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ABSTRACT. We analyze a path-lifting algorithm for finding an approgim zero of a complex
polynomial, and show that for any polynomial with distinabts in the unit disk, the average number
of iterates this algorithm requires is universally bountg@ constant times the log of the condition
number. In particular, this bound is independent of the eledrof the polynomial. The average is
taken over initial valueg with |zl = 1+ 1/d using uniform measure.
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1. INTRODUCTION

A point z, is anapproximate zerdor a function f(z) if it converges quadratically to a zero
under Newton’s method. The notion of an approximate zeroimtasduced by Smale indm81].
A sufficient condition to determine H, is an approximate zero fdrusing only evaluation of (z,)
and its derivatives a, was developed by Kim K85], [K88]); this condition was sharpened and
extended to apply also to systems of polynomials by Sntedqg. Nowadays, this approach is
commonly calledx-theory. We will use the Kim-Smale criterion to locate appneate zeros; see
Theorem3.2

Depending on the context of the problem, the goal might beddyrce a poinz So that| f (2)| <
€, or one might desire thaz— {| < € wheref({) = 0. In either case, such a solution is called
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an e-root. Notice that an approximate zerp may not be are-root. However, such a poirz.
will converge to are-zero quadratically. Consequently, locating an approxézato resolves the
guestion of producing agrroot. See Def3.1for the specific definition.

In this paper, we discuss the use of a path-lifting methoddwlwve call thea-step method
a variation of the algorithm developed iK85] and [K88]) to locate an approximate zero for
a complex polynomialf (z), and show that for any polynomidl, the average number of steps
required by the algorithm is universally bounded, indeendf the degree df, where the average
is taken over the starting points for the method. In fact,aWerage cost depends on the average
of the logarithms of several of the critical values bf(this, in turn, is less than the logarithm
of the condition number; see Rema38). We note that the results oKB8] imply that for any
polynomial, this method converges except on a finite setawfiag values.

More precisely, we have the following.

Theorem 1.1(Main Theorem) Let f: C — C be a polynomial with distinct rootg; in the unit
disk. There is a constant¢, independent of the degree of f, so that the average numlstejoé
required by thex-step algorithm to locate an approximate zero for f is no ntben

67(Af+131),

where the average is taken over starting values on the cifoladdius1+1/d. The constani\; is
the average of the logarithms of the radius of convergende bfat the roots(;.

The cost of each step of the algorithm is dominated by theutation of at(z). Since this can
be done with(dlog?d) arithmetic operations (seBM], for example), we have the following.

Corollary 1.2. The average arithmetic complexity of locating an approxtarzero for f by the
a-step algorithm iz (/\fdlogzd), where the average is taken over starting values on the circle
of radius1+1/d.

In path-lifting methods, it is useful to distinguish betwdbe domain and range, so we have

f . Csource— Crarget-

To implement the method, we choose a paitiithe target space (typically a segment connecting an
initial pointwg = f(z9) to zero) and attempt to lift it back to the source space viaadir off . In

this form, such methods were introduced by Shub and Smadef(seexample $S86 or [Sm8]),
although one could argue (as Smale points ouSim@1) that in some sense this idea goes back
to Gauss. SedRer] and the references therein, as well BS]. The series$S93aSS93h SS93¢
SS96 SS94 Sh07 BS] discusses related methods for systems of polynomial emsatA survey

of complexity results for solving polynomial equations ineovariable can be found ifPf; see
also B0S§].

The difficulty of computing a local branch df 1 along a patty in the target space is related to
how closey comes to a critical value of. However, not all critical values of are relevant: only
those which correspond to a critical pointfying near the particular branch &f1(y) have any
impact. Consequently, it is useful to factbthrough the (branched) Riemann surfagefor f 1,
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so that we have

f
Csource— .

Tl

Crarget

wheref is a diffeomorphism except at the critical pointsfofandrtis the projection map. With
this viewpoint, the patly that we lift back toCsoyrcelies in.#, and the troublesome points now are
the branch points of”.

One ingredient important to our analysis is understandivegMoronoi decomposition of”
relative to the branch points. That is, for each branch powit., the Voronoi domain Vo(rv)
is the set of points in” which are closer te than any other branch point of’ (using the metric
lifted via ). We show in§4 that the projection map restricted to any single V(()V) is at most
(m+ 1)-to-one, wherenis the multiplicity of the critical point off corresponding te (hence the
projection is generically at most 2-to-one). Because thebmuraf steps required for a path-lifting
algorithm is related to the number of critical values theetif path comes near, this result enables
us to count the number of relevant critical values for a tgppath.

The path-lifting algorithm works as follows: We choose aitidhpoint zy just outside the disk
known to contain all of the roots, and lep = f(z). We then attempt to continue the branch
of f~1 which hasf~1(wp) = z along the segment fromy, to 0 by choosing a suitable sequence
W, along this ray, together with approximationssuch thatf (z,) ~ wy,. (Note that specifying a
pair (z,w) such thatw = f(z) is equivalent to specifying a point i&r’, so in practice our rays live
naturally in.”.) The process stops when a patpis detected to be an approximate zero.

Given a pair(z,,wy), the pointw,,1 is chosen to ensure that is an approximate zero for
f(z) —wn+1. The tool we use to detect approximate zeros is the Kim-Smdienction: if o (z) <
0.1307, therzis an approximate zero.

The paper is organized as follows. In sectynve set out notation and preliminary notions.
Section3 describes the path-lifting algorithm explicitly. In semsti4, we discus the branched
surface” and the corresponding Voronoi partition; this section mayhbinterest independent to
the question of root-finding. Sectidnhcomputes several estimates related to how the polynomial
f behaves on the initial circle. In sectiénhwe calculate a lower bound on how far apart the points
wp andwy. 1 can be, and ir§7 bound the number of steps needed for the algorithm to locate a
approximate zero from a given starting pat This bound depends on the log of the anf#)
makes with the relevant critical values bf

Using these results, we can average the bound ffdwver all starting points; this is done in
Section8, which proves the main theorem. We conclude in Se@iarith some remarks.

2. PRELIMINARIES

We will use the following general notions and notations tiyleout.

An open disk of radius > 0 centered arounzle C is denoted by, (2).
The function Arg denotes the argument of a complex numbehénnterval(—r, 11)).
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Theray ¢, C C of a pointze C~ {0} is
l;=(0,0).-z={we C|Argw = Argz},
and theslit of this point is the part of the ray extending outward franthat is
0z = [1,00)-z={we lz] W] > |7}

Finally, we will introduce some notation used when dealinthwhe Newton flow. Letf : C — C
be a polynomial, and denote the critical pointsfdiy

¢ = {z| f'(2) =0} .

