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A NOTE ON

HYPERBOLIC LEAVES AND WILD LAMINATIONS

OF RATIONAL FUNCTIONS

JEREMY KAHN, MIKHAIL LYUBICH, AND LASSE REMPE

Abstract. We study the affine orbifold laminations that were constructed in [LM].
An important question left open in [LM] is whether these laminations are always locally
compact. We show that this is not the case.

The counterexample we construct has the property that the regular leaf space con-
tains (many) hyperbolic leaves that intersect the Julia set; whether this can happen is
itself a question raised in [LM].

1. Introduction

Providing a new line in the “Sullivan dictionary” between rational maps and Kleinian
groups, the article [LM] associated an “Affine Orbifold Lamination” Af to any rational

map f : Ĉ→ Ĉ. (See Section 2 for an overview of the definitions.)
This lamination is particularly useful when it is locally compact; e.g. this condition

allows the construction of transverse conformal measures and invariant measures on the
lamination [KL]. Local compactness is satisfied in certain important cases, including
geometrically finite rational maps and Feigenbaum-like quadratic polynomials.1 The
question whether the lamination Af is always locally compact was raised in [LM, §10,
Question 9].

1.1. Theorem (Failure of local compactness).
There exists a quadratic polynomial f whose affine orbifold lamination Af is not locally
compact.

Our proof of Theorem 1.1 is related to another question from [LM]. As we review in
Section 2, the regular leaf space Rf consists of those backward orbits under f along which
some disk can be pulled back with a bounded amount of branching. The path-connected
components (leaves) of Rf have a natural Riemann surface structure; in many cases all
such leaves are parabolic planes. It was asked in [LM, §10, Question 2] whether rational
maps can have leaves that are hyperbolic but do not arise from Siegel disks or Herman
rings. Hubbard (personal communication) was the first to suggest an example with this
property (see the remark at the end of Section 3). The hyperbolic leaves of this example
lie over a single Fatou component, so the question remained whether hyperbolic leaves
can intersect the Julia set. We give a positive answer.

The second author has been partially supported by the NSF and NSERC. The third author has been
partially supported by a postdoctoral fellowship of the German Academic Exchange Service (DAAD),
and later by EPSRC fellowship EP/E052851/1.

1We should note that there is a different construction of laminations for rational maps, due to Meiyu
Su [S]. These laminations are never locally compact.
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1.2. Theorem (Hyperbolic leaves intersecting the Julia set).
There exists a quadratic polynomial whose regular leaf space contains a hyperbolic leaf
that intersects the Julia set.

Remark. Rivera-Letelier (personal communication) has announced a proof of the stronger
result that this polynomial can be chosen to satisfy the topological Collet-Eckmann con-
dition.

We then use the following result to deduce Theorem 1.1 from Theorem 1.2.

1.3. Theorem (Hyperbolic leaves and local compactness).
Let f be a rational function whose regular leaf space contains a hyperbolic leaf that
intersects the Julia set. Then the affine orbifold lamination Af is not locally compact.

Acknowledgements. We thank Carlos Cabrera and Juan Rivera-Letelier for useful
discussions. The third author would like to thank the Institute for Mathematical Sciences
at Stony Brook and the Simons endowment for its continued support and hospitality.

2. Preliminaries

In this section, we introduce basic notations and give an account of the construction
of Af that is sufficient to provide a self-contained proof of our results. This account will
necessarily be kept concise; for more details, we refer the reader to [LM].

Basic definitions. The complex plane and Riemann sphere are denoted C and Ĉ, as
usual. A (spherical) disk of radius ε around z ∈ Ĉ is denoted Dε(z). If V and U are open
sets such that V is a compact subset of U , then we say that V is compactly contained
in U and write V ⋐ U .

Throughout this article, f : Ĉ→ Ĉ will be a rational endomorphism of the Riemann
sphere. As usual, F (f) and J(f) denote its Fatou and Julia sets. The set of critical
points of f is denoted Crit(f) = (f ′)−1(0), and the postcritical set is

P(f) :=
⋃

j≥1

f j
(
Crit(f)

)
.

