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Abstract. The punctured solenoid H is an initial object for the category of punctured surfaces with
morphisms given by finite covers branched only over the punctures. The (decorated) Teichmüller space of
H is introduced, studied, and found to be parametrized by certain coordinates on a fixed triangulation of
H. Furthermore, a point in the decorated Teichmüller space induces a polygonal decomposition of H giving
a combinatorial description of its decorated Teichmüller space itself. This is used to obtain a non-trivial
set of generators of the modular group of H, which is presumably the main result of this paper. Moreover,
each word in these generators admits a normal form, and the natural equivalence relation on normal forms
is described. There is furthermore a non-degenerate modular group invariant two form on the Teichmüller
space of H. All of this structure is in perfect analogy with that of the decorated Teichmüller space of a
punctured surface of finite type.
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1. Introduction

Sullivan [23] introduced the universal hyperbolic solenoid as the inverse limit of all finite unbranched
covers of a compact surface with negative Euler characteristic. (Different choices of compact surface give
homeomorphic solenoids since any two such surfaces admit a common cover.) The space of all complex
structures on the solenoid is a version of a “universal” Teichmüller space insofar as the union of Teichmüller
spaces of all compact surfaces lies naturally as a dense subset [23], [15].

Locally as a topological space, the solenoid is modeled on a product of the form (2-dimensional disk) × (Can-
tor set), and these charts glue together to provide a 2-dimensional foliation of the solenoid itself. Because
surface groups are residually finite, each leaf of this foliation is a 2-dimensional disk, which is in fact
dense in the solenoid. Deformations of geometric structures on the solenoid are typically required to be
smooth/conformal/quasiconformal in the 2-disk direction and continuous in the Cantor set direction. One
may follow the pattern of Ahlfors-Bers theory [1], [2] for compact surfaces in order to precisely define the
Teichmüller space and modular group of the solenoid [23].

The Ehrenpreis Conjecture, which is well-known in certain circles, is that any two compact Riemann
surfaces have almost conformal finite unbranched covers of the same genus. Sullivan [23], [3] noted that the
Ehrenpreis Conjecture is equivalent to the statement that the (baseleaf preserving) modular group of the
solenoid has dense orbits in the Teichmüller space of the solenoid. The algebraic structure of the modular
group of Sullivan’s solenoid is not yet well understood. (An interesting phenomenon is that any finite
subgroup of the modular group of the solenoid is cyclic [14], unlike for compact surfaces.)

We modify the universal object by allowing controlled finite branching, namely, the punctured solenoid
H (our universal object) is the inverse limit of all finite unbranched covers of any fixed punctured surface
with negative Euler characteristic, e.g., covers of the once-punctured torus, where, in effect, branching is
permitted only over the missing puncture. Equivalently again using properties of finite covers, H is the
inverse limit over all finite-index subgroups K in the modular group PSL2(Z) of the tower D/K of covers,
where D is the unit disk with frontier circle S1.

Unlike Sullivan’s universal hyperbolic solenoid, H is not a compact space; the ends are quotients of the
product (horoball)×(Cantor set) by the continuous action of a countable group, and the orbit of each horoball
is dense in the end. The centers of the horoballs are called punctures of H.

In analogy to the case of punctured surfaces [19], we introduce decorations at the punctures, namely, a
choice of horocycle at each puncture, and we find global coordinates and a combinatorial decomposition of
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the decorated Teichmüller space of H. Furthermore, the combinatorial action of an appropriate “baseleaf
preserving” modular group of the punctured solenoid is used to give an explicit set of generators. The
elements of this modular group are written as compositions of generators in “normal form”. We find the
relations which identify equivalent normal forms. We furthermore disprove the Ehrenpreis Conjecture in a
strong sense for the decorated Teichmüller space, namely, there is an open dense subspace of the quotient by
the modular group which is Hausdorff. Finally, we give a closed two form akin to the Weil-Petersson Kähler
form using our coordinates, and we show it is invariant under the modular group using our generators.

With this statement of the main results of this paper complete, we turn to a somewhat more detailed
description and discussion.

The Teichmüller space T (H) of the punctured solenoid H is a separable complex Banach space [23] with a
complete Teichmüller metric which is equal to the induced (by the complex structure) Kobayashi metric [22].
Starting from the quasiconformal definition of Teichmüller space, we use the universal covering space and
covering group for H from [22] to give a representation-theoretic definition of T (H) in the spirit of hyperbolic
geometry (see Theorem 4.1).

The decorated Teichmüller space T̃ (H) is the space of decorated hyperbolic structures on H, i.e., all hyper-
bolic metrics on H together with an assignment of one horocycle centered at each puncture. The analogous
decorated Teichmüller spaces of punctured surfaces as well as a universal space modeled on orientation-
preserving homeomorphisms of the circle modulo the Möbius group were studied [19], [18] using certain
coordinates adapted to the decorated setting called lambda lengths; the lambda length is essentially the
hyperbolic distance between horocycles (precisely the square root of twice the exponential of this signed
distance, taken with a positive sign when the horocycles are disjoint).

For a punctured surface, the decorated Teichmüller space is parametrized by all positive assignments of
lambda lengths, one such coordinate for each edge of any fixed “ideal triangulation” of the surface, i.e., a
decomposition into triangles with vertices at the punctures (cf. Theorem B.1).

In the universal setting, the corresponding coordinates are assigned to the edges of the “Farey tesselation”
of D, which we next recall and for which we establish our notation. Fix the ideal hyperbolic triangle T with
vertices 1, −1 and −i on the boundary S1 of D sitting in the complex plane, and let e0 denote the real
segment connecting ±1. The group generated by hyperbolic reflections in the sides of T contains PSL2(Z)
as the subgroup of orientation-preserving elements. The orbit of T under this group gives the edges of the
Farey tesselation of D as illustrated in Figure 1. τ∗ is regarded as a set of edges. The ideal vertices of τ∗,
i.e., the asymptotic points in S1, are naturally enumerated by Q̄ = Q ∪ {∞} ⊆ S1 as is also illustrated. In
fact, PSL2(Z) acts simply transitively on the set of orientations on edges of τ∗. The edges of τ∗ are also
naturally enumerated by Q − {1,−1}: any edge e ∈ τ∗ − {e0} separates two triangles, whose vertices are
given by the endpoints of e and two other points in Q̄; among the two latter, take as the label for e the one
on the opposite side of e from the edge e0 of τ∗. We shall also typically regard e0 as a distinguished oriented
edge, or “DOE”, from −1 to +1 as is also illustrated in Figure 1.
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Figure 1 The Farey tesselation τ∗.
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In the universal setting of [18], if f is a homeomorphism of the circle, then we derive another “tesselation
with DOE” τf of D by demanding that three points in S1 span an ideal triangle complementary to τf if and
only if their pre-images under f span a triangle complementary to τ∗. Using rigidity of tesselations with
DOE and properties of order-preserving maps of the circle, it is not hard to see that every tesselation (i.e.,
locally finite decomposition by geodesics into ideal triangles) arises in this way. This essentially proves that
the space of orientation-preserving homeomorphisms of the circle is identified (after the choice of τ∗ as a kind
of basepoint) with the collection of all tesselations with DOE of D. We may then decorate the ideal points
of τf (i.e., choose one horocycle centered at each point of τf ) and introduce one lambda length coordinate
to each edge of τ∗.

In contrast to the case of punctured surfaces, an assignment of putative positive lambda lengths to each
edge of τ∗ does not necessarily correspond to a point in the universal decorated Teichmüller space, and it
is an open question which weights do [18, Section 3]; on the other hand, a sufficient condition from [18,
Theorems 6.3 and 6.4] is that if the lambda lengths are “pinched” in the sense that there is a constant
M > 1 with all lambda lengths between M−1 and M , then there is a corresponding homeomorphism of
the circle, and in fact, this homeomorphism is quasi-symmetric (the latter being joint with Sullivan in [18]).
This is related to an open question by Thurston [24], namely, which measured laminations of the unit disk
produce an earthquake whose boundary values give a homeomorphism of the unit circle.

Letting G denote the fundamental group of the punctured surface used to define the punctured solenoid
and letting Ĝ denote its profinite completion (see Section 2), the set ContG(Ĝ,Rτ∗

>0) of all continuous G-

equivariant weights Ĝ → Rτ∗
>0 (see Section 5 for the precise definition) is in bijection with the decorated

Teichmüller space T̃ (H), and the natural norm on ContG(Ĝ,Rτ∗
>0) renders this map a homeomorphism.

These are important properties of T̃ (H) in view of the problematic behavior of other universal Teichmüller
spaces in this regard.

Theorem 5.3 The assignment of lambda lengths is a homeomorphism onto

λ : T̃ (HG) → ContG(Ĝ,Rτ∗
>0);

that is, we obtain a parametrization of T̃ (HG).

Whereas in the universal setting of [18], there are lambda length numbers assigned to each edge of τ∗,

for the solenoid, there are continuous lambda length functions Ĝ → R>0 for each edge of τ∗. Furthermore,
whereas the weak topology on the former corresponds to the compact-open topology on the space of home-
omorphisms of the circle, it is the strong topology on lambda length functions which corresponds to the
decorated Teichmüller theory of the solenoid.

The “convex hull construction” [19] is the basic construction in the decorated setting which provides
combinatorial from geometric data. In the case of punctured surfaces, it gives a modular group invariant
cell decomposition of decorated Teichmüller space, where cells in the decomposition are in one-to-one cor-
respondence with decompositions of the surface into ideal polygons, or “pavings” (cf. Appendix B). In the
universal setting of [18], the pinched condition on lambda lengths was shown to be sufficient to guarantee
that the corresponding decomposition of D is again a locally finite one by ideal polygons with a possibly
infinite number of sides (cf. Appendix A), and we shall again call such a decomposition a “paving” of D. It
turns out that continuity of the lambda length functions easily implies that the lambda lengths are pinched
for each fixed element of Ĝ (see Lemma 6.1), so these aspects of [18] directly apply to the punctured solenoid.

We may choose a leaf of the foliation of H designated the “baseleaf”. If τ is a paving of D, let
◦

C (τ) be the
set of decorated hyperbolic structures on H so that the convex hull construction associates the decomposition
τ of D on the baseleaf. As τ varies, this gives a decomposition of T̃ (H) which is invariant under the modular
group. In contrast to the case of punctured surfaces (cf. Theorem B.5), it is not known whether each
decomposition element for the solenoid is contractible, and indeed, it is not even known precisely which are
non-empty.

A tractable class of pavings of D is provided by the “transversely locally constant”, or TLC, ones. Namely,
choose a subgroup K of PSL2(Z) of finite index without elliptics, choose a paving of the surface D/K, and
lift to the universal cover to get a K-invariant paving τ of D which is said to be TLC. These are obviously
a very special class of pavings of D, and yet they are generic in the following sense:

3



Theorem 6.2. The subspace
◦

C (τ) of T̃ (H) is open for each TLC triangulation τ , and ∪τ

◦

C (τ) is a dense

open subset of T̃ (H), where the union is over all TLC triangulations τ of H.

The baseleaf preserving modular group ModBLP (H) consists of all quasiconformal baseleaf preserving
self-maps of H up to isotopies. One achievement of this paper is to give an explicit generating set for
ModBLP (H) together with an explicit “normal form” for elements of ModBLP (H). To this end, we first

show that ModBLP (H) acts transitively on {
◦

C (τ), τ is a TLC triangulation of H} and find the isotropy
groups.

Theorem 7.6. ModBLP (HG) acts transitively on {
◦

C (τ) : τ is a TLC tesselation}. Furthermore, the

isotropy subgroup in ModBLP (HG) of
◦

C (τ) is quasi-conformally conjugate to PSL2(Z).

Fix an ideal triangulation τ of a punctured surface S. The Whitehead move on an edge e ∈ τ replaces e
by the other diagonal of the quadrilateral in (S− τ)∪ e and keeps the remaining edges of τ fixed. In [19] (cf.
Theorem B.4), a finite presentation was given for Mod(S) generated by Whitehead moves and symmetries
of top-dimensional cells, where certain sequences of Whitehead moves correspond to elements of Mod(S);
however, a single Whitehead move typically does not correspond to an element of Mod(S).

We appropriately define Whitehead moves on any TLC triangulation τ of H in effect by performing the
move K-equivariantly for some finite-index subgroup K as before. In this context, a single Whitehead move
is an element of the modular group. A sequence of these elements is said to be “geometric” if there is
actually a sequence of Whitehead moves along consecutive ideal triangulations underlying it. (See Section
8.) Moreover, we show that geometric sequences of Whitehead moves and PSL2(Z) generate the modular
group of H. A non-trivial generating set of the modular group for Sullivan’s universal hyperbolic solenoid is
not known.

Theorem 8.5 Any element of the modular group ModBLP (HG) can be written as a composition w◦γ, where
γ ∈ PSL2(Z) and w is a geometric composition of K-equivariant Whitehead homeomorphisms for some fixed
K.

We distinguish four relations on the generators above. For the detailed description, see Section 8. Three
of the relations are already familiar from [18],[19]: the pentagon, commutativity and involutivity relations.
(The fourth relation is related to cosets and is specific to the punctured solenoid.) In fact, the composition
ω ◦ γ in the above theorem is called a normal form of the element of ModBLP (H), and we next give a
necessary condition for equivalent normal forms.

Theorem 8.7 Suppose γ1, γ2 ∈ PSL2(Z) and ω1, ω2 are two geometric Whitehead compositions with ω1◦γ1 =
ω2 ◦ γ2. Then there is some finite index subgroup K of PSL2(Z) with S = D/K so that up to Relations 1-4)
for K, ω−1

2 ◦ω1 = γ−1
2 ◦γ1 is a finite composition φ1 ◦φ2 ◦· · ·◦φk of automorphisms φi ∈ Aut(τi) < PSL2(Z)

of tesselations τi of S without DOE, for i = 1, . . . , k.

We show that an orbit of a point under ModBLP (H) is not dense in T̃ (H), namely the Ehrenpreis

Conjecture is false for T̃ (H). More precisely, we show that the space ∪τ

◦

C (τ)/ModBLP (HG) is Hausdorff,
where the union is over all TLC triangulations τ .

Theorem 7.7. The quotient ∪τ

◦

C (τ)/ModP (H) is Hausdorff, where the union is over all TLC triangulations

τ . Moreover, no orbit of a point in T̃ (H) is dense.

