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Abstract. Consider a quadratic rational self-map of the Riemann sphere such
that one critical point is periodic of period 2, and the other critical point lies on
the boundary of its immediate basin of attraction. We will give explicit topological
models for all such maps. We also discuss the corresponding parameter picture.
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1. Introduction

1.1. The family V2. Consider the set V2 of holomorphic conjugacy classes of qua-
dratic rational maps that have a super-attracting periodic cycle of period 2 (we
follow the notation of Mary Rees). The complement in V2 to the class of the single
map z 7→ 1/z2 is denoted by V2,0. The set V2,0 is parameterized by a single com-
plex number. Indeed, for any map f in V2,0, the critical point of period two can be
mapped to ∞, its f -image to 0, and the other critical point to −1. Then we obtain
a map of the form

fa(z) =
a

z2 + 2z
, a 6= 0

holomorphically conjugate to f . Thus the set V2,0 is identified with C − 0.
The family V2 is just the second term in the sequence V1, V2, V3, . . . , where, by def-

inition, Vn consists of holomorphic conjugacy classes of quadratic rational maps with
a periodic critical orbit of period n. Such maps have one “free” critical point, hence
each family Vn has complex dimension 1. Note that V1 is the family of quadratic
polynomials, i.e., holomorphic endomorphisms of the Riemann sphere of degree 2
with a fixed critical point at ∞. Any quadratic polynomial is holomorphically con-
jugate to a map z 7→ z2 +c. Thus V1 can be identified with the complex c-plane. For
a map z 7→ z2 + c, the “free” critical point is 0. The family V1 is the most studied
family in complex dynamics. The main object describing the structure of V1 is the
Mandelbrot set M defined as the set of all parameter values c such that the orbit of
the critical point 0 under z 7→ z2 + c is bounded.

Similarly to the case of quadratic polynomials, we can define the set M2 (an analog
of the Mandelbrot set for V2) as the set of all parameter values a such that the orbit
of −1 under fa is bounded. A conjectural description of the topology of M2 is given
in [27]. In this paper, we deal with maps on the external boundary of M2, i.e. the
boundary of the only unbounded component of C − M2.



Figure 1. The set M2

In [18], M. Rees studies the parameter plane of V3, which turns out to be much
more complicated than V2.

1.2. Invariant laminations. Invariant laminations were introduced by Thurston
[25] to describe quadratic polynomials with locally connected Julia sets. A set L
of hyperbolic geodesics in the open unit disk is a geodesic lamination if any two
different geodesics in L do not intersect, and the union of L is closed with respect
to the induced topology on the unit disk. For any pair of points z, w on the unit
circle, the geodesic with endpoints z and w will be written as zw. Any geodesic
lamination L defines an equivalence relation ∼L on the unit circle S1. Namely, two
different points on S1 are equivalent if they are connected by a leaf of L or by a
broken line consisting of leaves. For many quadratic polynomials, the Julia set is
homeomorphic to the quotient of the unit circle by an equivalence relation ∼L.

We say that a geodesic lamination L on the unit circle is invariant under the map
z 7→ z2 if the following conditions hold:

• if z1z2 ∈ L, then z2
1z

2
2 ∈ L or z2

1 = z2
2 ,

• if z1z2 ∈ L, then (−z1)(−z2) ∈ L,
• if z2

1z
2
2 ∈ L, then z1z2 ∈ L or z1(−z2) ∈ L.

Such laminations are also known as quadratic invariant laminations. Any quadratic
polynomial p defines a quadratic invariant lamination. In many cases, the quotient
of the unit circle by the corresponding equivalence relation is homeomorphic to the
Julia set J , and the projection of S1 onto J semi-conjugates the map z 7→ z2 with
the restriction of p to J .

A gap of a geodesic lamination is any component of the complement to all leaves
in the unit disk. Let L be a quadratic invariant lamination. The map z 7→ z2
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admits a natural extension over all leaves and gaps of L. This extension is called
the lamination map of L and is denoted by sL. The image of any leaf under sL is
a leaf or a single point. The image of any gap is a gap, or a leaf, or a single point.
Suppose that L is clean, i.e. any two adjacent leaves of L are sides of a common
finite-sided gap. Then we can also extend the equivalence relation ∼L to C. The
equivalence classes of ∼L are defined as finite-sided gaps, leaves, or points.

If L is clean, then the quotient C/ ∼L is homeomorphic to C. The lamination map
sL defines a continuous self-map [sL] of this quotient. We say that the lamination
L models a quadratic polynomial p if the quotient C/ ∼L is homeomorphic to C,
and the map [sL] is topologically conjugate to p. E.g. any critically finite quadratic
polynomial is modeled by the corresponding quadratic invariant lamination. The
same is true for many quadratic polynomials with Siegel disks, but not for quadratic
polynomials with Cremer points.

Let y0 be a real number between 0 and 1. Denote by l0 the diameter connecting
the points eπiy0 and −eπiy0 on the unit circle. Consider all geodesics z1z2 in the unit
disk such that, for every k, the geodesic z2k

1 z2k

2 does not intersect l0 or coincides with
l0. This set of geodesics is an invariant lamination, which we denote by L(y0). If
a quadratic polynomial p is modeled by L(y0), then p belongs to the boundary of
the Mandelbrot set. There is a natural parameter equivalence relation on the unit
circle. Points e2πiy0 and e2πiy′

0 are parameter equivalent if the laminations L(y0)
and L(y′

0) correspond to the same quadratic polynomial in a certain well-defined
sense, although they may not model this polynomial (e.g. L(0) corresponds to the
parabolic map z 7→ z2 + 1/4, but the equivalence relation ∼L(0) identifies all binary
rational points on the unit circle). It turns out that the parameter equivalence
relation also corresponds to a geodesic lamination in the unit disk. This lamination
is called the parameter lamination, or the quadratic minor lamination. Thurston
[25] gave a description of the parameter lamination using his “minor leaf theory”.
Conjecturally, the boundary of the Mandelbrot set is homeomorphic to the quotient
of the unit circle by the parameter equivalence relation. This conjecture is equivalent
to the MLC conjecture (stating that the Mandelbrot set is locally connected).

1.3. Two-sided laminations. In the theory of quadratic invariant laminations,
the single quadratic polynomial z 7→ z2 is used to build models for the dynamics of
many other quadratic polynomials. The Julia set of z 7→ z2 is the unit circle, and
the unit disk is preserved. A similar idea can be used to build models for rational
maps of class V2. To this end, one can use the rational map z 7→ 1/z2. This is the
only map in V2 not conjugate to a map of the form fa. Its Julia set is also the unit
circle. However, the map z 7→ 1/z2 interchanges the inside and the outside of the
unit disk.

Let us define an analog of quadratic invariant laminations for the map z 7→ 1/z2.
A two-sided geodesic lamination is a set of geodesics that live both inside and outside
of the unit disk. Note that the outside of the unit disk is also a topological disk in
C. Geodesics are in the sense of the Poincaré metric (on the inside or on the outside
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of the unit disk). We will sometimes use 2L to denote a two-sided lamination, but
this notation does not assume any multiplication by 2 (in other words, 2L is to be
thought of as a single piece of notation). A two-sided lamination 2L gives rise to a
pair of laminations L0 and L∞, where the leaves of L0 are inside of the unit circle,
and the leaves of L∞ are outside. The two-sided lamination 2L = L0 ∪L∞ is called
invariant under z 7→ 1/z2 if the following conditions hold:

• if z1z2 ∈ L0, then (1/z2
1)(1/z

2
2) ∈ L∞ or z2

1 = z2
2 ,

• if z1z2 ∈ L0, then (−z1)(−z2) ∈ L0,
• if z2

1z
2
2 ∈ L0, then z1z2 ∈ L∞ or z1(−z2) ∈ L∞,

and the same conditions with L0 and L∞ interchanged. Let ∼0 and ∼∞ denote the
equivalence relations on the unit circle corresponding to the laminations L0 and L∞,
respectively.

Two-sided laminations were first considered by D. Ahmadi [2]. He used a dif-
ferent language (“laminations on two disks”). In [2], a classification of two-sided
laminations is given, similar to the “minor leaf theory” of Thurston [25].

Gaps of two-sided laminations and the corresponding lamination maps are defined
in the same way as for invariant laminations of the unit disk. For a two-sided
lamination 2L, extend the equivalence relations ∼0 and ∼∞ to the unit disk and to
the outside of the unit disk, respectively, in the same way as for invariant quadratic
laminations. Define ∼2L to be the smallest equivalence relation containing both ∼0

and ∼∞. We say that 2L models a quadratic rational map f if the quotient C/ ∼2L

is homeomorphic to the sphere, and the map [s2L] is topologically conjugate to f .
We will now define a particular family of two-sided laminations invariant under

z 7→ 1/z2. Let x0 be a real number strictly between 0 and 1. Consider the arc σ0

of the unit circle bounded by the points e2πix0 and −e2πix0 and not containing the
point 1. Let σ be any component of the full n-fold preimage of σ0 under z 7→ 1/z2.
Connect the endpoints of σ by a geodesic in the complement to the unit circle. This
geodesic should be inside the unit circle if n is even, and outside if n is odd. For
certain values of x0 (which we will describe explicitly later), the set of geodesics
thus constructed is a two-sided lamination. We denote this lamination by 2L(x0).
If 2L(x0) exists, then it is clearly invariant under the map z 7→ 1/z2.

1.4. Statement of the main theorems. For a map fa ∈ V2, denote by Ω the
immediate basin of attraction of the critical cycle {0,∞}.
Theorem A. Suppose that −1 ∈ ∂Ω. Then the Julia set of fa is locally connected.

Let Ω0 and Ω∞ denote the components of Ω containing 0 and ∞, respectively. As
we will see, the critical point −1 cannot be on the boundary of Ω∞. Thus, under
the assumptions of Theorem A, we can only have −1 ∈ ∂Ω0. We will prove in this
case that Ω0 is a closed topological disk. Moreover, there is a homeomorphism H of
the closed unit disk to Ω0 that conjugates the map z 7→ z2 with the map f ◦2

a . We
say that a point in Ω0 has angle θ if this point coincides with H(re2πiθ) for some
0 ≤ r ≤ 1.

4



Figure 2. The Julia set of fa ∈ V2 with −1 ∈ ∂Ω0 and of nearby
fa′ ∈ V2 with −1 ∈ Ω0

Theorem B. Suppose that the critical point −1 belongs to ∂Ω0 and has angle θ0.
Then, for

x0 =
∞
∑

m=1

[(2m − 1)θ0] + 1

22m+1
,

the two-sided lamination 2L(x0) exists and models the map fa.

The maps fa from Theorems A and B, together with countably many parabolic
maps, form the external boundary of M2 (the boundary of the unbounded component
of C − M2). A more detailed statement will be given below.

1.5. Matings and anti-matings. Consider two quadratic invariant laminations
L1 and L2. Consider the images l−1 of all leaves l ∈ L2 under the transformation
z 7→ 1/z. If we straighten all such curves to geodesics in {|z| > 1}, then we obtain
a lamination L−1

2 outside the unit disk. We can form the two-sided lamination
L1 ∪L−1

2 . The lamination L1 ∪L−1
2 is invariant under the map z 7→ z2 (rather than

z 7→ 1/z2). This lamination is called the mating of the laminations L1 and L2. If
the quadratic invariant laminations L1 and L2 correspond to quadratic polynomials
p1 and p2, and if the lamination L1∪L−1

2 models a rational map f , then we say that
f is a mating of p1 and p2. We write f = p1 ⊔ p2 in this case.

This definition of mating is equivalent to the following more standard definition.
Compactify the complex plane by the circle at infinity. The resulting space is home-
omorphic to the closed disk. Let a polynomial p1 act on one copy of this disk,
called D1, and p2 act on another copy, called D2. Denote by γi(t) the point on the
boundary of Di of angle t. Identify the boundaries of D1 and D2 by the formula
γ1(t) = γ2(−t). Then the union D1∪D2 is homeomorphic to the sphere. If p1 and p2

have the same degree, then the actions of both polynomials match on ∂D1 = ∂D2.
Introduce the minimal equivalence relation ∼ on the sphere D1 ∪ D2 such that for
any point z ∈ ∂D1 = ∂D2 that is a common landing point of two rays, one in D1

and another in D2, the union of these two rays and the point z belongs to a single
5
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Figure 3. The basilica (the Julia set of z 7→ z2 − 1) and the basilica lamination

equivalence class. If the quotient D1 ∪ D2/ ∼ is homeomorphic to the sphere, and
the map p1 ∪ p2/ ∼ is topologically conjugate to a rational map, then this rational
map is called the mating of p1 and p2.

Many maps in V2 can be described as matings with the quadratic polynomial
z 7→ z2 − 1. The Julia set of this polynomial is called the basilica. The dynamics
of z 7→ z2 − 1 can be described by a certain quadratic invariant lamination, which
we call the basilica lamination. The critical point 0 of the polynomial z 7→ z2 − 1 is
periodic of period two: f(0) = −1 and f(−1) = 0. Thus z 7→ z2 − 1 belongs to V2.
Actually, this is the only polynomial of class V2.

Theorem B∗. Suppose that the critical point −1 of fa belongs to ∂Ω0 and has angle
θ0. Let θ0[m] denote the m-th binary digit of θ0. Then, for

y0 =
1

3

(

1 + 3
∞
∑

m=1

θ0[m]

4m

)

,

the mating of the basilica lamination with the lamination L(−2y0) models the map fa.
Moreover, the lamination L(−2y0) itself models a well-defined quadratic polynomial,
so that fa is a mating of z 7→ z2 − 1 with another quadratic polynomial.

The formula for y0 has a simple meaning. Namely, consider the point in the
basilica belonging to the boundary of the Fatou component of −1 and having the
(internal) angle θ0 on this boundary. Then y0 is the external angle of the same point.
In the terminology we used, internal angles parameterize dynamical rays emanating
from −1, whereas external angles parameterize dynamical rays emanating from ∞.

Theorem B∗ can be deduced from Theorem B. Actually, the model with a two-
sided lamination invariant under z 7→ 1/z2 is combinatorially equivalent to the
mating model. However, the model with a two-sided lamination is simpler in some
respects. It can be restated in terms of anti-matings. The notion of anti-mating was
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also introduced by Douady and Hubbard [4]. Consider two closed disks D1 and D2

as above, together with the actions of quadratic polynomials p1 and p2, respectively.
We can glue a topological sphere D1∪D2 out of the disks D1 and D2 in the same way
as for matings. However, we define a self-map of this topological sphere differently.
Namely, a point with coordinate z in D1 is mapped to the point with coordinate
p1(z) in D2. Similarly, a point with coordinate w in D2 is mapped to the point with
coordinate p2(w) in D1. Thus the disks D1 and D2 are interchanged. Suppose that
the quotient of D1 ∪ D2 by the equivalence relation ∼ is a topological sphere, and
the quotient of the map introduced above is topologically conjugate to a rational
function. This rational function is then called the anti-mating of p1 and p2.

Theorem B can be restated as follows:

Theorem B∗∗. Any map fa such that −1 ∈ ∂Ω0 is an anti-mating of z 7→ z2 and
another quadratic polynomial.

