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1. Introduction

The most prominent component of interior of the Mandlebrot set M is the one bounded
by the main cardioid. There are infinitely many secondary hyperbolic components of intM
attached to it. In turn, infinitely many hyperbolic components are attached to each of
the secondary components, etc. Let us take the union of all hyperbolic components of
intM obtained this way, close it up and fill it in (i.e., add all bounded components of its
complement1). We obtain the set called the molecule M of M , see Figure 1.2 In this
paper we consider infinitely primitively renormalizable quadratic polynomials satisfying a
molecule condition, which means that the combinatorics of the primitive renormalization
operators involved stays away from the molecule (see §2.2 for the precise definition in purely
combinatorial terms).

An infinitely renormalizable quadratic map f is said to have a priori bounds if its renor-
malizations can be represented by quadratic-like maps Rnf : U ′n → Un with mod(UnrU ′n) ≥
µ > 0, n = 1, 2 . . . .

Our goal is to prove the following result:
.

Main Theorem. Infinitely renormalizable quadratic maps satisfying the molecule condition
have a priori bounds.

By [L], this implies:

Date: December 12, 2007.
1These bounded components could be only queer components of intM
2It is also called the cactus.



Figure 1.1. The central molecule of the Mandelbrot set

Corollary 1.1. Let fc : z 7→ z2 + c be an infinitely renormalizable quadratic map satisfying
the molecule condition. Then the Julia set J(fc) is locally connected, and the Mandelbrot set
M is locally connected at c.

Given and η > 0, let us say that an renormalizable quadratic map satisfies the η-molecule
condition if the combinatorics of the renormalization operators involved stays η-away from
the molecule of M.

In this paper we will deal with the case of renormalizations with sufficiently high periods.
Roughly speaking, we show that if a quadratic-like map is nearly degenerate then its geometry
is improving under such a renormalization. The precise statement requires the notion of
“pseudo-quadratic-like map” f defined in §3, and its modulus, mod (f).

Theorem 1.2. Given η > 0 and ρ ∈ (0, 1), there exist µ̄ > 0 and p ∈ N with the following
property. Let f be a renormalizable with period p quadratic-like map satisfying the η-molecule
condition. If mod (Rf) < µ̄ and p ≥ p then mod (f) < ρmod (Rf).

The complementary case of “bounded periods” is dealt in [K].

Remark 1.1. Theorem 1.2 is proved in a similar way as a more special result of [KL3]. The
main difference occurs on the top level of the Yoccoz puzzle, which is modified here so that
it is associated with an appropriate periodic point rather than with the fixed point of f .3 We

3It is similar to the difference between “non-renormalizable” and “not infinitely renormalizable” cases in
the Yoccoz Theorem.
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will focus on explaining these new elements, while only outlining the parts that are similar
to [KL3].

Let us now outline the structure of the paper.
In the next section, §2, we lay down the combinatorial framework for our result, the Yoccoz

puzzle associated to dividing cycles, and formulate precisely the Molecule Condition.
In §3 we summarize necessary background about pseudo-quadratic-like maps introduced

in [K], and the pseudo-puzzle introduced in [KL3]. From now on, the usual puzzle will
serve only as a combinatorial frame, while all the geometric estimates will be made for the
pseudo-puzzle. Only at the last moment (§5.6) we return back to the standard quadratic-like
context.

In §4 we formulate a Transfer Prinsiple, that will allow us to show that if mod (Rf) is
small then the the pseudo-modulus in between appropriate puzzle pieces is even smaller.

In §5 we apply the Transfer Principle to the dynamical context. It implies that the
extremal pseuso-distance between two specific parts of the Julia set (obtained by removing
from the Julia set the central puzzle piece Y 1) is much bigger than mod (f) (provided
the renormalization period is big). On the other hand, we show that under the Molecule
Condition, this pseudo-distance is comparable with mod (f). This yields Theorem 1.2.

1.1. Terminology and Notation. N = {1, 2, . . . } is the set of natural numbers; Z≥0 =
N ∪ {0}; D = {z : |z| < 1} is the unit disk, and T is the unit circle.

A topological disk means a simply connected domain in C. A continuum K is a connected
closed subset in C. It is called full if all components of CrK are unbounded.

For subsets K,Y of a topological space X, notaion K b Y will mean (in a slightly non-
standard way) that the closure of K is a compact contained in intY .

We let orb(z) ≡ orbg(z) = (gnz)∞n=0 be the orbit of z under a map g.
Given a map g : U → V and an open topological disk D ⊂ V , components of g−1(D)

are called pullbacks of D under g. If the disk D is closed, we define pullbacks of D as the
closures of the pullbacks of intD.4 In either case, given a connected set X ⊂ g−1(intD), we
let g−1(D)|X be the pullback of D containing X.

1.2. Acknowledgement. We thank Scott Sutherland for help with making Figure 1. This
work has been partially supported by the NSF and NSERC.

2. Dividing cycles, Yoccoz puzzle, and renormalization

Let (f : U ′ → U) be a quadratic-like map. We assume that the domains U ′ and U
are smooth disks, f is even, and we normalize f so that 0 is its critical point. We let
Um = f−m(U). The boundary of Um is called the equipotential of depth m.

By means of straightening, we can define external rays for f . They form a foliation of
U r K(f) transversal to the equipotential ∂U . Each ray is labeled by its external angle.
These rays will play purely combinatorial role, so particular choice of the straightening is
not important.

4Note that the pullbacks of a closed disk D can touch one another, so they are not necessarily connected
components of g−1(D).
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2.1. Dividing cycles and associated Yoccoz puzzles. Let us consider a repelling pe-
riodic point γ of period t and the correspoding cycle γ = {fkγ}tk=0. This point (and the
cycle) is called dividing if there exist at least two rays landing at it. For instance, the landing
point of the zero ray is a non-dividing fixed point, while the other fixed point is dividing (if
repelling).

In what follows, we assume that γ is dividing. Let R(γ) (resp., R(γ)) stand for the family
of rays landing at γ (resp., γ). Let s = #R(γ) and let r = ts = #R(γ). These rays divide
U into t(s−1)+1 closed topological disks Y 0(j) ≡ Y 0

γ (j) called Yoccoz puzzle pieces of depth
0.