Consider the following vector field of,

X(z) =— 12 :

The corresponding flow is called tidewton flow This vector field blows up near the critical
points of f. By rescaling the length of the vect¥i(z) by | f’(z)|?, the critical points off become
well-defined singular points of the rescaled vector fieldisTascaled vector field is the gradient
vector fieldz= —0|f(2)|%; the solution curves of the former coincide with the latsard we will
use the two interchangably. The equilibria of the Newton feow exactly the roots and critical
points of f. Each root{ is a sink; we shall denote its basin of attraction by B&&jn Critical
points are saddles for the flow. Furthermore, we can extemdldiv to infinity, which is the only
source. Each boundary component of B&§jrcontains critical points € %% ; each critical point
has an unstable orbit leaving framand converging tq. This unstable orbit is a separatrixaind
will be denoted byy.. Generically, there is a unique critical point in each bangccomponent; in
the degenerate cases, there could be saddle connectiahiggesm multiple critical points on one
boundary component. A general discussion regarding Nefloars can be found in§TW] and
[JJT]. See also Figurd.2

We note that for each rodf, f is a biholomorphic map between Ba§n and C \ U 0y ),
where the union is taken over the critical pointshich lie on the boundary of Bagig).

It is important to note that i€ is a solution curve for the Newton flovfi{ @) lies along a ray.

Throughout the paper, we will consider polynomidls Z%(1), thatis,f : C — C given by
d
f(2)=[1(z-4)  with | <1,
=1

with distinct roots(j. The set of roots of will be denoted by

QPF:{ZJ' |j:1,...,d}.

The restriction to%(1) is not severe; it can always be accomplished via an affinegehah
coordinates depending only on the coefficients odee M], for example.

We shall use the following standard result several times.
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Lemma 2.1. (Koebe Lemma)Let g: D;(0) — C be univalent with ¢0) = 0 and d(0) = 1. For
ze D;(0) with s= |z /r, we have

1-s , 1+s
and
S S
(2.2) Mm <l9(2)| < MW
Consequently,
(2.3) Dr/4<o) - g(Dr(o))‘

Remark2.2. The last statemen(3) is known as the Koebé—Lemma. The proof can be found in
[Ko], [P].

3. THE PATH-LIFTING ALGORITHM

We now discuss explicitly the path-lifting algorithm thagwill use to find an approximate zero
ofanf € Z%(1).

Definition 3.1. Let z, € C be then" iterate under Newton’s method of the pomte C, that is,

f(zn)
f'(za)

Inil1=2Zn—
The pointz is called arapproximate zer@f f if

1 2n_1
|Zn11— 2| < (§> 121 — 29|

foralln > 0.

A sufficient condition for a point to be an approximate zerdeseloped in K85] and [Sm84.
We will use the criterion formulated by Smale 88§ to locate approximate zeros. It uses
a . C\ % — C defined by

L
1

_ t@||1Va@ |
(31) alz)= Tﬂx{ 72|17
It is sometimes useful to use the related functdz) instead, where
1
f0)(z) i1
(3.2) V(2) =max s )

While we will primarily usea (z), we make use of(z) in section6.

Theorem 3.2.[Sm88 There is a numbeog > 0.1307 such that ifa(z) < ap, the point z is an
approximate zero.
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Remark3.3. The numberag is given in [Sm8 and in many places throughout the literature
as ap ~ 0.130707. However, this specific value is very likely the resila typographic er-
ror in the fifth decimal place. Smale shows i8M8§ that ag is a solution to the equation
(2r2 — 4r +1)? — 2r = 0; the relevant root of this equation is13071694... There have been
subsequent improvements to this constant (¥¢d][or [WZ], for example), but @307 suffices
for our purposes.

Remark3.4. Calculation ofa(z) requires the ability to evaluate all derivatives bfat az In
some situations, this is not possible; for exampld, ig defined as an-fold composition of some
other functiong, calculation off and f’ in terms ofg andg’ is simple, but calculating eveft’ is
impractical. However, evaluation of higher derivativesyrba avoided using the boun81n84:

MICACHE

(2] da(|2)

wheredq(z) = 57, f(z2) = a7, and||f|| = max|a|. Alternatively, an adaptive version of the
algorithm can be used which doesn’t usesee remark in §9.

y(z) <

We shall analyze the following algorithm to find an approxienzero forf € Z%(1).

The a-Step Path Lifting Algorithm
Step 0: Choosez € C with [z| = 1+ 5. Let

wo= f(zo) and w=—

Step 1: Stop ifa(z,) < 0.1307;z, is an approximate zero fdr.

Step 2: Let
1 [f(=z)
Wn+1—Wn—1—5'm'
and (2
Wht+1— T{Zn
Ini1=12n— F1(z0)

Continue with Step 1.
We shall sometimes refer to the poimig generated by the algorithm abovegsde points

Remark3.5. If z5 € Basin{) then the algorithm will terminate with an approximate zeso{.
There may be some values ofor which z, ¢ Basin'{). However, there exists a neighborhood
U C C of the ray ofwg which contains allf (z,) and on which there exists a univalent inverse
branch off mappingwg to zg. Denote this inverse branch Hgl U — C. See Figure.1

For every zerd] € Z; consider thelosest critical value td = f({)
p; = min |f(c)| where  %%({) = ¢f NBasin{).
ce%t({)
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" Basingy)

FIGURE 3.1. While z; € Basin{1), we havez; € Basin({,). However, as noted in re-
mark 3.5, there is a neighborhodd of the ray on which the same branch of the inverse
contains all thez,.

Remark3.6. Note thatp; is the radius of convergence oflatZ, and s the distance in the surface

~

. betweenf ({) and the nearest branch point.gf.

For any polynomialf, we define

1
K =

zez Pt

Remark3.7. Notice thatks < o if and only if Z; "%t = 0. This holds generically for polynomials
f, andK; = o exactly whenf has a multiple zero. Root-finding problems for which there is a
multiple zero are typically calleti-conditioned or ill-posed

Remark3.8 K; is related to the condition number;, which is the reciprocal of the distance
betweenf and an ill-conditioned problem (se8$93h and [Dem|, for example).

It is common to use; () to denote the condition number considering only those prablfor
which { is a root. Note that

1
and  pf > min —,
Pz (et Pz

since the magf (2) —v; has a multiple root af, wherev, is the appropriate critical value with
Vel = pz-

Let#;(z) be the number of steps tlestep algorithm needs to get to an approximate zero when
it begins atz, which we refer to as theost of the algorithm atz. The average number of steps is
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Fiom [ (1 5)@™ o

where we use starting points on the circle of radiys1l/d.

denoted by

Our main theorem (Thrl.1) says that iff € Z%(1), we have

# < 67(13.1+ %).

The proof of the theorem will be prepared in the next sectiand is completed in sectidh

Remark3.9. We analyze the algorithm using starting pointsC with |zl = 1+C/d. TakingC =1
yields the bound stated above.