From this theorem it follows, in particular, that the second iteration f ◦2
a is the

mating of two quartic polynomials. For both of these polynomials, all critical points
are either periodic or on the boundaries of immediate super-attracting basins.

For the case, where the critical point −1 is pre-periodic, Theorem A is known,
and the proofs of Theorems B and B∗ are much simpler (they basically follow from
the mating criterion given in [24]). In this paper, we will concentrate on the case,
where −1 is not pre-periodic. As we will see, the angle θ0 is irrational in this case
(e.g. this follows from Theorem A), however, we do not assume this a priori.

The results of Theorems A, B and B∗ complement recent results by Aspenberg
and Yampolsky [3]. They prove that any non-renormalizable quadratic polynomial,
not in the 1/2-limb and with all cycles repelling, is mateable with the basilica. From
Theorem B∗ it follows, in particular, that any map fa with −1 ∈ ∂Ω is a mating with
a non-renormalizable polynomial, and, therefore, belongs to the class considered in
[3]. The main technical tool of both this paper and [3] are bubble puzzles suggested
by Luo [7]. Luo claimed the main result of [3], and gave a sketch of a proof, but
many important details were missing. In other contexts, similar constructions were
used in [28, 19].

The first version of this paper was written before preprint [3] appeared. It con-
tained a proof of Theorem B based on a direct construction of the puzzle specific to
our situation. No analytic continuation was used, but the condition −1 ∈ ∂Ω was
essential. The technique developed in [3] permits to build the puzzle just for some
simple rational maps, and then continue it analytically. We adopt this approach.

1.6. The exterior hyperbolic component. All theorems we stated so far are
about maps on the external boundary of M2. It is natural to attempt studying
topology and dynamics of such maps by approaching them from the exterior com-
ponent E — the only unbounded component of the complement to M2. There is a
simple dynamical description of the set E : a map fa ∈ V2 belongs to E if and only if
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the free critical point −1 belongs to the immediate basin of the critical cycle {0,∞}.
Then we must have −1 ∈ Ω0, as we will see.

The Julia set of any map fa in E is a quasi-circle, and the restriction of fa to
the Julia set is conjugate to the map z 7→ 1/z2. This follows from a more general
theorem of Sullivan [23]. Thus the topology and the dynamics of the Julia set is the
simplest possible. However, a non-trivial combinatorics and a non-trivial dynamics
show up when we consider rays for the second iteration f ◦2

a , and the way they crash
into pre-critical points; more details will come soon.

We give topological models for all maps fa in E in terms of Blaschke products.
The methods used to build these models are not new (cf. Sullivan and McMullen
[11]). The second iteration f ◦2

a of the map fa preserves both components of the
complement to the Julia set. Pick one particular component. This is an open
topological disk. Consider a holomorphic uniformization of this topological disk by
the round unit disk. The map corresponding to f ◦2

a under this uniformization takes
the unit disk to itself. Therefore, it is a quartic Blaschke product. It is not hard to
see that this Blaschke product must actually be the square of a quadratic Blaschke
product

B : z 7→ z
z + b

bz + 1
,

where b belongs to the open unit disk. This gives an idea of how to construct a
topological model for fa.

The unit circle divides the Riemann sphere into two disks — the inside and
the outside of the unit circle. Consider the map 1/B that takes the inside to the
outside, and the map 1/z2 that takes the outside to the inside. We would like to
glue these maps together but, unfortunately, they do not match on the boundary.
Fortunately, there is a quasi-conformal automorphism Q of the outside of the unit
circle such that the maps Q ◦ 1/B and 1/z2 ◦ Q−1 do match on the boundary.
They define a global topological ramified self-covering g of the Riemann sphere of
degree two. Moreover, there is a natural quasi-conformal structure invariant under
g. By the Measurable Riemann Mapping theorem of Ahlfors–Bers [1], the ramified
self-covering g is topologically conjugate to a quadratic rational map. Clearly, this
quadratic rational map must belong to E . Conversely, any map in E can be obtained
by this quasi-conformal surgery.

1.7. Dynamical rays and external parameter rays. Let fa be a map in V2.
The second iteration f ◦2

a has two super-attracting fixed points 0 and ∞. The other
four critical points are −1, the two preimages of −1 under fa, and −2, which is a
preimage of ∞ under fa.

Consider the Green function G for the map f ◦2
a that is defined by the usual formula

G(z) = lim
n→∞

log |f ◦2n
a (z)|
2n

.
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This function is negative near 0 and positive near ∞. The gradient of G restricted to
the open set {G 6= 0} is a smooth vector field that has singularities at all pre-critical
points (iterated preimages of critical points). Recall that a ray is any trajectory of
this vector field.

The α-limit set of any ray is a single pre-critical point, more precisely, an iterated
preimage of ∞ or an iterated preimage of −1. The ω-limit set is either a pre-critical
point or a subset of the Julia set (which is also a single point in a locally connected
situation). If the ω-limit set is a pre-critical point, then this point is necessarily an
iterated preimage of −1 (because it can not be an iterated preimage of ∞). Consider
any iterated preimage z of −1, and assume that G(z) 6= 0. The point z is a saddle
point of the Green function. Thus there are only two rays emanating from z and
only two rays crashing into z. The union of the two rays emanating from z, together
with the point z itself, is called the ray leaf centered at z. Thus the ray leaves are
in one-to-one correspondence with iterated preimages z of −1 such that G(z) 6= 0.

Suppose that a belongs to the exterior component E . Then the critical point −1
of fa belongs to Ω0. Rays emanating from 0 are parameterized by the angle. In
a small neighborhood of 0, the map f ◦2

a is holomorphically conjugate to the map
z 7→ z2. Under this local conjugacy, the point 0 is mapped to 0, and germs of rays
are mapped to germs of radial segments. By definition, the angle of a ray is defined
as the angle the corresponding radial segment makes with the real axis. We measure
angles in radians/2π. Thus the measure of the full angle is 1. Let R0(θ) denote the
ray of angle θ emanating from 0. It is not hard to see that there exists a unique ray
R0(θ0) that emanates from 0 and crashes into the critical point −1.

Fix an angle θ0. Consider the set of all parameter values a, for which the ray
R0(θ0) crashes into the critical point −1. This set is called the external parameter
ray of angle θ0. We call an external parameter ray periodic or non-periodic according
to whether its angle is periodic or non-periodic under the doubling map modulo 1.

M. Rees [17] proved that periodic external parameter rays (except for the zero
ray) land at parabolic parameter values.

Theorem C. All external parameter rays land. Consider the rational map fa ∈ V2

corresponding to the landing point a of a non-periodic external parameter ray of
angle θ0. For this map, −1 ∈ ∂Ω0. Moreover, the critical point −1 is the point on
∂Ω0 of angle θ0, thus the topological dynamics of fa is described by Theorem B.

When the first version of this paper was written, I had in mind to deduce this
theorem from Theorem B by showing that −1 ∈ ∂Ω for all parameter values on
the external boundary, except for countably many parabolic points. My argument
was overly complicated, and I am grateful to M. Lyubich for suggesting a simpler
approach, not using the puzzle. However, in this paper, Theorem C is proved using
the parameter puzzle, a version of that in [3]. This approach has the advantage that
the same combinatorial constructions are used for both Theorems A and C.
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Figure 4. Ray leaves for some map in the exterior component of V2

1.8. Ray laminations. Consider a quadratic rational map fa in the exterior com-
ponent E . Assume that fa does not lie on a periodic parameter ray (it can still lie
on a strictly pre-periodic parameter ray). Then each ray leaf of fa is a curve that is
closed in the complement to the Julia set. The closure of this curve in the Riemann
sphere intersects the Julia set in two points — the endpoints of the ray leaf.

Straighten the Julia set to the unit circle, and each ray leaf to a geodesic in
the complement to the unit circle. Then we obtain a two-sided geodesic lamination.
Since the restriction of the map fa to the Julia set is conjugate to the map z 7→ 1/z2,
this two-sided lamination is invariant under z 7→ 1/z2. We will call this lamination
the ray lamination. Ray laminations can be described explicitly.

Theorem D. Let fa ∈ V2 be a map in the exterior component. Suppose that fa lies
on a non-periodic external parameter ray of angle θ0. Then the ray lamination for
fa coincides with the two-sided lamination 2L(x0), where

x0 =
∞
∑

m=1

[(2m − 1)θ0] + 1

22m+1
.

We will see that all maps in the same parameter ray give rise to the same ray lam-
ination. On the other hand, ray laminations corresponding to maps from different
parameter rays can never be the same.

What happens if we approach the external boundary along a non-periodic param-
eter ray? The corresponding ray lamination stays the same, but all leaves become
shorter and shorter. In the limit, all leaves of the ray lamination collapse to points.
Thus the same two-sided lamination serves both as a ray lamination for a map in the
exterior component and as a lamination modeling a map on the external boundary.
This picture was the initial motivation for Theorem B stated above. However, the
formal proof goes differently. The collapsing of ray leaves can be proved a posteriori,
using Theorems B and C.
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1.9. Hyperbolic components of V2. From Theorem C it follows that the bound-
ary of the exterior component E is a topological circle. However, it is not a quasi-
circle because it has cusps at all parabolic points. The hyperbolic component E is
special because it is the only type II component in V2. Recall that, according to
the terminology of M. Rees [17], a hyperbolic component in a space of quadratic
rational maps is of type II if both critical points belong to the same cycle. A hy-
perbolic component is of type III if one critical point is strictly pre-periodic and
eventually enters the cycle of the other critical point, and of type IV if both critical
points are periodic, with disjoint cycles. In V2, all type III components are capture
components, and all type IV components are mating components.

Note that the boundaries of type IV components are real analytic curves. From
[3] it follows that the boundaries of type III components are topological circles,
and it is very likely that they are quasi-circles. Maps on the boundary of a type III
component are never critically recurrent. Thus they exhibit much simpler dynamical
behavior, compared with the maps on the external boundary. On the other hand,
maps on the boundary of a type IV component can be much more complicated, as
complicated as quadratic polynomials can be. In particular, they can have Siegel or
Cremer points.

1.10. A blow-up of z 7→ z2. The explicit formula for x0 in terms of θ0 used in
Theorems B and D may look mysterious. We will now explain this formula by
describing a simple topological construction it comes from.

Let z0 be any point on the unit circle. There is a unique probability measure µ
on the unit circle with the following properties:

• The measure µ is supported on countably many points, namely, on all it-
erated preimages of z0 under the map z 7→ z2 (the point z0 itself is also
regarded as an iterated preimage of z0).

• For any point z on the unit circle different from z0, we have µ{z2} = 4µ{z}.
The measure µ can be given by the following formula

µ{z} =
∑

m: z2m
=z0

1

2 · 4m
.

The summation is over all nonnegative integers m such that z2m

= z0. In particular,
if the point z0 is not periodic under the map z 7→ z2, then there is at most one
summand. The definition of µ can be made simple in the non-periodic case: any
preimage of z0 under the map z 7→ z2m

has measure 1
2·4m .

It is classically known that there is a unique continuous map h : S1 → S1 with
the following properties:

• h(1) = 1, and 1 is in the center of h−1(1).
• the push-forward of the uniform probability measure under the map h is the

measure µ,
• the map h has topological degree 1.
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The map h blows up all iterated preimages of the point z0 under z 7→ z2 in the
following sense. For any point z such that z2m

= z0, the full preimage of z under
h is an arc of length µ{z}. In particular, the full preimage h−1(z0) is a half-circle.
The following proposition is verified by a simple direct computation:

Proposition 1.1. If z0 = e2πiθ0 is not periodic under the squaring map z 7→ z2,
then the half-circle h−1(z0) is bounded by e2πix0 and −e2πix0, where x0 is expressed
in terms of θ0 by the formula from Theorems B and D.

1.11. Acknowledgements. I am grateful to M. Lyubich for introducing me to the
field of holomorphic dynamics, for his help and encouragement. I had stimulating
discussions with M. Aspenberg, S. Bonnot, A. Epstein, L. DeMarco, H. Hakobyan,
M. Rees and M. Yampolsky. M. Aspenberg communicated to me the statements of
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to the anonymous referee for useful remarks and suggestions.

2. Two-sided laminations 2L(x0)

In this section, we will give details on the explicit construction of two-sided laminations that

appear in Theorems B and D. Actually, the construction will be slightly more general, including

the two-sided laminations for parabolic maps, not considered in this paper.

2.1. Formulas for x0. Recall that, for a real number θ0 between 0 and 1 that is
not an odd denominator rational number, we defined the corresponding real number
x0 by the formula

x0 =
∞
∑

m=1

[(2m − 1)θ0] + 1

2 · 4m
.

In this subsection, we will find the binary expansion of x0. Define the functions νm

on real numbers between 0 and 1 as follows:

νm(θ) =

{

0, {2mθ} < θ
1, {2mθ} ≥ θ

Proposition 2.1. For any real number θ between 0 and 1, we have

1 + [(2m − 1)θ] = [2mθ] + νm(θ).

Proof. There are two cases: [2mθ] = [(2m − 1)θ] and [2mθ] = [(2m − 1)θ] + 1. In
the first case, subtracting θ from 2mθ does not change the integer part, therefore,
{2mθ} > θ, and νm(θ) = 1. In the second case, subtracting θ from 2mθ changes the
integer part, therefore, {2mθ} < θ, and νm(θ) = 0. �

We can now rewrite the formula for x0 as follows:

x0 =
∞
∑

m=1

[2mθ0]

22m+1
+

∞
∑

m=1

νm(θ0)

22m+1
.

Let us compute the first sum:
12



Proposition 2.2. Let θ0[m] denote the m-th digit in the binary expansion of θ0.
Then

∞
∑

m=1

[2mθ0]

22m+1
=

∞
∑

m=1

θ0[m]

22m
.

Proof. Denote by X the left hand side of this equality. Note that the m-th binary
digit of a real number θ is equal to [2mθ]− 2[2m−1θ] for m ≥ 1. Therefore, the right
hand side is

∞
∑

m=1

[2mθ0] − 2[2m−1θ0]

22m
= 2X − X = X. �

We have proved that

x0 =
∞
∑

m=1

θ0[m]

22m
+

∞
∑

m=1

νm(θ0)

22m+1
.

This series represents the binary expansion of x0. Therefore, we have

Proposition 2.3. Let x0[m] denote the m-th binary digit of x0. Then

x0[2m] = θ0[m], x0[2m + 1] = νm(θ0)

2.2. A forward invariant lamination. Fix a point z0 = e2πiθ0 on the unit circle.
Define a lamination L0 as follows. We first define a probability measure µ on the
unit circle. It is given by the following formula:

µ{z} =
∑

m: z2m
=z0

1

2 · 4m
.

Next, we consider the map h with the following properties:

• h(1) = 1, and 1 is in the center of h−1(1).
• the push-forward of the uniform probability measure under the map h is the

measure µ,
• the map h has topological degree 1.

It blows up all iterated preimages of z0. We connect two points on the unit circle
by a geodesic if these two points bound the full preimage of a single point under
h. The lamination L0 is the set of all such geodesics. As we will prove shortly, this
lamination is forward invariant under x 7→ x4: for any leaf xy of L0, either x4 = y4,
or the geodesic x4y4 is also a leaf of L0.

