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Abstract. We construct an entire function in the Eremenko-Lyubich class B whose
Julia set has only bounded path-components. This answers a question of Eremenko
from 1989 in the negative.

On the other hand, we show that for many functions in B, in particular those
of finite order, every escaping point can be connected to ∞ by a curve of escap-
ing points. This gives a partial positive answer to the aforementioned question of
Eremenko, and answers a question of Fatou from 1926.
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1. Introduction

The dynamical study of transcendental entire functions was initiated by Fatou in
1926 [F]. As well as being a fascinating field in its own right, the topic has recently re-
ceived increasing interest partly because transcendental phenomena seem to be deeply
linked with the behavior of polynomials in cases where the degree gets large. A re-
cent example is provided by the surprising results of Avila and Lyubich [AL], who
showed that a constant-type Feigenbaum quadratic polynomial whose Julia set has
positive measure would have hyperbolic dimension less than two. This phenomenon
occurs naturally in transcendental dynamics, see [UZ]. Other interesting applications
of transcendental dynamics include the study of the standard family of circle maps
and the use of Newton’s method to study zeros of transcendental functions.

In his seminal 1926 article, Fatou observed that the Julia sets of certain explicit
entire functions, such as z 7→ r sin(z), r ∈ R, contain curves of points which escape
to infinity under iteration. He then remarks

Il serait intéressant de rechercher si cette propriété n’appartiendrait pas
à des substitutions beaucoup plus générales. 1

Sixty years later, Eremenko [E] was the first to undertake a thorough study of the
escaping set

I(f) := {z ∈ C : |f ◦n(z)| → ∞}
of an arbitrary entire transcendental function. In particular, he showed that every
component of I(f) is unbounded, and asks whether in fact each component of I(f) is
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unbounded. We will call this problem (the weak form of) Eremenko’s conjecture. He
also states that

It is plausible that the set I(f) always has the following property: every
point z ∈ I(f) can be joined with ∞ by a curve in I(f).

This can be seen as making Fatou’s original question more precise, and will be referred
to in the following as the strong form of Eremenko’s conjecture.

These problems are of particular importance since the existence of such curves can
be used to study entire functions using combinatorial methods. This is analogous
to the notion of “dynamic rays” of polynomials introduced by Douady and Hubbard
[DH], which has proved to be one of the fundamental tools for the successful study
of polynomial dynamics. Consequently, Fatou’s and Eremenko’s questions are among
the most prominent open problems in the field of transcendental dynamics.

We will show that, in general, the answer to Fatou’s question (and thus also to
Eremenko’s conjecture in its strong form) is negative, even when restricted to the
Eremenko-Lyubich class B of entire functions with a bounded set of singular values.
(For such functions, all escaping points lie in the Julia set. The class B appears to be
a very natural setting for this type of problem; compare also [R1].)

1.1. Theorem (Entire Functions Without Dynamic Rays).
There exists a hyperbolic entire function f ∈ B such that every path-connected com-
ponent of J(f) is bounded.

Remark. In fact, it is even possible to ensure that J(f) contains no nontrivial curves
at all (Theorem 8.4.)

On the other hand, we show that the strong form of Eremenko’s conjecture does
hold for a large subclass of B. Recall that f has finite order if log log |f(z)| = O(log |z|)
as |z| → ∞.

1.2. Theorem (Entire Functions With Dynamic Rays).
Let f ∈ B be a function of finite order, or more generally a finite composition of such
functions. Then every point z ∈ I(f) can be connected to ∞ by a curve γ such that
f ◦n|γ →∞ uniformly.

Remark. Observe that while B is invariant under finite compositions, the property of
having finite order is not.

Theorem 1.2 applies to a large and natural class of functions, extending considerably
beyond those which were previously studied by similar methods. As an example,
suppose that p is a polynomial with connected Julia set, and let α be a repelling fixed
point of p. By a classical theorem of Königs, p is conformally conjugate to the linear
map z 7→ µz (where µ = p′(α) is the multiplier of α). The inverse of this conjugacy
extends to an entire function ψ : C → C with ψ(0) = α and ψ(µz) = f(ψ(z)). This
map ψ, called a Poincaré function, has finite order. The set of singular values of
ψ is the postcritical set of p, which is bounded since J(p) is connected. So ψ ∈ B.
The properties of ψ are generally quite different from e.g. those of the commonly
considered exponential and trigonometric functions; for example, if µ /∈ R, then the
tracts of ψ will spiral near infinity. (Compare Figure 1.)
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Figure 1. Julia set for the Poincaré function around a repelling fixed
point of a postcritically-finite quadratic polynomial. This function be-
longs to B and has finite order; hence Theorem 1.2 applies to it. (The
Julia set, plotted in black, is nowhere dense, but some details are to
fine to be visible; this results in the appearance of solid black regions
in the figure.)

More generally, given any point z ∈ J(p), we can find a sequence of rescalings of
iterates of p which converges to an entire function f : C → C of finite order by the
“Zalcman lemma”. Again, since J(p) is connected, we have f ∈ B. Theorem 1.2
implies that, for all such functions, and their finite compositions, the escaping set
consists of rays.

On the other hand, the counterexample from Theorem 1.1 can be constructed such
that log log |f(z)| = O(| log z|1+ε) (see Proposition 8.3), so Theorem 1.2 is not far
from being optimal.

We remark that our methods are purely local in the sense that they apply to the
dynamics of a — not necessarily globally defined — function within any number of
logarithmic singularities over ∞. Roughly speaking, let f be a function defined on a
union of unbounded Jordan domains, such that f is a universal covering of {|z| > R}
on each of these domains, and extends continuously to the closure of its domain in C.
(In fact, our setting is even slightly more general than this; see Section 2 for the class
of function we consider.) We will provide sufficient conditions which ensure that every
point z ∈ I(f) eventually maps into a curve in I(f) ending at∞. In particular, we will
show that these conditions are satisfied if f has finite order of growth. (Our treatment
will also allow us to discuss more generally under which conditions individual escaping
components, identified by their external addresses, are curves to ∞.)

For meromorphic functions, we have the following corollary.

1.3. Corollary (Meromorphic Functions With Logarithmic Singularities).

Let f : C→ Ĉ be a meromorphic function of finite order.

(a) Suppose that f has only finitely many poles and the set of finite singular values
of f is bounded. Then every escaping point of f can be connected to ∞ or to
a pre-pole of f by a curve consisting of escaping points.
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(b) Suppose that f has a logarithmic singularity over ∞. Then J(f) contains
uncountably many curves to ∞ consisting of escaping points.

Remark. The second part of the corollary applies e.g. to the classical Γ-function, which
has infinitely many poles (at the negative integers), but a logarithmic singularity to
the right.

We note finally that our results also apply to the setting of “random iteration”
(see [C]). For example, consider a sequence F = (f0, f1, f2, . . . ), where the fj are
finite-order entire functions chosen from some given finite subset of B. If we consider
the functions Fn := fn ◦ · · · ◦f0, and define I(F) := {z ∈ C : Fn(z) →∞}, then every
point of I(F) can be connected to infinity by a curve in I(F).

Previous results. In the early 1980s, Devaney gave a complete description of the
Julia set of an exponential map with an attracting fixed point; that is, z 7→ λ exp(z)
with λ ∈ (0, 1/e) (see [DK]). This was the first entire function for which it was
discovered that the escaping set (and in fact the Julia set) consists of curves to ∞.
Devaney, Goldberg and Hubbard [DGH] proved the existence of certain curves to ∞
in I(f) for arbitrary exponential maps z 7→ λ exp(z) and championed the idea that
these should be thought of as analogs of dynamic rays for polynomials. Devaney and
Tangerman [DT] generalized this result to a large subclass of B, namely those functions
whose tracts (see Section 2) are similar to those of the exponential map. (This includes
virtually all functions in the Eremenko-Lyubich class which one can explicitly write
down.) It seems that it was partly these developments that led Eremenko to pose the
above-mentioned questions in his 1989 paper.

More recently, it was shown in [SZ] that every escaping point of every exponential
map can be connected to ∞ by a curve consisting of escaping points. This was
the first time that a complete classification of all escaping points, and with it a
positive answer to both of Eremenko’s questions, was given for a complete parameter
space of transcendental functions. This result was carried over to the cosine family
z 7→ a exp(z) + b exp(−z) in [RoS].

After our proof of Theorem 1.2 was first announced, Baranski [B1] obtained a proof
of this result for hyperbolic finite-order functions f ∈ B whose Fatou set consists of
a single basin of attraction. Together with more recent results [R1] on the escaping
dynamics of functions in the Eremenko-Lyubich class, this provides an alternative
proof of our theorem when f is of finite order.

A very interesting and surprising case in which the weak form of Eremenko’s conjec-
ture can be resolved was discovered by Rippon and Stallard [RiS]. They showed that
the escaping set of a function with a multiply-connected wandering domain consists
of a single, unbounded, connected component. (Such functions never belong to the
Eremenko-Lyubich class B.) In fact, they showed that, for any transcendental entire
function, the subset A(f) ⊂ I(f) introduced by Bergweiler and Hinkkanen [BH] has
only unbounded components. Also, recently [R2] the weak form of Eremenko’s con-
jecture was established for functions f ∈ B whose postsingular set is bounded (which
applies, in particular, to the hyperbolic counterexample constructed in Theorem 1.1).

There has been substantial interest in the set I(f) not only from the point of its
topological structure, but also because of its interesting properties from the point
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of view of Hausdorff dimension. The reasoning is often parallel, and progress on the
topology of I(f) has entailed progress on the Hausdorff dimension. For many functions
f the set I(f) is an uncountable union of curves, each of which is homeomorphic to
either R+ (a dynamic ray) or R+

0 (a dynamic ray which lands at an escaping point).
Often, the Hausdorff dimension of all the rays is 1, while the endpoints alone have
Hausdorff dimension 2, or even infinite planar Lebesgue measure. The first time this
“dimension paradox” was discovered was by Karpińska for hyperbolic exponential
maps [K] for which the topology of Julia sets was known, using results of McMullen
[Mc]. In later extensions for arbitrary exponential maps [SZ] and for the cosine family
[RoS], the new parts were the topological classifications; while analogous results on
the Hausdorff dimension followed from the methods of Karpińska and McMullen; see
also [S1, S2] for extreme results where every point in the complex plane is either on
a dynamic ray (whose dimension is still one) or a landing point of those rays (so the
landing points of this one-dimensional set of rays is the entire complex plane with only
a one-dimensional set of exceptions). Recently, it was shown by Baranski [B2] that the
dimension paradox also occurs for finite-order entire transcendental functions which
are hyperbolic with a single basin of attraction. In fact, the Hausdorff dimension of
I(f) is two for any entire function f ∈ B of finite order, which follows from Baranski’s
result by [R1] and was also shown directly and independently by Schubert. The
Hausdorff dimension of the set I(f) in the setting of the present paper is further
investigated in [ST].

Structure of the article. In Section 2, we define logarithmic coordinates, in which
we will perform most of our constructions. Some elementary properties of functions
in logarithmic coordinates are proved in Section 3. In Section 4, we show that the
escaping set of a function in logarithmic coordinates consists of arcs if the escaping
points can be ordered according to their “speed” of escape. We call this property the
head-start condition. Classes of functions that satisfy this condition, in particular the
logarithmic transforms of finite order functions, are discussed in Section 5.

In Section 6, we construct a function in logarithmic coordinates whose escaping
set has only bounded path-components and in Section 7, we show how to translate
this result into a bounded-type entire function. In an appendix, we recall several
important facts from hyperbolic geometry.