Remark3.1Q One can introduce a measure of difficuity ; corresponding to a given zefoc 2.
Proposition7.1 gives an estimate for the time needed to reach an approxieabdefor{ starting
in z in terms ofKs ;.

4. THE VORONOIPARTITION IN THE BRANCHED COVER

Given a polynomialf : C — C of degreed, recall that we denote its critical points i =
{z| #'(z) = 0}. For any suctf, we can express it as a compositibe= 7o f,

Cﬁyg

Nk

C

where f is a diffeomorphism except o#; (where it is merely a bijection), and is a d-fold
branched cover, ramified at points f. The metric on¥’, denoted by dist, is such thatis a

~

local isometry away from points ity = f(%%).
Themultiplicity of a critical pointc € %7 is

me = min{k| fl+l(c) £ O}.

Notice that
Z me=d—1.
CECs

~

The points in¥; are callectritical valuesin .7, and we define the multiplicitgn, of v= f(c) € ¥}
to be the multiplicity ofc.

We note that for each rodt ¢ %,
m: f(Basin)) —C~ |J o
ve’4({)
is an isometry (where¢; ({) = f(¢%({))).
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TheVoronoi domainof a pointv € 75 is
Vor(v) = {ue .7 | dist(u,v) < dist(u,V),W € ¥; }.
Recall that an open disk of radius> 0 aroundu € . is denoted byD, (u).

Lemma 4.1. u € Vor(v) if and only if rr: Djy—v|(U) — Djy_y|(71(U)) is an isometry. In particular,

ifue Vor(v) then
Djy_y (U) N ¥ = 0.

Proof. If u e Vor(v) thenD,_y(u) N7t = 0. Thus,Tis a local isometry on all ob,_;(u), and
in particular,iris a global isometry on this disk. Converselyrifs an isometry on all oD|,_ (u),

there can be no critical values in the disk, andisoVor (v). 0
Vor(vl)\
Vor (v2) \_ ‘ _ _\f’rEVG) .
Gpm——— " T T — = \\\\R —————
_ =~ "Vor(v) ~ o
* \Wor(v4)
>
e === '
Vor (v3) G Vor (V)
— = Vor(vs)
> Vor (vg)
O = — — — - — Op
\Y/
_ or(v4+)- _____ o

Vot(vs) Vor (vs) '

FIGURE 4.1. The surface¥ for a degree 7 polynomial, viewed as a stack of seven slit
planes. Each sheetE{Basir(Zi)) for the root;, and is slit alonggy,; (dashed lines), which
begin at the branch pointg € 7% (indicated by crosses). The central ellipses indicate
m1(0). In the figure,oy, is labeled awj. The Voronoi domains of each of thg are
indicated, with boundaries marked by heavy black lines. Note that Whilelm)may enter
many sheets, the projection is at most 2-to-1, as in £&r.See also Figurd.2
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Letug,up; € 7. If the line segmenfr(uy ), 11(uz)] C C has a lift in.” which connectsl; with
Uz, we denote this lifted line segment ﬁ)lyl, uzﬂ. Observe that many paitg, u, do not have such

a connecting line segment. In this case we witg u| = 0. When[uy, ] is nonempty, we say
thatuy is visible fromu, in .. Also observe, iV € 7% then

Ju,v[ #0 forallue Vor(v).

We can form thevisibility graph for . as follows. The vertices of the graph are the critical
values?;, and there is an edge frowto w if and only if [[v, W]] is non-empty. We can identify the
visibility graph with the subset of” given by

9= [ww].

v,wey

Recall thatf is a homeomorphism. Hencé, 1(¢) is well-defined, so we can also vieW as a
graph immersed i, with the critical points off as vertices.

-1.0 -0.5 0.0 0.5 1.0

FIGURE 4.2. The Voronoi regions of Figl.1are shown in the source space. The roots of
f are indicated by circles, the critical points by crosses. The Newton flowlisdted by the
small arrows, and the dashed lines are the boundaries of the basirchabea(each such
boundary contains a unique critical pointﬁfl(Vor(vj)) is shown for each critical point

¢ € ¢+ (bounded by the heavy lines). In the figufe,}(Vor(v;)) is labeled by Vofc;).
The visibility graph¥ is also shown.
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We shall say that a critical value € 7 is aneighbor ofv if there is an edge betweawnandv in
¢ . Denote the set of neighborswby .4,.
For each edge of, we can define the lines

Luw = {u€ .7 | dist(u,w) = dist(u,v)},

which are the geodesics passing perpendicularly througimibpoint of eaclﬂv, Wﬂ. In the termi-
nology of [VPRY and [BV], each of the.y is amediatrix relative to the se¥s.

Problem4.2 Which abstract graphs can be realized as the visibility gfajoti a polynomial?
Lemma 4.3. For u € Vor(v) and we .4

(Juv]~{u}) NnLyw =0.
Proof. According to Lemma}.1, the metric orD|,_|(u) C . is the usual Euclidean metric. This
implies immediately that if
Ju,v[NLyw # 0
then eithew € Dy,_y|(u) or u € Ly; see Figuret.3. If w e Dy,_(u), it cannot be in’;. O

\ _ I—v,w

FIGURE 4.3. By Lemma4.3, if u e Vor(v), then[u,v] cannot crosd.,w, sincert is
univalent onD,_;(u).

Lemma4.3 can be used to describe the boundary of Voronoi domains. if®adly, for each
v € 74, Vor(v) is the connected component of

EZAN U Lvw
weANy
which contains/. See Figured.1and4.2

Recall that the rayy C C of a pointy € C ~ {0} is the set of points which have the same
argument ay.
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If 0 € . projects onto 0 anfi0,u] # 0, the geodesic starting &tand containing0, u] is the

ray throughu € ., which we denote b%. Observe that ifAu N¥ =0 thenm: ¢/, — Cru)s is a
surjective isometry.
Lety = m(u). If 4yN f(€%) =0, then

7-[71%/) - ZleZyZU o Uz;d?
where the pointy; € . are thed different preimages of.
Proposition 4.4. Given ve 75 and ye C\ f(%%). Then

card{i ]?yi NVor(v) # 0} <my+1
Furthermore, eactfy, NVor (V) is a connected set.

Proof. Supposéy,, fy,, ..., by, intersect Votv), with v= f(c), c € ¢¢. Pick a pointu; in each of
these intersections, that is,

Ui € Zyi NVor(v).

‘\%W
FIGURE 4.4. As proven in Propositiod.4, the projectiorvtis (m, + 1)-to-one on Vo(v).

Let Dj = D‘Vfui‘(ui). According to Lemmat.1, we know thatrr: D; — m(D;) is an isometry.
Letp € Zyi be the perpendicular projection vz;f)nto?yi and letp be the projection of (c) = m(v)
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onto/y. Then for alli <Kk,
0#[v.p]cDi  and  0#[m(v),p] C () m(D
i<k
Hence,m:.¥ — Cis k—tg—l in a neighborhood of € .7, with k < m.+ 1.
The connectedness éf N Vor(v) follows from the triangle inequality. O

Corollary 4.5. Each projectiorvt: Vor(v) — C is at mostm, + 1)-to-one.

