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Abstract. A decoration of the Mandelbrot set M is a part of M cut off by two
external rays landing at some tip of a satellite copy of M attached to the main
cardioid. In this paper we consider infinitely renormalizable quadratic polynomi-
als satisfying the decoration condition, which means that the combinatorics of the
renormalization operators involved is selected from a finite family of decorations.
For this class of maps we prove a priori bounds. They imply local connectiv-
ity of the corresponding Julia sets and the Mandelbrot set at the corresponding
parameter values.
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1. Introduction

A decoration of the Mandelbrot set M (called also a Misiurewicz limb) L is a part
ofM cut off by two external rays landing at some tip of a satellite copy ofM attached
to the main cardioid, see Figure 1.1 (see §2.1 for the precise dynamical definition).
In this paper we consider infinitely renormalizable quadratic polynomials satisfying
the decoration condition, which means that the combinatorics of the renormalization
operators involved is selected from a finite family of decorations Lk. (For instance,
real infinitely renormalizable maps satisfy a decoration condition if and only of non
of the renormalizations is of doubling type.)

An infinitely renormalizable quadratic map f is said to have a priori bounds if
its renormalizations can be represented by quadratic-like maps Rnf : Un → Vn with
mod(Vn r Un) ≥ ε > 0, n = 1, 2 . . . .



Figure 1.1. Two decorations of the Mandelbrot set. The little Man-
delbrot sets inside specify renormalization combinatorics of type (3, 1).

Our goal is to prove the following result:

Main Theorem. Infinitely renormalizable quadratic maps satisfying the decoration
condition have a priori bounds.

By [L], this implies:
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Corollary 1.1. Let fc : z 7→ z2 + c be an infinitely renormalizable quadratic map
satisfying the decoration condition. Then the Julia set J(fc) is locally connected,
and the Mandelbrot set M is locally connected at c.

In this paper we will deal only with the case of sufficiently high periods:

Theorem 1.2. Given finitely many decorations Lk, there exists a p such that any
infinitely renormalizable quadratic map satisfying the decoration condition with dec-
orations Lk and renormalization periods p ≥ p has a priori bounds.

The complementary case of “bounded combinatorics” is dealt in [K].

Remark 1.1. Theorem 1.2 sounds similar in spirit to the a priori bounds of [L].
However, the “high type” condition of [L] is stronger then the above high period
condition, while the “secondary limb condition” of [L] is weaker than the decoration
condition. Also, our proof of Theorem 1.2 is compatible with the proof of [K], so
that they can be combined into the Main Theorem.

Let us now outline the structure of the paper.
In the next section, §2, we will describe a necessary combinatorial set-up in the

framework of the Yoccoz puzzle. Besides a well-known material, it includes the
construction of the modified principal nest from [KL2] needed for dealing with maps
of “high type”.

In §3 we summarize necessary information about pseudo-quadratic-like maps de-
fined in [K], and introduce a pseudo-puzzle by applying the “pseudo-functor” to the
puzzle. In this way we make domains of the return maps more canonical, which
spares us from the need to control geometry of external rays.

From now on, the usual puzzle will serve only as a combinatorial frame, while all
the geometric estimates will be made on the pseudo-puzzle. This is needed for this
paper per se, as well as for making connection to the case of bounded combinatorics
[K]. Only at the last moment (§5.7) we return back to the standard quadratic-like
context.

In §4 we formulate the analytical results of [KL1], the Quasi-Additivity Law and
the Covering Lemma, in the pseudo context. They will be our main analytical tools.

In §5 we prove the main results of the paper. To prove a priori bounds, we show
that if some renormalization has a small modulus, then this modulus will improve
on some deeper level. The main place where the decoration condition plays the role
is on the top of the puzzle, when we compare the modulus of the first annulus of
the pseudo-puzzle to the modulus of the original pseudo-quadratic-like map.

Remark 1.2. Strictly speaking, bounded combinatorics treated in [K] and high com-
binatorics treated by Theorem 1.2 do not cover the oscillating combinatorial types.
However, these theorems follow from results on moduli improving that together
cover everything.

Remark 1.3. Our proof of a priori bounds (Main Theorem) applies without changes
in the case of unicritical maps of higher degree. However, the proof of MLC at the
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corresponding parameters (Corollary 1.1) given in [L] exploits some special geometric
features of quadratic maps. In [C] part of [L] is combined with a new method
developed in [AKLS] to prove Corollary 1.1 in the higher degree case as well.

1.1. Terminology and Notation. N = {1, 2, . . . } is the set of natural numbers;
Z≥0 = N ∪ {0}; D = {z : |z| < 1} is the unit disk, and T is the unit circle;
A(r,R) = {z : r < |z| < R} is the annulus of modulus 1

2π
log(R/r);

Π(h) = {z|0 < ℑz < h} is the horizontal strip.
A topological disk means a simply connected domain in some Riemann surface S.

A continuum K is a connected closed subset in S. It is called full if all components
of SrK are unbounded. We say a subset K of a plane is an FJ-set (for “filled Julia
set”) if K is compact, connected, and full.

We let orb(z) ≡ orbg(z) = (gnz)∞n=0 be the orbit of z under a map g.
Given a map g : U → V and an open topological disk D ⊂ V , components of

g−1(D) are called pullbacks of D under g. If the disk D is closed, we define pullbacks
of D as the closures of the pullbacks of intD.1 In either case, given a connected set
X ⊂ g−1(intD), we let g−1(D)|X be the pullback of D containing X.

We let x⊕ y = (x−1 + y−1)−1 be the harmonic sum of x and y (it is conjugate to
the ordinary sum by the inversion map x 7→ x−1). Similarly, x⊖ y = (x−1 − y−1)−1

stands for the harmonic difference.

1.2. Acknowledgement. We thank Tao Li for making Figure 1.1. This work has
been partially supported by the NSF, NSERC, the Guggenheim and Simons Foun-
dations. Part of it was done during the authors’ visit to the IMS at Stony Brook
and the Fields Institute in Toronto. We are thankful to all these Institutions and
Foundations.

2. Yoccoz puzzle, decorations, and the Modified Principal Nest

Let (fλ : U ′
λ → Uλ) be a quadratic-like family over a disk Λ ⊂ C. Assume that

this family is good enough (proper and unfolded), so that the associated Mandelbrot
set M = M(fλ) is canonically homeomorphic to the standard Mandelbrot set (see
[DH]). In fact, most of the time we will be dealing with a single map f = fλ from
our family, so that we will usually suppress the label λ in the notation. (We need
a one parameter family only to introduce different combinatorial types of the maps
under consideration.)

We assume that the domains U ′ and U are smooth disks, f is even, and we
normalize f so that 0 is its critical point.

We let Um = f−m(U). The boundary of Um is called the equipotential of level m.

1Note that the pullbacks of a closed disk D can touch one another, so they are not necessarily
connected components of g−1(D).
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2.1. Top of the Yoccoz puzzle and decorations. By means of straightening,
we can define external rays for f . They form a foliation of V r K(f) orthogonal
to the equipotential ∂U . The map f has one non-dividing fixed point β (landing
point of the external ray with angle 0), and one dividing fixed point α. There are
q > 1 external rays Ri landing at α which are cyclically permuted by the dynamics
with rotation number p/q, see [M2] (p/q is also called the combinatorial rotation
number of α). These rays divide U into q (closed) topological disks Y 0

i called the
Yoccoz puzzle pieces of depth 0. Let Y 0 ≡ Y 0

0 stand for the critical puzzle piece, i.e.,
the one containing 0.

Let us consider 2q rays of f−1(∪Ri). They divide U ′ into 2q − 1 (closed) disks
called Yoccoz puzzle pieces of depth 1. Let Y 1 stand for the critical puzzle piece
of depth 1. There are also q − 1 puzzle pieces Y 1

i of depth 1 contained in the
corresponding off-critical pieces of depth 0. All other puzzle pieces of depth 1 will
be denoted Z1

i . They are attached to the symmetric point α′ = −α.
The puzzle pieces will be labeled in such a way that f(Y 1

i ) = Y 0
i+1, i = 0, . . . ,q−1,

and Z1
i = −Y 1

i . We let

L =

q−1
⋃

i=1

Y 1
i ; R = −L =

q−1
⋃

i=1

Z1
i .