Acknowledgements. Most of all, we would like to thank Walter Bergweiler and
Alex Eremenko for many interesting discussions, and especially for introducing us to
the Cauchy transform (Section 7), which we use to construct the counterexample in
Theorem 1.1. In particular, we would like to thank Prof. Eremenko for introducing
us to the article [GE]. We would also like to thank Adam Epstein, Helena Mihaljevic-
Brandt, Gwyneth Stallard, Phil Rippon, Norbert Steinmetz and Sebastian van Strien
for many stimulating discussions on this work.

Notation. Throughout this article, we denote the Riemann sphere by Ĉ = C∪ {∞}
and the right half plane by H := {z ∈ C : Re z > 0}. Also, we write

Br(z0) := {z ∈ C : |z − z0| < r} and HR := {z ∈ C : Re z > R} .
If A ⊂ C, the closures of A in C and Ĉ are denoted A and Â, respectively.
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Euclidean length and distance are denoted ` and dist, respectively. If a domain
V ⊂ C omits at least two points of the plane, we similarly denote hyperbolic length
and distance in V by `V and distV .

We conclude any proof by the symbol ¥. The proofs of separate claims within an
argument are concluded by 4.

2. The Eremenko-Lyubich Class B and the Class Blog

Let f : C → C be an entire function. We call a point w ∈ C a singular value of f
if for every open neighborhood U of w, there exists a component V of f−1(U) such
that f : V → U is not bijective. We denote the set of singular values by S(f). Note
that S(f) is the closure of the set sing(f−1) of critical and asymptotic values. We
say that f belongs to the Eremenko-Lyubich class B if S(f) is bounded. By J(f)
we denote the Julia set of f , i.e. the set of points at which the sequence of functions
{f, f ◦ f, . . . , f ◦n, . . . } does not form a normal family in the sense of Montel.

Tracts. Let f ∈ B, and let R0 > |f(0)| + max{|s| : s ∈ sing(f−1)}. Setting WR0 :=
{z ∈ C : |z| > R0}, it is easy to see that every component V of

V := f−1(WR0)

is an unbounded Jordan domain, and that f : V → WR0 is a universal covering. (In
other words, f has only logarithmic singularities over ∞.) The components of V are
called the tracts of f . Observe that each compact K ⊂ C will intersect at most finitely
many tracts of f .

Logarithmic coordinates. To study logarithmic singularities, it is natural to apply
a logarithmic change of coordinates (compare [EL, Section 2]). More precisely, let
%0 := logR0, T := exp−1(V) and

H%0 := exp−1(WR0) = {z ∈ C : Re z > %0} .
Then there is a function F : T → H%0 (the logarithmic transform of f) such that the
following diagram commutes:

T F - H%0

V

exp

?

f
- WR0 .

exp

?

The components of T are called the tracts of F .
By construction, the function F and its domain T have the following properties,

see also Figure 2:

(a) every component T of T is an unbounded Jordan domain with real parts
bounded below, but unbounded from above;
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(b) T can be written as the disjoint union

T =
⋃

T component of T
T .

(c) for every component T of T , F : T → H%0 is a conformal isomorphism. In
particular, F extends continuously to the closure T of T in C;

(d) for every component T of T , exp |T is injective;
(e) T is invariant under translation by 2πi;
(f) |F ′(z)| ≥ 2, provided that R0 was chosen large enough.

Property (f) is a simple application of Koebe’s 1/4-theorem, see [EL, Lemma 2.1].
In the following, we will refer to this property as expansivity of F . Expansivity and
convexity of H imply that if z, w ∈ T , then |F (z)− F (w)| ≥ 2|z − w|. Furthermore,
applying the change of variable w = z/R0, we may suppose without loss of generality
that R0 = 1; i.e., %0 = 0.

Note that for every tract T of F , F |T is unique up to translation by 2πinT , where
nT ∈ Z can be chosen independently for each tract T .

H

0

2πi

Figure 2. The domain of definition for a function F ∈ Blog is 2πi-
periodic. Note that a tract T need not be contained in H.

We will denote by Blog the class of all F : T → H such that T and F satisfy
(a) to (f), regardless of whether they arise from an entire function f ∈ B or not.

In particular, if f : C → Ĉ is any meromorphic function which has one or several
logarithmic singularities over ∞, then we can associate to f a function F ∈ Blog

which encodes the behavior of f near its logarithmic singularities.
If F ∈ Blog and T is a tract of F , we denote the inverse of the conformal isomorphism

F : T → H by F−1
T .

Combinatorics in Blog. Let F ∈ Blog; we denote the Julia set and the set of escaping
points of F by

J(F ) := {z ∈ T : F ◦n(z) is defined and in T for all n ≥ 0} and

I(F ) := {z ∈ J(F ) : ReF ◦n(z) →∞} .
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If f ∈ B and F is its logarithmic transform, then it is not hard to show that
exp(J(F )) ⊂ J(f) (the Julia set of f) and exp(I(F )) ⊂ I(f). Furthermore, every
escaping point of f eventually maps to some point in exp(I(F )). For K > 0 we also
define more generally

JK(F ) := {z ∈ T : F ◦n(z) is defined and ReF ◦n(z) ≥ K for all n ≥ 0} .
The partition of the domain of F into tracts suggests a natural way to assign symbolic
dynamics to points in J(F ). More precisely, let z ∈ J(F ) and, for j ≥ 0, let Tj be the
tract of F with F ◦j(z) ∈ T j. Then the sequence

s := T0T1T2 . . .

is called the external address of z. More generally, we refer to any sequence of tracts
of F as an external address (of F ). If s is such an external address, we define the
closed set

Js := {z ∈ J(F ) : z has address s} ;

we define Is and JK
s in a similar fashion (note that Js, and hence Is and JK

s , may well
be empty for some addresses).

We denote the one-sided shift-operator on external addresses by σ; i.e. σ(T0T1T2 . . . ) =
T1T2 . . . .

2.1. Definition (Dynamic Rays, Ray Tails).
Let F ∈ Blog. A ray tail of F is an injective curve

γ : [0,∞) → I(F )

such that limt→∞ ReF ◦n(γ(t)) = +∞ for all n ≥ 0 and such that ReF ◦n(γ(t)) → +∞
uniformly in t as n→∞.

Likewise, we can define ray tails for an entire function f . A dynamic ray of f is
then a maximal injective curve γ : (0,∞) → I(f) such that γ|[t,∞) is a ray tail for
every t > 0.

In Sections 4 and 5, we will construct ray tails for certain functions in class Blog, and
in particular for logarithmic transforms of the functions treated in Theorem 1.2 and
Corollary 1.3. By the following fact, this will be sufficient to complete our objective.

2.2. Proposition (Escaping Points on Rays).
Let f : C → C be an entire function and let z ∈ I(f). Suppose that some iterate
f ◦k(z) is on a ray tail γk of f . Then one of the following holds:

(a) z is on a dynamic ray,
(b) z is the landing point of a dynamic ray, or
(c) for some n ≤ k, f ◦n(z) belongs to a dynamic ray which contains an asymptotic

value of f .

In particular, there is a curve γ0 connecting z to ∞ such that f ◦j|γ0 tends to ∞
uniformly (in fact, f ◦k(γ0) ⊂ γk).

Proof. Let the ray tail be parametrized as γk : [0,∞) → C. Let T ∈ (0,∞] be
maximal such that there is a curve γk−1 : [0, T ) → C with γk−1(0) = f ◦(k−1)(z) and
f(γk−1(t)) = γk(t). If T = ∞, then clearly γk−1(t) → ∞ as t → ∞. Otherwise, w =
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limt→T γk−1(t) exists in Ĉ. If w 6= ∞, we could extend γk−1 further (choosing any one
of the possible branches of f−1 in the case where w is a critical point), contradicting
maximality of T . Thus w = ∞ (and, in particular, γk(T ) is an asymptotic value of
f).

In either case, we have found a curve γk−1 ⊂ f−1(γk) ⊂ I(f) which connects
f ◦(k−1)(z) to infinity. This curve is a ray tail, except possibly if γk contained an
asymptotic value of f . Continuing this method inductively, we are done. (Note that,
if z is on a ray tail, then z is on a dynamic ray or the landing point of such a ray.) ¥

3. General Properties of Class Blog

In this section, we prove some general results for functions in class Blog. The first
of these strengthens the aforementioned expansion estimate of [EL, Lemma 2.1] by
showing that such a function expands distances exponentially.

3.1. Lemma (Exponential Separation of Orbits).
Let F ∈ Blog and T be a tract of F . If ω, ζ ∈ T are such that |ω − ζ| ≥ 2, then

|F (ω)− F (ζ)| ≥ exp(|ω − ζ|/8π) ·min{ReF (ω),ReF (ζ)} .
Proof. Suppose without loss of generality that ReF (ω) ≥ ReF (ζ). Since T has height
at most 2π, it follows by the standard estimate on hyperbolic distances that

|ω − ζ|/2π ≤ distT (ω, ζ) = distH(F (ω), F (ζ)) .

Let ξ ∈ H be a point that satisfies distH(F (ζ), ξ) = distH(F (ω), F (ζ)) and ReF (ζ) =
Re ξ, see Figure 3. We will estimate the Euclidean distance s = |F (ζ) − ξ|. Then,
|F (ω) − F (ζ)| ≥ s. Let γ be the curve consisting of three straight line segments
pictured in Figure 3, connecting F (ζ) to ξ through F (ζ) + s and ξ + s.

ξ ξ + s

s

F (ζ) F (ζ) + s

γ

S

F (ω)
H

Figure 3. The set S of points of equal hyperbolic distance in H to
F (ζ) is a Euclidean circle. Clearly, ξ is the Euclidean closest point to
F (ζ) on S that satisfies Re ξ ≥ ReF (ζ). We use the dotted line γ to
estimate s.

Each of the horizontal parts of γ ⊂ H has hyperbolic length log ((ReF (ζ) + s)/ReF (ζ)),
and it is easy to see that the hyperbolic length of the vertical part is less than 1. Hence,
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we get

|ω − ζ|
2π

< 2 log

(
ReF (ζ) + s

ReF (ζ)

)
+ 1 ,

and therefore

|F (ω)− F (ζ)| ≥ s ≥
(

exp

( |ω − ζ|
4π

− 1

2

)
− 1

)
· ReF (ζ) .

Since ex−1/2 − 1 > ex/2 for x ≥ 2, the claim follows. ¥

Remark. It follows from expansivity of F that for any two distinct points w, z with
the same external address, there exists k ∈ N such that |F ◦k(w)−F ◦k(z)| > 2. Hence
Lemma 3.1 will apply eventually.

3.2. Lemma (Growth of Real Parts).
Let F ∈ Blog. If ζ, ω ∈ J(F ) are distinct points with the same external address s, then

lim
k→∞

max(ReF ◦k(ζ),ReF ◦k(ω)) = ∞ .

Proof. Suppose that ζ, ω ∈ J(F ) satisfy ReF ◦k(ζ),ReF ◦k(ω) < S for some S > 0
and infinitely many k ∈ N. For any tract T , the set T ∩ {z ∈ C : Re z ≤ S} is
compact and thus has bounded imaginary parts. Furthermore, up to translations in
2πiZ there are only finitely tracts of F which intersect the line {Re z = S} at all (this
follows from property (b) in the definition of Blog). We conclude that there is C > 0
such that |F ◦k(ζ)− F ◦k(ω)| < C whenever ReF ◦k(ζ),ReF ◦k(ω) < S. In particular,

|ζ − ω| ≤ 1

2k
· |F ◦k(ζ)− F ◦k(ω)| ≤ C

2k

by expansivity of F (we have |(F−1
T )′(z)| < 1/2 for any tract T ). Since this happens

for infinitely many k, it follows that ζ = ω, as required. ¥

Note that Lemma 3.2 does not imply that either ζ or ω escapes: indeed, it is
conceivable that both points have unbounded orbits but return to some bounded real
parts infinitely many times. In the next section, we introduce a property, called a
head-start condition, which is designed precisely so that this does not occur.