Note that in the definition of the lamination L0, each leaf l ∈ L0 comes together
with a specific arc subtended by l. Namely, for a leaf xy, the corresponding arc is
the full preimage of the point h(x) = h(y) under the map h. We will call this arc
the shadow of the leaf l. Shadows of different leaves in L0 do not intersect. Given
an arc σ on the unit circle, define the bridge over σ as the geodesic connecting the
boundary points of the arc σ. Thus the bridge over the shadow of a leaf l ∈ L0 is
this leaf l itself. Denote by l0 the leaf, whose shadow σ0 is h−1(z0).

13



The lamination L0 has a distinguished gap G0 such that all leaves of L0 are on
the boundary of G0.

Proposition 2.4. The lamination L0 defined above is forward invariant under the
map x 7→ x4. Moreover, the map h semi-conjugates the endomorphism x 7→ x4 of
the unit circle with the endomorphism z 7→ z2 everywhere except on the arc σ0. In
other words, h(x4) = h(x)2 for any point x on the unit circle such that h(x) 6= z0.

Proof. We first define an endomorphism ϕ of the unit circle such that L is forward
invariant under ϕ, and then prove that ϕ is the map x 7→ x4.

Suppose first that a point x on the unit circle does not belong to a shadow of a
leaf of L0. Then the point h(x)2 has a unique preimage under the map h. Define
ϕ(x) to be this preimage. The map ϕ thus defined admits a continuous extension
that maps the full h-preimage of any point z on the unit circle to the full h-preimage
of the point z2, except for z = z0. To fix one such extension, we require that on each
arc that is the full h-preimage of some point, the map ϕ act linearly with respect to
the arc-length. Then ϕ is well-defined everywhere except on σ0, and the restriction
of ϕ to the full h-preimage of any point on the unit circle multiplies all arc lengths
by 4. Indeed, the length of the arc h−1(z2) is four times bigger that the length of
the arc h−1(z), provided that z 6= z0. We can also say where ϕ should map the arc
σ0 in order to be a self-covering of the unit circle.

In the case, where z0 is not periodic under z 7→ z2, the arc σ0 has length 1/2.
It should be wrapped twice around the circle under the endomorphism ϕ. Both
endpoints of σ0 should be mapped to the h-preimage of z2

0 , which is a single point.
Of course, we require that ϕ act linearly on σ0.

In the case, where z0 is periodic with the minimal period p under the map z 7→ z2,
the orbit of the arc σ0 under the map z 7→ z4 consists of p arcs of the following
lengths:

4

2(4p − 1)
,

42

2(4p − 1)
, . . . ,

4p

2(4p − 1)
,

the biggest length being that of σ0. We can arrange that σ0 wraps more than twice
but less than three times around the unit disk under the map ϕ so that the ends
of σ0 map to the ends of the segment of length 4/2(4p − 1) (this segment being
covered 3 times by parts of σ0 under the map ϕ). In all cases, we can arrange that
all arc-lengths in σ0 get 4 times bigger modulo Z under the map ϕ.

We defined a continuous self-map ϕ of the unit circle that is semi-conjugate to
z 7→ z2 on the complement to the arc σ0. The semi-conjugacy is given by h. It is
not hard to see that ϕ is a self-covering of the unit circle and that ϕ(1) = 1. By
definition, the lamination L0 is forward invariant under the map ϕ.

We will now prove that the map ϕ just defined multiplies all arc-lengths by 4
modulo Z (in other words, it multiplies all small arc-lengths exactly by 4). Consider
any arc σ on the unit circle, whose length is smaller than 1/4. We want to show
that the length of the arc ϕ(σ) is 4 times bigger than the length of the arc σ. Since
on each arc of the form h−1(z), the map ϕ multiplies all arc-lengths by 4, it suffices

14



to assume that σ is the full preimage of the arc h(σ) under h. By definition of the
measure µ, we have µ(h(σ)2) = 4µ(h(σ)). We also know that µ(h(σ)2) coincides
with the length of the arc ϕ(σ). This implies that the length of ϕ(σ) is 4 times
bigger than the length of σ.

Since the map ϕ multiplies all arc-lengths by 4 and fixes 1, it must have the form
x 7→ x4. �

2.3. An invariant lamination. In this subsection, we extend the lamination L0

to a lamination L invariant under the map x 7→ x4 in the sense of Thurston. Recall
that a geodesic lamination in the unit disk is said to be invariant under the map
x 7→ xd if

• it is forward invariant,
• it is backward invariant: for any leaf xy of the lamination, there exists a col-

lection of d disjoint leaves, each connecting a preimage of x with a preimage
of y under the map x 7→ xd.

• it is gap invariant: for any gap G, the convex hull G′ of the image of G∩ S1

is a gap, or a leaf, or a single point.

By a pullback of a connected set under a continuous map, we mean a connected
component of an iterated preimage of this set. Recall that the arc σ0 was defined
as the full preimage of the point z0 under the map h. The arc σ0 is the shadow of
some leaf l0. It is easy to see that the shadow of any other leaf in L0 is a certain
pullback of σ0 under the map x 7→ x4.

Proposition 2.5. Consider the set A of all pullbacks of the arc σ0 under the map
x 7→ x4. The bridges over any two arcs in A are disjoint.

We need the following lemma:

Lemma 2.6. Consider two different pullbacks σ and σ′ of the arc σ0 different from
σ0. If the bridges over σ and σ′ intersect, then so do the bridges over their images
under the map x 7→ x4, unless σ or σ′ coincides with σ0.

Proof. If the bridges over σ and σ′ intersect, then these arcs intersect each other,
but none of them contains the other. The union σ′′ of the two arcs is also an arc. If
we can show that the length of σ′′ is less than 1/4, then we would conclude that the
map z 7→ z4 acts homeomorphically on σ′′, and hence the images of σ and σ′ have
intersecting bridges.

By the depth of a pullback of σ0 we mean the minimal number n such that σ0 is
the image of the pullback under x 7→ x4n

. The arcs σ and σ′ cannot be pullbacks
of σ0 of the same depth, because different pullbacks of the same depth are disjoint.
By our assumption, neither of the arcs σ, σ′ coincides with σ0. Then the length of
one arc is at most

1

2

(

1

4
+

1

42
+

1

43
. . .

)

,
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while the length of the other arc is at most

1

2

(

1

42
+

1

43
+ . . .

)

.

The length of σ′′ is thus at most

1

8
+

1

42
+

1

43
+ · · · <

1

4
.

This proves the lemma. �

Define the set A0 as the set of all arcs that are shadows of leaves of L0.

Lemma 2.7. The union of the set A0 is backward invariant. In other words, any
pullback of any arc in the set A0 is a subset of some arc in A0.

Indeed, this follows from the proof of Proposition 2.4.

Proof of Proposition 2.5. Suppose that there are two arcs from A such that their
bridges intersect. Then, applying to this pair of arcs a suitable iterate of the map
x 7→ x4, we can make one of the arcs be σ0.

Thus we have a pullback σ of the arc σ0 such that the bridges over σ0 and σ
intersect. But this contradicts Lemma 2.7. �

We can now define a lamination L as the set of bridges over all pullbacks of the arc
σ0. By Proposition 2.5, the leaves of L are disjoint, so that L is indeed a lamination.
It is not hard to see that the lamination L does not have any accumulation points
inside the unit disk.

Proposition 2.8. The lamination L is invariant under the self-map x 7→ x4 of the
unit circle.

Proof. We have already proved the forward and backward invariance. It remains
only to prove the gap invariance. Define the span P (l) of a leaf l ∈ L as the open
topological disk bounded by l and the shadow of l. Any gap of L different from G0

can be described as the complement in a span P (l) to the closures of all spans that
lie in P (l). Denote by G(l) the gap associated with the leaf l in this way.

Suppose that l is a leaf of L different from l0. Then the image of l under the map
x 7→ x4 is another leaf l′, and the gap G(l) maps to the gap G(l′) in the following

sense: the intersection G(l) ∩ S1 maps to the intersection G(l′) ∩ S1. Clearly, the
gap G0 maps to itself under the map x 7→ x4 in this sense. Moreover, G0 is a critical
gap of degree two: the quotient space ∂G0/l0 maps to ∂G0 as a topological covering
of degree two, if we extend the map x 7→ x4 linearly over leaves.

It remains to consider the gap G(l0). This gap is mapped to G0, and this is also
a critical gap. To see that, it is enough to understand what happens with the arc
σ0, but this was described in the proof of Proposition 2.4. �
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2.4. A two-sided lamination. In this subsection, we extend the lamination L to
a two-sided lamination 2L invariant under the map x 7→ 1/x2. By Proposition 1.1,
it will be clear that 2L = 2L(x0). In particular, the lamination 2L(x0) exists.

Proposition 2.9. The lamination L is invariant under the antipodal map x 7→ −x.

Proof. Indeed, if the shadow σ of some leaf l ∈ L is a pullback of the arc σ0 under
the map x 7→ x4, then −σ is also a pullback of σ0. Thus leaves of L map to leaves
of L under the map x 7→ −x, and, clearly, gaps map to gaps. �

Consider the set L′ of geodesics outside of the unit circle connecting pairs of points
1/x2 and 1/y2, where x and y are endpoints of a leaf in L.

Proposition 2.10. The set L′ is a geodesic lamination outside of the unit circle.

Indeed, by Proposition 2.9, the images of different leaves in L are either the same
or disjoint.

We can now consider the two-sided lamination 2L that is the union of the inside
lamination L and the outside lamination L′. By Proposition 1.1, we have 2L =
2L(x0).

3. The exterior component

In this section, we describe maps in the exterior component E in terms of a special quasi-

conformal surgery performed on Blaschke products. We also discuss combinatorics of rays.

3.1. Anti-matings of Blaschke products. Anti-matings of polynomials were
considered by Douady and Hubbard [4]. In this section, we introduce a similar no-
tion for Blaschke products, together with an explicit quasi-conformal surgery making
these anti-matings into rational functions. Let ∆0 denote the inside of the unit cir-
cle, and ∆∞ the outside of the unit circle (i.e. the complement to the closed unit
disk in the Riemann sphere). The closures of the open disks ∆0 and ∆∞ are denoted
by ∆0 and ∆∞, respectively.

A (finite) Blaschke product is a product of any finite number of holomorphic
automorphisms of the unit disk. The product here is in the sense of multiplication
of complex numbers. Any holomorphic automorphism of the unit disk extends to a
holomorphic automorphism of the Riemann sphere. Therefore, Blaschke products
are also defined on the whole Riemann sphere.

Consider two Blaschke products B0 and B∞ of the same degree d. We will make
the following assumption on B0 and B1: the restrictions of these maps to the unit
circle are expanding in the usual metric. In particular, this implies that both maps
B0 and B1 are hyperbolic. Let α0 be the restriction of the map 1/B0 to the unit
circle. This map takes the unit circle to itself. Moreover, this is an orientation-
reversing self-covering of the unit circle of degree −d (the negative sign represents
the change of orientation). The restriction α∞ of the map 1/B∞ to the unit circle
satisfies the same properties.
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From a classical theorem of M. Shub [21] it follows that any expanding endomor-
phism of the unit circle is topologically conjugate to a map z 7→ zk; the conjugating
homeomorphism is unique (see e.g. [6]). In particular, the maps α0 and α∞ are
topologically conjugate to the map z 7→ z−d. Since α0 and α∞ are C∞, by [22], the
conjugating homeomorphism is quasi-symmetric.

The following statement is classical, but we give a proof for completeness:

Lemma 3.1. Consider two endomorphisms of the unit circle, one of which is ex-
panding. If these two maps have the same topological degree and if they commute,
then they coincide.

Proof. The expanding map is conjugate to the map z 7→ zk for some k 6= 0,±1. If
we lift this map to the universal cover of the unit circle (i.e. to the real line), then
we obtain just the linear map x 7→ kx. Assume that another map of topological
degree k commutes with z 7→ zk. The lift of this map to the universal cover has the
form x 7→ kx + P (x), where P is a periodic function. Since the two maps commute,
we have

(kx) + P (kx) = k(x + P (x)).

Therefore, kP (x) = P (kx), and then knP (x) = P (knx) for all n. The function P is
periodic, hence bounded. It follows that

P (x) = lim
n→∞

1

kn
P (knx) = 0

for all x. �

Let ϕ denote the self-homeomorphism of the unit circle that conjugates α0 ◦ α∞

with α∞ ◦ α0. Then we have

ϕ ◦ α0 ◦ α∞ ◦ ϕ−1 = α∞ ◦ α0.

From this equation it follows that the maps ϕ ◦ α0 and α∞ ◦ ϕ−1 commute. By
Lemma 3.1, this is only possible when

ϕ ◦ α0 = α∞ ◦ ϕ−1.

This is an important functional equation on ϕ that we will use.
There is a quasi-conformal self-homeomorphism Q of the disk ∆∞ that restricts

to the map ϕ on the unit circle. This is because ϕ is quasi-symmetric: any quasi-
symmetric automorphism of the unit circle extends to a quasi-conformal automor-
phism of the unit disk, see [1].

Define a self-map F of the unit sphere as follows. On the disk ∆0, we set F to be
Q ◦ (1/B0). On the disk ∆∞, we set F to be (1/B∞) ◦Q−1. These two maps match
on the unit circle by the functional equation on ϕ.

There is a quasi-conformal structure on the Riemann sphere that is invariant
under the map F . Indeed, we can define this structure to be the standard conformal
structure on the unit disk ∆0, and the push-forward of the standard conformal
structure under Q on the disk ∆∞.
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By the Measurable Riemann Mapping theorem of Ahlfors and Bers (see [1]), there
is a self-homeomorphism of the sphere that takes the quasi-conformal structure we
defined to the standard conformal structure. Let f be a self-map of the Riemann
sphere corresponding to the self-map F under this homeomorphism, and J the image
of the unit circle. The map f is a holomorphic self-map of the Riemann sphere with
the Julia set J (which is a quasi-circle). It has topological degree d, hence it is a
rational function of degree d.

We call the map f the anti-mating of the Blaschke products B0 and B∞.

3.2. The exterior component. In this subsection, we consider one particular ex-
ample of the general construction introduced above. For the map B0, we take a
quadratic Blaschke product

B0(z) = z
z + b

bz + 1

with |b| < 1. The origin is a fixed point for this map. The critical points c1,2 of B0

are given by the equation bz2 + 2z + b = 0. Since we have |c1c2| = 1, one of the
critical points, say c1, satisfies |c1| ≤ 1, while for the other critical point c2 we have
|c2| ≥ 1. The exact formula for c1,2 is

c1,2 =
−1 ±

√

1 − |b|2
b

.

We see that c1 lies in ∆0, whereas c2 lies in ∆∞ (since |b| < 1, it is clear from this
formula that points c1,2 cannot both lie on the unit circle).

Proposition 3.2. The restriction of B0 to the unit circle is expanding.