We finally introduce a generalization of the Weil-Petersson Kähler two form on T̃ (H) in two equivalent
ways (see Proposition 9.1). This two form projects to the Teichmüller space T (H):

Theorem 9.2. The Weil-Petersson two form on T̃ (HG) projects to a non-degenerate two form on the Te-
ichmüller space T (HG). Moreover, the two form is invariant under ModBLP (H) (see Theorem 9.4).

This paper is organized as follows. Section 2 describes preliminary material including profinite comple-
tion and the universal cover of a solenoid. Section 3 then develops the Teichmüller theory of the punctured
solenoid using quasiconformal mappings, while Section 4 introduces the representation-theoretic viewpoint
of hyperbolic geometry. Section 5 then develops the decorated theory of the solenoid and gives the basic
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parametrization of decorated Teichmüller space by lambda length coordinate functions. Section 6 develops
the convex hull construction in Minkowski space and leads to a canonical decomposition of decorated Te-
ichmüller space; some of the background material as well as other basic definitions and results are surveyed
in Appendix A, which probably should be read before Section 6. Section 7 then introduces the mapping class
group of the punctured solenoid, presents basic results about it, and furthermore analyzes its action on the
decomposition elements in decorated Teichmüller space. In Section 8, we introduce a collection of elements
of the mapping class group derived from Whitehead moves, and by comparing their action on the decom-
position elements with that of the modular group, we conclude that, together with PSL2(Z), they generate
this group. Finally in Section 9, a two form parallel to the Weil-Petersson Kähler form is introduced, and
its basic properties are described. The short section 10 contains closing remarks and open questions. Ap-
pendix A surveys background material on homeomorphisms of the circle from [18], and Appendix B surveys
background material on punctured surfaces of finite type from [19] and explicates the presentation of their
modular groups.

Acknowledgements It is a pleasure for both authors to thank Francis Bonahon, Bob Guralnick, Jack
Milnor, Dennis Sullivan, and Mahmoud Zeinalian for crucial comments and questions.

2. Preliminaries

Let (S, x) be a punctured torus with a base point x ∈ S − {puncture}. Consider the set of all pointed
unbranched finite coverings πi : (Si, xi) → (S, x) by punctured surfaces (Si, xi) such that πi(xi) = x for
all i. There is a natural partial ordering ≤ on the set of coverings as follows. (Si, xi) ≤ (Sj , xj) if πj :
(Sj , xj) → (S, x) factors through πi : (Si, xi) → (S, x), namely, if there is a pointed unbranched finite
covering πj,i : (Sj , xj) → (Si, xi) such that πj = πj,i ◦ πi. The system of coverings (Si, xi) is an inverse
system because given any two coverings there exists a third covering which is greater than or equal to both.

Definition 2.1. The punctured solenoid H is the inverse limit of the system of coverings of (S, x).

If we start the above construction from any other punctured surface of negative Euler characteristic,
we obtain a homemorphic inverse limit. To see this, observe that any two pointed punctured surfaces of
negative Euler characteristic have a common pointed cover. This implies that they have a common co-final
subsystem of coverings which implies that the inverse limits are homeomorphic. The punctured solenoid H
is an initial object for the category of punctured surfaces with negative Euler characteristic with morphisms
finite unbrached covers.

H is locally homeomorphic to (2-disk)×(Cantor set). The path components are called leaves. Each leaf is
homeomorphic to the unit disk and is dense in H. These observations are made in similar fashion to the case
of the inverse limit of coverings of a compact surface of genus greater than one (Sullivan’s universal hyperbolic
solenoid). However, the punctured solenoid is not a compact space unlike that of Sullivan [23]. To see this,
note that H is a closed subset of the product of all covering surfaces of the punctured torus consisting of all
backward trajectories with initial points on the punctured torus. A sequence of backward trajectories with
the first coordinates converging to the puncture on the base punctured torus has no convergent subsequence.

Let G be any finite index subgroup of PSL2(Z), so D/G is an orbifold. G has characteristic subgroups

GN = ∩{Γ < G : [Γ : G] ≤ N},

for each N ≥ 1, and these are nested GN ≤ GN+1. Define a metric on G by taking the distance between
γ, δ ∈ G to be

min{N−1 : γδ−1 ∈ GN},

and define the profinite completion Ĝ of G as the metric completion of G, i.e., equivalence classes of Cauchy
sequences in G for the above metric. Termwise multiplication of Cauchy sequences gives Ĝ the structure of a
topological group. Moreover, Ĝ is a compact space homeomorphic to a Cantor set (see for example [16]). G

has a natural embedding into Ĝ by mapping each g ∈ G to the constant Cauchy sequence [g, g, . . .] ∈ Ĝ, and

the image of G is dense in Ĝ by definition. Since G is naturally a subgroup of Ĝ, we get a continuous right
action of G on Ĝ, i.e., g × [a1, a2, . . .] 7→ [a1g

−1, a2g
−1, . . .] = [a1, a2, . . .]g

−1 for g ∈ G and [a1, a2, . . . ] ∈ Ĝ.
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To alternatively define the punctured solenoid H as a topological space, for definiteness fix the once-
punctured torus group G < PSL2(Z), the unique charactersitic subgroup of index six, let Ĝ denote its
profinite completion, and define the “G-tagged solenoid”

HG = (D × Ĝ)/G,

where γ ∈ G acts on (z, t) ∈ D × Ĝ by γ(z, t) = (γz, tγ−1). The space HG is homeomorphic to H following
the proof of [16] in the compact case.

As in definition 2.1, we can start from any finite index subgroup of G and repeat the above construction
to obtain space homeomorphic to HG. The construction of HG using a particular group G yields more
structure on the leaves, namely, the hyperbolic metric on leaves. Different choices of Fuchsian groups give
different hyperbolic metrics on the solenoid if the groups have no common finite index subgroups (see [15]).

The topological picture of H is easy to understand in the model HG. Namely (in the notation of the
introduction), let γ, δ ∈ G be the hyperbolic generators of G which map e1/2 and e2/1 onto e−2/1 and e−1/2,
respectively. Let Q be the quadrilateral in D with boundary sides e1/2, e2/1, e−2/1 and e−1/2. Thus, Q is

a fundamental polygon for G, and g and h are side identifications of Q. The set Q × Ĝ is a fundamental
set for the action of G on D × Ĝ. The side e1/2 × t is identified with e−2/1 × tγ−1 and the side e2/1 × t is

identified with e−1/2 × tδ−1, for all t ∈ Ĝ. These are the only identifications by G on the fundamental set

Q × Ĝ. Therefore, the punctured solenoid is obtained by “sewing” the Cantor set of polygons along their
boundary sides according to the action of G on Ĝ. This immediately shows that leaves are unit disks and
that each leaf is dense (by the density of G in Ĝ).

3. Quasiconformal definition of the Teichmüller space T (HG)

In this section, we define the Teichmüller space of the punctured solenoid HG ≡ D ×G Ĝ in the spirit of
Ahlfors-Bers theory [2] and in such fashion that the union of the natural lifts of Teichmüller spaces of all
finite sheeted covers of the modular curve is dense. The condition of continuity for the transverse variation,
which is familiar from the compact case [23] and [22], requires an extra stipulation in its definition in the
punctured case due to the non-compactness.

Fix a metric (which is complete with constant curvature -1) on HG coming from the lift of the hyperbolic
metric on the modular curve (or the covering of the modular curve by the punctured torus with the covering
group G < PSL2Z). This is a transversely locally constant metric, namely there exists a subatlas of HG

with the metric being constant for the transverse variation in the charts of the subatlas. Let Hd be the
differentiable structure on the solenoid compatible with the hyperbolic metric on HG.

Definition 3.1. A hyperbolic metric on Hd is an assignment of a hyperbolic metric (a complete metric of
curvature −1) on each leaf that varies continuously (in the C∞-topology) for the transversal variations in
the local charts.

A hyperbolic metric on Hd gives a complex structure on Hd. The complex structure varies continuously
for the transverse variations on the local charts. The converse also holds [5].

Let H be an arbitrary complex solenoid with the underlying differentiable solenoid Hd. As a preliminary
for the definition of the Teichmüller space, we define a (differentiable) quasiconformal map from the fixed
solenoid HG onto H. Recall that a leaf of the solenoid intersects any local chart infinitely many times. Each
component of the intersection is called a local leaf of the solenoid.

A chart for HG is modeled on an open set in (hyperbolic disk)×(transverse Cantor set). Since the natural

projection π : D × Ĝ → (D × Ĝ)/G is a local homeomorphism, there exists U ⊂ D such that the set U × Ĝ

together with the map π : U × Ĝ → HG is a local chart for HG. In particular, we choose U ⊂ D to be a
hyperbolic disk with center 0 ∈ D and radius smaller than the injectivity radius of D/G. The chart map
π : U × D → HG is an isometry on the leaves, and the natural identification U × t ≡ U × t1 is also an
isometry, for all t, t1 ∈ Ĝ. For two fixed global leaves of HG and a choice of their corresponding local leaves
in the chart U × Ĝ, there is thus a preferred isometric identification of the two local leaves. This gives an
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isometric identification between two open sets of the global leaves, and this identification extends uniquely
to a preferred isometric identification of the two global leaves themselves.

Definition 3.2. A homeomorphism f : HG → H is said to be a (differentiable) K-quasiconformal map
if its restriction to each leaf is a K-quasiconformal C∞-map, if the restriction of f to any local chart
varies continuously for the transversal variation in the C∞-topology, and if f varies continuously (in the
quasiconformal topology) for the transversal variation on global leaves (with two leaves identified using their
local leaves in the fixed chart as above).

Remark 3.3. The quasiconformal topology is induced by the semi-norm on the space of quasiconformal
maps: the distance between two quasiconformal maps f and g is induced by the sup norm of the Beltrami
differential of the map f ◦ g−1. (This is only a semi-norm because the Beltrami coefficient of a conformal
map vanishes identically.) The quasiconformal topology induces a topology on the quotient of the space of
quasiconformal maps by post-composition with Möbius transformations, and the resulting space is Hausdorff.

Remark 3.4. The natural requirement of continuity in the C∞-topology for the transversal variations in
the local charts is given by Sullivan [23] (see also [22]) for compact Riemann surface laminations although
other transverse structures are also possibly interesting. In the case of the universal hyperbolic compact
solenoid (see [23], [15] and [22]), this is enough to guarantee that the union of Teichmüller spaces of compact
surfaces is dense in the Teichmüller space of the compact solenoid. However, for the punctured solenoid we
require the additional quasiconformal continuity because of the non-compactness.

To make sense of the identifications of the different global leaves, we are forced to start from a locally
constant hyperbolic structure to make a proper choice of the identifications of the global leaves.

Definition 3.5. The Teichmüller space T (HG) of the punctured solenoid HG is the space of all differentiable
quasiconformal maps f : HG → H, where H is an arbitrary hyperbolic solenoid with the underlining
differentiable solenoid Hd up to the following equivalence relation: two maps f1 : HG → H1 and f2 : HG →
H2 are Teichmüller equivalent if there is a hyperbolic isometry c : H1 → H2 such that f−1

2 ◦c◦f1 : HG → HG

is homotopic to the identity by a bounded homotopy with respect to the hyperbolic metric.

We already introduced the universal covering of HG by the natural projection map π : D×Ĝ→ (D×Ĝ)/G.
Note that the restriction of π to each leaf of the covering is an isometry for the hyperbolic metrics of the
leaf in the covering and the leaf of HG. However, countably many leaves of the covering are mapped onto a
single leaf of HG. Given an arbitrary hyperbolic punctured solenoid H, there exists a quasiconformal map
f : HG → H. We next introduce a universal covering of H using the existence of f , similarly to [22].

Let U × Ĝ, 0 ∈ U , be a local chart of HG such that f |(π(U×Ĝ)) is a homeomorphism. Choose a local

chart V × T → H for H which contains f(π(0 × Ĝ)) and let ψ : V × T → H be isometric local chart map.

Identify T with Ĝ via the correspondence Ĝ→ 0× Ĝ→ f(0× Ĝ) → T . Finally, define the universal covering

πH : D × Ĝ → H as follows. Choose a continuous isometric embedding i : V × Ĝ → D × Ĝ such that
i ◦ ψ−1(f(0 × Ĝ)) = 0 × Ĝ and define πH by extending the local isometry i ◦ ψ−1 from V × Ĝ ⊂ D × Ĝ

to the global leafwise isometry from D × Ĝ to HG. Note that f : HG → H lifts to a quasiconformal map
f̃ : D × Ĝ → D × Ĝ by the formula f̃(z, t) = π−1

H (f ◦ π(z, t), t), for z ∈ D and t ∈ Ĝ. Further, the action of

any γ ∈ G on D× Ĝ is conjugated by f̃ to the action on the universal cover of H. This conjugated action is
also an isometry from one leaf onto another, but it depends on the leaf, i.e., it is not constant in t ∈ Ĝ (this

follows from the formula for f̃ , or see [22] for a similar argument). In the proposition below, we construct
the hyperbolic punctured solenoid by constructing first the universal covering and the covering group from
a Beltrami coefficient, thus reversing the above construction.

The leafwise Beltrami coefficient µ on HG of a differentiable quasiconformal map f : HG → H is smooth,
‖µ‖∞ ≤ k < 1, it varies continuously for the transversal variations in the smooth topology and ‖µt1−µt‖∞ →
0 as t1 → t, where µt1 , µt are the restrictions of µ to the global leaves t1, t transversely identified as above
with the unit disk D. Conversely, we show
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Proposition 3.6. Let µ be a Beltrami coefficient on HG so that µ is smooth, has L∞-norm bounded above by
k < 1, varies continuously for transverse variations in the smooth topology, and so that ‖µt1 − µt‖∞ → 0 as
t1 → t in the transverse direction. Then there exists a hyperbolic punctured solenoid H and a (differentiable)
quasiconformal map f : HG → H such that the Beltrami coefficient of f is µ. Moreover, f and H are unique
up to post-composition with a hyperbolic isometry.

