) + DG(z0)F (id +RG(z0)F )(Dz0G(id +Rz0G)(z1))

= F (G(z0)) + DG(z0)FDz0G(z1) + DG(z0)FDz0G(Rz0G(z1))

+ DG(z0)FRG(z0)F (Dz0G(id +Rz0G)(z1)).

This implies that

Rz0FG(z1) = Rz0G(z1) + Dz0G
−1RG(z0)F (Dz0G(id +Rz0G)(z1)) (B.6)

and hence the Proposition is shown.

Proposition B.2. For each integer n > 0 let Cn : Cω(B,B)n → Cω(B,B)
denote the n-fold composition operator

Cn(G1, . . . , Gn) = G1 ◦ · · · ◦Gn. (B.7)

For i = 1, . . . , n assume we are give Fi, Gi ∈ Cω(B,B) and let Ei be defined by
Gi = Fi + Ei. Then

C(G1, . . . , Gn) = C(F1, . . . , Fn) + δCn(F1, . . . , Fn;E1, . . . , En) + O(|Ei||Ej |)
(B.8)

where

δCn(F1, . . . , Fn;E1, . . . , En) =

n−1∑

i=1

DFi+1,...,n(z)F1,...,i(Ei+1(Fi+2,...,n(z)))

(B.9)
where we have set F∅, En+1 = id.
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Proof. For notational simplicity let F1,...,n = F1 ◦ · · ·◦Fn, G1,...,n = G1 ◦ · · · ◦Gn
and let E1,...,n satisfy G1,...,n = F1,...,n + E1,...,n. Then equating G1,2,...,n with
G1 ◦G2,...,n and using the power series expansion of G1 gives

G1,...,n(z) = G1(F2,...,n(z) + E2,...,n(z)) (B.10)

= F1(F2,...,n(z) + E2,...,n(z)) + E1(F2,...,n(z) + E2,...,n(z))

= F1(F2,...,n(z)) + DF2,...,n(z)F1(E2,...,n(z)) + O(|E2,...,n|
2)

+ E1(F2,...,n(z)) + O(|DE1||E2,...,n|)

while equating G1,2,...,n with G1,...,n−1◦Gn and using the power series expansion
of G1,...,n−1 gives

G1,...,n(z) = G1,...,n−1(Fn(z) + En(z)) (B.11)

= F1,...,n−1(Fn(z) + En(z)) + E1,...,n−1(Fn(z) + En(z))

= F1,...,n(z) + DFn(z)F1,...,n−1(En(z)) + O(|En|
2)

+ E1,...,n−1(Fn(z)) + O(|DE1,...,n||En|).

From the second of these expressions, inductively we find, setting F∅, En+1 = id,
that

E1,...,n(z) =

n−1∑

i=1

DFi+1,...,n(z)F1,...,i(Ei+1(Fi+2,...,n(z))) + O(|Ei||Ej |) (B.12)
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