Puzzle pieces Y m
j of depth m are pullbacks of f−m(Y 0

i ). They tile the neighbor-
hood of K(f) bounded by the equipotential ∂Um. Each of them is bounded by
finitely many arcs of this equipotential and finitely many external rays of f−m(Ri).
If fm(0) 6= α, then there is one puzzle piece of depth m that contains the critical
point 0. It is called critical and is labeled as Y m ≡ Y m

0 . These pieces are nested
around the origin:

Y 0 ⊃ Y 1 ⊃ Y 2 · · · ∋ 0.

Let us consider a puzzle piece Y = Y m
i . Different arcs of ∂Y meet at the corners

of Y . The corners where two external rays meet will be called vertices of Y ; they
are fm-preimages of α. Let KY = K(f) ∩ Y . It is a closed connected set that
meets the boundary ∂Y at its vertices. Moreover, the external rays meeting at a
vertex v ∈ ∂Y chop off from K(f) a continuum Sv

Y , the component of K(f) r intY
containing v.

The critical value f q(0) belongs to the puzzle piece Y 0. If in fact it belongs to Y 1

then the map Y q+1 → Y 1 is a double branched covering. It is not a quadratic-like
map, though, since the boundaries of Y 1 and Y q+1 overlap over four external rays
landing at α and α′. However, by slight “thickening” of the domain of this map (see
[M1]), it can be turned into a quadratic-like map g such that

K(g) = {z : fqmz ∈ Y 1, m = 0, 1, 2, . . . }.

The map f is called satellite renormalizable (or, immediately renormalizable) if
the Julia set K(g) is connected, i.e., if the critical point never escapes Y 1:

fqm(0) ∈ Y 1, m = 0, 1, 2 . . . .
5



The set of immediately renormalizable parameter values (with a given combinatorial
rotation number p/q) assemble a satellite copy Mp/q of M attached to the main
cardioid at the parabolic point with rotation number p/q. The parameters t ∈Mp/q

for which the critical point eventually lands at α (i.e., fqn
t = α′ for some n ∈ N) are

called the tips of Mp/q.

If f is not satellite renormalizable, then there exists an n ∈ N such that fqn(0)
belongs to some puzzle piece intZ1

κ
. Let n be the smallest such n. In this case, we

let
V 0 = f−nq(Z1

κ
)|0 = Y nq+1.

Each puzzle piece Z1
j has 2m univalent pullbacks under the 2m-covering fqm :

Y qm → Y 0, m = 1, . . . ,n − 1. We label these pullbacks (for all j) as Z1+qm
i . Then

(2.1) fqm(0) ∈ Zq(n−m)+1
κm

, m = 1, . . . ,n,

for some sequence κ̄ = (κ1, . . . , κn = κ) called the escape route of the critical point.
The escape route specifies the tip t = tκ1...κn−1

of M such that ft satisfies (2.1) for
m < n, while fqn = α′.

There are q parameter rays landing at each tip t of Mp/q. They chop off q − 1
decorations Lκ̄ (the components of M r{t} that do not intersect the main cardioid)
from M . The limb Lκ̄ attached to t is specified by the puzzle piece Z1

κ
containing

fqn(0). Note that there are only finitely many decorations with bounded q and n.
Let P = Y (n−1)q+1. The piece P has 2n vertices each of which is a preimage of α

of some depth q m with m ≤ n (and it takes into account all preimages of α in Y 1

up to depth qn).

Remark 2.1. Any fqm-preimage t ∈ Y 1 of α, m ≤ n, can be naturally labeled by
a dyadic number i/2m ∈ Q/Z (with odd i). Here α is labeled by 0, α′ is labeled by
1/2, and in general, the dyadic expansion of i is 0. ε1 . . . εm 1, where εl is equal +1
or −1 depending on whether the rays landing at fq(l−1))(t) are “below” the chord
connecting α and α′, or above it.Then the pullbacks of Zj attached to t can be
labeled as Zj(i/2

m), j = 1, . . . ,q − 1. A decoration assumes labeling Zj(i/2
n) if

fq(0) ∈ Zj(i/2
n).

Note that fq(P ) ⊃ P and the critical value fq(0) does not belong to P . Hence P
has two univalent fq-pullbacks, QL and QR (of depth qn+1), inside P . The puzzle
piece QL is attached to the fixed point α while QR is attached to α′. Each of them
shares two external rays with V 0.

Lemma 2.1. For any vertex v of P , there exists a puzzle piece Qv ⊂ P of depth
(2n− 1)q + 1 attached to the boundary rays of P landing at v, which is a univalent
fnq-pullback of P . Moreover, these puzzle pieces are pairwise disjoint.

Proof. Let g = fq|QL ∪ QR. The domain of gn consists of 2n components each
of which is a univalent pullback of P . Each of these components contains a single
gn-preimage v of α, and is attached to the pair of the boundary external rays of P
landing at v. This is the desired puzzle piece Qv. �
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Y nq+1

α

α′
Z1

i

QL

QR

Y 1
i

Figure 2.1. The top of the Yoccoz puzzle

Given two vertices, v and w, of P , we let T vw
P = KP r (Qv ∪ Qw). Notice that

T vw separates v from w in the sense that v and w belong to different components of
KP r Tvw.

2.2. Modified principle nest. Given a critical puzzle piece V , let us consider
the first return f l0, l ∈ N, of the critical point to V (whenever it exists). The
corresponding pullback W = f−l(V )|0 of V is called the central domain of the first
return map to V , or briefly, the first child of V . Under these circumstances, W ⊂ V
and the first return map f l : W → V is a double branched covering.

Under the above circumstances, we also consider the the first moment k ∈ N

such that fkl(0) 6∈ W and then the first return f t(0) ∈ W , t > kl, back to W
(whenever these moments are well defined). We call it the fine return to W , and the
corresponding pullback A = f−t(W )|0 the fine child of W . The map f t : A→W is
a double branched covering. Note that if f l(0) 6∈ W , the fine return coincides with
the first return.

In [KL2] we have constructed a (Modified) Principle Nest of critical puzzle pieces

E0
⋑ E1

⋑ E1
⋑ · · · ⋑ Eχ−1

⋑ Eχ
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and corresponding quadratic-like maps gn : En → En−1. Here for odd n, En is the
first child of En−1 and gn : En → En−1 is the corresponding first return map. For
odd n, En is the fine child of En−1 and gn : En → En−1 is the corresponding fine
return map. We let g ≡ g0.

If the map f is renormalizable then the Principle Nest terminates at some odd
level χ. In this case, the last quadratic-like map gχ : Eχ → Eχ−1 has connected
Julia set and represents the primitive renormalization Rf of f . The renormalization
level χ is also called the height of the nest.

Primitively renormalizable parameter values assemble a maximal primitive copy
M ′ of the Mandelbrot set M . This copy specifies the combinatorics of the renor-
malization in question. In particular, it determines the parameters q, n, the height
χ, and the renormalization period p.

In what follows we will assume that f is primitively renormalizable. We let K =
K(Rf) be the little (filled) Julia set of f , and we let p be the renormalization
period, i.e., gχ = fp so that fp(K) = K. We let Ki = f i(K), where i is taken mod
p, which are also called “little Julia sets”.

It is important to note that the maps gn admit analytic extensions Ẽn → Ên−1

such that En ⊂ Ẽn ⊂ Ên ⊂ En−1 and for odd n, Ên = En−1 [KL2], §2.4. For n = 0,

we let Ê0 = Ẽ0 = Y qn. Then fqn : Ẽ0 → Y 0 is a branched covering of degree 2n.

The following useful observation will be used many times:

Lemma 2.2 (Telescope). Let Xk be a sequence of topological disks, k = 0, 1, . . . ,m,
and let φk : Xk → φ(Xk) be branched coverings of degree dk such that φ(Xk) ⊃ Xk+1.
Let Φ = φn−1 ◦ · · · ◦ φ0 (wherever it is defined), and let P ⊂ X0 be a component of
its domain of definition. Then Φ : P → Vn is a branched covering of degree at most
d0 · · · dn−1.

If the renormalization Rf is also renormalizable then f is called twice renormal-
izable, and R2f stands for its second renormalization. Proceeding this way, we can
define infinitely renormalizable maps f , and let Rnf be their n-fold renormaliza-
tions. The combinatorics of an infinitely renormalizable map is a sequence of little
Mandelbrot copies M (n) that determine the combinatorics of the renormalizations
Rnf . It determines the sequence of the parameters qn, nn, the heights χn, and the
periods pn of the corresponding renormalizations.