Yoccoz puzzle pieces Y m(j) ≡ Y m
γ (j) of depth m are defined as the pullbacks of Y 0(i)

under fm. They tile the neighborhood of K(f) bounded by the equipotential ∂Um. Each of
them is bounded by finitely many arcs of this equipotential and finitely many external rays
of f−m(R(γ)). We will also use notation Y m(z) for the puzzle piece Y m(j) containing z in
its interior. If fm(0) 6∈ γ, then there is a well defined critical puzzle piece Y m ≡ Y m(0). The
critical puzzle pieces are nested around the origin:

Y 0 ⊃ Y 1 ⊃ Y 2 · · · 3 0.

Notice that all Y m, m ≥ 1, are symmetric with respect to the origin.
Let us take a closer look at some puzzle piece Y = Y m(i). Different arcs of ∂Y meet at

the corners of Y . The corners where two external rays meet will be called vertices of Y ; they
are fm-preimages of γ. Let KY = K(f) ∩ Y . It is a closed connected set that meets the
boundary ∂Y at its vertices. Moreover, the external rays meeting at a vertex v ∈ ∂Y chop
off from K(f) a continuum Sv

Y , the component of K(f)r intY containing v.
Let Yγ stand for the family of all puzzle pieces Y m

γ (j).
Let us finish with an obvious observation that will be constantly exploited:

Lemma 2.1. If a puzzle piece Y n(z) of Yγ does not touch the cycle γ then Y n(z) b Y 0(z).

2.2. Renormalization associated with a dividing cycle.

Lemma 2.2 (see [Th, M2]). The puzzle piece X0 ≡ Y 0(f(0)) of Yγ containing the critical
value has only one vertex, and thus is bounded by only two external rays (and one equipo-
tential).

In what follows, γ will denote the point of the cycle γ such that f(γ) is the vertex of X0.
Notice that f(0) ∈ intX0 for otherwise f(0) = f(γ), which is impossible since 0 is the only
preimage of f(0).

Since the critical puzzle piece Y 1 is the pullback of X0 under f , it has two vertices, γ and
γ′ = −γ, and is bounded by four rays, two of them landing at γ and two landing at γ′.5

Lemma 2.3. (see [D]) Let Xr ≡ Y r(j) ⊂ X0 be the puzzle piece attached to the boundary
of X0. Then f r : Xr → X0 is a double branched covering.

Proof. Let C0 be the union of the two rays that bound X0, and let Cr be C0 cut by the
equipotential ∂U r. Let us orient C0 and then induce the orientation to Cr. Since f r : Cr → C0

is an orientation preserving homeomorphism, it maps Xr onto X0.

5We will usually say that “a puzzle piece is bounded by several external rays” without mentioning equipo-
tentials that also form part of its boundary.
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Since for m = 1, . . . , r−1, the arcs fm(Cr) ⊂ ∂(fmXr) are disjoint from intX0, the puzzle
pieces fmXr are not contained in X0. Since they have a bigger depth than X0, they are
disjoint from intX0. It follows that all the puzzle pieces fm(Xr), m = 0, 1, . . . , r − 1, have
pairwise disjoint interiors. (Otherwise fm(Xr) ⊃ fn(Xr) for some r > m > n ≥ 0, and
applying f r−m, we would conclude that X0 ⊃ f r−n+m(Xr).)

Moreover, the puzzle piece f r−1Xr = Y 1 is critical since Y 1 is the only pullback of X0

under f . Hence the puzzle pieces fm(Xr), m = 0, 1, . . . , r − 2, do not contain 0. It follows
that deg(f r : Xr → X0) = 2. ¤

X0

f(γ)

Y 1

γ γ′

Xr

f r

0

Y r+1

Figure 2.1

Corollary 2.4. If f(0) ∈ intXr then the puzzle piece Y r+1 has four vertices, and the map
f r : Y r+1 → Y 1 is a double branched covering.

Let Θ(γ) ⊂ T be the set of external angles of the rays of R(γ). There is a natural
equivalence relation on Θ(γ) ⊂ T: two angles are equivalent if the corresponding rays land
at the same periodic point. Let us consider the hyperbolic convex hulls of these equivalence
classes (in the disk D viewed as the hyperbolic plane). The union of the boundaries of
these convex hulls is a finite lamination P = P(γ) in D which is also called the periodic ray
portrait. One can characterize all possible ray portraits that appear in this way (see [M2]).

Definition 2.1. A map f is called P-renormalizable (or, “renormalizable with combinatorics
P”) if f(0) ∈ intXr and f rm(0) ∈ Y r+1 for all m = 0, 1, 2, . . . . In this case, the double
covering f r : Y r+1 → Y 1 is called the renormalization RPf = Rγf of f (associated with the
cycle γ). The corresponding little (filled) Julia set K = K(Rf) is defined as

{z : f rmz ∈ Y r+1, m = 0, 1, 2 . . . }
If the little Julia sets fmK, k = 0, 1 . . . , r−1, are pairwise disjoint, then the renormalization
is called primitive; otherwise it is called satellite.
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In case γ is the dividing fixed point of f , the map is also called immediately renormalizable.
(This is a particular case of the satellite renormalization.)

Remark 2.1. The above definition of renormalization is not quite standard since the map
Rγf is not quadratic-like. To obtain the usual notion of renormalization, one should thicken
the domain of Rγf a bit to make it quadratic-like (see [D, M1]). This thickenning does not
change the Julia set, so K(Rf) possesses all the properties of quadratic-like Julia sets. In
particular, it has two fixed points, one of which is either non-repelling or dividing.

Note also that in the case when f r(0) = γ′ the puzzle piece Y r+1 degenerates (is pinched
at 0), but this does not effect any of further considerations.

Given a periodic ray portrait P , the set of parameters c ∈ C for which the quadratic
polynomial Pc is P-renormalizable form a little copy MP of the Mandelbrot set (“M -copy”).
Thus, there is one-to-one correspondence between the admissible ray portraits and the little
M-copies. So, one can encode the combinatorics of the renormalization by the little M -copies
themselves.

2.3. Molecule Condition. The molecule M defined in the Introduction consists of the
quadratic maps which are:
• either finitely many times renormalizable, all these renormalizations are satellite, and the

last renormalization has a non-repelling cycle;
• or infinitely many times renormalizable, with all the renormalizations satellite.

The molecule condition that we are about to introduce will ensure that our map f has
frequent “qualified” primitive renormalizations. Though f is allowed to be satellite renormal-
izable once in a while, we will record only the primitive renormalizations. They are naturlly
ordered according to their periods, 1 = p0 < p1 < p2 < . . . , where pi is a multiple of pi−1.

Along with these “absolute” periods of the primitive renormalizations, we will consider rel-
ative periods p̃i = pi/pi−1 and the corresponding M -copies M̃i that encode the combinatorics
of Rif as the renormalization of Ri−1f .

