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Abstract. We give a presentation for the baseleaf preserving mapping class group Mod(H) of the punctured
solenoid H. The generators for our presentation were introduced previously, and several relations among
them were derived. In addition, we show that Mod(H) has no non-trivial central elements. Our main tool
is a new complex of triangulations of the disk upon which Mod(H) acts.
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1. Introduction

This note continues the investigation (begun in [16]) of the baseleaf preserving mapping class group
Mod(H) for the punctured solenoid H. Our main result is a presentation for Mod(H). The punctured
solenoid H is an inverse limit of the system of all finite unbranched covers of a punctured surface of negative
Euler characteristic, and its baseleaf preserving mapping class group Mod(H) consists of all homotopy classes
of appropriate self maps of H which preserve a distinguished leaf. (See Section 2 or [16] for more details.)
One motivation for studying Mod(H) comes from Sullivan’s observation [11] that the Ehrenpreis conjecture
is equivalent to the statement that Mod(H) has dense orbits in the Teichmüller space of the solenoid H.
Another motivation is that the baseleaf preserving mapping class group Mod(H) is a large subgroup of the
studied commensurator group Comm(F2) of the free group F2 on two generators (for the definition, see
Section 2). Namely, if we identify F2 with the once punctured torus group G, then Mod(H) is the subgroup
of Comm(G) which preserves peripheral elements, i.e., preserves parabolic elements.

The path components of the punctured solenoid H are called leaves and the baseleaf is a fixed distinguished
leaf. Since Mod(H) preserves the baseleaf, which is dense in H, it is enough to analyse the action on the
baseleaf. We recall that the baseleaf (and indeed any other leaf) is conformally equivalent to the unit disk
D.

Given an ideal triangulation of the unit disk (i.e., the baseleaf) which is invariant under a finite-index
subgroup K of PSL2(Z) and a specified edge of the triangulation, there are two adjacent triangles which
together form a “neighboring” quadrilateral. We may replace the specified edge of this quadrilateral by its
other diagonal, and performing this modification for each edge in the K-orbit of the specified edge, we define
the K-equivariant Whitehead move. The resulting ideal triangulation is also invariant under K. A Whitehead
homeomorphism of S1 is obtained by mapping an ideal triangulation of the unit disk onto its image under a
Whitehead move. It is shown in [16] that the Whitehead homeomorphisms together with PSL2(Z) generate
the baseleaf preserving mapping class group Mod(H) (see Section 2 or [16] for more details). In fact, Mod(H)
consists of quasisymmetric homeomorphisms of S1 which conjugate one finite-index subgroup of PSL2(Z)
onto another [16] or [13]. In [16], four relations among Whitehead homeomorphisms are identified, and three
of them arise in our presentation (see Theorem 4.4(c).)

We first introduce the triangulation complex X for the punctured solenoid H. The vertices of X are TLC
tesselations, i.e., ideal triangulations of D invariant under some finite-index subgroup of PSL2(Z). Two
vertices of X are joined by an edge if they differ by a Whitehead move.

There are several types of two-cells in X : two edges of a triangulation may have disjoint neighboring
quadrilaterals, in which case there is a two-cell corresponding to commutativity of their associated Whitehead
moves; the two edges may have neighboring quadrilaterals which share a triangle, in which case there is a
two-cell corresponding to the pentagon relation; or a single Whitehead move equivariant for a finite-index



subgroup K < PSL2(Z) may be written as the finite composition of Whitehead moves equivariant for a
subgroup of K of finite index. (The two-cells are described more precisely in Section 3).

Theorem 3.1. The triangulation complex X is connected and simply connected.

The action of Mod(H) on the triangulation complex X is evidently cellular. Furthermore (see [16]), there
is only one orbit of vertices in X , and the isotropy group of a vertex v, i.e., its stabilizer Γ(v), is a conjugate of
PSL2(Z). Together with the further analysis of the isotropy group Γ(E) of an unoriented edge E, standard
techniques [2] allow us to derive a presentation of Mod(H). To simplify this presentation, we actually choose
a larger set of generators for Mod(H), namely, we take as generators all Whitehead moves starting from the
basepoint of X . (This is a smaller set of generators than in [16] but larger than necessary.) We denote by E+

the set of edges of X which contain the basepoint and are not inverted by an element of Mod(H), and by E−

the set of edges which contain the basepoint and are inverted by an element of Mod(H). It is necessary to
fix one Whitehead homeomorphism gE for each edge E ∈ E+ in a consistent way. (See Section 4 regarding
this choice.) Let E± = E+ t E− denote the set of unoriented edges, and let Γ+(E) denote the subgroup of
Γ(E) which does not invert the edge E ∈ E−.

Theorem 4.3. The modular group Mod(H) is generated by the isotropy subgroup PSL2(Z) of the basepoint
τ∗ ∈ X , the isotropy subgroups Γ(E) for E ∈ E±, and by the elements gE for E ∈ E+. The following relations
on these generators give a complete presentation of Mod(H):

a) The inclusions of Γ(E) into PSL2(Z), for E ∈ E+, are given by Γ(E) = K ′, where the terminal endpoint
of E is invariant under the finite-index subgroup K ′ < PSL2(Z);

b) The inclusions of Γ+(E) into PSL2(Z), for E ∈ E−, are given by Γ(E) = K ′, where the terminal endpoint
of E is invariant under the finite-index subgroup K ′ < PSL2(Z);

c) The relations introduced by the boundary edge-paths of two-cells in F given by the equations (1), (2), (3),
(4), (5), (6) and (7);

d) The redundancy relations: for any two edges E and E ′ in E± and for any γ ∈ PSL2(Z) such that
γ(E) = E′, we get the relation

gE′ ◦ γ′ = γ ◦ gE ,

where γ′ is the unique element of PSL2(Z) that satisfies γ′(e0) = e′1 with e′1 = g−1

E′ (γ(e0)).

It is well-known that the mapping class group of a Riemann surface of finite type has trivial center
provided the genus is at least three, and we obtain the analogous result for Mod(H).

Theorem 5.1. The modular group Mod(H) of the punctured solenoid H has trivial center.

Define Y = X/Mod(H) and let N be the subgroup of Mod(H) generated by all elements which fix a point
in X . By a standard result [1], we get

Theorem 5.4. The topological fundamental group of Y = X/Mod(H) is given by

π1(Y) = Mod(H)/N .

Acknowledgements. We are grateful to John Milnor for useful comments.

2. Preliminaries

Fix a punctured surface S (the base surface) with negative Euler characteristic and empty boundary, and
consider the system of all finite unbranched covers of S. There is a partial ordering on the covers as follows.
If one cover π1 can be factored as the composition of two covers π1 = π ◦ π2, where π, π2 are also finite
unbranched covers, then π1 ≥ π2. The system of covers is inverse directed, and there is thus an inverse limit.

