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Abstract
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1 Introduction.

Ittai Kan has described a simple example of a skew product map from the cylinder (R/Z) × I to
itself such that the two boundary circles are measure theoretic attractors whose attracting basins
are intermingled , in the sense that the intersection of any nonempty open set with either basin has
strictly positive measure. (See [Kan, 1994].) This note will consist of three variations on the maps
which he introduced.

Sections 3 and 4 will describe Kan’s example in slightly more generality, emphasizing the impor-
tance of negative Schwarzian derivative. Section 5 will show that if we substitute positive Schwarzian

derivative then the behavior will change drastically, and almost all orbits will have a common
asymptotic distribution. In the case of zero Schwarzian derivative, §6 will prove in some cases (and
conjecture in others) that almost all orbits spend most of the time extremely close to one of the
two cylinder boundaries; but that each such orbit passes from the ǫ-neighborhood of one boundary
circle to the ǫ-neighborhood of the other infinitely many times on such an irregular schedule that
there is no asymptotic measure.

Most technical details are relegated to the two appendices.

2 Preliminaries.

Let I = [0, 1], and let C be the cylinder (R/Z) × I with boundaries A0 = (R/Z) × {0} and
A1 = (R/Z) × {1}. Let F : C → C be a C3-differentiable map of the form

F (x, y) =
(
kx, fx(y)

)
, (1)



2 Schwarzian Derivatives and Cylinder Maps

(0, 0) fixed

(0, 1) fixed

(.5, 1) fixed

(x,y)

(3x, fx(y))

F

Fig. 1: The cylinder map F in the case k = 3.

where k ≥ 2 is a fixed integer, and where each fx : I → I is a diffeomorphism with fx(0) = 0 and
fx(1) = 1. Thus the derivative

f ′x(y) = ∂fx(y)/∂y

must be strictly positive everywhere.

We next introduce two key concepts that will be needed.

LEMMA A.1. For ι equal to zero or one, let Bι be the attracting basin of the circle

Aι. If the transverse Lyapunov exponent

Lyap(Aι) =

∫

R/Z

log
(
f ′x(ι)

)
dx (2)

is negative, then the basin Bι has strictly positive measure. In fact, for almost every

x ∈ R/Z the basin Bι intersects the “fiber” x × I in an interval of positive length. On

the other hand, if Lyap(Aι) > 0 then Bι has measure zero.

The proof will be given in Appendix A.

In fact, whenever Lyap(Aι) < 0 it is not hard to see that the circle Aι is a measure attractor .
By this we mean that it satisfies the following two conditions:

1. Aι is a minimal measure attracting set, that is, it has an attracting basin of positive measure,
but no closed proper subset has a basin of positive measure.

2. Furthermore, Aι contains a dense orbit, and hence cannot be expressed as the union of
strictly smaller closed invariant sets.1

Recall that the Schwarzian derivative of an interval C3-diffeomorphism f is defined by the formula

Sf(y) =
f ′′′(y)

f ′(y)
− 3

2

(
f ′′(y)

f ′(y)

)2

. (3)

1The following example shows that Condition 2 does not follow from Condition 1. Consider a flow in the plane

such that all orbits near infinity spiral in towards a figure eight-curve, while all orbits inside either lobe of the figure-

eight spiral in towards an attracting equilibrium point. Then the figure-eight is a minimal measure attracting set

with no dense orbit.
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We will make a particular study of maps F (x, y) =
(
kx, fx(y)

)
such that the Schwarzian Sfx(y)

has constant sign for almost all (x, y) ∈ C. Maps fx with S(fx) < 0 almost everywhere have
the basic property of increasing the cross-ratio ρ(y0, y1, y2, y3) for all y0 < y1 < y2 < y3 in the
interval. (See Appendix B.) Similarly, if S(fx) > 0 (or if S(fx) ≡ 0), then fx will decrease (or
will preserve) all such cross-ratios.

3 Negative Schwarzian.

LEMMA 3.1. If Sfx(y) has constant sign (positive, negative or, zero) for almost all

(x, y), then Lyap(A0) + Lyap(A1) has the same sign. In particular, if Sfx(y) < 0 for

almost all (x, y), then

Lyap(A0) + Lyap(A1) < 0 , (4)

hence at least one of the two boundaries has a basin of positive measure.

Proof. Lemma B.3 (in Appendix B) will show that f ′x(0)f
′
x(1) < 1 whenever fx has negative

Schwarzian. Integrating the logarithm of this inequality over R/Z, the inequality (4) follows. Thus
the transverse Lyapunov exponent is negative for at least one of the two boundaries. Hence the
associated basin has positive measure by Lemma A.1.

THEOREM 3.2. If Sfx(y) < 0 almost everywhere, and if both basins have positive

measure,2 then B0 ∪ B1 has full measure. In fact, there is an almost everywhere defined

measurable function σ : R/Z → I such that

(x, y) ∈ B0 whenever y < σ(x) ,
(x, y) ∈ B1 whenever y > σ(x) .

More generally, the same statement is true if the k-tupling map on the circle is replaced by

any continuous ergodic transformation g on a compact space with g-invariant probability

measure.

In fact we will usually consider maps fx(y) for which the behavior of F near the two boundaries
is similar enough so that Lyap(A0) and Lyap(A1) are equal to each other (or at least have the
same sign). For such maps, the condition Sfx < 0 will guarantee that both attracting basins have
positive measure.

Proof of Theorem 3.2. Since each fx is an orientation preserving homeomorphism, there are
unique numbers 0 ≤ σ0(x) ≤ σ1(x) ≤ 1 defined by the property that the orbit of (x, y):

converges to A0 if y < σ0(x)
converges to A1 if y > σ1(x)

does not converge to either circle if σ0(x) < y < σ1(x) .