Given an η > 0, we say that a sequence of primitively renormalizable quadratic-like maps
fi satisfies the η-molecule condition if the corresponding M -copies Mi stay η-away from the
moleculeM (the latter is defined in the Introduction). We say that {fi} satisfies the molecule
condition if it does it for some η > 0.

An infinitely primitively renormalizable map f satisfies the η-molecule condition if the
sequence of its primitive renormalizations Rif does (i.e., the corresponding relative copies
M̃i stay η-away from the molecule M). (And similarly, for the non-quantified molecule
condition.)

There is, however, a more specific combinatorial way to describe the molecule condition.
Let us consider a quadratic-like map f with straightening Pc, c ∈ M . We are going to

associate to f (in some combinatorial region, and with some choice involved) three combi-
natorial parameters, (r,q,n) (“period, valence, and escaping time”) whose boundedness will
be equivalent to the molecule condition.

Assume first that f admits a dividing cycle γ with the ray portrait P with r rays. This
happens if and only if c belongs to the parabolic limb of M cut off by two external rays
landing at an appropriate parabolic point.
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On the central domain of C r (R(γ) ∪ R(γ′)), f r has a unique fixed poin α. Next, we
assume that α is repelling and there are q rays landing at it.

Assume next that the finite orbit f rj(0), j = 1, . . . ,qn − 1, does not escape the central
domain of Cr (R(γ)∪R(γ′)). This happens if and only if c lies outside certain decorations
(see [KL3]) of the above parabolic limb. In particular, this happens if f is satellite P(γ)-
renormalizable.

Finally, assume that n is the first moment n such that f rqn(0) escapes the central domain
of Cr (R(α) ∪R(α′)). This happens if and only if c belongs to the union of 2n decorations
inside the above parabolic limb. In particular, the map f is not P(α)-renormalizable.

Under the above assumptions, we say that f satisfies the (r̄, q̄, n̄)-molecule condition if
there is a choice of (r,q,n) with r ≤ r̄, q ≤ q̄ and n ≤ n̄.

Lemma 2.5. The (r,q,n)-molecule condition is equivalent to the η-molecule condition.6

Proof. If f satisfies (r,q,n)-molecule condition then c belongs to the finite union of deco-
rations. Each of them does not intersect the molecule M, so c stays some distance η away
from M.

Vice versa, assume there is a sequence of maps fi satisfying the η-molecule condition, but
with (r,q,n) →∞ for any choice of (r,q,n). Let us select a convergent subsequence ci → c.
Since c 6∈ M, there can be only finitely many hyperbolic components H0, H1, . . . , Hm of
M such that H0 is bounded by the main cardioid, Hk+1 bifurcates from Hk, and f is m
times immediately renormalizable with the corresponding combinatorics. Let us consider
the two rays landing at the last bifurcation point (where Hm is attached to Hm−1), and the
corresponding parabolic limb of the Mandelbrot set.7 This parabolic point has certain period
r.

Since the quadratic polynomial Pc is not immediately renormalizable any more, the cor-
responding cycle α is repelling with q rays landing at each of its periodic points, and there
is some escaping time n. So, Pc satisfies (r,q,n)-molecule condition. Since this condition is
stable under perturbations, Pci

satisfy it as well – contradiction. ¤
In what follows we assume that parameters r,q,n are well defined for a map f under

consideration, so in particular, we have two dividing cycles, γ and α. We let k = rqn. Let
us state for the record the following well-known combinatorial property:

Lemma 2.6. The point ζ = fk(0) is separated from α and 0 by the rays landing at α′.8

2.4. Combinatorial separation between γ and α. Along with the puzzle Yγ associated
with γ, let us consider the puzzle Yα associated with α. The critical puzzle piece Y 1

α has
two vertices, α and α′, and is bounded by four external rays landing at these vertices. Let C
be the union of the two external rays of ∂Y 1

α landing at α, and let C ′ be the symmetric pair
of external rays landing at α′.

Recall that t stands for the period of γ and s stands for #R(γ).

Lemma 2.7. There exist inverse branches f−tm| C ′, m = 0, 1, . . . , s− 1, such that the union
of the arcs f−tm(C ′) separates γ from the cycle α and the co-cycle α′ (except that α′ ∈ C ′).

6In the sense that if f satisfies (r,q,n)-molecule condition then it satisfies η-molecule condition with some
η = η(r,q,n), and the other way around.

7If m = 0 then we consider the whole Mandelbrot set.
8while the latter two points are not separated.
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Proof. Let us pull the puzzle piece Y 1
γ along the orbit γ (or equivalently, along the orbit α).

By Corollary 2.4, the corresponding inverse branches

f−m : Y 1
γ → f−m(Y 1

γ ) = f r−mY r+1
γ , m = 0, 1, . . . , r− 1,

have disjoint interiors. Hence each of these puzzle pieces contains exactly one point of α.
Moreover, non of these puzzle pieces except Y 1

γ may intersect α′ (for otherwise, its image
would contain two points of α).

It follows from standard properties of quadratic maps that the arc C ′ separates γ (which
is the non-dividing fixed point of Rγf) from γ′ and α (which is the dividing fixed point of
Rγf). Hence the arcs f−tm(C ′), separate γ from f−tm(γ′) and f−tm(α).

Since each of the puzzle pieces f−tm(Y 1
γ ), m = 0, 1, . . . , s − 1, has two vertices (γ and

f−tm(γ′)) and their union forms a neighborhood of γ, the rest of the Julia set is separated
from γ by the union of arcs f−tm(C ′), m = 0, 1, . . . , s−1. It follows that this union separates
γ from the whole cycle α, and from the co-cycle α′. ¤

Together with Lemma 2.1 this yields:

Corollary 2.8. We have: Y r
α(γ) b Y 0

α(γ)

Proof. The puzzle piece Y r
α(γ) contains γ and does not cross the arcs f−tm(C ′), m =

0, 1, . . . , s − 1, from Lemma 2.7. Hence it does not intersect α, and the the conclusion
follows from Lemma 2.1. ¤

2.5. A non-degenerate annulus. In what follows we will be dealing only with the puzzle
Yα, so we will skip the label α in notation.

Since by Lemma 2.6, the point ζ = fk(0) is separated from α by C ′, the union of arcs
f−tm(C ′), m = 0, 1, . . . , s − 1, from Lemma 2.7 separates ζ from the whole cycle α. By
Lemma 2.1, Y r(ζ) b Y 0(ζ). Pulling this back by fk, we conclude:

Lemma 2.9. We have: Y k+r b Y k.