Definition 2.1. The punctured solenoid H is the inverse limit of the system of finite unbranched covers of
a punctured surface without boundary and with negative Euler characteristic.

The inverse limit does not depend on the base surface as long as it is of negative Euler characteristic [13],
[16]. The punctured solenoid H is locally homeomorphic to a disk times a Cantor set. Each path component
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is called a leaf , and each leaf is homeomorphic to the unit disk. The punctured solenoid H has uncountably
many leaves, each of which is dense in H. If we require in the above definition of H that each punctured
surfaces and each covering map is pointed, we obtain a distinguished point, called the basepoint of H. The
leaf containing the basepoint is called the baseleaf. The punctured solenoid H is a non-compact topological
space with one end, which is homeomorphic to a horoball times a Cantor set modulo the continuous action
of a countable group. For more details, see [16].

Definition 2.2. The baseleaf preserving mapping class group Mod(H) of the punctured solenoid H is the
group of isotopy classes all self homeomorphisms of H which preserve the baseleaf and which are quasicon-
formal on leaves.

The restriction of an element of Mod(H) to the baseleaf gives a quasiconformal homeomorphism of the
unit disk D (upon fixing an identification of the baseleaf with D) up to isotopy. Thus, an element of Mod(H)
determines a well-defined quasisymmetric homeomorphism of S1, and we shall thus identify Mod(H) with a
appropriate group of quasisymmetric maps. (See Theorem 2.8.)

Definition 2.3. The commensurator group Comm(G) of a group G consists of equivalence classes of isomor-
phisms of finite-index subgroups of G, where two isomorphisms are equivalent if they agree on a finite-index
subgroup in the intersection of their domains.

Theorem 2.4. [16] The modular group Mod(H) is isomorphic to a proper subgroup of the commensurator
group Comm(F2) of the free group F2 on two generators. Namely, Mod(H) is isomorphic to the subgroup of
Comm(F2) consisting of all elements which preserve the peripheral elements under some fixed identification
F2 ≡ G, where G < PSL2(Z) is the group uniformizing the once-punctured torus.

In fact, it is convenient in the definition of the punctured solenoid H to fix the base surface to be the
once-punctured torus D/G, where G < PSL2(Z). Given an isomorphism of two finite-index subgroups K, H
of G which preserves peripheral elements, there exists a unique quasisymmetric map of S1 which conjugates
K onto H. Thus, by the previous theorem, we may consider Mod(H) as a group of quasisymmetric maps of
S1 which conjugate one finite-index subgroup of PSL2(Z) onto another.

We recall that the decorated Teichmüller space T̃ (H) of the punctured solenoid H is partitioned into
sets according to the bending information of the convex hull construction [16]. When the bending locus is
a triangulation on each leaf, then it is locally constant in the transverse direction, and the action of the
baseleaf preserving mapping class group Mod(H) is transitive on this subspace of T̃ (H). It is convenient to
consider the action of Mod(H) on the ideal triangulations of the baseleaf (i.e., the unit disk D) arising by
restrictions (to the baseleaf) of the triangulations of H.

Definition 2.5. A transversely locally constant (TLC) tesselation τ of the unit disk D is a lift to D of an
ideal triangulation of some punctured surface D/K of finite type, i.e., an ideal triangulation of D invariant
under a finite-index subgroup K of PSL2(Z), where the ideal points of the tesselation agree with Q̄ ⊂ S1.

A particularly important example of a TLC tesselation is the Farey tesselation τ∗ (see, for example, [14]
or [16]), which is invariant under the group PSL2(Z). Let K be a finite-index subgroup of PSL2(Z) and let
τ be a K-invariant TLC tesselation of D. A characteristic map for τ is a homeomorphism h : S1 → S1 such
that h(τ∗) = τ (see [14]).

The map h = h(τ, e) is completely determined by specifying an oriented edge e ∈ τ , namely, the standard
oriented edge e0 = (−1, 1) in τ∗ is mapped onto e, the triangle to the left or right of e0 in τ∗ is mapped to
the triangle to the left or right, respectively, of e in τ , and so on. Note that any two characteristic maps for
τ differ by pre-composition with an element of PSL2(Z).

Theorem 2.6. [16] The characteristic map h = h(τ, e) for a K-invariant TLC tesselation τ conjugates a
finite-index subgroup H of PSL2(Z) onto K.

Note that a characteristic map necessarily conjugates peripherals into peripherals because it is a homeo-
morphisms of S1, and so a characteristic map for a TLC tesselation lies in Mod(H).
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Let τ be a K-invariant TLC tesselation of D with a distinguished oriented edge e; we allow for the
possibility that τ is invariant under a larger subgroup of PSL2(Z). Fix an edge f ∈ τ . We form a new
K-invariant TLC tesselation τ ′ by replacing each γ(f), for γ ∈ K, by γ(f ′), where f ′ is the diagonal of the
unique ideal quadrilateral in (D−τ)∪{f} different from f . We say that τ ′ is obtained from τ by performing
a Whitehead move along K{f}. If e /∈ K{f} then we let e be the distinguished oriented edge in τ ′ as well; if
e = γ(f) for some γ ∈ K, then we let e′ = γ(f ′) be the distinguished oriented edge for τ ′, where e′ is given
the orientation such that the tangent vectors to e and e′ at their intersection point comprise a positively
oriented basis for the oriented disk D.

Definition 2.7. Let τ be a K-invariant TLC tesselation of D with a distinguished oriented edge e. The
Whitehead homeomorphism for τ and e is

k(τ, e) = h(τ ′, e′) ◦ h(τ, e)−1,

where (τ ′, e′) arises from (τ, e) under the Whitehead move and h(τ ′, e′), h(τ, e) are the characteristic maps.

A Whitehead homeomorphism lies in Mod(H) since it is the composition of two elements of the group
Mod(H) by Theorem 2.6.

Theorem 2.8. [16] The modular group Mod(H) of the punctured solenoid H is generated by PSL2(Z) and
by Whitehead homeomorphisms for all TLC tesselations. In addition, Mod(H) acts transitively on the set
of all TLC tesselations of the unit disk D.

3. The triangulation complex

We introduce a two-complex X associated to TLC tesselations of D. This complex X is an adaptation to
our situation of the two-skeleton of the complex dual to the cell decomposition of the decorated Teichmüller
space introduced by Penner [15] and Harer [7]. On the other hand, X is analogous to the complex of cut
systems of Hatcher and Thurston [6] in that Mod(H) acts transitively on its vertices.

We begin the definition of X by giving its vertices. A vertex of the triangulation complex X is a TLC
tesselations of the unit disk D. The basepoint of X is Farey tesselation τ∗. A characteristic map between
any two TLC tesselations is an element of Mod(H) [16, Lemma 7.5], and so Mod(H) acts transitively on
vertices of X .