As mentioned in the introduction, Rippon and Stallard [RiS] showed that the escap-
ing set of every entire function f contains unbounded connected sets. The following
theorem is a version of this result for functions in Blog.

3.3. Theorem (Existence of Unbounded Continua in Js).
For every F ∈ Blog there exists K ≥ 0 with the following property. If z0 ∈ JK(F ) and
s is the external address of z0, then there exists an unbounded closed connected set
A ⊂ Js with dist(z0, A) ≤ 2π.

Proof. Choose K large enough so that no bounded component of H ∩ T intersects
the line {Re z = K} and set zk := F ◦k(z0). If S ⊂ C is an unbounded set such that
S \ B2π(zk) has exactly one unbounded component, let us denote this component by
Xk(S).
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We claim thatXk(T k) is non-empty and contained in H for all k ≥ 1. (However, this
set is not necessarily contained in HK .) Indeed, this is trivial if T k ⊂ H. Otherwise,
let α− and α+ denote the two unbounded components of H ∩ ∂Tk. We claim that
both α− and α+ must intersect the vertical line segment L := zk + i[−2π, 2π]. Indeed,
otherwise some 2πiZ-translate of α− or α+ would separate zk from α± in H, which is
not possible since zk belongs to the unbounded component of Tk∩H. Hence it follows
that the unbounded component of Tk \ L, which contains Xk(T k), is contained in H.

In particular, we can pull back the set Xk(Tk) into Tk−1 using F−1
Tk−1

. By expansivity

of F , F−1
Tk−1

(Xk(Tk)) has distance at most π from zk−1. Continuing inductively, we
obtain the sets

Ak := X0(F
−1
T0

(X1(F
−1
T1

(. . . (Xk−1(F
−1
Tk−1

(Xk(T k)))) . . . ))))

for k ≥ 1; let A0 = X0(T 0). Each Âk ⊂ Ĉ is a continuum, has distance at most 2π

from z0 and contains Âk+1. Hence, the set A′ =
⋂

k≥0 Âk has the same properties and
there exists a component A of A′ \ {∞} with dist(A, z0) ≤ 2π. By definition, A is
closed and connected, and it is unbounded by the Boundary Bumping theorem [N,
Theorem 5.6]. ¥

4. Functions Satisfying a Head-Start Condition

Throughout most of this and the next section, we will fix some function F ∈ Blog.
Fix an external address s, and suppose that the set Js is a ray tail. Then Js ∪ {∞}
is homeomorphic to [0,∞], and as such possesses a natural total ordering. In this
section, we will use a converse idea: we introduce a “head-start condition”, which
implies that the points in Js are totally ordered by their speed of escape, and deduce
from this that Js is (essentially) a ray tail. In the next section, we then develop
sufficient conditions on F under which a head-start condition is satisfied.

4.1. Definition (Head-Start Condition).
Let T and T ′ be tracts of F and let ϕ : R→ R be a (not necessarily strictly) monotoni-
cally increasing continuous function with ϕ(x) > x for all x ∈ R. We say that the pair
(T, T ′) satisfies the head-start condition for ϕ if, for all z, w ∈ T with F (z), F (w) ∈ T ′,

Rew > ϕ(Re z) =⇒ ReF (w) > ϕ(ReF (z)) .

An external address s satisfies the head-start condition for ϕ if all consecutive pairs
of tracts (Tk, Tk+1) satisfy the head-start condition for ϕ, and if for all distinct z, w ∈
Js, there exists M ∈ N such that either ReF ◦M(z) > ϕ(ReF ◦M(w)) or ReF ◦M(w) >
ϕ(ReF ◦M(z)).

We say that F satisfies a head-start condition if every external address of F satisfies
the head-start condition for some ϕ. If the same function ϕ can be chosen for all
external addresses, we say that F satisfies the uniform head-start condition for ϕ.

4.2. Theorem (Ray Tails).
Suppose that F ∈ Blog satisfies a head-start condition. Then for every escaping point
z, there exists k ∈ N such that F ◦k(z) is on a ray tail γ. This ray tail is the unique
arc in J(F ) connecting F ◦k(z) to ∞ (up to reparametrization).

11



We will devote the remainder of this section to the proof of Theorem 4.2.
If s satisfies any head-start condition, the points in Js are eventually ordered by

their real parts: for any two points z, w ∈ Js, F
◦k(z) is to the right of F ◦k(w) for all

sufficiently large k (or vice versa).

4.3. Definition and Lemma (Speed Ordering).
Let s be an external address satisfying the head-start condition for ϕ. For z, w ∈ Js,
we say that z Â w if there exists K ∈ N such that ReF ◦K(z) > ϕ(ReF ◦K(w)). We

extend this order to Ĵs = Js ∪ {∞} by the convention that ∞ Â z for all z ∈ Js.

With this definition, (Ĵs,Â) is a totally ordered space. Moreover, the order does not
depend on ϕ.

Note that if z Â w, then ReF ◦k(z) > ϕ(ReF ◦k(w)) for all k ≥ K.

Proof. By definition, ReF ◦k(z) < ϕ(ReF ◦k(z)) for all k ∈ N and z ∈ Js. Hence “Â”
is non-reflexive.

Let a, b, c ∈ Js such that a Â b and b Â c. Then, there exist k, l ∈ N such that
ReF ◦k(a) > ϕ(ReF ◦k(b)) and ReF ◦l(b) > ϕ(ReF ◦l(c)). Setting m := max{k, l}, we
obtain from the head-start condition that ReF ◦m(a) > ϕ(ReF ◦m(b)) > ReF ◦m(b) >
ϕ(ReF ◦m(c)). Hence a Â c and “Â” is transitive.

By assumption, for any distinct z, w ∈ Js there exists k ∈ N such that ReF ◦k(w) >
ϕ(ReF ◦k(z)) or ReF ◦k(z) > ϕ(ReF ◦k(w)). It follows that any two distinct points
are comparable under “Â”.

If s also satisfies the head-start condition for ϕ̃, and ϕ̃ induces an order Ẫ, then it
is easy to see that w Ẫ z if and only if w Â z. This completes the proof. ¥

4.4. Corollary (Growth of Real Parts).
Let s be an external address that satisfies the head-start condition for ϕ and let z, w ∈
Js. If w Â z, then w ∈ I(F ). In particular, Js \ Is consists of at most one point.

Proof. This is an immediate corollary of Lemmas 3.2 and 4.3. ¥

4.5. Proposition (Arcs in Js).
Let s be an external address satisfying the head-start condition for ϕ. Then the topol-

ogy of Ĵs as a subset of the Riemann sphere Ĉ agrees with the order topology induced
by Â. In particular,

(a) every component of Ĵs is homeomorphic to a (possibly degenerate) compact
interval, and

(b) if JK
s 6= ∅ for K as in Theorem 3.3, then Js has a unique unbounded component,

which is a closed arc to infinity.

Proof. Let us first show that id : Ĵs → (Ĵs,Â) is continuous. Since Ĵs is compact and

the order topology on Ĵs is Hausdorff, this will imply that id is a homeomorphism and
that both topologies agree. It suffices to show that sub-basis elements for the order

topology of the form U−a := {w ∈ Js : a Â w} and U+
a := {w ∈ Ĵs : w Â a} are open

in Ĵs for any a ∈ Ĵs. We will only give a proof for the sets U−a ; the proof for U+
a is

analogous.
12



Let w ∈ U−a and choose k ∈ N minimal such that ReF ◦k(a) > ϕ(ReF ◦k(w)). Since
ϕ,Re and F ◦k are continuous, this is true for a neighborhood V of w. It follows that

V ∩ Ĵs ⊂ U−a , hence U−a is a neighborhood of w in Ĵs.

Thus the topology of Ĵs agrees with the order topology. Every connected component

C of Ĵs is compact; it follows from [N, Theorems 6.16 & 6.17] that C is either a point
or an arc. This proves (a). To prove (b), observe that existence follows from Theorem

3.3, while uniqueness follows because ∞ is the largest element of (Ĵs,Â). ¥

4.6. Proposition (Points in the Unbounded Component of Js).
Let s be an external address that satisfies the head-start condition for ϕ. Then there
exists K ′ ≥ 0 such that JK′

s is contained in the unbounded component of Js, which is
a closed arc. (The value K ′ depends on F and ϕ, but not on s.)

Proof. Let K be the constant from Theorem 3.3, set K ′ := max{ϕ(0) + 1, K} and let
z0 ∈ JK′

s . For each k ≥ 0, we let zk := F ◦k(z0) and consider the set

Sk := {w ∈ Jσk(s) : w º zk}; .
By Proposition 4.5, each Sk has a unique unbounded component Ak which is a closed
arc. By Theorem 3.3, Ak satisfies dist(zk, Ak) ≤ 2π.

Let us show Ak ⊂ H, so that we may apply F−1 to it. Indeed, if w ∈ Jσk(s) with
Rew ≤ 0, then the choice of K ′ and monotonicity of ϕ yield that Re zk > ϕ(0) ≥
ϕ(Rew), and therefore zk Â w. Thus, w 6∈ Sk. We conclude that F−1

Tk−1
(Ak) ⊂ Ak−1,

because it is unbounded and contained in Sk−1. Since F is expanding, this means
that

dist(A0, z0) ≤ 2−k dist(zk, Ak) ≤ 2−(k−1)π

for all k ≥ 0. Thus z0 ∈ A0, as required. That A0 is an arc follows from Proposition
4.5. ¥
Proof of Theorem 4.2. Let z be an escaping point for F and s its external address.
By hypothesis, there exists ϕ : R → R such that s satisfies the head-start condition
for ϕ. If K ′ is the constant from Proposition 4.6, then there exists k ≥ 0 such that
F ◦k(z) ∈ JK′

s and γk := {w ∈ Iσk(s) : w º F ◦k(z)} is an injective curve connecting

F ◦k(z) to ∞. Furthermore, since the order topology agrees with the usual topology
on Js ∪∞, γk is unique with this property.

To see that γk is a ray tail, it remains to show that the real parts of all points
on γk grow uniformly. Observe that, for all w ∈ γk and m ∈ N, ReF ◦m(w) ≥
inf{ϕ−1(ReF ◦(k+m)(z))}, because w Â z or w = z (we have to take the infimum
because ϕ need not be invertible). Hence the ReF ◦m(w) converge uniformly to ∞ as
m→∞. ¥

4.7. Theorem (Existence of Absorbing Brush).
Suppose that F satisfies a head-start condition. Then there exists a closed subset
X ⊂ J(F ) with the following properties:

(a) F (X) ⊂ X;
(b) each connected component C of X is a closed arc to infinity all of whose points

except possibly the finite endpoint escape;
13



(c) every escaping point of F enters X after finitely many iterations. If F satisfies
the uniform head-start condition for some function, then there exists K ′ > 0
such that JK′

(F ) ⊂ X.

Proof. Let X denote the union over all external addresses of all unbounded com-

ponents of J(F ). By the Boundary Bumping theorem [N, Theorem 5.6], X̂ is the
unbounded connected component of the compact set J(F ) ∪ {∞}, hence X ⊂ C is a
closed set. Clearly X is F -invariant, and satisfies (b) and (c) by Propositions 4.5 and
4.6 (recall that the choice of K ′ did not depend on the external address). ¥

5. Geometry, Growth & Head-Start

This section discusses geometric properties of tracts which imply a head-start con-
dition. Moreover, we show that (compositions of) functions of finite order satisfy
these properties, hence completing the proof of Theorem 1.2.

Let K > 1 and M > 0. We say that s satisfies the linear head-start condition with
constants K and M if it satisfies the head-start condition for

ϕ(t) := K · t+ +M ,

where t+ = max{t, 0}.
We will restrict our attention to functions whose tracts do not grow too quickly in

the imaginary direction.