Letze C. We'll say that a critical point € %+ influences the orbit ofzif the segmen[ﬁ, fA(z)}]
passes through \§f (c)).

We are interested in the critical points which influence thaetgg values for our algorithm, and,
conversely, the starting values which are influenced by argaritical point.

Definition 4.6. For starting valueg on the circle of radius, we define the following sets:

I = {(t,c) € [0,1] x ¢ | [0, f(re?™)]nVor(f(c)) 7&0}
={ce%i|(t,c)e .7} F.={tc[0,1]|(t,c)c .7}

Notice that, forz= re®™ fixed, we have € . precisely when, for somge L2, Dt (c)—y ()
is the largest ball on which,* is defined. Similarly, for this paiit,c), we also have € .7.

5. THE BEHAVIOR OF f ON THE INITIAL CIRCLE

Consider the functios, : [0,1) — R defined by

a(t) = Arg f (re?™),
with r > 0. We can easily bound the rate of changet); while elementary, these bounds play
a crucial role for us.

Lemma5.1. Letr > 1. Then for all te [0 1), we have

dar _
_ < huball _
2rd- dt < 2md- r— 1
Proof. Letz=re™ withr > 1. Since{Z| <1, we haves € D1(0) = {w/| |w| < 1}. A calculation
shows r

1

7 d
=2nm-Re) ——.
=4 jzll_zj/z

day d 2rnt _ d
tIogf( ) =2m- Rez

(5.1) r d

For each rootj, we have
r 1 r

—— <Re
r+1—-— 1-— Z,/z r—
Summing this inequality over the roots and applying it to equaticﬂnl gives the desired result.
U]
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Remarks.2 The estimates in Lemnalare sharp.
Corollary 5.3. Letr=1+1/d, and define

Frait
Ba = {t €[0,1)| |Arg f;r(e))‘ <A forall c € ¢; }
c

Then

d
Remarks.4. Let Gp be the complement @a. For eacht € Ga, f

2A d-1
measuréBa) < -

-1
reit

{w/||Arg(w) —Arg(f(re"))| <A},
and consequently sugtcorrespond to "good starting points” for a path-lifting atghm.

This is essentially Conditiodd of [Sm83 and [SS8§, with A = 1/12. It is shown in those
papers (Prop. 2) th&, 1, has measure at least@lif one also takes = 3/2 (which increases the
number of steps by approximatedyog(3/2)). The corollary5.3gives the measure @1, to be
at least 36.

will be analytic in a cone

Lemma 5.5. Let ¢ be a critical point on the boundary Basin{), and lety, be the solution to the
Newton flow emanating from ¢ whose interior lieSBiasin{). Thenifr> 1, y.,NS = 0.

Proof. Note that the Newton flow points inward &= {z| |z| =r} for r > 1, which follows from
the observation that
f(2) 1

I

This immediately implies Lemm@a.5.

To see this, note that singg > 1 and|{| < 1, the vectorz— ¢ all lie in the half-plane”
which containdD;. Consequently, their inverses and hence their Sutj(z— ;) lie in the com-
plementary half-plane. Inverting again giveg)/f'(z) € ¢, as required. O

We can now use the previous lemmas to estimate the width dheeks” of Basir{().
Lemma5.6. Letr> 1, { € Z%, and lety be a connected component ef 8asin{). Then

1 . da
I P — < 2m.
ength(y) o min s o
Proof. Let B C Basin({) be a boundary component of Ba&fn with ynB £ 0. Letc € : NB be

the critical point which has an orbj, C Basin{) of the Newton flow starting at and ending at

¢

. Observe that

f(y,UB) = (0,)- f(c) = (0
the ray throughf (c). From the definition ofy and Lemméb.5we getinty) N (BUy,) = 0. Hence,
Arg(f(int(y))) NArg(f(c)) =0,

that is, the image of cannot make more than a full turn in the target space. The Lafofiows.
U]
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The following corollary follows immediately from the praof

Corollary 5.7. Let z and 2 satisfy|z;| = |z| =r with r > 1, and suppose also that they lie in the
same connected component pfi®asin({). Then

|Arg f(z1) — Arg f (z2)| < 21T

In the sequel we will consider integrals over the cilgle- {z< C | |zl = r}, which, for allr > 0,
carries Lebesgue measure with unit mass.

Lemma5.8. Letr > 0and|{| <r then

1 .
/ log|re?™ — Z|dt = logr.
0
Proof. Define

:/Ollog\reznit —|dt
d
-/, Re(log(z—z»-;{

= Re— / log(z

Note that
ds_ o 1 [ 1 dz
dl 2ni Jsz—{ z
1/¢  1/¢
e TACE SR LE
Hence,
S({) =S(0) =logr.

Corollary 5.9. Let f(z) = ﬂ?zl(Z—Zj), with [j| <r. Then

1 .
/ log|f (re?™)|dt = dlogr.
0

d
/Iog|f et dt — /Iog |‘| et _

= Z/o log|re?™ — Z;|dt = dlogr,
=1

Proof.

where the last equality follows from Lemn3a8. O

Remark5.10 Notice that ifr = 1+ 1/d, we havedlogr < 1.
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Problem5.11 The previous corollary shows that the average value offlag| on S isdlogr. Is
there a constard, independent ofl so that

measuret | log|f (re?™)| < dlogr} > ¢ ?

We now establish a lower bound dng| = |f(z)| for starting valuesy on the circleS with
r > 1. We shall use this in Lemnm&9to give a bound on the size of our final pomy.

Proposition 5.12. Let ze Basin({) with |zl = r > 1. There exists;s< 1 such that
@ =s-p¢,
wherep, is the radius of convergence of the branch of takingOto Z.

Ifr > 1+ 27 5 = 1. Otherwise, for =1+ §, s is the smallest positive solution of

S

Remark5.13 For 0< C < 21, we have < s, < 3— /8. ForC = 1, we haves, ~ 0.0369> 2—18.

Proof. We will assume, without loss of generality, that thexis is aligned alond. Letl be the
radius of the largest disk centeredZabn which f is univalent, that is,

Di(¢) C f71(Dp, (0)) C Basin({).

The Koebe%-Lemma (Lemma.1), implies

(5.2) | >

FIGURE 5.1. Using the Koebe Lemma to calculate a lower boundfdm)| for zon S, in
Proposition5.12
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Let zbe a point in Basif{) with |zl =r. It is our goal to estimatez— {|. First notice that if

case wheth > lz—].
This means that we can assume thatD, ({ ), and sincdz| > 1, there is a poind € S (D ({);
let @ be the angle of the sector connecting\0and 1. See Figurg.l

The Koebe Lemma gives an upper boundon {|; for s < %’

1 S
=T P asse

We now look for a lower bound ojz— {| by estimatlngu forze S ND|({). Notice that

| = /7227 cog) +1.