Proof. By a theorem of Tischler [26], a Blaschke product B restricts to an expanding
endomorphism of the unit circle if and only if λB has a fixed point in ∆0 for all λ
in the unit circle. Clearly, the map B0 satisfies this condition. �

For the map B∞, we just take z 7→ z2 (the restriction of this map to the unit circle
is obviously expanding). Let f = f[b] be the anti-mating of the Blaschke products
B0 and B∞. This is a quadratic rational map. It depends smoothly (and even real-
analytically) on b. However, the dependence is not complex analytic, because the
Blaschke product B0 does not depend complex analytically on b.

Proposition 3.3. The map f has a super-attracting cycle of period two.

Proof. Consider the map F from Subsection 3.1. The image of 0 under F is Q(∞),
and the image of Q(∞) is 0. Thus {0, Q(∞)} is a periodic cycle of period two for
the map F . Moreover, Q(∞) is a critical point of F , hence this cycle is super-
attracting. The map f is quasi-conformally conjugate to F . It follows that f also
has a super-attracting cycle of period two. �
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This proposition means that f is a map in V2. In particular, it is holomorphically
conjugate to some map of the form

fa : z 7→ a

z2 + 2z

or to the map z 7→ 1/z2. Thus, for any b 6= 0 in the open unit disk, there is a unique
complex number a such that fa is holomorphically conjugate to f[b]. Recall that f[b]

was originally defined only up to a holomorphic conjugacy. We can fix this degree
of freedom by setting f[b] = fa. For b = 0, we obtain the map z 7→ 1/z2. This
defines a map from the unit disk |b| < 1 to the parameter space V2. We will call this
map the anti-mating parameterization. Actually, it is easy to see that each map f[b]

belongs to the exterior component E (this is because all critical points of f[b] are in
the immediate basin of attraction of the super-attracting cycle {0,∞}).
Proposition 3.4. The anti-mating parameterization is one-to-one: if maps f[b] and
f[b′] are holomorphically conjugate, then b = b′.

Proof. Indeed, if f[b] and f[b′] are holomorphically conjugate on the Riemann sphere,
then the squares of the corresponding quadratic Blaschke products

B0(z) = z
z + b

bz + 1
, and B′

0(z) = z
z + b′

b′z + 1

are holomorphically conjugate in the unit disk. Since 0 is the only fixed point for
each of the maps B2

0 and B′
0
2, a conjugating homeomorphism ϕ must fix 0. Then ϕ

is just the multiplication by some complex number λ such that |λ| = 1.
The point −b is the only preimage of 0 under B0. Similarly, the point −b′ is

the only preimage of 0 under B′
0. Therefore, we must have b′ = λb. But then

the equation λB2
0(z) = B′2

0(λz) yields λ = 1, after all cancelations. In particular,
b = b′. �

We will need the following obvious lemma:

Lemma 3.5. Let f and g be holomorphic functions defined on some open subsets
of C. Suppose that f has no multiple critical points, and fix an open set U ⊆ C. If
for every critical value v of f , the set g−1(v)∩U consists of simple critical points of
g, then the multi-valued analytic function f−1 ◦ g has no ramification points in U .

In particular, if U is simply connected, g is defined everywhere on U , and f is a
ramified covering over g(U), then f−1 ◦ g|U splits into single-valued branches.

Proposition 3.6. The anti-mating parameterization is onto: any quadratic rational
map of class E is holomorphically conjugate to f[b] for some b.

Proof. Consider any map f ∈ V2 in the exterior hyperbolic component E . We may
assume that f = fa for some a. Let Ω0 and Ω∞ denote the immediate basins of
0 and ∞, respectively, for the map f ◦2 (both 0 and ∞ are super-attracting fixed
points for this map). The proof that f is holomorphically conjugate to (actually,
coincides with) some map f[b], consists of several steps:

20



Step 1. Conjugate f ◦2 by a Riemann map sending Ω0 to the unit disk and fixing
0. The result is a holomorphic self-covering g of the unit disk of degree 4 such that
0 is a fixed critical point and a preimage −b 6= 0 of 0 is also a critical point. In
particular, all preimages of 0 have multiplicity 2, which means by Lemma 3.5 that
there is a well-defined holomorphic branch of the function

√
g. Denote this branch

by B0.
Step 2. Since B0(0) = 0, we conclude that z 7→ B0(z)/z is a holomorphic auto-

morphism of the unit disk that maps −b to 0. Therefore, it must have the form

λ
z + b

bz + 1
,

where λ is a complex number such that |λ| = 1. Conjugating g by a suitable rotation
around the origin, we can arrange that λ = 1 (with a different choice of b).

Step 3. The map f ◦2 is holomorphically conjugate to B2
0 , and hence to f ◦2

[b] , on the

set Ω0. More precisely, there is a holomorphic embedding ϕ0 : Ω0 → C such that

ϕ0 ◦ f ◦2 = f ◦2
[b] ◦ ϕ0 on Ω0. (1)

Moreover, we can assume that ϕ′
0(0) = 1. In particular, the 0-ray of f ◦2 emanating

from 0 is mapped to the 0-ray of f ◦2
[b] emanating from 0. Since the Julia set of f is

locally connected, we can extend ϕ0 to the closure of Ω0.
Step 4. All critical values of f[b] are images under ϕ0 of the critical values of

f . Therefore, by Lemma 3.5, the multi-valued analytic function f−1
[b] ◦ ϕ0 ◦ f splits

into two single-valued branches over Ω∞. The 0-ray for f emanating from ∞ gets
mapped to the 0-ray for f[b] emanating from 0 under ϕ0 ◦ f . The two preimages
of the latter ray under f[b] are the 0- and 1/2-rays emanating from ∞. Choose the
branch ϕ∞ of f−1

[b] ◦ ϕ0 ◦ f that takes the 0-ray emanating from ∞ to the 0-ray for

f[b] emanating from ∞.
Step 5. The map ϕ∞ is defined on Ω∞, and satisfies the following relation:

f[b] ◦ ϕ∞ = ϕ0 ◦ f on Ω∞. (2)

If we substitute this relation into (1), then we obtain the following:

f[b] ◦ (ϕ∞ ◦ f) = f[b] ◦ (f[b] ◦ ϕ0) on Ω0.

Using the fact that ϕ∞ takes a 0-ray to a 0-ray, we conclude that

ϕ∞ ◦ f = f[b] ◦ ϕ0 on Ω0. (3)

From formulas (2) and (3) it also follows that

ϕ∞ ◦ f ◦2 = f ◦2
[b] ◦ ϕ∞ on Ω∞. (4)

Step 6. The map ϕ∞ also extends continuously to the Julia set of f . The restric-
tions of the maps ϕ0 and ϕ∞ to the Julia set of f both conjugate the map f ◦2 with
f ◦2

[b] . Uniformize both Ω0 and the basin of 0 for f ◦2
[b] by the unit disk. Both maps

f ◦2 and f ◦2
[b] correspond to the self-map z 7→ z4 of the unit circle. Thus the maps
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corresponding to ϕ0 and ϕ∞ both conjugate z 7→ z4 with itself. It follows that these
maps differ by a cubic root of unity. However, both ϕ0 and ϕ∞ take the 0-rays for f
emanating from 0 and ∞ to the 0-rays of f[b] emanating from 0 and ∞, respectively.
Therefore, the restrictions of ϕ0 and ϕ∞ to the Julia set of f must coincide.

Step 7. We can now define a continuous map

ϕ =

{

ϕ0, on Ω0

ϕ∞, on Ω∞

By formulas (2) and (3) and their extensions to the Julia set, the map ϕ conjugates
f with f[b]. Moreover, ϕ is holomorphic on the Fatou set. It follows that ϕ is
holomorphic on the Riemann sphere, i.e. ϕ is a Möbius transformation. Since it
fixes 0, 1 and ∞, the map ϕ must be the identity. We conclude that f = f[b]. �

3.3. Ray dynamics: non-periodic case. Let f = fa be a map in the exterior
component. In this subsection, we will study combinatorics of rays for the map f ◦2.

Consider the ray R0 = R0(θ0) in Ω0 that emanates from 0 and crashes into −1.
Such ray always exists. Indeed, there is at least one ray emanating from 0 that
crashes into a pre-critical point (otherwise, the map f ◦2 would be conjugate to the
map z 7→ z2 everywhere on Ω0). The pre-critical point this ray crashes into must
be an iterated preimage of −1. The image of this ray under the corresponding
(necessarily even) iteration of f will be the ray emanating from 0 and crashing into
−1.

Suppose that the ray R0 is not periodic under the map f ◦2 (i.e. no iterated image
of R0 is contained in R0). This means that the angle θ0 is not periodic under the
doubling. There are exactly two rays R1 and R2, whose α-limit set is the critical
point −1. The images of these rays under the map f ◦2 coincide and lie on the ray
f ◦2(R0).

Proposition 3.7. The rays R1 and R2 land in the Julia set.

Proof. It suffices to prove this for one ray, say, for R1. First, we need to show that
the ray R1 does not crash into pre-critical points. Assume the contrary: the ω-limit
set of R1 is a pre-critical point x. It is an iterated preimage of −1, so that we can
write f ◦2n(x) = −1 for some positive integer n.

The set f ◦2(R1) lies on the ray containing f ◦2(R0). Therefore, the set f ◦2n(R1) lies
on the ray containing f ◦2n(R0). However, the set f ◦2n(R1) has the point −1 in its
closure, whereas the ray containing f ◦2n(R0) does not (because R0 is not periodic).
A contradiction.

We see that R1 does not crash into pre-critical points. Therefore, its ω-limit set
is a connected subset of the Julia set. If this subset contains more than one point,
then it contains an arc (i.e. the preimage of an arc under a homeomorphism between
the Julia set and the unit circle). In this case, the ω-limit set of a suitable iterated
image of R1 is the whole Julia set. The iterated images of R1 belong to the rays
containing the iterated images of R0. Thus the ω-limit set of a ray containing a
certain iterated image of R0 is the Julia set.
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Consider two strictly pre-periodic rays R′ and R′′ of different minimal periods
emanating from 0. If R0 is strictly pre-periodic, we assume additionally that the
minimal periods of R′ and R′′ are different from that of R0. The rays R′ and R′′

do not crash into pre-critical points, otherwise their suitable iterated images would
belong to the ray R0, which is not pre-periodic or has a different minimal period.
The standard argument of Douady and Hubbard [4] now applies to show that R′

and R′′ land in the Julia set (so that their ω-limits are single well-defined points
different from each other). The closures of the rays R′ and R′′ divide the closed unit
disk into two parts, and the closure of any ray emanating from 0 can only belong
to one part . This contradicts the statement that the ω-limit set of a certain ray
emanating from 0 is the whole Julia set. �

Proposition 3.8. Any ray for the map f ◦2 either crashes into an iterated preimage
of −1 or lands in the Julia set.

Proof. Consider any ray R. The α-limit set of this ray is an iterated preimage of
0 or an iterated preimage of −1. Thus we can map R to a ray emanating from 0
or from −1 by a suitable iteration of the map f ◦2. In other terms, we can assume
without loss of generality that the ray R emanates from 0 or from −1.

Consider the first case: R emanates from 0. Suppose that R does not crash into
a an iterated preimage of −1. Then its ω-limit set is contained in the Julia set. The
rest of the proof goes exactly as in Proposition 3.7. In the second case, the ray R
must coincide with R1 or R2. The result now follows from Proposition 3.7. �

Let ϕ denote the quasi-symmetric homeomorphism between the unit circle and
the Julia set of f that conjugates the map x 7→ 1/x2 with the map f :

f(ϕ(x)) = ϕ(1/x2), x ∈ S1

Recall that we defined the two-sided ray lamination RL associated with f in the
following way: xy ∈ RL if and only if ϕ(x) and ϕ(y) are the landing points of rays
emanating from the same iterated f -preimage of −1. The geodesic xy is drawn
inside or outside of the unit circle depending on whether this iterated preimage of
−1 belongs to Ω0 or Ω∞.

3.4. Proof of Theorem D. Consider a parameter value a in the exterior hyperbolic
component that does not belong to a periodic external parameter ray, and the
corresponding rational map f = fa. Let J denote the Julia set of f . We need to
prove that the ray lamination RL coincides with some two-sided lamination 2L(x0)
corresponding to a point z0 = e2πiθ0 on the unit circle that is not periodic under
the map z 7→ z2 (here x0 is expressed through θ0 as in Theorems B and D). To
this end, we recover the map h of Subsection 2.2 in terms of RL. We will use the
homeomorphism ϕ : S1 → J from the end of the preceding subsection.

For any iterated preimage z of −1, we defined the ray leaf Rl(z) as the union of

z and the two rays emanating from z. Define a continuous map h̃ : S1 → S1 as
follows:
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• if ϕ(e2πiθ) is the landing point of a ray R0(ξ), then we set h̃(e2πiθ) = e2πiξ;
• otherwise there is a unique ray R0(ξ) that splits at a precritical point z and

such that Rl(z) ∪ J separates 0 from ϕ(e2πiθ); we set h̃(e2πiθ) = e2πiξ.

Proposition 3.9. The map h̃ coincides with the map h from Subsection 2.2, with
some choice of the point z0.

Proof. We will just check that the map h̃ satisfies all properties of the map h. Since
ϕ(1) is the landing point of R0(0), we have h̃(1) = 1. It is also clear that h̃ has
topological degree 1. It only remains to verify that the push-forward of the Lebesgue
measure under h̃ is the measure µ corresponding to some point z0 on the unit circle,
as it was defined in Subsection 2.2. We denote by µ̃ the push-forward of the Lebesgue
measure under the map h̃.

Consider the ray leaf Rl(−1) = {−1}∪R1∪R2. The landing points of rays R1 and
R2 divide the Julia set into two arcs. Choose the arc ϕ(σ̃0) that is separated from
0 by Rl(−1). The arc σ̃0 of the unit circle has length 1/2 (because the boundary
points of ϕ(σ̃0) are mapped to the same point under f , and hence the boundary
points of σ̃0 are mapped to the same point under x 7→ 1/x2). The image of σ̃0 under

h̃ is some point z0 on the unit circle such that µ̃{z0} = 1/2. Any ray leaf is an

iterated preimage of the leaf Rl(−1). Therefore, the images under h̃◦ϕ−1 of all arcs
in J subtended by ray leaves are points on the unit circle that lie in the backward
orbit of z0 under the map z 7→ z2. Moreover, if z2m

= z0, then we have µ̃{z} = 1
2·4m .

We see that the measure µ̃ coincides with the measure µ corresponding to the
point z0. Then the map h̃ is also the same as the map h. �

Theorem D follows immediately from this proposition.

4. Analytic continuation

In this section, we approach the external boundary of M2 from the exterior component. We

will define fixed point portraits for maps on the external boundary using an analytic continuation

argument similar to that in [3].

4.1. The basin of the super-attracting cycle. Let us first recall the setup. Our
main object is the following family of quadratic rational self-maps of the Riemann
sphere:

fa(z) =
a

z2 + 2z
.

Infinity is a periodic critical point of period 2 for all maps in this family. The
corresponding orbit is {0,∞}. The other critical point is −1.