We let E0 = Y k+r.

2.6. Buffers attached to the vertices of P = Y rq(n−1)+1. Let us consider a nest of critical
puzzle pieces

Y 1 ⊃ Y rq+1 ⊃ Y 2rq+1 ⊃ · · · ⊃ Y rq(n−1)+1 = P.

Since f rq : Y rq+1 → Y 1 is a double branched covering such that

f rqm(0) ∈ Y 1, m = 0, 1, . . . ,n− 1,

the puzzle piece Y rqk+1 is mapped by f rq onto Y rq(k−1)+1 as a double branched covering,
k = 1 . . . ,n − 1. However, since fk(0) = f rqn(0) 6∈ Y 1, there are two non-critical puzzle
pieces of depth k+1 mapped univalently onto P under gq. One of these puzzle pieces, called
QL, is attached to the point α, another one, called QR, is attached to α′. The following
Lemma is similar to Lemma 2.1 of [KL3]:

Lemma 2.10. For any vertex of P , there exists a puzzle piece Qv ⊂ P of depth r(2n−1)q+1
attached to the boundary rays of P landing at v which is a univalent fk-pullback of P .
Moreover, these puzzle pieces are pairwise disjoint.
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2.7. Modified principle nest. Until now, the combinatorics of the puzzle depended only
on the parameters (r,q,n). Now we will dive into the deeper waters.

Let l be the first return time of 0 to intE0 and let E1 = Y k+r+l be the pullback of E0

along the orbit {fm(0)}l
m=0. Then f l : E1 → E0 is a double branched covering.

Corollary 2.11. We have: E1 b E0.

Proof. Since {fm(0)}r−1
m=1 is disjoint from Y 1

γ ⊃ Y 1
α ⊃ E0, we have: l ≥ r. Hence

f l(E0) ⊃ f r(E0) c E0 = f l(E1),

and the conclusion follows. ¤

Given two critical puzzle pieces E1 ⊂ intE0, we can construct the (Modified) Principle
Nest of critical puzzle pieces

E0 c E1 c E1 c . . . c Eχ−1 c Eχ

as described in in [KL2]. It comes together with quadratic-like maps gn : En → En−1.
If the map f is renormalizable then the Principle Nest terminates at some level χ. In this

case, the last quadratic-like map gχ : Eχ → Eχ−1 has connected Julia set that coincides with
the Julia set of the renormalization Rβf , where β is the f -orbit of the non-dividing fixed
point β of gχ. The renormalization level χ is also called the height of the nest.

2.8. Stars. Given a vertex v of some puzzle piece of depts n, let Sn(v) stand for the union
of the puzzle pieces of depth n attached to v (the “star” of v). Given a finite set v = {vj}
of vertices vj, we let

Sn(v) =
⋃
j

Sn(vj).

Let us begin with an obvious observation that follows from Lemma 2.1:

Lemma 2.12. If a puzzle piece Y n(z) is not contained in Sn(α) then Y n(z) b Y 0(z).

Lemma 2.13. For λ = k + 1 + 2r, the stars Sλ(αj) do not overlap and do not contain the
critical point.

Proof. Let us consider the curves C and f−tmC ′, m = 1, . . . , s − 1, from Lemma 2.7. They
separate α′ from all points of α ∪ α′ r {α}. Furthermore, since fk(0) is separated from 0
by C ′, there is a lift Γ of C ′ under fk that separates α′ from 0 and hence from α. It follows
that the curves Γ and f−tmC ′, m = 1, . . . , s− 1, separate α′ from all points of α∪α′. Since
the maximal depth of these curves is λ = k + 1 (which is the depth of Γ), the star Sk+1(α′)
does not overlap with the interior of the stars Sk+1(a) for all other a ∈ α ∪α′.

By symmetry, the same is true for the star Sk+1(α). Since these stars do not contain
0, the pullback of Sk+1+r(α) under f r (along α) is compactly contained in its interior,
intSk+1+r(α). It follows that Sk+1+r(α) does overlap with the stars Sk+1(a) for all other
a ∈ α ∪α′.

Pulling this star once more around α, we obtain a disjoint family of stars. Hence all the
stars Sk+1+2r(a), a ∈ α ∪α′, are pairwise disjoint. ¤
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2.9. Geometric puzzle pieces. In what follows we will deal with more general puzzle
pieces.

Given a puzzle piece Y , of depth m, let Y [l] stand for a Jordan disk bounded by the same
external rays as Y and arcs of equipotentials of level l (so Y [m] = Y ). Such a disk will be
called a puzzle piece of bidepth (m, l).

A geometric puzzle piece of bidepth (m, l) is a closed Jordan domain which is the union of
several puzzle pieces of the same bidepth. As for ordinary pieces, a pullback of a geometric
puzzle piece of bidepth (m, l) under some iterate fk is a geometric puzzle piece of bidepth
(m + k, l + k). Note also that if P and P ′ are geometric puzzle pieces with9 bidepthP ≥
bidepthP ′ and KP ⊂ KP ′ then P ⊂ P ′.

The family of geometric puzzle pieces of bidepth (m, l) will be called Ym[l].
Stars give examples of geometric puzzle pieces. Note that pullback of a star is a geometric

puzzle piece as well but it is a star only if the pullback is univalent.

Lemma 2.14. Given a point z ∈ intS1(α) ∪ intS1(α′) such that fkz ∈ intS1(α), let P =
f−k(S1(α))|z. Then P ⊂ S1(α) or P ⊂ S1(α′).

Proof. Notice that α and α′ are the only points of α∪α′ contained in intS1(α)∪ intS1(α′).
Since fk maps α̃ = α ∪α′ r {α, α′} to αr {α}, no point of α̃ is contained in intP . Hence
P is contained in S1(α) ∪ S1(α′).

But by construction of Y k+1, the interior of fk(Y k+1) does not overlap with S1(α). Hence
intY k+1 does not overlap with P . But S1(α)∪S1(α′)r intY k+1 consists of two components,
one inside S1(α) and the other inside S1(α′). Since P is connected, it is contained in one of
them. ¤

3. Pseudo-quadratic-like maps and pseudo-puzzle

In this section, we will summarize the needed background on pseudo-quadratic-like maps
and pseudo-puzzle. The details can be found in [K, KL3].