Proof. The natural quotient map π : D × Ĝ→ D ×G Ĝ = HG is the universal covering map of HG. Denote
by µ̃ the lift of µ to the universal covering; hence µ̃ satisfies

(1) µ̃(γz, tγ−1) γ′(z) = µ̃(z, t) γ
′

(z)

for all γ ∈ G.
Thus, µ̃(·, t), for t ∈ Ĝ, varies continuously with t in the norm ‖ · ‖∞ on D ≡ D × {t} by definition of µ.

We solve the Beltrami equation for µ̃(·, t) on each D×{t} such that the solution f̃t : D×{t} → D×{t} fixes
1, −1 and −i.

The resulting f̃t is smooth and varies continuously in the smooth and quasiconformal topology by the
corresponding properties of µ̃ (see [2]). By (1), the maps f̃t conjugate the action of γ ∈ G on D × Ĝ

into the action of γµ ∈ Gµ on D × Ĝ, where each γµ acts by isometry leafwise and varies continuously for

the transverse variation. Thus, f̃ projects to a homeomorphism f : D × Ĝ/G → D × Ĝ/Gµ which is a

differentiable quasiconformal map from HG to the hyperbolic punctured solenoid H = D × Ĝ/Gµ. (For a
similar construction, see [22, Section 2].) 2

We thus obtain an equivalent definition of T (HG):

Definition 3.7. The Teichmüller space T (HG) is the space of all Beltrami coefficients on HG which satisfy
the conditions of Proposition 3.1 up to an equivalence. Two Beltrami coefficients are equivalent if their
corresponding quasiconformal maps are equivalent.

Sullivan [23] showed that union of the Teichmüller spaces of all compact surfaces is dense in the Teichmüller
space of the compact solenoid, and we next prove the corresponding result for the punctured solenoid. Any
punctured surface of finite area is covered by the punctured solenoid, and in fact, this covering is a principal
fiber bundle. The Teichmüller space of a punctured surface lifts to T (HG) by lifting hyperbolic metrics on
the surface to locally constant hyperbolic metrics on Hd. For example, the hyperbolic metric on HG is the
lift of the hyperbolic metric on the modular curve D/PSL2(Z), which in turn lifts to a hyperbolic metric on
the punctured torus or any other surface covering the modular curve.

Theorem 3.8. The union of natural lifts of Teichmüller spaces of all punctured hyperbolic surfaces is dense
in the Teichmüller space T (HG).

Proof. It is enough to show that for any Beltrami coefficient µ on HG there is a sequence of locally constant
Beltrami coefficients µn which approximate µ in the Teichmüller topology.

Let µ̃ be the lift of µ to D×Ĝ, so µ̃ satisfies (1). Let Gn be the intersection of all index at most n subgroups
of G (see Section 2). Let P be a fundamental polygon for the action of Gn on D. We define µ̃n(z, t) = µ̃(z, id)

for z ∈ P and t ∈ Ĝn, and extend µ̃n to D × Ĝn by the action of Gn. Since D × Ĝ/G ≡ D × Ĝn/Gn and
µ̃n is close to µ̃ in the Teichmüller topology on each leaf, we obtain the required locally constant sequence
approximating µ̃. We may replace µ̃n, for instance with the barycentric extension of its boundary values (see
Douady-Earle [7]), to produce a Teichmüller equivalent Beltrami coefficient which is smooth and transversely
continuous for both the smooth and quasiconformal topologies. 2

4. The representation-theoretic definition of T (HG)

We give an alternative definition of the Teichmüller space using the universal covering and the representa-
tion of the covering group of the solenoid. This definition is motivated by the finite-dimensional Teichmüller
theory of punctured surfaces. We use the universal covering construction above which was adopted from [22]
to the case of the punctured solenoid.

8



Let us consider the collection Hom(G × Ĝ, PSL2R) of all functions ρ : G × Ĝ → PSL2R satisfying the
following three properties:

Property 1: ρ is continuous;

Property 2 [G-equivariance]: for each γ1, γ2 ∈ G and t ∈ Ĝ, we have

ρ(γ1 ◦ γ2, t) = ρ(γ1, tγ
−1
2 ) ◦ ρ(γ2, t);

Property 3: for every t ∈ Ĝ, there is a quasiconformal mapping φt : D → D depending continuously on
t ∈ Ĝ so that for every γ ∈ G, the following diagram commutes:

(z, t) 7→ (γz, tγ−1)

D × Ĝ → D × Ĝ

φt × id ↓ ↓ φtγ−1 × id

D × Ĝ → D × Ĝ

(φt(z), t) 7→ (ρ(γ, t) ◦ φt(z) = φtγ−1 ◦ γ(z), tγ−1)

As to property 1, notice that since G is discrete, ρ is continuous if and only if it is so in its second variable
only. Property 2 is a kind of homomorphism property of ρ mixing the leaves; notice in particular that taking
γ2 = I gives ρ(I, t) = I for all t ∈ Ĝ. Property 3 mandates that for each t ∈ Ĝ, φt conjugates the standard

action of γ ∈ G on D × Ĝ at the top of the diagram to the action

γρ : (z, t) 7→ (ρ(γ, t)z, tγ−1)

at the bottom, and we let Gρ = {γρ : γ ∈ G} ≈ G. Notice that the action of Gρ on D × Ĝ extends

continuously to an action on S1 × Ĝ. We finally define the solenoid (with marked hyperbolic structure)

Hρ = (D ×ρ Ĝ) = (D × Ĝ)/Gρ.

Define the group Cont(Ĝ, PSL2R) to be the collection of all continuous maps α : Ĝ → PSL2R, where

the product of two α, β ∈ Cont(Ĝ, PSL2R) is taken pointwise (αβ)(t) = α(t) ◦ β(t) in PSL2R. α ∈
Cont(Ĝ, PSL2R) acts continuously on ρ ∈ Hom(G× Ĝ, PSL2R) according to

(αρ)(γ, t) = α(tγ−1) ◦ ρ(γ, t) ◦ α−1(t).

We introduce the topology on Hom(G × Ĝ, PSL2R). Consider the natural metric d on PSL2R induced

by identifying it with the unit tangent bundle of the unit disk D. Let ρ1, ρ2 ∈ Hom(G× Ĝ, PSL2R) and let
γ1, . . . , γj ∈ G be a generating set of G. The distance between ρ1 and ρ2 is given by

(2) max
1≤i≤j, t∈Ĝ

d(ρ1(γi, t), ρ2(γi, t)).

This metric is not canonical, but any such two metrics induce the same topology.
The topology onHom′(G×Ĝ, PSL2R) = Hom(G×Ĝ, PSL2R)/Cont(Ĝ, PSL2R) is the quotient topology

of the above topology on Hom(G× Ĝ, PSL2R).

Theorem 4.1. There is a natural homeomorphism of the Teichmüller space of the solenoid HG with

Hom′(G× Ĝ, PSL2R) = Hom(G× Ĝ, PSL2R)/Cont(Ĝ, PSL2R).
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Proof. Let µ be a Beltrami coefficient on HG which represents a point in T (HG). Let µ̃ be the lift of µ to

D × Ĝ and let f̃ : D × Ĝ → D × Ĝ be the leafwise solution of the corresponding Beltrami equation which
fixes 1, −1 and −i on the boundary of each leaf, as in Proposition 3.6. Since µ̃ satisfies (1), then for each

γ ∈ G there exists γµ : D × Ĝ→ D × Ĝ which is leafwise a Möbius transformation such that

(3) (f̃ ◦ γ)(z, t) = (γµ ◦ f̃)(z, t)

for all (z, t) ∈ D× Ĝ and γ ∈ G. We note that f̃ fixes each leaf of D× Ĝ, and that γ and γµ exchange leaves
in the same fashion D × {t} 7→ D × {tγ−1}.

We define the representation ρµ : G× Ĝ→ PSL2R by

(4) ρµ(γ, t) = γµ(·, t)
for γ ∈ G and t ∈ Ĝ.

We check that properties 1, 2 and 3 hold. To see that ρµ is continuous, note that an element of PSL2R is
uniquely determined by specifying the image of three arbitrary points on S1, and that it depends continuously
on this image. Therefore, Property 1 holds because f̃ varies continuously on S1 × Ĝ in the C0-topology.

Property 2 follows from the computation:

ρµ(γ1 ◦ γ2, t) = f̃ ◦ γ1 ◦ γ2 ◦ f̃−1(·, t) = f̃ ◦ γ1 ◦ f̃−1 ◦ f̃ ◦ γ2 ◦ f̃−1(·, t) =

[(f̃ ◦ γ1 ◦ f̃−1)(·, tγ−1
2 )] ◦ [(f̃ ◦ γ2 ◦ f̃−1)(·, t)] = ρµ(γ1, tγ

−1
2 ) ◦ ρµ(γ2, t).

Thus, φt := f̃(·, t) is a quasiconformal map which satisfies Property 3.

Upon taking quotients, the assignment (4) induces a well-defined map from T (HG) toHom′(G×Ĝ, PSL2R) =

Hom(G × Ĝ, PSL2R)/Cont(Ĝ, PSL2R). To see this, simply note that ft|S1 up to post-composition with
an element of PSL2R depends only on the Teichmüller class of the Beltrami coefficient µ. Thus, γµ is
determined up to the same ambiguity, and the map is well-defined on the quotients.

We prove the continuity of this map at an arbitrary [µ1] ∈ T (HG), where [µ1] denotes the Teichmüller
class of the Beltrami coefficient µ1. Let µ2 be a Beltrami coefficients representing a points in T (HG) in a

small neighborhood of [µ1] such that ‖µ1 − µ2‖∞ → 0 as [µ2] → [µ1]. Their corresponding maps f̃1 and f̃2
are thus close as quasiconformal maps for each t ∈ Ĝ, and they both fix 1, −1 and i on each leaf.

Recall that the group G < PSL2Z for the punctured torus is generated by two hyperbolic elements γ1

and γ2 which carry e1/2 onto e−2/1 and e2/1 onto e−1/2, respectively.
It follows thatGµk

are generated by their conjugates γµk

1 , γµk

2 , for k = 1, 2. To estimate d(γµ1

1 (·, t), γµ2

1 (·, t))
and d(γµ1

2 (·, t), γµ2

2 (·, t)), it is enough to compare the corresponding images of −1, −i and 1, for all t ∈ Ĝ.
To this end, we use the formula

γµk

1 (·, t) = f̃k(·, tγ−1
1 ) ◦ γ1(·, t) ◦ f̃k(·, t)−1,

for all t ∈ Ĝ, and similarly for γµk

2 . Thus, γµk

1 (−1, t) = f̃k(i, tγ−1
1 ), γµk

1 (−i, t) = f̃k(1, tγ−1
1 ) and γµk

1 (1, t) =

f̃k(γ1(1), tγ
−1
1 ). Therefore, it is enough to show that pairs f̃1(i, tγ

−1
1 ) and f̃2(i, tγ

−1
1 ), f̃1(1, tγ

−1
1 ) and

f̃2(1, tγ
−1
1 ), and f̃1(γ1(1), tγ

−1
1 ) and f̃2(γ1(1), tγ

−1
1 ) are close in the angle metric on S1. This follows since

f̃1 and f̃2 are properly normalized and their Beltrami coefficients are close in the supremum norm uniformly
in t ∈ Ĝ. The similar statement holds for γµk

2 . The continuity is proved.
Assume that ρµ1

= ρµ2
= ρ for two Beltrami coefficients µ1, µ2 representing elements of T (HG). We need

to show that f̃1(·, t)|S1 = f̃2(·, t)|S1 for all t ∈ Ĝ. This implies that there is a bounded homotopy through

quasiconformal maps between f̃1 and f̃2 which is invariant under Gρ (the proof for the compact solenoid [14]
extends directly to the punctured solenoid), which says that µ1 and µ2 are Teichmüller equivalent, so the
map is one to one.

It is enough to show that f̃1(x, t) = f̃2(x, t) for all x ∈ Q̄ and t ∈ Ĝ. Note that the equality holds
at 1/0, 0/1, 1/1 ∈ Q̄ by our normalization. Furthermore, at least one edge of the triangle with vertices
1/0, 0/1, 1/1 is mapped onto any other edge of the Farey tesselation by an element of the once-punctured
torus group G, where G is generated by two hyperbolic elements γ1 and γ2. We proceed inductively. Namely,
assume that x ∈ Q̄ is one vertex of edge e ∈ τ∗ and that at vertices of e1 ∈ τ∗ the equality of the two maps
hold for all t ∈ Ĝ and that γi(e1) = e for either i = 1 or i = 2. Let x1 be the vertex of e1 such that

γi(x1) = x. By (3), it follows that f̃j(x, t) = (γ
µj

i ◦ f̃j)(x1, tγi) for j = 1, 2. By our assumption, γµ1

i ≡ γµ2

i
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and f̃1(x1, tγi) = f̃2(x1, tγi) for all t ∈ Ĝ. Thus, f̃1(x, t) = f̃2(x, t) for all t ∈ Ĝ. The inductive step is
complete, and the injectivity follows.

The map is surjective because D × Ĝ/Gρ is a quasiconformal image of HG. The quasiconformal map is

the projection of the family φt : D → D, for t ∈ Ĝ, to the quotients HG and Hρ obtained by the actions of

G and Gρ on D × Ĝ.
We must finally show that the inverse map is continuous. Suppose that ρ1 and ρ2 are two representations

of the group G which are close in the metric (2). Let φ1, φ2 : D× Ĝ→ D× Ĝ be conjugating maps for ρ1, ρ2

respectively, from Property 3. It is enough to find another pair of conjugating maps f̃1, f̃2 such that the
quasiconformal constant of f̃2 ◦ f̃−1

1 converges to 1 as ρ1 converges to ρ2.

Let Q be the ideal hyperbolic rectangle inside D with vertices 1, i, −1 and −i, so Q× Ĝ is a fundamental
domain for the action of the punctured torus group G on D×Ĝ. Let γ1, γ2 ∈ G be fixed hyperbolic generators
of the punctured torus group G as above. The sides of Q × t are identified to the sides of Q × tγ−1

1 and

Q× tγ−1
2 , for t ∈ Ĝ. Note that D × Ĝ/G ≡ Q× Ĝ/G ≡ HG.

Let Gk = ρk(G) and let Qt
k be the ideal rectangle with vertices −1, −i, 1 and ik := φk(i, t), for k = 1, 2

and t ∈ Ĝ. Thus, Fk = ∪t∈ĜQ
t
k × {t} is a fundamental set for Gk.

