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Abstract

This note is a shortened version of my dissertation thesis, defended at Stony Brook
University in December 2004. It illustrates how dynamic complexity of a system evolves
under deformations. The objects I considered are quartic polynomial maps of the interval
that are compositions of two logistic maps. In the parameter space P Q of such maps, I
considered the algebraic curves corresponding to the parameters for which critical orbits
are periodic, and I called such curves left and right bones. Using quasiconformal surgery
methods and rigidity I showed that the bones are simple smooth arcs that join two boundary
points. I also analyzed in detail, using kneading theory, how the combinatorics of the maps
evolves along the bones. The behavior of the topological entropy function of the polynomials
in my family is closely related to the structure of the bone-skeleton. The main conclusion
of the paper is that the entropy level-sets in the parameter space that was studied are
connected.
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1 Previous work and summary of results

This paper illustrates how dynamic complexity of a system evolves under deformations. This
evolution is in general only partly understood. Attempts to give a quantitative approach have
considered simple examples of dynamical systems and have made use of the topological entropy
h(f) as a particularly useful measure of the complexity of the iterated map f . There has been
a lot of work about entropy; although not much on monotonicity.

The logistic family {fµ(x) = µx(1 − x) , µ ∈ [0, 4]} illustrates many of the important
phenomena that occur in Dynamics. The theory in this case is the most complete (see [D]):
µ → h(fµ) is continuous, monotonely increasing, and different values h0 = h(fµ) are realized for
a single µ in some cases, but also for infinitely many in other cases. The cubic polynomials on
the unit interval are organized as a 2-parameter family. In the compact parameter space of this
family, the level sets of the entropy, called isentropes, were proved to be connected ([DGMT]
and [MT]).

In general, families of degree d polynomials depend on d − 1 parameters, so the same con-
cepts are harder to inspect for higher degrees. It is most natural to research next a family of
quartic polynomials that depends only on two parameters. This paper focuses on showing the
Connected Isentropes Conjecture for the parameter space P Q of the family of alternate
compositions of two logistic maps ([R]). The work is organized as follows:

I briefly study the more general combinatorics of 2n-periodic orbits under alternate iterations
of two (+,−) unimodal interval maps.

I introduce a way to keep track of the succession of the orbit points along the unit interval
I by defining the order-data as a pair of permutation (σ, τ) ∈ S2

n. If under alternate iterations
of the two maps h1 and h2 the two critical orbits are periodic, their order-data turns out to be
strongly connected to the kneading-data of the composition h2 ◦ h1.

For a given order-data (σ, τ), I define the left/right bones in the parameter space P Q to be
the subsets for which either critical point has periodic orbit of order-data (σ, τ). The bones
are algebraic curves , and by definition left bones can only intersect right bones. A crossing is
called a primary intersection if it corresponds to a pair of maps with common periodic bicritical
orbit, and secondary intersection if it corresponds to a pair of maps with disjoint critical orbits.

To obtain combinatorial properties of the bones, I compare the space P Q with a model space
of compositions of stunted tent maps. This technique is not accidental; the stunted sawtooth
maps are generally useful models in kneading-theory, because they are rich enough to encode
in a canonical way all possible kneading-data of m-modal maps. The combinatorial results
make crucial use of Thurston’s Uniqueness Theorem, and of an extension of it due to Poirier ,
interpreted by [MT].

In two following sections, I complete the description of the bones with two essential proper-
ties.

The bone-curves are C1-smooth and intersect transversally. Smoothness follows as in [M]
at parameter points inside the hyperbolic components of P Q. If the parameter point is outside
these components, a quasiconformal surgery construction is necessary in order to perturb a map
with a superattracting cycle to a map having an attracting cycle with small nonzero multiplier.

The bones are simple arcs in P Q with two boundary points on ∂P Q, in other words they
contain no loops. [MT] proved the similar assertion in the case of cubic polynomials, either
assuming true the well-known Fatou Conjecture or using a weaker theorem due to Heckman.
I use instead a quite new and interesting rigidity result of [KSvS], that delivers density of
hyperbolicity in my parameter space.
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I define the n-skeleton SQ
n in PQ to be the union of all bones of period at most 2n , to-

gether with the boundary of the space. I put a dimension 2 topological cell structure on P Q as
follows: the 0-cells are all intersections of bones in SQ

n and all boundary points of bones in SQ
n ;

the 1-cells are the 1-dimensional connected components obtained by deleting the 0-cells from
the n-skeleton; the 2-cells are the 2-dimensional connected components of the complement of SQ

n .

The relations between entropy and the sequence of cell complexes is emphasized in the last
section of the paper. If two points in P Q correspond to distinct values of the entropy, then
any path connecting them crosses infinitely many bones. In more technical phrasing: for any
ε > 0, there is a large enough n for which the corresponding cell complex is fine enough to have
variation of entropy less than ε on each of its closed cells. These considerations permit me to
transport some topological properties of the isentropes from the previously mentioned model
space to similar properties of isentropes in P Q. More precisely, contractibility of isentropes in
the stunted tent maps model space translates as connectedness of isentropes in P Q.