2We don’t know whether this hypothesis is necessary.
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Thus, the area of B0 can be defined as
∫

σ0(x) dx. Since this is assumed to be positive, it follows
that the set of all x ∈ R/Z with σ0(x) > 0 must have positive measure. In fact, the evident identity
σ0(kx) = fx

(
σ0(x)

)
implies that this set is fully invariant under the ergodic map x 7→ kx. Hence

it must actually have full measure. Similarly, the set of x with σ1(x) < 1 must have full measure.

We will make use of the property that a map fx of negative Schwarzian derivative increases the
cross-ratio

ρ(0, y1, y2, 1) =
y2 (1 − y1)

y1 (1 − y2)
,

that is:

ρ
(
0, fx(y1), fx(y2), 1

)
> ρ(0, y1, y2, 1) > 1 for all 0 < y1 < y2 < 1 .

(See Lemma B.4.) Suppose that the inequalities 0 < σ0(x) < σ1(x) < 1 were true for a set of
x ∈ R/Z of positive Lebesgue measure, then the function

r(x) = ρ
(
0, σ0(x), σ1(x), 1

)
≥ 1

would satisfy r(kx) > r(x) on a set of positive measure, with r(kx) ≥ r(x) everywhere. It would
follow that ∫

R/Z

dx

r(kx)
<

∫

R/Z

dx

r(x)
.

But this is impossible: Lebesgue measure is invariant under push-forward by the map x 7→ kx, and
it follows that

∫
φ(kx) dx =

∫
φ(x) dx for any bounded measurable function φ. This contradiction

proves that we must have σ0(x) = σ1(x) almost everywhere; and we define σ(x) as this common
value.

Remark 3.3. We can then define the separating measure β on C to be the push-forward, under
the section, x 7→ (x, σ(x)), of the Lebesgue measure λx, on R/Z. Evidently β is an F -invariant
ergodic probability measure which in some sense describes the “boundary” between the two basins.
Since 0 < σ(x) < 1 almost everywhere, it follows easily that both boundaries have measure
β(Aι) = 0.

4 Intermingled Basins.

Now assume the following.

Hypothesis 4.1. There exist angles x− and x+ in R/Z, both fixed under multiplication

by k, such that fx(y) < y for all 0 < y < 1 and all x in a neighborhood of x−, and such

that fx(y) > y for all 0 < y < 1 and all x near x+.

It follows that the entire vertical line segment {x−} × [0, 1) is contained in the basin B0, and
that the entire segment {x+} × (0, 1] is contained in the basin B1.

THEOREM 4.2. (Intermingled Basins). If Hypothesis 4.1 is satisfied, and if both

basins have positive measure, then the two basins are intermingled . That is, for every non-

empty open set U ⊂ C, both intersections B0 ∩U and B1∩U have strictly positive measure.
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Proof. Define measures µ0 and µ1 on the cylinder by setting µι(S) equal to the Lebesgue
measure of the intersection Bι ∩ S for ι equal to zero or one and for any measurable set S. Clearly
the support supp(µι), that is the smallest closed set which has full measure under µι, is fully
F -invariant. We must prove that this support is equal to the entire cylinder.

To begin, choose any point (x0, y0) ∈ supp(µ0) with 0 < y0 < 1. Construct a backward orbit

· · · 7→ (x−2, y−2) 7→ (x−1, y−1) 7→ (x0, y0)

under F by induction, letting each x−(k+1) be that preimage of x−k which is closest to x−. Then it
is not difficult to see that this backwards sequence converges to the point (x−, 1). Since supp(µ0) is
closed and F -invariant, it follows that (x−, 1) ∈ supp(µ0). But the iterated pre-images of (x−, 1)
are everywhere dense in the upper boundary circle A1, so A1 is contained in supp(µ0). Since the
basin B0 is a union of vertical line segments x ×

[
0, σ0(x)

)
or x ×

[
0, σ0(x)

]
, it follows easily that

supp(µ0) is the entire cylinder.
The proof for µ1 is completely analogous.

Remark 4.3. In place of a fixed point on the circle, we could equally well use a periodic point
kpx ≡ x (mod Z). It is only necessary to check that the iterated map F ◦p satisfies the required
hypothesis.

Fig. 2: Intermingled basins for the cylinder map F of Example 4.4.

Example 4.4. Following [Kan, 1994], let

qa(y) = y + ay(1 − y) . (5)

If |a| < 1, then qa maps the unit interval diffeomorphically onto itself, with qa(0) = 0 and
qa(1) = 1. It is easy to check that Sqa(y) < 0 whenever a 6= 0. It then follows from Lemma B.4
that qa(y) has the property of increasing cross-ratios.

Choose 0 < ǫ < 1, and let p(x) = ǫ cos(2πx). Then for any k ≥ 3 the map

F (x, y) =
(
kx, fx(y)

)
where fx(y) = qp(x)(y)

will satisfy Hypothesis 4.1 and also the hypotheses of Theorem 3.2. In fact, we can take x+ = 0,
and choose x− to be a fixed point which lies between 1/3 and 2/3. For example, take

x− =

{
1/2 , for k odd,

k/(2k − 2) , for k ≥ 4 even.
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Thus we obtain explicit examples of maps with intermingled basins. (Compare Fig. 2.)

(In fact this argument will work for k = 2 also, using the periodic orbit 1/3 ↔ 2/3 in place of
a fixed point.)

Remark 4.5. Very similar examples of intermingled basins can be observed in rational maps
of the projective plane. (Compare [Bonifant, Dabija and Milnor, 2006, §6].) It would be very
interesting to know to what extent the examples in the following two sections also have analogs
among such rational maps.