Denote by Ω the immediate basin of attraction of the super-attracting cycle
{0,∞}. Let Ω0 and Ω∞ be connected components of Ω containing 0 and ∞, re-
spectively. The restriction of fa to Ω∞ is a 2-fold branched covering of Ω0. It follows
that f−1

a (Ω0) = Ω∞. We will write simply f instead of fa whenever this notation is
unambiguous. The Julia set of f will be denoted by J .
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Proposition 4.1. The critical point −1 does not belong to the set Ω∞.

Proof. If −1 ∈ Ω∞, then all critical points of f belong to the same Fatou component.
It is known (see e.g. [13, 17]) that in this case, the Fatou component containing the
critical points must be invariant, and the Julia set must be totally disconnected. A
contradiction. �

Proposition 4.2. Both sets Ω0 and Ω∞ are topological disks.

Proof. Consider a small disk U containing the origin. For any positive integer n,
define the open set Un as the component of f−n(U) containing 0 or infinity depending
on whether n is even or odd. Since −1 6∈ Ω∞, each set Un contains at most one
critical point. By the Riemann–Hurwitz formula, if Un is a topological disk, then
Un+1 is also a topological disk. Thus all Un are simply connected.

The set Ω0 is the union of Un for all even n. As the union of a nested sequence
of simply connected open sets, this set is also simply connected. Similarly, Ω∞ is
simply connected. �

4.2. Radial components. Let x be an iterated preimage of the critical point ∞.
It makes sense to talk about rays emanating from x, see Subsection 1.7 for more
details. Every ray hits the Julia set or a pre-critical point (namely, an iterated
preimage of the critical point −1).

Define the radial component of x as the union of {x} and all rays emanating from
x. We will call the point x the center of this radial component. Clearly, every radial
component is an open topological disk. If the critical point −1 is not attracted by
the cycle {0,∞}, then each radial component is just a Fatou component. However,
the combinatorial structure of radial components is more stable than that of Fatou
components.

Let A0 and A∞ denote the radial components of 0 and ∞, respectively. Note
that f(A∞) = A0, the restriction of f to A∞ being a ramified covering of degree 2.
However, in general, the set f(A0) is strictly contained in A∞. The ray of angle θ
emanating from x will be denoted by Rx(θ).

The following proposition is essentially due to Luo [7]:

Proposition 4.3. Suppose that the parameter a is not on the external parameter
ray of angle 0. Then the intersection of A0 and A∞ contains a fixed point ω of f
that is the landing point of both R∞(0) and R0(0).

Proof. First note that if a is not on the external parameter ray of angle 0, then the
rays R∞(0) and R0(0) both land in the Julia set. Consider the landing point ω of
the 0-ray in A∞. This is a point on the boundary of A∞ that is either a fixed point
or a point of period 2. However, the map f has only one orbit of period two, namely,
{0,∞}. It follows that ω is a fixed point. Since ω belongs to the boundary of A∞,
it is also on the boundary of A0 = f(A∞). �

Note that the fixed point ω must be repelling. Indeed, this fixed point is a
univalent function of the parameter defined on C − 0 with the external parameter
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ray of angle 0 removed. Since it does not bifurcate over this region, it never becomes
parabolic. Actually, the ramification point for ω is exactly the puncture a = 0, the
value of a that does not correspond to any map in V2.

Let x be an iterated preimage of the critical point ∞, and n the minimal non-
negative integer such that f ◦n(x) = ∞. The number n is called the depth of x and of
the corresponding radial component. The following statement can be easily deduced
from Proposition 4.3 by applying pull-backs under the iterates of f :

Proposition 4.4. Suppose that the parameter a is not on the external parameter
ray of a binary rational angle. Let A be a radial component, and r 6= 0 a binary
rational angle. Then the ray of angle r in A lands at a point in the Julia set that is
also the landing point of the 0-ray in a unique radial component A′, whose depth is
bigger than the depth of A.

The uniqueness follows from the following fact:

Proposition 4.5. The ray R∞(0) is the only ray in A∞ landing at ω.

The proof is similar to that of the following classical statement about quadratic
polynomials: there is only one external ray landing at the β fixed point.

Proposition 4.6. If A is a radial component different from A∞ and A0, then the
fixed point ω is not in the closure of A.

Proof. Suppose that ω is in the closure of A. Then ω must be the root point of A,
i.e. the landing point of the zero ray in A (because some ray in A must land at ω,
and this can only be the ray of angle zero). Note that if A has the property ω ∈ ∂A,
then f(A) has the same property. We can now assume that A has the minimal
depth among all radial components with this property, different from A∞ and A0.
In this case, A must map to Ω∞ under the first iteration of f , and the root point of
A must coincide with the landing point of R∞(1/2). But this point is different from
ω by Proposition 4.5. �

Corollary 4.7. Suppose that −1 is not an iterated preimage of ω. Then any iterated
preimage of ω is on the boundary of exactly two radial components.

This statement can be easily reduced to the preceding proposition by using iter-
ations of f .

4.3. Regulated rays. Let r0, r1, . . . be a finite or infinite sequence of nonzero bi-
nary rational angles, and x an iterated preimage of ∞. Define the set Γ(x, r0, r1, . . . )
as follows. Let A0 be the radial component centered at x. Start at x and go in A0

along the ray of angle r0 up to the landing point a0. By Proposition 4.4, the point
a0 is the landing point of the 0-ray in some radial component A1. Go along the 0-ray
of A1 to the center of A1. From the center, go along the ray of angle r1 up to the
landing point a2. Continuing this process (if possible), we obtain a (finite or infinite)
sequence of points am and radial components Am such that am is the landing point
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of the ray of angle rm in Am, and, at the same time, the landing point of the 0-ray
in Am+1. We define Γ(x, r0, r1, . . . ) to be the union of the centers of Am, the rays
of angles rm in Am, the points am, and the 0-rays in Am+1. We call Γ(x, r0, r1, . . . )
a regulated ray starting at x. It is easy to see that there is a continuous embedding
γ : [0,∞) → C such that γ[0,∞) = Γ(x, r0, r1, . . . ) and γ(n + 1/2) = an for all
n = 0, 1, . . . . We say that an infinite regulated ray Γ(x, r0, r1, . . . ) lands at a point
z if the corresponding path γ(t) converges to z as t → ∞. Note that a regulated
ray is well defined unless it crashes into a pre-critical point. In particular, if the
critical point −1 is not attracted by the cycle {0,∞}, then all regulated rays are
well defined.

Proposition 4.8. Any iterated preimage of ∞ can be connected to 0 or ∞ by a
finite regulated ray.

Proof. Note that the full preimage of a regulated ray starting at 0 is a pair of
regulated rays starting at ∞:

f−1(Γ(0, r1, r2, . . . )) = Γ(∞, r1/2, r2, . . . ) ∪ Γ(∞, (r1 + 1)/2, r2, . . . ).

Consider a regulated ray Γ(∞, r1, r2, . . . ) starting at ∞. The preimage of this ray
is the union of Γ(0, r1, r2, . . . ) and a regulated ray starting at −2. But the latter is
a part of Γ(∞, 1/2, r1, r2, . . . ). We see that the preimage of any regulated ray lies
in the union of regulated rays.

Using this statement, it is now easy to prove the proposition by induction. �

Note that the intersection of any two regulated rays is an initial segment of both.
The image of a regulated ray starting at 0 is a regulated ray starting at ∞:

f(Γ(0, r1, r2, . . . )) = Γ(∞, r1, r2, . . . ).

The image of a regulated ray starting at ∞ is either a regulated ray starting at 0
or the union of a regulated ray starting at ∞ and the path between 0 and ∞ along
the zero rays of A0 and A∞. The latter path will be denoted by Γ[0,∞]. We have

f(Γ(∞, r1, r2, . . . )) =

{

Γ(0, 2r1, r2, . . . ), r1 6= 1/2,
Γ(∞, r2, . . . ) ∪ Γ[0,∞], r1 = 1/2.

Let x be the center of some radial component. The end of a finite regulated ray
Γ(x, r1, . . . , rn) is the center of another radial component, which we will denote by
A(x, r1, . . . , rn). By Proposition 4.8, radial components are in one-to-one correspon-
dence with finite regulated rays starting at ∞ or 0 and such that all angles ri are
nonzero.

Proposition 4.9. Let r1, r2, . . . be an infinite sequence of binary rational numbers,
and suppose that the parameter a is on the external parameter ray of angle θ0 6= 2krm.
Then the regulated ray Γ(0, r1, r2, . . . ) is well defined and lands at a point in the Julia
set.
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Proof. The condition θ0 6= 2krm guarantees that the regulated ray Γ(0, r1, r2, . . . )
never crashes into a precritical point. Therefore, it is well defined. From the hyper-
bolicity of f it follows that the diameter of Am decays exponentially, therefore, the
regulated ray lands. �

To emphasize the dependence of a regulated ray on the parameter a, we will
sometimes write Γa(∞, r1, r2, . . . ) instead of Γ(∞, r1, r2, . . . ). In the sequel, we will
need the notion of the angle of a regulated ray Γa(∞, r1, r2, . . . ). To define the
angle, consider the regulated ray Γ1(∞, r1, r2, . . . ) for the rational map f1, which
is Möbious conjugate to the quadratic polynomial p−1 : z 7→ z2 − 1. The landing
point of this ray corresponds to a point in the basilica that is the landing point of
exactly one external ray of angle θ. We call θ the angle of Γ(∞, r1, r2, . . . ). Clearly,
it depends only on the sequence of binary rational numbers r1, r2, . . . , not on a
specific parameter value a. This definition is parallel to that of [7, 3].

4.4. Fixed point portraits. For this subsection, the parameter a is in the exterior
hyperbolic component, but not on a rational external parameter ray.

Consider the regulated ray Γ0 = Γ(∞, 1/2, 1/2, . . . ). Note that this regulated ray
is contained in its image under f . Therefore, the landing point of it must be a fixed
point of f . Denote this point by β. For the parameter values under consideration,
all periodic points are repelling. In particular, β is a repelling fixed point.

Proposition 4.10. The fixed point β is different from ω.

Proof. Suppose that β = ω. Consider a small topological disk D around ω. We can
arrange that the boundary of this disk intersect each ray R∞(0) and R0(0) at a single
point. Then the union of these rays and ω divides D into two parts. The path Γ0

lies in one part and is invariant under f (in the sense that D∩ f(D∩Γ0) = D∩Γ0).
However, the two parts are interchanged under f , because the rays R0(0) and R∞(0)
are interchanged. A contradiction. �

The map f has three fixed points, and we already identified two of them. Denote
the remaining fixed point by α (the notation α and β for fixed points is meant to
suggest a similarity with quadratic polynomials). The α-fixed point is the most
interesting one.

Proposition 4.11. There is a regulated ray landing at the fixed point α.

Proof. Let I be the closed segment of the ray R∞(θ0) between the critical value and
the landing point (since θ0 is irrational, the ray R∞(θ0) lands in the Julia set). The
map f−1 has two well-defined holomorphic branches on the set Ω∞ − I.

Since α 6= ω, the α-fixed point cannot be on the boundary of A∞. Consider a
ray leaf Rl on the boundary of A∞ that separates ∞ from the fixed point α (this
means that any curve in Ω∞ connecting ∞ with α must intersect Rl). Let D be
the component of the complement to Rl ∪ J lying in Ω∞ and containing α on its
boundary. There is a holomorphic branch g of f−n mapping Ω∞ − I into D and
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A∞ − I into a radial component adjacent to Rl. We have (Ω∞ − I) ⊃ D ⊃ g(D) ⊃
g◦2(D) ⊃ . . . , and the sets g◦m(D) converge to α in the Hausdorff metric.

Consider a finite regulated ray Γ(∞, r1, r2, . . . , rk) connecting ∞ with the center
of the radial component different from A∞ and adjacent to the ray leaf Rl. Actually,
k = 1 in our situation (see Proposition 5.20), but this is not important for the time
being. Consider the infinite regulated ray

Γ1 = Γ(∞, r1, r2, . . . , rk, r1, r2, . . . , rk, . . . ),

where the sequence of angles is periodic with period (r1, r2, . . . , rk). Clearly, g(Γ1) ⊂
Γ1 ∩ D. Therefore, Γ1 lands at the fixed point α. �

The map f ◦n takes the path Γ1 to itself (modulo the regulated segment Γ[0,∞]).
In this sense, Γ1 is periodic under f . Denote the minimal period by q. How-
ever, Γ1 is not fixed, because otherwise Γ1 would coincide with the regulated ray
Γ(∞, 1/2, 1/2, . . . ) landing at β. Consider all images of Γ1 under iterations of f (re-
garded as regulated rays starting at ∞ or 0; the segment Γ[0,∞] appearing in the
image should be disregarded), and denote them by Γ1, . . . , Γq, where Γi = f ◦i−1(Γ1).
All regulated rays Γi land at the fixed point α. The union {α} ∪ Γ1 ∪ · · · ∪ Γq is
called the fixed point portrait for f .

With a fixed point portrait consisting of regulated rays Γ1, . . . , Γq, we associate
the set of angles {θ1, . . . , θq}, where θi is the angle of Γi.

4.5. Regulated parameter rays. Let us start with the following landing property:

Proposition 4.12. Any external parameter ray of a nonzero binary rational angle
lands at a parameter a, for which the critical point −1 is on the boundary of Ω0 and
is eventually mapped to the fixed point ω.

Proof. Consider an external parameter ray R of a binary rational angle θ0. For any
parameter a on this ray, the critical value −a = fa(−1) belongs to the ray R∞(θ0).
Since θ0 is strictly pre-periodic under the doubling, the ray R∞(θ0) lands in the
Julia set. The landing point za must be an iterated preimage of the fixed point ω,
because there are no other fixed points on the boundary of A0 ∪ A∞. The point
za moves complex analytically (with respect to the parameter a) with finitely many
branch points.

Consider any parameter value a0 in the boundary of R. If a0 is not a ramification
point for za, then za moves holomorphically over a neighborhood O(a0) of a0. Thus
the closure of the ray R∞(θ0) moves holomorphically (hence equicontinuously, see
[9]) over O(a0). It follows that, for the parameter value a0, we have −a0 = za0

,
hence it maps eventually to ω. Clearly, if a0 is a ramification point for za, then −1
is also mapped eventually to ω.

There are only finitely many parameter values, for which −1 is mapped eventually
to ω. It follows that the parameter ray R lands. For the landing point a0, we must
have −a0 = za0

, which can be easily proved by induction on the exponent of the
denominator of θ0. The proposition follows. �
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Now recall certain facts from [3] that we will use. We use slightly different lan-
guage; however, the translation should be straightforward. The type III hyperbolic
components of V2 are in one-to-one correspondence with finite sequences (r1, . . . , rn)
of nonzero binary rational numbers. For each such sequence (r1, . . . , rn), the hy-
perbolic component H(r1, . . . , rn) consists of all parameter values a such that the
critical value −a belongs to the radial component A(∞, r1, . . . , rn). The dynamical
(Böttcher) coordinate of −a in A(∞, r1, . . . , rn) defines the parameter coordinate of
a in H(r1, . . . , rn). Thus it makes sense to talk about internal rays in H(r1, . . . , rn):
the internal ray of angle θ consists of all parameter values a ∈ H(r1, . . . , rn) such
that the critical value −a belongs to the dynamical ray of angle θ in A(∞, r1, . . . , rn),
or, equivalently, the ray of angle θ in a preimage of A(∞, r1, . . . , rn) crashes into the
critical point −1. The parameter value a lies on the boundary of H(r1, . . . , rn) if
and only if the corresponding critical value lies on the boundary of A(∞, r1, . . . , rn).
In [3], this statement is deduced from the λ-lemma of Mañe–Sud–Sullivan [9].