A point z ∈ Ĉ is exceptional if
⋃

n f
−n(z) is finite; there are at most two such points.

Natural extension and regular leaf space. We denote by Nf the space of backward

orbits of f . The function f induces an invertible map f̂ : Nf → Nf (whose inverse is

the shift map); this map is called the natural extension of f . Whenever A ⊂ Ĉ satisfies

f(A) ⊃ A, its invariant lift Â ⊂ Nf is the set of all backward orbits that remain in A.
Abusing notation slightly, we will refer to the invariant lift of the Julia set J(f) also
simply as “the Julia set”.

If ẑ = (z0 ←[ z−1 ←[ z−2 . . . ) is a backward orbit and U0 is a connected open neigh-
borhood of z0, then the pullback of U0 along ẑ is the sequence U0 ← U−1 ← . . . , where
U−k is the component of f−k(U0) that contains z−k. This pullback is called univalent if
f : U−(k+1) → U−k is univalent for all k, and regular if this is true for all sufficiently large
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k. If the pullback is univalent, then we also say that U0 is univalent along ẑ. We will
denote the set of all backward orbits of z0 along which U0 is univalent by Univ(z0, U0).

The point ẑ is called unbranched if it does not pass through any critical points; it is
called regular if there is some open connected neighborhood of z0 whose pullback along
ẑ is regular. Note that, if ẑ is unbranched and regular, then there exists a neighborhood
of z0 that is univalent along ẑ.

The set of all regular backward orbits is called the regular leaf space and denoted Rf .

The topology of Rf as a subset of the infinite product Ĉ
N is called the natural topology

of Rf . If ẑ ∈ Rf , then the path-connected component L(ẑ) of Rf containing ẑ is called
the leaf of ẑ. Every leaf can be turned into a Riemann surface by using the projections
π−k : U → Ĉ, ζ̂ 7→ ζ−k as charts (for sufficiently large k).

We shall call a backward orbit ẑ parabolic or hyperbolic depending on whether L(ẑ)
is a parabolic or hyperbolic Riemann surface. The set of all parabolic backward orbits
is called the affine leaf space and denoted by An

f . We will use the following facts about
regular points and their leaves; compare [LM].

• If z−n /∈ P(f) for large n, then ẑ is regular.
• Invariant lifts of Cremer, attracting and parabolic cycles and of boundaries of

rotation domains are never regular.
• Every leaf that is not the invariant lift of a Herman ring is a hyperbolic or

parabolic plane.
• The periodic leaves associated to repelling periodic points are always parabolic;

in fact, they are the Riemann surface of the classical Kœnigs linearization coor-
dinate.
• Similarly, for every repelling petal based at a parabolic periodic point, there is an

associated parabolic leaf, uniformized by the Fatou coordinate. Every backward
orbit converging to a parabolic orbit belongs to such a leaf.
• Any parabolic leaf intersects the Julia set by Picard’s theorem.

The Lamination Af . We will now describe how the affine orbifold lamination Af is
obtained from the affine part of the regular leaf space. We note that this lamination
will not be used until the end of Section 4. Even there, the main fact that is utilized
is Proposition 2.1 below, which can be understood without the exact details of the
construction of Af .

The group of linear transformations z 7→ az, a 6= 0, acts on the space U of nonconstant
meromorphic functions ψ : C → Ĉ by precomposition. Let Ua denote the quotient of
U by this action. f acts on Ua by postcomposition, and we can form the inverse limit

space Ûa of sequences ψ̂ = (ψ0 ← ψ−1 ← ψ−2 ← . . . ) with ψi = f ◦ ψi−1.
Now if ẑ ∈ An

f , then L(ẑ) is a parabolic plane, so there exists a conformal isomorphism

ϕ : C→ L(ẑ) with ϕ(0) = ẑ. Thus ψk := π−k ◦ϕ defines an element of Ûa; note that ψk

depends only on ẑ since ψ is unique up to precomposition with a linear transformation.