5 Positive Schwarzian

In this section we continue to study the cylinder maps F (x, y) = (kx, fx(y)) , but now assume
that Sfx > 0 almost everywhere.

THEOREM 5.1. If Sfx(y) > 0 for almost all (x, y), then at least one of the transverse

Lyapunov exponents Lyap(A0) and Lyap(A1) is strictly positive. If both are strictly positive,

then F has an asymptotic measure.3 That is, there is a uniquely defined probability measure

ν on the cylinder such that, for Lebesgue almost every orbit (x0, y0) 7→ (x1, y1) 7→ · · ·
and for every continuous test function χ : C → R, the time averages

1

n

( n−1∑

i=0

χ(xi, yi)
)

converge to the space average
∫
C
χ(x, y) dν(x, y) as n → ∞. (Briefly, almost every

orbit is uniformly distributed with respect to ν.) Furthermore, both boundaries of C have

asymptotic measure ν(A0) = ν(A1) equal to zero.

Thus, under these hypotheses, almost all orbits of F have the same asymptotic distribution.

Outline of the Proof. Since the proof of this theorem will be slightly circuitous, we first
outline the main steps.

• First the circle R/Z of the previous section will be replaced by the solenoid

Σ = Σk = lim
←

(R/kn
Z) ,

and the many-to-one map F of (R/Z)× I will be replaced by the associated invertible map
F̃ from Σ × I to itself.

• Since F̃−1 has negative Schwarzian on each fiber, Theorem 3.2 asserts that the union of the
attracting basins of the two boundaries Σ × {0} and Σ × {1} under the map F̃−1 will
have full measure. In fact there is an almost everywhere defined section

x̃ 7→ ( x̃, σ(x̃) ) (6)

from Σ to Σ × I which “separates” the two attracting basins.

3Terms such as: natural measure or physical measure are also used in the literature to denote this type of measure.
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• There is a standard ergodic invariant probability measure µΣ on the solenoid. Pushing it up
to the graph of σ under the section (6), we obtain an ergodic invariant probability measure
ν̃ on Σ × I.

• Since almost all points are pushed away from the graph of σ by the inverse map F̃−1, it
follows that they are pushed towards this graph by the map F̃ . In this way, we see that ν̃
is an asymptotic measure for F̃ .

• Finally, we denote by ν the push-forward of ν̃ under the projection

Σ × I → (R/Z) × I.

This will be the required asymptotic measure for the original cylinder map F .

Fig. 3: 50000 points of a randomly chosen orbit for the cylinder map F of Example 5.2.

Example 5.2. One example of a family of interval diffeomorphisms with positive Schwarzian
is given by the inverses

fx(y) = q−1
p(x)(y) ,

where qp(x)(y) is the quadratic map (5) of Example 4.4. Here Sfx(y) > 0 whenever p(x) 6= 0.
(Compare Proposition B.1 in the appendix.) For this special example, the asymptotic measure ν
turns out to be precisely equal to the standard Lebesgue measure λ on the cylinder. In other
words:

Randomly chosen orbits are uniformly distributed with respect to Lebesgue measure.

(Compare Fig. 3). To prove this statement, one only needs to show that Lebesgue measure is F -

invariant. In fact there are k branches of F−1 on any small open set U ⊂ C, each given
by

F−1(x, y) =
(

x/k, y + ǫ cos(2πx/k)y(1 − y)
)

(7)

for one of the k choices of x/k (mod Z). The Jacobian of this branch (7) is equal to
(
1 + ǫ cos(2πx/k)(1 − 2y)

)
/k .

Since the sum of cos(2πx/k) = ℜe2πix/k over the k choices for x/k is zero, the sum of Jacobians
is +1, which means that F preserves the Lebesgue measure λ. Now Theorem 5.1 asserts that
an asymptotic measure exists. Such a measure ν must necessarily be equal to the weak limit of(
λ + F∗λ + · · · + F ◦n−1

∗ λ
)
/n as n → ∞; and it follows that ν is precisely equal to λ.
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Proof of Theorem 5.1. The argument begins as follows. Denote by Σ the solenoid of
backwards orbits

x̃ = {· · · 7→ x−2 7→ x−1 7→ x0} = {x−n}
under the map x 7→ kx. Thus Σ maps homeomorphically onto itself under multiplication by k,
with the right shift map

{· · · 7→ x−2 7→ x−1 7→ x0} 7→ {· · · 7→ x−3 7→ x−2 7→ x−1}

as inverse. There is a standard probability measure µΣ on Σ, defined by the requirement that
each projection x̃ 7→ x−n is measure preserving.

LEMMA 5.3. ‖x̃‖/k ≤ ‖kx̃‖ ≤ k ‖x̃‖ for all x̃ ∈ Σ.

Proof. This follows easily from the definition.

Given maps fx(y) as in §2, we again consider the associated map F : C → C. If Sfx(y) > 0
almost everywhere, then by the analogue to Lemma 3.1,

Lyap(A0) + Lyap(A1) > 0.

There is also a natural extension F̃ : Σ × I → Σ × I of the map F . This is a homeomorphism
defined by the formula

F̃ (x̃, y) =
(
k x̃, fx0

(y)
)
. (8)

LEMMA 5.4. If Sfx(y) > 0 for almost all (x, y), and if both Lyap(A0) and Lyap(A1)
are strictly positive, then there exists a measurable function σ : Σ → I, defined almost

everywhere, and satisfying the identity

σ(kx̃) = fx0

(
σ(x̃)

)

for almost all x̃ ∈ Σ. It follows that the graph of σ, that is the set of all pairs

(x̃, σ(x̃)) ∈ Σ × I,

is invariant under the extended map F̃ : Σ×I → Σ×I, so that F̃
(
x̃, σ(x̃)

)
=

(
kx̃, σ(kx̃)

)

for almost all x̃.