We say that an infinitely renormalizable f satisfies the decoration condition if
all the little copies M (n) belong to finitely many decorations Lk. Equivalently, the
parameters qn and nn are bounded.

2.3. Geometric puzzle pieces. In what follows we will deal with more general
puzzle pieces.

Given a puzzle piece Y m
i , let Y m,l

i stand for a Jordan disk bounded by the same
external rays as Y m

j and arcs of equipotentials of level l (so Y m,m
i = Y m

i ). Such a
disk will be called a puzzle piece of bidepth (m, l).
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A geometric puzzle piece of bidepth (m, l) is a closed Jordan domain which is the
union of several puzzle pieces of the same bidepth. As for ordinary pieces, a pullback
of a geometric puzzle piece of bidepth (m, l) under some iterate fk is a geometric
puzzle piece of bidepth (m + k, l + k). Note also that if P and P ′ are geometric
puzzle pieces with2 bidepthP ≥ bidepthP ′ and KP ⊂ KP ′ then P ⊂ P ′.

The family of geometric puzzle pieces of bidepth (m, l) will be called Ym(l). Given
a geometric puzzle piece Y ∈ Ym(l), we let Y (k) be the puzzle piece bounded by the
same external rays as Y truncated by the equipotential of level k. (In particular,
Y (l) = Y .)

Any puzzle piece Y ∈ Ym(l) admits the following combinatorial representation.
Let θi be the cyclically ordered angles of the external rays Ri that bound Y . Let
us consider the straight rays Ri in C r D of angles θi truncated by the circle Tr

of radius r = 1/2l. If two consecutive rays, Ri and Ri+1, land at the same vertex
of Y , let is connect Ri to Ri+1 with a hyperbolic geodesic in D. Otherwise Ri and
Ri+1 are connected with an equipotential arc. Then let us connect Ri to Ri+1 with
the appropriate arc of Tr. We obtain a Jordan curve that bounds the combinatorial
model MY of Y .

The arcs ωi of T ∩MY correspond to the “external arcs” of the Julia piece KY .
They have length 2πλ, where λ is called the combinatorial length of the correspond-
ing external arc of KY . In case Y is a dynamical puzzle piece, all the external arcs
of Y have the same combinatorial length

(2.2)
2k

(2q − 1)2m
, k ∈ {0, 1, . . . , q − 1},

where the choice of k depends on the puzzle piece fm(Y ) of depth 0 (For instance,
k = 0 when fm(Y ) contains the critical value f(0), while k = q − 1 when fm(Y )
contains the critical point 0.)

It follows that for a geometric puzzle piece Y of depth m, the combinatorial length
of its external arcs is at least 2−(q+m).

Let us now consider a geometric puzzle piece Z0 = −Y 0 of bidepth (1,0).

Lemma 2.3. Let z ∈ K(f), fqnz ∈ Z0 and let P = f−qn(Z0)|z. Then P ⋐ intY 0

or P ⋐ intZ0.

Proof. P is a geometric puzzle piece of bidepth (nq + 1,nq). But E0 = Y nq+1 is a
puzzle piece of depth nq + 1 such that fqn(E0) = Zκ, where intZκ ∩ Z0 = ∅. It
follows that P∩intE0 = ∅. But K(f)rintE0 consists of two 0-symmetric connected
components XL ⊃ L∩K(f) and XR ⊃ R∩K(f). We conclude that KP is contained
in one of these components, and hence it is contained in one of the sets KZ0 or KY 0.
As

bidepthP ≥ (1, 0) = bidepthZ0 ≥ (0, 0) = bidepth Y 0,

P is contained in one of the puzzle pieces Z0 or Y 0. �

2the inequality between bidepths is understood componentwise
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2.4. Many happy returns. Here we will summarize the combinatorial construc-
tion of [KL2], §1.9, that will lead to the moduli improvement in the case of high
type.

Fix an arbitrary m, let N be the smallest even integer which is bigger than
log2m + 5, and take any odd level n ≥ N . Then there exists m/2 returns Λk =
glk(En) of the domain En to En−N with the following properties. For any domain
Λk, the map Ψk = glk : En → Λk admits a holomorphic extension to a branched
covering

(2.3) Ψk : (Υk,∆k, E
n) → (En−N−1,Λ′

k,Λk)

such that:

(P1) deg(Ψk : Υk → En−N−1) ≤ 2N+m;
(P2) deg(Ψk : ∆k → Λ′

k) ≤ d5;
(P3) Υk ⊂ En−1;
(P4) There is a level i ∈ [n − 5, n − 1] such that each pair of disks (Λ′

k,Λk) is

mapped univalently onto (Êi, Ei) under some iterate f t, t = t(k);
(P5) The buffers Λ′

k ⋐ En−N are pairwise disjoint.

3. Pseudo-quadratic-like maps and pseudo-puzzle

3.1. Pseudo-quadratic-like maps. For a more general and detailed discussion of
ψ-ql maps, see [K].

Suppose that U′, U are disks, and i : U′ → U is a holomorphic immersion, and
f : U′ → U is a degree d holomorphic branched cover. Suppose further that there
exist full continua K ⋐ U and K ′ ⋐ U′ such that K ′ = i−1(K) = f−1(K). Then we
say that F = (i, f) : U′ → (U,U) is a ψ-quadratic-like (ψ-ql) map with filled Julia
set K.

Lemma 3.1 ([K]). Let F = (i, f):U′ → U be a ψ-ql map of degree d with filled
Julia set K. Then i is an embedding in a neighborhood of K ′ ≡ f−1(K), and the
map g ≡ f ◦ i−1:U ′ → U near K is quadratic-like.

Moreover, the domains U and U ′ can be selected in such a way that mod(U r

i(U ′)) ≥ µ(mod(U rK)) > 0.

There is a natural ψ-ql map Un → Un−1, the “restriction” of (i, f) to Un. Some-
what loosely, we will use the same notation F = (i, f) for this restriction.

Let us normalize the ψ-quadratic-like maps under consideration so that diamK ′ =
diamK = 1, both K and K ′ contain 0 and 1, 0 is the critical point of f , and
i(0) = 0. Let us endow the space of ψ-quadratic-like maps (considered up to inde-
pendent rescalings in the domain and the range) with the Carathéodory topology.
In this topology, a sequence of normalized maps (in, fn) : U′

n → Un converges to
(i, f) : U′ → U if the pointed domains (U′

n, 0) and (Un, 0) converge to U′ and U
respectively, and the maps in, fn converge respectively to i, f , uniformly on compact
subsets of U′.
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Lemma 3.2 (compare [McM]). Let µ > 0. Then the space of ψ-PL maps F =
(i, f) : U′ → U such that the Julia set K is connected and mod(U r K) ≥ µ is
compact.

Proof. Let Xn = i−1{0, 1}, Yn = f−1{0, 1}. Note that both sets consist of at most 2
points and are contained in D.

Then we can select a subsequence of domains U′
n, Un Carathéodory converging

to some domains U′, U, while the sets Xn and Yn converge in the Hausdorff metric
to some sets X ⊂ U′ and Y ⊂ U′ that consist of at most two points and are
contained in D (we will keep the same notation for the subsequence). Since the
maps in|U

′
n rXn and fn|U

′
n r Yn do not assume values 0 and 1, they form normal

families on U′ r X. Since these families are bounded on the sets Kn, they are
uniformly bounded on compact sets of U′ r (X ∪ Y ). By the Maximum Principle,
they are normal on the whole domain U′.

Let i and f be some limit functions of the sequences in and fn. These functions
are non-constant since they assume values 0 and 1. Then i is an immersion as a
non-constant limit of immersions. Also, f : U′ → U is a branched covering of degree
at most 2. Moreover, K ′ ⋐ U since mod(U′ rK ′) ≥ µ/2. Hence 0 ∈ U′, and it is a
critical point of f . It follows that deg f = 2, and we are done. �

3.2. Pseudo-puzzle.

3.2.1. Definitions. Let (i, f) : U′ → U be a ψ-ql map. By Lemma 3.1, it admits a
quadratic-like restriction U ′ → U to a neighborhood of its (filled) Julia set K = KU.
Here U ′ is embedded to U , so we can identify U ′ with i(U ′) and f : U ′ → U with
f ◦ i−1.

Assume that K is connected and both fixed points of f are repelling. Then we can
cut U by external rays landing at the α-fixed point and consider the corresponding
Yoccoz puzzle.