2 Combinatorics

2.1 A discussion on the kneading-data

Let h : I → I be an m-modal map of the interval, i.e. there exist 0 < c1 ≤ c2 ≤ ... ≤ cm < 1
“folding” or “critical points” of h such that h is alternately increasing and decreasing on the
intervals H0, ...,Hm between the folding points.

I =

m
⋃

k=0

Hk ∪

m
⋃

j=1

{cj}

We say that h is of shape s = (+,−,+, ...) if h is increasing on H0 and of shape s = (−,+,−, ...)
if h is decreasing on H0. We say that h is strictly m-modal if there is no smaller m with the
properties above.

We define the itinerary =(x) = (A0(x), A1(x), ...) of a point x ∈ I under h as a sequence of
symbols in A = {H0, ...,Hm} ∪ {c1, ..., cm}, where

{

Ak(x) = Hj , if f◦k(x) ∈ Hj

Ak(x) = cj , if f◦k(x) = cj

The kneading sequences of the map h are defined as the itineraries of its folding values:

Kj = K(cj) = =(f(cj)), j = 1,m − 1

The kneading-data K of h is the m-tuple of kneading-sequences:

K = (K1, ...,Km)

The simplest example of an m-modal map is a sawtooth map with m teeth (see figure 1.1(a)).
We call a stunted sawtooth map a sawtooth map whose vertexes have been stunted by

plateaus placed at chosen heights (see figure 1.1(b)).Its critical points are considered to be the
centers of the plateaus. In the next sections we will focus our attention specifically on tent maps
(1-modal sawtooth maps) and on their stunted version, which we will call stunted tent maps.

Another simple and rich example of m-modal maps is the collection of (m − 1)-degree
polynomials from I to itself. The “folding points” could be taken in this case to be the critical
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0 c1 c2 cm−1 0 c1 c2 cm−11 1

Figure 1: (a)Sawtooth map of the interval. (b)Stunted sawtooth map

points of the polynomial (in the classical sense) of odd order. In the context of polynomial
m-modal maps, we have a powerful tool to use in the statement of Thurston’s Uniqueness
Theorem.

Definition 2.1. A polynomial map is called post-critically finite if the orbit of every critical
point is periodic or eventually periodic.

Theorem 2.2. Thurston Uniqueness Theorem for Real Polynomial Maps: A post-
critically finite real polynomial map of degree m+1 with m distinct real critical points is uniquely
determined, up to a positive affine conjugation, by its kneading data.

We will also use a converse of this basic theorem of Thurston, due to Poirier (as interpreted
by [MT]).

Definition 2.3. We say that a symbol sequence =(x) = (A0(x), A1(x), ...) is flabby if some
point of the associated orbit which is not a folding point has the same itinerary as an immediately
adjacent folding point. A symbol sequence is called tight if it is not flabby. The kneading data
of a map is tight if each of its kneading sequences is tight.

Lemma 2.4. The kneading data of a stunted sawtooth map is tight if and only if the orbit of
each folding point never hits a plateau except at its critical point.

Theorem 2.5. Suppose that the m-modal kneading data K is admissible for some shape s, with
Ki 6= Kj for all i. There exists a post-critically finite polynomial map of degree m+1 and shape
s with kneading-data K if and only if each Ki is periodic or eventually periodic, and also tight.
This polynomial is always unique when it exists, up to a positive affine change of coordinates,
or as a boundary anchored map of the interval.

2.2 Definitions and first goals

In the light of the general definition given in section 2.1, a boundary anchored, (+,-)
unimodal map of the unit interval is a h : I = [0, 1] → I such that h(0) = h(1) = 0 and such
that there exists γ ∈ (0, 1), called folding or critical point, with h increasing on (0, γ) and
decreasing on (γ, 1). The orbit of a point x ∈ I under a such h will be the sequence of iterates
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(h◦n(x))n≥0. The itinerary of x under h is the sequence (J0, J1, ...) of symbols L (left), R (right)
and Γ (center, or critical) such that:







Jj = L, if h◦j(x) < γ
Jj = R, if h◦j(x) > γ
Jj = Γ, if h◦j(x) = γ

The next few sections of this paper are dedicated to study the combinatorics of the dynam-
ical system I am considering: generated by alternate iterates of two unimodal interval maps. In
this sense, it is convenient to consider two copies of the unit interval I1 = I2 = I and think of
our pair of maps (h1, h2) as a self map of the disjoint union I1 t I2 → I1 t I2, which carries I1

to I2 as h1 and I2 to I1 as h2, with critical points γ1 ∈ I1 and γ2 ∈ I2, respectively.

We call an orbit under the pair (h1, h2) a sequence:

x → h1(x) → h2(f1(x)) → h1(h2(h1(x)))...

We say a such orbit is critical if it contains either critical point γ1 or γ2 and we say it is bicritical
if it contains both. We call the itinerary of a point x under (h1, h2) the infinite sequence
=(x) = (Jk(x))k≥0 of alternating symbols in {L1,Γ1, R1} and {L2,Γ2, R2} that expresses the
positions of the iterates of x in I1 and I2 with respect to γ1 or γ2.