Caution: In cases of interest, this function σ will not be continuous and will not be everywhere
defined.

Proof of Lemma 5.4. We apply Theorem 3.2 to the inverse map F̃−1, with the k-tupling
map on the circle replaced by the right shift map on the solenoid. This yields a measurable section
x̃ 7→

(
x̃, σ(x̃)

)
from Σ to Σ × I. The required F -invariance property then follows easily.

Next we will show that almost every orbit under F̃ converges, in a suitable sense, to the graph
of σ. Recall that σ(x̃) is well defined and belongs to the open interval (0, 1) for almost every
x̃ ∈ Σ. Thus, for almost every point (x̃, y) ∈ Σ × (0, 1), the quantity

r(σ(x̃), y) =
∣∣ log ρ

(
0, σ(x̃), y, 1

)∣∣ ≥ 0

is defined and finite, vanishing if and only if y = σ(x̃). We will think of r(σ(x̃), y) as a measure
of distance between σ(x̃) and y.
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LEMMA 5.5. Under the same hypothesis, for almost every orbit (x̃0, y0) 7→ (x̃1 y1) 7→
· · · under F̃ this measure of distance r(σ(x̃n), yn) converges to zero as n → ∞.

Proof. Since the map F̃ (x̃, y) =
(
kx̃, fx0

(y)
)

decreases cross-ratios on each fiber (compare
Lemma B.4), we have

r
(
σ(kx̃), fx0

(y)
)

< r
(
σ(x̃), y

)

almost everywhere. For any constant r0 > 0, let N(r0) be the strip consisting of all

(x̃, y) ∈ Σ × (0, 1) with r(σ(x̃), y) ≤ r0 .

Evidently N(r0) is mapped into itself by F̃ . Given constants 0 < r0 < r1, we will also consider
the difference set N(r1)rN(r0). Let s(x̃) ≤ 1 be the supremum of the ratio

r
(
σ(kx̃), fx0

(y)
)

r(σ(x̃), y)
for (x̃, y) ∈ N(r1)rN(r0) , (9)

or in other words for r0 < r(σ(x̃), y) ≤ r1. Since the Schwarzian is positive almost everywhere, it
is not hard to see that this supremum satisfies s(x̃) < 1 for almost all x̃. (Here we make essential
use of the fact that r0 > 0, since if the Schwarzian vanishes at (x̃, σ(x̃)) then the ratio (9) would
tend to 1 as y tends to σ(x̃).)

Therefore the average of log s(x̃) over the solenoid is strictly negative. A straightforward
application of the Birkhoff Ergodic Theorem then shows that, for almost every x̃0 7→ x̃1 7→ · · · ,
some partial product of the s(x̃j) satisfies

s(x̃0) · · · s(x̃n−1) < r0/r1 .

This means that the iterate F̃ ◦n maps N(r1) into N(r0). Since 0 < r0 < r1 can be arbitrary,
this completes the proof of Lemma 5.5.

Now define the probability measure ν̃ on Σ × I to be the push-forward of the standard
measure µΣ on the solenoid under this section σ̂ : x̃ 7→

(
x̃, σ(x̃)

)
.

LEMMA 5.6. This ν̃ is an asymptotic measure for the extended map F̃ : Σ×I → Σ× I.

Proof. We know that almost every orbit (x̃0, y0) 7→ (x̃1, y1) 7→ · · · under F̃ converges (in
the sense of Lemma 5.5) towards the graph of σ. If χ : Σ×I → R is any continuous test function,
then it follows easily that the difference between the time averages

( n−1∑

0

χ(x̃i, yi)
)
/n and

( n−1∑

0

χ
(
x̃i, σ(x̃i)

))
/n =

( n−1∑

0

χ
(
σ̂(x̃i)

))
/n

converges to zero as n → ∞. But the Birkhoff Ergodic Theorem, applied to the bounded mea-
surable function χ ◦ σ̂ : Σ → R, asserts that this last time average converges towards the space
average ∫

Σ

χ ◦ σ̂(x̃) dµΣ(x̃) =

∫

Σ×I

χ(x̃, y) dν̃(x̃, y) ,
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as required.

Proof of Theorem 5.1 (conclusion). If Sfx > 0 it follows from Lemma B.3 and Lemma
A.1 that at least one of the transverse Lyapunov exponents of the boundary circles is strictly
positive, hence its corresponding basin has measure zero. If both, Lyap(A0) and Lyap(A1) are
strictly positive, the same lemma implies that the set of orbits converging to A0 ∪A1 has measure
zero, so that the Lemmas 5.4 through 5.6 apply.

Pushing forward the canonical measure µΣ on Σ by the section σ̂ : x̃ 7→ (x̃, σ(x̃)), we obtain an
asymptotic measure ν̃ = σ̂∗(µΣ) for the map F̃ . Now, pushing forward again under the projection

(x̃, y) 7→ (x0, y)

from Σ × I to (R/Z) × I = C, we obtain an F -invariant measure ν on C. Since almost every orbit
under F̃ is uniformly distributed with respect to ν̃, it follows that almost every orbit under F is
uniformly distributed with respect to ν.

Remark 5.7. In the spirit of Remark 3.3 one could say, that the separating measure for F̃−1 is
an asymptotic measure for F̃ .