We next introduce edges of X with one endpoint at the basepoint τ∗. An unordered pair of vertices {τ, τ∗}
determines an edge in X if τ can be obtained from τ∗ by a single Whitehead move, i.e., τ is obtained from τ∗
by replacing an orbit K{f} of an edge f in τ∗ by the orbit K{f ′}, where K is torsion free and of finite-index
in PSL2(Z), and f ′ is the diagonal of the quadrilateral in (D − τ∗) ∪ {f} different from f .

More generally and by definition, an unordered pair of vertices {τ1, τ2} determines an edge of X if {τ1, τ2}
is the image by an element of Mod(H) of an edge {τ∗, τ} defined above. In particular, this implies that if a
TLC tesselation τ2 is obtained by performing a K-invariant Whitehead move on a TLC tesselation τ1 then
{τ1, τ2} is an edge in X . To see this, take a characteristic map h for τ1 (i.e., h is a homeomorphism of S1

such that h(τ∗) = τ1) and consider {τ∗, h−1(τ2)}. Thus, τ1 and τ2 differ only in the K orbit of the diagonals
of an ideal rectangle. The characteristic map h conjugates a finite index subgroup H of PSL2(Z) onto K
[16, Lemma 7.5], so h−1(τ1) = τ∗ and h−1(τ2) differ only in that they have different diagonals on an H-orbit
of a rectangle. It follows that {τ∗, h−1(τ2)} is an edge corresponding to an H-invariant Whitehead move,
i.e., {τ1, τ2} = h({τ∗, h−1(τ2)}) is an edge in X .

However, there are edges which appear away from the basepoint τ∗ that do not correspond to Whitehead
moves. They can be described as a generalized Whitehead move invariant under a conjugate by a charac-
teristic map of a finite-index subgroup of PSL2(Z). Note that the set of edges in X is invariant under the
action of Mod(H) by construction. This completes the definition of the one-skeleton of X .

We introduce two-cells of X by first defining those that have one vertex at the basepoint τ∗. Let K be a
torsion free finite-index subgroup of PSL2(Z). There are three types of two-cells:

[Pentagon] Suppose that K is of index at least 9, i.e., τ∗/K is a triangulation of D/K which has at
least three complementary ideal triangles. Any three adjacent complementary triangles form a pentagon
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on D/K whose boundary sides are possibly identified in pairs. Let e1 and e2 be two representatives in
τ∗ of the diagonals of a pentagon on D/K which share an ideal point. The sequence of five Whitehead
homeomorphisms h(K, e1), h(K, e2), h(K, e′1), h(K, e′2) and h(K, e′′1) defines a closed edge-path in X based
at τ∗, where e′1 is the new edge corresponding to e1 under the Whitehead move for τ∗ along K{e1}, e′2 is
the new edge corresponding to e2 under the Whitehead move for τ1 = h(K, e1)(τ∗) along K{e2}, and e′′1 is
the new edge corresponding to e′1 under the Whitehead move for τ2 = h(K, e2)(τ1) along K{e′1} (see [16] for
more details). We add a two-cell in X whose boundary is this closed edge-path of length five starting and
ending at the basepoint τ∗ and call this two-cell a pentagon at the basepoint τ∗.

[Square] Let K be a torsion free finite-index subgroup of PSL2(Z) such that the triangulation τ∗/K of
D/K has two edges which do not lie in the boundary of a common complementary triangle. Let e1 and
e2 be two lifts to τ∗ of the two non-adjacent edges. Consider the closed edge-path of length four given by
Whitehead homeomorphisms h(K, e1), h(K, e2), h(K, e′1) and h(K, e′2), where e′1 corresponds to e1 under the
Whitehead move h(K, e1) and e′2 corresponds to e2 under the Whitehead move h(K, e2). We add a two-cell
to X with boundary equal to the above edge-path of length four and call it a square cell at the basepoint τ∗.

[Coset] Suppose e ∈ τ∗ and let H be a finite-index subgroup of K. The orbit K{e} is canonically decomposed
into finitely many orbits H{e1}, H{e2}, . . . , H{ek}, where e1 = e, e2, . . . , ek ∈ K{e} and k = [K : H]. Let
f be the other diagonal in the unique ideal quadrilateral in (D − τ∗) ∪ {e} and let f1, f2, . . . , fk ∈ K{f} be
the altered edges corresponding to e1, e2, . . . , ek. Consider a finite edge-path based at τ∗ consisting of the
Whitehead homeomorphisms h(K, e), h(H, f1), h(H, f2), . . ., h(H, fk) corresponding to the tesselations τ∗,
τ1 = h(K, e)(τ∗), τ2 = h(H, e1)(τ1), . . ., τk = h(H, ek−1)(τk−1), τk+1 = h(H, ek) = τ∗. We add a two-cell to
X whose boundary is this edge-path and call it the coset cell at the basepoint. Note that a different ordering
of f1, . . . , fk gives a different edge-path and hence a different coset cell. In fact, there are k! corresponding
coset cells when [K : H] = k. The edge {τ∗, τ1} is called a long edge, and all other edges are called short
edges corresponding to this coset cell.

Note that all two-cells introduced above have their boundaries given by compositions of Whitehead moves
invariant under subgroups of PSL2(Z) as opposed to more general edges in X where moves are only conjugate
to Whitehead moves invariant under subgroups of PSL2(Z).

To complete the definition of X , an arbitrary two-cell in X is the image under Mod(H) of a two-cell at the
basepoint. If h ∈ Mod(H) and P is a two-cell based at τ∗, then we say that h(P ) is based at τ := h(τ∗). Note
that closed edge-paths based at τ∗ are mapped to closed edge-paths, and hence the boundaries of two-cells
are well defined. The boundary of a pentagon or a square two-cell based at a tesselation τ 6= τ∗ each of
whose edges is a Whitehead move invariant with respect to a fixed finite-index subgroup K of PSL2(Z) (or
equivalently, whose vertices are TLC tesselations invariant under K) is likewise the boundary of a two-cell.
Furthermore, the boundary of a coset two-cell starting at τ 6= τ∗ whose initial vertex is invariant under K
and whose other vertices are invariant under a subgroup K1 < K of finite-index is the image of the boundary
of a coset two-cell based at τ∗ by simply noting that a characteristic map which sends τ∗ onto τ conjugates
H1 < H onto K1 < K where H < PSL2(Z).

By construction, the set of two-cells in X is invariant under Mod(H), and Mod(H) consequently acts
cellularly on the two-complex X .