Clearly, not all arbitrary symbol sequences are in general admissible as itineraries of a point
under a pair of given maps.

It is fairly easy to show that for a fixed pair (h1, h2) of (+,−) unimodal maps, the pair of
critical itineraries (=(γ1),=(γ2)) determines the kneading-data of h2 ◦ h1 and conversely. In
particular this applies to pairs of stunted tent maps and to pairs of logistic maps (which are
the object of this paper).

For a given pair of maps (h1, h2), I will use the regular total order on admissible itineraries
(see [CE]), which is consistent with the order of points on the real line:

=(x) < =(x′) ⇒ x < x′

x < x′ ⇒ =(x) ≤ =(x′)

We say that the orbit of x is periodic of period 2n under (h1, h2) if n is the smallest positive
integer such that (h2 ◦ h1)

◦n(x) = x (i.e. x has period n under the composition (h2 ◦ h1)) . I
will use the following notation for a 2n-periodic orbit under (h1, h2):

x1 = xi1
h1−→ yj1

h2−→ xi2
h1−→ ...

h1−→ yjn

h2−→ xi1 (1)

where (xi)i=1,n ⊂ I1 and (yj)j=1,n ⊂ I2 are both increasing.

Definition 2.6. The order-data of the periodic orbit (1) is the pair (σ, τ) of permutations in
Sn given by:

h1(xi) = yσi

h2(yj) = xτj
,

so that σik = jk and τjk
= ik+1. (Here the subscripts must be understood as integers mod n,

e.g. in+1 = i1 = 1.)
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An admissible order-data is a (σ, τ) ∈ S2
n which is achieved as order-data of a periodic orbit

of some pair (h1, h2) of interval unimodal maps.

The (+,-) unimodal shape of h1 and h2 imposes a set of necessary and sufficient conditions
for a (σ, τ) to be “admissible”:

(I)

{

If σi+1 < σi , then σj+1 < σj ,∀j ≥ i
If τi+1 < τi , then τj+1 < τj ,∀j ≥ i

(II) τ ◦ σ is a cyclic permutation (i.e. has no smaller cycles).

σ = (123), τ = (231) σ = (132), τ = (321) σ = (231), τ = (123)

σ = (231), τ = (231) σ = (321), τ = (132)

Figure 2: All admissible order-data (σ, τ)of period 2n = 6. Each schetch represents the interval
I = I1 on top, with the orbit points x1 < x2 < x3 and the interval I = I2 undernieth, with the
orbit points y1 < y2 < y3.

A first goal will be to research the relation between the itinerary and the order-data of a
periodic critical orbit.

Suppose γ1 is periodic of period 2n under (h1, h2) and let x1 = xi1 → yj1 → ... → yjn →
xi1 be its orbit. Then the order-data (σ, τ) ∈ S2

2n of the orbit determines its itinerary via
the position of the element yjl

∈ I2 closest to γ2. In other words, there are at most two critical
itineraries corresponding to a given order-data. If in particular the orbit is bicritical, then
yjl

= γ2 and the itinerary is completely defined.
Note also that the order of points in a critical periodic orbit of a (+,−) unimodal map is

strictly preserved in the order of their itineraries, i.e. x < x′ implies =(x) < =(x′). Hence
conversely, knowing the itinerary = of the bicritical orbit, we can obtain the order of occurence
of the orbit points in I1 and I2. This proves the following:

Theorem 2.7. If the orbit of γ1 is bicritical of period 2n under a pair of (+,-) unimodal maps
(h1, h2), then the itinerary of γ1 determines the order-data of the orbit and conversely.

2.3 Parameter spaces

We plan to study in more detail the dynamics of a particular family of such pairs of interval
unimodal maps that we have generally described in the previous section.

Recall that the logistic map (with critical value v) is defined as qv(x) = 4vx(1 − x), x ∈ R.
Clearly qv(0) = qv(1) = 0, for any value of the parameter v. Moreover, for values of v ∈ [0, 1],
qv carries the unit interval to itself, so it is a boundary anchored, (+,−) unimodal interval map.
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Our goal is to study the dynamics of compositions of pairs of such maps: qw ◦ qv, where
(v, w) ∈ [0, 1]2. We call the family of pairs (qv, qw) of logistic maps of the unit interval the
Q-family, and we parametrize it by the pair of critical values, so that the parameter space will
be:

PQ = {(v, w) ∈ [0, 1] × [0, 1]} = [0, 1]2

The behavior of the pairs in the Q-family is not very well-understood. We will compare it
to the dynamics in a “model” family much easier to research, the family of pairs of stunted tent
maps:

stv : I1 → I2, γ1 =
1

2

stw : I2 → I1, γ2 =
1

2

where

stv(x) =







2x if x ≤ v
2

v if v
2 ≤ x ≤ 1 − v

2
2 − 2x if x ≥ 1 − v

2

Recall that the “critical point” of such a stunted tent map was taken by convention to be
the midpoint γ = 1

2 , hence the critical value is st(γ) = v. We call the family of pairs of such
maps the ST-family. Its corresponding parameter space will be denoted by:

PST = {(v, w) ∈ [0, 1] × [0, 1]}

We aim to obtain dynamical results in P Q = [0, 1]2. However, proving similar results in the
parameter space P ST = [0, 1]2 of “approximating” stunted tent maps would be a good start.
Comparison of the two spaces will be a strategy very frequently used within the combinatorics
sections. The strong topological correspondence between the two families will eventually be
sustained with a rigurous proof and will enable us to translate topological properties from one
to the other.