Given a (geometric) puzzle piece Y of depth m, recall that KY stands for Y ∩K(f)
and SY = cl(K(f) rKY ). Let Y stand for the space of paths δ : [0, 1] → Um r SY

such that:

• δ(0) ∈ Y ,
• if δ(t) ∈ KY , then the restriction δ| [0, t] is homotopic rel endpoints to a path

contained in Y .3

Let Y be the space of paths δ ∈ Y modulo homotopy through Y with δ(1) fixed.
Define the projection πY : Y → Um by [δ] 7→ δ(1). One can see that Y is a

Riemann surface, and πY is an immersion such that Y lifts to a disk Ŷ ⊂ Y which is
homeomorphically projected onto Y . Thus, we can identify Ŷ with Y ; in particular,
KY is embedded into Y.

3This condition can be replaced with a more restrictive one: After the first exit from Y , the
path never intersect the Julia set K(f) (though it is allowed to return back to Y ).
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The Riemann surface Y will be called the pseudo-piece (“ψ-piece”) associated
with Y .

The ψ-pieces can also be defined in a different way. Let us consider the topological
annulus A = Um rK(f) and its universal covering Â. Let Yi be the components of
Y rKY . There are finitely many of them, and each Yi is simply connected. Hence
they can be embedded into Â. Select such an embedding ei : Yi → Âi where Âi

stands for a copy of Â. Then the ψ-piece is obtained by gluing the Ai to Y by means
of ei, i.e., Y = Y ⊔ei

Âi.

Lemma 3.3. The above two definitions of ψ-pieces are equivalent.

Proof. Let Y be a ψ-piece according to the first definition. The puzzle piece Y is
embedded into Y by associating to a point y ∈ Y the constant path δ(t) ≡ y.

Let us realize the universal covering Âi → A as the space of paths in A that
begin in Yi rel homotopy through such paths fixing the terminal endpoint. (This
realization is legitimate since Yi is simply connected.) This provides us with an

embedding φi : Âi → Y
The embeddings φi have disjoint images. Indeed, all points of ∂Y ∩ K(f) are

dividing and thus belong to SY . Hence, if we take two paths δ1 : [0, 1] → UmrK(F )

and δ2 : [0, 1] → Um rK(f) as above representing points in Âi and Âj (i 6= j) with
a common endpoint, then they “surround” some piece of SY , and hence represent
different points in Y.

Moreover, the image φi(Âi) overlaps with Y by Yi. Hence we obtain an embedding

of Y ⊔ei
Âi into Y.

Let us show that this embedding is surjective. Take a path δ ∈ Ỹ representing
some point of Y, and let τ ∈ [0, 1] be the last parameter for which δ(τ) ∈ KY .
Since the path δ : [0, τ ] → Um is trivial (i.e., it can be pulled to Y in Um r SY

rel endpoints), the restriction δ : [τ, 1] → Um r SY (appropriately reparametrized)
represents the same point in Y as the original path. Moreover, if τ 6= 1, we can
replace it with an equivalent path δ : [τ+ε, 1] → Um rSY which is disjoint from the

Julia set K(f). As the latter path represents a point in some Âi, we are done. �

3.2.2. Naturality.

Lemma 3.4. (i) Consider two puzzle pieces Y and Z such that the map f : Y →
Z is a branched covering of degree k (where k = 1 or k = 2 depending on
whether Y is off-critical or not). Then there exists an induced map f : Y → Z
which is a branched covering of the same degree k.

(ii) Given two puzzle pieces Y ⊂ Z, the inclusion i : Y → Z extends to an
immersion i : Y → Z.

Proof. Both properties follow easily from either definition of the ψ-pieces. Let us,
for instance, use the second definition.
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(i) Let depthY = m, depthZ = m − 1. Let us consider the degree k branched
covering

f : (Um, Y,KY ) → (Um−1, Z,KZ).

The components Yi of Y r KY are univalently mapped onto components Zj(i) of
Z r KZ , where the map j = j(i) is k-to-1. This map extends to an isomorphism

map Âi → B̂j of the corresponding universal coverings, which glue together into a
branched covering Y → Z of degree k.

(ii) Let depthY = m, depthZ = n. Let us consider the immersion

i : (Um, Y,KY ) → (Un, Z,KZ).

The components Yi are embedded by i into some components Zj(i), where the map
j = j(i) is surjective but not necessarily injective. These embeddings extend to

immersions Âi → B̂j that glue together into an immersion Y → Z. �

3.2.3. Moduli. Given two puzzle pieces Z ⋐ Y , we let

mod (Y, Z) = mod(Y rKZ).

Lemma 3.4 implies:

Lemma 3.5. (i) Consider two pairs of puzzle pieces (Y ′, Y ) and (Z ′, Z) such
that the map f : (Y ′, Y ) → (Z ′, Z) is a branched covering of degree k (on
both domains). Then

mod (Z ′, Z) = kmod (Y ′, Y ).

(ii) Given a nest of three puzzle pieces W ⊂ Z ⊂ Y , we have

mod (Z,W ) ≤ mod (Y,W ).

3.2.4. Boundary of puzzle pieces. Let us mention in conclusion, that the ideal bound-
ary of a pseudo-puzzle Y is tiled by (finitely many) arcs λi ⊂ ∂Âi that cover the

ideal boundary of Um (where m = depthY ) and arcs ξi, ηi ⊂ ∂Âi mapped onto the
Julia set J(f). The arc λi meets each ξi, ηi at a single boundary point corresponding
to a path δ : [0, 1) 7→ A that wraps around K(f) infinitely many times, while ηi

meets ξi+1 at a vertex vi ∈ Y ∩K(f). We say that the arcs λi form the outer bound-
ary (or “O-boundary”) ∂OY of the puzzle piece Y, while the arcs ξi and ηi form
its J-boundary ∂JY. Given a vertex v = vi of a puzzle piece Y , let ∂vY = ηi ∪ ξi+1

stand for the part of the J-boundary of Y attached to v.
Note that the immersion constructed in Lemma 3.4 extends continuously to the

boundary of the puzzle piece Y. (However, i(∂Y) is not contained in ∂Z, unless
Z = Y .) In what follows we will assume this extension without further comment.

A multicurve in some space X is a continuous map γ : ∪l
k=1[sk, tk] → X

parametrized by a finite union of disjoint intervals [sk, tk] ⊂ R.4 Note that mul-
ticurves are ordered. A multicurve in a puzzle piece Y is called horizontal if

γ(s1) ∈ ∂v0Y, γ(tk), γ(sk+1) ∈ ∂vkY, k = 1, . . . , l − 1, γ(tl) ∈ ∂vlY

4We allow that the boundary points of a multicurve in a pseudo puzzle Y belong to ∂JY.
13



for some vertices vk of Y, k = 0, . . . , l. We say that such a multicurve “connects”
∂v0Y to ∂vlY. The following statement motivates introduction of multicurves:

Lemma 3.6. Let v and w be two vertices of a geometric puzzle piece Y ∈ Ym(l).
Then any curve γ in Ul connecting Sv

Y to Sw
Y contains a multicurve γ′ that lifts to

a multicurve γ∗ in Y connecting ∂vY to ∂wY.

Given two vertices v and w of Y , let GY (v, w) stand for the family of horizontal
multicurves in Y connecting ∂v(Y) to ∂w(Y). Finally, let

dY (v, w) = L(GY (v, w))

stand for the extremal distance between the corresponding parts of J-boundary of
Y.

Lemma 3.7. If f |Y is univalent, then dY (v, w) = df(Y )(fv, fw).

4. Quasi-Additivity Law and Covering Lemma

Let us now formulate two analytic results which will play a crucial role in what
follows. The first one appeares in §2.10.3 of [KL1]:

Quasi-Additivity Law. Fix some η ∈ (0, 1). Let V be a topological disk, let
Ki ⋐ V, i = 1, . . . ,m, be pairwise disjoint full compact continua, and let φi :
A(1, ri) → V r ∪Kj be holomorphic annuli such that each φi is an embedding of
some proper collar of T to a proper collar of ∂Ki. Then there exists a δ0 > 0
(depending on η and m) such that:
If for some δ ∈ (0, δ0), mod(V,Ki) < δ while log ri > 2πηδ for all i, then

mod(V,∪Ki) <
2η−1δ

m
.