The orbifold lamination Af is now defined as the closure in Ûa of all such sequences.
In a slight abuse of notation, we will denote the sequence ψk associated to ẑ also by ẑ
and thus not differentiate between An

f and its copy inside Af . As suggested by its name,



4 JEREMY KAHN, MIKHAIL LYUBICH, AND LASSE REMPE

Af is again a lamination; its leaves are the (parabolic) one-dimensional orbifolds

Llam(ψ̂) := {ψ̂ ◦ Ta : a ∈ C},

where Ta(z) = z + a and ψ̂ ◦ Ta is the sequence with entries given by ψ−j ◦ Ta.
Note that there are now two topologies defined on An

f ⊂ Rf : the original (natural)
topology and that induced from Af , called the “laminar” topology; the latter topological
space will be denoted by Aℓ

f . Rather than working directly with the above definition of

Af , we can use a criterion from [LM] that describes the topology of Aℓ
f simply in terms

of the natural extension. If V and W are two simply connected domains, let us say that
V is well inside W if mod (W \ V ) ≥ 2.

2.1. Proposition (Laminar topology [LM, Proposition 7.5]).

A sequence of points ẑk ∈ Aℓ
f converges to ζ̂ ∈ Aℓ

f in the laminar topology if and only if

(a) ẑk → ζ̂ in the natural topology and
(b) for any N > 0, if V and W are simply connected neighborhoods of ζ−N such that

f̂−N(ζ̂) ∈ Univ(ζ−N ,W ) and V is well inside W , then f̂−N(ẑk) ∈ Univ(z−N , V )
for large enough k. �

Remark. Condition (b) is formally weaker than that given in [LM]; however, the proof
remains the same.

Auxiliary results. We will occasionally use the following classical fact, which is a weak
version of the Shrinking Lemma (see e.g. [LM, Appendix 2]).

2.2. Lemma (Univalent shrinking lemma).
Suppose that U is a domain univalent along some backward orbit ẑ that does not lie in
the invariant lift of a rotation domain. Let V0 ⋐ U and denote by V0 ← V−1 ← . . . the
pullback of V0 along ẑ. Then diamV−j → 0 (where diam denotes spherical diameter). �

Also, we will be concerned with the existence of unbranched backward orbits of a
point z ∈ Ĉ under f . Let us say that z is a branch exceptional point if z has at most
finitely many unbranched backward orbits, and denote the set of such points by EB.

2.3. Lemma (Branch exceptional points).
EB contains at most four points. If z0 /∈ EB, then for every z ∈ J(f), there is some w
arbitrarily close to z such that fn(w) = z0 and (fn)′(w) 6= 0 for some n.

Proof. Every preimage of a point in EB either belongs to EB or is a critical point of f .
Setting d = deg(f), it follows that

d · (#EB)−
∑

c

(deg(c)− 1) = #f−1(EB) ≤ #EB + #(Crit(f) ∩ f−1(EB)),

where the sum is taken over c ∈ Crit(f) ∩ f−1(EB). Since f has exactly 2d− 2 critical
points, counting with multiplicities, it follows that

(d− 1)#EB ≤
∑

c

deg(c) ≤ 4d− 4,

and hence #EB ≤ 4.
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If z /∈ EB, then z has a non-periodic unbranched backward orbit z ←[ z−1 ←[ z−2 . . . .
If n is large enough, then z−n is not on a critical orbit, and any backward orbit of z−n

is unbranched. Since iterated preimages of z−n are dense in the Julia set, the claim
follows. �

Remark. For an alternative proof which applies also to transcendental meromorphic func-
tions (using Nevanlinna’s theorem on completely branched values), see [RvS, Lemma
5.2].