We claim that a pentagon or a square two-cell P based at τ 6= τ∗ with one vertex at the basepoint τ∗
has all edges given by Whitehead moves invariant under a fixed finite-index subgroup K of PSL2(Z). Since
any characteristic map h of τ∗ onto the base vertex τ of the two-cell P conjugates a finite-index subgroup
H < PSL2(Z) onto a finite-index subgroup K < PSL2(Z) (under which τ is invariant), it follows that a
two-cell (pentagon or square) P ′ invariant under H and based at τ∗ is mapped by h onto the above two-cell
P based at τ whose vertices are invariant under K. Moreover, a coset two-cell P which is based at τ 6= τ∗
whose initial vertex is τ∗ does not necessarily have edges arising from Whitehead moves invariant under
K1 < K. Let P ′ be a coset cell based at τ∗ such that h(P ′) = P . In fact, if the image under h of the long
edge of P ′ is not incident on τ∗, then it is represented by a generalized Whitehead move (invariant under a
conjugate by h of a subgroup of PSL2(Z) which is not itself a group of Möbius transformations).

Theorem 3.1. The triangulation complex X is connected and simply connected.
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Proof. We first prove that X is connected by showing that any vertex τ can be connected to the basepoint
τ∗ by a finite edge-path. Let K be a finite-index subgroup of PSL2(Z) under which τ is invariant. Thus,
τ/K and τ∗/K are two tesselations of a punctured surface D/K. By results of Penner [15] (or Harer [7] or
Hatcher [8]), there is a sequence of Whitehead moves on D/K which transforms τ∗/K into τ/K. The lifts of
the Whitehead moves on D/K to D are TLC Whitehead moves on D and they provide an edge-path from
τ∗ to τ in X . This establishes that X is connected.

It remains to show that X is simply connected. We recall a result of Harer [7, Theorem 1.3] or Penner
[15] for triangulations of punctured surfaces. The set of top-dimensional simplices of the triangulation
complex of a finite punctured surface consists of ideal triangulations, the codimension-one simplices are ideal
triangulations with one ideal geodesic erased, the codimension-two simplices are ideal triangulations with
two ideal geodesics erased, etc.. The main fact is that the triangulation complex of the finite surface minus
simplices which are given by decompositions of the surface, where at least one complementary component
is not topologically a disc is homeomorphic to the decorated Teichmüller space of the punctured surface. In
particular, the triangulation complex for a punctured surface is contractible.

Consider a closed edge-path α in the triangulation complex X for the punctured solenoid. It is possible that
an edge E in the path α is given by a generalized Whitehead move, i.e., the two tesselations at the endpoints
of E are invariant under hKh−1, where K is a finite-index subgroup of PSL2(Z) and h ∈ Mod(H). Since
h ∈ Mod(H), there exists H1, H2 < PSL2(Z) of finite index such that H2 = hH1h

−1. Thus, H1 ∩ K =: K1

is of finite-index in K, and we consider a coset two-cell corresponding to the groups K1 < K with long edge
h−1(E). The edge h−1(E) is homotopic modulo its endpoints to the path of short edges in the coset two-cell,
where each vertex is invariant under K1. The image under h is a coset two-cell with long edge corresponding
to hKh−1 and short edges corresponding to hK1h

−1 < PSL2(Z). Thus, we can replace the long edge
invariant under hKh−1, which is not a subgroup of PSL2(Z), by the homotopic edge-path invariant under
hK1h

−1 < H2 < PSL2(Z). We may therefore replace α by an edge-path α′ each of whose edges corresponds
to a Whitehead move invariant under a finite-index subgroup of PSL2(Z) using only coset two-cells.

Let K1, K2, . . . , Kn be finite-index subgroups of PSL2(Z) which correspond to invariant Whitehead moves
defining the edges of α′. Using coset two-cells corresponding to each Ki, we first homotope the above edge-
path α′ into a closed edge-path α′′ where each edge corresponds to an invariant Whitehead move with respect
to a single finite-index subgroup K := K1 ∩ K2 ∩ . . . ∩ Kn. The new edge-path α′′ invariant under K in
the triangulation complex X of the punctured solenoid can be represented by a closed path γ in the above
triangulation complex of a finite surface D/K. (Recall that X is an extension of the dual of the triangulation
complex of finite surface D/K.) The path γ starts and ends in the top-dimensional simplex which corresponds
to the triangulation of D/K obtained by projecting the TLC tesselation of D defining the basepoint of α′′ onto
D/K. Furthermore, γ crosses transversely codimension-one simplices of the triangulation complex of D/K
corresponding to each edge in α′′, and it enters each top-dimensional simplex which corresponds to a vertex
of α′′ in the given order. Since the triangulation complex for punctured surface D/K is simply connected
[7] or [15], there exists a homotopy of γ into the trivial path which transversely crosses codimension-two
cells. The number of times the homotopy crosses codimension-two cells is finite, and it is possible to choose
a homotopy which does not intersect simplices of codimension greater than two. For each intersection point
of the homotopy with a codimension-two simplex, there is a corresponding two-cell in X because two-cells
corresponding to ideal triangulations of the surface with two edges erased lift to ideal triangulations of D
with orbits of two edges erased such that each complementary region is finite sided. This exactly correspond
to two-cells (either pentagon or square) in X . Thus, the homotopy for γ gives a homotopy between α′′ and
the trivial path in X , and X is therefore simply connected. 2

In the spirit of Ivanov’s work [9], we may ask:

Question. Is the group of automorphisms Aut(X ) of the triangulation complex X isomorphic to the (ex-
tended) baseleaf preserving modular group?
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4. Presentation of Mod(H)

Applying a general theorem of Brown [2, Theorem 1] to the action of Mod(H) on X , we give a presentation
for the modular group Mod(H) of the punctured solenoid H.

First recall [16] that PSL2(Z) is the isotropy group of the basepoint τ∗ ∈ X , that Mod(H) acts transi-
tively on the vertices of X , that an arbitrary vertex τ ∈ X has isotropy group hPSL2(Z)h−1, where the
characteristic map h : τ∗ 7→ τ lies in Mod(H), and that hPSL2(Z)h−1 contains a finite-index subgroup of
PSL2(Z).

Consider the isotropy group of an edge in X . Since each vertex is mapped to the basepoint τ∗, it is
enough to consider edges with an endpoint at τ∗. The isotropy group of any other edge is the conjugate of
the isotropy group of such an edge.

Let E = {τ∗, τ} be an arbitrary edge of X with one endpoint at the basepoint τ∗ of X . There are two
possibilities: either the isotropy group Γ(E) of E contains elements which reverse the orientation of E (i.e.,
interchanges τ∗ and τ), or each element of Γ(E) fixes each endpoint of E.

Let τ be obtained by a Whitehead move on τ∗ invariant under a torsion free finite-index subgroup K
of PSL2(Z), and let us choose a characteristic map g : τ∗ 7→ τ , where g ∈ Mod(H). Denote by K ′ the
maximal extension of K in PSL2(Z) which fixes τ . If h ∈ Γ(E) preserves the orientation of E as above,
then h fixes both τ∗ and τ . By [16, Lemma 7.3], h ∈ PSL2(Z) and similarly h ∈ gPSL2(Z)g−1, and so
h ∈ PSL2(Z) ∩ gPSL2(Z)g−1 = K ′. It follows that the subgroup Γ+(E) of the isotropy group Γ(E) of an
edge E which consists of elements which do not reverse orientation on E is equal to K ′ < PSL2(Z).