2.4 The combinatorics in the ST-family

I will focus next on how the combinatorics in section 2.2 applies to the model family I am
interested in, namely the ST -family:

Theorem 2.8. Given (σ, τ) ∈ S2
n admissible order-data, there is a unique pair of stunted tent

maps (stv, stw) with periodic bicritical orbit of order-data (σ, τ).

Proof. Let = be a sequence of alternating symbols in {L1, R1,Γ1} and {L2, R2,Γ2}, admis-
sible as a bicritical itinerary of period 2n under a pair of unimodal maps:

= = (J0 = Γ1, J1, J2, ..., J2l, J2l+1 = Γ2, J2l+2, ..., J2n−1, J2n = Γ1, ...)

where J2n+k = Jk for all k and Jk 6= Γ1,Γ2, for all k nonequivalent to 1, ..., 2l mod 2n. There
exists a unique pair of stunted tent maps (stv, stw) that has a bicritical orbit of period 2n:

x1 = xi1 → yj1 → ...yjn → xi1 = x1

having = as its itinerary.
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To prove the existence, it is easier to consider an orbit through a pair of tent maps that
has the respective itinerary, then stunt the maps at the highest values of the orbit in I1 and
I2, respectively. The uniqueness follows: starting with the critical points γ1 and γ2, iterate
backwards using the itinerary = to obtain the values of v and w.

Going back to the proof of our theorem: given an admissible order-data (σ, τ) ∈ S2
n for a

required bicritical orbit, we can determine the itinerary = of the orbit. As shown above, we
can find a unique pair (stv, stw) of stunted tent maps with a bicritical orbit of length 2n and
itinerary =. By Theorem 1.3.2, the order-data for the orbit we have found will be (σ, τ). 2

To make the discussion a step more general, we look next at pairs of arbitrary unimodal
maps for which both critical points γ1 and γ2 are periodic. There are two possible cases that
can occur: a bicritical orbit (discussed earlier) and two disjoint critical orbits.

Definition 2.9. Let (σ, τ) ∈ S2
m+n be a pair of permutations decomposable into two cycles:

(σ1, τ1) ∈ S2
m and (σ2, τ2) ∈ S2

n. We say that two disjoint periodic orbits o1 and o2 under a pair
(h1, h2) of (+,-) unimodal maps have joint order-data (σ, τ) if:

1. o1 has order-data (σ1, τ1) and o2 has order-data (σ2, τ2);

2. the order of the points in I1 and I2 is given by (τ ◦ σ) and (σ ◦ τ) respectively. (see
“order-type” [MT])

We will say about a permutation (σ, τ) ∈ Sm+n that it is “admissible” as a joint order-
data, if there exist two disjoint orbits under some pair of (+,-) unimodal maps which have joint
order-data (σ, τ).

Similarly as for regular order-data, one can obtain the following two results:

Theorem 2.10. Let o1 and o2 be disjoint critical orbits under a pair (h1, h2) of (+,-) unimodal
maps. Their itineraries determine their joint order-data and conversely.

Theorem 2.11. Given (σ, τ) = ((σ1, τ1), (σ2, τ2)) ∈ S2
m+n admissible joint order-data, there

exists a unique pair (stv, stw) of stunted tent maps with disjoint critical orbits o1 3 γ1 and
o2 3 γ2 having joint order-data (σ, τ).

2.5 Description of bones in the ST-family

Definition 2.12. Fix an admissible order-data (σ, τ) ∈ S2
n. By a left bone in the parameter

space I2 × I1 for the ST -family we mean the set of pairs (v, w) ∈ I2 × I1 = [0, 1]2 such that
the critical point γ1 ∈ I1 has under (stv, stw) a periodic orbit of given period 2n and given
order-data (σ, τ).

We will use the notation BST
L (σ, τ), or BST

L if there is no ambiguity. We define a right bone
symmetrically (i.e. we require γ2 to be periodic of specified period and order-data) and we
denote it by BST

R (σ, τ), or BST
R . We will need later a more comprehensive approach to the left

and right bones and their properties.
Recall (from theorem 2.8) that: There is a unique pair (v0, w0) ∈ BST

L such that the peri-
odic orbit of γ1 is bicritical (i.e. hits γ2) under (stv0, stw0).
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Theorem 2.13. For each admissible order-data (σ, τ), let (v0, w0) be the parameter pair for the
associated bicritical orbit in the ST -family. Then there are unique numbers v1 < v0 < v2 so that
the left bone BST

L (σ, τ) is the union {v1, v2} × [w0, 1] ∪ (v1, v2) × {w0} of three line segments,
as illustrated in figures 3 and 4. The description of the right bone BST

R (σ, τ) is completely
analogous.