3.1. Pseudo-quadratic-like maps. Suppose that U′, U are disks, i : U′ → U is a holo-
morphic immersion, and f : U′ → U is a degree d holomorphic branched cover. Suppose
further that there exist full continua K b U and K ′ b U′ such that K ′ = i−1(K) = f−1(K).
Then we say that F = (i, f) : U′ → (U,U) is a ψ-quadratic-like (ψ-ql) map with filled Julia
set K. We let

mod (F ) = mod (f) = mod(UrK).

Lemma 3.1. Let F = (i, f):U′ → U be a ψ-ql map of degree d with filled Julia set K. Then
i is an embedding in a neighborhood of K ′ ≡ f−1(K), and the map g ≡ f ◦ i−1:U ′ → U near
K is quadratic-like.

Moreover, the domains U and U ′ can be selected in such a way that

mod(U r i(U ′)) ≥ µ(mod (F ) > 0.

There is a natural ψ-ql map Un → Un−1, the “restriction” of (i, f) to Un. Somewhat
loosely, we will use the same notation F = (i, f) for this restriction.

Let us normalize the ψ-quadratic-like maps under consideration so that diamK ′ = diamK =
1, both K and K ′ contain 0 and 1, 0 is the critical point of f , and i(0) = 0. Let us endow

9the inequality between bidepths is understood componentwise
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the space of ψ-quadratic-like maps (considered up to independent rescalings in the domain
and the range) with the Carathéodory topology. In this topology, a sequence of normalized
maps (in, fn) : U′

n → Un converges to (i, f) : U′ → U if the pointed domains (U′
n, 0) and

(Un, 0) converge to U′ and U respectively, and the maps in, fn converge respectively to i,
f , uniformly on compact subsets of U′.

Lemma 3.2. Let µ > 0. Then the space of ψ-PL maps F with connected Julia set and
mod (F ) ≥ µ is compact.

To simplify notation, we will often refer to f as a “ψ-ql map” keeping i in mind implicitly.

3.2. Pseudo-puzzle.

3.2.1. Definitions. Let (i, f) : U′ → U be a ψ-ql map. By Lemma 3.1, it admits a quadratic-
like restriction U ′ → U to a neighborhood of its (filled) Julia set K = KU. Here U ′ is
embedded into U , so we can identify U ′ with i(U ′) and f : U ′ → U with f ◦ i−1.

Assume that K is connected and both fixed points of f are repelling. Then we can cut U
by external rays landing at the α-fixed point and consider the corresponding Yoccoz puzzle.

Given a (geometric) puzzle piece Y of bidepth (m, l), recall that KY stands for Y ∩K(f).

Let us consider the topological annulus A = UlrK(f) and its universal covering Â. Let Yi be
the components of Y rKY . There are finitely many of them, and each Yi is simply connected.
Hence they can be embedded into Â. Select such an embedding ei : Yi → Âi where Âi stands
for a copy of Â. Then glue the Ai to Y by means of ei, i.e., let Y = Y tei

Âi. This is the
pseudo-piece (“ψ-piece”) associated with Y . Noter that the Julia piece KY naturally embeds
into Y.

Lemma 3.3. (i) Consider two puzzle pieces Y and Z such that the map f : Y → Z is
a branched covering of degree k (where k = 1 or k = 2 depending on whether Y is
off-critical or not). Then there exists an induced map f : Y → Z which is a branched
covering of the same degree k.

(ii) Given two puzzle pieces Y ⊂ Z, the inclusion i : Y → Z extends to an immersion
i : Y → Z.

3.2.2. Boundary of puzzle pieces. The ideal boundary of a ψ-puzzle piece Y is tiled by
(finitely many) arcs λi ⊂ ∂Âi that cover the ideal boundary of Um (where m = depthY )

and arcs ξi, ηi ⊂ ∂Âi mapped onto the Julia set J(f). The arc λi meets each ξi, ηi at a single
boundary point corresponding to a path δ : [0, 1) 7→ A that wraps around K(f) infinitely
many times, while ηi meets ξi+1 at a vertex vi ∈ Y ∩ K(f). We say that the arcs λi form
the outer boundary (or “O-boundary”) ∂OY of the puzzle piece Y, while the arcs ξi and ηi

form its J-boundary ∂JY. Given a vertex v = vi of a puzzle piece Y , let ∂vY = ηi ∪ ξi+1

stand for the part of the J-boundary of Y attached to v.

4. Transfer Principle

Let us now formulate two analytic results which will play a crucial role in what follows.
The first one appeares in §2.10.3 of [KL1]:

Quasi-Additivity Law. Fix some η ∈ (0, 1). Let V be a topological disk, let Ki b V,
i = 1, . . . ,m, be pairwise disjoint full compact continua, and let φi : A(1, ri) → Vr ∪Kj be
holomorphic annuli such that each φi is an embedding of some proper collar of T to a proper
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collar of ∂Ki. Then there exists a δ0 > 0 (depending on η and m) such that:
If for some δ ∈ (0, δ0), mod(V, Ki) < δ while log ri > 2πηδ for all i, then

mod(V,∪Ki) <
2η−1δ

m
.

The next result appears in §3.1.5 of [KL1]:

Covering Lemma. Fix some η ∈ (0, 1). Let us consider two topological disks U and V,
two full continua A′ ⊂ U and B′ ⊂ V, and two full compact continua A b A′ and B b B′.

Let f : U → V be a branched covering of degree D such that A′ is a component of
f−1(B′), and A is the union of some components of f−1(B). Let d = deg(f : A′ → B′).
Let B′ be also embedded into another topological disk B′. Assume B′ is immersed into V
by a map i in such a way that i|B′ = id, i−1(B′) = B′, and i(B′)rB′ does not contain the
critical values of f .
Under the following “Collar Assumption”:

mod(B′, B) > ηmod(U, A),

if
mod(U, A) < ε(η,D)

then
mod(V, B) < 2η−1d2 mod(U, A).

We will now apply these two geometric results to a dynamical situation. Recall from
§2.7 that χ stands for the height of the Principal Nest, so that the quadratic-like map
gχ : Eχ → Eχ−1 represents the renormalization of f with the filled Julia set K.

Y

Z

Eχ−1

f ti

Υi

f ti

Figure 4.1. The Transfer Principle

Transfer Principle. Suppose there are two geometric puzzle pieces Y b Z with depthZ <
depthEχ−1, and a sequence of moments of time 0 < t1 < t2 < · · · < tm such that:

• tm − t1 < p and tm < 2p;
• f ti(K) ⊂ Y ;
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• Υi = f−ti(Z)| K ⊂ Eχ−1;
• deg(f ti : Υi → Z) ≤ D.