6 Zero Schwarzian

This section will study the intermediate case where each diffeomorphism fx : I → I has Schwarzian
Sfx identically zero. Such a map is necessarily fractional linear, and can be written for example
as

y 7→ ay

1 + (a − 1)y
with a > 0 , (10)

where a is the derivative at y = 0. It will be convenient to replace y by the Poincaré arclength

coordinate

t(y) = log ρ(0, 1/2, y, 1) = log
y

1 − y
, (11)

which varies over the entire real line for 0 < y < 1, with inverse y = et/(1+ et). If we embed the
unit interval in the complex open disk of radius 1/2 centered at 1/2, then |t| can be described as
the distance from the midpoint, using the Poincaré metric for this disk. (Compare Appendix B.)

Since we are assuming Sfx identically zero, it follows that each fx preserves cross-ratios
or Poincaré distances. (See Equations (11) and (B4) of Appendix B.) Therefore, in terms of the
Poincaré arclength coordinate t, the map fx will simply be a translation, t 7→ t + c where c
is a constant depending on x. In other words,

t(fx(y)) = t(y) + c , where c = log(a) ∈ R or a = ec .

Using this displacement c in place of the original parameter a , the 1-parameter group of fractional
linear transformations of the unit interval takes the form

gc(y) =
ecy

1 + (ec − 1)y
,
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where gc+c′ = gc ◦ gc′ . Given any smooth function p from R/Z to R, we can set c = p(x) to
obtain an associated cylinder map

F (x, y) =
(
kx, gp(x)(y)

)
.

(The map F has an absolutely continuous invariant measure dx dt. However, this is not very
useful since the total area

∫ ∫
dx dt is infinite.)

Using the coordinate t ∈ R in place of y ∈ (0, 1), the cylinder map F will correspond to
the map

(x, t) 7→
(
k x, t + p(x)

)

of (R/Z) × R. The dynamics of F under iteration is governed by the average

A =

∫

R/Z

p(x) dx (12)

of the displacement p(x). For almost any orbit (x0, t0) 7→ · · · 7→ (xn, tn) 7→ · · · , it follows from
the Birkhoff Ergodic Theorem that the time average

(tn − t0)/n =
(
p(x0) + · · · + p(xn−1)

)
/n

converges to the space average A as n → ∞. Thus if A > 0 then it follows that tn will converge
to +∞. In other words, the corresponding orbit for F will converge towards the upper cylinder
boundary A1, so that A1 will be a global attractor under F . Similarly, if A < 0 then the lower
boundary A0 will be a global attractor.

The borderline case where the average (12) is exactly zero, is much more interesting. We con-
jecture that the long term behavior of the sequence of numbers t0, t1, t2, . . . is very much like that
for a random walk, in which the successive differences ∆tn = tn+1 − tn are identically distributed
independent random numbers with mean zero. In particular, we believe that the following theorem
will be true whenever the periodic function p(x) has average zero. However, the proof will apply
only in the following very special case.

Hypothesis. We now assume that p(x) is a step function which takes a constant
value on each of the k intervals j/k ≤ x < (j + 1)/k.

If x0 is randomly chosen, it then follows easily that the successive steps

∆tn = tn+1 − tn = p(xn)

actually are identically distributed independent random variables, which do not depend on the
value of tn. (In fact ∆tn depends only on the n-th entry in the base k expansion of x0.) Choose
some number N ≥ 0 and define three sequences as follows. Let

an be the number of integers 1 ≤ i ≤ n with ti > N ,

bn the number of such integers with |ti| ≤ N , and

cn the number of such integers with ti < −N .

Thus the associated frequencies an/n, bn/n, cn/n will have sum equal to + 1.
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THEOREM 6.1. Let p(x) be a step function as described above, not identically zero but

with average
∫

p(x) dx equal to zero. Then for arbitrary t0 and for Lebesgue almost every

x0, the ratios bn/n associated with the orbit (x0, t0) 7→ (x1, t1) 7→ · · · will converge to

zero as n → ∞, but an/n and cn/n will not tend to any limit. In fact, these ratios

vary so wildly that

lim inf (an/n) = 0 < lim sup (an/n) = 1 ,

with a similar statement for cn/n.

In terms of the original cylinder map, this means that most orbits spend most of the time
extremely close to one or the other of the two boundaries; very occasionally jumping from one
boundary to the other but in such an irregular way that there is no limiting asymptotic measure.

We are indebted to Harry Kesten and especially to Mikhail Lyubich for very substantial help
with the proof. To begin the argument, note that for each t0 and each x0 ∈ R/Z the number
L = lim supn→∞(an/n) is well defined, and is invariant under finite permutations of the sequence
of differences ∆tn, or equivalently under finite permutations of the entries in the base k expansion
of x0. Therefore, according to the Hewitt-Savage Zero-One Law , each set

{x0 ; L ≤ constant}

has measure either zero or one. (See [Feller 2, 1966, IV.6].) It follows easily that L takes some
constant value for almost all x0.

First consider the case N = 0. We will prove that L = 1 except on a set of measure zero.
Choose some small ǫ > 0 and let Xn(ǫ) be the set of all x0 for which an/n > 1− ǫ. Evidently
the intersection ⋂

n

(
Xn(ǫ) ∪ Xn+1(ǫ) ∪ Xn+2(ǫ) ∪ · · ·

)

is precisely the set of x0 for which L = lim sup(an/n) satisfies L > 1 − ǫ. Thus, if we assume
that L ≤ 1− ǫ on a set of x0 of positive (and hence full) measure, then it would certainly follow
that the measure of Xn(ǫ) must tend to zero as n → ∞. But according to the Arcsine Law , the
measure of Xn(ǫ) converges to the limit

1 − 2

π
arcsin

√
1 − ǫ =

2

π
arcsin

√
ǫ > 0

as n → ∞. (See [Feller 1, 1968, III.4; and 2, 1966, XII.8].) This contradiction proves that
lim sup(an/n) = 1 almost everywhere. Since an + cn ≤ n, it follows that lim inf (cn/n) = 0; and
a similar argument with an and cn interchanged completes the proof for the case N = 0.