(5.3) z—{| <

since
(cosp—{)*+sirfp=12
where(cog @), sin(@)) is the coordinate of the poiltonS({)NS;.
From Corollary5.7, we have

Arg(f(A)) — Arg(f (A)) < 211,

and by Lemma.1 (which bounds the radial derivative 6j, we have
p=AgA) < 5-—— <=, forallr>1
Sincer =1+ %, we have
22| 1+§-¢ 1+6-¢
> 5 >
| \/Z —2{coqp)+1 \/52 ZZCOizn)—{—l

Notice that for 0< C < 2mand|{| < 1, the above expression is minimized whggr- 1. Hence,
we have

c
z=dl o d >£7

- \/1—2001%")+1 —an

C P
[2=¢l = 2n = on 4”/5)'

This, together with the upper bound estimde3), gives the lower bound amas the solution to
C P .S Pz
2 Af(Q)] ~ (1-972|F'(Q)]

for all d. This gives us

This simplifies to

S
C=8m—
Ti—s2

as desired. O
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6. THE SIZE OF THE STEP

Each iterate of the algorithm described;i is guided by the values,. The difference between
W1 andw, is called then™-jump and is denoted by
fn

Jn:A'

Y

an
wheref, = f(z,) andan, = a(z,). To be able to control the algorithm we have to carefully atju
the range of the coefficiert. In this section we will explain the choide= %5

If f were linear, the algorithm would follow;,, exactly, andf, = w,. When the degree df is
at least 2, there will be a small error

On = | fn— Wn|-
While the algorithm is described in terms@fource(the z,) andCiarget ( f(z0) and thewy), it is
more straightforward to think of it in terms of the branchedace..

Letr, > 0 be maximal such that
fio "t Dry(Wn) — U

is univalent, wherd®) is a neighborhood df,. This is the distance betwegn € . and the critical
valuev € #; for whichW, € Vor(v). Also, letR, > 0 be maximal such that

fzgl : DR, (fn) =V

is univalent, wher&/ is a neighborhood daf,. Note thatﬂ, could be in Vo(\/) for a critical value
different from that used foWy; in this case, we still usB, = |V — f;|.

FIGURE 6.1. The various notations used througout this section, shown in the target. spa
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The following Proposition is a crucial ingredient for theiegte of the average cost.

Proposition 6.1.

1
Jh > 66’ M.
We need to do a little bit of work before proving this propmsit Let
f/ f/
Eh=7Z41—Z  and hnz—(2n+1—2n)-f—”:—£n.f—”.
n n

We usef! = '(z), T/ = f"(zy), andf{) = £()(z,) as notation for the derivatives dfatz,.
Lemma 6.2. If |anhn| < 1then

|anhy|

= |fhy1—W, < |hpfp| s ——.
1= |fat1 —Wata| < [Mnfyl 1= oy

Proof. Note that since

Wni1— fn

T we have  Wni1= fn— (znr1—20)f, = (1—hp) .
n

Ini1=12n—

Thus,
Oni1=|fnr1— (1—hn)fn| = [f(zn+ &) — (1 —hn) fy|
1!

f
fn—f—fr/]c‘:n—f——nsr%—i-"'— fn+bhnfy

2!
Vo B s
- Egn‘i_?gn"f‘-“
3
21F, " T 3

/ /
n

f
< |hnfnl- anf—”gn+ (orn—en)2+ . ‘
n

fn
< |hnfn|"anhn—i—(anhn)z-i—...‘
|anhn|
< —
< |hn ol 1= ]

U

The proof of the following can be found iIBCSY (Lemma 8.2b and Prop 8.3b). Hewe= y(z,)
is as in equation3.2); thusap = I—Z‘ Vh

Lemma 6.3. Let h, = aphy and @(u) = 1—4u+2u?. Thenif y < 1—1/4/2, we have

/fr/1 < (1_un)2 and Yn+1 < 1
fn+1 Y(un) Yn (1—un)y(un)
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Remark6.4. In [BCSS, uy, is defined a$z,1 — z,) yh. We use

Wpyq1 — f f
n+1 n__ (Zn+1 . )
fn fn’

and so our usage and that &JSS agree.

hn:

The proof of Propositio®.1 will use induction. Given a choice for the positive numbarand
¢ we will use the following induction hypothesis

(6.1) Indy(A,c): & < c- |;|

The constant#\,c > 0 will be chosen later. The optimization process is bettastfated by
using these general parameters instead our final Valud /15.
Lemma 6.5. The induction hypothesis IpA, c) implies
|anhn| < A+c.

Proof. Observe,
|Pnfn| = | fn—Wnya|

< |Wn — W 1| + | fn — Wh

<Jn+n
f f f
A Lol o ol o Ll
an an an
U]
So that we may apply Lemn&3, we impose the condition
1

A+c<l-——.
V2

By virtue of Lemma6.5, this condition also ensures that the hypothesis of Ler@raes satisfied.

Assume Ingd(A,c). We will prepare the induction step. From the proof of Lenfitta we have

£/
|hnfn| < (A—i—C)M.

¥h

In Lemmab.2, we obtained
onhn |fr/1| Un

< (A+c)—- .
—anhn ( ) Vn 1—Un

Consequently, a sufficient condition which impliesng(A, c) is

Oni1 <

hnfnl

/ f/
(A+ c)lnl ¢ L +1|
Ya 1—un Vi1l

or equivalently,

11
Ay et Il Lo th
Ya |f+1| c 1—uy
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From Lemma6.3, after simplification we get

Un 1
A+C)—— - <1
( )4’(Un)2 c
Sinceun < A+ candu/y(u) increases monotonically farc [0,1— 1/+/2], we must have
(A+c)? 1
(6.2) VATCR ¢ <1

We have established the following.

Lemma 6.6. If (A, c) satisfies §.2) then
Indh(A,c) = Indn+1(A,C)

The iterations are guided by the poimig which decrease towards 0 with jumps

fn
an

Jn:A'

To optimize this convergence we need to find the largestO for which there is a& > 0 such
that the pair(A,c) satisfies inequality§.2). Numerics show that such solutions exist fork
0.0703039< 1/14.22396; we can us& = 1/15 andc = 0.0158. Recall,

&% =0< 00158 |2 |.
Qo
So Indh(75,0.0158) holds. Then Lemma&.6implies that
f
(6.3) o < 0.0158 |-
n

holds for alln > 0.

The proof of Propositior6.1 uses the following Lemma. This is essentially Corollary 4£3 o
[K88]; the lower bound of}1 follows from the Extended @wner’s Theorem in$m81.