Then there exist an absolute constant C and ε = ε(D) such that

mod (Z, Y ) <
C

m
mod (Eχ,K),

provided mod (Eχ,K) < ε.

Proof. Let Kj = f tj(K). We want to apply the Covering Lemma to the maps f tj : (Υj,K) →
(Z,Kj). As the buffer around K we take Eχ+1. Since

depthEχ+1 = depthEχ−1 + 2p > depthZ + tj = depth Υj,

we have Eχ+1 ⊂ Υj for any j = 1, . . . ,m.
We let Ωj = f tj(Eχ+1) be the corresponding buffer around Kj. Then deg(f tj : Eχ+1 →

Ωj) ≤ 4 since tj < 2p. Moreover,

(4.1) mod (Ωj, Kj) ≥ 2mod (Eχ+1,K) =
1

2
mod (Eχ−1,K) ≥ 1

2
mod (Υj,K),

which puts us in the position to apply the Covering Lemma with η = 1/2 and d = 4. It
yields:

(4.2) mod (Z,Kj) ≤ 26 mod (Eχ−1,K) = 27 mod (Eχ,K),

provided mod (Eχ,K) < ε(D).
Let us define kj as tj if tj < p, and as tj − p otherwise. Then kj’s are pairwise different

numbers in between 0 and p, and hence the sets fkj(Eχ) are pairwise disjoint. Since Ωj ⊂
fkj(Eχ), the buffers Ωj are pairwise disjoint as well. Moreover, by (4.1)

mod (Ωj,Kj) ≥ mod (Eχ,K),

which, together with (4.2), puts us into a position to apply the Quasi-Additivity Law with
η = 2−7. It yields

mod (Z, Y ) ≤ 215

m
mod (Eχ,K),

provided mod (Eχ,K) < ε(D). ¤

5. Improving the moduli

In this section we will prove Theorem 1.2 for ψ-ql maps.
Let fi : U′

i → Ui be a sequence of renormalizable ψ-ql maps satisfying the η-molecule
condition. Let pi →∞ stand for the renormalization periods of the fi, and let mod (Rfi) →
0. We need to show that

mod (Rfi)/mod (fi) →∞.

Let Pci
: z 7→ z2 + ci be the straigtenings of the fi. Without loss of generality we can

assume that ci → c. Then the η-molecule condition implies that the quadratic polynomial
Pc satisfies the (r̄, q̄, n̄)-condition, with r̄, q̄ and n̄ depending only on η. Hence all nearby
maps satisfy the (r̄, q̄, n̄)-condition as well. In what follows, we will fix one of these maps,
f = fi, with parameters (r,q,n) ≤ (r̄, q̄, n̄), and consider its puzzle as described in §2. All
the objects under consideration (e.g., the principal nest E0 ⊃ E1 ⊃ . . . ) will be assoiciated
with f without making it notationally explicit.
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5.1. From the bottom to the top of the Principal Nest. The following result proved
[KL3] (Lemma 5.3) shows that if χ is big while the modulus mod (Eχ−1, Eχ) is small then
mod (E0, E1) is even smaller:

Lemma 5.1. For any k ∈ N and ρ ∈ (0, 1), there exist ε > 0 and χ ∈ N such that if χ ≥ χ

and mod (Eχ−1, Eχ) < ε, then

mod (E0, E1) < ρmod (Eχ−1, Eχ) ≤ ρ mod(Eχ,K).

Corollary 5.2. For any k ∈ N and ρ ∈ (0, 1), there exist ε > 0 and χ ∈ N such that if

χ ≥ χ, and mod(Eχ−1,K) < ε, then for some puzzle piece Y m(z) we have:

mod (Y 0(z), Y m(z)) < ρ mod(Eχ,K).

Proof. Let us apply f r(qn+1) to the pair (E0, E1). It maps E1 onto some puzzle piece Y m(z),
and maps E0 onto Y 0(z) with degree at most 2r(qn+1). By Lemma 3.3,

mod (Y 0(z), Y m(z)) ≤ 2r(qn+1)mod (E0, E1).

Together with Lemma 5.1 this yields the assertion. ¤

5.2. Around the stars. We will now go back to the original map f . Recall that p stands
for its renormalization period, k = rqn, and λ is introduced in Lemma 2.13.

Lemma 5.3. For any k ∈ N and ρ ∈ (0, 1), there exist ε > 0 and p ∈ N such that if p ≥ p,

and mod(Eχ−1, K) < ε, then either for some puzzle piece Y λ(z),

0 < mod (Y 0(z), Y λ(z)) < ρ mod(Eχ,K),

or for some periodic point αµ ∈ α,

0 < mod (S1(αµ), Sλ(αµ)) < ρ mod(Eχ,K).

Proof. By Corollary 5.2, it is true when χ ≥ χ, so assume χ ≤ χ. It will follow from the

Trnasfer Principle of §4. Let Eχ−1 = Y τ0 . Note that

deg(f τ0|Eχ−1) ≤ 2χ+r(qn+1),

so it is bounded it terms of k and ρ.
Let us then select the first moment τ ≥ τ0 such that f τ (K) 6⊂ Sλ(α). It is bounded by

p+ k (since fp+k(K) = fk(K) 6⊂ Sλ(α)).
Let m = [C

ρ
] + 1, where C is the constant from the Transfer Prinsiple. Let s = s(r,q) be

the number of puzzle pieces Y λ(z) in the complement of the star Sλ(α) (see §2.8), and let
N = ksm2. Let us consider the piece of orbK of length N ,

(5.1) f t(K), t = τ, . . . , τ +N.

Then one of the following options takes place:

(i) m sets Kj = f tjK, j = 0, . . . ,m− 1, in the orbit (5.1) belong to some puzzle piece Y λ(z)
in the complement of the star Sλ(α);

(ii) km consecutive sets f t(K), t = i + 1, . . . i + km, in the orbit (5.1) belong to the star
Sλ(α). Here i is selected so that that f i(K) does not belong to the star Sλ(α). Note that
i ≥ τ ≥ τ0 by definition of τ .
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Assume the first option occured. Then let us consider the puzzle piece Y 0(z) of depth
0 containing Y λ(z). By Lemma 2.12, Y λ(z) b Y 0(z). Let us consider if pullback Υj =
f−tj(Y 0(z))|K containing K. Then Υj ⊂ Eχ−1 (since tj ≥ τ0)).