To complete the proof of Theorem 6.1, choosing some arbitrarily large N , we must show that
the associated sequence bn/n converges to zero for almost all x0. The proof will be based on the
following.

Consider a random walk τ0, τ1, . . . on the circle R/Z, starting with some specified τ0, where
the differences ∆τn = τn+1 − τn are identically distributed independent random variables which
do not depend on τn.
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LEMMA 6.2. The resulting sequence {τn} is uniformly distributed around the circle

with probability +1 if and only if the following condition is satisfied:

(*) There is no finite cyclic subgroup G ⊂ R/Z such that ∆τn ∈ G with probability +1.

Proof. (Compare [Lévy, 1939], [Kawada and Ito, 1940].) Clearly this subgroup condition
is necessary. To prove that it is sufficient, let µ be the common probability distribution for the
differences ∆τn, let S ⊂ R/Z be the support of µ, and let SN = S × S × S × · · · be the
space of sequences s = (s0, s1, . . .) of elements of S, provided with the shift invariant measure
µN = µ × µ × · · · . It is not hard to see that the skew product map

F
(
τ, s0, s1, . . .) = (τ + s0, s1, s2, . . .)

from (R/Z)×SN to itself preserves the measure λ×µN, where λ is Lebesgue measure. We will
prove that F is ergodic; or equivalently that:

Every bounded measurable F -invariant function φ : (R/Z) × SN → R is constant

almost everywhere.

Given such a function φ , let

φn(τ, s0, . . . , sn−1) =

∫
φ(τ, s) dµN(sn, sn+1, . . .)

be the average of φ(τ, s) over all possible choices of sn, sn+1, . . . . Clearly φn can also be
expressed as an average over all choices of sn,

φn(τ, s0, . . . , sn−1) =

∫
φn+1(τ, s0, . . . , sn) dµ(sn) .

On the other hand, using the condition φ = φ◦F of F -invariance, we see that φn(τ, s0, . . . , sn−1)
can also be described as the average of φ(τ +s0, s1, s2, . . .) over all choices of (sn, sn+1, . . .) . But
by definition, this is equal to φn−1(τ + s0, s1, . . . , sn−1). Thus, inductively, it follows that

φn(τ, s0, . . . , sn−1) = φn−1(τ + s0, s1, . . . , sn−1) = φn−2(τ + s0 + s1, s2, . . . , sn−1) = · · ·
= φ0(τ + s0 + · · · + sn−1) . (13)

In particular, note that

φ0(τ) =

∫
φ1(τ, s) dµ(s) =

∫
φ0(τ + s) dµ(s) . (14)

If the condition (*) is satisfied, then we will use this last equation to prove that φ0 is constant
almost everywhere. Let

µ̂(q) =

∫
e(−qs) dµ(s)

be the Fourier transform of µ, where q ∈ Z, and where e(t) is an abbreviation for e2πit. Thus
µ̂(q) is a weighted average of points on the unit circle; hence |µ̂(q)| ≤ 1. For q 6= 0, the condition
(*) guarantees that the weight is not all concentrated at points s such that qs ≡ 0 (mod Z), so
it follows that µ̂(q) 6= 1.
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The Fourier transform φ̂0(q) is defined similarly as the integral of e(−qτ)φ0(τ) dτ . Recall
that a bounded measurable function on the circle is constant almost everywhere if and only if its
q-th Fourier coefficient is zero for every q 6= 0. Multiplying equation (14) by e (−qτ) dτ and then
integrating, using the substitution η = τ + s, we obtain

φ̂0(q) =

∫
e(−qη)φ0(η) dη

∫
e(qs) dµ(s) = φ̂0(q) µ̂(−q) .

For every q 6= 0, since µ̂(−q) 6= 1, it follows that φ̂0(q) = 0. Therefore φ0 takes some constant
value v almost everywhere. Using equation (13), it follows that every φn also takes the value v
almost everywhere.

We can now prove that φ is constant almost everywhere. Suppose to the contrary, for example,
that φ(τ, s) > v + ǫ > 0 on a set Σ of positive measure. Choose a point of density (τ∗, s∗)
for Σ . Since φ is bounded, it would follow that the average of φ over a small neighborhood
of (τ∗, s∗) is strictly greater than v. But the fact that each φn equals v almost everywhere
implies that every such average is also equal to v. Thus φ must be constant almost everywhere;
which proves ergodicity.

Now the Birkhoff Ergodic Theorem implies that almost every orbit of F is uniformly distributed
with respect to the measure λ×µN. Projecting to the first coordinate, it follows that almost every
sequence

τ, τ + s0, τ + s0 + s1, . . .

is uniformly distributed with respect to λ. This completes the proof of Lemma 6.2.

Proof of Theorem 6.1 (conclusion). Recall that bn is the number of 0 ≤ j < n with
|tj | ≤ N . We must show that the ratio bn/n tends to zero with probability +1 as n → ∞ .
Choosing some large number L ≫ N , the quotients tn/L (mod Z) form a random walk on
the circle. If L is chosen so that the ratio ∆tn/L is irrational with probability > 0, then by
Lemma 6.2, these quotients are uniformly distributed around the circle. Let bn(L) ≥ bn be the
number of j ∈ [0, n) with tj congruent to an element of [−N, N ] modulo LZ. Then it follows
that bn(L)/n converges to 2N/L as n → ∞ . Since L can be arbitrarily large, this proves that
bn/n → 0, as required.