If k ∈ Γ(E) reverses orientation of E = {τ∗, τ}, i.e., k(τ∗) = τ and k(τ) = τ∗, then k2 ∈ K ′ = Γ+(E). In
particular, k2 is a lift of a self map of the Riemann surface D/K. By [12, Proposition 1.3.6], k is a lift of a
self map of a Riemann surface which finitely covers D/K. We show that k is actually a lift of a self map of
D/K itself.

Lemma 4.1. Let τ be the image of τ∗ under a K-invariant Whitehead move, let E = {τ∗, τ} be the corre-
sponding edge and let k ∈ Γ(E) − Γ+(E). Then k conjugates K onto itself.

Proof. The proof proceeds in several steps.

Simplification of the homeomorphism k. Since k preserves the union of the two tesselations τ, τ∗, it
therefore sends a pair of intersecting edges to a pair of intersecting edges. Fix such an intersecting pair
e ∈ τ∗ and f ∈ τ , and consider the corresponding Whitehead move. Since k(e) ∈ K{f}, there exists γ ∈ K
such that (k ◦ γ)(e) = f . It is enough to prove the lemma for k ◦ γ and we continue to denote it by k.

Orientation of edges. Let us choose an orientation of e and assign an orientation to f such that k : e 7→ f
is orientation preserving. Assign an orientation to each edge in the orbits of e and f under K as follows. Let
e′ = γ′(e) for some γ′ ∈ G. Let α be a differentiable arc connecting e to e′ which transversely crosses the
minimal number of edges of τ∗. Give the orientation to the curve α such that the tangent vector to α and
the tangent vector to e at their point of intersection form a positively oriented basis for the tangent space
of D at the intersection point, and assign an orientation on e′ such that the tangent vector to α and the
tangent vector to e′ at the intersection point α∩ e′ form a positively oriented basis to the tangent space. We
may assign an orientation to any f ′ = γ′(f) in a similar fashion.

k preserves the orientation. We noted above that k maps the orbit K{e} onto K{f} without specifying
an orientation, and we noted that we may assume that k(e) = f preserving orientation. It is a standard

fact that k : S1 → S1 extends to a differentiable self map k̃ of D which sends complementary triangles of τ∗
onto complementary triangles of τ [14]. If α is a differentiable path between e and e′ as above, then k̃(α) is
a differentiable path between f and f ′′ := k(e′) which satisfies the required properties. Note that it is not
necessarily true that f ′ = γ′(f) and f ′′ are equal. However, the inductive definition of the characteristic
map k immediately implies that k : e′ 7→ f ′′ is orientation preserving.

G is orientation preserving. Elements of G are covering transformations for the surface D/K. We show
that γ : e 7→ e′ := γ(e) is orientation preserving, and a similar statement for f follows immediately. Denote
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by πK : D → D/K the universal covering map. Let α′ be a differentiable curve on D/K representing the
covering transformation γ which is transverse to πK(e) and crosses the minimal number of edges of τ∗/K.
We denote by α a part of the lift of α′ to D which connects e and e′, so γ(e∩α) = e′ ∩α. Since γ preserves
the orientation of α, it follows that γ : e 7→ e′ is orientation preserving.

k conjugates K onto itself. Recall that k conjugates a finite-index subgroup H of PSL2(Z) onto K. Since
G preserves the orientation of the orbits K{e} and K{f} in the sense of the previous paragraph and k maps
K{e} onto K{f}, it follows that k conjugates the action of K on the orbit K{e} onto the action of K on
the orbit K{f}. Since H and K have the same index in PSL2(Z) it follows that H = K. 2

Thus, k descends to a self map k̄ of D/K sending the tesselation τ∗/K onto the tesselation τ/K and vice
versa. Let ē ∈ τ∗/K and f̄ ∈ τ/K be the corresponding edges on D/K of the orbit K{e} ⊂ τ∗ and its
corresponding orbit K{f} ∈ τ − τ∗ under the Whitehead move defining the edge E.

It follows from the proof above that ē is necessarily mapped onto f̄ by k̄, whence k̄2(ē) = ē and k̄2(f̄) = f̄
with the orientations of ē and f̄ reversed. This implies that k̄4(ē) = ē with an orientation of ē preserved. Since
in addition k̄4(τ∗/K) = τ∗/K, we conclude that k̄4 = id. This implies that k (after possibly pre-composing
by an element of K and for simplicity renaming the composition again by k) maps e onto f sending τ∗ onto
τ , and vice versa. Since k2 ∈ Γ(E) maps e onto itself by reversing its orientation, we conclude that k2 ∈ K ′

is an involution with fixed point on e. Thus,

Γ(E) = < K ′, k >

where K ′ < PSL2(Z), and k ∈ Mod(H) with k2 ∈ K ′ − K and k4 = id. In particular, k2 is an elliptic
involution whose fixed point lies on e and K ′ 6= K if k2 is non trivial. Note that any Whitehead move on
the once punctured torus can be obtained as a homeomorphism of the torus which interchanges the two
tesselations, and hence the corresponding edge is inverted. In the following example we show that edges
admit orientation reversing isotropy also for higher genus.

Example 4.2. We give in Figure 1 just one illustrative example of a surface D/K with a distinguished
quadrilateral, together with a self homeomorphism performing a Whitehead move on the quadrilateral. In
this figure, the homeomorphism h is a rotation by π/4 along the horizontal axis. The dots represent the
punctures of the surface.

+ +

Figure 1. Inverting an edge

We also note that there are infinitely many edges E ∈ X with Γ(E) − Γ+(E) = ∅. This follows from
the fact that there are infinitely many Whitehead moves on finite surfaces (whose Euler characteristics are
increasing without bound) such that there is no homeomorphism of the surface which maps the starting
tesselation onto the ending tesselation and by Lemma 4.1.
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Consider a two-cell of X with one vertex at the basepoint τ∗. Recall that for pentagon and square two-cells,
each vertex is invariant under a finite-index subgroup K of PSL2(Z), and edges correspond to Whitehead
moves invariant under this group K. For coset two-cells, either the long edge has τ∗ as endpoint, in which
case all edges are Whitehead moves invariant under K, or the long edge does have τ∗ as endpoint, in which
case the long edge is given by a generalized Whitehead move.

We may now apply Brown’s theorem [2, Theorem 1] to obtain a presentation of the modular group Mod(H)
since it acts cellularly on the connected and simply connected triangulation complex X with a single vertex
orbit. In fact, we shall introduce a somewhat larger set of generators than necessary for the application of
Brown’s theorem in order to obtain a simpler presentation.