5.1. Definition (Bounded Slope).
Let F ∈ Blog. We say that the tracts of F have bounded slope (with constants α, β > 0)
if

| Im z − Imw| ≤ α max{Re z,Rew, 0}+ β

whenever z and w belong to a common tract of F . We denote the class of all functions
with this property by Blog(α, β).

Remark. By property (e) in the definition of Blog, this condition is equivalent to the ex-
istence of a curve γ : [0,∞) → T with |F (γ(t))| → ∞ and lim sup | Im γ(t)|/Re γ(t) <
∞. Hence if one tract of F has bounded slope, then all tracts do.

The bounded slope condition means that the absolute value of a point is propor-
tional to its real part. As we see in the next lemma, this easily implies that the second
requirement of a linear head-start condition (that any two orbits eventually separate
far enough for one to have a head-start over the other) is automatically satisfied when
the tracts have bounded slope.

5.2. Lemma (Linear Separation of Orbits).
Let F ∈ Blog(α, β) and K,M > 0. Then there exists δ = δ(α, β,K,M) > 0 with the
following property: if s is an external address and z, w ∈ Js with |z − w| > δ, then

ReF ◦k(z) > K ReF ◦k(w) +M or ReF ◦k(w) > K ReF ◦k(z) +M

for all k ≥ 1.
14



Proof. Again, let us denote zk = F ◦k(z) and wk = F ◦k(w). Let δ′ = α + β + 2,
δ = max{δ′, 16π log δ′,M} and fix k ∈ N. By possibly enlarging δ further, we may
assume that et/16π > K + t+ 1/2 for t ≥ δ − 1/2.

Suppose without loss of generality that Rewk+1 ≥ Re zk+1 (note that both points
are in H). Using the bounded slope condition, it is easy to estimate |wk+1 − zk+1| ≤
(α+ 1) Re(wk+1) +β. Then Rewk+1 ≥ 1, as otherwise we would have |wk+1− zk+1| ≤
α+β+1 < δ′, contradicting expansivity of F . Hence we conclude that |wk+1−zk+1| ≤
δ′ Rewk+1. Since δ′ ≥ 2, Lemma 3.1 now yields

(1) Rewk+1 ≥ |wk+1 − zk+1|
δ′

≥ exp(|wk − zk|/8π)

δ′
· Re zk+1 > e

|wk−zk|
16π · Re zk+1 ,

because exp(x/8π)/δ′ > exp(x/16π) for all x > 16π log δ′.
Now suppose first that Re zk+1 ≥ 1; then equation (1) implies

Rewk+1 > e
|wk−zk|

16π Re zk+1 > (K+ |wk−zk|+ 1
2
) Re zk+1 > K Re zk+1+ |wk−zk|+1/2 .

On the other hand, if Re zk+1 < 1, then we can replace zk+1 by z′ = F−1
T (1 + Im zk+1)

in the previous argument. Since |zk− z′| < 1/2, and hence |z′−wk| ≥ |wk− zk|−1/2,
we have

Rewk+1 > K ReF (z′) + |z′ − wk|+ 1/2 ≥ K Re zk+1 + |wk − zk| .
The claim follows because |wk − zk| > δ ≥M . ¥

Remark. Thus, to show that a function whose tracts have bounded slope satisfies a
linear head-start condition, we need only verify the first requirement: if wk is ahead
of zk in terms of real parts, the same should be true for wk+1 and zk+1. Note that
this condition — in contrast to the second one — is not dynamical in nature; rather,
it concerns the mapping behavior of the conformal map F : T → H. As such, it is
not too difficult to translate this requirement into a geometrical condition. Roughly
speaking, the tract should not “wiggle” in the sense of first growing in real parts to
reach the larger point wk, then turning around to return to zk, until finally starting
to grow again. (We exploit this idea in Section 6 to construct a counterexample;
compare also Figure 4). The precise geometric condition is as follows.

5.3. Definition (Bounded Wiggling).
Let F ∈ Blog, and let T be a tract of F . We say that T has bounded wiggling if there
exist K > 1 and µ > 0 such that for every z0 ∈ T , every point z on the hyperbolic
geodesic of T that connects z0 to ∞ satisfies

Re z > 1
K

Re z0 − µ .

We say that F ∈ Blog has uniformly bounded wiggling if the wiggling of all tracts of
F is bounded by the same constants K,µ.

5.4. Proposition (Head-Start and Wiggling for Bounded Slope).
Let F ∈ Blog(α, β), s = T0T1T2 . . . be an external address, and let K > 1. Then the
following are equivalent:

(a) For some µ > 0, the tracts Tk have bounded wiggling with constants K and µ;
15



(b) for some M > 0, s satisfies the linear head-start condition with constants K
and M .

The relation between µ and M depends on K, α and β, but not on s.

Observe that if F ∈ Blog(α, β) has uniformly bounded wiggling, then Proposition
5.4 implies that F satisfies a uniform linear head-start condition.

Proof. Suppose that (a) holds. Setting M̃ := K(µ + 2π(α + β)), we will define

M := max(δ, 1), where δ = δ(α, β,K, M̃) is the constant from Lemma 5.2. Let k ∈ N
and choose z, w ∈ Tk such that F (z), F (w) ∈ Tk+1 and Rew > K(Re z)+ +M . Then
|z − w| > M and, by Lemma 5.2, it suffices to show that ReF (w) ≥ ReF (z).

So suppose by way of contradiction that ReF (z) > ReF (w). Since M ≥ 1, we
see from Lemma 5.2 that ReF (z) ≥ M ≥ 1. Set Γ := {F (w) + t : t ≥ 0} and
γ := F−1

Tk
(Γ); in other words, γ is the geodesic of Tk connecting w to ∞. The bounded

slope condition ensures that

distTk
(z, γ) = distH(F (z),Γ) ≤ | ImF (z)− ImF (w)|

ReF (z)
≤ α+ β .

Therefore, dist(z, γ) ≤ 2π(α+β) and consequently, Re z ≥ minζ∈γ{Re ζ}−2π(α+β).
By the bounded wiggling condition, we have Re ζ ≥ 1

K
Rew − µ for all ζ ∈ γ. Thus

Rew ≤ K(Re z + µ+ 2π(α + β)) ≤ K Re z +M ,

a contradiction.
For the converse direction, suppose thta (b) holds. Let T be a tract of F and z ∈ T .

Observe that there exists a constant κ > 0 — independent of T and z — such that
dist(F (z), I(F )) < κ (this is because I(F ) contains a curve with real parts tending
to +∞, as well as its 2πiZ-translates). Pulling back, we find that there exists an
escaping point ζ ∈ T such that z and ζ can be joined in T with a curve of Euclidean
length at most κ/2. Let s be the external address of ζ and γ ⊂ {w ∈ Is : w Â ζ}
be a curve of escaping points that joins ζ to ∞. By the head-start condition, every
w ∈ γ satisfies

Rew ≥ Re ζ

K
− M

K
.

Hence there exists a curve γ′ ⊂ T that connects z to ∞ such that for every w ∈ γ′,

Rew ≥ Re ζ

K
− M

K
− κ ≥ Re z

K
− κ

K
− M

K
− κ .

Now the claim follows easily by general principles of hyperbolic geometry (see Lemma
A.2 in the appendix). ¥

Finally, let us consider functions of finite order.

5.5. Definition (Finite Order).
We say that F ∈ Blog has finite order if

log ReF (w) = O(Rew)

as Rew →∞ in T .
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Note that this definition ensures that f ∈ B has finite order (i.e.

lim
r→∞

sup
|z|=r

log log |f(z)|
log |z| <∞)

if and only if its logarithmic transform F ∈ Blog has finite order in the sense of
Definition 5.5.

5.6. Theorem (Finite Order Functions have Good Geometry).
Suppose that F ∈ Blog has finite order. Then the tracts of F have bounded slope and
(uniformly) bounded wiggling.

Proof. By the Ahlfors non-spiralling theorem (Theorem A.1), F ∈ Blog(α, β) for
some constants α, β. By the finite-order condition, there are % and M such that
log ReF (z) ≤ %Re z +M for all z ∈ T . Let T be a tract of F and z ∈ T .

Suppose first that ReF (z) ≥ 1. Consider the geodesic γ(t) := F−1
T (F (z) + t) (for

t ≥ 0). Since the hyperbolic distance between z and γ(t) is at most log t, we have

Re z − Re γ(t) ≤ 2π log t ≤ 2π log ReF (γ(t)) ≤ 2π(%Re γ(t) +M) .

In other words, Re z ≤ (1 + 2π%) Re γ(t) + 2πM , i.e.

Re γ(t) ≥ 1

1 + 2π%
Re z − 2πM

1 + 2π%
.

Since z was chosen arbitrarily, F has uniformly bounded wiggling with constants
1/(1 + 2π%) and 2πM/(1 + 2π%).

If ReF (z) < 1, we can connect z to a point w ∈ T with ReF (w) ≥ 1 by a curve of
bounded diameter. ¥

To complete the proof of Theorem 1.2, it only remains to show that linear head-start
conditions are preserved under composition. In logarithmic coordinates, this is given
by the following statement; let τa(z) = z−a for a ≥ 0 and Ha := {z ∈ C : Re(z) > a}.
5.7. Lemma (Linear Head-Start is Preserved by Composition).
Let Fi : TFi

→ H be in Blog, for i = 1, 2, . . . , n. Then there is an a ≥ 0 so that
Ga := τa ◦ Fn ◦ · · · ◦ F1 ∈ Blog on appropriate tracts Ta ⊂ TF1, so that Ga is a
conformal isomorphism from each component of Ta onto H. If F1 has bounded slope
and all Fi satisfy linear head-start conditions, then Ga also has bounded slope and
satisfies a linear head-start condition.

Proof. There is an a2 ≥ 0 so that F−1
2 (Ha2) ⊂ H; there is an a3 ≥ 0 so that F−1

3 (Ha3) ⊂
Ha2 , etc.. Finally, there is an a = an ≥ 0 so that (Fn◦· · ·◦F1)

−1 is defined on all of Ha.
Let Ta := (Fn ◦ · · · ◦ F1)

−1(Ha) ⊂ TF1 . Then Fn ◦ · · · ◦ F1 is a conformal isomorphism
from each component of Ta onto Ha, and the first claim follows. In particular, the
tracts of Ga have bounded slope.

For i = 1, . . . , n, let Ki and Mi be the constants for the linear head-start condition
of Fi, and set K := maxi{Ki} and M := δ, where δ = δ(α, β,K,maxi{Mi}) is
the constant from Lemma 5.2. Let T be a tract of Fi and w, z ∈ T , such that
Rew > K Re z + M . Then, |w − z| ≥ Rew − Re z > M = δ, and Lemma 5.2 gives
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that
ReFi(w) > K ReFi(z) +M or ReFi(z) > K ReFi(w) +M .

But since Fi satisfies a head-start condition, the first possibility holds. Hence, all Fi

satisfy a linear head-start condition with constants K,M , and it is now easy to see
that Ga does, too. ¥
Proof of Theorem 1.2 and Corollary 1.3. Let f1, . . . , fn ∈ B be functions of finite or-
der, and let Fj ∈ Blog be their logarithmic transforms. By Theorem 5.6, each Fj

satisfies a linear head-start condition, and by Lemma 5.7, Ga := τa◦Fn◦· · ·◦F1 ∈ Blog

satisfies a linear head-start condition. (The purpose of τa is only to arrange the maps
so that their image is all of H.) Now, on a sufficiently restricted domain, F := Ga◦τ−1

a

is a logarithmic transform of f = fn◦· · ·◦f1 and satisfies a linear head-start condition.
Hence every escaping point of F , and hence of f , is eventually mapped into some ray
tail. By Proposition 2.2, this completes the proof of Theorem 1.2.