Appendix A: The Transverse Exponent.

Let (x, ι) be any point of the boundary circle Aι, where ι can be either 0 or 1. By definition the
transverse Lyapunov exponent along the circle Aι at (x, ι) is defined by

LyapAι
(x) = lim

k→∞

1

k
log

∣∣∣
∂F ◦k

∂y
(x, y)

∣∣∣ evaluated at y = ι ,

whenever this limit exists. (In this case, transverse really means normal.) Here F (x, y) =
(
kx, fx(y)

)

as usual. By the chain rule, the above expression can be written as

LyapAι
(x) = lim

k→∞

1

k
log

(
f ′x0

(ι)f ′x1
(ι) · · · f ′xk−1

(ι)
)

where x0 7→ x1 7→ · · · is the orbit of x = x0.
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Let us denote by λ the 2-dimensional Lebesgue measure on the cylinder C = (R/Z) × I, and
by λx the 1-dimensional Lebesgue measure along R/Z. Since λx is ergodic and invariant under
multiplication by k (see Equation (1)), it follows from the Birkhoff Ergodic Theorem that this
transverse Lyapunov exponent is defined and independent of x for almost all x, and is equal to the
integral

LyapAι
=

∫

R/Z

log
(
f ′x(0)

)
dx,

for almost all x.

Let us prove now the Lemma stated in §2.

LEMMA A.1. For ι equal to zero or one, let Bι be the attracting basin of the circle Aι.

If the transverse Lyapunov exponent

Lyap(Aι) =

∫

R/Z

log
(
f ′x(ι)

)
dx (A1)

is negative, then the basin Bι has strictly positive measure. In fact, for almost every x ∈
R/Z the basin Bι intersects the “fiber” x× I in an interval of positive length. On the other

hand, if Lyap(Aι) > 0 then Bι has measure zero.

Proof. First consider the case ι = 0 with Lyap(A0) < 0. By Taylor’s expansion restricted to
the fiber over x, we have

fx(y) = f ′x(0)y + O(y2) ,

uniformly for all (x, y) ∈ (R/Z) × I. Choose K > 0 so that,

fx(y) ≤ y
(
f ′x(0) + Ky

)
for all (x, y) .

For any η > 0, it follows that

fx(y) ≤ y
(
f ′x(0) + η

)
whenever y <

η

K
. (A2)

Since Lyap(A0) < 0, we can choose η > 0 small enough so that

∫

R/Z

log
(
f ′x(0) + η

)
dx < 0 . (A3)

It will be convenient to introduce the notation

a(x) = log
(
f ′x(0) + η

)
. (A4)

Consider some orbit (x0, y0) 7→ (x1, y1) 7→ (x2, y2) 7→ · · · . By the Birkhoff Ergodic Theorem, the
averages

1

n

(
a(x0) + a(x1) + . . . + a(xn−1)

)
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converge to
∫

R/Z
a(x) dx < 0 for almost all x0. In particular, it follows that the n-fold sum

An(x0) = a(x0) + a(x1) + . . . + a(xn−1)

converges to negative infinity as n → ∞. Hence the maximum

Amax(x) = max
n≥0

An(x)

is certainly defined and finite for almost all x. Now suppose that

y0 ≤ η

K
e−Amax(x0) . (A5)

Then a straightforward induction shows that

yn ≤ η

K
eAn(x0)−Amax(x0) ≤ η

K

for all n. Since An(x0) converges to −∞, it follows that yn tends to zero, so that (x0, y0) belongs
to the attracting basin B0. Since the right side of the inequality (A5) is a measurable function of
x0, defined and strictly positive almost everywhere, it follows that its integral is strictly positive.
Evidently this integral is a lower bound for the area of B0. Thus B0 has positive measure as required.

The proof for the case Lyap(A0) > 0 is completely analogous. However, it requires us to make
use of the hypothesis that f ′x(y) is strictly positive, even for y = 0, so that we can choose a small
η with 0 < η < f ′x(0) everywhere, and with

∫
log

(
f ′x(0) − η

)
dx > 0 . (A6)

The estimate (A2) is then replaced by

fx(y) ≥ y
(
f ′x(0) − η

)
whenever y <

η

K
. (A7)

Now suppose that the basin B0 has positive measure. Then, for a set of x0 of positive measure,
we could find orbits (x0, y0) 7→ (x1, y1) 7→ · · · which satisfied 0 < yn < η

K for all n. But using
(A6) and (A7) it is not hard to see that this is impossible. Therefore B0 has measure zero. The
arguments for the basin B1 are completely analogous.

Appendix B: Schwarzian Derivative and Cross-Ratios.

Recall that the Schwarzian derivative Sf of a C3 interval diffeomorphism f : I → I was defined
in Equation (3). The statement Sf < 0 will mean that the inequality Sf(y) < 0 holds for y in
a dense open subset of I; and similarly for Sf > 0 (or Sf = 0 ).

PROPOSITION B.1. The Schwarzian derivative has the following properties:

1. The sign of Sf is preserved under iteration of f . For example if Sf < 0 and Sg < 0 ,

then S(f ◦ g) < 0 .

2. Sf < 0 if and only if Sf−1 > 0 .

3. Sf < 0 if and only if the function ϕ(y) = 1/
√

|f ′(y)| is concave upwards.

4. Sf = 0 if and only if f is a fractional linear transformation, f(x) = (ax+ b)/(cx+ d)
where we may assume that ad − bc = ± 1.
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Proof.

1. A straightforward calculation shows that the Schwarzian derivative of a composition is given
by the formula

S(f ◦ g) = (g′)2 Sf + Sg , (B1)

and the conclusion follows easily.