Branch exceptional points have a relation to the existence of isolated leaves in the
affine orbifold lamination Af . More precisely, if p is a repelling periodic point in EB,
then the periodic leaf L(p̂) associated to the periodic backward orbit p̂ of p is isolated
in Af . (This is an immediate consequence of Proposition 2.1.)2 Proposition 4.5 shows
that these are the only examples of isolated leaves. In particular, every isolated leaf is
periodic.

The famous Lattès and Chebyshev examples have branch exceptional repelling fixed
points. In fact, for polynomials, we can give a description of maps with branch-
exceptional periodic points. Indeed, suppose that p is such a polynomial; then a cal-
culation analogous to the proof of the previous lemma shows that p has at most two
branch-exceptional points apart from the superattracting fixed point at ∞. Further-
more, if EB(p) = {ζ1, ζ2} with ζ1 6= ζ2, then the set of critical points of p coincides
exactly with p−1(EB(p)) \EB(p). It is well-known (see e.g. [DH2, Proposition 9.2]) that
this implies p = T or p = −T , where T is a Chebyshev polynomial.

On the other hand, if EB(p) consists of a single fixed point z0, then every preimage
of z0 is a critical point, and hence p is conjugate to a polynomial of the form

p(z) = zn · (z − a1)
k1 · · · · · (z − am)km ,

where n ≥ 1, aj ∈ C \ {0} and kj ≥ 2.
For rational maps, there are many more possible combinatorics for branch-exceptional

periodic points. Even among Lattès maps, one can find functions with periodic points
in EB which have periods 2, 3 and 4, with a number of different combinatorial configu-
rations. (Compare [M3].)

Other examples are given e.g. by the family

fc(z) := z ·
z − 1

z2 − z − 1
λ

, λ ∈ C \ {0}.

Indeed, ∞ is a critical point of fc, with

∞ 7→ 1 7→ 0 7→ 0.

Since fc is a quadratic rational map, it follows that every non-periodic backward orbit
of 0 passes through the critical point ∞, and hence 0 ∈ EB. Note that the fixed point 0
has multiplier λ; in particular 0 may be attracting, parabolic or irrationally indifferent.

2In [LM, Proposition 7.6], it is stated (incorrectly) that such isolated leaves can only occur for Lattès
and Chebyshev polynomials. Proposition 4.5 below provides a corrected version of this assertion.
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Quadratic-like maps and renormalization. We quickly review the concepts regard-
ing renormalization of quadratic polynomials relevant for Section 3; compare e.g. [DH1]
for details. A quadratic-like map is a proper map ϕ : U → V of degree 2, where U and
V are Jordan domains with U ⋐ V . The filled Julia set of ϕ is

K(ϕ) := {z ∈ U : ϕn(z) ∈ U for all n}.

By Douady and Hubbard’s Straightening Theorem, for every quadratic-like map ϕ
there exists a quadratic polynomial f (the straightening of ϕ) that, restricted to a
neighborhood of its filled Julia set, is (quasiconformally) conjugate to ϕ.

A quadratic polynomial g is called renormalizable if there exists n ≥ 2 and U ⊂ C such
that ϕ := gn|U is a quadratic-like map with K(ϕ) connected. If f is the straightening
of ϕ, then g is also called a tuning of f .

It is well-known that every quadratic polynomial f has (infinitely many) tunings;
compare e.g. [M2, Section 3] for a precise statement.

3. Existence of Hyperbolic Leaves

Our proof of Theorem 1.2 begins with a result that establishes the existence of rational
functions with many hyperbolic leaves that do not intersect the Julia set. Recall that a
subset of a Baire space is called generic if it is the countable intersection of open dense
sets.

3.1. Theorem (Maps with large postcritical set).
Let f be a rational map and suppose that J(f) ⊂ P(f). Let z0 ∈ F (f) be a non-
exceptional point (i.e., a point that has infinitely many backward orbits).