The next result appears in §3.1.5 of [KL1]:

Covering Lemma. Fix some η ∈ (0, 1). Let us consider two topological disks U
and V, two full continua A′ ⊂ U and B′ ⊂ V, and two compact subsets, A ⋐ A′

and B ⋐ B′, of topological type bounded by T .5

Let f : U → V be a branched covering of degree D such that A′ is a component of
f−1(B′), and A is the union of some components of f−1(B). Let d = deg(f : A′ →
B′).
Let B′ be also embedded into another topological disk B′. Assume B′ is immersed
into V by a map i in such a way that i|B′ = id, i−1(B′) = B′, and i(B′) r B′ does
not contain the critical values of f .
Under the following “Collar Assumption”:

mod(B′, B) > ηmod(U, A),

if
mod(U, A) < ε(η, T,D)

5In applications, A and B will be full continua, so T = 1.
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then

mod(V, B) < 2η−1d2 mod(U, A).

5. Improving the moduli

In this section C will stand for the maximum of the constants in the Quasi-
Additivity Law and the Covering Lemma.

5.1. High type. Let us begin with a simple estimate that compares moduli on
consecutive odd levels of the Principal Nest:

Lemma 5.1. For any odd n, we have:

mod (En−3, En−2) ≤ 4mod (En−1, En)

and

mod (Y 0, R) ≤ 2n+1 mod (E0, E1).

Proof. By Lemma 3.5,

mod (Ên−1, En−1) = 2mod (Ẽn, En) ≤ 2mod (En−1, En)

and

mod (Ên−1, En−1) ≥ mod (Ẽn−1, En−1)

=
1

2
mod (Ên−2, En−2) =

1

2
mod (En−3, En−2),

and the first estimate follows.
The second estimate is similar. The puzzle piece E1 ≡ Y m is mapped with

degree 2 onto E0, and this map admits degree 2 extension Ẽ1 → Y qn ≡ Ê0, where
Ẽ1 = Y m−1. Then E0 is mapped onto Z1

κ by degree 2 map f qn. This map admits
degree 2n extension Y qn → Y 0. It follows that

mod (Y 0, R) ≤ mod (Y 0, Z1
κ)

= 2n+1 mod (Y m−1, E1) ≤ 2n+1 mod (E0, E1).

�

The following lemma tells us that if some principal modulus is very small then it
should be even smaller on some preceding level of the Principal Nest:

Lemma 5.2. There exist absolute N ∈ N and ε > 0 such that: If on some odd level
n ≥ N , mod (En−1, En) < ε, then on some previous odd level n− s ∈ [n−N,n− 1]
we have:

(5.1) mod (En−s−1, En−s) <
1

2
mod (En−1, En).
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Proof. Let us fix some integer m > C3228. Let N be the smallest odd integer that
is bigger than log2m+5. Take any odd level n ≥ N . For each k, let us consider the
associated 3-domain branched covering Ψk (2.3)

Ψk : (Υk,∆k, E
n) → (En−N ,Λ′

k,Λk).

Let us consider two cases:

Case 1. Assume that for some domain Λk,

mod (Λ′
k,Λk) ≤

1

4
mod (En−1, En).

By Property (P4) and Lemma 3.5, mod (Λ′
k,Λk) = mod (Êi, Ei). If i is odd then

Êi = Ei−1, and we obtain the desired estimate with s = n− i ∈ [1, 5]:

mod (En−1, En) ≥ 4mod (Ei−1, Ei).

If i is even, then

mod (Êi, Ei) ≥ mod (Ẽi, Ei) =
1

2
mod (Êi−1, Ei−1) =

1

2
mod (Ei−2, Ei−1),

and we conclude that

mod (En−1, En) ≥ 2mod (Ei−2, Ei−1).

Case 2. Assume that for all Λk,

(5.2) mod (Λ′
k,Λk) ≥

1

4
mod (En−1, En) ≥

1

4
mod (Υk, E

n)

(where the second estimate follows from the inclusion Υk ⊂ En−1). By Lemma 3.4,
there exists a natural covering map

Ψk : (Υk,K∆k
,KEn) → (En−N−1,KΛ′

k
,KΛk

),

and a natural immersion i : Λ′
k → En−N . Note that i(Λ′

k)rKΛ′

k
does not contain the

critical values of Ψk, since the latter are contained in the Julia set K(f). Moreover,
equation (5.2) provides us with the Collar Assumption that allows us to apply the
Covering Lemma to the map Ψk. If ε is sufficiently small, it yields:

(5.3) mod (En−N−1,Λk) ≤ C212mod (Υk, E
n) ≤ C 212 mod (En−1, En).

Estimates (5.2) and (5.3) show that the Quasi-Additivity Law is applicable to the
family of islands KΛk

in En−N−1 with η−1 = C214. Since there are at least m/2
domains Λk ⊂ Λ′

k ⊂ En−N , it implies:

mod (En−N−1, En−N) ≤
C3227 mod (En−1, En)

m
<

1

2
mod (En−1, En),

and we are done. �
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Lemma 5.3. There exist absolute constants C > 0, ρ ∈ (0, 1) and ε > 0 such that
if for some odd n, mod (En−1, En) < ε, then

mod (E0, E1) < Cρnmod (En−1, En).

and

mod (Y 0, R) ≤ C2nρnmod (En−1, En).

Proof. By Lemma 5.2, there exists an odd level l < N such that

mod (El−1, El) ≤

(

1

2

)[n/N ]

,

which together with Lemma 5.1 implies the desired estimates. �

5.2. Frequent R-returns. Let us consider the map

(5.4) f l = f qn+1 ◦ g1 ◦ · · · ◦ gχ−1 : Eχ−1 → Y 0

and the trajectory O = {Ki}
l+p−1
i=l of the little Julia set K. Let i1, i2, . . . be the

moments in O for which Ki ⊂ R.

Lemma 5.4. Let ρ > 0, χ̄ ∈ N. Take some integer m ≥ C3230/ρ, and let p = m2qn.
Assume that the little Julia set frequently visits R:

(5.5) ik+1 − ik ≤ mqn, k = 1, 2, . . . ,m.

If χ ≤ χ̄ while p ≥ p, then

mod (Y 0, R) ≤ ρmod(Eχ−1,K),

provided mod(Eχ−1,K) < ε(n; χ̄, ρ).

Proof. The map (5.4) has degree 2χ ≤ 2χ̄. By Lemma 2.9 of [KL2], deg(f l|Eχ) ≤ 32,
and hence l ≤ 5p.

By (5.5), im− i1 < m2qn ≤ p, so the moments ik are pairwise non-congruent mod
p. Hence the little Julia sets Ki1, . . . ,Kim are all distinct.

Since O has length p, there is only one critical Julia set in O. Hence deg(f ik :
K → Kik) is at most 64, so that ik ≤ 6p, k = 1, . . . ,m.

On the other hand, Kik is contained in a puzzle piece in R which is mapped under
f ik+1−ik onto Y 0 with degree at most 2mn. It follows by the Telescope Lemma 2.2
that there is a puzzle piece Υk ⊂ Eχ−1 which is mapped under f ik onto Y 0 with
degree at most 2χ̄+kmn ≤ 2χ̄+m2n ≡ D.

We would like to apply the Covering Lemma to the corresponding map

f ik : (Υk,K) → (Y0,Kik)

of degree at most D. To this end we need collars around Kik . Let Ω be the critical
pullback of Eχ under f6p. Then we let Λ′

k = f ik(Ω)). Since the moments ik are
pairwise non-congruent mod p and ik ≤ 6p, the puzzle pieces Λ′

k are contained in
17



different domains of the orbit f t(Eχ), t = 0, 1 . . . , p − 1. Hence they are pairwise
disjoint. Moreover, by Lemma 3.5,

(5.6) mod(Λ′
k,Kik) ≥ mod(Ω,K) =

1

4
mod(Eχ−1,K) ≥

1

4
mod(Υk,K).

This provides us with the desired Collar Assumption. By the Covering Lemma,

mod(Y0,Kik) ≤ C214 mod(Υk,K) ≤ C214 mod(Eχ−1,K).

The last two estimates show that the Quasi-Additivity Law is applicable to the
family of islands Kik in Y0 (with η−1 = C216):

mod (Y 0, R) ≤
C3230 mod(Eχ−1,K)

m
≤ ρmod(Eχ−1,K),

provided mod(Eχ−1,K) < ε(D) = ε(n; χ̄, ρ) and we are done. �

5.3. Many consecutive returns to L. Here the set-up is the same as in the
previous section, but we will assume that there is a gap in returns of the little Julia
sets to R:

Lemma 5.5. Let ρ, χ̄, m, and p be as in Lemma 5.4. Assume there is k ≤ m such
that

(5.7) ik+1 − ik > mqn.