It is enough to find a quasiconformal map f̃ between F1 and F2 with small quasiconformal constant
such that f̃ = I on the geodesics e1/2 × t and e2/1 × t, f̃ = ρ2(γ1, t) ◦ ρ1(γ1, t)

−1 on φ1(e−2/1, tγ
−1
1 ) and

f̃ = ρ2(γ2, t) ◦ ρ1(γ2, t)
−1 on φ1(e−1/2, tγ

−1
2 ). By assumption, the covering maps ρ1(γj , t) and ρ2(γj , t),

j = 1, 2 are close and the rectangles Qt
1 and Qt

2 are almost equal, so there exists a quasiconformal map f̃

with small dilatation which satisfies above boundary conditions. Furthermore, f̃ : F1 → F2 lifts and extends
to a quasiconformal self-map of D × Ĝ using the actions of the covering groups Gk, for k = 1, 2. Finally,
taking f̃1 = φ1 and f̃2 = f̃ ◦ φ1, the continuity of the inverse map follows. 2

5. The decorated Teichmüller space T̃ (HG)

Let Hρ be a hyperbolic solenoid obtained from the representation ρ with corresponding quasiconformal
map φ : HG → Hρ. Fix a leaf of Hρ and fix a point p on that leaf. Consider a geodesic ray in the hyperbolic
metric of the leaf starting at p. If a ray leaves every compact subset of Hρ then it determines a “puncture” of
the solenoid Hρ. More precisely, a puncture of a hyperbolic solenoid Hρ is an equivalence class of wandering
rays from points of the leaf, where two rays are equivalent if they are asymptotic.

We may describe the punctures of Hρ using the representation ρ. The quasiconformal map φ : D × Ĝ →
D × Ĝ extends continuously to a leaf-wise quasi-symmetric map φ : S1 × Ĝ → S1 × Ĝ. Recall that Q̄ ⊂ S1

parametrizes the endpoints of the standard triangulation of D invariant under PSL2R. We say that a point
(p, t) ∈ S1 × Ĝ is a ρ-puncture if φ−1(p, t) ∈ Q̄, and a puncture of Hρ itself is a Gρ-orbit of ρ-punctures. A
ρ-horocycle at a ρ-puncture (p, t) is the horocycle in D × {t} centered at (p, t) and a horocycle on Hρ is a
Gρ-orbit of ρ-horocycles.

Definition 5.1 A decoration on Hρ, or a “decorated hyperbolic structure” on Hρ, is a function ρ̃ : G× Ĝ×
Q̄ → PSL2R × L+, where

ρ̃(γ, t, q) = ρ(γ, t) × h(t, q)

with ρ(γ, t) ∈ Hom(G× Ĝ, PSL2R), which satisfies the following conditions:

Property 4: for each t ∈ Ĝ, the image h(t, Q̄) ⊆ L+ is discrete and the center of the horocycle h(t, q)

is φt(q), for all (t, q) ∈ Ĝ × Q̄ (using here the identification of L+ with the space of horocycles as in
Appendix A);

Property 5: for each q ∈ Q̄, the restriction h(·, q) : Ĝ→ L+ is a continuous function from Ĝ to L+;

Property 6: h(t, q) is ρ invariant in the sense that

ρ(γ, t)(h(t, q)) = h(tγ−1, ρ(γ, t)q).
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Remark Property 4 implies that h(t, Q̄) is radially dense in L+ because φt(Q̄) is dense in S1. The continuity
from property 5 and the invariance under the covering group from property 6 imply continuity of the map
h(·, Q̄) from Ĝ to the space of discrete and radially dense subset of L+, where the topology is the Hausdorff
topology on closed subsets of L+.

Let Hom(G× Ĝ× Q̄, PSL2R×L+) denote the space of all decorated hyperbolic structures satisfying the

properties above. We define a topology on Hom(G× Ĝ× Q̄, PSL2R × L+). A neighborhood of ρ̃(γ, t, q) =
ρ(γ, t)×h(t, q) consists of all ρ̃1(γ, t, q) = ρ1(γ, t)×h1(t, q) such that ρ1 belongs to a chosen neighborhood of

ρ in Hom(G× Ĝ, PSL2R), and the maps h1(·, q) : Ĝ→ L+ and h(·, q) : Ĝ→ L+ are close in the supremum
norm, for each q ∈ Q̄. The above condition and the invariance Property 6 implies that the set h1(t, Q̄) is

close to the set h(t, Q̄) in the Hausdorff metric, for each t ∈ Ĝ.

We define the decorated Teichmüller space as the quotient

T̃ (HG) = Hom(G× Ĝ× Q̄, PSL2R × L+)/Cont(Ĝ, PSL2R),

where α : Ĝ→ PSL2R acts on ρ̃ by

(αρ̃)(γ, t, q) =
(

α(tγ−1) ◦ ρ(γ, t) ◦ α−1(t)
)

×
(

α(t)h(t, q)
)

.

The topology on T̃ (HG) is the quotient of the topology on Hom(G× Ĝ× Q̄, PSL2R × L+). The following
is immediate:

Proposition 5.2 Forgetting decoration induces a continuous surjection T̃ (H) → T (H).

Given a geodesic in D together with a horocycle centered at each end of the geodesic, the intersection
points of the horocycles determine a finite segment of the geodesic. To this geometric data, we assign the
square root of the double of the exponential of the signed length of the segment (positive if the segment lies
outside both horoballs, otherwise negative) and call it lambda length. (For more details see the appendices.)

Given ρ̃, to any e× t, for e ∈ τ∗ and t ∈ Ĝ, we can assign the lambda length of the image geodesic φt(e) and
corresponding horocycles h(t, q1) and h(t, q2), where q1, q2 are images of the endpoints of e under φt. Thus,

we obtain a natural mapping λ : T̃ (H) → (Rτ∗
>0)

Ĝ which assigns to a function ρ̃ : G× Ĝ× Q̄ → PSL2R×L+

the lambda lengths corresponding to the edges (e, t), for e ∈ τ∗ and t ∈ Ĝ.
We consider R

τ∗
>0 with the strong topology induced by taking the supremum over the coordinates.

Let Cont(Ĝ,Rτ∗
>0) be the space of all continuous mappings with the compact-open topology. Denote by

ContG(Ĝ,Rτ∗
>0) the subset of Cont(Ĝ,Rτ∗

>0) which consists of all elements that are invariant with respect to

the action of G. In other words, f ∈ ContG(Ĝ,Rτ∗
>0) if f ∈ Cont(Ĝ,Rτ∗

>0) and

f(tγ−1, γ(e)) = f(t, e)

for each γ ∈ G and e ∈ τ ∗.

Theorem 5.3 The assignment of lambda lengths is a homeomorphism onto

λ : T̃ (HG) → ContG(Ĝ,Rτ∗
>0);

that is, we obtain a parametrization of T̃ (HG).

Proof We first show that λ is surjective. If f ∈ ContG(Ĝ,Rτ∗
>0), then we must produce ρ̃ = ρ× h such that

λ(ρ̃) = f . Let γ1 and γ2 be fixed generating hyperbolic elements in the once punctured torus group G that
map e1/2 and e2/1 onto e−2/1 and e−1/2, respectively.

By Lemma A.1(i), given f(t, e1/2), f(t, e2/1) and f(t, e0) there exists a unique choice of horocycles h(t,−1),

h(t,−i) and h(t, 1) based at (−1, t), (−i, t) and (1, t) in D× Ĝ such that induced lambda lengths on e1/2 × t,
e2/1 × t and e0 × t are equal to the above values of f . Further by Lemma A.1(i), given f(e−1/2, t) and

f(e−2/1, t) there exists a unique horocycle h(t, i) in D × Ĝ which induces lambda lengths f(t, e−1/2) and
12



f(t, e−2/1) on e−1/2 × t and e−2/1 × t, respectively. We continue this process inductively and obtain h(t, e)

for all e ∈ τ∗ and t ∈ Ĝ such that whenever p, q ∈ Q̄ are endpoints of an edge e ∈ τ∗ then the corresponding
lambda length for h(t, p) and h(t, q) equals f(t, e).

We define φt|Q̄ by mapping (p, t) onto the center of h(t, p), for each p ∈ Q̄. We show that φt extends to

a quasiconformal map φt : D × Ĝ → D × Ĝ which is continuous in t ∈ Ĝ. By the invariance under G, f
descends to a continuous function on the compact set (τ∗ × Ĝ)/G. Therefore, the lambda lengths on each
D × {t} defined by f are pinched (cf. Lemma 6.1 and Appendix A). A theorem of Penner and Sullivan [18]
(cf. Theorem A.2) guarantees that φt extends to a quasiconformal map. The method of [18] shows that φt

varies continuously in t upon replacing φt with the barycentric extension of its boundary values.
We define ρ(γ, t) to be the unique element of PSL2R which maps (−1, t), (−i, t) and (1, t) onto φtγ−1(γ(−1), tγ−1),

φtγ−1(γ(−i), tγ−1) and φtγ−1(γ(1), tγ−1), where we identify D × {t} ≡ D × {tγ−1} ≡ D for γ ∈ Ĝ. We need

to show that ρ(γ, t) = φtγ−1 ◦ γ ◦ φ−1
t for all t ∈ Ĝ, and it is enough to show that the equality holds on

the edges of φt(τ∗). Any e ∈ φt(τ∗) is obtained by forming a unique chain of edges from the base triangle
with vertices 1, −1 and −i according to the values of f on the edges of τ∗. In the same way, we obtain
the edge φtγ−1 ◦ γ ◦ φ−1

t (e) on D × tγ−1. Since the function f is invariant under the action of G, it follows
that the values of f on the chain of edges from the base triangle to e on D × t are equal to the values of
f on the corresponding edges of the chain from the image of the base triangle under φtγ−1 ◦ γ ◦ φ−1

t to

the edge φtγ−1 ◦ γ ◦ φ−1
t (e) on D × tγ−1. On the other hand, ρ(γ, t) ∈ PSL2R preserves the geometric

construction using the horocycles and it agrees with φtγ−1 ◦ γ ◦ φ−1
t on the base triangle. Thus, ρ(γ, t) and

φtγ−1 ◦ γ ◦ φ−1
t agree on e, hence ρ is a representation which automatically satisfies Property 2. Property

3 is also established. Finally, the representation ρ is continuous because the function f is continuous, and
Property 1 follows.

Since f is pinched, it follows from [18] (cf. Theorem A.2) that h(t, Q̄) is discrete and radially dense.

The continuity of h(·, q) : Ĝ → L+ follows by the continuity of f and by continuity of the formulas in
Lemma A.1(i). Property 6 follows from invariance of lambda lengths and invariance of f .

It follows that λ(ρ̃) = f , and hence λ is surjective. If f and f1 are close, then the above construction

yields ρ̃ and ρ̃1 which are close in T̃ (HG). This holds by the continuity of the construction.
The map λ is continuous because lambda lengths are invariant under G and depend continuously on the

representation ρ̃ = ρ× h.
It remains to show that λ is injective. A representation ρ̃ up to conjugation by α ∈ Cont(Ĝ, PSL2R)

is determined uniquely by the decorations h(t,−1), h(t,−i), h(t, 1) and h(t, i), for t ∈ Ĝ. On the other
hand, the above decorations and invariance with respect to G uniquely determine the function f = λ(ρ̃) ∈
ContG(Ĝ,Rτ∗

>0), whence λ is indeed one-to-one. 2

Remark 5.4 One may parametrize other transverse structures on the solenoid in analogy, where conditions
other than continuity are imposed on the “lambda functions” Ĝ→ R

τ∗
>0.

The above parametrization of T̃ (HG) immediately implies density of TLC decorated structures on H since

Ĝ is a Cantor set in which G is dense. This is in parallel to Theorem 3.8:

Corollary 5.5. The union of the natural lifts of the decorated Teichmüller spaces of all finite punctured
surfaces is dense in the decorated Teichmüller space T̃ (HG).

6. Convex hull construction for the solenoid

In fact, the results of Appendix A automatically apply to any continuous lambda length function because
of the following:

Lemma 6.1. Continuity of a G-invariant λ : Ĝ→ R
τ∗
>0 implies that λt : τ∗ → R>0 is pinched for each t ∈ Ĝ.
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Proof. Continuity of λ means that ∀K ∃N ∀e ∈ τ∗ ∀γ ∈ GN , we have

1 +K−1 ≤ λt(e)

λt(γe)
≤ 1 +K.

Take K = 1/2 and its corresponding N . A fundamental domain for GN has only a finite collection of lambda
lengths, and any other is at most three halves and at least one half times a lambda length in this finite set.2

Thus, if λ : Ĝ→ Rτ∗
>0 is continuous, then each λt : τ∗ → R>0 is pinched, so in the notation of Appendix A,

the corresponding ht : τ∗ → L+ has drd image Bt and closed convex hull Ct, which projects to the cell
decomposition τt of D. Presumably, cells in the decomposition could be infinite sided. Furthermore, the
characteristic map interpolates a quasi-symmetric mapping φt : S1 → S1.

Given a tesselation τ of D with τ∞ = Q ∪ {∞} = Q̄ = τ∞∗ , define

◦

C (τ) = {λt ∈ T̃ (H) : τt = φt(τ)}
∩

C(τ) = {λt ∈ T̃ (H) : τt ⊆ φt(τ)}
∩

T̃ (H) ≈ ContG(Ĝ,Rτ∗
>0).

Furthermore, define the classical locus L ⊆ T̃ (H) as the subspace consisting of all TLC structures on

H, or equivalently, as the union over all finite-index subgroups K < G of the image of T̃ (D/K) in T̃ (H).

The corresponding subspace L ⊆ ContG(Ĝ,Rτ∗
>0) is described by the collection of all TLC lambda length

functions λt : τ∗ → R>0 where there is some finite-index K < G so that λt is K-invariant, for all t ∈ Ĝ.
Define a TLC tesselation to be a tesselation τ of D that is invariant under some finite-index subgroup K < G
with ideal points τ∞ = Q̄.