Then, for a generic backward orbit ẑ of z0, the leaf L(ẑ) does not intersect the Julia
set. (In particular, ẑ is hyperbolic.)

Proof. Let D be the Fatou component containing z0. We first prove the theorem under
the assumption that D is not a rotation domain and that z0 /∈ P(f). Below, we indicate
how this implies the general case.

Denote the space of all backward orbits of z0 by Z ⊂ Nf ; note that by assumption
these are all unbranched and regular. Note also that P(f) ∩ D is countable and has
at most one accumulation point in D, which is then necessarily an attracting periodic
point.

Suppose that γ : [0, 1]→ D \ P(f) is a curve with γ(0) = z0. If ẑ ∈ Z, let us denote
by γ(ẑ) the endpoint of the corresponding lift of γ to Nf . Note that the holonomy

ẑ 7→ γ(ẑ)

is a homeomorphism between the space of backward orbits of z0 and the space of back-
ward orbits of γ(1).

Let U ⊂ Ĉ be any connected open set with U ∩ ∂D 6= ∅ and let γ be a curve as above
that satisfies γ(1) ∈ U . Consider the set AU,γ,n of all backward orbits ẑ ∈ Z for which
the pullback of U along γ(ẑ) passes through a critical point at least n times. Clearly
the set AU,γ,n is open; by the density of P(f) in the Julia set, it is also dense.

It follows that the set AU,γ :=
⋂

nAU,γ,n, which consists of all ẑ ∈ Z for which the
pullback of U along γ(ẑ) is not regular, is generic.
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Now note that the pullback γ(ẑ) depends only on the homotopy class of γ in D\P(f).
Since the fundamental group ofD\P(f) is countable, and sinceD∩U has only countably
many components, the set AU :=

⋂
γ AU,γ is also generic.

Finally, let Uj be a countable collection of open sets such that {Uj ∩ ∂D} is a base for
the topology of ∂D. Then

A :=
⋂

j

AUj

is generic. We claim that π0(L(ẑ)) ⊂ D for all ẑ ∈ A (that is, L(ẑ) does not intersect
the Julia set).

Indeed, otherwise there would be a curve γ̂ : [0, 1] → L(ẑ) such that γ̂(0) = ẑ;
π0(γ̂(t)) ∈ D for t 6= 1 and π0(γ̂(1)) ∈ ∂D. Let γ := π0 ◦ γ̂; the curve γ̂ can be
easily chosen so that γ

(
[0, 1)

)
∩ P(f) = ∅. Since γ̂(1) is regular, there exists some

small neighborhood U of γ(1) whose pullback along γ(ẑ) is regular. This contradicts the
construction of A.

To conclude, consider the case where z0 lies in a rotation domain or in the postcritical
set. Suppose that z−n ∈ f

−n(z0) is a preimage that does not lie in a rotation domain or
in the postcritical set. Then, for a generic point in the set Z(z−n) of all backward orbits
of z−n, the corresponding leaf does not intersect the Julia set. Therefore the same is

true of a generic point in f̂n(Z(z−n)). There is at most one backward orbit ẑ0 of z0 that
belongs to the invariant lift of a rotation domain or of the postsingular set (recall that
z0 ∈ F (f)). Furthermore, Z \ {ẑ0} can be written as the disjoint union of (countably

many) sets of the form f̂n(Z(z−n)). The claim follows. �

The hyperbolic leaves produced by the preceding theorem do not intersect the Julia
set. It seems plausible that under the same hypotheses, there also exist some hyperbolic
leaves that do intersect the Julia set.

Instead, we will use Theorem 3.1 and the notion of tuning to prove Theorem 1.2.
(This idea is due to Rivera-Letelier.)

3.2. Proposition (Hyperbolic leaves over the Julia set).
Let f be a quadratic polynomial whose regular leaf space contains a hyperbolic leaf over
the basin of infinity. Then any tuning g of f has a hyperbolic leaf that intersects the
Julia set.

We will use the following fact.