It is a standard fact (which follows from Tietze’s Theorem for instance) that for a given presentation, if
one adds extra generators, then an equivalent presentation arises by expressing the new generators in terms
of the old as new relations. One can in effect replace any occurrence of a subsequence of old generators in
the old relations by new generators, in order to presumably simplify the presentation. We shall ultimately
give the presentation of an abstract group G, which is equivalent in this sense to the presentation of the
group in Brown’s Theorem.

The set of edges of X that are not inverted by the action of Mod(H) can be oriented consistently for
the action of Mod(H), and we fix one such orientation on each such edge. Let E+ be the set of edges
which are not inverted by the action of Mod(H) that have initial point τ∗. If E = (τ∗, τ) ∈ E+ then τ is
invariant under a finite-index subgroup K of PSL2(Z). By Lemma 4.1 and the subsequent discussion, there
is no homeomorphism f : D/K → D/K such that f(τ∗/K) = τ/K and f(τ/K) = τ∗/K. The elements
of E+ therefore are obtained by taking all finite-index torsion free subgroups of PSL2(Z) and performing
all possible Whitehead moves on τ∗ invariant under the chosen groups, where the Farey tesselation τ∗ and
the image tesselation satisfy the additional property of not being mapped onto each other by a single map
conjugating the group onto itself. The images of τ∗ under the Whitehead moves are the terminal vertices
of edges in E+. For any such E = (τ∗, τ) ∈ E+, we fix the characteristic map gE ∈ Mod(H) such that
gE(τ∗) = τ and the standard distinguished oriented edge e0 = (−1, 1) of τ∗ is mapped to either itself if the
Whitehead move is not along an orbit of e0, or it is mapped onto f0 = (−i, i) if the Whitehead move is along
an orbit of e0. The characteristic map is uniquely determined by these conditions, and we fix this choice
gE . (Notice that E+ is larger than necessary, since it is enough to take only the edges corresponding to
representatives of conjugacy classes in PSL2(Z) of finite-index subgroups. However, this larger set simplifies
the presentation, and not much is lost because both sets are infinite.)

Let E− denote the set of inverted edges with initial point τ∗. By Lemma 4.1, an edge E = (τ∗, τ) is
inverted if there exists k : S1 → S1 such that k(τ∗) = τ , k(τ) = τ∗ and kHk−1 = H, where τ is invariant
under a torsion free finite-index subgroup H of PSL2(Z). The isotropy group Γ(E) of the cell underlying
E ∈ E− is the subgroup of Mod(H) generated by H ′ and k, where H ′ > H is the maximal subgroup of
PSL2(Z) under which τ is invariant, where k2 ∈ PSL2(Z) and where k4 = id. Fix some choice gE of
characteristic map associated to E and take k = gE . (Again, we take E− larger then necessary for ease in
writing down the relations.)

Denote by F the set of two-cells of X based at τ∗. This condition implies that for each coset two-cell in
F the initial point of the long edge is τ∗ and each edge of the cell is consequently obtained by a geometric
Whitehead move, i.e., one invariant under a subgroup of PSL2(Z) as opposed to a conjugate of a subgroup
of PSL2(Z). This property also holds for pentagon and square cells in F . The set F is obtained by taking all
torsion free finite-index subgroups of PSL2(Z) and taking all possible pentagon, square and coset edge-paths
in X corresponding to the chosen groups.

Note that a single choice of group for coset two-cells gives countably many coset cells because there are
countably many finite-index subgroups and each finite-index subgroup yields finitely many coset cells. In the
case of a square or a pentagon cell, a choice of a finite-index group determines finitely many cells because
there are finitely many edge orbits in τ∗ under the group. (Again, we could have taken only representatives
of orbits of two-cells based at τ∗ together with subsets of E±, but for simplicity later, we have expanded
these sets.)
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Let us assume for a moment that we had instead chosen for E± and F only representatives of classes under
the action of Mod(H). We describe the assignment of a composition of elements in Mod(H) (depending
upon the above choices) to any closed boundary edge-path of a two-cell in F in order to give a relation
corresponding to the two-cell as in Brown’s theorem [2]. Given an oriented edge E = (τ∗, τ) starting at τ∗,
we assign to it a chosen element of g ∈ Mod(H) such that τ = g(τ∗). If E ∈ E+ then set g := gE . If E /∈ E+

is not inverted by Mod(H) then g := γ◦gE′ , where E′ = (τ∗, τ
′) ∈ E+, and γ ∈ PSL2(Z) satisfies γ(E′) = E;

γ is well-defined up to pre-composition by an element of Γ(E ′). The two Whitehead moves from τ∗ to τ and
τ ′ determine distinguished oriented edges e and e′ of τ and τ ′, and we choose unique γ ∈ PSL2(Z) mapping
e′ to e. Our choice of γ ◦ gE is in this case unique. If E ∈ E−, then set g := gE ∈ Γ(E)− Γ+(E). If E /∈ E−

is inverted by the action of Mod(H) then g := γ ◦ gE′ , where E′ ∈ E− and γ ∈ PSL2(Z) with γ(τ ′) = τ and
γ(e′) = e. The edge E therefore ends at g(τ∗), but it seems complicated to explicitly determine E ′ and γ.

Continuing to assume that we had chosen for E± and F only representatives of classes under the action
of Mod(H), consider a closed path α of edges in X based at τ∗. Let (E1, E2, . . . , En) be the sequential edges
of α. Denote by g1 the unique element of Mod(H) chosen for the edge E1 = (τ∗, τ1) starting at τ∗ as above,
so g1(τ∗) = τ1. The edge E2 = (τ1, τ2) is therefore of the form g1(E

′
2) for an edge E′

2 = (τ∗, τ
′
2) based at τ∗.

Denote by g2 the unique element of Mod(H) associated to E ′
2 as above, so g1 ◦g2(τ∗) = τ2. This implies that

E3 = (τ2, τ3) is given by g1◦g2(E
′
3), where E′

3 starts at τ∗. Take g3 ∈ Mod(H) associated to the edge E ′
3, and

continue in this manner until we exhaust all edges of α. This yields a composition g1 ◦g2 ◦ . . .◦gn in terms of
generators such that g1 ◦g2 ◦ . . .◦gn(τ∗) = τ∗. Thus, there is γ ∈ PSL2(Z) such that g1 ◦g2 ◦ . . .◦gn = γ, and
this is the relation associated with a closed edge path α based at τ∗. It seems complicated to determine the
maps gi from the given description or to decide which elements γ ∈ PSL2(Z) arise. However, the choice of
gi simplifies if we allow all edges with initial point τ∗, and this will require additional relations as discussed
before.

¿From this point on, we go back to our choice of E± to consist of all edges with initial point τ∗ and of F
to consists of all two-cells based at τ∗.