For any fixed TLC tesselation τ , a point of C(τ)−
◦

C (τ) corresponds to λt : τ∗ → R>0 whose convex hull
Ct has at least one face which is not triangular, i.e., at least four points of Bt are coplanar; thus, τt is not a
tesselation, but rather a paving of D. Given an arbitrary point in T̃ (HG), it is presumably possible that it

does not belong to C(τ) for any TLC tesselation τ . Notice, however, that for any point of T̃ (HG), we have
τ∞t ⊆ Q̄. On the other hand, we obtain a generically simple picture:

Theorem 6.2. The subspace
◦

C (τ) of T̃ (H) is open for each TLC tesselation τ , and ∪τ

◦

C (τ) is a dense

open subset of T̃ (H), where the union is over all TLC tesselations τ of D.

Proof. Fix λ ∈ ContG(Ĝ,Rτ∗
>0) and ε > 0. There exists a TLC λ

′ ∈ ContG(Ĝ,Rτ∗
>0), say with corresponding

finite-index subgroup K < G, so that ‖λ−λ′‖∞ < ε/2 by Corollary 5.5. By the classical theory [19] working

on the surface D/K, there exists λ′′ which belongs to
◦

C (τ) for some TLC tesselation τ and which satisfies

‖λ′′ − λ
′‖∞ < ε/2. Therefore, the density follows.

Turning to the proof that each
◦

C (τ) is open and in order to distinguish coordinates, let us now denote

Contλ(Ĝ,Rτ∗
>0) = ContG(Ĝ,Rτ∗

>0) ≈ T̃ (H).

Let Contσ(Ĝ,Rτ∗) denote the abstract space of continuous G-equivariant R-valued function, and define

Φ : Contλ(Ĝ,Rτ∗
>0) → Contσ(Ĝ,Rτ )
λt 7→ σt,

where the “simplicial coordinate function” σt is defined for each t ∈ Ĝ in accordance with the formula in
Lemma A.1(v). By definition of simplicial coordinates and the convex hull construction, in fact we have

◦

C (τ) = Φ−1(Contσ(Ĝ,Rτ
>0)),

C(τ) = Φ−1(Contσ(Ĝ,Rτ
≥0)),

so the openness assertion of the proposition thus follows from continuity of Φ. 2
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Remark 6.3 In the classical case [19] (cf. Appendix B), τ is a paving of D arising as the lift of a paving of
some punctured surface D/Γ. The intersection L ∩ C(τ) is mapped homeomorphically by Φ onto the set of

TLC elements of Contσ(Ĝ,Rτ
≥0) so that there are no (finite) cycles of triangles ti, . . . ti+k with ti and ti+k

in the same Γ-orbit and with vanishing simplicial coordinates on each ti, . . . , ti+k−1. Each component of
L ∩ C(τ) is homeomorphic to an open simplex together with certain of its faces.

7. The Modular Group

We define the modular group of the punctured solenoid in analogy to the modular group of the compact
universal hyperbolic solenoid [16],[17], [14].

Definition 7.1. The modular group Mod(HG) of the punctured solenoid HG consists of quasiconformal
self-maps of HG modulo isotopies which are bounded in the hyperbolic metric on leaves. The baseleaf
preserving modular group ModBLP (HG) is a subgroup of Mod(HG) which consists of all isotopy classes of
quasiconformal self-maps of HG which fix the baseleaf.

Note that a quasiconformal self-map f of HG necessarily sends punctures onto punctures on HG. Indeed,
since an arbitrary quasiconformal map of the hyperbolic plane onto the hyperbolic plane is a quasi-isometry
[8], a geodesic on a leaf which ends in the puncture is mapped by f onto a quasigeodesic on the image leaf.
If the endpoint of the quasigeodesic on the image leaf is not a puncture then it returns to a compact set of
HG infinitely often, and this contradicts that f is proper.

C. Odden [16], [17] showed that the baseleaf preserving modular group of the compact universal hyperbolic
solenoid is isomorphic to the group of virtual automorphisms of the fundamental group of a compact surface
with genus greater than one. We use his method to prove a similar statement for HG.

Theorem 7.2. The restriction of ModBLP (HG) to the baseleaf is isomorphic to the virtual automorphism
group of G.

Proof. We briefly discuss the extension of Odden’s argument (see [17, Theorem 4.6]) to the case of the
punctured solenoid. A quasiconformal self-map f of the compact universal solenoid is uniformly continuous,
and the compact solenoid admits a finite covering by ε balls in the topology coming from the representation
D × Ĝ/G, for a cocompact Fuchsian G. These are two crucial ingredients in Odden’s proof. We replace

compactness of the solenoid by considering a compact subset X̃ of the punctured solenoid obtained by lifting
of the complement X ⊂ D/G of a horoball neighborhood of the cusp on D/G, where G is the punctured

torus group. Further, X̃1 = f(X̃) is a compact subset of HG which is contained in another compact set X̃2

of the same kind as X̃. In this case, f : X̃ → X̃1 is uniformly continuous and both X̃, X̃1 can be covered
by finitely many ε balls as required, and they furthermore admit a local product structure similar to the
compact solenoid. Moreover, each closed curve based at a point in X ⊂ D/G can be homotoped into a
closed curve in X itself. These details and observations allow the further application of Odden’s proof to
the current setting. 2

For a compact solenoid, the isotropy group of a point in the Teichmüller space in the baseleaf preserving
modular group is infinite (see [16], [17] for TLC hyperbolic solenoids and see [14] for non-TLC hyperbolic
solenoids). Moreover, each isotropy group contains a subgroup isomorphic to the surface group. There is a
countable set of TLC hyperbolic solenoids for which the isotropy group is isomorphic to a dense subgroup of
PSL2(R) (see [16],[17]). These statements hold for T (HG) as well by obvious generalizations of the proofs.

We investigate the isotropy subgroups of ModBLP (HG) for a point H̃ ∈
◦

C (τ) ⊆ T̃ (HG) for τ a TLC
tesselation. Note that the pull-back τt under the marking map φt of the extreme edges of the boundary of
the convex hull Ct in Minkowski space for a decorated hyperbolic punctured solenoid H̃ is invariant under

the action of ModBLP (HG) by definition. That is, an element h ∈ModBLP (HG) which fixes H̃ ∈
◦

C (τ) must

map τt onto itself. Since the projection π : T̃ (HG) → T (HG) commutes with the action of h, it follows that

h fixes H = π(H̃) ∈ T (HG), and so h is an isometry of H.
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¿From now on, we restrict the action to the baseleaf, which is identified with the unit disk D. A homeo-
morphism h : S1 → S1 extends diagonally to a map of the space of geodesics {x× y ∈ S1 × S1 : x 6= y}. To
study the isotropy groups, we need the following simple but important rigidity property of Farey tesselation:

Lemma 7.3. Assume that h : S1 → S1 is a homeomorphism which maps the Farey tesselation τ∗ onto itself.
Then h is an element of PSL2(Z).

Proof. The homeomorphism h : S1 → S1 maps Q̄ onto itself because the endpoints of any geodesic in τ∗ are
mapped onto the endpoints of another geodesic in τ∗. We show that h must belong to PSL2Z. Fix a ∈ τ∗
and let T ⊂ D − τ∗ be an ideal triangle with a in its frontier. Let γ be the unique element of PSL2Z such
that γ(a) = h(a) and γ(T ) ∩ h(T ) 6= ∅. If γ 6= h then there exists a ∈ τ∗ and a triangle T complementary to
τ∗ whose frontier contains a such that γ−1 ◦ h(T ) 6= T . In this case, γ−1 ◦ h maps an edge of T which is in
τ∗ onto a geodesic not in τ∗. However, both γ and h preserve τ∗ which gives a contradiction. 2

Fix aTLC tesselation τ of D, i.e. τ is an ideal triangulation of D which is invariant under a finite index
subgroup of PSL2Z and has ideal vertices τ∞ = Q̄. Denote by Aut(τ) the subgroup of the baseleaf preserving
modular group ModBLP (HG) which fixes τ setwise. In particular, Aut(τ∗) = PSL2Z (by above lemma) acts
simply transitively on the oriented edges of τ∗ and fixes the basepoint HG ∈ T (HG) and the basepoint

H̃G ∈ T̃ (HG), where the decoration on H̃G is given by assigning lambda length unity to each edge of τ∗.
Note that if τ is a TLC tesselation invariant under some group K, say without elliptics, then τ/K is a

well-defined tesselation of the surface S = D/K. Furthermore, if f is an isotopy class of homeomorphisms of
S fixing τ/K setwise, then a lift of f to the universal cover D fixes the pre-image of τ/K in D. It follows that
every automorphism group of every TLC tesselation invariant under a finite index subgroup K < PSL2(Z)
lies as a subgroup of PSL2(Z). (The same is not true for more general pavings of S as one can easily check
directly using simplicial coordinates, cf. Lemma A.1(v).)

We define the characteristic map h = h(τ, e) for a tesselation τ with a distinguished oriented edge and recall
that τ∞ ⊂ S1 denotes the set of ideal points of the tesselation τ . Define h to map the initial and final points
of the DOE of τ∗ onto the initial and final points of the DOE of τ . Each DOE is the common boundary of two
complementary triangles, one to the left and one to the right with respect to the orientations on the DOES.
Map the third vertices of the respective triangles in D− τ∞∗ to the third endpoints of corresponding triangles
in D − τ . Continue in this manner mapping third points of triangles to recursively define h : τ∞∗ → τ∞. By
construction, h is monotone and hence interpolates a homeomorphism h of S1. (See Appendix A for more
details.)

There is the following immediate corollary of the previous result:

Corollary 7.4 Suppose that τ is a TLC tesselation of D with distinguished oriented edge e and corresponding
characteristic map h = h(τ, e) : S1 → S1. Then Aut(τ) = h ◦PSL2Z ◦h−1. Furthermore, if φ = h ◦ γ ◦h−1,
for γ ∈ PSL2Z, then h(τ, φ(e)) = h(τ, e) ◦ γ.

Lemma 7.5. Let τ be a TLC tesselation of D, i.e., τ is invariant under a finite-index subgroup K of PSL2Z

with ideal points τ∞ = Q̄. Then the characteristic map of τ conjugates a finite-index subgroup H of PSL2Z

onto K.

Proof. Let K
′

be the finite-index subgroup of K which contains no elliptic elements. Choose a fundamental
polygon P ′ for K

′

whose boundary consists of edges in τ . Thus, the interior of P ′ is divided into ideal
triangles by the edges of τ . To describe subgroup H, consider a combinatorially equivalent polygon P which
is comprised of ideal triangles among D− τ∗. The combinatorial correspondence between P ′ and P gives the
pairing of the boundary of P using the pairing of P ′ under K

′

. For each pair a×b ∈ τ∗×τ∗ on the boundary
of P , there exists a unique γa,b ∈ PSL2Z such that γa,b(a) = b and γa,b(P

′) ∩ P ′ = {b}. By Poincaré’s
fundamental polygon theorem, the group H generated by all side pairings γa,b of the corresponding boundary

edges of P is Fuchsian with a fundamental polygon equal to P . Thus, the Riemann surfaces D/K
′

and D/H
are homeomorphic, and we may choose a quasiconformal map between them which maps edges in P ′ onto
the edges of P . This map lifts to D, and its restriction to S1 is the desired quasisymmetric conjugation h

16



between K
′

and H. The map h differs from the characteristic map by a pre-composition with an element of
PSL2Z.

Now, if K ′ 6= K, then we can choose P ′ such that the orbit of P ′ under K
′

is invariant under the full
group K. This is equivalent to requiring that a fundamental set for the action of K is contained in P ′ and
finitely many of its translates under some elliptic elements of K cover P ′. Any elliptic element δ ∈ K −K

′

is conjugated by h to a finite order quasisymmetric element h ◦ δ ◦ h−1 of D which preserves τ∗, whence it
must be an element of PSL2Z by Lemma 7.3. 2

¿From the above we obtain

Theorem 7.6. ModBLP (HG) acts transitively on {
◦

C (τ) : τ is TLC}. Furthermore, the isotropy subgroup

in ModBLP (HG) of
◦

C (τ) is isomorphic to Aut(τ) and is moreover quasi-conformally conjugate to PSL2(Z).

Proof. In Lemma 7.5, we showed that a TLC tesselation τ of D which is invariant under a finite subgroup K
of PSL2Z can be mapped to τ∗ by a quasisymmetric map h which conjugates K onto a finite-index subgroup
of PSL2Z. Thus, h is a virtual automorphism, and by Theorem 7.2, it defines an element of ModBLP (HG)
which sends the cell corresponding to τ∗ onto the cell corresponding to τ . Transitivity follows.

The identification of the isotropy group of
◦

C (τ) with Aut(τ) is induced by identifying both these groups

with the isometry group of the point of T̃ (HG) described via Theorem 5.3 with all lambda lengths constant

equal to unity. This point lies in
◦

C (τ) (as one checks with simplicial coordinates), and has combinatorial
symmetry group given by Aut(τ) and decorated hyperbolic (or conformal) symmetry group given by the
isotropy subgroup. The last part then follows from Corollary 7.4. 2

We show that the space T̃ (HG)/ModBLP (HG) is “essentially” Hausdorff, more precisely, at least an open
dense subset is Hausdorff. This implies that no orbit under ModBLP (HG) is dense. The analogue of the

Ehrenpreis conjecture is thus very false for T̃ (HG).

Theorem 7.7. The quotient ∪τ

◦

C (τ)/ModP (HG) is Hausdorff, where the union is over all TLC tesselations

τ . Moreover, no orbit of a point in T̃ (HG) is dense.

Proof. Fix an identification of the baseleaf of HG with the unit disk D. Since the points in T̃ (HG) are defined

up to post composition by a conformal map, we may identify the image of the baseleaf under f : HG → H̃
with D such that f pointwise fixes each of ±1,−i. Thus, T̃ (HG)/ModP (HG) is mapped to the space Bdrd of
all discrete, radially dense countable subsets of the light cone L+ in Minkowski three space containing three
points which project to 1,−1,−i on S1. The map T̃ (HG)/ModP (HG) → Bdrd is continuous for the quotient

topology on T̃ (HG)/ModP (HG) and the Hausdorff topology on Bdrd.

We show that the restriction of the map to ∪τ

◦

C (τ)/ModBLP (HG) is injective which immediately implies

that the space is Hausdorff. Let f ∈
◦

C (τ) and f1 ∈
◦

C (τ1) have the same image β in Bdrd. The convex hull
construction for β yields an ideal triangulation of D which pulls back to τ and τ1 by the maps f and f1,
respectively. Since τ and τ1 are TLC tesselation, there exist h, h1 ∈ModBLP (HG) such that h(τ∗) = τ and
h1(τ∗) = τ1 by Theorem 7.6. Thus, there exists γ ∈ PSL2Z such that f ◦ h ◦ γ = f1 ◦ h1, by Lemma 7.3.
Finally, f and f1 are therefore in the same orbit of ModBLP (HG), and the injectivity follows.