3.3. Lemma (Almost every radial line lifts).
Let f be a polynomial and let z0 ∈ C. If ẑ is an unbranched backward orbit of z0 that
belongs to a parabolic leaf, then for almost every ϑ ∈ R/Z, the line

Rϑ := {z0 + re2πiϑ : r ≥ 0}

lifts to a curve in L(ẑ) starting at ẑ.

Proof. Let ϕ : C → L(ẑ) be a conformal isomorphism with ϕ(0) = ẑ. Consider the
entire function ψ := π0 ◦ ϕ. By the Gross star theorem [N, Page 292], the branch α of
ψ−1 that carries z0 to 0 can be continued along almost every radial ray Rϑ. The curve
ϕ(α(Rϑ)) ⊂ L(ẑ) is then the required lift of Rϑ. �
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Proof of Proposition 3.2. By assumption, there exists a domain U such that ϕ := gn :
U → g(U) is quadratic-like and conjugate to f for some n ≥ 2. Let us denote the
straightening conjugacy by h : U → C.

Note that every leaf that intersects the basin of infinity must also intersect the Julia
set, since every backward orbit that does not belong to the invariant lift of

n−1⋃

j=0

gj(K(ϕ)) (⊃ P(f))

is regular.
Since K(ϕ) is connected, we can find some point z0 ∈ U \K(ϕ) such that the set

T := {ϑ : ∃r0 > 0 : z0 + r0e
2πiϑ ∈ K(ϕ) and

z0 + re2πiϑ ∈ U \K(ϕ) for 0 ≤ r < r0}

contains a nondegenerate interval.
By assumption, h(z0) has a backward orbit whose leaf does not extend to J(f) at all.

Let ẑ be the corresponding backward orbit under g. Then, for ϑ ∈ T , the radial ray at
angle ϑ starting in z0 does not lift to L(ẑ). By Lemma 3.3, this implies that L(ẑ) is
hyperbolic. �

Remark. As noted in the introduction, the idea for an example of a hyperbolic leaf that
does not arise from a rotation domain was first suggested by Hubbard. He proposed
constructing a cubic polynomial with a superattracting fixed point at 0 and a recurrent
critical point in the boundary of the basin of attraction of 0, carefully chosen to make
sure that some leaf does not extend beyond this basin of attraction.

4. Failure of Local Compactness

To prove Theorem 1.3, let us begin with the following statement, which roughly asserts
that, given the presence of a hyperbolic leaf intersecting the Julia set, we can find
hyperbolic (and parabolic) leaves close to any backward orbit.

4.1. Proposition (Hyperbolic leaves near unbranched orbits).
Let f be a rational function and let L be a leaf of Rf that intersects the Julia set. Let
ẑ ∈ Rf be any unbranched backward orbit of f that does not lie in the invariant lift of a
rotation domain of f , and let V be an open simply connected neighborhood of z0 that is
univalent along ẑ. Assume furthermore that ẑ does not belong to the (isolated) periodic
leaf of a branch-exceptional repelling periodic point.

Then, for every domain V0 ⋐ V with z0 ∈ V0, and for any neighborhood N of ẑ in the
natural topology, there is m ∈ N such that N ∩ Univ(z0, V0) ∩ f̂

m(L) 6= ∅.

Remark. The condition that L intersects the Julia set is clearly necessary, since V itself
may intersect the Julia set.