Let R be an external parameter ray of a binary rational angle r. Consider the
landing point a of R. For the corresponding rational map f , the critical point −1
lies on the boundary of A0 and A−2, but also on the boundary of A(∞, 1/2, r) and
A(0, r). It follows that −a is on the boundary of A(∞, r), hence the parameter value
a is on the boundary of the type III component H(r).

For a sequence of nonzero binary rational numbers r1, r2, . . . , define the regulated
parameter ray ∆(∞, r1, r2, . . . ) as follows. Start at ∞ and go along the external
parameter ray of angle r1. By Proposition 4.12, this external parameter ray lands
at some point on the external boundary, which is also a boundary point of H(r1).
Continue along the zero internal ray of H(r1) up to the center, and then go along
the internal ray of angle r2 up to a boundary point. It is not hard to see that this
boundary point of H(r1) is also a boundary point of H(r1, r2). Continue along the
zero internal ray in H(r1, r2), etc.

The angle of a regulated parameter ray ∆(∞, r1, r2, . . . ) is defined as the angle of
the corresponding regulated dynamical ray Γ(∞, r1, r2, . . . ).

4.6. Analytic continuation of fixed point portraits. In this subsection, we es-
sentially follow [3]. Consider a fixed point portrait {α} ∪ Γ1 ∪ . . . Γq with the set
of angles {θ1, . . . , θq}. The angles θ1, . . . , θq divide the unit circle into several arcs.
The shortest complementary arc is called the characteristic arc. Suppose that the
characteristic arc is bounded by angles θ− and θ+, taken in the counterclockwise
order. Then it is not hard to see that the critical value −a must lie between the reg-
ulated rays Γ− and Γ+ of angles θ− and θ+, respectively. The following proposition
is proved in [3]:

Proposition 4.13. The regulated parameter rays ∆− and ∆+ of angles θ− and θ+,
respectively, land at a parabolic point not in the closure of the exterior component.

The following statement is slightly more general than in [3], but with similar
proof:
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Proposition 4.14. The fixed point portrait moves holomorphically over the region
(called a parameter wake) bounded by the regulated parameter rays ∆− and ∆+.

Proof. For parameter values in the parameter wake, the critical point never enters
a regulated ray of the fixed point portrait. Therefore, each regulated ray moves
holomorphically. By the λ-lemma, it follows that the critical portrait also moves
holomorphically. �

As a corollary, we have a well-defined fixed point portrait at all points on the
external boundary. Moreover, for any external parameter ray R, whose angle is not
a binary rational number, the fixed point portrait moves continuously over R, and
even holomorphically over some neighborhood of R. Note that Proposition 4.14
fails if we replace regulated rays with bubble rays (a bubble ray corresponding to a
regulated ray Γ is the union of the closures of all radial components intersecting Γ).
Actually, bubbles (the radial components) do not move continuously on the external
boundary.

4.7. Dynamical and parameter pre-puzzle. The union of the fixed point por-
trait and Γ[0,∞] divides the parameter plane into several pieces, called pre-puzzle
pieces of depth 0. We use the term pre-puzzle, because we do not employ equipo-
tentials as we should do to form the actual puzzle pieces. The point of considering
pre-puzzle is that its combinatorics will be stable along each external parameter ray.
We define pre-puzzle pieces of depth n as n-th pull-backs of the pre-puzzle pieces of
depth 0. By combinatorics of the pre-puzzle, we mean the information about which
rays bound which pre-puzzle pieces. The following statement is immediate:

Proposition 4.15. The combinatorics of the pre-puzzle stays fixed over each exter-
nal parameter ray, whose angle is not a binary rational number.

Define a parameter pre-puzzle piece of depth n as the locus of parameter values
a such that fa has a given combinatorics of pre-puzzle pieces of depth ≤ n.

Proposition 4.16. Every parameter pre-puzzle piece is an open set bounded by
several pairs of regulated parameter rays, each pair having a common landing point.

Proof. The proof is straightforward. Suppose that there is no neighborhood of a
parameter value a0, over which a specified pre-puzzle piece moves holomorphically.
Then, for certain parameter values a in any neighborhood of a0, a certain iterated
image f ◦m

a (−1) of −1 enters a regulated ray in the fixed point portrait. Since a fixed
point portrait is invariant, we may assume that m > 0, and f ◦m−1

a (−a) lies on some
regulated ray in the fixed point portrait. We conclude that a0 is in the union of
closures of finitely many regulated parameter rays.

Thus every parameter pre-puzzle piece is bounded by closures of finitely many
regulated parameter rays. It is also easy to see that these regulated parameter rays
come in pairs, each pair having a common landing point. For regulated parameter
rays of periodic angles, this follows from Proposition 4.13. For regulated parameter
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rays of strictly pre-periodic angles, this follows from the fact that the fixed point
portrait moves equicontinuously over open neighborhoods of the closures of such
rays. �

As a corollary, we obtain the following

Proposition 4.17. Let R be an external parameter ray, whose angle is not binary
rational. For any n, there is an open neighborhood U of R such that all pre-puzzle
pieces of depth ≤ n move holomorphically over U . Therefore, for all points in R,
the corresponding rational maps have the same combinatorics of the pre-puzzle.

5. Puzzles, cells and local connectivity

In this section, we deal with maps on the external boundary of M2. We study two different

types of combinatorial partitions for such maps: puzzles and cells. We need puzzles to prove local

connectivity of Julia sets, and cells to establish topological models.

5.1. Puzzle. Throughout this section, f = fa corresponds to a parameter a on the
boundary of some external parameter ray of angle θ0. We assume that θ0 is not
binary rational. Denote by E∞ some equipotential curve in A∞ and by E0 some
equipotential curve in A0. Let U be the component of the complement to E∞ ∪ E0

containing −1. By choosing appropriate equipotentials E∞ and E0, we can arrange
that f−1(U) be compactly contained in U . Let {α}∪Γ1 ∪ · · ·∪Γq be the fixed point
portrait for f . Puzzle pieces of depth zero are defined as connected components of
the complement to the set

G = Γ[0,∞] ∪
q
⋃

i=1

Γi ∪ {α} ∪ E∞ ∪ E0,

intersecting the Julia set. A puzzle piece Pn of any depth n is defined as a connected
component of f−n(P0), where P0 is a puzzle piece of depth 0. For any point z ∈ J
not on the boundary of a puzzle piece, let Pn(z) denote the puzzle piece of depth n
containing z. Puzzle pieces Pn(−1) are called critical puzzle pieces.

A slight variation of this construction leads to the bubble puzzle, obtained by
replacing the regulated rays Γi with the corresponding bubble rays. However, we
use regulated rays instead of the corresponding bubble rays because two different
bubble rays may touch at iterated preimages of the critical point −1.

5.2. Rational-like maps. P. Roesch [20] generalized the Yoccoz puzzle technique
(initially developed for quadratic polynomials) to a broader class rational maps. In
this subsection, we briefly recall the terminology of [20]. Let U and U ′ be two open
sets in C with smooth boundaries (in particular, both boundaries have finitely many
connected components). Suppose that U ′ is compactly contained in U . Consider a
proper holomorphic map f : U ′ → U with finitely many critical points that extends
to a continuous map from U ′ to U . Such a map is called a rational-like map. A

32



rational-like map is called simple if there is exactly one critical point of f in U ′, and
this critical point is simple. The filled-in Julia set for f is defined as

⋂

n≥0 f−n(U).
A finite connected topological graph G is called admissible for a simple rational-

like map f : U ′ → U if the following conditions hold:

• the graph G contains ∂U and is contained in U ,
• the graph G is stable under f , i.e. we have G ∩ U ′ ⊆ f−1(G),
• the forward orbit of the critical point is disjoint from G.

A puzzle piece of depth n (associated with (G, f, U ′, U)) is defined as any connected
component of f−n(U − G). The collection of all puzzle pieces is called the puzzle.
This is a generalization of the Yoccoz definition to the case of rational-like maps.
For any point z in f−n(U − G), there is a unique puzzle piece Pn(z) of depth n
containing z. If z is a critical point for f , then the puzzle pieces Pn(z) are called
the critical puzzle pieces.

Example 5.1. Take f = fa, with and U as in the preceding subsection. Set U ′ =
f−1(U). Then f : U ′ → U is a simple rational-like map. The topological graph G
introduced in the preceding subsection is admissible for f .

Suppose that the forward orbit of a point z avoids Γ. Define the tableau T (z) of
z as the matrix T (z)i,j = Pi(f

◦j(z)) of puzzle pieces, where i and j run through all
nonnegative integers (thus the matrix T (z) is infinite down and to the right). If z
is a critical point, then T (z) is called the critical tableau. A tableau T (z) is said to
be periodic of period k if Ti,j+k(z) = Ti,j(z) for all i and j. The critical tableau T is
called recurrent if the critical point belongs to Ti,j with j > 0 and i arbitrarily large.

The following theorem is proved in [3]:

Theorem 5.1. Let a rational-like map f : U ′ → U and a topological graph G be
as in Subsection 5.1. If the critical tableau is not periodic, then the critical puzzle
pieces Pn(−1) converge to −1. Moreover, for any point z, whose forward orbit is
disjoint from G, the puzzle pieces Pn(z) converge to z.

Below (Subsections 5.3 and 5.4), we sketch a proof of this theorem under the
assumption that the parameter value a belongs to the boundary of an irrational
parameter ray (this is what we actually need for the proof of the main theorems).
For such parameter values, the critical tableau is automatically non-periodic:

Proposition 5.2. For the parameter values on the boundary of the external pa-
rameter ray of angle θ0, the critical tableau is not periodic, provided that θ0 is not
periodic and not binary rational.

Proof. The argument below is similar to that in [5]. Consider a parameter value a
on the boundary of the external parameter ray of angle θ0, and the corresponding
rational map f = fa. By Proposition 4.17, all critical puzzle pieces intersect both
A0 and A−2. The intersection of Pn(−1) with A0 = Ω0 is bounded by two rays in A0

of binary rational angles θ−n and θ+
n . It is easy to see that both θ−n and θ+

n converge
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to θ0. Therefore, the intersections of the critical puzzle pieces with Ω0 converge to
the prime end impression of angle θ0.

From the combinatorics of the puzzle it also follows that the landing points of
binary rational rays in Ω0 separate the boundary of Ω0. In particular, the prime
end impressions are disjoint. If the critical tableau is periodic, then the prime
end impression of angle θ0 for Ω0 is also periodic. It follows that θ0 is periodic, a
contradiction. �

An important corollary of this proposition is the following:

Proposition 5.3. If θ0 is not periodic, and a is on the boundary of the external
parameter ray of angle θ0, then the critical point −1 lies on the boundary of the
Fatou component Ω0.

5.3. An example. Before discussing general combinatorics of puzzles, let us work
out one particular example. We use the same set-up as in Subsection 5.1. Suppose
that the regulated rays Γi, i = 1, 2, 3, converging to the fixed point α are

Γ1 = Γ

(

∞,
1

2
,
1

4
,
1

4
, . . .

)

, Γ2 = Γ

(

∞,
1

4
,
1

4
, . . .

)

, Γ3 = Γ

(

0,
1

2
,
1

4
,
1

4
, . . .

)

.

Consider also preimages of these regulated rays (or, equivalently, regulated rays
symmetric to these regulated rays with respect to −1):

Γ′
1 = Γ

(

0,
1

4
,
1

4
, . . .

)

, Γ′
2 = Γ

(

∞,
3

4
,
1

4
,
1

4
, . . .

)

, Γ′
3 = Γ

(

∞,
1

2
,
1

2
,
1

4
,
1

4
, . . .

)

.

The regulated rays Γ′
1, Γ′

2 and Γ′
3 converge to the point α′ symmetric to α with

respect to −1, i.e. α′ = −2 − α. The six paths Γi, Γ′
j, i, j = 1, 2, 3, divide the open

set U into 5 pieces (see Picture 5).
We see that no puzzle piece of depth 1 is compactly contained in a puzzle piece of

depth 0. Next, we need to look for puzzle pieces of depth 2 compactly contained in
puzzle pieces of depth 0. Indeed, there are two puzzle pieces of depth 2 compactly
contained in P (0)(−1). They are marked with sign “+”.

5.4. Critical annuli. Consider a map f = fa, where the parameter value a is in
the closure of an exterior parameter ray R of an irrational angle θ0. Let an open
set U be as in Subsection 5.1. In this subsection, we study the rational like map
f : U ′ → U , where U ′ = f−1(U), and the puzzle for such map defined in Subsection
5.1.

We define the critical annulus of depth n as Rn(−1) = Pn(−1) − P n+1(−1). If
this set is not a topological annulus, we say that the annulus Rn(−1) is degenerate.

Recall that for quadratic polynomials, the existence of a non-degenerate critical
annulus was settled by the following statement (see [12, 8]): for a non-renormalizable
quadratic polynomial, the critical orbit enters a non-critical puzzle piece of depth 1
incident to the point −α (where α is the α-fixed point). There is an analog of this
statement for the maps under consideration:
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Figure 5. An example of the puzzle (this is a very schematic picture
not showing equipotentials and rays in Ω∞)

Proposition 5.4. Let α′ be the preimage of α different from α, i.e. α′ = −2 − α.
The critical orbit enters a puzzle piece of depth 1 incident to α′ and not containing
the critical point −1.

Proof. Let Π be the union of pre-puzzle pieces of depth 1 incident to α′ and not
containing the critical point −1. We will write Πa to indicate the dependence of Π
on the parameter a. We know that the boundary of Πa moves holomorphically with
respect to a over some neighborhood of R.

Note that Πa contains either all rays in A∞ of angles less than 1/2 or all rays
in A∞ of angles bigger than 1/2. Now suppose that a ∈ R. Then there exists a
positive integer n (independent of a ∈ R!) such that f ◦n

a (−1) ∈ Πa.
Passing to the limit as a approaches the boundary of R, we conclude that

f ◦n(−1) ∈ Π for parameter values on the boundary of R. The proposition fol-
lows. �

Unfortunately, unlike the case of quadratic polynomials, not all the puzzle pieces
of depth 1 from Proposition 5.4 are compactly contained in the critical puzzle piece of
depth 0. Note, however, that the set of angles 2nθ0 is dense in R/Z. In particular,
the critical orbit enters all puzzle pieces of depth 1 intersecting Ω∞. Let Γ1 =
Γ(∞, r1, r2, . . . ) be a regulated ray landing at α. We can always arrange that r1 =
1/2 by taking forward images of Γ1 under the iterates of f .