The proof of Corollary 1.3 is analogous. (Recall that the order of a meromorphic
function is defined in terms of its Nevanlinna characteristic. However, if f has finite
order, then it is well-known that the restriction of f to its logarithmic tracts will also
have finite order in the previously defined sense.) ¥
Remark. If our goal was only to prove Theorem 1.2 and Corollary 1.3, a somewhat
faster route would be possible (compare [Ro, Chapter 3]). For example, the linear
head-start condition can be verified directly for functions of finite order, without
explicitly considering the geometry of their tracts. Also, the bounded slope condition
can be used to simplify the proof of Theorem 4.2 in this context, eliminating e.g. the
need for Theorem 3.3. We have chosen the current approach because it provides both
additional information and a clear conceptual picture of the proof.

Finally, let us collect together some of the results obtained in this and the previous
section for future reference.

5.8. Corollary (Linear Head-Start Conditions).
Let Hlog consist of all functions F ∈ Blog which satisfy a linear head-start condition
and have tracts of bounded slope.

(a) The class Hlog contains all functions F ∈ Blog of finite order.
(b) The class Hlog is closed under composition.
(c) If F ∈ Hlog, then there is some K > 0 such that every point of JK(F ) can be

connected to infinity by a curve in I(F ).

Remark 1. Here closure under composition should be understood in the sense of
Lemma 5.7. I.e., given functions F1, . . . , Fn ∈ Hlog, the function F1 ◦ · · · ◦ Fn be-
longs to Blog after a suitable restriction and conjugation with a translation; this map
then also belongs to Hlog.

Remark 2. It is easy to see that the class Hlog is also closed under quasiconformal
equivalence near infinity in the sense of [R1].

Proof. The first claim is a combination of Theorem 5.6 and Proposition 5.4. The
second follows from Lemma 5.7, and the final statement follows from Proposition
4.6. ¥
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To conclude the section, let us comment on the issue of “random iteration”, where
we are considering a sequence F = (F0, F1, F2, . . . ) of functions, and study the
corresponding “escaping set” set I(F) = {z ∈ C : Fn(z) → ∞}, where Fn =
Fn ◦ Fn−1 ◦ · · · ◦ F0. (Now the pairs (T, T ′) will consist of a tract T of Fk and a tract
T ′ of Fk+1, etc.) Our proofs carry through analogously in this setting. In particular,
if all tracts of all Fj have uniformly bounded wiggling and uniformly bounded slope,
then again for every z ∈ I(F), there is some iterate Fn(z) which can be connected to
infinity by a curve in the escaping set I(Fn, Fn+1, . . . ).

6. Counterexamples

This section is devoted to the proof of Theorem 1.1; that is, the construction of a
counterexample to the strong form of Eremenko’s Conjecture. As mentioned in the
previous section, such an example will be provided by a function with a tract which
has sufficiently large “wiggles”.

We begin by formulating the exact properties our counterexample should have.
Then we construct a tract (and hence a function F ∈ Blog) with the required proper-
ties. Finally, we show how to realize such a tract as that of an entire function f ∈ B,
using a function-theoretic principle.

To facilitate discussion in this and the next section, let us call an unbounded Jordan
domain T a tract if the real parts of T are unbounded from above and all translates
T + 2πin (for n ∈ Z) have disjoint closure in C.

6.1. Theorem (No Curve To Infinity).
Let T ⊂ H be a tract, and let F0 : T → H be a Riemann map, with continuous

extension F0 : T̂ → Ĥ given by Carathéodory’s Theorem. Suppose that the following
hold:

(a) F0(∞) = ∞;
(b) | Im z − Im z′| < H for some H < 2π and all z, z′ ∈ T ;
(c) there are countably many disjoint hyperbolic geodesics Ck, Ċk ⊂ T , for k =

0, 1, . . . , so that all F0(Ck) and F0(Ċk) are semi-circles in H centered at 0 with
radii %k+1 and %̇k+1 so that %1 < %̇1 < %2 < . . . ;

(d) all %k +H < %̇k/2 and all %̇k +H < %k+1/2;
(e) all Ck and Ċk have real parts strictly between %̇k +H and %k+1/2;
(f) all points in the unbounded component of T \ Ċk have real parts greater than

%̇k;
(g) every curve in T which connects Ck to Ċk intersects the line {z ∈ C : Re z =

%k/2}.
Define Tn := T + 2πin for n ∈ Z and T :=

⋃
n Tn, define Riemann maps Fn : Tn → H

via Fn(z) := F0(z − 2πin), and define a map F : T → H which coincides on Tn with
Fn for each n.

Then the set J := J(F ) = {z ∈ T : F ◦k(z) ∈ T for all k} contains no curve to ∞.

Proof. Since the Tn have disjoint closures, F extends continuously to T . Let Rk and
Ṙk be semicircles in H centered at 0 with radii %k and %̇k, respectively.
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Ċk−1
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Re z=%k/2 Re z=%̇k Re z=%k+1/2

H

Figure 4. A tract that satisfies the conditions of Theorem 6.1. The
figure is not to scale, as can be seen from the horizontal and vertical
dimensions of the length H.

Every z ∈ J has an external address s = Ts0Ts1Ts2 . . . so that F ◦k(z) ∈ Tsk
for all

k. Clearly, all points within any connected component of J have the same external
address, so we may fix an external address s and show that the set Js (i.e., the points
in J with address s) contains no curve to ∞. We may assume that there is an orbit
(wk) with external address s (if not, then we have nothing to show).

For simplicity, we write Ck
m for Cm + 2πisk and Ċk

m for Ċm + 2πisk.

Claim 1. There is an m ≥ 0 so that for all k ≥ 0, Ċk
m+k separates wk from ∞ within

Tsk
, and |wk+1| < %̇m+k+1.

Proof. We prove this claim by induction, based on Condition (f): some Ċ0
m separates

w0 from ∞. For the inductive step, suppose that Ċk
m+k separates wk from ∞ within

Tsk
. Then Ṙm+k+1 separates wk+1 from ∞ within H, i.e., Rewk+1 ≤ |wk+1| < %̇m+k+1

(Condition (c)). By Condition (f), it follows that wk+1 is in the bounded component
of Tsk+1

\ Ċk+1
m+k+1, so Ċk+1

m+k+1 separates wk+1 from ∞ within Tsk+1
, and this keeps the

induction going and proves the claim. 4
Claim 2. For all k ≥ 1, the semicircle Rm+k+1 surrounds Ck

m+k, Ċ
k
m+k and all points

in Tsk
with real parts at most %m+k+1/2.

Proof. Recall that Ck
m+k and Ċk

m+k have real parts at most %m+k+1/2 by Condition (e).
So suppose that z ∈ Tsk

has Re z ≤ %m+k+1/2. We have | Imwk| ≤ |wk| < %̇m+k

by the first claim, and since Tsk
contains wk as well as z and has height at most H

(Condition (b)), it follows that | Im z| < %̇m+k +H. So, by Condition (d),

|z| ≤ Re z + | Im z| < %m+k+1/2 + %̇m+k +H < %m+k+1 4
Now suppose there is a curve γ ⊂ Js that converges to ∞, and suppose that

w0 was chosen with w0 ∈ γ. For every k ≥ 0, the curve F ◦k(γ) connects wk to ∞
(Condition (a)). The point wk is surrounded by both Rm+k+1 and Ṙm+k+1: by the first
claim, we have |wk| < %̇m+k < %m+k+1 < %̇m+k+1. As a result, F ◦k(γ) must contain
a subcurve γk connecting Rm+k+1 with Ṙm+k+1. But this implies that F ◦(k−1)(γ)
contains a subcurve γk−1 connecting Ck−1

m+k with Ċk−1
m+k (Condition c). Since Ck−1

m+k and

Ċk−1
m+k have real parts greater than %̇m+k + H by Condition (e), it follows that both
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endpoints of γk−1 are outside of Ṙm+k. But γk−1 must be contained within Tsk−1
,

so Condition (g) implies that γk−1 must contain a point zk−1 ∈ Tsk−1
with real part

%m+k/2. Now the last claim shows that zk−1 is surrounded by Rm+k. As a result, γk−1

must contain two disjoint subcurves that connect Rm+k with Ṙm+k.
Continuing the argument inductively, it follows that γ contains 2k disjoint subcurves

that connect C0
m+1 with Ċ0

m+1. Since this is true for every k ≥ 0, this is a contradiction.
¥

Now we give conditions under which the set J not only contains no curve to ∞,
but in fact no unbounded curve at all. In many cases these conditions are satisfied
automatically, such as in the example that we construct below (see Theorem 6.3).

6.2. Corollary (Bounded Path Components).
Suppose that, in addition to the conditions of Theorem 6.1, there are countably many
disjoint hyperbolic geodesics C̈k ⊂ T so that all F0(C̈k) are semi-circles in H centered
at 0 with radii %̈k+1 > %̇k+1 so that the bounded component of T \ C̈k+1 has real parts
at most %̈k+1/2.

Then every path component of J is bounded.

Proof. We continue the proof of the previous theorem. Suppose there is an unbounded
curve γ ⊂ Js with w0 ∈ γ. As before, for every k ≥ 0 the curve F ◦k(γ) connects wk

with ∞. We will show that then there must be a point z0 ∈ γ so that for every k the
subcurve of γ between w0 and z0 contains 2k disjoint subcurves that connect C0

m+1

with Ċ0
m+1, and this is a contradiction.

Let R̈k be semi-circles centered at 0 with radii %̈k. Since %̈k+1 > %̇k+1, it follows
that every C̈k is in the unbounded component of T \ Ċk. Define vertical translates
C̈k

m = C̈m + 2πisk in analogy to the Ck
m and Ċk

m. As in the second claim in the proof
above, it follows that the bounded component of T \ C̈k+1 is surrounded by R̈m+k.

By the first claim in the proof above, Ċ0
m separates w0 from ∞ within Ts0 , so

C̈0
m and also C̈0

m+1 must do the same. Let z0 be a point in the intersection of γ

with C̈0
m+1 and denote by [w0, z0]γ the subcurve of γ connecting w0 with z0. Then

F ([w0, z0]γ) connects w1 with F (z0) ∈ R̈m+2. So F (z0) belongs to the unbounded

component of T \ C̈1
m+2, and there is thus a point z1 ∈ [w0, z0]γ with F (z1) ∈ C̈1

m+2,

and F ◦2([w0, z1]γ) connects w2 with R̈m+3. By induction, for any k ≥ 0, the curve

F ◦k([w0, zk−1]γ) connects wk with R̈m+k+1 and hence it connects Rm+k+1 with Ṙm+k+1.
The same arguments from the proof of the theorem now show that in fact [w0, zk]γ ⊂

[w0, z0]γ must contain 2k subcurves connecting C0
m+1 with Ċ0

m+1 for every k ≥ 0, and
this is the desired contradiction. ¥
Remark. We stated the results in the form above in order to minimize the order of
growth of the resulting entire function, and to show that the entire functions we
construct can be rather close to finite order; see Section 8. If we were only interested
in the non-existence of unbounded path components in I, we could have formulated
conditions that are somewhat simpler than those in the preceding theorem and its
corollary. For instance, the necessity for introducing a third geodesic C̈k would have
been removed if we had placed Ck at real parts at most %k/2, and required that the
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entire bounded component of T \ Ck has real parts less than %k/2 (the image of any
curve in T connecting Ċk

m+k with Ck
m+k+2 would then connect Ċk+1

m+k+1 and Ck+1
m+k+3;

this keeps the induction going as before.)

6.3. Theorem (Tract with Bounded Path Components).
There exist a tract T with T ⊂ H and a conformal isomorphism F : T → H fixing
∞ which satisfies the conditions of Theorem 6.1 and Corollary 6.2, so every path
component of J is bounded.