It remains to show that no orbit is dense. An orbit of a point in
◦

C (τ) is not dense in T̃ (HG) because it

is not dense in
◦

C (τ) by the above. The orbit of a point outside ∪τ

◦

C (τ) is not dense because it does not
meet this open dense set by modular invariance of the convex hull construction. 2

8. Generators of the Modular Group

To describe generators of ModBLP (HG), we shall require certain elementary moves on TLC tesselations
as follows.

Definition 8.1. Let K be a finite-index subgroup of G, let τ be a tesselation of D which is invariant under
K with ideal points τ∞ = Q̄, and suppose that e is a fixed unoriented edge of τ with distinct endpoints.
Define a new tesselation τ ′ as follows: for each f ∈ τ−Ke, there is an identical edge f ∈ τ ′; for each f ∈ Ke,
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consider the quadrilateral P with diagonal f comprised of the triangles on either side of f complementary
to τ , and let f ′ denote the other diagonal of P ; for each edge f ∈ Ke, there is a corresponding dual edge
f ′ ∈ τ ′. The resulting tesselation τ ′ is clearly also invariant under K. We say that τ ′ arises from τ by the
(K-)equivariant Whitehead move along e ∈ τ .

Furthermore, if τ is a tesselation with DOE d ∈ τ , then we may induce a DOE d′ on τ ′ as follows: if
d /∈ Ke, then d′ = d as oriented edges, while if d ∈ Ke, then there is the unique orientation on d′ so that
correctly oriented tangent vectors to d, d′ give a positive basis for the tangent space at d ∩ d′.

Thus, for any TLC tesselation τ invariant by a group K, there is a corresponding equivariant Whitehead
move for each edge e of τ , and there is exactly one distinct equivariant move for each K-orbit of edges of
τ . An equivariant Whitehead move acts not only on invariant tesselations but also on invariant tesselations
with DOE.

Lemma 8.2 Suppose that K is a finite-index subgroup of G and τ is an invariant tesselation with DOE
d. Perform an equivariant Whitehead move along the edge e to produce the invariant tesselation τ ′ with
DOE d′. Let h = h(τ, d), h′ = h(τ ′, d′) denote the characteristic maps and define k = h′ ◦ h−1. Then k is
a quasi-symmetric map, a virtual automorphism of PSL2(Z), is independent of the choice of DOE d on τ ,
and k(τ) = τ ′ and k(d) = d′.

Proof The characteristic maps h, h′ are quasisymmetric by Theorem A.1 since lambda lengths for a TLC
tesselation are pinched by Lemma 6.1, hence the composition k is quasi-symmetric as well. Likewise, h, h′

are virtual automorphims by Lemma 7.5 since τ, τ ′ are TLC, and hence so too is the composition k.
To prove that k is independent of the choice of DOE, let d1 be another DOE on τ . According to Corollary

7.4, the characteristic maps are related by h(τ, d1) = h(τ, d) ◦ γ, for some γ ∈ PSL2(Z), and in fact for the
same γ, we have also h(τ ′, d′1) = h(τ ′, d′)◦γ. Thus, k1 = h(τ ′, d′)◦γ ◦γ−1 ◦h−1(τ, d) = k is indeed invariant.

That k maps τ to τ ′ and d to d′ follow from the definition of characteristic maps, completing the proof.
2.

Definition 8.3 We call k = k(τ,K, e) ∈ModBLP (HG) the Whitehead homeomorphism associated with the
K-equivariant Whitehead move along e ∈ τ for any TLC K-invariant tesselation τ . Notice that by definition
if f ∈ Ke, then k(τ,K, e) = k(τ,K, f), so we regard Whitehead homeomorphisms as indexed by K-orbits of
edges Ke rather than by edges e.

In contrast to the case of punctured surfaces where only certain sequences of Whitehead moves give
rise to mapping classes (namely, the sequence must begin and end with combinatorially identical ideal
triangulations), for the punctured solenoid, each equivariant Whitehead move does give rise to a mapping
class k ∈ModBLP .

As elements in the group ModBLP (HG), any two Whitehead homeomorphisms can be composed, but
there is a special case of geometrical significance as follows.

Definition 8.4 Suppose that G > K1 > K2 are nested subgroups with each finite-index in the next. Perform
a K1-equivariant Whitehead move along some edge e1 of the K1-invariant tesselation τ1 to get τ2. As was
observed before, both τ1 and τ2 are K1-invariant, so in particular, τ2 is also K2-invariant. Next perform a
K2-equivariant Whitehead move along some edge e2 of τ2, which is a sensible geometric operation on covering
spaces, to get another TLC tesselation τ3. In this case, we have k(τ1,K1, e1)◦k(τ2,K2, e2) = h3 ◦h−1

1 , where
hi is the characteristic map of τi, for i = 1, 3, defined with compatible DOES. We will call a composition
with this property geometric. More generally, if a finite sequence of Whithead homeomorphisms has the
same property for each pair of consecutive terms, then it is called geometric.

Theorem 8.5 Any element of the modular group ModBLP (HG) can be written as a composition w◦γ, where
γ ∈ PSL2(Z) and w is a geometric composition of K-equivariant Whitehead homeomorphisms for some fixed
K. In particular, ModBLP (HG) contains the characteristic map of any TLC tesselation τ with DOE and
the automorphism group Aut(τ).
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Proof We claim that the Farey tesselation τ∗ and an arbitrary TLC tesselation τ can be connected by a
finite geometric sequence of K-equivariant Whitehead moves for some fixed K. It would follow in particular
that ModBLP (HG) and the group generated by all equivariant Whitehead homeomorphisms have the same

orbits on the set {
◦

C (τ) : τ is TLC}. Thus, for any f ∈ ModBLP (HG) and any TLC tesselation τ , there is

some geometric word w in equivariant Whitehead homeomorphisms so that w−1 ◦ f fixes
◦

C (τ∗), and hence
w−1 ◦ f = γ ∈ PSL2(Z) by Theorem 7.6, completing the proof of generation.

In fact, the composition of K1-equivariant and K2-equivariant Whitehead moves can be equivalently
described as a finite composition of (K1 ∩K2)-equivariant moves, so by intersecting finite-index subgroups,
a single group K suffices as in the statement of the theorem.

It remains to show that geometric sequences of K-equivariant Whitehead moves act transitively on K-
invariant tesselations, and this is precisely the statement from punctured surface theory (cf. Corollary B.6)
that sequences of Whitehead moves act transitively on the set of all ideal triangulations of the surface D/K.

For the proof of the last sentence, given a TLC tesselation τ with DOE and characteristic map h, Lemma
7.5 states that h conjugates one finite index subgroup of PSL2Z onto the other, so h is indeed an element
of ModBLP (HG). 2

Remark Insofar as the effect of a Whitehead move on lambda lengths is described by a Ptolemy transfor-
mation (cf. Lemma A.1(iii)), one derives a real-algebraic representation of ModBLP (HG) in analogy to [19,
Section 7].

We next introduce a series of relations satisfied by the generators in Theorem 8.5, where we assume
throughout that τ is a K-invariant tesselation of the disk for some finite-index subgroup K of G (and
τ∞ = Q̄):

1) [Involutivity] If the K-equivariant Whitehead move along e ∈ τ produces e′ in the resulting tesselation,
then k(τ,K, e) ◦ k(τ,K, e′) = 1.

2) [Commutativity] If e ∈ τ and f ∈ τ do not share an ideal endpoint, then k(τ,K, e) ◦ k(τ,K, f) =
k(τ,K, f) ◦ k(τ,K, e); see Figure 2.

3) [Pentagon Relation] If we adopt the notation for edges in the five tesselations of the pentagon illustrated
in Figure 2, then

k(τ1,K, e1) ◦ k(τ2,K, f2) ◦ k(τ3,K, e3) ◦ k(τ4,K, f4) ◦ k(τ5,K, e5) = 1.

4) [Coset Relation] If H is a finite-index subgroup of K and f1, f2, . . . , f` are representatives for the cosets
of H in K, then

k(τ,K, e) = k(τ,H, f1) ◦ k(τ,H, f2) ◦ · · · ◦ k(τ,H, f`),

where the order of composition is irrelevant since the individual Whitehead homeomorphisms commute by
Relation 2).

Relation 4) holds obviously. To see that the others hold, it is enough to show that the moves leave
invariant any starting tesselation with arbitrary DOE since Lemma 8.2 guarantees that the choice of DOE
is unimportant. Relations 2) and 3) follow from Figure 2, say if we choose DOE to be on the boundary, and
1) is obvious for any DOE different from the edge e.
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Commutativity. Pentagon Relation.

Figure 2 Commutativity and Pentagon Relation.

Definition 8.6. Let ω be a geometric composition of equivariant Whitehead homeomorphisms which are
not necessarily equivariant with respect to the same finite index subgroup of PSL2(Z). Let γ ∈ PSL2(Z).
Any such composition ω ◦ γ is called a normal form of an element of ModBLP (HG).

We showed in Theorem 8.5 that each element of ModBLP (HG) has a normal form, and we next address
its uniqueness.

Theorem 8.7 Suppose γ1, γ2 ∈ PSL2(Z) and ω1, ω2 are two geometric Whitehead compositions with ω1◦γ1 =
ω2 ◦ γ2. Then there is some finite index subgroup K of PSL2(Z) with S = D/K so that up to Relations 1-4)
for K, ω−1

2 ◦ω1 = γ−1
2 ◦γ1 is a finite composition φ1 ◦φ2 ◦· · ·◦φk of automorphisms φi ∈ Aut(τi) < PSL2(Z)

of tesselations τi of S without DOE, for i = 1, . . . , k.

Proof Since ω1 ◦ γ1 = ω2 ◦ γ2 and ω1, ω2 are geometric, we conclude that the image tesselations of τ∗
under ω1 and ω2 are equal when considered as tesselations without DOE, i.e. ω1(τ∗) = ω2(τ∗). Thus,
ω = ω−1

2 ◦ ω1 = γ−1
2 ◦ γ1 is a geometric composition of Whitehead homeomorphisms leaving invariant the

tesselation τ∗ without DOE. Let K be the intersection of all finite index subgroups arising in this geometric
composition of Whitehead moves. By Relation 4), ω is uniquely equivalent to a geometric composition of
Whitehead homeomorphisms invariant under the fixed finite index subgroup K of PSL2(Z). Arguing as in
Theorem B.4 for the surface D/K, we conclude that ω may be reduced using Relations 1-3) to a composition
of automorphisms. 2

We do not know all the relations among the generators in Theorem 8.5 and have only the weaker statement
about normal forms in Theorem 8.7. One difficulty is that the normal form for a non-geometric composition
of Whitehead homeomorphisms is not known.

9. Weil-Petersson two form

For an oriented smooth punctured surface of finite type with fixed ideal triangulation τ , it was shown [20,
Appendix A] that the Weil-Petersson two form on the Teichmüller space pulls-back to the following form

(5) −2
∑

T

(d log a ∧ d log b+ d log b ∧ d log c+ d log c ∧ d log a),

on the decorated Teichmüller space T̃ (F ), where the sum is over all triangles T complementary to τ in F
and (a, b, c) are the edges of T in the correct counter-clockwise cyclic order determined by the orientation of
the surface.

We introduce the Weil-Petersson two form on T̃ (HG) by appropriately normalizing the above expression.
Recall that τ∗ is the Farey tesselation on D. We use the same notation τ∗ for the induced tesselation on the
baseleaf of HG = D× Ĝ/G and its canonical TLC extension to HG. A fundamental polygon P for the once-
punctured torus group G on D consists of two ideal triangles T1 = (e0, e1/2, e2/1) and T2 = (e0, e−2/1, e−1/2).

We define the tangent vectors on T̃ (HG) in terms of its lambda length parametrization. Note that

ContG(Ĝ,Rτ∗
>0) is a subset of vector space ContG(Ĝ,Rτ∗) of all continuous functions from Ĝ onto Rτ∗ that

are invariant under the action of G. The norm on ContG(Ĝ,Rτ∗) is given by

‖v‖ := sup
t∈Ĝ, e∈τ∗

|v(t, e)|,

for v ∈ ContG(Ĝ,Rτ∗). With respect to this norm, ContG(Ĝ,Rτ∗
>0) is an open subset of the vector space

ContG(Ĝ,Rτ∗). The subspace topology on ContG(Ĝ,Rτ∗
>0) induced by the norm on ContG(Ĝ,Rτ∗) coincides

with the compact-open topology. Therefore, the tangent space at any point of T̃ (HG) is identified with

ContG(Ĝ,Rτ∗).

We define the Weil-Petersson two form on the tangent space at an arbitrary point λ ∈ ContG(Ĝ,Rτ∗
>0).

Let u, v ∈ ContG(Ĝ,Rτ∗) be two arbitrary vectors at the tangent space at λ. Furthermore, let ηi
λ,u,v(t) be
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the evaluation of the two form −2(d log a ∧ d log b+ d log b ∧ d log c + d log c ∧ d log a) above on the triangle

Ti × {t} and vectors u(t, ·) and v(t, ·), for i = 1, 2 and t ∈ Ĝ. We define the Weil-Petersson two form by

ωλ(u, v) =

∫

Ĝ

[η1
λ,u,v(t) + η2

λ,u,v(t)]dm(t),

where m is the Haar measure on Ĝ. The actual formulas are

η1
λ,u,v(t) = −2(

u(t, e0)v(t, e1/2)

λ(t, e0)λ(t, e1/2)
+
u(t, e1/2)v(t, e2/1)

λ(t, e1/2)λ(t, e2/1)
+
u(t, e2/1)v(t, e0)

λ(t, e2/1)λ(t, e0)
),

η2
λ,u,v(t) = −2(

u(t, e0)v(t, e−2/1)

λ(t, e0)λ(t, e−2/1)
+
u(t, e−2/1)v(t, e−1/2)

λ(t, e−2/1)λ(t, e−1/2)
+
u(t, e−1/2)v(t, e0)

λ(t, e−1/2)λ(t, e0)
).

