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Abstract

We consider the family of holomorphic maps ez + c and show that
fibers of postcritically finite parameters are trivial. This can be con-
sidered as the first and simplest class of non-escaping parameters for
which we can obtain triviality of fibers in the exponential family.

Introduction

Among transcendental functions, the complex exponential family ez + c is
one of the most widely studied examples, because there is only one singular
value at c and because in some respects it can be seen as combinatorial limit
of unicritical polynomials of degree d (See e.g.[3]).
The foundational work has been set by Eremenko and Lyubich [6] and Baker
and Rippon [1], has been carried over by Devaney and coauthors, to flow even-
tually into an extensive combinatorial study carried out mainly by Rempe,
Schleicher and Zimmer; many other aspects, like ergodic property, have also
been investigated by various groups of people; for a review of exponential
dynamics and a more complete set of references see [2].
Many results, like the theory of parabolic bifurcations, have been approached
in analogy with the more mature theory of quadratic polynomials. A rich
class of results which presents difficulties in being generalized are rigidity
results; in this class, most results for polynomials involve some version of
Yoccoz puzzle and estimates on the modulus of the annuli between puzzle
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pieces, but for the exponential family most dynamically arising objects in-
cluding puzzle pieces are unbounded, so that the corresponding annuli are
degenerate at infinity. An additional difficulty due to the same unbound-
edness property is that the conjugacy between the original map and the
tentative renormalized map does not extend to the boundary of its domain
of definition [13].
On the other side, topological properties of Misiurewicz parameters for poly-
nomials have been studied extensively [5]; for triviality of fibers see for ex-
ample [23] and [20].
A study about general properties of fibers for the exponential family as com-
pared to the polynomial family has been carried out in [17], however Misi-
urewicz parameters are the first class of non-escaping exponential maps for
which it was actually possible to show triviality of fibers. Our main result is
stated as follows:

Theorem 1. Fibers of Misiurewicz parameters in parameter space are trivial,
i.e. given any postcritically finite parameter c0, for any other parameter c
which does not belong to one of the finitely many parameter rays landing at
c0 there is a pair of parameter rays with periodic addresses landing together
at a parabolic parameter which separate c from c0.

We will devote the first section to a collection of relevant results about
existence and landing properties of dynamic and parameter rays for the ex-
ponential family. The second section will introduce Misiurewicz parameters
and their combinatorial properties, followed by a section on ray portraits
where we will prove some explicit theorem about the correspondence of ray
portraits between exponentials and polynomials. After that we will give a
short introduction to fibers and rigidity, and in the last section we will present
the statement and the proof of theorem 1.
Remark about notation: we will refer as ΠP to the parameter plane and as
Πc to the dynamical plane for the parameter c.
Many thanks are due to Misha Lyubich and Dierk Schleicher for suggesting
this problem, and to Lasse Rempe, Dierk Schleicher and especially Mikhail
Lyubich for helpful discussions on the subject.
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1 Dynamic and parameter rays

This section has the purpose of recollecting some of the relevant results about
rays and their landing properties.
Rays for the exponential family have been introduced in analogy with the
polynomial case in order to construct symbolic dynamics on the set of escap-
ing points

I = {z, |fnc (z)| → ∞} ⊂ Πc.

In other words we want to subdivide I into connected sets gcs (our rays)
indicized by a sequence s, called address, so that fc(g

c
s) = gcσs where σ is the

left shift; if we look at ez as limit of unicritical polynomials of degree d, for
which rays are parametrized by angles written in d-adyc expansion, it would
be natural to label the exponential rays by sequences over the integers.
In addition to the transversal direction parametrized by addresses we can
model the dynamics along the rays (the radial direction) with the function
F : R 7→ R, F : t 7→ et − 1, so that the previous relation among the rays
becomes

fc(g
c
c(t)) = gcσs(F (t)).

The natural construction [4] is to divide the plane into strips Sj on which
ez is univalent, for example under the preimages of the positive semiaxis
which passes through c; label the strips with integers respecting the vertical
order, for example

Sj = {z, Im z ∈ ((2j − 1)π, (2j + 1)π)}

and consider itineraries of points with respect to this partition, i.e.

itin(z) = s1s2 . . . iff f j(z) ∈ Ssj
.