In fact, T and F can be chosen so as to satisfy the following conditions for an
arbitrary M ∈ (1, 1.75) (with the same notation as in Theorem 6.1):

(d’) %M
k < %̇k and %̇M

k < %k+1;

(e’) the geodesics Ck and Ċk have real parts strictly between %̇M
k and %k+1/3;

(f’) all points in the unbounded component of T \ Ċk have real parts greater than
%̇M

k ;

(g’) every curve in T which connects Ck to Ċk intersects the line {z ∈ C : Re(z) =

%
1/M
k };

(h’) the geodesics C̈k+1 from Corollary 6.2 have the property that the bounded com-
ponent of T \ C̈k+1 has real parts at most (%̈)1/M .

Remark. It is easy to see that the modified conditions indeed imply the original con-
ditions at least for sufficiently large %k, and this can be assured by a sufficiently large
choice of x1 in the proof below. The modified conditions as written in this theorem
are needed in order to show that this tract is “approximately” realized by an entire
function: they are adapted to the quality of the approximation that we get later in
this section.

Proof. Our domain T will be a countable union of long horizontal tubes of unit thick-
ness, together with countably many vertical tubes and countably many turns made
of quarter and half annuli, all of unit thickness as well (see Figure 5). The domain
T terminates at the far left with a semidisk at center P . The lengths of the various
tubes are labelled as in Figure 6.

P

Ċ1

C1

R2 Ṙ2

C2

Ċ2

Figure 5. Construction of an example for Theorem 6.3.

The tract T is specified completely by the following data:

• the position of the base point P ;
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• the universal lengths h, h′ and h′′;
• the exponent M > 1;
• the horizontal lengths xk and ẋk.

The Riemann map F : T → H is then specified completely by the choice of F (P ).
We choose h = 1, so that all tubes have width 1, and choose h′ = 3/2 and h′′ = 2.

Choose P = 1 and F (P ) = P . Choose initial values x0 and ẋ0 so that both x0 and
ẋ0 − x0 are sufficiently large (see below). Then define recursively

xk+1 := exp
(
ẋM

k

)
and ẋk+1 := exp

(
12ẋM

k

)
.

In order for the geometry to be feasible (so that the left end of the new wiggle is
disjoint from the previous wiggles), we need

(2) x
1/M
k+1 − ẋM

k > h′ + h′′ + 4h

But as soon as ẋk is sufficiently large, this follows from the definition xk+1 = exp
(
ẋM

k

)
.

We will have a number of inequalities below that hold only if x0 (and hence all xk and

ẋk) are sufficiently large; we use the symbol “?” to mark such inequalities (e.g. “
?
<”).

x
1/M
k ẋ

1/M
k

Q̇k

Qk

h
h
h
h
h

2h h′ h′ h′′

P
h

Q̇0

Q0

h′ h′ h′′

Figure 6. The length scales in the construction. Top: the
first wiggle; bottom: the general wiggle. The lengths h, h′ and
h′′ are universal for all k. Shaded are the boxes Qk and Q̇k.
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We thus have a well-defined tract T (depending on x1 and ẋ1) and need to show
that it satisfies all conditions of of Theorem 6.1. Conditions (a) and (b) are satisfied
to begin with, and H = 5 < 2π. Define points Pk := ẋM

k + h′ and Ṗk := Pk − 4hi

and set %k+1 := |F (Pk)| and %̇k+1 := |F (Ṗk)|. Let Rk+1 and Ṙk+1 be the semicircles
around 0 with radii %k+1 and %̇k+1 and let Ck := F−1(Rk+1) and Ċk := F−1(Ṙk+1).

Then Ck and Ċk are hyperbolic geodesics of T , and by Lemma A.3, they are con-
tained in the boxes Qk := {z ∈ C : Re(z) ∈ (xM

k , x
M
k + 2h′), | Im z| < 1/2} and

Q̇k := Qk−4hi, and they connect the upper with the lower boundaries of their boxes.
As a result, Condition (c) is satisfied automatically.

Now we prove the remaining conditions inductively; we will maintain the additional
inductive hypothesis xk < %k < %̇k < ẋk (the initial values %0 and %̇0 have no meaning;
rather than modify the statements for k = 0, simply choose arbitrary values %0 < %̇0

in (x0, ẋ0)). First we need to estimate %k+1 and %̇k+1; it is clear that %k+1 < %̇k+1. We
have

log(%k+1) = dH(P,Rk+1) = dT (P,Ck) < 4
(
ẋM

K + 2ẋM
k−1

) ?
< (4π/3) ẋM

k

(the first inequality follows from the fact that every smooth curve in T connecting P
with Ck must connect real part 1 to real part ẋM

k , and the wiggles force it to traverse
certain real parts in (1, ẋM

k−1) two more times. The extra vertical bits contribute less
than the horizontal bits that are counted three times but traversed only once. We
can thus connect P to Ck by a smooth curve in T that has Euclidean length at most
ẋM

k +2ẋM
k−1. If we choose the curve so as to run always in the center of the tract, then

it maintains distance 1/2 from the boundary of T , and the hyperbolic length exceeds
the Euclidean length at most by a factor of 4. We will use this kind of reasoning
several times in the sequel.) We rewrite this as

(3) %k+1 < exp
(
(4π/3) ẋM

k

)
.

A lower bound follows in a similar way:

log %k+1 = dH(P,Rk+1) = dT (P,Ck) > ẋM
k

and thus

(4) %k+1 > exp(ẋM
k ) = xk+1 .

An upper bound for %̇k+1 is as follows:

log %̇k+1 = dH(P, Ṙk+1) = dT (P, Ċk) < 12ẋM
k

and thus

(5) %̇k+1 < exp
(
12ẋM

k

)
= ẋk+1 .

This establishes the additional inductive hypothesis xk+1 < %k+1 < %̇k+1 < ẋk+1.
Now we show that %k+1 and %̇k+1 satisfy condition (d’). The subdomain of T

bounded by Ck and Ċk maps under F conformally onto the semi-annulus in H between
radii Rk+1 and Ṙk+1, so their moduli are equal, and we see by the Grötzsch inequality
that

1

π
log(%̇k+1/%k+1) > 2

(
ẋM

k − x
1/M
k

)
> 2

(
ẋM

k − ẋk

) ?
> ẋM

k
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and so, using (3)

(6) %̇k+1 > %k+1 exp
(
πẋM

k

)
= %k+1

(
exp

(
(4π/3)ẋM

k

))3/4
> %M

k+1 .

For the second inequality, we use the subdomain of T bounded by Ck and Ċk−1; it
maps conformally onto the semi-annulus between Rk+1 and Ṙk. We estimate

1

π
log(%k+1/%̇k) > ẋM

k − ẋk

?
> ẋM

k /2 > %̇k/2

and thus

(7) %k+1 > %̇k exp (π%̇k/2) > %̇M
k .

For Condition (e’), the construction of Ck+1 and Ċk+1 is such that their real parts

are at least ẋM
k+1 > %̇M

k+1 and at most ẋM
k+1 + 2h′ < x

1/M
k+2

?
< xk+2/3 < %k+2/3 (see (2)),

so this condition is satisfied.
Condition (f’) is obvious: the construction assures that all points in the unbounded

component of T \ Ċk+1 have real parts at least ẋM
k+1 > %̇M

k+1.

Finally, every curve in T which connects Ck+1 with Ċk+1 must reach real parts less

than x
1/M
k < %

1/M
k , and this is the final Condition (g’).

Now we show that the conditions of Corollary 6.2 are satisfied, even in the stronger
form (h’), so that all path components of J are bounded. Define %̈k := exp

(
M(12M + 1)ẋM

k

)
,

let R̈k be the semicircles inH centered at 0 with radii %̈k, and let C̈k be the F0-preimage
of R̈k+1 within T . We show that the real parts of C̈k are at most (%̈k)

1/M .
Let s := dT (P, C̈k) = dH(P, R̈k+1) = log %̈k+1. Within T , we can estimate s >

Re(C̈k), so we obtain

Re(C̈k) < s = log %̈k+1 = M(12M + 1)ẋM
k+1 = M(12M + 1)

(
exp

(
12ẋM

k

))M

= M(12M + 1) exp
(
12MẋM

k

) ?
< exp

(
(12M + 1)ẋM

k

)
= (%̈k)

1/M

as claimed. Since C̈k is between Ċk and Ck+1, the construction is such that all points
in the bounded component of T \ C̈k have real parts bounded by the real parts of
C̈k. ¥

In order to complete the proof of Theorem 1.1, we need to show that there is an
entire function which suitably approximates the previously constructed map. To this
end, we will use the following fact on the existence of entire functions with a prescribed
tract; a proof can be found in the next section. For simplicity, let us refer to geodesics
C as in the previous results, which are mapped to semi-circles centered at 0 under
the map F : T → H, as vertical geodesics (of F ).

6.4. Proposition (Approximation by entire functions).
Let T be a tract, and let F : T → H be a conformal isomorphism fixing ∞. Let θ > 1.

Then there is an entire function g with sing(f−1) ⊂ D and a single tract W =
g−1({|z| > 1}) such that the logarithmic transform G : logW → H of g has the
following properties:

(a) logW has a component T̃ satisfying T̃ ⊂ T ;
(b) the vertical geodesics of G have uniformly bounded diameters;
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(c) |F (z)| ≤ |G(z)| ≤ |F (z)|θ when z ∈ T̃ with Re z sufficiently large.

Remark. If we apply the above proposition to a tract T with T ⊂ H (such as the one
from Theorem 6.3), then the resulting function g satisfies f(D) b D. It follows that
the postsingular set is compactly contained in the Fatou set of g, and hence that g is
hyperbolic.

Proof of Theorem 1.1 (using Proposition 6.4). Let F ∈ Blog be the function constructed
in Theorem 6.3, and let T be its single tract. Choose 1 < θ < M (where M is the con-
stant from Theorem 6.3). Let g be a function as in Proposition 6.4, with logarithmic

transform G : T̃ → H. (Recall that G extends continuously to the closure cl(T̃ ).)

The vertical geodesics Ck and Ċk of T intersect T̃ for sufficiently large k. Let σ̇k+1

be maximal with the property that the geodesic Ḋk := {z ∈ cl(T̃ ) : |G(z)| = σ̇k+1}
intersects Ċk, and define σk+1 and Dk similarly. We claim that, with this choice of
geodesics, the function G also satisfies the conclusions of Theorem 6.3 (for a constant
M ′ < M/θ).

Indeed, by (c) of Proposition 6.4, we have %k ≤ σk ≤ %θ
k and %̇k ≤ σ̇k ≤ %̇θ

k. Thus

σM ′
k ≤ %M

k < %̇k ≤ σ̇k and σ̇M ′
k ≤ %̇M

k < %k+1 ≤ σk.

Thus (d’) holds. (e’) and (g’) follow similarly, using the fact that the geodesics Dk

and Ḋk have uniformly bounded diameters.

To prove (f’), note that the unbounded component of T̃ \ Ḋk does not intersect Ċk

since we chose σ̇k+1 to be maximal. Hence it follows from condition (f’) for F that this
component has real parts at least %̇M

k ≥ σ̇M ′
k . Property (h’) follows analogously. ¥

7. Entire functions with prescribed tracts

We will now prove Proposition 6.4, using the method of approximating a given tract
using Cauchy integrals, which is well-established. (Compare e.g. [GE] for a similar
construction.) However, there appears to be no result stated in the literature which
is immediately applicable to our situation. Hence we will first provide a proof of
the following, more classical-looking statement, and then proceed to indicate how it
implies Proposition 6.4.

7.1. Proposition (Existence of functions with prescribed tracts).
Let V ⊂ C be an unbounded Jordan domain and let Ψ : V → H be a conformal
isomorphism with Ψ(∞) = ∞. Let % be arbitrary with 1 < % < 2 and define

f : V → C; z 7→ exp
(
(Ψ(z))%

)
.