Proof. Let Ŵ be an open subset of L such that W := π0(Ŵ ) is a simply connected

domain intersecting J(f) and such that Ŵ is a univalent pullback of W (i.e., every

backward orbit in Ŵ is unbranched).
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Under the hypotheses of the proposition, let V−n be the component of f−n(V0) con-
taining z−n. We will show that there are infinitely many n for which there is a univalent
branch of f−j (for some j ∈ N) that takes V−n to a subset of W . This will complete the
proof, as we can then continue pulling this subset back along the (univalent) pullback

Ŵ of W .
Let A be the limit set of z−n as n → ∞; note that A ⊂ J(f). We distinguish two

cases.
First case: A is contained in the branch exceptional set EB. Since EB is finite by

Lemma 2.3, A then consists of a single periodic orbit; let p ∈ A be a point of this orbit.
By assumption, p is not repelling. Clearly p cannot be attracting, and by a result of
Perez-Marco [P-M], p is not an irrationally indifferent orbit. Hence p must be parabolic,
and the point ẑ belongs to the periodic leaf associated to some repelling petal based at
this orbit. For simplicity, let us assume that p is fixed (the periodic case is analogous).
Note that p /∈ V — indeed, the only unbranched backward orbit of p is its invariant lift
p̂, and an invariant lift of a parabolic periodic orbit is never regular.

Since the backward orbit of p is dense in J(f), we can find some w ∈ W such that
f j(w) = p for some j. If ε > 0 is sufficiently small, then w has a neighborhood U ⊂ W
such that f j : U → Dε(p) has no critical points except w. For sufficiently large n, V−n is
contained in a repelling petal P that is itself a simply connected subset of Dε(p). Hence
there is a branch of f−j defined on P , and hence on V−n, that takes values in U ⊂ W .
This completes the proof in this case.

(We recall that the family of rational functions fC given in Section 2 contains maps
with branch exceptional parabolic points, so this case may indeed occur.)

Second case: There is some a ∈ A \ EB. Then by Lemma 2.3, there is some j ∈ N

and w ∈ W such that f j(w) = a and such that w is not a critical point of f j. Let ε > 0
be sufficiently small such that the component U of f−j(Dε(a)) is contained in W and
f : U → Dε(a) is a conformal isomorphism.

If z−nk
is a subsequence of ẑ with z−nk

→ a, then by Lemma 2.2, diamV−nk
→∞ as

n → ∞, and hence V−nk
⊂ Dε(a) for sufficiently large k. Again, we see that there is a

branch of f−j defined on V−nk
that takes values in W , and are done. �

The reason that the presence of hyperbolic backward orbits leads to failure of local
compactness is that parabolic leaves accumulating at such an orbit cannot converge,
even in the weaker topology of Af :

4.2. Lemma (No convergence to hyperbolic leaves).
Let ẑn be a sequence of points in Aℓ

f that converges, in the natural topology of Rf , to a

point ζ̂ for which L(ζ̂) is hyperbolic. Then ẑn does not converge in Af .

Proof. Suppose that ψ̂ is a limit point of ẑn in Af . Then ψ−n(0) = ζ−n for all n.
However, this means that the projection

p : Llam(ψ̂)→ L(ζ̂);
(
ϕ0 ← ϕ−1 ← . . .

)
7→

(
ϕ0(0)← ϕ−1(0)← . . .

)

is a nonconstant holomorphic map from the affine orbifold Llam(ψ̂) to the hyperbolic

surface L(ζ̂) (cf. [LM, §6.1]). This is impossible. �
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After these preliminaries, we are ready to prove Theorem 1.3.

4.3. Lemma (Non-pre-compact boxes).

Suppose that f has a hyperbolic leaf Lh that intersects the Julia set. Let ζ̂ ∈ An
f be an

unbranched backward orbit that does not belong to an isolated leaf of Af .
Let V and W be simply connected neighborhoods of ζ0 such that V is well inside W

and W is univalent along ζ̂. Then Univ(ζ0, V ) ∩ An
f is not pre-compact in Af .

Proof. Choose some V0 with V ⋐ V0 ⋐ W . By Proposition 4.1, there exists a back-
ward orbit ẑ ∈ Univ(ζ0, V0) such that the leaf L(ẑ) is hyperbolic. Now we can apply
Proposition 4.1 to ẑ, this time with L being a parabolic leaf. Hence there is a sequence
ẑk ∈ Univ(ζ0, V0) ∩A

n
f that converges to ẑ in the natural topology. By Lemma 4.2, this

sequence has no convergent subsequence in Af . �

4.4. Corollary (Failure of local compactness).
Let f be a rational function and suppose that Rf contains some hyperbolic leaf L that

intersects the Julia set. Then, for all ζ̂ ∈ Af that are not on isolated leaves, Af is not

locally compact at ζ̂.