2 4 6

4 6

6

6

6

Figure 3: Left bones in the ST-family of period at most 6.We marked by (2) the unique bone of
period 2, corresponding to order-data in (σ = (1), τ = (1)) ∈ S2

1 . (4) are the 2 bones of period
4 and having the two possible order-data (σ = (12), τ = (1)(2)) or (σ = (1)(2), τ = (12)) ∈ S2

2 .
(6) are the bones of period 6 and one of the 5 admissible order-data: (σ = (123), τ = (231),
(σ = (132), τ = (321)), (σ = (231), τ = (231)), (σ = (321), τ = (132)) or (σ = (231), τ = (123))

We can determine the shape of BST
L , hence prove 2.13, by constructive means, starting with

the point (v0, w0).
Under (stv0 , stw0): γ1 → v0 → ... → γ2 → w0 → ... → γ1. The bicritical orbit only hits each

plateau once, at its center.
By sliding the first plateau up and down, the orbit of γ1 will change in a continuous way.

For a fixed height v of the first plateau, call yl(v) the element in I2 closest to γ2 in the orbit of
γ1 under (stv, stw). Clearly, if v = v0, then yl(v0) = γ2.

We can move v continuously within an interval [v1, v2] = [v0 − ε, v0 + ε], ε > 0 such that
yl(v) moves from w0/2 to 1 − w0/2. Along the process, the orbit stays periodic and the order
of the occurrence of points remains consistent with (σ, τ).

It is not hard to see that BST
L = t = t(σ, τ) = {v1, v2} × [w0, 1] ∪ (v1, v2) × {w0}.

In particular, there are exactly two values v = v1 and v = v2 such that the orbit of γ1 has
given order-data (σ, τ) under (stv, st1) (i.e. there are exactly two points of BST

L on [0, 1]×{1}).

2.6 Important points on the bones

We aim to compare the parameter spaces for the two families: the Q-family and the ST -
family.

In either space, we consider the left and right 2n-bones for a given admissible (σ, τ) ∈ S2
n:

BL(σ, τ)= the set of all parameters for which γ1 has periodic orbit of order-data (σ, τ) under
the respective pair of maps

8



(v0, w0)

(v1, w0)

(v1, 1) (v2, 1)

(v2, w0)

Figure 4: BST
L = t = {v1, v2} × [w0, 1] ∪ (v1, v2) × {w0} 3 (v0, w0)

BR(σ, τ)= the set of all parameters for which γ2 has periodic orbit of order-data (σ, τ) under
the pair of maps

For any fixed admissible (σ, τ) ∈ S2
n, I will call the bones in P ST : BST

L , BST
R and the ones

in PQ: BQ
L , BQ

R .

Remarks: (1) In either parameter space, any two left bones are disjoint and any two right
bones are disjoint by definition.

(2) It follows easily from theorem 2.13 that two bones in the ST-family can cross only in 0,2
or 4 points.

Definition 2.14. In either parameter space, an intersection of BL(σ1, τ1) and BR(σ2, τ2) is
called a primary intersection if (σ1, τ1) = (σ2, τ2) and there is a bicritical orbit with this order-
data under the pair of maps. It is called a secondary intersection if the two critical orbits are
disjoint, of distinct order-data (σ1, τ1) and respectively (σ2, τ2), and joint order-data (σ, τ). A
capture point on BL(σ1, τ1) in either P ST or PQ is a pair of maps for which γ2 eventually maps
on γ1 such that it has an eventually periodic, but not periodic, orbit. We define symmetrically
a capture point on BR(σ2, τ2).

y1

x1

y2 y3

x2 x3

(σ, τ) = ((231), (321))

y1

x1

y2 y3

x2 x3

(σ, τ) = ((132), (231))

Figure 5: Combinatorics of the two secondary intersections of a period 4 left bone with a period
2 right bone.
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Figure 6: The left 4-bone of order-data (σ, τ) = ((1, 2), (2, 1)) crosses the right 2-bone at two
secondary intersections with joint order-data ((231), (321)) and ((132), (231)) (filled dots, also
see figure 5) and crosses the corresponding right 4-bone at a primary intersection with order-data
(σ, τ) and at a secondary intersection with joint order-data ((1243), (3421)) (empty dots).

Theorem 2.8 equipped us with a bijection between admissible order-data and primary in-
tersections in P ST . Theorem 2.11 extended the result with a bijection between admissible joint
order-data and secondary intersections. The next statement is a further extension for capture
itineraries and can be proved similarly with the direct implication in theorem 2.11.

Theorem 2.15. Suppose the two critical points of a pair of unimodal maps are such that one of
them has a closed orbit and the other maps on this closed orbit after a finite number of iterates,
but without being periodic itself. Let =1 and =2 be the itineraries of the two critical points.
Then there exists at least a pair (stv, stw) with critical itineraries =1 and =2, respectively. (i.e.:
There exists at least a capture point in P ST with given “capture” critical itineraries.)