If χ ≤ χ̄ while p ≥ p, then

mod (Z0, L) ≤ ρmod(Eχ−1,K),

provided mod(Eχ−1,K) < ε(n;q, χ̄).

Proof. Under our assumption (5.7) the Julia set returns frequently to L:

Kik+jqn ⊂ L, j = 1, . . . ,m.

Let Pj ∋ f ikz be the pullback of Z0 under f jqn. By Lemma 2.3 and the Telescope
Lemma, Pj ⊂ Y 0.

Let Υj be the further pullback of Pj under f ik , and let

Ψj = f ik+jqn : Υj → Z0.

Then Υj ⊂ Eχ−1 and deg Ψj ≤ 2χ̄+p.
The rest of the argument is the same as for Lemma 5.4: the Covering Lemma

implies that for j = 1, . . . ,m,

mod(Z0,Kik+jqn) ≤ C214 mod(Υk,K) ≤ C214 mod(Eχ−1,K),

and by the Quasi-Additivity Law,

mod (Z0, L) ≤
C3230 mod(Eχ−1,K)

m
≤ ρmod(Eχ−1,K).

�
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Note that by symmetry, mod (Z0, L) = mod (Y 0, R). Putting together Lemmas
5.3, 5.4 and 5.5, we obtain:

Corollary 5.6. For any parameters q,n of a decoration and any ρ > 0, there exists
p ∈ N and ε > 0 such that

mod (Y 0, R) ≤ ρmod(Eχ−1,K),

provided p ≥ p and mod(Eχ−1,K) < ε.

5.4. Comparison of mod (Y 0, R) with dY 1(α, α′). Let

µ := min(mod (U,K), 1/2).

Lemma 5.7.

dY 1(α, α′) ≤ mod (Y 0, R) ⊖
1

2
µ.

Proof. The boundary of Y0 consists of two parts (see the end of §3.2): the J-
boundary ∂JY

0 = ξ ∪ η attached to α and the outer arc λ = ∂OY0 that covers the
ideal boundary of U. Let Gh stand for the family of curves in the annulus Y0 rKR

connecting KR to the J-boundary, while Gv stand for the family of curves in the
same annulus connecting KR to λ. By the Parallel Law,

L(Gh) ≤ mod (Y 0, R) ⊖ L(Gv).

Let Π stand for the rectangle uniformizing Y0 r KY 0 whose horizontal sides cor-
respond to KY 0 and λ, and vertical sides correspond to ξ and η. We let ω be the
horizontal side of Π corresponding to KY 0 . Since any curve of the family Gv over-
flows some curve connecting KY 0 to λ in Y0 rKY 0 (and thus representing a vertical
curve in Π), we have:

L(Gv) ≥ mod Π.

But by definition of the pseudo-puzzle, the domain Y0 r KY 0 covers the annulus
U r K extending to an embedding on KY 0. Let us uniformize U r K by a round
annulus A. It follows that the rectangle Π covers A in such a way that ω ⊂ ∂Π is
embedded into ∂A. By Lemma 6.6 from the Appendix,

mod Π ≥
µ

2
.

Putting the above three estimates together, we obtain:

(5.8) L(Gh) ≤ mod (Y 0, R) ⊖
µ

2
.

On the other hand, let us consider the family H of horizontal curves in the puzzle
piece Y1 connecting ∂αY

1 to ∂α′Y1. Let φ : Y1 → Y0 be the natural immersion.
Under φ, the boundary ∂αY

1 is mapped homeomorphically onto ∂αY
0. It follows

that any curve γ of Gh contains an arc that can be lifted by φ to some curve of H.
Indeed, orient γ so that it begins on ∂αY

0. Then a maximal lift of γ that begins on
∂αY

1 must end on ∂α′Y1.
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By Corollary 6.2, L(H) ≤ L(Gh). Together with (5.8), this yields the desired
inequality. �

5.5. Skipping over. In this section we will show that not many curves can skip
some piece of the Julia set.

Let Y ∈ Ym(l) be a geometric puzzle piece of bidepth (m, l), and let A be a

component of YrKY . Let ∂JÂ = ∂JY∩Â. Recall that it consists of two components.
Let CA stand for the family of curves in Â connecting different components of ∂JÂ,
and let

dA = L(CA).

Let
1

2π
log r = 2−(m+q)µ. Then the annulus Um+q rK can be uniformized by the

round annulus A(1, r), and under this uniformization, the set KY gets represented
on the unit circle T as the union of arcs ωi of length

(5.9) |ωi| ≥ 2π · 2−(q+m).

Indeed, the covering map fm+q : Um+q r K → U r K is turned into z 7→ z2m+q

under the above uniformization of Um+q rK and the uniformization of U rK by
A(1, e2πµ) (appropriately normalized). Since under this map, every arc ωi covers the
whole circle, the length of ωi is at least 2π times its combinatorial length (2.2).

Lemma 5.8. Let Y ∈ Ym(m+q) be a geometric puzzle piece of bidepth (m,m+q),
and let A be a component of Y rKY . Then

dA ≥
1

µ
.

Proof. We can uniformize Â by the horizontal strip Π = Π(2−(m+q))µ in such a way
that the upper boundary of Π covers the O-boundary of Um+q, and the group of
deck transformations is generated by the translation z 7→ z + 1. By (5.9), the Julia
set KY ⊂ ∂A is represented as an interval I on R of length at least 2−(q+m).

Let us view Π as a quadrilateral with horizontal sides I and the top of Π. Then

L(CA) =
1

mod Π
≥

1

µ
,

where the last estimate comes from the simple right-hand side estimate of Lemma
6.5, and we are done. �

Lemma 5.9. Let Y ∈ Ym(0) be a geometric puzzle piece of bidepth (m, 0), and let
A be a connected component of Y rKY . Then

dA ≥
µ

2m+q+2
.

Proof. Let A(m + q) be the component of Y (m + q) r KY contained in A, and

let φ : Â(m + q) → Â be the natural immersion. It extends to the identity on

KY ∩ ∂Â(m+ q).
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Let us realize Â as the strip Π(µ) that covers U r K, with the group of deck
transformations generated by z 7→ z + 1. Let us consider the interval I ⊂ R

representing KY ∩ ∂A, and let J be the left-adjacent interval of length 1.
Let us orient the curves γ ∈ CA so that they begin on the left-hand side of I.

Then any curve γ ∈ CA contains the maximal initial arc γ′ that can be lifted by φ
to a curve γ∗ in Â(m + q). Accordingly, we can split the family of curves γ ∈ CA

into three subfamilies:

• H1 consists of the curves γ such that γ′ = γ; then γ∗ ∈ CA(m+q);
• H2 consist of the curves that begin in J and whose lift γ∗ terminates on the
O-boundary of Â(m+ q);

• H3 consists of the curves that begin on the left-hand side of J .

Let us estimate the extremal length of each of these families.
Since H1 = φ(CA(m+q)),

L(H1) ≥ L(CA(m+q)) ≥
1

µ
,

where the first estimate follows from Lemma 6.1, and the second follows from Lemma
5.8.

Let T be the family of curves in Â(m + q) that begin on J and end on the

O-boundary of Â(m+ q). By Corollary 6.2 and Lemma 6.5,

L(H2) ≥ L(T ) ≥
µ

2m+q+1
.

To estimate the extremal length of H3, endow the rectangle Q = J× [0, µ] ⊂ Π(µ)
with the Euclidean metric λ. Since any curve γ ∈ H3 horizontally overflows Q, it
has λ-length at least 1. Hence

L(H3) ≥
1

areaQ
=

1

µ
.

Incorporating the last three estimates into the Parallel Law, we obtain the desired:

L(Cε
Y ) ≥

1

µ+ 2m+q+1µ−1 + µ
≥

µ

2m+q+2
.

�

Let us consider two vertices, v and w, of a geometric puzzle piece Y . Let Z ⊂ Y
be a puzzle piece of depth m that separates v from w. We say that a multicurve in
Y connecting ∂vY to ∂wY skips over KZ if one of its components does not cross
KZ .