For r2 6= 1/4, 3/4, there is a puzzle piece of depth 1 that intersects Ω∞ and is
compactly contained in the critical puzzle piece of depth 0. This is because there
are regulated rays in the fixed point portrait of α intersecting the boundary of
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Ω∞ at points of angles 2kr2, where k = 0, 1, 2, . . . . Since the critical orbit enters
this puzzle piece, there is a non-degenerate critical annulus. We can now use the
following theorem [20] (see also [14] — it deals with quadratic polynomials only, but
the proof can be taken verbatim in our situation):

Theorem 5.5. Suppose that the critical tableau T is recurrent but not periodic.
Also, suppose that there is at least one nondegenerate critical annulus. Then the
critical puzzle pieces converge to the critical point.

It remains to consider the case, where r2 is 1/4 or 3/4 (see Subsection 5.3 above).
There are no nondegenerate critical annuli in this case. Note, however, that the
following property holds:

Proposition 5.6. The critical point −1 can only return to the puzzle piece P1(−1)
under an even iteration of f .

Proof. It suffices to prove the corresponding statement for the critical pre-puzzle
piece of depth 1 and for parameter values a in the exterior hyperbolic component.
The proposition will follow, if we pass to the limit as a approaches the external
boundary of M2. For the parameter values in the exterior hyperbolic component,
the images of −1 under all odd iterates of f belong to A∞, which is disjoint from the
critical pre-puzzle piece of depth 1 (see Picture 5, in which Ω∞ should be replaced
with A∞). �

Therefore, instead of usual critical annuli, we can consider annuli of the form
Pn(−1) − Pn+2(−1), which we call double critical annuli. Nondegenerate double
critical annuli exist, because there are puzzle pieces of depth 2 compactly contained
in P0(−1) (see Picture 5). We can apply the tableau technique to the double critical
annuli. Namely, the proof of Lemma 1.3 from [14] carries out almost verbatim to
double critical annuli. From this lemma and the Grötzsch inequality, it follows that
the critical puzzle pieces converge to −1.

From the convergence of critical puzzle pieces and a simple Koebe distortion
argument it follows that, for any point z in the Julia set of f but not on the boundary
of a puzzle piece, the sequence of puzzle pieces Pn(z) converges to z. The argument
goes exactly as for quadratic polynomials. This concludes the proof of theorem 5.1.

5.5. Cells. Let f = fa, where a is on the external boundary of M2. Then, by
Proposition 5.3, the critical point −1 is on the boundary of Ω. In particular, the open
set f−1(Ω∞) does not contain critical points. By the Riemann–Hurwitz theorem,
this set consists of two connected components. One of these components is Ω0.
The other component contains the point −2 (recall that f(−2) = ∞). Denote
this component by Ω−2. Note that in our case, all radial components are Fatou
components, e.g. A0 = Ω0, A∞ = Ω∞, and A−2 = Ω−2.

Proposition 5.7. The set C − Ω is connected.
36



Proof. Let C∗ be the connected component of C − Ω that contains −2. From the
existence of the puzzle partition it follows that C∗ contains the fixed point α. Indeed,
the fixed point portrait contains a regulated ray passing through −2 and landing
at α. Note also that there is a regulated ray passing through 0 and landing at α.
Therefore, there is a regulated ray passing through −2 and landing at α′ = −2 − α
(the point α′ is characterized by the properties f(α′) = α and α′ 6= α). We see that
α′ also belongs to C∗.

The full preimage of C∗ under f does not contain critical points. Therefore, it
consists of two connected components. One of these components contains α, and
the other component contains α′. It follows that both components are contained in
C∗, i.e. we have f−1(C∗) ⊂ C∗.

Assume that there is a connected component V of C − Ω different from C∗. The
forward orbit of V is disjoint from C∗. Therefore, no iterate of V intersects G. It
follows that, for any point x ∈ V and any depth n, we have V ⊂ Pn(x). This
contradicts the convergence of puzzle pieces, see Theorem 5.1. �

The open set C∗ = C − Ω is called the main cell. Since −2 ∈ C∗, we have
Ω−2 ⊆ C∗. We define cells of depth n as connected components of f−n(C∗). Since
no cell contains critical points, there are exactly 2n cells of depth n. For any cell C
of depth n, there is a unique component of f−n(Ω−2) contained in C. This Fatou
component is called the kernel of the cell. Note that if a cell has depth n, then the
depth of its kernel is n + 1. Conversely, for each radial component A different from
Ω0 and Ω∞, there is a unique cell containing A as the kernel. The root point of A
(i.e. the landing point of the zero ray in A) is also called the root of the cell.

The methods of Proposition 5.7 also yield the following important result:

Proposition 5.8. Any Fatou component of f is eventually mapped to Ω∞, i.e. it
is a radial component.

Proof. Let V be a Fatou component of f . Suppose that the forward orbit of V is
disjoint with Ω. Then, for any point x ∈ V and any depth n, we have V ⊂ Pn(x).
This contradicts the convergence of puzzle pieces, Theorem 5.1. �

We will use cells to encode the dynamics of f . To this end, the following property
is crucial:

Theorem 5.9. For any infinite nested sequence of cells C(1) ⊃ C(2) ⊃ . . . , the

intersection
⋂

C(n) consists of a single point.

We will prove this theorem in Subsection 6.1. The partition of the Julia set
into closures of cells has one major disadvantage: the critical point −1 lies on the
boundaries of cells rather than in the interior of a cell. This is the reason why we
also need the puzzle partition.

5.6. Topology of Fatou components. In this subsection, we study topology of
Fatou components, in particular, local connectivity and intersection properties of
their boundaries.
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Proposition 5.10. The boundary of Ω∞ is locally connected.

Proof. We show that all rays in Ω∞ land — the proposition will follow. It suffices
to consider a ray R of irrational angle θ. Let I be the prime end impression of angle
θ and x any point of I. Clearly, the forward orbit of I is disjoint from G. It follows
that, for any depth n, we have I ⊂ Pn(x). By Theorem 5.1, the puzzle pieces Pn(x)
converge to x. It follows that I = {x}, and that R lands at x. �

Proposition 5.11. Two different rays in Ω∞ cannot land at the same point.

Proof. Assume the contrary: there are two rays in Ω∞ that land at the same point.
The union of these rays, the common landing point and ∞ divides the Riemann
sphere into two parts. Each part must contain points of the complement to Ω∞.
This contradicts Proposition 5.7. �

Proposition 5.12. The critical point −1 is the only intersection point of Ω0 and
Ω−2.

Proof. By our assumption, the critical point −1 belongs to the boundary of Ω0. Note
that the map z 7→ −2− z takes Ω0 to Ω−2. It follows that −1 is on the boundary of
Ω−2, therefore, −1 ∈ Ω0 ∩ Ω−2.

Suppose that x0 6= −1 is another point in Ω0∩Ω−2. Let R0 and R−2 be rays in Ω0

and Ω−2, respectively, that land at x0. If R0 and R−2 map to the same ray under f ,
then x0 must be a critical point (indeed, f is not injective in any neighborhood of
x0). Suppose that f(R0) and f(R−2) are different rays in Ω∞. However, they land
at the same point f(x0). Contradiction with Proposition 5.11. �

Proposition 5.13. The fixed point ω is the only intersection point of Ω0 and Ω∞.

Proof. Assume the contrary: x is another point in Ω0∩Ω∞. The union of {0, x, ω,∞}
and the rays in Ω0 and Ω∞ landing at ω and x is a simple closed curve. This curve
divides the Riemann sphere into two parts. By Proposition 5.7, only one part can
contain points of C∗. Then, in the other part, the boundaries of Ω0 and Ω∞ coincide.
It is easy to see that, in this case, ∂Ω0 = ∂Ω∞, a contradiction. �

5.7. Topology of cells. There are two cells of depth 1. Denote them by C0 and
C1. Let a∗ be the landing point of the ray R∞(1/2). This point belongs to the
boundary of both Ω∞ and Ω−2. The following is a consequence of Propositions 5.12
and 5.13.

Proposition 5.14. The intersection of C0 and C1 is {ω, a∗,−1}.
For the following, we need two simple lemmas.

Lemma 5.15. The kernel of any cell C is the Fatou component of the biggest depth
contained in C.

Proof. Any cell gets eventually mapped to the main cell C∗. For the main cell, the
statement is obvious. �
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Lemma 5.16. Let C be a cell. The depth of any Fatou component lying in C is
bigger than that of C.

Proof. Suppose that C has depth n. Then the kernel of C has depth n + 1. The
statement now follows from Lemma 5.15. �

We need to establish convergence of certain nested sequences of puzzle pieces. For
any positive integer n, there are two puzzle pieces of depth n containing the fixed
point ω on their boundary. One of these puzzle pieces, say, Pn,0(ω), intersects C0,
and the other puzzle piece, Pn,1(ω), intersects C1. We have

Pn+1,0(ω) ⊂ Pn,0(ω), Pn+1,1(ω) ⊂ Pn,1(ω).

Proposition 5.17. The nested sequence of closed sets P n,0(ω) converges to ω. Sim-
ilarly, the nested sequence P n,1(ω) converges to ω.

Proof. Let x be any point in
⋂

n≥1 P n,0(ω). If x is different from ω, then it is easy to
see that the forward orbit of x is disjoint from G. By Theorem 5.1, it follows that
the puzzle pieces Pn(x) converge to x. However, we must have Pn(x) = Pn,0(ω).
This is a contradiction, which shows that the sequence P n,0(ω) converges to ω. A
proof that P n,1(ω) converges to ω is similar. �

For any positive integer n, there are exactly 2 cells of depth n that contain the

critical point ω on the boundary. One of these cells, say, C
(n)
0 (ω), is contained in

C0, and the other cell, C
(n)
1 (ω) is contained in C1. It is easy to see that, for n ≥ 1,

the kernel of every cell C
(n)
0 (ω) and C

(n)
1 (ω) touches both Ω0 and Ω∞ (we say that

two open sets touch if their closures intersect). Moreover, either the point where the

kernel of C
(n)
0 (ω) touches Ω0 or the point where the kernel of C

(n)
0 (ω) touches Ω∞ is

eventually mapped to ω (the same holds for C
(n)
1 (ω)). In particular, there is a finite

regulated ray Γ(0, r1) or Γ(∞, r1) passing through Ω0 or Ω∞ and the kernel of the

cell C
(n)
0 (ω).

Proposition 5.18. The nested sequence of closed sets C
(n)

0 (ω) converges to ω. Sim-

ilarly, the nested sequence C
(n)

1 (ω) converges to ω.

Proof. We show that every puzzle piece Pn,0(ω) contains some cell C
(m)
0 (ω). The

proposition will follow then from Proposition 5.17. The puzzle piece Pn,0(ω) is
bounded by a finite number of regulated rays and equipotentials. We can choose

m such that the kernel A of the cell C
(m−1)
0 (ω) touches both Ω0 and Ω∞ at interior

points of Pn,0(ω). Suppose that, say, Γ(0, r1), is a finite regulated ray passing though

Ω0 and the kernel of the cell C
(m−1)
0 (ω) (if it does not exist, then there is a regulated

ray Γ(∞, r1) passing though Ω∞ and the kernel of the cell C
(m−1)
0 (ω)). Since the

intersection of any pair of regulated rays is an initial segment of both, the regulated
ray Γ(0, r1) is disjoint from the boundary of the puzzle piece Pn,0(ω). Therefore,
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the kernel of the cell C
(m−1)
0 (ω) is disjoint from the boundary of the puzzle piece

Pn,0(ω), and the cell C(m)(ω) is contained in Pn,0(ω). �

5.8. Cells converging to α. For any point x in the Julia set of f but not on the
boundary of a cell, there is a unique cell C(n)(x) of depth n containing x.

Proposition 5.19. The nested sequence of cells C(n)(α) containing α converges to
α, i.e.

∞
⋂

n=1

C(n)(α) = {α}.

Proof. The proof consists of several steps.
Step 1. Let An denote the kernel of C(n)(α). If all An touch Ω0 and Ω∞, then

C(n)(α) coincide with C
(n)
0 (ω) or with C

(n)
1 (ω). However, this contradicts Proposition

5.18.
Step 2. It follows that some An does not touch Ω0 or does not touch Ω∞. Suppose

that n is the minimal index with this property. Then it is easy to see that An touches
Ω∞ and Ω−2. It follows that C(n)(α) does not touch Ω0.

Step 3. Consider the intersection I of C
(n)

(α). This is a compact connected subset
of the Julia set for f . By step 2, the set I is disjoint from Ω0. Since I is forward
invariant under f , it is also disjoint from Ω∞. By the same reason, I is disjoint from
Ω−2.

Step 4. It follows that there is a cell C(n)(α) that does not touch Ω∞ ∪Ω0 ∪Ω−2.
There is a single valued branch of f−n+1 that takes the cell C(1)(α) (which is C0 or C1)
to C(n)(α). Note that C(n)(α) is compactly contained in C(1)(α). The proposition
now follows from the Poincaré distance argument. �

Proposition 5.20. There is a regulated ray of the form

Γ(∞, 1/2, r2, r2, . . . , r2, . . . )

converging to α.

Proof. Let an be the root point of the cell C(n+1)(α). By Proposition 5.19, not all
points an are on the boundary of Ω, whereas a−1 = a∗ is in the boundary of Ω∞. It
follows that there is a nonnegative integer n such that an ∈ ∂Ω−2. Let r2 be the angle
of an with respect to Ω−2. Consider the regulated ray Γ1 = Γ(∞, 1/2, r2, r2, . . . ).
This ray is periodic; let q be the minimal period. There is a branch g of f−q that
takes C(n+1)(α) to C(n+q+1)(α) ⊂ C(n+1)(α). Clearly, we have g(Γ1) ⊂ Γ1. The
proposition now follows. �

6. Topological models

In this section, we give topological models for rational maps f = fa satisfying the condition

−1 ∈ ∂Ω. We use the partition of the Julia set into cells to encode the topological dynamics of f .
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6.1. Convergence of cells and a proof of Theorem A. In this section, we prove
Theorem 5.9: all nested sequences of cells converge to singletons.

Proposition 6.1. Consider any point z in the Julia set of f different from α and
such that the forward orbit of z is disjoint from {−1, ω}. Then there is a cell C(z)
that contains z in its closure and lies in a puzzle piece of depth 0.

Proof. Since z does not coincide with α, it avoids the closure of a cell C(n)(α)
containing α (this follows from Lemma 5.19). Let N denote the maximal depth
of a Fatou component intersecting some regulated ray Γi but not lying in the cell
C(n)(α). It is not hard to see that the cell C(z) = C(N)(z) of depth N lies in some

puzzle piece of depth 0, see Lemma 5.16. By definition, z belongs to C(N)(z). �

The following statement now follows from the convergence of puzzle pieces.

Proposition 6.2. Let z be any point in the Julia set of f , whose forward orbit is
disjoint from {−1, ω, α}. We have

∞
⋂

n=1

C(n)(z) = {z}.

Note that iterated preimages of ω are the only points in the Julia set that lie on
the boundaries of puzzle pieces.

Let z be an iterated preimage of −1. Then, for each depth n, there are two cells

C
(n)
0 (z) and C

(n)
1 (z) having z on the boundary. We can arrange the indexing so that

to have

C
(n+1)
0 (z) ⊂ C

(n)
0 (z), C

(n+1)
1 (z) ⊂ C

(n)
1 (z).