2. This follows by taking g = f−1 in equation (B1) and noting that the identity map has
Schwarzian zero.

3. It is not hard to calculate that the second derivative of ϕ(y) = 1/
√

|f ′(y)| satisfies the
equation

Sf = − 2ϕ′′(x)/ϕ(x) . (B2)

Thus Sf(y) < 0 on a dense open set if and only if ϕ′′(y) > 0 on a dense open set, and the
assertion follows.

4. From equation (B2) we see that the Schwarzian is zero if and only if the function ϕ(y) is
linear, say ϕ(y) = cy + d or in other words

f ′(y) = ± 1/(cy + d)2 .

Integrating, we see that this is true if and only if f is fractional linear.

Now consider a C3-diffeomorphism f : I → I ′ where I ′ may be a different interval of real
numbers. A fixed point y = f(y) ∈ I ∩ I ′ will be called strictly attracting if |f ′(y)| < 1 and strictly

repelling if |f ′(y)| > 1.

LEMMA B.2. Suppose that Sf < 0 throughout a dense open subset of I. If f has two

fixed points, then at least one must be strictly attracting. Furthermore, if there are three

fixed points then the middle one must be strictly repelling and the other two must be strictly

attracting. Such a map can never have four fixed points.

Proof. Given two fixed points α < β , we will first show that at least one of the two must be
strictly attracting. In fact, it follows from the Mean Value Theorem that some point α < x < β
must satisfy f ′(y) = 1. If both f ′(α) ≥ 1 and f ′(β) ≥ 1, then the graph of f ′ would have to have
have a local minimum somewhere in the open interval (α, β). Hence the function ϕ(y) would have
a local maximum. Since ϕ′′(y) > 0 on a dense open set, this clearly leads to a contradiction.

Now consider three fixed points α < β < γ. Then The Mean Value Theorem yields points
y ∈ (α, β) and y′ ∈ (β, γ) with f ′(y) = f ′(y′) = 1. Again, if f ′(β) ≤ 1, then the graph of f ′ would
have a local minimum, yielding a contradiction. Therefore β is strongly repelling, hence α and γ
must be strongly attracting. Evidently this leaves no possibility for a fourth fixed point.

LEMMA B.3. If Sf < 0 for an orientation preserving diffeomorphism f : I → I, then

f ′(0)f ′(1) < 1.
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Proof. By the previous lemma, at least one of the two boundary fixed points must be strictly
attracting: either f ′(0) < 1, or f ′(1) < 1, or both. Now consider the auxiliary function

g(y) = 1 − f(1 − y) .

Evidently g also has negative Schwarzian, with g′(0) = f ′(1) and f ′(0) = g′(1). The composition
f ◦ g also has negative Schwarzian; hence f ◦ g has derivative less than one at at least one of the
two endpoints. But the derivative at either endpoint is equal to the product f ′(0)f ′(1). It follows
that this product is less than one, as required.

Definition. The cross-ratio of four distinct real numbers will mean the expression

ρ(y0, y1, y2, y3) =
(y2 − y0)(y3 − y1)

(y1 − y0)(y3 − y2)
. (B3)

(The reader should take care, since conflicting notations are often used.) Note that

ρ(y0, y1, y2, y3) > 1 whenever y0 < y1 < y2 < y3 .

Evidently the cross ratio remains invariant whenever we replace each yi by ayi + b with a 6= 0. A
brief computation shows that it also remains invariant when we replace each yi by 1/yi. Since every
fractional linear transformation can be expressed as a composition of affine maps and inversions, it
follows that the cross-ratio is invariant under fractional linear transformations.

We will say that a monotone map f increases cross-ratios if

ρ
(
f(y0), f(y1), f(y2), f(y3)

)
> ρ(y0, y1, y2, y3) whenever y0 < y1 < y2 < y3 .

LEMMA B.4. (Allwright.) Again let f : I → I ′ be a C3-diffeomorphism. Then f
increases cross-ratios if and only if Sf < 0 throughout some dense open subset of I.

Remark. In Lemmas B.2, B.3, and B.4, note that we can obtain a corresponding statement
for the case Sf > 0 simply by applying the given statement to the inverse map from I ′ to I. For
example: f decreases cross-ratios if and only if Sf > 0 on a dense open set.

Proof of Lemma B.4. (Compare [Allwright, 1978].) First suppose that Sf < 0 on a
dense open set. Given points y0 < y1 < y2 < y3 , after composing f with a fractional linear
transformation, we may assume that f fixes the three points y0, y1, y3. If Sf < 0 on a dense
set, then y0, y3 are attracting and y1 is repelling by Lemma B.2. Since there can be no fixed point
between y1 and y3, it follows that f moves every intermediate point to the right. Thus f(y2) > y2 ,
and it follows easily that f increases the cross-ratio ρ(y0, y1, y2, y3).

Conversely, if Sf is not negative on a dense open set, then it must either be strictly positive
somewhere, or identically zero on some interval. In the first case, it would decrease some cross-
ratio, and in the second case it would be fractional-linear and hence preserve cross-ratios within
this interval. This completes the proof.
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Remark B.5. If 0 < y1 < y2 < 1, then the Poincaré distance between y1 and y2 within (0, 1) can
be defined as

d[0,1](y1, y2) =

y2∫

y1

(1

y
+

1

(1 − y)

)
dy

= log
(y2(1 − y1)

y1(1 − y2)

)
= log ρ(0, y1, y2, 1) .

This can be identified with the usual Poincaré distance within a complex disk having the interval
[0, 1] as diameter. In terms of the Poincaré arclength coordinate of Equation (11), the Poincaré
distance formula can also be written as,

d[0,1](y1, y2) = |t(y2) − t(y1)|. (B4)
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