Corollary 5.10. Under the above circumstances, let T be be the family of multic-
urves in Y connecting ∂vY to ∂wY that skip over KZ . Then

L(T ) ≥
µ

22m+q+2
.
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Proof. The piece Z has at most 2m components Ai of Z r KZ . If a multicurve γ
in Y that skips over KZ then it contains an arc γ′ that lifts to a curve γ∗ in some
family GAj

. Let Cj be the corresponding subfamily of T . By Lemma 5.9 (together
with Corollary 6.2),

L(Cj) ≥ dAj
≥

µ

2m+q+2
.

The Parallel Law concludes the proof. �

Let us now consider the puzzle piece P = Y (n−1)q+1, together with the corre-
sponding pseudo-piece P, and the family of puzzle pieces Qv ⊂ P from Lemma 2.1.
Recall that T vw = KP r (Qv ∪Qw). Given two vertices v and w of P , let Ĝvw

P stand
for the family of multicurves in P connecting ∂vP to ∂wP that do not skip over Tvw.
By Corollary 5.10,

(5.10) L(G r Ĝvw
P ) ≥ C−1µ,

where here and below, C stands for a constant that depend only on q and n.

5.6. Separation between L and R. In this section we will show that the modulus
dY 1(α, α′) that measures the extremal distance between L and R is comparable with
µ.

Let Y be a geometric puzzle piece. For two vertices v and w of Y , we let

WY (v, w) = W(Gvw
Y ).

We define the pseudo-conductance of Y as

WY = sup
v,w

WY (v, w),

where the supremum is taken over all pairs of the vertices of Y .

Lemma 5.11. For the puzzle piece P = Y (n−1)q+1 we have:

WP ≤
C

µ
.

Proof. Along with the above conductance of P , let us consider

ŴP (v, w) = W(Ĝvw
P ); ŴP = sup

v,w
ŴP (v, w).

By (5.10),

(5.11) WP ≤ ŴP +
C

µ
.

Take a pair of vertices, v and w. Let Qv ∩ T vw = {v′} and Qw ∩ T vw = {w′}.
Recall that depth of the puzzle pieces Qv and Qw is equal to r = (2n− 1)q+ 1, and
so depends only on q and n. Let Er be the lift of the equipotential of level r to P.

For any horizontal multicurve γ ∈ Ĝvw
P , one of the following two possibilities can

occur:
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• γ crosses the equipotential Er, and hence it contains an arc γ′ connecting Er to
T vw; By Lemma 6.6 and the Parallel Law, the width of this family of curves is
bounded by 2r+n/µ (here 2n−1 is a bound on the number of connected components
of P rKP );

• contains two disjoint multicurves, δv and δw, that do not cross Er and such that δv

connects ∂vP to T vw, while δw connects T vw to ∂wP. Then δv contains a multicurve
that can be lifted to a horizontal multicurve in Qv connecting ∂vQv to ∂v′

Qv, an
similarly for δw.

By the Series and Parallel Laws,

ŴP (v, w) ≤ WQv(v, v′) ⊕ WQw(w,w′) +
2r+n

µ
≤ WQv ⊕ WQw +

2r+n

µ
.

But W(Qv) = W(Qw) = W(P ) since Qv and Qw are univalent pullbacks of P .
Hence

WQv ⊕ WQw ≤
1

2
WP .

Putting the last two estimates together and taking the supremum over all pairs of
vertices (v, w) of P , we conclude that

ŴP ≤
1

2
WP +

2r+n

µ
.

Together with (5.11) it yields:

WP ≤
1

2
WP +

C

µ
,

and the conclusion follows. �

Proposition 5.12. dY 1(α, α′) ≥ C−1µ.

Proof. Since the map f (n−1)q : P → Y1 is a branched covering that maps ∂0P to
∂0Y

1, any curve γ ∈ Gαα′

Y 1 can be lifted to a curve γ∗ ∈ ∪Gvw
P , where the union is

taken over all pairs of vertices of P . Hence

L(Gαα′

Y 1 ) ≥
⊕

v,w

L(Gvw
P ) ≥

1

NWP

,

where N is the number of pairs (v, w). The conclusion follows. �

Lemma 5.7 and Proposition 5.12 imply:

Corollary 5.13.
µ

2
≤ Cmod (Y 0, R).

Corollary 5.14. Let f : (U,K) → (U,K) be a renormalizable ψ-quadratic-like map
with decoration parameters (q,n), and let f ′ = fp : (U′,K ′) → (U′,K ′) be its first
renormalization. Then

min{mod(U,K), 1/2} ≤ C mod(U′,K ′),

where C = C(q,n).
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Proof. This follows from Lemma 5.1 and Corollary 5.13 by noticing that (Eχ−1,K) =
(U′,K ′). �

5.7. Conclusion. Everything is now prepared for the main results. Corollary 5.6
and Corollary 5.13 imply:

Theorem 5.15 (Improving of the moduli: bounded decoration parameters). For
any parameters q̄, n̄ and any ρ > 0, there exist p ∈ N and ε > 0 with the following
property. Let f : (U,K) → (U,K) be a renormalizable ψ-quadratic-like map with
decoration parameters (q,n) ≤ (q̄, n̄), and let f ′ = fp : (U′,K ′) → (U′,K ′) be its
first renormalization. Then

{p ≥ p and mod(U′,K ′) < ε} ⇒ mod(U,K) < ρmod(U′,K ′).

Remark 5.1. The logic of this theorem can be adjusted so that it would sound more
like an “improvement in the future” rather than “worsening in the past”:

For any parameters q̄, n̄ of a Misuirewicz limb, there exists p ∈ N and ε > 0 such
that

mod(U′,K ′) ≥ 2 mod(U,K)

provided p ≥ p and mod(U,K) < ε/2.

Theorem 5.15, together with Lemma 3.1, implies Theorem 1.2 from the Introduc-
tion.

To derive the Main Theorem, we will combine Theorem 5.15 with the following
result (Theorem 9.1 from [K]):

Theorem 5.16 (Improving of the moduli: bounded period). For any ρ ∈ (0, 1),
there exists p = p(ρ) such that for any p̄ ≥ p, there exists ε = ε(p̄) > 0 with
the following property. Let f : (U,K) → (U,K) be primitively renormalizable ψ-
quadratic-like map, and let f ′ = fp = (U′,K ′) → (U′,K ′) be the corresponding
renormalization. Then

{p ≤ p ≤ p̄ and mod(U′ rK ′) < ε} ⇒ mod(U rK) < ρmod(U′ rK ′).

Remark 5.2. Unlike Theorem 5.15, in Theorem 5.16 the map f ′ is not necessarily
the first renormalization of f . On the other hand, in Theorem 5.16, the scale ε
depends on the upper bound p̄, while in Theorem 5.15 it does not.

We say that an infinitely renormalizable ψ-ql map f belongs to the decoration
class (q̄, n̄) if the decoration parameters (q̄n, n̄n) of the renormalizations Rnf are
all bounded by (q̄, n̄).

Let us now put the above two theorems together:

Corollary 5.17. For any (q̄, n̄), there exist an ε > 0 and l ∈ N with the following
property. For any infinitely renormalizable ψ-ql map f of decoration class (q̄, n̄)
with renormalizations Rnf : (Un,Kn) → (Un,Kn), if mod(Un r Kn) < ε, n ≥ l,
then mod(Un−l rKn−l) < mod(Un rKn)/2.
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Proof. Given an infinitely renormalizable ψ-ql map f with renormalizations Rnf :
(Un,Kn) → (Un rKn), we let µn(f) = mod(Un,Kn). Arguing by contradiction, we
find a sequence fi of infinitely renormalizable ψ-ql maps of decoration class (q̄, n̄)
and sequences εi → 0 and n(i) → ∞ such that:

P1: µn(i)(fi) < εi;

P2: µn(i)(fi) < 2µk(fi), k = 0, 1, . . . , n(i) − 1.

Let Rnfi be the renormalization of Rn−1fi with period pn(fi). Applying then the
diagonal process, we can also assume the following property:

P3: pn(i)−s(fi) → πs ∈ N ∪ {∞} for s = 0, 1, . . . .

We let s̄ ∈ Z≥0∪{∞} be the first moment for which πs = ∞ (with understanding
that s̄ = ∞ if such a moment does not exist).

Let us consider two cases:

Case 1: s̄ < ∞. Applying consecutively Corollary 5.14, we conclude that for
sufficiently big i,

µn(i)−s(fi) ≤ Csµn(i)(fi), s ≤ s̄.