For points whose jth iterate belongs to the boundary separating two strips
Ssj

and Ssj+1
the corresponding entry in the address will be the boundary

symbol
(
sj

sj+1

)
.

It would be tempting to define the ray of address s = s1s2 . . . as the set of
points whose itinerary is s, but this would introduce the unnatural condition
that rays can’t cross the boundaries of the partition creating disconnected
sets. The actual construction uses this guideline to first define rays for large
real part and then use inverse dynamics to extend them to their maximal
length choosing branches of f−1 in order to preserve continuity of the curve.
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Note that by the above construction we cannot realize as a ray any sequence
whose entries grow faster than iterates of the exponential function, leading
to the following notion:

Definition 1. A sequence s = s1s2 . . . is said exponentially bounded if ∃ x ∈
R, |2πsj| < F j(x) ∀j.

This condition turns out to be not only necessary but also sufficient [21],
so that we can consider all sequences s contained in the set

S = {s = s1s2... ∈ ZN such that s is exponentially bounded}

and state the following theorem ([21]):

Theorem 2. Existence of dynamic rays Given a non-escaping parameter
c, for any s ∈ S there exists a real number ts and a curve gcs : (ts,∞) → C
such that

• gcs(t) has external address s for sufficiently large t

• fc(gcs(t)) = gcσs(F (t))

• We have the asymptotics gcs(t) = 2πis1 + t+ o(e−t)

The question whether periodic rays land for the exponential family re-
mained open for some time, and was finally solved by Rempe using the pre-
viously known fact that periodic rays land for hyperbolic parameters and an
argument about persistence of landing inside wakes. This led to the following
theorem ([14]):

Theorem 3. Landing theorem for periodic dynamic rays Let c be such
that the singular value c of fc does not escape to infinity. Then every periodic
dynamic ray gcs lands at a repelling or parabolic periodic point.

Note that as preperiodic points are preimages of periodic points this au-
tomatically implies that preperiodic rays also land and that, like for polyno-
mials, when c is escaping the only exceptions are rays which are preimages
of the ray containing the singular value.
The construction of parameter rays is also done keeping in mind the fun-
damental property of parameter rays that we have for polynomials: a point
c belongs to some parameter ray Gs in ΠP if and only if it belongs to the
dynamic ray gcs in Πc.
It is carried out by Forster and Schleicher and is summarized in the following
theorem about existence of parameter rays:
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Theorem 4. Existence of parameter rays([8],prop 2.2). Let s ∈ S.Then
for any t bigger than some ts, there exist a unique paramter c = Gs(t) such
that c = gcs(t).
The map Gs : (ts,∞) → C is continuous, and |Gs(t) − (t + 2πis1)| → 0 as
t→∞.

Not much is known about the landing properties of parameter rays, how-
ever the basic result that we will need, proved in [19], is that periodic and
preperiodic parameter rays land at parabolic or Misiurewicz parameters re-
spectively [19].
Now that we recollected the essential general results about rays and their
landing properties we will move to the specific class of parameters that we
are interested in, Misiurewicz parameters.

2 Misiurewicz parameters

We call a parameter c0 Misiurewicz if it is postsingularly finite, so that the
singular value c0 lands at some repelling orbit {zi} of period m after k steps.
From the definition above and the discreteness of solutions of the equation
fk+mc (c) = fkc (c) it follows immediately that Misiurewicz parameters belong
to the bifurcation locus; it has been also proved that for such parameters the
Julia set is equal to C.
There are a few reasons why proving rigidity for Misiurewicz parameters is
easier than the other cases. Among them, Schleicher and Zimmer have proved
in [21] that such a parameter c0 is the landing point of exactly q parameter
rays whose addresses s1 < ... < sq are preperiodic of period mq and preperiod
k, and that the dynamic rays with the corresponding addresses land at c0 in
Πc0 :

Theorem 5. Dynamical-parameter plane correspondence at Mis-
iurewicz points A preperiodic parameter ray lands at some Misiurewicz
parameter c0 iff the dynamic ray with the same address lands at c0 in Πc0.

This theorem by itself expresses a form of combinatorial similarity be-
tween parameter and dynamical plane at Misurewicz points, and together
with the generalization of Thurston’s rigidity theorem for exponentials ([10])
and a subsequent work ([11]), gives a combinatorial classification of postsin-
gularly finite exponential maps expressed by the following theorem (thm 2.6
in [11]):
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Theorem 6. Classification of Misiurewicz exponential maps For ev-
ery preperiodic external address s, there is a unique postsingularly finite ex-
ponential map such that the dynamic ray at external address s lands at the
singular value. Every postsingularly finite exponential map is associated in
this way to a positive finite number of preperiodic external addresses.