2.7 More on kneading-data

In this section we will construct a bijective correspondence of bones intersections between
our two parameter spaces P ST and PQ. For the proof, it is necessary to view the composi-
tion qw ◦ qv of two logistic maps either as a 3-modal map with three critical points in I = I1:
c1 ≤ c2 ≤ c3, with c2 = γ1 and qv(c1) = qv(c3) = γ2 or as a unimodal map with folding point
γ1, in case qv(x) = γ2 has a double real root or two complex roots. I will use rigidity theorems
that involve essentially properties of the kneading-data.

Let us look in more detail at the possible kneading-data of the maps in P ST and PQ.

Maps in PST : For any (v, w) ∈ P ST , the map stw ◦ stv could be considered 3-modal, with
folding points c1 = 1

4 , c2 = γ1 = 1
2 and c3 = 3

4 .

AST = {[0,
1

4
),

1

4
, (

1

4
,
1

2
),

1

2
, (

1

2
,
3

4
),

3

4
, (

3

4
, 1]}

.
and

KST = (K(c1),K(c2),K(c3))
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We can consider P ST as made of three parts: P ST = PST
1 ∪ PST

2 ∪ PST
3 , where PST

1 =
{(v, w) ∈ [0, 1]2, w ≥ 2v}, PST

2 = {(v, w), w < 2v, w ≤ 2−2v} and P ST
3 = {(v, w), w > 2−2v}.

I. Clearly there are no right bones in P ST
1 , hence no bones intersections.

II. PST
2 contains no secondary intersections, since w

2 ≤ v ≤ 1 − w
2 , so stw(γ2) = w =

(stw ◦ stv)(γ1).
Moreover, if (v, w) ∈ P ST

2 is a primary intersection, then the map stv◦stw is strictly 3-modal,
with only one exception: (v, w) = ( 1

2 , 1
2).

III. For (v, w) ∈ P ST
3 we clearly have that stw ◦ stv is strictly 3-modal, hence K(c1) =

K(c3) 6= K(c2).

Maps in PQ: The behavior of the degree 4 polynomials in the Q-family is also different for
distinct values of the parameters.

Figure 7: A few examples of behavior of maps in P Q. The critical points of the quartic map
qw ◦ qv are distinct and real for v > 1

2 ,all coincide for v = 1
2 , while two of them are complex for

v < 1
2 .

I. If v < 1
2 , then qw ◦ qv has only one real critical point C2 = γ1 = 1

2 and two complex
C1, C3 ∈ C\R.

This parameter subset will be of somewhat less interest, as it is not crossed by any right
bones, hence contains no bones intersections. Indeed, if qv(x) < 1

2 , ∀x ∈ I1, no orbit can go
through γ2.

II. If v = 1
2 , then qw ◦ qv has a degenerate real critical point C1 = C2 = C3 = γ1. This line

contains primary intersections with right bones. More precisely, if a left bone hits {v = 1
2}, then

the crossing point is its primary intersection. However, in this case qv ◦ qw is strictly 3-modal,
with the exception of v = w = 1

2 , which is the period 2 primary intersection.

III. If v > 1
2 , there are three distinct real critical points for qw ◦ qv:

C1 < C2 = γ1 < C3, with qv(C1) = qv(C3) = γ2

The map is 3-modal:

AQ = {[0, C1), C1, (C1, C2), C2, (C2, C3), C3, (C3, 1]}

11



.
and

KQ = (K(C1),K(C2),K(C3))

Remark. We emphasize that qw ◦ qv has complex critical points iff v < 1
2 . If the point (v, w)

is on a bone, it cannot be in the region {v < 1
2 , w < 1

2}, so w ≥ 1
2 . Hence in this case the map

qv ◦ qw corresponding to the symmetric point (w, v) on the corresponding right bone has real
critical points, non-degenerate if w 6= 1

2 .

A correspondence is already apparent between the shape and position of two left bones with
identical order-data in the two spaces P ST and PQ. For instance, the unique primary intersec-
tion of period two: (v, w) = ( 1

2 , 1
2) ∈ PST clearly corresponds combinatorialy to the identical

point (v, w) = (1
2 , 1

2) ∈ PQ. We will consider at least this case classified in our future analysis.
The following theorems will therefore concern specifically the strictly 3-modal case ( applicable
for either stw ◦ stv and qw ◦ qv or stv ◦ stw and qv ◦ qw).

2.8 The correspondence of the

bones intersections

I use Thurston’s Theorem and its extension for boundary anchored polynomials of degree
four and shape (+,-,+,-) to construct in this section a bijection between bones crossings in
the two parameter spaces. For the rest of section 2, we will adapt our notation to distinguish
between parameters (v, w) ∈ P ST and parameters (v′, w′) ∈ PQ.

Theorem 2.16. Let (σ, τ) ∈ S2
n be admissible order-data. There is a unique primary intersec-

tion (v′, w′) in PQ with this data and conversely.