Lemma6.7.
Ro< o 3-2v2) R,

n

N

With these lemmas in hand, we can now return to the proof g #&.a:

Proof of Propositior6.1. From Lemmab.7, we get

fol _Ifal R _ 1 R
— > =—-— " In.
On 15 4|f,| 60 rp

Jn:A

The radius of convergence\a is
rn — |Wn — Vn‘,
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wherev,, is the critical value for whichw, € .7 lies in Vor(vn). It might be that the radius d}, is
determined by another critical value, say

Rn= | fn— \/n‘-
Letr;, = |wn —Vvy|. Then we have
Mn <1 < Vo= fnl [ fn— Wi
= Ra++ 60
In the case whew, = Vv, we get the same estimate foy. Notice, by using§.3) and Lemma6.7,
' < Rn+dn
[ fnl

<R, +0.0158: N

n

<R+ 0.0158
- 3-2V2
< 1.09209 R,.

RI’]

Consequently, we have
Mn Mn

>_ n Jn
I = 10920960 66
as desired. O

Lemma 6.8. If a, > 0.1307, then
| fn] < 1.1376|wy| and  |Wpy1| > 0.41982wy|.

Proof. Observe,

f
[l < Wn -+ 8 < || +0.0158 7l
n
Hence,
| fn| < m|wn| < 1.1376|wy|.
Qan
Now,
1 [fa
Wiit| = [Wp| — — - —=
el = o — 5.+
1 1
> (1= =
= |l ( 15 an—0.0158>

> |Wp|-{ 1— el !
= 15 0.1307—0.015

8) > 0.41982wy|.
O

Using these results, we can also obtain a relationship leetvilee guide pointvy where the
algorithm terminates and;, the norm of the closest critical value to 0. Recall tbgt< 0.1307
butan_1 > 0.1307.
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Lemma6.9. Forr > 1+ 3
1
Wi | > a7 Pe
Proof. From Propositiorb.12 we have
Pe
Wo| > s -p; > —=.
[Wol > & -pz = 7
If wy = wo, the lemma holds trivially.
If N >0, thenay_1 > 0.1307 (andory < 0.1307).
From Lemm&b.7, we get

1
| fn—1| > 2 aN-1 Rn-1

Rn-1

> 0. —
>0.032675Ry-1 > 31

Pz — | fn-1]

> .

— 31
This last inequality follows from the triangle inequaliiy:v is the critical value withv| = Pz, then
0,v, andfy_; form a triangle with side lengths;, Ry_1, and| fy_1|. Rewriting the above yields

1

(6.4) (N1 > 3 Pe
We now apply Lemm#&.8to obtain
fn—1
: > 0. wn_ 1] > 0. )
(6.5) |wn| > 0.41982: |wy-_1| > 0.41982 11376
The lemma follows by combining equatior4) and 6.5). O

7. THE POINTWISE COST

In this section we will estimate the numiséy(zy) of iterates needed to find an approximate zero
starting atzp. We need some preparation to be able to state the estimasempbfy notation and
without loss of generality, throughout this section we sassume that,,, lies along the positive
real axis. Furthermore, we shall assume that no criticalesbff lie along/y,.

As before, letwp = f(zp) and the let thev, be the guide points alongy, as produced by the
algorithm. Also letwy = A(zo) andwj, be the corresponding points in the surfage lying along
the ray?wo.

We divide /y, into subintervals as follows: as noted in Propositibs, for eachv € ¥ the
intersection of€AWO with Vor(v) will either be an interval or the empty set. $gt= Wy, and denote

the first interval b}{[ﬁo, ch}] with corresponding critical value,. In general, set

[G5-12.G;] = Vor (vj) N fug-
Let B = B(z) denote the total number of such intervals. Note that for atpgi= re?™ on our
initial circle, we have

B(z0) = card.4,.
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So that we may work in the target spaCeather than in the surface’, we make the following
observation. The projectiort is an isometry in a neighborhood éf,, since”?s N fy, = 0. We
define a set (4y,) C .7 as

U (fwp) = {9 [9:9.] # 0},
where fory € C, y, denotes the orthogonal projectionyodntofy, (or its extensiorf_y,).
That is, for each critical poing; which influences the orbit ofiy, we remove the ray perpendic-
ular to/y, starting at the critical valué(c;). Lifting the result to.# via the branch ofr ! taking

Ly, tO ?WO yields the seU (EAWO).

Observe thatt is an isometry ortJ (ZWO), and furthermorey (?WO) (:ontainsZWO and a unique
lift of each of the pointsf, produced by the algorithm. Consequently, we have a well-dédfin
correspondence between the target sgaceninus finitely many rays) and a subset.gf most
relevant to thex-step algorithm starting ab. In what follows, we shall use the notation

vor(vi) = 1(Vor (Vi) NU (%)),

and shall slightly abuse notation by uswdor f(c;).
Note that the branch df~1 which takeswg to z is well-defined throughought all af(U (4y,));
in particular, it coincides with analytic continuation bf* alongé,,.

vor(vs) vor(v)

FIGURE 7.1. We divide/y, into intervals where it is influenced by each critical value; the
various notations used in this section are labeled as in the figure.

Let pj be the orthogonal projection ®f onto the ray/,y, (or its extension{_y,), and letxj =
v; — pj|. See Figur&.l Also, letf; € (—m, ] be the angle betweean and the ray,; that is,
i—Pj j an 0

6 = Arg(vj/Wo).
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Furthermore, us@*(zy) to denote the number &; for which |6;| < /2 (or, equivalently, for
which pj lies on/y).

With this notation in hand, we can state an upper bound ondbkedf finding an approximate
zero starting from a poirg.

Proposition 7.1. Let z be an initial point for thea-step path lifting algorithm, withzy| > 1, let
f e Z(1), wo = f(2). Then the maximum number of steps required for the algorithproduce
an approximate zero starting frorng 5

+
Wo N 9 P 4+ tan|6;|
< . - —
#t(20) < 67 <Iog ) TP (z0)log 7 + j}_l log sed6—1) |

wheref*(zp) is the number of relevant critical values alofig, with angle|6;| < 71/2, and w is
the final “guide-point” for the algorithm.

Remark7.2 The above result may seem circular, singgcannot be determineal priori. How-
ever, Lemma.9tells us thaip, /87 < |wn| < pg.

In order to establish this proposition, we estimate the nremub steps required to pass each
Voronoi domain, and then sum over tB¢€zg) domains thaty,, passes through.

If w; andw are two guide points lying oy, with k > j, we can define the rather trivial
function Costwj,wx) = k— j. This measures the number of iterations required byatstep
algorithm beginning at a poird; nearw; to obtain a pointy nearw,. We extend this function to
all pairs of pointsy; andy, lying on ¢y, by linear interpolation. It is our goal in this section to
estimateN = Cos{wp, wn) Wherewy is an approximate zero.