This classification mimics the corresponding classification of postsingu-
larly finite unicritical polynomials, so that the theorem above offers a natural
correspondence between exponential Misiurewicz parameters and polynomial
Misiurewicz parameters which will be exploited later.
Before exploring further the consequences of the combinatorial classifica-
tion of Misiurewicz exponential maps, let us mention that the second main
ingredient in proving triviality of fibers is offered by the linearizing coordi-
nates which give contraction under the inverse map in a neighborhood of the
postsingular periodic orbit.

A combinatorial property of Misiurewicz parameters One of the
features of Misurewicz parameters that we are going to use in the proof of
our main theorem is a lemma connecting topology to combinatorics, proven
in [21] for exponentials and probably well known for unicritical poynomials
of degree D; for completeness we will include a proof following the outline of
[22].
Let f = ez + c0 or f = zD + c0 where c0 is a Misiurewicz parameter, and
choose one of the finitely many dynamic rays landing at c0, say gs1 , where
s1 is the address/angle respectively. Then topologically the preimage of gs1
under f is a set of countably many curves going to −∞ in the case of ex-
ponentials, and a set of D curves connecting at 0 for polynomials of degree
D; in both cases, those first preimages of gs1 partition the plane into open
regions Wj. Similarly the preimages of s1 under the shift map partition into
the same number of sectors the combinatorial space, which for exponentials
is given by all exponentially bounded sequences over the integers, and for
polynomials of degree D is given by sequences over D symbols.
Label with the entry 0 the dynamical and the combinatorial sector contain-
ing c0 and s1 respectively.
Any ray gs which is not a preimage of gs1 has a well defined itinerary whose
entries keep track of the sectors visited by iterates of s under the shift map.
In order to use a hyperbolic contraction argument we need a picture which
is forward invariant, so we also need to remove from C the finitely many
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forward images of gs1 , obtaining a subpartition of the plane into regions Ŵi,j

where each region Ŵi,j ⊂ Wi.

Lemma 7. Significance of dynamical partition for Misiurewicz pa-
rameters Two rational rays which are not preimages of the rays landing at
the singular value land together iff they have the same itinerary with respect
to the dynamical partition described above

Proof. Given a region Wi, we can choose a branch of f−1
i mapping C into

Wi, so that the same branch restricted to any Wj′ contracts the hyperbolic

metric from Wj′ to Wi. Similarly each Ŵi,j carries its own hyperbolic metric

which is bigger than the metric of Wi, and the restriction of f−1
i to any Ŵi,j

contracts the hyperbolic metric of that Ŵi,j.
Let us start by considering any two periodic rays which have the same
itinerary; they land at two points w1 and w2 which are periodic, so that
up to selecting branches they are both fixed under some M -th iterate f−M

of the inverse of f .
The periodic points w1 and w2 have the same itinerary under fk, k = 1...m
so at each step we can select the same branch of f−1 and get hyperbolic con-
traction along the backward orbits until we get back to w1 and w2 decreasing
hyperbolic distance, which is a contradiction unless w1 = w2 to start with.
This proves the theorem for periodic rays unless the iterates of w1 and w2

always belong to different connected components of Wj − ∪nfn(gs1) (i.e to

different Ŵi,j). So suppose that w1 and w2 belong to the same Wi but to

different Ŵi,j; then at least one of them, say w1, belongs to one of the in-
ternal sectors defined in the section about orbit portraits and originating at
some point z of the postsingular periodic orbit: the dynamics permutes those
sectors transitively, so each image fn(w1) belongs to the same Wi as fn(z),
hence w1 has the same itinerary as z and, as w2 has the same itinerary as
w1, it also has the same itinerary as z.
Remains to prove that no periodic point wi can have the same itinerary as
some postcritical periodic point z. The family of inverse iterates is normal in
a neighborhood of z, and is defined in a connected set containing wi because
the two points have the same itinerary. As the iterates converge to the con-
stant map contracting everything to z in a linearizing neighborhood for z,
they converge to the same map in the entire domain where they are defined,
contradicting the fact that wi is fixed under some appropriate iterate of the
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inverse function.
If the rays are preperiodic and have the same itinerary their periodic images
also have the same itineray, hence land together by previous part; and since
our preperiodic rays are not preimages of the rays landing at the singular
value, and they have the same itinerary, we can take pullbacks using the
same branch for both, so that they keep landing together.
On the other side if two rays land together they form a connected set, which
never intersects the original partition under iterates of f , so they always be-
long to the same region of the partition.