The integral is over Ti × Ĝ, for i = 1, 2. In the case when λ is a lift of a decoration on the punctured
torus D/G and the tangent vectors represent deformations in T̃ (D/G), the two form ωλ(u, v) is equal to
the classical Weil-Petersson two form as in [20, Theorem A.2] (cf. Theorem B.2). If λ comes from a lift on
some higher genus surface and the tangent vectors represent TLC deformations of the decorations in the
decorated Teichmüller space of that surface, then the two form is a certain positive multiple of the classical
Weil-Petersson form.

Since λ(t, e), for fixed e ∈ τ∗, is a continuous positive function in t ∈ Ĝ, it is bounded below away from

zero. Moreover, u(t, e) and v(t, e) are continuous in t ∈ Ĝ, for fixed e ∈ τ∗. Therefore, ηi
λ,u,v(t) are bounded

and continuous real functions in t. Thus, the Weil-Petersson two form ωλ(u, v) is well-defined, namely, the
integral converges.

We restrict attention to the base leaf. Let ηλ,u,v |T be the evaluation of the two form −2(d log a∧ d log b+
d log b ∧ d log c + d log c ∧ d log a) on the triangle T = (a, b, c) in D − τ∗, where d log a = ȧ/a, etc... are
given their corresponding values in terms of λ(id, a), u(id, a), and so on, on the baseleaf D. We consider the
average evaluation of η on the baseleaf. Consider a sequence of characteristic subgroups Gn ( cf. Section
2) of PSL2Z such that ∩nGn = {id}. Let Pn be a sequence of fundamental polygons for Gn such that the
frontier edges of Pn belong to the Farey tesselation τ∗, and the Pn are nested.

Proposition 9.1. Let λ ∈ ContG(Ĝ,Rτ∗
>0) and let u, v ∈ ContG(Ĝ,Rτ∗) be two tangent vectors based at λ.

Then

ωλ(u, v) = lim
n→∞

2

k(n)

∑

T∈Pn

ηλ,u,v|T ,

where the sum is over all triangles T complementary to τ∗ in the fundamental polygon Pn, and k(n) is the
number of triangles in Pn.

Proof. We first show that limn→∞
2

k(n)

∑

T∈Pn
ηλ,u,v|T does not depend on the choice of the fundamental

polygons Pn. Indeed, for n large enough the quantities λ, u and v are almost invariant under the group Gn.
Thus, the quantity ηλ,u,v |T is also almost invariant under Gn. Namely, given ε > 0 there exists n such that
|ηλ,u,v |T − ηλ,u,v |γT | < ε for all triangles T complementary to τ∗ whenever γ ∈ Gn. Hence, if the limit exists
it does not depend on the choice of Pn.

For a fixed sequence Pn of fundamental polygons, the sum 2
k(n)

∑

T∈Pn
ηλ,u,v|T is a Cauchy sequence.

This immediately follows from the above observation of almost invariance of ηλ,u,v|T .
It remains to show the equality between ωλ(u, v) and the limit of the sum. In the case when λ, u and v are

TLC, the equality follows from the definition of the Haar measure and an observation that our normalization
factor 2

k(n) is chosen correctly. The general case follows from the uniform continuity of ηi
λ,u,v(t) and the fact

that ηλ,u,v |γT = ηi
λ,u,v(t) in the case when t = γ ∈ Ĝ is an element of G < Ĝ and T is the corresponding

triangle Ti × {γ}. 2

We show that the Weil-Petersson two form pushes forward from T̃ (HG) onto the Teichmüller space

T (HG). Consider the projection map π : T̃ (HG) → T (HG). To show that there exists a well-defined
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push-forward of the two form, it is enough to show that ωλ1(u1, v1) = ωλ2(u2, v2) whenever π(λ1) = π(λ2),
dπλ1(u1) = dπλ2(u2) and dπλ1(v1) = dπλ2(v2).

Theorem 9.2. The Weil-Petersson two form on T̃ (HG) projects to a non-degenerate two form on the Te-
ichmüller space T (HG).

Proof. Suppose that λi, ui and vi, i = 1, 2 are as above. If they are invariant under a finite index subgroup
K of G, then ωλ1

(u1, v1) = ωλ2
(u2, v2). Indeed, since the Weil-Petersson form in this case is a multiple of the

Weil-Petersson form on T̃ (D/K) (which is the lift of the Weil-Petersson form on T (D/K) by Theorem B.2), it
projects to the multiple of the Weil-Petersson form on T (D/K). Thus, it satisfies ωλ1

(u1, v1) = ωλ2
(u2, v2).

In general, it is enough to show that any λi, ui and vi, i = 1, 2 can be approximated by TLC objects
which satisfy the property in the paragraph above the theorem. Indeed, the union of decorated Teichmüller
spaces of all finite surfaces is dense in the decorated Teichmüller space T̃ (HG) and the inclusion is smooth.
It remains to see that two tangent vectors u1, u2 which project to the same vector in the tangent space of
T (HG) can be approximated by two TLC vectors uc

1, u
c
2 which project to the same TLC vector in the tangent

space of T (HG). We postpone this to Lemma 9.3. Since the formula for ωλ(u, v) is continuous in its entries,
the limit also satisfies the desired push-forward property. Thus, the Weil-Petersson two form indeed projects
to the Teichmüller space T (HG).

It remains to show that the push-forward of the Weil-Petersson two form is non-degenerate. To see this,
we must show that for an arbitrary vector v at a point λ ∈ T̃ (HG) which projects to a non-zero vector

on T (HG) there exists another vector u such that ωλ(u, v) 6= 0. Note that a vector v ∈ ContG(Ĝ,Rτ∗)

projects to a trivial vector on T (HG) if and only if it is tangent to a path in λs ∈ ContG(Ĝ,Rτ∗
>0) such that

cr(λs(t, a), λs(t, b), λs(t, c), λs(t, d)) = const for all quadrilaterals (a, b, c, d) which are union of two adjacent

triangles of the Farey tesselation τ∗ and for all t ∈ Ĝ, where cr denotes the cross ratio. Thus, v projects to
a trivial vector on T (HG) if and only if there exists a rectangle Q = (a, b, c, d) consisting of two adjacent
triangles in D − τ∗ such that |v(t, a)/λ(t, a) + v(t, c)/λ(t, c) − v(t, b)/λ(t, b) − v(t, d)/λ(t, d)| ≥ ε > 0 for

t ∈ K̂, where K is a finite index subgroup of G. Thus, either |v(t, a)/λ(t, a) + v(t, c)/λ(t, c)| ≥ ε/2 or

|v(t, b)/λ(t, b)− v(t, d)/λ(t, d)| ≥ ε/2, for t ∈ K̂1, where K1 is a finite index subgroup of K. We may assume

that they have the same sign for K1 small enough and that |v(t, a)/λ(t, a)+ v(t, c)/λ(t, c)| ≥ ε/2, for t ∈ K̂1.

Let e ∈ τ∗ be the diagonal of Q, and choose u such that u(t, e) ≡ 1 for t ∈ K̂1 and equals zero otherwise.

Since ωλ(u, v) = −2
∫

K̂1

1
λ(t,e) (

v(t,a)
λ(t,a) + v(t,c)

λ(t,c) )dm(t) and either 1
λ(t,e) (

v(t,a)
λ(t,a) + v(t,c)

λ(t,c) ) ≥ ε/2 or 1
λ(t,e) (

v(t,a)
λ(t,a) +

v(t,c)
λ(t,c) ) ≤ −ε/2, for all t ∈ K̂1, we conclude that ωλ(u, v) 6= 0 as required. 2

Lemma 9.3. Let ε > 0 and let u1, u2 be two tangent vectors at λ1, λ2, respectively. If dπλ1
(u1) = dπλ2

(u2)
then there exist two TLC points λc

1, λ
c
2 and two TLC vectors uc

1, u
c
2 such that dπλc

1
(uc

1) = dπλc
2
(uc

2), ‖λi −
λc

i‖∞ < ε and ‖ui − uc
i‖∞ < ε, for i = 1, 2.

Proof. By our assumption, there exist two paths λ1,s and λ2,s in T̃ (HG) such that λ1,0 = λ1, λ2,0 = λ2,

π(λ1,s) = π(λ2,s),
d
dsλ1,s|s=0 = u1 and d

dsλ2,s|s=0 = u2. Let n be an nteger large enough that λ1,s and λ2,s

on the baseleaf are almost invariant under Gn. We form two new paths of TLC lambda lengths which satisfy
the required properties. We recall (cf. Lemma A1iv) that the projection π : T̃ (HG) → T (HG) can be given
by the formula

(6) cr(Q) =
ac

bd
,

where cr(Q) is a cross-ratio of the endpoints of a quadrilateral Q = T1 ∪ T2 for two adjacent triangles
T1, T2 ∈ D − τ∗ and a, b, c, d are lambda lengths evaluated at consecutive edges of Q. A necessary and
sufficient condition that π(λ1,s) = π(λ2,s) is thus to have

(7)
λ1,s(a)λ1,s(c)

λ1,s(b)λ1,s(d)
=
λ2,s(a)λ2,s(c)

λ2,s(b)λ2,s(d)

for every such Q = (a, b, c, d). We form new paths:

λc
i,s(a) = lim

k→∞
(Πγ∈Hk⊂Gn

λi,s(γa))
1

k ,
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where Hk contains k elements of Gn, Hk ⊂ Hk+1 and ∪∞
k=1Hk = Gn. The limits exist, they do not depend on

the choice of Hk and are TLC. Moreover, λc
i,s satisfy (7) because at each finite stage, (Πγ∈Hk⊂Gn

λi,s(γa))
1

k

satisfy (7). They are close to the original paths for n large, and their tangent vectors at s = 0 approximate
the original tangent vectors, are also TLC, and their projections agree. The lemma follows. 2

Theorem 9.4. The Weil-Petersson two form on T̃ (HG) is invariant under the modular group ModBLP (HG).

Therefore, it descends to T̃ (HG)/ModBLP (HG) and T (HG)/ModBLP (HG).

Proof. We recall from Theorem 8.5 that the modular group is generated by equivariant Whitehead moves
and PSL2(Z). It is therefore enough to show the invariance under these elements of ModBLP (HG). It
is a calculation in [20] (that the reader could provide: show that the two form is algebraically invariant
under Ptolemy transformations Lemma A.1(iii)) that a Whitehead move along a single edge does not change
the sum ηλ,u,v|T1

+ ηλ,u,v|T2
over the two triangles which contain the edge on their boundaries. Since

an equivariant Whitehead move is decomposed into Whitehead moves along disjoint edges, the invariance
follows. The action of PSL2(Z) fixes τ∗ and changes the marking. It is obvious that the Weil-Petersson two
form is independent of the marking. The invariance under the whole ModBLP (HG) follows. 2

10. Concluding Remarks and Questions

To what extent is there number theory embedded in our constructions? The “center” of C(τ), i.e., a
point corresponding to equating all lambda lengths, covers an arithmetic punctured surface for each TLC
tesselation τ [18, Section 6], which is evidently related to Grothendieck’s dessins d’enfant [12]. In fact,
equivariant Whitehead moves were considered before in this context [21]. Is there any connection between
the absolute Galois group and the full (non-BLP) mapping class group of the solenoid? Furthermore, just as
the Euclidean solenoid [17] is related to the rational adeles, our constructions give an adelic type structure
to the punctured solenoid itself. How might the Teichmüller theory developed here, a kind of deformation
theory of arithmetic punctured surfaces be manifest algebraically? Furthermore, the calculation of the index
of the characterstic subgroups Gn of G = PSL2(Z) is an open problem in number theory; on one hand, it
is evidently related to fatgraph enumeration [20, Appendix B], and on the other, the results of Section 9
suggest connections with Weil-Petersson volumes.

More generally, the regularization of Weil-Petersson form in Section 9 together with the strong topology
on the lambda length functions seems to give a much more satisfactory universal geometry than [18]. With
this symplectic or Poisson structure, the global lambda length coordinates, and the generators of the modular
group for the solenoid, all the ingredients are in place for a Kashaev [11] or Chekhov-Fock type quantization
[6] of the decorated Teichmüller theory developed here.

Are
◦

C (τ) or C(τ) contractible for a TLC tesselation or paving τ? The classical tools (from [19] used to
prove Lemma B.4) seem to be unavailable here. Which non-TLC pavings of D arise from the convex hull
construction?

We give only an infinite set of generators, and we ask if ModBLP (H) is finitely generated. Of course, we
would also hope to give a presentation of this group, beyond the normal forms presented here; perhaps one
can mimic the case of punctured surfaces by first proving contractibility of the C(τ). It also seems possible
to characterize the mapping class like elements of ModBLP (H), i.e., those homeomorphisms of H that arise
from lifts of homeomorphisms of punctured surfaces, in terms of our generators, and we wonder if this might
be useful to address a question from [17]: do the mapping class like homeomorphisms generate the modular
group?

Appendix A-Pinched lambda lengths and the convex hull construction

Let D denote the unit disk with boundary S1. A tesselation τ of D is a locally finite decomposition of
D into ideal triangles. We shall think of τ as a set of edges and let τ∞ ⊆ S1 denote the collection of ideal
vertices of τ . In particular, for the Farey tesselation τ∗, we have τ∞∗ = Q ∪ {∞} = Q̄ ⊆ S1. It will be useful
sometimes to specify a distinguished oriented edge or DOE of a tesselation. In particular, the standard DOE
of the Farey tesselation is the edge connecting −1 to +1.

23



Define Minkowski three-space to be the vector space R3 with indefinite pairing < ·, · > whose quadratic
form is x2 + y2 − z2 in the usual coordinates. The upper-sheet of the hyperboloid is H = {w = (x, y, z) :<
w,w >= −1, z > 0}, and the positive light cone in Minkowski space is L+ = {w = (x, y, z) :< w,w >=
0, z > 0}. The former is a model for the hyperbolic plane, where the distance ∆ between two points u, v ∈ H is
given by ∆2 = cosh2 < u, v >. The latter is identified with the space of all horocycles via the correspondence
L+ 3 w 7→ {u ∈ H :< w, u >= −1} ⊆ H, and there is the corresponding identification L+/R>0 ≡ S1 which
maps a horocycle onto its center. The lambda length of u, v ∈ L+ is defined to be Λ(u, v) =

√− < u, v >, and
geometrically it is

√
2 exp δ, where δ is the signed hyperbolic distance between the corresponding horocycles,

taken with positive sign if and only if the horocycles are disjoint. An affine plane in Minkowski space is
respectively elliptic, parabolic, hyperbolic if and only if it determines the corresponding conic section, or
equivalently if and only if the Minkowski normal v to the plane {w :< w, v >= −1} lies interior to, lies on,
or lies exterior to the light-cone.