Proof. Uniqueness: Suppose we have a pair (v, w) ∈ P Q with a bicritical orbit of order-data
(σ, τ). We implicitly know the itinerary of the bicritical orbit, hence the kneading sequences
of the three real distinct critical points C1 < C2 = 1

2 < C3 of qw ◦ qv ( if v > 1
2) or qv ◦ qw

(if w > 1
2). By Thurston’s Theorem, the boundary anchored polynomial of degree 4 with the

expected kneading data is unique, implying the uniqueness of the pair (qv, qw) with the given
order-data.

Existence: Let (stv, stw) be the pair of stunted tent maps with bicritical orbit of order-data
(σ, τ). We know by theorem 2.7 that we can determine the itinerary of this bicritical orbit. If
we exclude the case v = w = 1

2 , which is already classified, then either stw ◦ stv or stv ◦ stw is
strictly 3-modal (say stw ◦ stv, to fix our ideas). We know the kneading-data K for stw ◦ stv,
which should also be the kneading-data for the polynomial qw′ ◦ qv′ that we want to find. We
hence need to prove existence of a polynomial of degree 4 with the required kneading-data K

and then show that it can be written as a composition of two logistic maps qv′ and qw′ . We will
finally show that the pair (qv′ , qw′) we found has indeed the given order-data.

Each two consecutive kneading-sequences of K are distinct. Also, each K(ci) hits each
plateau of stw ◦ stv at most once, above its corresponding critical point. So, by lemma 2.4, all
kneading sequences of K are tight.

By Thurston’s Theorem, these imply existence and uniqueness of a polynomial P with
kneading-data K, of shape (+,-,+,-) and conditions at the boundary P (0) = 0 and P (1) = 0
. A boundary anchored polynomial P of degree 4, shape (+,-,+,-) and real distinct critical

12



points 0 < C1 < C2 < C3 < 1 is a composition of logistic maps if and only if P (C1) = P (C3).
Indeed, we know that the kneading sequences K(C1) = K(c1) and K(C3) = K(c3) are identical.
Suppose P (C1) < P (C3). Then the whole interval [P (C1), P (C3)] will have the same (bicritical)
itinerary, as K(C1) = K(C3), so, after a finite number of iterations under P , it will all map to
C2, contradiction. So P (C1) = P (C3), hence there exists a pair of quadratic maps such that
P = qw′ ◦ qv′ .

The kneading data K determines the itinerary of the bicritical orbit and its order-data. So
the polynomial map we found can only have the given order-data (σ, τ). 2

Very similarly we can prove the equivalent statement for secondary intersections:

Theorem 2.17. Let (σ, τ) ∈ S2
m+n admissible joint order-data. There is a unique secondary

intersection in PQ with this data and conversely.

2.9 The correspondence of the

boundary points

Fix (σ1, τ1) ∈ S2
n. The left bone BST = BST

L (σ1, τ1) in PST with order-data (σ1, τ1) is as an
algebraic curve in P ST = I2 × I1 = I2. Its boundary consists of two points:

δBST = BST ∩ δPST = BST ∩ (I2 × {1}) = {(v1, 1), (v2, 1)}

with v1 < v2.
For any (v, w), I will call =ST (x)(v, w) the itinerary of x under (stv, stw) and KQ(v, w) the

kneading-data of stW ◦ stv.
The itineraries of the critical points γ1 and γ2 under (stv1 , st1 and (stv2 , st1) are respectively:

=ST (γ1)(v1, 1) 6= =ST (γ1)(v2, 1)

=ST (γ2)(v1, 1) = =ST (γ2)(v2, 1) = (Γ2, R1, L2, L1, L2, L1, ...) = (Γ2, R1, L2, L1)

At any (v, w) ∈ BST , γ1 has a periodic orbit o1 of period 2n and order-data (σ1, τ1). At
the two boundary points (v1, 1), (v2, 1) ∈ δBST , the orbit o2 of γ2 is also finite, although not
periodic.

Statements in previous sections referred to primary or secondary intersections of bones. I
will need some extensions of these statements to apply to boundary points of left bones in either
parameter space. As we have noted, these boundary points are not bones crossings.

We expect the boundary of the corresponding quadratic left bone BQ = BQ(σ1, τ1) to look
similarly.

Theorem 2.18. The boundary of BQ(σ1, τ1) = BQ consists of exactly two distinct points in
[0, 1] × {1} ⊂ δPQ.

Proof. Consider the corresponding ST -left bone BST (σ1, τ1) and its boundary points
(v1, 1) and (v2, 1). The maps stvi

◦ st1 have kneading-data KST(1, vi). For each i, the adjacent
kneading-sequences are distinct.