3 Combinatorics and Ray Portraits

This section introduces ray portraits (in analogy with [12] and with [16]) and
studies the correspondence between rational parameter rays for polynomials
and rational parameter rays for exponentials. The theorems about this cor-
respondence are probably known or not surprising to people in the field but
we could not find a precise reference in the literature.

Definition 2. We call a ray pair any couple of rational rays landing together.
When we refer to a ray pair as a couple of addresses or angles, we mean the
ray pair corresponding to that couple of angles. A rational ray pair is a ray
pair whose addresses or angles are either periodic or preperiodic.

We will define the following distance between two sequences l = l1l2 . . .
and s = s1s2 . . . :

dist(l, s) =
∑
sk 6=lk

1

2k

Definition 3. Let {zi}i=1···n be a periodic repelling or parabolic orbit of
period n in Πc, and Ai = {r ∈ S, r is periodic and gcs lands at zi}. Then
P = {A1, · · · An} is said to be the orbit portrait for {zi}.
P is called essential if each Ai contains at least two addresses, satellite if the
addresses form only one cycle and primitive otherwise.

Theorem 8. Basic properties of orbit portraits [16] Given an orbit
portrait P, all Ai’s contain a finite number of addresses, and the shift map
sends Ai bijectively onto Ai+1. All addresses share the same period qn.
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Theorem 9. Misiurewicz addresses for exponentials and polynomi-
als The parameter rays Gs1 . . . Gsq land together at some exponential Mi-
siurewicz parameter iff they land together at some polynomial Misiurewicz
parameter in the parameter plane for unicritical polynomials of sufficiently
high degree D.

Proof. All the rays landing together at some Misiurewicz parameter c0 in
exponential parameter plane have the same itineraries with respect to the
dynamical partition induced by gs1 in Πc0 . The address s1 is preperiodic, so
it is a sequence over finitely many values, so for polynomials of sufficiently
high degree there’s a Misiurewicz parameter c1 which is the landing point of
the corresponding parameter ray.
All the polynomial dynamic rays gs2 . . . gsq also have the same itinerary with
respect to the partition induced by gs1 so they all land together in the dy-
namical plane for the polynomial whose critical value is c1, hence the cor-
responding parameter rays land together at c1 in the polynomial parameter
plane.

Definition 4. Given a ray portrait, the characteristic rays are the rays which
separate the singular value from all other rays in the portrait

Definition 5. A characteristic ray pair is a pair of periodic rays Gs1 , Gs2

landing together in parameter plane. By [16], the dynamic rays of addresses
s1, s2 also land together for parameters in the wake defined by Gs1 , Gs2 . We
will call s1, s2 characteristic addresses.

By [16], the two definitions above coincide.

Remark 1. It follows from the theory of parabolic bifurcation worked out
in [16] that for any parameter c there’s a 1-to-1 correspondence between
characteristic ray pairs in Πc and the periodic parameter ray pairs separating
the parameter c from the period one component.

Theorem 10. Correspondence of characteristic rays A pair of rays
is characteristic for exponentials iff it is characteristic for some unicritical
polynomial of some degree D.

Proof. Given a combinatorial ray portrait, by vertical/cyclic order of rays the
correct topological picture is already encoded in the combinatorial portrait.
For polynomials we know that the singular value always belongs to the sector
with smallest width; this implies the corresponding result for exponentials,
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because due to branching only the preimage of the singular sector is bounded
by rays whose addresses differ in the first entry by one, and it is encoded in
the combinatorics which sector maps to which other sector.
We want to show that a ray pair which is characteristic for polynomials also
is characteristic for exponentials. We only need to show that all polynomial
portraits are realized for exponentials as well and vice versa, because once
we know that the portrait is realized this determines the characteristic sec-
tor. Any portrait for polynomials persists in the whole wake bounded by
its characteristic adresses so in particular it is realized for some polynomial
Misiurewicz parameter as well.
Then by lemma 7 the correspondent Misiurewicz parameter in the exponen-
tial family also realizes that orbit portrait, because the rays exist and the
pattern in which they land together is encoded in the itineraries with respect
to the Misiurewicz partition described in the previous section. The proof
that Misiurewicz portraits are realized for polynomials is symmetric once
you observe that we have only finitely many addresses in any portrait hence
finitely many entries.