Moreover, the map gtj : Υj → Y 0(z) has degree bounded in terms of k and ρ. Indeed,
deg(f τ0|Eχ) and N , λ, k are bounded in these terms. Hence it is enough to show that the
trajectory

fm(Υj), τ0 < m < τ − λ− k,

does not hit the critical point. But if fm(Υj) 3 0 then fm+k(Υj) would land outside Sλ(α)
(since fk(0) 6∈ Sλ(α) and depth fm+k(Υj) ≥ λ). Then fm+k(K) would land outside Sλ(α)
as well contradicting the defintion of τ as the first landing moment of orbK in Sλ(α) after
τ0.

Now, selecting p bigger than k+N , we bring ourselves in the position to apply the Transfer

Principle with Y = Y λ(z), Z = Y 0(z). It yields:

mod (Y 0(z), Y λ(z)) ≤ C

m
mod (Eχ,K) ≤ ρmod (Eχ,K).

Assume now the second option occured. Then there is a point αµ ∈ α such that f i+kj(K) ⊂
Sλ(αµ) for j = 1, . . . ,m, while f i(K) ⊂ Sλ(α′µ). Let us pull the star S1(αµ) back by f i+kj:

Υj = f−(i+kj)(S1(αµ))| K, j = 0, . . . ,m− 1.

Let us show that

(5.2) Υj ⊂ Eχ−1.

We fix some j and let Υ = Υj. We claim that int f i(Υ) does not contain any points of α.
Since αµ is the only point of α inside intS1(αµ), it is the only point of α that can be inside
int f i(Υ). If µ = 0 then f i(K) ⊂ Sλ(α′), so by Lemma 2.14, f i(Υ) ⊂ S1(α′), which does
not contain α. If µ 6= 0 then the points αµ and α′µ are separated by α in the filled Julia set.

Since f i(Υ) is a geometric puzzle piece containing both αµ and α′µ, it must contain α as well
– contradiction. The claim follows.

Thus, f i(Υ) is a geometric puzzle piece whose interior does not contain any points of α.
Hence it is contained in some puzzle piece Y 0(z) of zero depth. Then Υ ⊂ f−i(Y 0(z))| 0 = Y i.
But since i ≥ τ0, Y

i ⊂ Y τ0 = Eχ−1, and (5.2) follows.
Other assumptions of the Transfer Principle (with Y = Sλ(αµ) and Z = S1(αµ)) are valid

for the same reason as in the first case. The lemma follows. ¤

5.3. Bigons. A geometric puzzle piece with two vertices is called a bigon, and the corre-
sponding pseudo-puzzle piece is called a ψ-bigon. Given a bigon Y with vertices v and w,
let Sv

Y and Sw
Y stand for the components of K(f) r intY containing v and w respectively.

We let SY = Sv
Y ∪ Sw

Y .
Recall from §3.2.2 that the ideal boundary of the corresponding ψ-puzzle piece Y comprises

the outer boundery ∂OY (in the case of bigon consisting of two arcs) and the J-boundary
∂JY = ∂vY ∪ ∂wY attached to the vertices. Let GY = GY(v, w) stand (in the case of bigon)
for the family of horizontal curves in Y connecting ∂vY to ∂wY, and let dY(v, w) stand for
its extremal length.

More generally, let us consider a puzzle piece Y whose vertices are bi-colored, i.e., they
are partitioned into two non-empty subsets, B and W . This induces a natural bi-coloring

15



of K(f) r intY and of ∂JY: namely, a component of these sets attached to a black/white
vertex inherits the corresponding color. Let GY stands for the family of horizontal curves in
Y connecting boundary components with different colors.

For a geometric puzzle piece Y , let v(Y ) ⊂ K denote the set of vertices of Y . Suppose
that Y ⊂ Z are (geometric) puzzle pieces with the same equipotential depth; we say that Y
is cut out of Z if v(Z) ⊂ v(Y ), so that we have produced Y by cutting out pieces of Z. If
the vertices of Y are bicolored, then the vertices of Z are as well.

Lemma 5.4. If Y is cut out of Z, and v(Y ) is bicolored, then the family of curves GZ

overflows GY .

Proof. We prove the Lemma by induction on the cardinality of v(Y )r v(Z). First suppose
that v(Y ) = v(Z) ∪ {w}, where w /∈ v(Z). Let γ ∈ GZ ; the two endpoints of γ lie in
differently-colored components ∂xZ, ∂yZ of ∂JZ. If γ lifts to GY , then we are finished.
Otherwise, we can start lifting γ from the endpoint (of γ) that lies in the component (say
∂xZ) of ∂JZ whose color is different from that of w. Then that partial lift of γ will connect
∂xY and ∂wY and hence will belong to GY .

In general, if |v(Y )| > |v(Z)| + 1, we can let Y ′ be such that v(Y ) = v(Y ′) ∪ {w}, and
v(Y ′) ⊃ v(W ). Then given γ ∈ GW , we can lift part of γ to GY ′ by induction, and then to
GY as before. ¤

Given a puzzle piece Y with v(Y ) bicolored and a bigon P , we let P Â Y if the vertices of
P belong to components of K(f)r intY with different colors, while the equipotential depths
of P and Y are the same.

Lemma 5.5. If P Â Y then the family GP overflows GY .

Proof. Let P ′ be the bigon whose vertices are the vertices of Y that separate intY from the
v(P ). Then GP overflows GP ′ , and GP ′ overflows GY by Lemma 5.5. ¤

Let WY stand for the width of GY.

Lemma 5.6. Let Y and P be two bigons such that the vertices of fn(P ) are separated by Y
for some n, and the equipotential depth of Y is 2n times bigger than the equipotential depth
of P . Then WY ≥ 2−nWP .

Proof. Since the vertices of fn(P ) are separted by Y , there is a component Z of f−n(Y )
such that P Â Z. By Lemma 5.5, WP ≤ WZ . On the other hand, the map fn : Z → Y
has degree at most 2n, and maps horizontal curves in Z to horizontal curves in Y . Hence
WZ ≤ 2nWY . ¤

Lemma 5.7. Let Y be a bigon with vertices u and v of depths l and m satisfying the following
property: If l = m then f lu 6= f lv. Then there exists an n ≤ max(l,m) + r such that fnu
and fnv are separated by the puzzle piece Y 1.