We will also assume that

C
(n)
0 (−1) ⊆ C0, C

(n)
1 (−1) ⊆ C1.

Proposition 6.3. For any iterated preimage z of the critical point −1, we have

∞
⋂

n=1

C
(n)
0 (z) =

∞
⋂

n=1

C
(n)
1 (z) = {z}.

Proof. It suffices to prove this for z = −1. Note that C
(n)
0 (−1) and C

(n)
1 (−1) are

centrally symmetric with respect to −1. If, say, α ∈ C0, then C1 is contained in
a single puzzle piece of depth 0, namely, in the critical puzzle piece P0(−1). The
critical orbit returns to C1, and hence to P0(−1), infinitely many times. Suppose

that f ◦m(−1) ∈ C1. Then, by the pullback argument, C
(m)
0 (−1) or C

(m)
1 (−1) is

contained in Pm−1(−1), which is the pullback of P0(−1) along the critical orbit.

Since m can be made arbitrarily large, the diameters of C
(n)
0 (−1) and C

(n)
1 (−1) tend

to 0 as n → ∞. �
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Proof of Theorem 5.9. Consider a nested sequence of cells C(n). The intersection of

all C(n) is non-empty. Let z be any point in this intersection. If z is not in the
backward orbit of {−1, ω, α}, then the convergence follows from Proposition 6.2. If
z is an iterated preimage of ω, then the convergence follows from Proposition 5.18.
If z is an iterated preimage of −1, then the convergence follows from Proposition
6.3. Finally, if z is an iterated preimage of α, then the convergence follows from
Proposition 5.19. �

Note that Theorem A follows from Theorem 5.9, because the intersection of the
Julia set with each cell is connected. Indeed, any component of the complement to
this intersection is a simply connected Fatou component.

6.2. Encoding of the Julia set. In this subsection, we encode all points of the
Julia set by binary sequences. Our main tool is Theorem 5.9. Consider a cell C of
depth n. The address of C is a finite binary sequence ε1 . . . εn defined as follows.
We set εk = 0 or 1 depending on whether f ◦k−1(C) is contained in C0 or in C1.
We will think of the main cell as having the empty address. For any finite binary
sequence ε1 . . . εn, there is a unique cell Cε1...εn

with address ε1 . . . εn. We have
f(Cε1ε2...εn

) = Cε2...εn
.

We can now define a continuous map from all infinite binary sequences to the Julia
set of f (the set of infinite binary sequences is considered as a topological space
with respect to the direct product topology). Given an infinite binary sequence
ε1 . . . εn . . . , define the point zε1...εn... to be the only point in

⋂∞

n=1 Cε1...εn
. We have

f(zε1ε2...εn...) = zε2...εn....

The sequence ε1 . . . εn . . . is called an address of the point zε1...εn.... Note that the
same point can have different addresses.

From now on, we will assume that the cells C0 and C1 of depth 1 are indexed so
that the landing points of all rays R∞(θ) with θ < 1/2 belong to the closure of C0.
Then the landing points of all rays R∞(θ) with θ > 1/2 belong to the closure of C1.
Clearly, this can be arranged.

Proposition 6.4. The critical point −1 is encoded by exactly two binary sequences,
namely,

−1 = z0ε∗
1
...ε∗n... = z1ε∗

1
...ε∗n..., ε∗2m = θ0[m], ε∗2m+1 = 1 − νm(θ0),

where θ0[m] denotes the m-th digit in the binary expansion of θ0, and the function
νm is that introduced in Subsection 2.1.

Proof. The point −1 belongs to the closures of both C0 and C1. However, the
remaining address of −1 is well-defined: the m-th digit is 0 if f ◦m−1(−1) belongs
to C0 and 1 if f ◦m−1(−1) belongs to C1. We assumed that −1 is not pre-periodic,
thus f ◦m−1(−1) cannot belong to the intersection C0 ∩ C1, and the m-th digit in
the address of −1 is well defined. Denote the m-th digit by ε∗m.
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The point f ◦2m(−1) is on the boundary of Ω0. This is the landing point of the ray
R0(2

mθ0). It belongs to the closure of C1 or C0 depending on whether {2mθ0} < θ0

or {2mθ0} > θ0. Therefore, ε2m+1 = 1 − νm(θ0). The point f ◦2m−1(−1) is on the
boundary of Ω∞. This is the landing point of the ray R∞(2m−1θ0). It belongs to
the closure of C0 or C1 depending on whether {2m−1θ0} < 1/2 or {2m−1θ0} > 1/2.
Therefore, ε2m = θ0[m]. �

Define the following equivalence relation ∼ on the set of all infinite binary se-
quences: x ∼ y if and only if one of the following formulas holds:

• x = 010101 . . . , y = 101010 . . . ,
• x = w0010101 . . . , y = w1101010 . . . ,
• x = w0ε∗1 . . . ε∗n . . . , y = w1ε∗1 . . . ε∗n . . . ,

for some finite binary word w.

Proposition 6.5. Let x and y be two infinite binary sequences. We have zx = zy if
and only if x ∼ y.

Proof. In one direction, the proposition is obvious: if x and y are as described, then
zx = zy. Suppose now that zx = zy. Interchanging x and y if necessary, we can write
x = w0x′ and y = w1y′ for some finite binary word w (possibly empty) and infinite
binary sequences x′ and y′. We have z0x′ = z1y′ . But z0x′ belongs to C0, whereas
z1y′ belongs to C1. Note that the sets C0 and C1 intersect at only three points: ω,
−1 and a∗. Consider these three cases separately.

Case 1. Suppose first that z0x′ = z1y′ = ω. In this case, x′ = 101010 . . . and
y′ = 010101 . . . . Indeed, if a cell lies in C0 and touches the fixed point ω, then the
image of this cell lies in C1, and vice versa.

Case 2. Suppose that z0x′ = z1y′ = a∗. In this case, it is easy to see that
x′ = 010101 . . . and y′ = 101010 . . . . This follows from the fact that f(a∗) = ω.

Case 3. Finally, suppose that z0x′ = z1y′ = −1. Then x′ = y′ = x0 by Proposition
6.4. �

Corollary 6.6. The Julia set of f is homeomorphic to the quotient of the space
{0, 1}N of all infinite binary sequences (equipped with the product topology) by the
equivalence relation ∼. Moreover, the canonical projection semi-conjugates the
Bernoulli shift with the restriction of f to the Julia set.

6.3. Proof of Theorem B. Consider the two-sided lamination 2L(x0), where x0 is
given in terms of θ0 by the formula from Theorem B. Let us prove that the Julia set
of f is homeomorphic to the quotient of the unit circle by the equivalence relation
∼2L(x0), and that the map f is conjugate to the map s2L(x0)/ ∼2L(x0).

We can describe the equivalence relation ∼2L(x0) in terms of binary digits as fol-
lows. Identify each point e2πiθ on the unit circle with the binary expansion of θ, in
which every second digit is replaced with its opposite. Under this identification, the
map z 7→ 1/z2 identifies with the Bernoulli shift.

The equivalence relation ∼2L(x0) is given by the following formulas:
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• 101010 · · · ∼ 010101 . . . ,
• w001010 · · · ∼ w11010 . . . ,
• w0ε∗1 . . . ε∗n · · · ∼ w1ε∗1 . . . ε∗n . . . .

Note that the first two formulas represent identifications on the unit circle (due to
the fact that the same point on the unit circle can correspond to different binary
expansions), and only the last formula represents the equivalence defined by the lam-
ination 2L(x0). The digits ε∗m are the same as in Proposition 6.4 due to Proposition
2.3.

We see that the equivalence relation on binary sequences corresponding to the
relation ∼2L(x0) is identical with that introduced in Subsection 6.2. Thus both
S1/ ∼2L(x0) and the Julia set of the map f are identified with the quotient of the space
of infinite binary sequences by the same equivalence relation. It follows that these
two sets are homeomorphic. Moreover, both s2L(x0)/ ∼2L(x0) and f are represented
by the Bernoulli shift on binary sequences. Thus the two maps are topologically
conjugate.

It is easy to extend the conjugacy (S1/ ∼2L(x0), s2L(x0)) → (J, f) over the gaps of
the lamination 2L(x0). This finishes the proof of Theorem B.

6.4. Proof of Theorem B∗. We now sketch a proof of Theorem B∗. Consider a
map f ∈ V2 such that −1 ∈ ∂Ω0. Let θ0 be the angle of the ray in Ω0 landing at
the critical point −1. Define the real number y0 by the formula

y0 =
1

3

(

1 + 3
∞
∑

m=1

θ0[m]

4m

)

,

where θ0[m] is the mth binary digit of θ0.
Let LB denote the basilica lamination (i.e. the lamination that models the qua-

dratic polynomial z 7→ z2 − 1). Recall that LB is a quadratic invariant lamination
containing the leaf e2πi(1/3)e2πi(2/3) and such that this leaf has the maximal length
among all leaves in LB. Consider the mating lamination LB ∪L(−2y0)

−1. It defines
the corresponding equivalence relation on the sphere, and the quotient S by this
equivalence relation is also a topological sphere (this can be deduced from a theo-
rem of Moore [16] that gives a necessary and sufficient condition for a quotient of
the sphere to be homeomorphic to the sphere — this theorem is a standard tool used
to define topological matings, see e.g. [15]). Let π denote the canonical projection
onto S. The lamination map for LB ∪ L(−2y0)

−1 respects this equivalence relation,
and, therefore, descends to S. Denote the quotient map by π∗(s). We would like to
show that π∗(s) is topologically conjugate to f .

For the map π∗(s), we will arrange a partition into cells with exactly the same
combinatorial structure as the partition into cells of f . Let G∞ be the gap of LB

containing the center of G0 (which is a critical point for s), and G0 the gap containing
s(0) (recall that s◦2(0) = 0). The open sets π(G∞) and π(G0) are topological disks,
whose boundaries intersect at exactly one point, which is the image of the leaf
e2πi(1/3)e2πi(2/3) ∈ LB. Let G−2 be the gap −G0.

44



Let K = ∂G0 ∩ S1. The set K is a Cantor set obtained as follows (we identify
K with the corresponding subset of R/Z): from the segment [1/3, 2/3], we remove
two middle quarters, then do the same with the two remaining segments, etc. Thus
there is a natural parameterization of K by binary sequences: the point of K cor-
responding to a binary sequence α1, α2, . . . , αn, . . . is given by the formula

1

3

(

1 + 3
∞
∑

m=1

αm

4m

)

.

It is easy to see that, under this parameterization, the map z 7→ z4 (which leaves
the set K invariant) acts as the standard Bernoulli shift on binary sequences.

Note that the boundary of π(G0) is exactly π(K). The parameterization of K by
binary sequences translates into the parameterization of ∂π(G0) by points on the
unit circle. The parameterization of ∂π(G0) by points on the unit circle is natural
in the sense that the map π∗(s) restricted to ∂π(G0) corresponds to the map z 7→ z2

on the unit circle (this is because on binary sequences, we had the Bernoulli shift).
The point on the unit circle parameterizing a given point z ∈ ∂π(G0) will be called
the angle of z with respect to π(G0).

Consider the intersection point of ∂π(G0) and ∂π(G−2). This is a critical point
for π∗(s) (in the sense that π∗(s) is not locally injective near this point). The
angle of this point with respect to π(G0) is θ0 (this can be seen by comparing
the formula for y0 with the formula defining the parameterization of K by binary
sequences). It follows that the restriction of π∗(s) to π(G∞ ∪ G0 ∪ G−2) is conjugate
to the restriction of f to Ω∞ ∪ Ω0 ∪ Ω−2. Now define the main cell for π∗(s) as the

complement to π(G0 ∪ G∞). The cells for π∗(s) are defined as the pullbacks of the
main cell under π∗(s). It is easy to see that the nested sequences of cells converge
to points. Thus the conjugacy between π∗(s) and f can be extended to the whole
Riemann sphere by taking pullbacks and using convergence of cells.

We see that any map f on the external boundary of M2 is modeled by a certain
mating lamination. We need to deduce that f is a mating of the polynomial z 7→
z2 − 1 with some actual quadratic polynomial. To this end, it suffices to show that
the lamination L(−2y0) models a quadratic polynomial. Note that the lamination
L(−2y0) has non-renormalizable combinatorics. Consider the parameter ray of angle
−2y0 in the complement to the Mandelbrot set. For any value c on the boundary
of this ray, the combinatorics of the Yoccoz puzzle for pc is the same as that for
L(−2y0), in particular, pc is non-renormalizable. It follows that pc is modeled by
L(−2y0), and that f is a mating of z 7→ z2 − 1 with pc.

6.5. Proof of Theorem B∗∗. Let f = fa be such that −1 ∈ ∂Ω0. We need to
prove that f is an anti-mating of z 7→ z2 with another quadratic polynomial. We
just sketch a proof skipping some details.

Consider the following family of quartic polynomials

qb(z) = bz2(z + 2)2
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parameterized by a single complex parameter b. For this family, 0 is a super-
attracting fixed point, and the point −2 is a critical point that maps to 0. Finally,
−1 is a “free” critical point.

Clearly, if b is small, then both −2 and −1 belong to the immediate basin of
attraction of 0. Let H be the hyperbolic component in the b-plane containing small
values of b. By the same methods as in [5, 20], one can show that the boundary of
H is locally connected. Define the parameter ray of angle θ in H as the set of all
parameter values b such that the critical value b belongs to the interior ray of angle
θ emanating from 0. All parameter rays in H land. Consider the landing point b0

of the parameter ray of angle θ0, where θ0 is as in Theorem B∗.
It is not hard to see that the quartic polynomial qb0 is modeled by the quartic

invariant lamination L from Subsection 2.3. From the construction of the two-sided
lamination 2L(x0) it is clear that this lamination models the anti-mating of the
quadratic polynomial

√
qb0 and z 7→ z2.

6.6. Proof of Theorem C. In this subsection, we conclude the proof of Theorem
C, stating that all external parameter rays land. For periodic angles, this was done
by Mary Rees in [17]. Periodic external parameter rays land at parabolic points.
For strictly pre-periodic parameter rays, the argument is essentially the same as
in Proposition 4.13. The corresponding landing points represent rational maps, for
which the critical point −1 is strictly pre-periodic. Thus we can concentrate on the
case of irrational angle θ0.

Consider an external parameter ray R of angle θ0. Let a and a′ be two points
on the boundary of R. First note that, by Proposition 5.3 and Theorem B, the
maps fa and fa′ are topologically conjugate (since they admit the same topological
model). In particular, by Theorem B∗, they are matings of z 7→ z2−1 with the same
quadratic polynomial. From the Main Theorem of [3] it now follows that a = a′.
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Orsay (1984–85)

[5] D. Faught, “Local connectivity in a family of cubic polynomials”, PhD Thesis, Cornell Uni-
versity, 1992

[6] A. Katok and B. Hasselblatt, “Introduction to the modern theory of dynamical systems”
Cambridge University Press, 1995

[7] J. Luo, “Combinatorics and Holomorphic Dynamics: Captures, Matings and Newton’s
Method”, PhD Thesis, Cornell University, 1995

[8] M. Lyubich, “Six lectures on real and complex dynamics”, preprint
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