4 Fibers and Rigidity

One of the main problems in one dymensional complex dynamics is to show
that the set of structurally stable parameters consists only of hyperbolic com-
ponents. If there was a non hyperbolic component all maps in a neighborhood
would be conjugated, so that any two maps in the component would have
exactly the same set of ray portraits; by the theory of parabolic bifurcation
in [16], this means that two parameters in the same non hyperbolic compo-
nents could not be separated by a parameter ray pair, or otherwise one of
the two would have an additional ray portrait. This leads to the following
definitions:

Definition 6. The parameter fiber of a parameter c0 is the set of parameters
which cannot be separated from c0 by some pair of (pre)periodic parameter
rays landing together at some parabolic or Misiurewicz parameter, or by
two periodic parameter rays landing at the boundary of the same hyperbolic
component.
By analogy, the dynamical fiber of a point c0 is the set of points which cannot
be separated from c0 by some pair of (pre)periodic rays landing together at
some (pre)periodic point.
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Definition 7. We will say that the fiber of a point c0 in dynamical/parameter
space is trivial, if all other points can be separated from c0 via a pair of
rational rays landing together, except for the rays which might land at the
point c0 itself.

Definition 8. We will call any result about triviality of fibers a rigidity
result. This comes from the fact that any map whose singular value does
not escape and with trivial fiber can not be conjugated to any other map
in a neighborhood because two maps with different ray portraits can not be
topologically conjugated.

From the above definitions it follows immediately the implication below
(see again [17] for a slightly different formulation of this discussion)

Theorem 11. If the fiber of every non hyperbolic parameter with non escap-
ing singular value is trivial, then there are no non hyperbolic components in
the set of structurally stable parameters

There are two main points in considering fibers to study density of hyper-
bolicity: for the exponential case, periodic parameter rays for exponentials
are closely related to parameter rays for unicritical polynomials (see thm 10),
so that it is possible to infer results about exponentials using known results
about polynomials; the second one, and more general one, is that fibers are a
way to ”localize” the global conjecture, and select specific classes of param-
eters which are easier to study.
Our combinatorial rigidity statement 1 deals exactly with the easiest class of
parameters, we restate it here for convenience:

Theorem 12. Fibers of Misiurewicz parameters in parameter space are triv-
ial, i.e. given any postcritically finite parameter c0, for any other parameter
c which does not belong to one of the finitely many parameter rays landing at
c0 there is a pair of parameter rays with periodic addresses landing together
at a parabolic parameter which separate c from c0.

5 Triviality of Misiurewicz fibers

In this section we prove theorem 12. The proof follows the outline of the
corresponding result for polynomials (lemma 7.1 and thm 7.3 in [20]), using
theorem 9 to establish a bridge between the combinatorics for polynomials

11



and the combinatorics for exponentials.
In particular we will prove the exponential version of lemma 7.1 in [20],
whose statement is exactly the same except for replacing polynomial maps
with exponential maps:

Proposition 13. Combinatorial approximation of parameter rays
Let Gs1 ...Gsq be the parameter rays landing at c0. We will approximate each
sector by ray pairs arbitrarily close to the rays landing at c0. This means
that ∀ε > 0 there exist parameter ray pairs αi, α

′
i depending on ε such that

si < αi < α′i < si+1 for i = 1...q − 1 and dist(αi, si) < ε , dist (α′i, si+1) < ε;
we also want a parameter ray pair α0, α

′
0 such that α0 < s1 < sq < α′0 and

dist(α0, s1) < ε , dist (α′0, sq) < ε

There’s a crucial point here: at first sight it might seem that this propo-
sition would solve our problem, but the relation between the ”combinatorial
topology” and the topology on C are far from clear, so we still have to show
that those rays which approximate the Misiurewicz rays combinatorially ac-
tually converge to them in C topology in a neighborhood of c0. We will derive
this from the following propositions:

Proposition 14. Triviality in dynamical plane Dynamical fibers of the
postsingular periodic orbit are trivial

Proposition 15. Persistence of dynamical triviality Dynamical fibers
of the analytic continuation of the postsingular periodic orbit are trivial for
parameters belonging to some neighborhood of c0

At this point we will be able to prove our final theorem (equivalent to 12)

Theorem 16. Triviality of Misiurewicz fibers Any parameter c can be
separated from c0 by a parameter ray pair, except for those parameters lying
on the rays Gsi

landing at c0

Now let us prove the propositions above and the main theorem.
Proof of proposition 13: Combinatorial approximation of parame-
ter rays

Proof. The core of the proof relies on the correspondence between combina-
torics for polynomials and for exponential parameters: the idea is that the
angles labeling rays for polynomials of degree D are written in D-adic ex-
pansion as sequences with D symbols, which can be seen as a subset of the
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exponentially bounded sequences encoding the combinatorics for exponential
maps.
Consider the dynamic rays of addresses s1 . . . sq landing at our Misiurewicz
parameter c0. As noted in lemma 7, each one of them defines a partition
with respect to which other rays have the same itinerary if and only if they
land together in dynamical plane.
By the 2π vertical periodicity of parameter plane we can restrict ourselves
to Misiurewicz parameters whose addresses only have nonnegative entries.
So consider the Misiurewicz polynomial zD + c of degree D, where D is the
maximal entry in {s1 . . . sq} for which the rays at angles s1 . . . sq lands at c
, and go to the corresponding dynamical plane. Note that the address s1 is
preperiodic, so by classification of Misiurewicz polynomials there is a poly-
nomial such that the dynamic ray at angle s1 lands at the singular value,
and that all other angles s2 . . . sq have the same itinerary with respect to s1.
This means that by lemma 7 the rays corresponding to those addresses all
land together, and no other ray can land together with them otherwise its
angle would be an admissible sequence for exponentials and would have the
same itinerary, so the corresponding ray would land together with gs1 . . . gsq

in the exponential dynamical plane as well.
There by lemma 7.1 in [20] we have characteristic periodic dynamic ray pairs
approximating each sector arbitrarily close, and the two rays in each ray pair
have the same itinerary again by lemma 7; this is a purely combinatorial no-
tion, so that it carries over to exponentials and the ray pairs with the same
addresses keep landing together in the dynamical plane for ez +c0, giving the
wanted approximating couples of rays in the dynamical plane.
Now we want to transfer those approximating ray pairs in the parameter
plane for exponential maps. By remark 1 we can transfer the couples of
characteristic rays , so the ray pairs approximating the ’sector’ between s1

and sq carry over straightforwardly to the parameter plane.
To approximate the other parameter sectors as well, fix a sector, say the
sector betweem Gs1 and Gs2 , call it ˆs1s2

Let V ⊂ ΠP be a neighborhood of c0 such that there is an analytic continua-
tion z̃(c) of c0 which keeps all the rays landing at c0, and pick a Misiurewicz
parametes c in V ∩ ˆs1s2. In Πc we will have the same relative position be-
tween z̃ and c as we have in parameter plane between c0 and c, in the sense
that c in Πc belongs to the sector defined by the rays of addresses s1 and
s2: this follows from the fact that rays respect the vertical order induced by
their addresses both in dynamical and in parameter plane.
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Lemma 7.1 in [20] gives us characteristic dynamic ray pairs approximating
gcs1 and gcs2 for polynomials (now gcs1 and gcs2 are landing at the repelling point
z̃(c), not at the singular value c); the corresponding rays can be obtained in
the exponential dynamical plane by the same technique described above, and
they can be transfered in parameter plane by remark 1.

Note that this proposition proves that we can separate a Misiurewicz
parameter from all other Misiurewicz parameters, and from any parameter
which is described combinatorially, for example parabolic and escaping pa-
rameters and landing points of parameter rays.

Remark 2. By the correspondence of characteristic ray pairs between polyno-
mials and exponentials as stated in theorem 10, we could have obtained the
combinatorial approximation directly in the parameter plane, but we need
it also in dynamical plane in order to prove that dynamical fibers of the
postsingular orbit are trivial and to proceed with the topological part of the
proof.