We describe the relations associated to boundaries of two-cells in F . Let us start with a pentagon two-cell
P based at τ∗ whose boundary edges are {E1 = (τ∗, τ1), E2 = (τ1, τ2), . . . , E5 = (τ4, τ∗)}. The pentagon
two-cell P is given by changing an orbit of two adjacent edges e1, e2 of τ∗ under a torsion free finite-index
subgroup K of PSL2(Z) of index at least 9. Assume first that the distinguished oriented edge e0 = (−1, 1) of
τ∗ is not an element of the orbit K{e1, e2} and apply the algorithm of Brown to get the edge-path relation,
but using our extended set of generators to simplify it. We denote by gi the element of Mod(H) which
corresponds to the edge Ei. The first edge E1 gives g1 := gE1

, so g1(e0) = e0. We find g2 := γ ◦ gE′′

2
, where

E′′
2 is a representative of the orbit of (τ∗, g

−1
1 (τ2)) and γ(E′′

2 ) = (τ∗, g
−1
1 (τ2)) is chosen from PSL2(Z) in a

unique way as above (i.e., γ(e0) = e0). However, since E+ consists of all edge starting at τ∗ we immediately
obtain that g2 := gE′

2
, where E′

2 := (τ∗, g
−1
1 (τ2)). We likewise obtain gi := gE′

i
, for i = 3, 4, 5, where

E′
3 := (τ∗, (g1 ◦ g2)

−1(τ3)), E′
4 := (τ∗, (g1 ◦ g2 ◦ g3)

−1(τ4)), and E′
5 := (τ∗, (g1 ◦ g2 ◦ g3 ◦ g4)

−1(τ∗)). Under
our assumption that e0 /∈ K{e1, e2}, we find gi(e0) = e0 for i = 1, 2, . . . , 5. The relation associated to P is
therefore

(1) g1 ◦ g2 ◦ · · · ◦ g5 = id.

On the other hand, now assume e0 ∈ K{e1} and without loss of generality we can assume that e1 = e0. We
choose gi as above and note that g1 : (τ∗, e0) 7→ (τ1, e

′
0), where e′0 = (−i, i) is the image of e0 = (−1, 1) under

the Whitehead move corresponding to E1 = (τ∗, τ1), g1◦g2 : (τ∗, e0) 7→ (τ2, e
′
0), g1◦g2◦g3 : (τ∗, e0) 7→ (τ3, e

′′
0)

where e′′0 is the image of e′0 under the Whitehead move corresponding to E3, g1◦g2◦g3◦g4 : (τ∗, e0) 7→ (τ4, e
′′
0)

and g1 ◦ g2 ◦ · · · ◦ g5 : (τ∗, e0) 7→ (τ∗, ē2) where ē2 is the oriented edge e2 with orientation given such that the
terminal point of e0 is the initial point of ē2. Denote by γe0,ē2

∈ PSL2(Z) the unique element which maps
e0 onto ē2 with the given orientation. Thus, γe0,ē2

is the composition of the primitive parabolic element
with fixed point at the terminal point of e0 which maps e0 onto e2 and the involution which reverses e2. We
obtain the following relation

(2) g1 ◦ g2 ◦ · · · ◦ g5 = γe0,ē2
.
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When e2 = e0 the relation is similarly

(3) g1 ◦ g2 ◦ · · · ◦ g5 = γe0,ē1
.

Let P be a square cell in F . Assume that P is obtained by Whitehead moves along the nonadjacent
orbits K{e1} and K{e2} of edges e1, e2 in τ∗, where K is a torsion free finite-index subgroup of PSL2(Z).
If e0 /∈ K{e1, e2} then

(4) g1 ◦ · · · ◦ g4 = id,

where gi are chosen as above. If ei = e0 then we obtain a relation

(5) g1 ◦ · · · ◦ g4 = se0
,

where se0
∈ PSL2(Z) is the involution which reverses e0. The proofs of both relations for the square cell P

depend upon keeping track of where e0 is mapped, and it is sufficiently similar to the pentagon two-cell that
we do not repeat it.

Let P ∈ F be a coset two-cell for the edge e ∈ τ∗ and for the groups K1 < K < PSL2(Z). If e 6= e0 then
we obtain a relation

(6) g1 ◦ · · · ◦ gk = id,

where k = [K : K1] and gi are uniquely chosen as above. Note that a single choice of K1 < K gives a
decomposition of the orbit K{e} into k disjoint coset orbits K1{e1}, K1{e2}, . . . , K1{ek}, where ei ∈ K{e}.
This gives k! possible permutations on K1{e1}, K1{e2}, . . . , K1{ek} which in turn produce k! coset two-cells
with the long edge given by the Whitehead move on K{e}. Note that g1 = gE where E = (τ∗, τ) and τ is
the image of the Whitehead move along K{e}. The other gi, for i = 2, 3, . . . , k, are given by the translation
to τ∗ of the short edges. If e = e0 then we obtain a relation

(7) g1 ◦ · · · ◦ gk = se0
.

The desired group G is by definition the free product of PSL2(Z), Γ(E) = Γ+(E) for E ∈ E+, Γ(E) for
E ∈ E− and a free group generated by gE for E ∈ E+. The modular group Mod(H) is the quotient of G by
a set of relations as follows.

Theorem 4.3. The modular group Mod(H) is generated by the isotropy subgroup PSL2(Z) of the basepoint
τ∗ ∈ X , the isotropy subgroups Γ(E) for E ∈ E±, and by the elements gE for E ∈ E+. The following relations
on these generators give a complete presentation of Mod(H):

a) The inclusions of Γ(E) into PSL2(Z), for E ∈ E+, are given by Γ(E) = K ′, where the terminal endpoint
of E is invariant under the finite-index subgroup K ′ < PSL2(Z);

b) The inclusions of Γ+(E) into PSL2(Z), for E ∈ E−, are given by Γ(E) = K ′, where the terminal endpoint
of E is invariant under the finite-index subgroup K ′ < PSL2(Z);

c) The relations introduced by the boundary edge-paths of two-cells in F given by the equations (1), (2), (3),
(4), (5), (6) and (7);

d) The redundancy relations: for any two edges E and E ′ in E± and for any γ ∈ PSL2(Z) such that
γ(E) = E′, we get the relation

gE′ ◦ γ′ = γ ◦ gE ,

where γ′ is the unique element of PSL2(Z) that satisfies γ′(e0) = e′1 with e′1 = g−1

E′ (γ(e0)).

Proof. The fact about the generators of Mod(H) follows directly from Brown’s theorem [2] and from our
choice of E± even larger than necessary. The relations from [2, Theorem 1] are included in our theorem as
follows. The relations (i) are empty in our case. The relations (ii), (iii) and (iv) translate easily to relations
a), b) and c) in our theorem, respectively. The relations d) are extra relations needed because we have taken
a larger set of generators than in Brown’s presentation. If gE(e0) = e0, then the relation d) is immediate. If
gE(e0) 6= e0, then gE′(e0) = e0 (since γ /∈ K), and d) follows by reversing the roles of gE and gE′ . 2
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5. No central elements

In analogy to the case of surfaces of finite type, we have:

Theorem 5.1. The modular group Mod(H) of the punctured solenoid H has trivial center.