Remark. This completes the proof of Theorem 1.3, and thus of Theorem 1.1.

Proof. By definition, Aℓ
f is dense in Af . So it is sufficient to restrict to the case of

ζ̂ ∈ Aℓ
f . Also, unbranched backward orbits are dense in Aℓ

f , so we can assume that ζ̂ is
unbranched.

By Proposition 2.1, the sets f̂n
(
Univ(ζ−n, V )

)
, where n ≥ 0 and V,W are Jordan

neighborhoods of ζ−n such that W is univalent along f̂n(ζ−n) and V is well inside W ,

form a neighborhood base of ζ̂ in the laminar topology of Aℓ
f . By Lemma 4.3, none of

these sets is pre-compact in Af . So Af is not locally compact at ζ̂. �

Finally, we remark that Proposition 4.1 also proves minimality of the lamination Af

(after removing finitely many isolated leaves).

4.5. Proposition (Minimality).
Let L be a leaf of Af , and let ẑ ∈ Aℓ

f be a point that does not belong to the isolated leaf
associated to a branch-exceptional repelling periodic point. Then L accumulates on ẑ in
the topology of Af .

In particular, let A′
f be obtained from Af by removing all (finitely many) leaves asso-

ciated to branch-exceptional repelling orbits. Then A′
f is minimal; i.e., every leaf of A′

f

is dense in A′
f .

Remark. By Lemma 2.3, there are at most four branch-exceptional periodic points, so
the lamination Af contains at most four isolated leaves. This bound is achieved for some
Lattès maps.

Proof. (Compare [LM, Proposition 7.6].) If L is an invariant leaf in Aℓ
f , then the claim

follows immediately from Propositions 4.1 and 2.1.
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Now suppose that L = L(ψ̂) is an arbitrary leaf of Af ; by passing to an iterate, we
may assume that f has at least five repelling fixed points α1, . . . , α5 that are not branch-
exceptional. We show that L accumulates at the invariant leaf of at least one of these
fixed points, which completes the proof.

To do so, let Dk be pairwise disjoint linearizing Jordan neighborhoods of the fixed
points αk. By the Ahlfors Five Islands theorem (see [B]), for every j there is some kj

such that ψ−j : C→ Ĉ has an island over Dkj
. That is, there is a domain Vj such that

ψ−j : Vj → Dkj
is a conformal isomorphism.

There is some k such that kj = k for infinitely many j. Analogously to the proof of
[LM, Proposition 7.5], it follows that that L accumulates on the invariant leaf L(α̂k), as
desired. �
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recurrent transcendental functions, Preprint, 2007, arXiv:0802.0666; submitted for publication.
[S] Meiyu Su, Measured solenoidal Riemann surfaces and holomorphic dynamics, J. Differential

Geom. 47 (1997), no. 1, 170–195.

Institute for Mathematical Sciences, SUNY Stony Brook, NY 11794-3660, USA

E-mail address: kahn@math.sunysb.edu

Institute for Mathematical Sciences, SUNY Stony Brook, NY 11794-3660, USA

E-mail address: mlyubich@math.sunysb.edu

Dept. of Math. Sciences, University of Liverpool, Liverpool L69 7ZL, UK

E-mail address: l.rempe@liverpool.ac.uk

http://www.arXiv.org/abs/math.DS/9412233
http://www.arXiv.org/abs/math/0402147
http://www.arxiv.org/abs/0802.0666

	1. Introduction
	2. Preliminaries
	3. Existence of Hyperbolic Leaves
	4. Failure of Local Compactness
	References