Lemma A.1 Given pairwise non collinear points u1, u2, u3, u4 ∈ L+ so that the rays determined by u1, u3

separate those determined by u2, u4, set λij =
√− < ui, uj >.

(i) [19, Lemmas 2.3, 2.4] Given three positive real numbers `12, `13, `23 ∈ R>0, there are unique points vi in
the ray in L+ determined by ui, for i = 1, 2, 3, so that `ij = λij. Furthermore, given v1, v2 ∈ L+ so that
`12 = λ12, there is a unique v3 ∈ L+ on either side of the plane through the origin determined by v1, v2 so
that also `13 = λ13 and `23 = λ23. In each case, the points vi depend continuously on the lambda lengths.

(ii) [19, Lemma 2.2] The plane spanned by u1, u2, u3 is elliptic if and only if all three strict triangle inequalities
hold amongst λ12, λ13, λ31, and it is parabolic if and only if a triangle equality holds.

(iii) [19, Proposition 2.6a] The Ptolemy equation holds:

λ13λ24 = λ12λ34 + λ14λ23.

(iv) [20, Lemma A.2] Let ūi ∈ S1 denote the projection of ui ∈ L+, for i = 1, 2, 3, 4. The cross-ratio is given
as follows: normalizing so that ū1 7→ 1, ū2 7→ 0, ū4 7→ ∞, then ū3 7→ λ23λ34

λ12λ14

.

(v) [19, Proposition 2.6b] The signed volume of the Euclidean tetrahedron spanned by u1, u2, u3, u4 is given
by (λ12λ23λ34λ41) σ, where the simplicial coordinate σ is defined by:

σ =
λ2

12 + λ2
23 − λ2

31

λ12λ23λ31
+
λ2

14 + λ2
43 − λ2

31

λ14λ43λ31
,

and the sign is positive if and only if the edge connecting u1, u3 lies below the edge connecting u2, u4.

We claim that any function Λ : τ∗ → R>0 gives rise to a unique h : τ∞∗ → L+ realizing the putative lambda

lengths in the sense that for all e ∈ τ∗, we have Λ(e) =
√

− < h(u), h(v) >, where u, v are the endpoints of
e. To see this, we may uniquely realize the putative lambda lengths on the triangle to the left of the DOE
by points in the rays in L+ lying over ±1,−i by the first statement in part (i) of Lemma A.1. We may then
use the second statement in part (i) to recursively define the required function h : τ∞∗ → L+, where at each
stage in the construction in the notation of part (i), v3 lies on the other side of the plane through the origin
containing v1, v2 from the triangle to the left of the DOE. Post-composing with the projection, we define
the “characteristic map” h̄ : τ∞∗ → L+/R>0 ≡ S1 and can ask whether h̄ interpolates a homeomorphism
S1 → S1, and if so, what is the nature of this homeomorphism.

We say that Λ : τ∗ → R>0 is pinched if there is a constant M > 1 so that for all e ∈ τ∗, we have
M−1 < Λ(e) < M .

Theorem A.2 [18, Theorems 6.3 and 6.4] If Λ : τ∗ → R>0 is pinched, then h(τ∞∗ ) ⊆ L+ satisfies the
following two properties:

(1) h(τ∞∗ ) is discrete, i.e., below any elliptic plane in Minkowski space, there are only finitely many
points of h(τ∞∗ ).
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(2) h(τ∞∗ ) is radially dense, i.e., in the union of any open set of rays in L+, there is some point of
h(τ∞∗ ).

Furthermore, h̄ : τ∞∗ → S1 interpolates a homeomorphism φ : S1 → S1 which is quasi-symmetric.

If Λ ∈ R
τ∗
>0 is pinched, let B = h(τ∞∗ ) ⊆ L+, and let C ⊆ R3 denote the closed convex hull of B (in the

vector space underlying Minkowski space). We may think of the boundary ∂C of C in Minkowski space as
a piecewise-linear approximation to the upper sheet of the unit hyperboloid with its vertices in L+:

Theorem A.3 [18, Lemma 7.2] Suppose that B ⊆ L+ is a discrete and radially dense subset with closed
convex hull C. Then C ∩ L+ is the set of points of the form tz, where t ≥ 1 and z ∈ B; each ray from the
origin lying inside L+ meets ∂C exactly once. The boundary ∂C is the union of C ∩ L+ and a countable
collection of codimension one faces F1, F2, . . .. Each such face is the convex hull of some coplanar subset
X ⊆ B. The affine plane containing X is either parabolic or elliptic, and if X is infinite, then this affine
plane is parabolic. The set of faces is locally finite in the interior of L+.

An edge of ∂C determines a geodesic in D in the natural way, and we let τ ⊆ D denote the set of geodesics
corresponding to all the edges of ∂C. According to the previous theorem, τ is a locally finite collection of
disjoint geodesic whose complementary regions are either finite-sided polygons (corresponding to elliptic or
parabolic support planes) or infinte-sided (corresponding to parabolic support planes), and we call such a
decomposition of D a paving. Generically, no four points of B are coplanar, and the paving τ is a tesselation
of D.

We shall adopt this as standard notation: if Λ ∈ R
τ∗
>0 is pinched, then the corresponding hΛ : τ∞∗ → L+

has discrete radially dense (drd) image BΛ = hΛ(τ∞∗ ) ⊆ L+ and the projection h̄Λ : τ∞∗ → S1 interpolates
a quasi-symmetric homeomorphism φΛ : S1 → S1; we may also sometimes extend φΛ to a quasi-conformal
map φΛ : D → D say using [7]. The edges in the boundary of the closed convex hull CΛ of BΛ project to a
locally finite collection τΛ of disjoint geodesics in D.

By the geometric interpretation of simplicial coordinates in Lemma A.1(v), it follows that the simplicial
coordinate of (the edge of CΛ corresponding to) an edge of τΛ is a well-defined non-negative real number. In
particular in the generic case that τ is a triangulation, all the simplicial coordinates are strictly positive.

Given a tesselation τ and given any unoriented edge f of τ , define the Whitehead move along f to be
the tesselation τf = τ ∪ {g} − {f}, where f, g are the diagonals of an ideal quadrilateal with frontier in τ .
Furthermore, if τ comes equipped with a DOE e, then there is an corresponding DOE on τf , where if e = f ,
then the orientations on e, f in this order is consistent with the orientation of D itself, and if e 6= f , then
the DOE is unchanged.

Thus, sequences of Whitehead moves act on tesselations or on tesselations with DOE. Sequences of
Whitehead moves on interior edges also act on triangulations of finite polygons and on triangulations with
DOE of finite polygons.

Theorem A.4 [18, Lemma 4.4] Fix a finite-sided connected polygon and consider two triangulations of it
with DOE. Then there is a finite sequence of Whitehead moves from one to the other, i.e., sequences of
Whitehead moves act transitively on tesselations with DOE of a finite polygon.

Appendix B-Punctured surfaces

This appendix is intended to recall the principal results regarding punctured surfaces from [19] and to give
an explicit presentation for the modular groups of punctured surfaces. Fix a surface F with negative Euler
characteristic and s ≥ 1 many punctures. An “ideal triangulation” of F is the homotopy class of a family τ of
disjointly embedded arcs connecting punctures so that each component of F −∪τ is a collection of triangles.
A “decoration” on F is the specification of one horocycle centered at each puncture of F . The forgetful map
T̃ (F ) → T (F ) from decorated to undecorated Teichmüller space of F is a principal Rs

>0-bundle, where we
may take for instance the hyperbolic lengths of the horocycles as coordinates on Rs

>0. As a point of notation,
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we shall let Γ ∈ T (F ) denote the (class of a) Fuchsian group uniformizing a point of T (F ), and Γ̃ ∈ T̃ (F ) a
decorated hyperbolic structure with underlying Γ ∈ T (F ).

Theorem B.1 [19, Theorem 3.1] Fix an ideal triangulation τ of F . Then the natural map T̃ (F ) → Rτ
>0,

which associates to Γ̃ ∈ T̃ (F ) the function that assigns the lambda length of e ∈ τ for Γ̃, is a homeomorphism

onto. That is, lambda lengths on the edges of τ give a parametrization of T̃ (F ).

The proof was sketched after Lemma A.1: use lambda lengths on the lift of τ to the universal cover
to recursively define h : τ∞∗ → L+. This characteristic map can easily be shown directly to interpolate a
homemorphism of the circle (or alternatively use Theorem A.1 since the finitely many lambda lengths are a
priori pinched). Thus, there is a corresponding tesselation of D, which is invariant under a Fuchsian group by
Poincaré’s fundamental polygon theorem. This gives the point Γ ∈ T (F ), and the construction furthermore

gives a decoration Γ̃ ∈ T̃ (F ) on it. This provides the inverse homeomorphism to the map in Theorem B.1.

Theorem B.2 [20, Theorem A.1] In the notation of Theorem B.1, the Weil-Petersson Kähler two from on
T (F ) lifts to

−2
∑

dlna ∧ dlnb+ dlnb ∧ dlnc+ dlnc ∧ dlna

on T̃ (F ), where the sum is over all triangles complementary to τ in F with oriented boundary having lamba
lengths a, b, c in this counter-clockwise cyclic order.

The proof is a calculation in [20, Appendix A] starting from Wolpert’s formula.

Turning now to the convex hull construction in this case, the drd set B consists of s ≥ 1 many Γ-orbits in
the light cone L+. The support planes of the convex hull C of B are all elliptic (cf. [19, Proposition 4.4]),
hence finite sided by discreteness. This is in contrast to Theorem A.2, where parabolic support planes can
occur. The extreme edges of the Γ-invariant convex body C project to D as usual and then to a family τΓ̃
of arcs connecting punctures in F .

Easy Lemma B.3 [19, Theorem 4.5] For every Γ̃ ∈ T̃ (F ), τΓ̃ is a paving, i.e., consists of disjointly embedded
arcs, no two of which are homotopic, connecting punctures so that each complementary region is a polygon.

For any paving τ of F , define
◦

C (τ) = {Γ̃ ∈ T̃ (F ) : τΓ̃ = τ}
∩

C(τ) = {Γ̃ ∈ T̃ (F ) : τΓ̃ ⊆ τ}
∩

T̃ (F ).

Hard Lemma B.4 [19, Theorem 5.4] Each C(τ) has the natural structure of an open simplex
◦

C (τ) plus
certain of its faces.

Together, the two previous lemmas give:

Theorem B.5 [19, Theorem 5.5] {
◦

C (τ) : τ is a paving of F} provides a cell decomposition of T̃ (F ) which
is invariant under the modular group Mod(F ) of F .

Corollary B.6 [19, Proposition 7.1] Compositions of Whitehead moves act transitively on the collection of
all ideal triangulations of a fixed punctured surface.

Proof
◦

C (τ) 6= ∅ for any ideal triangulation τ of F ; to see this, take all lambda lengths to be unity and

compute simplicial coordinates (cf. Lemma A.1(v)). Since T̃ (F ) is path connected, there is a path between
the top-dimensional cells corresponding to any two ideal triangulations of F . Putting this path in general
position with respect to the codimension-one faces of the cell decomposition shows that compositions of
Whitehead moves act transitively on ideal triangulations of F . 2

Consider the branching locus {Γ̃ ∈ T̃ (F ) : ∃φ ∈ Mod(F ) with φ Γ̃ = Γ̃} with projection L̃ ⊆ M̃ =

M̃(F ) = T̃ (F )/Mod(F ). Recall (cf. [25],[10]) that the “orbifold fundamental group” Mod(F ) = πorb
1 (M̃)
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is the semi-direct product of the usual topological fundamental group πtop
1 (M̃ − L̃) with a finite group

determined by the branching, i.e., by the symmetry groups of the underlying pavings.

Corollary B.7 The modular group Mod(F ) = πorb
1 (M̃(F )) of any punctured surface F of negative Euler

characteristic is the stabilizer of any object in the groupoid with finite presentation:

generators are provided by Whitehead moves between ideal triangulations and the union of automorphism
groups of all ideal triangulations of F ;

relations are given by involutivity, the pentagon and commutativity relations (as in Section 8), and invariance
under φ ∈ Mod(F ), namely, for any ideal triangulation τ of F , we have: i) the Whitehead move on e in
τ is identified with the Whitehead move on φ(e) in φ(τ), and likewise, Aut(τ) is identified with Aut(φ(τ));
and ii) if w is a sequence of Whitehead moves beginning at τ and ending at φ(τ), then up to pre- and
post-composition with elements of Aut(τ) ≈ Aut(φ(τ)), we identify φ with w.

Proof That the putative relations hold amongst the putative generators follows from the discussion in
Section 8 plus the obvious invariance i) and ii) under Mod(F ). As in [10], Whitehead moves together with
the automorphism groups of all pavings of F generates Mod(F ) since compositions of Whitehead moves act
transitively on ideal triangulations of a polygon (by Theorem A.4). Furthermore, if φ ∈ Aut(σ) for some
paving σ, then we may arbitrarily extend to an ideal triangulation τ ⊃ σ. By Corollary B.6, there is some
sequence w of Whitehead moves from φ(τ) to τ , and by naturality condition ii), the composition given by
first φ and then w must lie in Aut(τ). It follows that Whitehead moves and automorphism groups of ideal
triangulations alone indeed generate Mod(F ).

As to relations, a homotopy of loops or paths in the orbifold M̃ gives rise to a homotopy also in the
underlying space, and this homotopy may be put into general position with the codimension two skeleton of
the cell decomposition. The orbifold fundamental group is a semi-direct product of πtop

1 (M̃−L̃) with a finite
group as above, and this finite group is contained in the span of the generators by the previous paragraph.
Up to the action of this finite group, the homotopy is therefore given by (the links of) the intersecting cells of
codimension two (namely, the pentagon and commutativity relations) together with the relation of serially
and trivially crossing the same face (namely, involutivity). 2
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