Then there exists an entire function g ∈ B and a number K > 0 such that the following
hold:

(a) W := {z : |g(z)| > K} is a simply connected domain which is contained in V ,
and g|W is a universal covering;

(b) |g(z)− f(z)| = O(1) on W , and g(z) = O(1) outside W .

Remark. In particular, the tract W of g satisfies

V ⊃ W ⊃ {z : Re Ψ(z) > C and | arg Ψ(z)| < θ}
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α

Figure 7. Definition of α and α̃ in the proof of Proposition 7.1

(where θ can be chosen arbitrarily close to π/2% if C is sufficiently large). So this
proposition really does present a result on the realization of a prescribed tract (up to
a certain “pruning” of the edges) by an entire function.

Proof. The idea of the proof is simple: we define a function h, using an integral along
the boundary α of the desired tract, which changes by f(z) as z crosses the curve α.
That is, we set

h(z) :=

∫

α

f(ζ)

ζ − z
dζ.

We are using Ψ%, rather than Ψ itself, in the definition of f to ensure that this integral
converges uniformly and that h is bounded. Then the function g which agrees with h
on the outside of α and with h + f on the inside will be entire, and it follows easily
that it is in class B.

Let us now provide the details of this argument. We define Φ := Ψ% and let S
denote the sector S := Φ(V ) =

{
z : | arg z| < %π

2

}
. Also fix some η ∈ (π/2, %π/2) and

set λ := exp(iη). We define

α̃ : (−∞,∞) → S; t 7→
{

1 + λt t ≥ 0

1 + λ|t| t < 0
and α := Φ−1 ◦ α̃.

Let V ′ denote the component of C \ α with V ′ ⊂ V .

Claim 1. The integral
∫

α
f(ζ)dζ converges absolutely. In particular,

h(z) :=

∫

α

f(ζ)

ζ − z
dζ.

defines a holomorphic function h : C \ α→ C.
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Figure 8. Definition of β̃ and γ̃ as in Claims 2 and 3

Proof. Note that |α′(t)| = |1/Φ′(α(t))| for t 6= 0. By the Schwarz lemma and Koebe’s
theorem, we have

|Φ′(α(t))| ≥ dist(α̃(t), ∂S)

4 dist(α(t), ∂V )
.

Clearly dist(α̃(t), ∂S) ≥ C1(1+ |t|) for some C1 > 0. Furthermore, using the standard
estimates on the hyperbolic metric of V , it is easy to see that α(t) grows at most
polynomially in t; in particular, dist(α(t), ∂V ) ≤ C2(1 + |t|)c for some c, C2 > 0.

Together, these estimates imply by the Koebe theorem that |Φ′(α(t))| ≥ C/4(1 +
|t|)c−1 for C := C1/C2. In particular,

∫

α

|f(ζ)dζ| =
∫ +∞

−∞
exp(Re α̃(t))|α′(t)|dt

=

∫ +∞

−∞

exp(1− |Re(λ)t|)
|Φ′(α(t))| dt ≤ e

C

∫ +∞

−∞
(1 + |t|)c−1e−|Re(λ)t|dt <∞.

This completes the proof. 4

Claim 2. The function

g(z) :=

{
h(z) z /∈ V ′

h(z) + f(z) z ∈ V ′

extends to an entire function g : C→ C.

Proof. Let RÀ 1 be arbitrary, and modify α̃ to obtain a curve

β̃ := (α̃ ∩ {|ζ| > R}) ∪ {1 +Re2πiθ : θ ∈ [−η, η]}.
Set β := Φ−1 ◦ β̃ and let W be the unbounded component of C \ β which contains
C \ V ′. Then

g̃ : W → C; z 7→
∫

β

f(ζ)

ζ − z
dζ
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defines an analytic function on W . By the Cauchy integral theorem, g̃ agrees with g
on C \ V ′.

Furthermore, for z ∈ W ∩ V ′, we have by the residue theorem that

g̃(z)− h(z) = resz

( f(ζ)

ζ − z

)
= f(z).

In particular, g̃ = g|W . Since R was arbitrary, the claim follows. 4
Claim 3. The function h is uniformly bounded.

Proof. Let z0 ∈ C\α. We set δ := sin(η) = dist(α̃, ∂S) and define a curve γ̃ (depending
on z0) as follows. If z0 /∈ V or if z0 ∈ V and dist(Φ(z0), α̃) ≥ δ/2, we simply set γ̃ := α̃.
Otherwise, we set

γ̃ := (α̃ \ {z : |z − Φ(z0)| < δ/2}) ∪ C,
where C is the arc of the circle {|z−Φ(z0)| = δ/2} for which α̃∪C does not separate
Φ(z0) from ∞.

We also set γ := Φ−1 ◦ γ̃. By Cauchy’s integral theorem, we have

h(z0) =

∫

α

exp(Φ(ζ))

ζ − z
dζ =

∫

γ

exp(Φ(ζ))

ζ − z
dζ.

Thus it is sufficient to show that the second integral is bounded independently of z0.
By the Koebe 1/4-theorem and the definition of γ, we have |γ(t)− z0| ≥ δ/8|Φ′(γ(t))|
for all t. If we parametrize γ̃ by arclength, then clearly

Re γ̃(t) ≤ C −K|t|,
where the constants K = |Reλ| and C are independent of z0. We thus have

|h(z0)| =
∣∣∣∣
∫

γ

exp(Φ(ζ))

ζ − z0

dζ

∣∣∣∣ ≤
∫ +∞

−∞

| exp(γ̃(t))|
|γ(t)− z0| |β̃

′(t)|dt =

∫ +∞

−∞

exp(Re γ̃(t))

|Φ′(γ(t))| · |γ(t)− z0|dt

≤
∫ +∞

−∞
exp(C −K|t|)8|Φ

′(γ(t))|
δ|Φ′(γ(t))|dt =

8

δ

∫ +∞

−∞
exp(C −K|t|)dt <∞.

So h(z0) is uniformly bounded, as required. 4
To complete the proof, let M > 0 such that |h(z)| < M for all z. Set K := 2M and

W := {z ∈ C : |g(z)| > K}. If β is a simple closed curve in W , then |Φ(z)| > M on
β. By the minimum principle, we also have |Φ(z)| > M on the region U surrounded
by β. It follows that g has no zeros in U , and by the minimum principle U ⊂ W .
Thus W is simply connected.

We can therefore define a function

G := log g : W → {ζ ∈ C : Re ζ > log(2M)}.
It is easy to see that G is proper. Since there is exactly one homotopy class of curves
in W along which G(z) →∞, the degree of G is 1. In other words, G is a conformal
isomorphism, and f |W = exp ◦G is a universal cover, as required. ¥
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Proof of Proposition 6.4. Let V := exp(T ), and let Ψ : V → H be the conformal
isomorphism with Ψ ◦ exp = F . Let 1 < % < min(θ, 2), let f be as in Proposition 7.1,
and let g̃ be the entire function constructed there. Recall that this function satisfies
|g̃(z) − f(z)| = O(1) on its tract W = g̃−1({|z| > K}). It easily follows that the

logarithmic transform G̃ also satisfies |G̃(z)− F (z)%| ≤ C1 for some C1 > 0.

Now set g(z) := g̃(z)/K, and let G : T̃ → H be its logarithmic transform; i.e.

G(z) = G̃(z) − logK. We claim that g is the desired entire function. Indeed, by
choice of g̃, we have

|(F (z))% −G(z)| ≤ C1 + logK =: C,

which proves (c).

To complete the proof, let γ = {z ∈ T̃ : |G(z)| = R} be a vertical geodesic (where
R is sufficiently large; say R ≥ C + 1). We need to prove that the diameter of γ is
bounded independently of R. So let z ∈ γ. Then |F (z)% −G(z)| ≤ C, which implies
that ∣∣|F (z)| −R1/%

∣∣ ≤ C and | argF (z)| < π/(1 + ε)

(where % = 1 + 2ε), provided R was chosen large enough.
The hyperbolic diameter of the subset of H described by these inequalities — and

hence that of F (γ) — is uniformly bounded. Since F : T → H is a conformal isomor-
phism, the usual estimate on the hyperbolic metric of T implies that the euclidean
diameter of γ is uniformly bounded as well. ¥

8. Properties of the counterexample

The goal of this section is to indicate how the counterexample f from Theorem
1.1 (constructed in Section 6) can be strengthened in various ways. We begin by
discussing the growth behavior of the function f , and how to modify the construction
to reduce this growth further. The section concludes with a sketch of the construction
of a hyperbolic entire function whose Julia set contains no nontrivial curves at all.

Order of growth. By Theorem 1.2, we know that the counterexample f from The-
orem 1.1 cannot have finite order; that is, we cannot have log log |f(z)| = O(log |z|).
We now see that its growth is not all that much faster than this.

8.1. Proposition (Growth of counterexample).
The function f constructed in the proof of Theorem 1.1 satisfies

log log |f(z)| = O
(
(log |z|)12M2

)
.

Proof. We verify that the function F : T → H from Theorem 6.3 satisfies

(8) log ReF (z) = O
(
(Re z)12M2

)
.

(The claim then follows immediately from the fact that f is obtained from F by
applying Proposition 6.4).

We use the notation of the proof of Theorem 6.3 (recall Figure 6). Pick points

pk with real parts Re(pk) = x
1/M
k and satisfying F (pk) ∈ (%k+1,∞) (that is, pk lies

half-way between the geodesics Ck and Ċk, in the place where T “turns around”: it
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is here that the values of ReF (z) is largest in terms of Re z). It is not difficult to see
that it is sufficient to verify (8) when z = pk. (In other parts of the tract, log ReF (z)
increases at most linearly with Re z.)

We have

log ReF (pk) ≤ log %̇k+1 < log ẋk+1 = 12ẋM
k .

It remains to estimate ẋk in terms of Re(pk) = x
1/M
k , which we can do from the

definition:

(9) ẋk = exp(12ẋM
k−1) = x12

k ,

so

log ReF (pk) ≤ 12ẋM
k ≤ 12x12M

k = 12 Re(pk)
12M2

,

as required. ¥

We are now going to discuss how to improve the growth behavior of f . Recall
that M > 1 was arbitrary; we will show how to reduce the constant 12 in the growth
estimate to any number greater than 1. Note that the main estimate which influenced
the growth of f in the previous proof was (9), which estimates ẋk in terms of xk. We
can improve the growth behavior of our counterexample by making thinner the part
of the tract leading up to Ck−1: this will increase Rk and hence xk, while keeping
ẋk/xk essentially the same.

More precisely, consider a tract described by a variation of Figure 6, where the

upper of the three horizontal tubes connecting real parts x
1/M
k and ẋM

k has small
height δ > 0, while the other two tubes remain at unit height. Then xk+1 will be
roughly of size exp(ẋM

k /δ), while ẋk+1 is still of size

ẋk+1 ∼ xk+1 · exp(CẋM
k ).

In other words, we will have

ẋk+1 . x1+δC
k+1 .

We can then estimate log ReF (pk) as in Proposition 8.1 to see that

log ReF (pk) ≤ C Re(pk)
(1+δC)M2

.

By letting δ > 0 and M > 1 be sufficiently small, we have obtained the following
result.

8.2. Proposition (Counterexamples of mild growth).
For every ε > 0, there is a hyperbolic function f ∈ B such that J(f) has no unbounded
path-connected components, and such that

log log |f(z)| = O((log |z|)1+ε). ¥

Finally, we do not need to fix the height δ, but rather can let it tend to 0 in a
controlled fashion, so that wiggles at large real parts have values of δ close to 0.