Proof. Let h ∈ Mod(H) be a central element, so h is a word in the generators of Theorem 4.3. If h ∈
PSL2(Z) < Mod(H), then since PSL2(Z) has trivial center, it follows that h = id.

Assuming that h /∈ PSL2(Z), we have h(τ∗) = τ 6= τ∗. Since h is supposed to be central, we have
g ◦ h ◦ g−1 = h for all g ∈ Mod(H). Taking g ∈ PSL2(Z), we find g ◦ h(τ∗) = h(τ∗), i.e., g(τ) = τ for all
g ∈ PSL2(Z). By Proposition 5.2 below, we conclude τ = τ∗, i.e., h(τ∗) = τ∗, which implies h ∈ PSL2(Z).
This gives a contradiction, and so again h = id. 2

Proposition 5.2. A TLC tesselation of D is invariant under PSL2(Z) if and only if it is the Farey tesse-
lation τ∗.

Proof. The implication that τ∗ is the unique tesselation invariant under PSL2(Z) is given in [16, Lemma
7.3]. For the converse, recall that PSL2(Z) contains order two elliptic elements with fixed points on each
edge of τ∗ and order three elliptic elements with fixed points at the center of each ideal complementary
triangle of τ∗. Let T be a complementary triangle of τ containing the fixed point a of an elliptic element
γ ∈ PSL2(Z) of order three. It is an exercise in elementary hyperbolic geometry to show that a is the center
of T .

Let b be a fixed point of an elliptic involution γ ∈ PSL2(Z). If b is in the interior of a complementary
triangle T of τ then γ(T ) 6= T and γ(T ) ∩ T 6= ∅. Thus, the image of the boundary of T under γ intersects
transversely the boundary of T . This is in contradiction to the assumption that γ fixes τ . It follows that b
must lie on an edge of τ .

Let a be the fixed point of an elliptic element of PSL2(Z) of order three and let b1, b2, b3 be fixed points
of three elliptic involutions of PSL2(Z) that are shortest distance to a among all such involutions. Thus,
b1, b2, b3 lie on a hyperbolic circle centered at a. If T is the ideal triangle in the complement of τ whose
center is a, then the boundary sides of T are tangent to this circle. Since b1, b2, b3 must lie on edges of τ , this
implies that the boundary sides of T are tangent at the points b1, b2, b3. It follows that T is a complementary
triangle of τ∗ as well. Since this is true for an arbitrary T , it follows that indeed τ = τ∗. 2

We consider the action of Mod(H) on the first barycentric subdivision X ′ of X .

Proposition 5.3. The first barycentric subdivision X ′ of X is a simplicial complex on which Mod(H) acts
simplicially.

Proof. Note that Mod(H) preserves cells of X . An isotropy group of a vertex of X is a conjugate of PSL2(Z).
We showed that the isotropy group of an edge is either a finite-index subgroup of PSL2(Z) which preserves
the orientation of the edge or it is generated by an element of Mod(H) which reverses the orientation of the
edge and by a finite-index subgroup of PSL2(Z) which preserves the orientation of the edge. In the first
case, each element of the isotropy group fixes each point on the edge. In the second case, an element either
fixes each point of the edge or fixes the midpoint and reflects the endpoints of the edge.

Let C be a coset two-cell with long edge given by a Whitehead move on TLC tesselation τ∗ invariant
under K < PSL2(Z) along the orbit of e ∈ τ and with the short edges given by Whitehead moves invariant
under a subgroup H < K. The isotropy subgroup of C is a finite extension in PSL2(Z) of H. To prove
the claim, it is enough to show that the long edge cannot be mapped onto a short edge, and this is true
because the rectangles in which change of diagonals for the Whitehead move occur must be mapped onto the
rectangles on which change of diagonals occur. However, the two groups have different indexes in PSL2(Z)
which gives a contradiction, and the isotropy group Γ(C) therefore acts by fixing each point in C. Since an
arbitrary coset two-cell is the image of some C as above, the same statement holds for an arbitrary coset
two-cell.
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Let P be a pentagon two-cell based at τ∗ obtained by Whitehead moves along K{e1, e2}. Thus, P has a
subgroup K ′, where PSL2(Z) > K ′ > K, of its isotropy group Γ(P ) fixing each point of P . If Γ(P ) 6= K ′,
then it is generated by K ′ and a single element of h ∈ Mod(H) which maps the first edge onto the second.
Since h5(τ∗) = τ∗, we conclude h5 ∈ PSL2(Z). Thus, h5 is mapping class like and therefore h is mapping
class like. The map h fixes the center of P and rotates by the angle 2π/5 the pentagon P . The situation for
a pentagon not based at τ∗ is the same.

Finally, suppose Q is a square two-cell obtained by Whitehead moves along K{e1, e2} then Γ(Q) > K ′,
where K < K ′ < PSL2(Z). It is possible a priori that Γ(Q) 6= K ′, in which case the elements h ∈ Γ(Q)−K ′

permute edges of Q and fix the center of Q. 2

We finally investigate the topological fundamental group π1(Y) of the quotient space Y = X/Mod(H). To
begin, we describe a natural surjection φ : Mod(H) → π1(Y) as follows. Denote by Π : X → Y the quotient
map, let h ∈ Mod(H) be arbitrary, and define τ = h(τ∗). Let γ be an edge-path between τ∗ and τ in X .
and define

φ(h) := [Π(γ)],

where [Π(γ)] is the homotopy class of the closed curve Π(γ) based at Π(τ∗), i.e., [Π(γ)] ∈ π1(Y , Π(τ∗)) =
π1(Y). It is a standard fact that φ is a well-defined and surjective homomorphism.

Let N be the group generated by the isotropy subgroups of all vertices of X ′, where X ′ denotes the
first barycentric subdivision of X , so N is normal in Mod(H). In fact, N is generated by all conjugates of
PSL2(Z) and by the isotropy groups of edges and two-cells of X . The isotropy group of an edge in X fixes
the center of the edge and therefore belongs to the isotropy group of a vertex in X ′, and likewise the isotropy
group of a two-cell in X fixes a vertex of X ′. Moreover, any element of Mod(H) which fixes a point in X ′

fixes a point in X . By Proposition 5.3 and by a standard result [1] we get:

Theorem 5.4. The topological fundamental group of Y = X/Mod(H) satisfies

π1(Y) = Mod(H)/N ,

where N < Mod(H) is generated by the isotropy groups of vertices, edges and two-cells of X . 2

By our discussion above, each element of Mod(H) which fixes a cell in X is mapping class like, i.e. it
conjugates a finite index subgroup of G onto itself. Therefore N is generated by some mapping class like
elements. We pose the following question:

Question. Is N equal to the normal subgroup of Mod(H) generated by all mapping class like elements?
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