Rather than count the number of steps directly (which is ptsdbut tedious), instead we follow
a suggestion of Mike Shub and integrate the reciprocal o$tégsize alond.,.

Lemma 7.3. Let y; and y be two points ofy,,. Then

Yy
COS(YLYZ) < 67 ' d_y7
y2 Ty

where g = |y —v| for each ye vor(v) N fy,.

Proof. Recall that in sectioB, we used), to denote the" jump, that isJ, = |Wh — Wnt1| Where
Wh is a guide point for the algorithm. Sétw,) = Jn, and extend the functiod(y) to all of ¢y, by
linear interpolation. Now consider the differential eqaatalongéy,, given by

dy

(7.1) g = 9 YO =w.

SinceJ(y) is Lipschitz, the equation/(1) has a unique solution. Observe that the poimisare
exactly the values given by using Euler’s method with stepgito solve 7.1) numerically.
Now consider instead the differential equation given by

dy__r_y

(7.2) at - 67 y(0) = wo.
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We wish to compare the solution aof.@) to the Euler method for7(1). We will show that for every
y in any intervallwn1,Wn|, we havery/67 < J(y). Consequently, ifp(t) is the solution to 7.2
and¢ (t1) = y1, ¢ (t2) = y2, then we will have, —t; > Cosiys, y2).

To see thaty/67 < J, for all y € [wn;1,Wn], we must examine a few cases. First, note that if

y € vor(v;), we have
1= (y—p)?+x.
Also, recall that by virtue of ProfB.1, we havel(wy,) > ry,/66.

First consider the case where the interjval, 1, w] lies entirely in vo(vi). If whr1 > pi, then
sincery is decreasing on the intervgb, w,|, we havel(y) > ry/66. If pi > Wny1, ry will be
nondecreasing. However, we can apply the triangle inetyuaécalling that)(w,) = Wn — Wn1)
to see that

ry < J(Wn) 4w, < J(Wn) + 663 (W),
and saJ(wn) > ry/67 for ally in the interval.

In the case where the interval intersects more than one @oregion, we proceed as follows.
First, observe that for ajl € [g;, wn], we have already established td&g) > ry/67 holds (wherej;
is the smallest point dfvn,.1, Wn] Nvor(vi)). Since|v; — o| = [gi — Vi41|, we havel(q;) > rq /67,
and we continue as above.

Finally, the equationq.2) is separable; elementary calculus yields
Wo d
t(y) = 67 / ay
y Ty
U]

Lety be a point orYy,, and letc be a critical point which influenceso; as before, lep be the
orthogonal projection of (c) onto/y,, and letx denote the distance betweéfc) andp.

For eachy and a fixed critical point, we also define the anghs,, which is the angle that the
segment frony to f(c) makes with the segment betweéft) andp. Notice thatry = |f(c) —y]|.
As before, usé to denote the angle betweéfc) and/,,,. See Figur&g.2

/géc/

Of
<

0

FIGURE 7.2. The quantitiey, ry, p, X, Ay, andék.

We now define the following function, related to Costys>).

(y1— p)+ry1>.

£(y1,Y2,¢) = log (m
2
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By virtue of Lemmar.3, if y; andy, are both in vo(f(c)), we have

Y1 dy
(7.3) Costy1,y2) < 67 = 67£(y1,Y2,C).
y2 ly

However £ will still be useful even when one or both of its first two argemts are not in vdif (c)).
We establish some bounds on the valu€ of the next few lemmas.

Lemma 7.4.

3y—p) ifA>E
—p) <
'y p)_{x\/§ it Ay< I

Proof. Note thatry + (y — p) = x(tanAy + seddy). If Ay > /6, we havex(tanAy + secdy) <
3xtanAy = 3(y— p). WhenAy < 11/6, note that taf\, + sedA is increasing inAy; at Ay = 11/6,
ry+(y—p) =xv3.

We remark that this holds evenpf< O. O

Lemma 7.5. Let y1,y> € fy, Withy; > y> > 3p > 0. Then

Y1

9
£(Y17YZ7 ) logy +|Og_

Proof. We consider two cases: when the angjds large and when it is small.
If Ay, < 11/6, sincey, > p

£(y1,Y2,¢) < £(y1,p,c) < Iogl logV/3,

where we have used Lemniadin the second inequality.
If Ay, > 11/6, we have (using Lemma4again)

3(y1—p) 3y1(1—p/y1)
E0LY2:0) <1095, —p) ~ 921 pya)
Sincey, > 3p, we have(1— p/y1)/(1— p/y2) < 3/2, and so

Y1

£(y1,y2,C) < Iogy + Iog—.
Sincey/3 < 9/4, the above bound holds in either case. O
Lemma7.6.1f p > 0,
4+tan|6|
£(3p,0,c) <log—————
(3p.0,¢) < 09 Sedan

We note that since > 0, we have-1/2 < 6. < 11/2. Consequently;‘%”ﬁ‘

Proof. We have

£(3p.0.0) = log SP=P) a0 | 2P+ (2p ptaniel) _ 4+ tan]

ro—p psedf:|—p sed6.| —
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Finally, we handle the case whe&| > /2.

Lemma7.7.1fy1 >y, >0>p, £y1,Y2,c) <log(y1/y2).

Proof. Observe thaty, > y> — p, sincery, is the hypotenuse of the right triangle with a leg of
lengthy, — p. Also, by the triangle inequalityy, —ry, <y1 —Yo.
Using this, we have

Yt O1=P) _ (y, +Y1—Y2) + (Y1 - P)
ry, +(Y2—p) ~ 2(y2—p)
_ 1Py, Y2
2(y2—p)
c2Ay1—p) ATy~ (y2—Pp)
- 2(y2—p)
< y1— IO Y1
Y2 — IO Y2
Consequently£(ys, y2,C) = Iog% < log(y1/y2) as desired. O

We can now prove the main result of this section.

Proof of Proposition7.1 First, divide ¢y, into segments where it intersects each of gieo)

Voronoi regions vofv; ); the j™ segment will be bounded by poingg_; andg; (we setdo = wo,
anddg ;) = Wn). See Figurg'.1
Now, we have

B(2) B(2)
(7.4) N = Cos(wo,wn) = 3 Cos(qj-1,qj) <67 3 £(0j-1,7j,¢j),
=1 =1

where the inequality follows from Lemm&a3and (7.3). Applying Lemmas/.5and7.6gives us
B*(20)
z £(0j-1,9;j,¢j) < z |Og

whereqj = max(|qj|, [3pjl)-
Note that sincey; > |q;|, replacingg;j with g will still give us an upper bound; furthermore,

since|qj—1| > |qj|, the logarithm of their ratio is positive. Thus, we have
B*(20) B*(20)

(75) Z (qj 17qjvcj < Z |Og
j=1

9 P 4itano|
+ b ik b 11
A Bt (2 )Iog4—|— ,-Zl Iogseqe,-y—l

J

B () .

gj-1 + 9 4+ tan|6;|
+ log- + log———.

qj B (@) 92 le gseqej|_1

Now we apply Lemm&.7to the remaining intervals (if any).