Proof of prop 14: Triviality in dynamical plane

Proof. Let z be the first periodic point in the postsingular orbit, and L its
linearizing neighborhood. Taking the kth image of the approximating ray
pairs found in the proof of proposition 13 we obtain dynamic ray pairs which
approximate combinatorially the q rays gs′1 . . . gs′q landing at z. We want to
show that this combinatorial separation corresponds to an actual separation
of all points in L from z.
So for each sector defined by the gs′i consider an approximating ray pair
which enters V . Note that such a ray pairs must exist, because it is known
that J = {Set of escaping points} = C, which means there are no open sets
containing no escaping points, so at least one ray must enter each sector, and
once we have a ray inside we can surround it by one of the combinatorially
approximating ray pairs.
So each sector contains a ray pair, and the region between that ray pair and
the boundaries of the sector is uniformly contracted under f−m, where m
was the period of the orbit, so that the region left out by the approximating
ray pairs shrinks to {z}.

Proof of proposition 15: Persistence of dynamical triviality
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Proof. Let {pi}i=1...q be the landing points of the ray pairs which enter the
linearizing neighborhood in the proof of propositon 14; then we can find a
parameter neighborhood V of c0 in which we can continue analytically both
c0, the pi’s and the postsingular periodic orbit {zi} with the same rays landing
at them.
Up to shrinking V , we can also assume that the rays enter the new linearizing
neighborhood, and by contraction under the inverse map the neighborhoods
between the approximating rays and the actual rays landing at the analytic
continuation of the zi shrink to points. By carrying the approximating rays
forward we obtain that the dynamical fiber of every zi(c) is trivial.

Proof of theorem 16: Triviality of Misiurewicz fibers

Proof. We want to find a parameter neighborhood V of c0 so that every c ∈ V
can be separated from c0 by some parameter ray pair.
Note that it is enough to separate from c0 any parameter c in the bifurcation
locus, as rays cannot cross non-hyperbolic components.
Essentially we want to use propositions 14 and 15 to show that the combina-
torially approximating ray pairs found in proposition 13 do converge on the
rays landing at c0 in the complex plane, so that the regions which we can
separate combinatorially actually fill in the whole neighborhood V − ∪Gsi

.
Like we did before in dynamical plane, let us distinguish the cases in which
the parameter c that we want to separate from c0 is in the external sector
which contains −∞ (the one bounded by Gs1 and Gsq) and the case in which
c belongs to some of the other internal sector.

If c belongs to the external sector, consider the dynamical plane for c0, and
separate c from c0 there by a preperiodic dynamic ray pair as from proposi-
tion 14 follows directly that the dynamical fiber of c0 is trivial. Now separate
this preperiodic ray pair by by one of the approximating characteristic ray
pairs found in proposition 13 and then transfer this characteristic ray pair
into parameter plane by remark 1. Note that c in general does not have a ray
landing at it. However the parameter ray pair and c keep the same relative
position in parameter plane that had c and the corresponding dynamic rays
in Πc0 : c crosses a dynamic ray pair iff it crosses the corresponding param-
eter ray pair, because inside the wake things can be moved holomorphically.
Also note that in this case we have not restricted c to any neighborhood of c0.
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If c belongs to one of the internal sectors, say ˆs1s2, and also belongs to the
neighborhood V as in proposition 15 then consider the dynamical plane Πc.
There, c belongs to the corresponding dynamical sector ˆs1s2 defined at the
analytic continuation z̃(c). The dynamical fiber of z̃ is trivial by proposition
15, so we can separate c and z̃(c) by some periodic ray pair (α, α′). This ray
pair is persistent over a parameter neighborhood U of c. This means that, for
the parameters in this neighborhood, in dynamical plane the singular value
will be inside the sector bounded by the dynamical rays (α, α′). In particular,
by vertical order, escaping parameters in this neighborhood lie on a dynamic
ray of address between α and α′ in dynamical plane, so they lie on a parameter
ray of address between α and α′. By the combinatorial approximation given
by proposition 13, such a parameter is separated from c0 by any of the ray
pairs whose address are closer to s1 and s2 than α and α′. This means that
we can separate all those escaping parameters simultaneously from c0 using
the same ray pair (β, β′). By density of escaping points in the bifurcation
locus, we can approximate c by escaping parameters, so the ray pair (β, β′)
also separates c0 from c unless c lies on β or β′ in which case it has a well
defined address and can be separated from c0 by any ray pair closer than β
or β′.
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