Let ρ ∈ (0, 1/2C s̄). By Theorem 5.15, for all sufficiently big i,

µn(i)−s̄−1(fi) ≤ ρ µn(i)−s̄(fi).

Putting the last two estimates together, we conclude that for all sufficiently big i,

µn(i)−s̄−1(fi) <
1

2
µn(i)(fi),

contradicting assumption (P2).

Case 2: s̄ = ∞. Take an s such that

p̄ ≡ π0π1 . . . πs > p,

where p = p(1/2) comes from Theorem 5.16. By this theorem, for sufficiently big i,

µn(i)−s−1(i) <
1

2
µn(i)(i),

contradicting again assumption (P2). �

We are ready to prove the Main Theorem, in an important refined version. We say
that a family M of little Mandelbrot copies (and the corresponding renormalization
combinatorics) has beau6 a priori bounds if there exists an ε = ε(M) > 0 and a
function N : R+ → N with the following property. Let f : U → V be a quadratic-
like map with mod(V rU) ≥ δ > 0 that is at least N = N(δ) times renormalizable.
Then for any n ≥ N , the n-fold renormalization of f can be represented by a
quadratic-like map Rnf : Un → Vn with mod(Vn r Un) ≥ ε.

Beau Bounds (Refined Main Theorem). For any parameters (q̄, n̄), the family
of renormalization combinatorics of decoration class (q̄, n̄) has beau a priori bounds.

6According to Dennis Sullivan, “beau” stands for “bounded and eventually universal”.
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Proof. Let ε > 0 and l come from Corollary 5.17, and C > 0 comes from Corollary
5.14. We will use notation µn(f) from the proof of Corollary 5.17. Assume that for
some δ > 0, there is a sequence of ψ-ql maps fi in question with µ0(fi) ≥ δ, while
µn(i)(fi) < ε, where n(i) → ∞. Let n(i) = kil + ri where 0 ≤ ri < l. Then by
Corollaries 5.17 and 5.14,

µ0(fi) ≤ C lε/2ri → 0 as i→ ∞.

This contradiction proves the beau bounds for the moduli µn(f) of ψ-ql maps. The
beau bounds for ordinary quadratic-like maps follow by Lemma 3.1. �

6. Appendix: Extremal length and width

Given a family curves G on a Riemann surface S and a conformal metric µ on
S, we let µ(γ) be the µ-length of a curve γ ∈ Γ, µ(Γ) be the infimum of these
lengths, areaµ be the corresponding measure, and L(G) and W(G) = L(G)−1 be
respectively the extremal length and width of G: see [A] or the Appendices [KL1, K]
for the precise definitions. The most basic properties of these conformal invariants,
the Parallel and Series Laws can also be found in these sources.

6.1. Transformation rules. Both extremal length and extremal width are confor-
mal invariants. More generally, we have:

Lemma 6.1. Let f : U → V be a holomorphic map between two Riemann surfaces,
and let G be a family of curves on U . Then

L(f(G)) ≥ L(G).

See Lemma 4.1 of [KL1] for a proof.

Corollary 6.2. Under the circumstances of the previous lemma, let H be a family
of curves in V satisfying the following lifting property: any curve γ ∈ H contains
an arc that lifts to some curve in G. Then L(H) ≥ L(G).

See Corollary 10.3 of [K] for a proof.

Given a compact subset K ⊂ intU , the extremal distance

L(U,K) ≡ mod(U,K)

(between ∂U and K) is defined as L(G), where G is the family of curves connecting
∂U and K. In case when U is a topological disk and K is connected, we obtain the
usual modulus mod(U rK) of the annulus U rK. We let W(U,K) = L−1(U,K).

Lemma 6.3. Let f : U → V be a branched covering between two compact Riemann
surfaces with boundary. Let A be an archipelago in U , B = f(A), and assume that
f : A→ B is a branched covering of degree d. Then

mod(V,B) ≥ d mod(U,A).

See Lemma 4.3 of [KL1] for a proof.
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Lemma 6.4. Let (U,A) and (V,B) be as above, and let f : U r A → V r B be a
branched covering of degree N . Then

mod(V,B) = N mod(U,A).

See [A] for a proof.

6.2. Strips and quadrilaterals.

Lemma 6.5. Let us consider a horizontal strip Π(h) and an interval I = (x, x+a) ⊂
R. We view Π as a quadrilateral with horizontal sides I and R + ih. Then

h

2a
≤ mod Π ≤

h

a
,

provided h/a ≤ 1/2 or mod Π ≤ 1/4 (for the left-hand side inequality).

Proof. By definition, mod Π is the extremal length of the family of curves connecting
I to R + ih. This family contains the family G ′ of vertical curves in the Euclidean
rectangle with horizontal sides I and I + ih. Hence L(G) ≤ L(G ′) = h/a.

To prove the left-hand side inequality, let us consider a Euclidean rectangle Q
with vertices x− h, x+ a+ h, x+ a+ h+ ih, x− h+ ih endowed with the Euclidean
metric µ. Any curve of G has µ-length at least h. Hence

L(G) ≥
h2

areaµ(Q)
=

t

1 + 2t
, where t = h/a.

We see that L(G) ≥ t/2 for t ≤ 1/2, while L(G) > 1/4 otherwise. The conclusion
follows �

Lemma 6.6. Let Π and I be as in the previous lemma. Let C = Π/ lZ be a cylinder
covered by Π so that I is embedded into the bottom of C. Then

mod Π ≥
1

2
min(modC, 0.5).

Proof. Since the covering Π → C is an embedding on I, we have: a ≤ l. Then by
the previous lemma we obtain:

mod Π ≥
h

2a
≥

h

2l
=

1

2
modC.

�

6.3. Holomorphic and embedded annuli. Let S be a hyperbolic Riemann sur-
face with boundary with a preferred component σ of ∂S. We assume that S has
finite topological type and is not the punctured disk. A holomorphic annulus in A is
a holomorphic map A : A(1, r) → S that extends to a homeomorphism φ : T → σ.
We let modA = mod A(1, r).

The family of holomorphic annuli contains a subfamily of embedded annuli. Among
embedded annuli, there is an annulus A∗ of maximal modulus, which has nice special
properties. Namely, let us uniformize A∗ by a flat cylinder C = Π(h)/Z. Then the
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quadratic differential dz2 on C is the pull-back of some quadratic differential q on S.
Moreover, the uniformization C → A∗ extends continuously to the upper boundary
C+ = R + ih/Z of C (minus finitely many points corresponding to the punctures
of S), and induces there an equivalence relation τk : αk → α′

k, where (τk) is a finite
family of isometries between pairs of disjoint arcs in C+. The images of these arcs,
λk = i(αk) = i(α′

k), are horizontal separatricies of q. (It is a version of Strebel’s
Theorem, see e.g., [GL, §11]).

Lemma 6.7. For any holomorphic annulus A : A(1, r) → S, we have:

modA ≤ 16 modA∗.

Proof. Let us consider a family G of non-trivial proper curves γ in S that begin in
σ.7 Then any curve γ ∈ G contains an initial segment γ′ that lifts to a vertical curve
in A(1, r). By Corollary 6.2,

(6.1) modA ≤ L(G).

Let us now take any conformal metric µ on S, and let l = µ(G). For any vertical
curve δ in A∗, two possibilities can occur:

• δ ends on ∂S. Then δ ∈ G and hence µ(δ) ≥ l.

• δ ends on some separatrix i(αk). Then there is another vertical curve λ in A∗ that
ends at the same point as δ. The concatenation of δ and λ is a curve of family G.
Hence one of the curves, δ or λ, is “long”, i.e., it has µ-length at least l/2.

It follows that at least one half of the vertical curves in A∗ are long. Let I ⊂ C+

be the set of endpoints of i−1(long curves). We can now proceed as in the classical
Grötztsch estimate. By the Cauchy-Schwarz Inequality,

h areaµ(C) = area(C)

∫

C

areaµ dx dy ≥

(
∫

I

dx

∫ h

0

µ(x, y)dy

)2

≥

(

l

4

)2

,

which implies
Lµ(G) = l2/ areaµ(C) ≤ 16h = 16 modA∗.

Since this is valid for any conformal metric µ, we conclude that L(G) ≤ 16 modA∗.
Together with (6.1), this gives us the desired estimate. �
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