B(2) B'z0)
(7.6) > £(@-105¢)<  H  log
j=B"(20)+1 j=B"(20)+1
Combining equations7(5) and (7.6) with (7.4) and recalling thatjy = wo, qg = wn gives the
desired result. O

dj-1
qj
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8. THE AVERAGE COST

In this section we shall prove our Main Theorem (THir), which follows from averaging the
bound in Propositioi7.1 over the starting values on the circle of radius 1+C/d.

Recall from Definition4.6 that .# is the set of pairgt, c) for which the critical points € ¢}
influence the starting values = re" on the initial circle of radius, .% is the set of critical points
which influence a giveh, and.#; are the € S which are influenced by.

For each pair int,c) € .#, we used = 6(t,c) to denote the angle betweéd f (re*™)] and
[0, f(c)], thatis
f (re?mt)

f(c)
In the notation of sectiof, (t,c;) = 6; wherev; = f(c;) and(t,c;) € .7

Note that for each fixed, .7 is a collection of finitely many intervals?; consists of for those
t such that ¢ et intersects Voff(c)).

6(t,c) = Arg

Define for everyc € ¢+ the functionf; : .%; — R by
f(re?m)
f(c)

Lemma 8.1. For each ce %%, the mapf; is at most(m; + 1)-to-one.

6:(t) = 6(t,c) = Arg

Proof. For everyf € (—m, 1] there are at mosimg + 1) rays? C .# for which the angle between
[0, f(c)] and ri(¢) is 6 and which also intersect Vof(c)). This is a consequence of Proposi-

tion 4.4. O
As an immediate consequence of LemBng we have
r d r
: — < < .
(8.1) r+1-— dtec(t) < 2rd r—1

Proposition 8.2. Let f € Z%(1) be of degree d and® 1. Then

/1 4+tan|6(t,c)|dt<3.r+1
o & sedO(t,c)|—1 — ro

|6(t,c)|<m/2

Proof. Througout the proof, lef(6) = g:%e”"ﬂ. From LemmaB.1and 8.1), we see that for fixed
values ofc, we have

| togueuv)dt < (me+1) [

—TT,
te % /
|6c(t)|<mm/2

/2 do r+1 [m2
| 0) — < 1)— =
209¢’( )Qé(t) < (me+ )errd 2
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Thus
1
J h3 ogu(eto)dt=3 [ logy(o(t.c)dt

|6c(t)|<71/2 CECt  |bc(t)|<m/2

r+1 [m?2
<y Mty [ ,/090(6)d0

CG%f
2d—-2 r+1
< ——.9.2901
- 2md r
1
<3-—rf .

O

Recall that3 " (z) denotes the number of critical points that influence thet@fa = re?™ with
the critical value in the same half-plane, i.e.,
BT (re®™) = card{c e .% | —1/2 < B(t,c) < 11/2}.
The next proposition bounds the number of such Voronoi dosmaistarting value encounters, on
average.

Proposition 8.3.

1 .
[ Bt et < $
0

Proof. Note that

/013+(re2’“")dt:/ol T 1dt= Y /t% 1dt.

\ch:tﬁ\ftn/Z CEGt ™ |6c(t)<m/2
As in the proof of PropositioB.2, we transport the calculation from the source space to thetta
space using the bound &j(t) in (8.1) and the fact that for fixed, 6;(t) is at mostm; + 1)-to-one
(Lemma8.1). This gives us

’ i 72 do r+1 (41 r41
BT (re®™)dt < / e <Y (Mt ) < 2(d— 1) < ——.
/0 e cezcgf —n/2 O¢(t) CGZ%( )2 @=-D%9 <

Above, we used the factthafy mc=d—1. O
CECs

Lemma8.4.1fr > 1+1

1 11
/ IogMdt < dlogr +1log87+ - - -t -[logK].
0 || d r
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Proof. Proposition5.9, Proposition5.12 Lemma5.1, and Lemmegb.8 are used in the following

calculation.
1wy 1 1
/Iog—dt:/ Iog|wo|dt—/ log|wi | dt
0 |wnl

<d|ogr—/ |ngZ dt
< dlogr +log87+ ¥ |logp| 11+r
(eZ; '

11
gdlogr+I0987+a-#-ylogKf]

2
Remark8.5. If r =1+ 1 3> thendlogr < 1, glvmg/ Iog |‘ dt <1+log87+ a| logKs|.

Now we are ready to provide a proof of the main theorem.

Proof of Theoreni.1 Letr =1+ 1/d. Proposition7.1, Proposition8.3 Lemma8.4, and Propo-
sition 8.2imply

o .
#; :/0 #: (re®™) dt

dt

9 4-+tan|0(t,c)|
+ 27'nt =
/67 Iog +B (relogg+ 2 19edait, 0 -1

8(t.c)|<mm/2

2
<67 [(1+ log 87+ a| logKs|) +1.622+6

<67- [13.1+ gy logKjs ]] :

9. CONCLUDING REMARKS

(1) Our goal in this work was to bound the number of iteratiofihe o -step algorithm, rather
than to optimize the arithmetic complexity. Since each sfehe algorithm requires com-
puting of all of the derivatives of, one could use a higher-order method instead of New-
ton’s method (seel88], [Ho], [SS8§) in the algorithm without a significant increase in
cost, settingn1 = Tk(f(zn) —Wnt1), thek! truncation of the Taylor series. Use of such a
method would result in a larger stepsize (and consequeslgif steps).

(2) Alternatively, the use ofr could be curtailed (or even entirely removed) by dynamycall
adjusting the guide pointa, as follows. At each step, set,1 to be (1— hy)|f(z,)|w.
Initially, take h, = hg, but if f(z,) is not sufficiently close tov, 1, divide h, by 2 and try
again until it is. At the next step, start with,1 = min(ho, 2h,). Note that this approach,
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while similar in spirit, is somewhat different from the \aie stepsize methods explored
in [HS]. One can still user to detect whether an approximate zero has been located, or, i
evaluating higher derivatives dfis impractical, other methods such as thoseB@7] or

[O] can be used.

The ideas used in this paper can be adapted to those ugk8]ito locate approximate
zeros for alld of the roots off. That work uses a path-lifting method, but initial points ar
taken much further outside the unit circle, and a fixed skepisitaken. In order to take the
initial points on the circle of radius-t 1/d, one needs to apply Lemn%alto ensure that
the initial points are properly spaced in the target space.

Using some of the ideas iGLSY], one should be able to extend these results to deal with
multiple roots or root clusters, for whidks becomes arbitrarily large.
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