Proof. By symmetry, we can assume that l ≤ m. Suppose that fmu 6= fmv; then we can
find 0 ≤ t < r such that fm+tu and fm+tv are on opposite sides of the critical point, so they
are separated by Y 1. Otherwise, we must have l < m, and then fm−1u = −fm−1v; hence
they are separated by Y 1. ¤
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5.4. Amplification. We can now put together all the above results of this section as follows:

Lemma 5.8. For any k ∈ N and ρ ∈ (0, 1), there exist ε > 0 and p ∈ N such that if p ≥ p,

and mod(Eχ−1,K) < ε, then

dY 1(α, α′) ≤ ρmod(Eχ−1,K).

Proof. Under our circumstances, Corollary 5.2 and Lemma 5.3 imply that there exist geo-
metric puzzle pieces Y b Z with the bidepth of Z bounded by (1, 1) while the bidepth of Y
bounded in terms of k, such that

mod (Z, Y ) ≤ ρmod(Eχ−1,K).

For any vertex v of Z, there exists a vertex v′ of Y such that the rays of ∂Y landing at v′

separate intY from v. These two rays together with the two rays landing at v (trancated by
the equipotential of Z) form a bigon Bv. By the Parallel Law, there exists a vertex v of Z
such that

dBv(v, v′) ≤ Nmod (Z, Y ),

where N ≤ N(r) is the number of vertices of Z. By Lemma 5.7, there is an iterate fn(Bv)
such that the vertices fn(v) and fn(v′) are separated by intY 1. By Lemma 5.6,

dY 1(α, α′) ≤ 2ndBv(v, v′).

Putting the above three estimates together, we obtain the assertion. ¤
Remark 5.1. The name “amplification” alludes to the extremal width which is amplified
under the push-forward procedure described above.

5.5. Separation. The final step of our argument is to show that the vertices α and α′ are
well separated in the bigon Y 1.

Lemma 5.9. There exists κ = κ(r,q,n) > 0 such that

dY 1(α, α′) ≥ κmod(U, K).

Idea of the proof. The proof is the same as the one of Proposition 5.12 in [KL3], so we will
only give an idea here.

Let Y be a ψ-puzzle piece, and let v and w be two vertices of it. A multicurve in Y
connecting ∂vY to ∂wY is a sequence of proper paths γi, i = 1, . . . , n, in Y connecting
∂vi−1Y to ∂viY, where v = v0, v1, . . . , vn = w is a sequence of vertices in Y. Let WY(v, w)
stand for the extremal width of the family of multicurves in Y connecting ∂vY to ∂wY. Let

WY = sup
v,w

WY (v, w).

Let us estimate this width for the puzzle piece P introduced in §2.6. To this end let
us consider puzzle pieces Qv from Lemma 2.10. Let r be the depth of these puzzle pieces,
T vw = cl(KP r (Qv ∪Qw)), and let v′ = Qv ∩ T vw, w′ = Qw ∩ T vw. For any multicurve γ in
P connecting ∂vP to ∂wP, one of the following events can happen:

(i) γ skips over T vw;

(ii) γ contains an arc γ′ connecting an equipotential of depth r to T vw;

(iii) γ contains two disjoint multicurves, δv and δw, that do not cross this equipotential and
such that δv connects ∂vQv to ∂v′Qv, while δw connects ∂w′Qw to ∂wQw.
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It is not hard to show that the width of the first two families of multicurves isO(mod(U, K))
(see §§5.5-5.6 of [KL3] ). Concerning each family of multicurves δv or δw that appear in (iii),
it is conformally equivalent to a family of multicurves connecting appropriate two vertices
of P (since Qv and Qw are conformal copies of P ). By the Series and Parallel Laws,

WP ≤ 1

2
WP +O(mod(U, K)),

which implies the desired estimate.

5.6. Conclusion. Everything is now prepared for the main results. Lemmas 5.8 and 5.9
imply:

Theorem 5.10 (Improving of the moduli). For any parameters r̄, q̄, n̄ and any ρ > 0, there
exist p ∈ N and ε > 0 with the following property. Let f be a renormalizable ψ-quadratic-like
map with renormalization period p satisfying the (r̄, q̄, n̄)-molecule condition, and let g be its
first renormalization. Then

{p ≥ p and mod (g) < ε} ⇒ mod (f) < ρmod(g).

Theorem 5.10, together with Lemma 3.1, implies Theorem 1.2 from the Introduction. The
Main Theorem follows from Theorem 5.10 combined with the following result (Theorem 9.1
from [K]):

Theorem 5.11 (Improving of the moduli: bounded period). For any ρ ∈ (0, 1), there exists
p = p(ρ) such that for any p̄ ≥ p, there exists ε = ε(p̄) > 0 with the following property.
Let f be primitively renormalizable ψ-quadratic-like map, and let g be the corresponding
renormalization. Then

{p ≤ p ≤ p̄ and mod (g) < ε} ⇒ mod (f) < ρmod (g).

Putting the above two theorems together, we obtain:

Corollary 5.12. For any (r̄, q̄, n̄), there exist an ε > 0 and l ∈ N with the following property.
For any infinitely renormalizable ψ-ql map f satisfying the (r̄, q̄, n̄)-molecule condition with
renormalizations gn = Rnf , if mod (gn) < ε, n ≥ l, then mod (gn−l) <

1
2
mod (gn).

This implies the Main Theorem, in an important refined version. We say that a family
M of little Mandelbrot copies (and the corresponding renormalization combinatorics) has
beau10 a priori bounds if there exists an ε = ε(M) > 0 and a function N : R+ → N with the
following property. Let f : U → V be a quadratic-like map with mod(V r U) ≥ δ > 0 that
is at least N = N(δ) times renormalizable. Then for any n ≥ N , the n-fold renormalization
of f can be represented by a quadratic-like map Rnf : Un → Vn with mod(Vn r Un) ≥ ε.

Beau Bounds. For any parameters (r̄, q̄, n̄), the family of renormalization combinatorics
satisfying the (r̄, q̄, n̄)-molecule condition has beau a priori bounds.

10According to Dennis Sullivan, “beau” stands for “bounded and eventually universal”.
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5.7. Table of notations. p is the renormalization period of f ;
γ is a dividing periodic point of period t,
γ is its cycle;
s is the numner of rays landing at γ;
α is a dividing periodic point of periods r = ts;
α′ = −α, αj = f jα;

α = {αj}p−1
j=0 is the cycle of α;

q is the number of rays landing at α;
n is the first moment such that f rqn(0) is separated from 0 by the rays landing at α′,
k = rqn;
λ = k + 1 + r2 is such a depth that the stars Sλ(αj), j = 0, 1, . . . , r− 1, are all disjoint;
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