Also note that, in all our examples, log ReF (z) grows at most linearly with Re(z)
within the long horizontal tubes between two consecutive “wiggles” (i.e., between ẋM

k
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and x
1/M
k+1 in Figure 6). We claim that this means that the lower order of F ; i.e. the

number

lim inf
r→∞

sup
Re z=r

log ReF (z)

r

is finite.
Indeed, let wn and ẇn be points at the beginning and the end of this tube, respec-

tively. That is, wn is at real parts slightly larger than ẋM
k and ẇn is at real parts

slightly below x
1/M
k+1 . We then have

|F (ẇn)| ≤ |F (wn)| · exp(C · Re ẇn),

where essentially C = π/h. It follows from the construction that |F (wn)| grows at
most like ẋM

k+1, and hence by (9) is bounded by xA
k+1 for some A > 1. So overall

log ReF (ẇn) ≤ A log xk+1 + C Re ẇn ≤ A log Re ẇn + C Re ẇn,

and the lower order is at most C.
Since there are no other parts of the tract T between the real parts of wn and

ẇn, we can actually modify T so that these tubes have the maximal possible height
h = 2π. Then the lower order of the resulting function F will be C = 1/2, which is
the minimal possible value for a function in Blog.

Altogether, this yields the following.

8.3. Proposition (More counterexamples of mild growth).
There exists a function F ∈ Blog such that

(a) log ReF (z) = (Re z)1+o(1) as Re z →∞, and
(b) F has lower order 1/2.
(c) J(F ) has no unbounded path-connected components.

Note that this function will not satisfy the stronger requirements in Theorem 6.3
for a fixed M (we will need to let M tend to 1 as k → ∞). So we will not be able
to use Proposition 6.4 to obtain an entire function from F . (Also, an application of
Proposition 6.4 would slightly increase the lower order.) We believe that it should be
possible to modify Proposition 6.4 so as to construct an entire function with these
properties.

No nontrivial path components. To conclude, we would like to note that our
construction can also be adapted to yield a topologically stronger form of the coun-
terexample. We content ourselves with giving a sketch of the proof, which involves a
non-trivial amount of bookkeeping but is not conceptionally more involved than the
previous arguments.

8.4. Theorem (No Nontrivial Paths in the Julia Set).
There exists a (hyperbolic) function f ∈ B such that J(f)∪{∞} is a compact connected
set which contains no nontrivial curve.

Sketch of proof. Again, the result will be established by designing a function F ∈ Blog

with a single tract T ⊂ H whose Julia set contains no nontrivial curve; the existence
of an entire function with the same property is easily obtained using Proposition 6.4.
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Figure 9. Illustration of the proof of Theorem 8.4. The tract pictured
here has a wiggle over (r1, R1) and over (r2, R2).

(Recall that J(f) ∪ {∞} is always a compact connected set when f ∈ B, so only the
second part of the claim needs to be established.)

Let us say that a tract T has a wiggle over (r, R) if any curve in T which connects
a point at real part r/2 to one at real part at least 2R contains at least three disjoint
subcurves connecting the real parts r and R.

Our aim is now to construct a tract T , a conformal map F : T → H, and an
associated set W of wiggles (r, R) such that

1. T has a wiggle over (r, R) for every (r, R) ∈ W .
2. For every η ∈ [1,∞), there is some wiggle (r,R) ∈ W with η ≤ r ≤ R ≤ 3η.
3. Every wiggle (r, R) ∈ W “propagates”, roughly in the sense that curves con-

necting real parts r and R are going to map to an “image wiggle” (r′, R′) ∈ W .
More precisely, suppose that γ : [0, 1] → T connects real parts r/2 and 2R,

and Re(γ(t)) ∈ (r/2, 2R) for all t ∈ (0, 1). Let us suppose without loss of
generality that |F (γ(0))| < |F (γ(1))|. Then there should be (r′, R′) ∈ W such
that, for every t ∈ (0, 1) with Re γ(t) ∈ (r, R), we have

|F (γ(0))| < r′/2 < r′ < |F (γ(t))| < R′ < 2R′ < |F (γ(1))|.
By linear separation of real parts (Lemma 3.2), for any two points z, w ∈ J(F ) with
the same external address, there is an iterate F k so that ReF k(z)/ReF k(w) > 12
(assuming without loss of generality that ReF k(z) > ReF k(w)). So, by 2., there is a
wiggle (r,R) ∈ W such that

ReF k(z) < r/2 < 2R < ReF k(w).

The condition in 3. will then guarantee, by an inductive argument as in Theorem 6.1,
that any curve in J(F ) connecting F k(z) and F k(w) would need to connect real parts
r and R at least 3n times for every n, which is impossible.

To complete our sketch, we now indicate how to construct such a tract T , which
will be a winding strip contained in {| Im z| < π}, similarly as before. However, the
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number of times that T crosses the line {Re z = R} will tend to infinity as R does,
so the width of T will necessarily tend to 0 as real parts increase. Similarly as in
Theorem 6.3, the tract will be constructed by inductively defining pieces T1, T2, . . . ,
in the following fashion:

(a) Tj is the piece of T between real parts ηj−1 and ηj, where η0 < η1 < η2 < . . .
is a sequence tending to infinity.

(b) At each step in the construction, there is a set Wk = {(rk
1 , R

k
1), . . . , (r

k
mk
, Rk

mk
)}

of “wiggles”, with rk
j /2 ≥ ηk−1 and 2Rk

j ≤ ηk. Tk is constructed to have a wiggle
over each (r,R) ∈ Wk (see Figure 9).

(c) The next set of wiggles Wk+1 is determined by the construction of Tk.

More precisely, we begin by setting η0 := 1, W1 := {(r1, r1 + A)}, where A is a
sufficiently large number (fixed for the whole construction), and r1 is large enough.
We also set η1 := 2(r1 + A) > 3η0.

Given Wk, we construct a piece Tk, connecting real parts ηk−1 and ηk, by first
constructing a “central curve” which has a wiggle over every (r, R) ∈ Wk (this is easy
to achieve, compare Figure 9), and then thickening this curve slightly (see below) to
obtain Tk.

We then construct the set Wk+1 as follows. Suppose that (r, R) ∈ Wk, and that
γ : [0, 1] → Tk is a minimal piece of the central curve of Tk which connects real parts
r/2 and 2R. (Note that there may be several such pieces; we will add a wiggle to
Wk+1 for each of them.)

Let z be the first point on γ which has real part r, and let Z be the last point
on γ which has real part R. Using the semi-hyperbolic metric, i.e. the reciprocal of
the distance to ∂Tk, we can estimate |F (z)| and |F (Z)| (up to an exponent of 2),
independently of the construction of TK for K > k. Hence we can add a new wiggle
(rk+1

j , Rk+1
j ) to Wk+1 such that |F (z)| ≥ rk+1

j + A and |F (Z)| ≤ Rk+1
j − A.

If the width of Tj along γ was chosen sufficiently thin, we can easily ensure that
rk+1
j /2 > |F (γ(0))| > ηk, and that 2Rk+1

j < |F (γ(1))|.
Having added these (finitely many) wiggles toWk+1, we set ηk+1 := max(r,R)∈Wk+1

2R.
Finally, we add sufficiently many wiggles of the form (t, t+A) to Wk+1 to ensure that,
for every η ∈ [ηk, ηk+1/3], there is some wiggle between real parts η and 3η. This com-
pletes the description of the inductive construction. ¥

Appendix A. Some Geometric Facts

In this section, we collect some of the simple results from hyperbolic geometry which
we required in the course of the article. The first is a version of the Ahlfors spiral
theorem [H, Theorem 8.21] (which states that any entire function of finite order has
controlled spiralling). We give a simple proof of this fact for functions in class Blog

below. In Section 5, we also required a characterization of domains with bounded
wiggling, which we prove here for completeness. Finally, Lemma A.3 below was used
in Theorem 6.3.

A.1. Theorem (Spiral Theorem).
Suppose that F ∈ Blog has finite order. Then the tracts of F have bounded slope.
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Proof. Let T be a tract of F , set % := sup{ log Re F (z)
Re z

: z ∈ H ∩ T } <∞, and consider

the central geodesic γ : [1,∞) → T ; t 7→ F−1
T (t). Then for every t ≥ 1,

|γ(t)| − |γ(1)| ≤ |γ(t)− γ(1)| ≤ 2π`T
(
γ
(
[1, t]

))
= 2π log t ≤ 2π%Re γ(t) .

Thus we have proved the existence of an asymptotic curve γ satisfying | Im γ(t)| ≤
|γ(t)| ≤ K Re γ(t) + M , for K = 2π% and M = |γ(1)|, which is equivalent to the
bounded slope condition. ¥

A.2. Lemma (Domains with bounded wiggling).
Let V be an unbounded Jordan domain such that exp |V is injective. Suppose that
there are K,M > 0 such that every z0 ∈ V can be connected to ∞ by a curve γ ⊂ V
satisfying

Re z ≥ Re z0

K
−M

for all z ∈ γ. Then there is M ′ > 0 which depends only on M such that, for every
z0 ∈ V ,

Re z ≥ Re z0

K
−M ′

for all z on the geodesic connecting z0 to ∞.

Proof. Let z0 ∈ V , let γ be a curve as in the statement of the theorem, and let
F : V → H be a conformal isomorphism with F (∞) = ∞ and F (z0) = 1. Then

γ′ := F−1
(
[1,∞)

)

is the horizontal geodesic connecting z0 to ∞.
Let z ∈ γ′. By [P, Corollary 4.18], we can find geodesics α+ and α− of H, connecting

F (z) to the positive resp. negative imaginary axis, such that the geodesics F−1(α±)
of V have diameter at most C dist(z, ∂V ). (Here C is a universal constant.) Hence
the crosscut α := F−1(α+)∪F−1(α−), which separates z0 from ∞ in V , has diameter
at most 2C dist(z, ∂V ) ≤ 4Cπ.

The curve γ must intersect α in some point w. We thus have

Re z ≥ Rew − 4Cπ ≥ Re z0/K −M − 4Cπ . ¥

A.3. Lemma (Geometry of Geodesics).
Consider the rectangle Q = {z ∈ C : |Re z| < 3, | Im z| < 1} and let U ⊂ C be a simply
connected domain with Jordan boundary and U ) Q so that ∂Q∩ ∂U consists exactly
of the two horizontal boundary sides of Q. Let P,R, P ′, R′ ∈ ∂U be four distinct
boundary points in this cyclic order, subject to the condition that P and P ′ are in the
boundary of different components of U \ Q, and so that the quadrilateral U with the
marked points P,R, P ′, R′ has modulus 1.

Let γ be the hyperbolic geodesic in U connecting R with R′. If 0 ∈ γ, then the two
endpoints of γ are on the vertical boundaries of Q, one endpoint each on the upper
and lower boundary.

Sketch of proof. If R and R′ are in the same connected component of ∂U \∂Q, then γ
cannot contain 0, so either R and R′ are in different connected components of ∂U \∂Q,
or at least one of the points is in ∂U ∩ ∂Q.

35



Consider the special case R = x− 1− i and R′ = x + 1 + i, for x ∈ [−2, 2]. Using
extremal length arguments and a constant density function on {z ∈ Q : |Re z| < 1},
it is easy to show that the modulus of U is different from 1. Monotonicity then rules
out the cases when R and R′ are both outside of ∂Q.

At least one point R or R′ must thus be on ∂Q; without loss of generality, suppose
that R = x− 1− i for x ∈ [−2, 2]. But then either R′ = x′ + 1 + i for x′ ∈ [−2, x], or
R′ is in the component of ∂U \ ∂Q adjacent to the left boundary of Q. The first case
is what we claim, and in the second case γ cannot contain 0 (here the extremal case
is that R′ = −3 + i is on a vertex of Q, and R = −1 − i is furthest possible to the
right). ¥
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