For each i ∈ {1, 2}, the pair of critical itineraries at (1, vi) determines the respective
kneading-data KST(1, vi). Note that =ST (γ1)(v1, 1) 6= =ST (γ1)(v2, 1), so KST(1, v1) 6= KST(1, v2).
The kneading-data also satisfies for each i the conditions in the extended version of Thurston’s
theorem: the kneading sequences are finite and tight and KST (1, vi)(c1) = KST (1, vi)(c3) 6=
KST (1, vi)(c2). Hence for each i there exists a point (w′

i, v
′
i) ∈ PQ such that qv′

i
◦ qw′

i
has
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kneading-data KQ(w′
i, v

′
i) = KST(1, vi), and subsequently the same critical itineraries as (stvi

, st1).
In consequence:

=Q(γ1)(v
′
i, w

′
i) = =ST (γ1)(vi, wi)

=Q(γ2)(v
′
i, w

′
i) = =ST (γ2)(vi, 1) = (Γ2, R1, L2, L1)

So clearly (v′i, w
′
i) must be in the left bone BQ

L = BQ in PQ corresponding to BST
L = BST in

PST . We also get that the itinerary of γ2 under (qv′

i
, qw′

i
) is (Γ2, R1, L2, L1). If (v, w) ∈ [0, 1]2

such that vw > 1
16 , then zero is a repeller for the composition qw ◦ qv. This will be the case if

we are situated on a left quadratic bone. So the only way for the itinerary of a point to stay
indefinitely on L1 and L2 is for the point to map to zero after a number of iterates. To be
consistent with the required itinerary, we need to have (qv′

i
◦ qw′

i
)(γ2) = 0 and qw′

i
(γ2) is R, so

qw′

i
(γ2) = 1, hence w′

i = 1, for both i = 1a d i = 2.

In conclusion: for the two points (v1, 1), (v2, 1) ∈ δBST we found two points (v′1, 1), (v′2, 1) ∈
δBQ with the same corresponding kneading-data. The two points (v′

1, 1) and (v′2, 1) we found in
δBQ are the only two boundary points of BQ. This follows almost immediately from Thurston’s
uniqueness. 2

2.10 A more complete description of

bones in P ST and PQ

We plan to prove next: following the crossings along BQ = BQ(σ1, τ1) ⊂ PQ, the combina-
torics is same as at the crossings along the corresponding bone BST = BST (σ1, τ1) ⊂ PST .

We show first a combinatorial result concerning the order of occurrence of the primary and
secondary intersections along a bone in P ST with fixed order-data (σ1, τ1). To fix our ideas,
all proofs and results are developed for left bones BST = BST

L , hence we will omit writing the
index L unless it causes ambiguity.

Fix a stunted left bone BST = BST (σ1, τ1) and slide (v, w) along BST . Clearly, =ST (γ1)
only changes at the primary intersection (v0, w0). Therefore, BST

∗ = BST \{(v0, w0)} can be
divided into two halves, each corresponding to a different itinerary of γ1 under (stv, stw); call
BST

− the left half, containing the boundary point (v1, 1) ∈ δBST and BST
+ the one containing

(v2, 1) ∈ δBST (where v1 < v2):

BST = BST
∗ ∪ {(v0, w0)} = BST

− ∪ {(v0, w0)} ∪ BST
+

To fix our ideas, we look at BST
− ; the results and their proofs should work symmetrically for

BST
+ . BST

− is composed of a vertical segment and a horizontal one:

BST
− = {v1} × [w0, 1] ∪ [v1, v0] × {w0} = BST

−,v ∪ BST
−,h

We can now state our claim for this section in more precise terms:

Theorem 2.19. The secondary intersections occur along BST
−,v in the strictly decreasing order

of their itinerary =ST (γ2), as w decreases from 1 to w0.

Proof. For a fixed m ≥ 1, call Dm
ST the set of all parameters (v, w) (secondary intersections

and capture points) on BST
−,v for which γ2 maps to either γ1 in 2m − 1 iterates or to γ2 in

2m iterates. Call DST =
⋃

m≥1 D
m
ST the distinguished points on BST

−,v. Also call =m
ST (γ2) the

itinerary =ST (γ2) truncated to the first 2m positions.
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BST
−,h

BST
−,v

Figure 8: We divide the left half BST
− of a left bone in PST into a vertical segment BST

−,v and

a horizontal segment BST
−,h. All secondary intersections occur along BST

−,v. All points along the
horizontal part are capture points.

As w decreases from 1 to w0, =
m
ST (γ2) decreases (in the order inherited from the total order

on infinite itineraries), with actual changes at all points in
⋃

k≤m Dk
ST . Hence =ST (γ2) decreases,

with changes at all points in DST .
Subsequently, =ST (γ2) decreases strictly on the set of distinguished points, in particular on

the set of secondary intersections (see [R] for details). 2

Remark. The theorem makes it possible to identify the order of occurrence of the distinguished
points (in particular of the secondary intersections) along BST

−,v by looking at the itinerary of
γ2. From the construction of the stunted bones it is also easy to see that there are no secondary
intersections on the horizontal segment of BST

−,h. In fact, all points of BST
−,h are capture points

and =ST (γ2)(v, w0) is constant for v ∈ [v1, v0].
We move our focus now to the parameter space P Q. The corresponding left bone BQ is

a connected arc joining two boundary points (v′
1, 1) and (v′2, 1) (with v′1 < v′2) and having a

unique primary intersection (v′0, w
′
0). As before, the itinerary of γ1 under (qv′ , qw′) changes only

at (v′0, w
′
0) as we move (v′, w′) along BQ. Hence we can divide BQ into two halves: left of

(v′0, w
′
0), containing (v′1, 1) and right of (v′0, w

′
0), containing (v′2, 4).

BQ = BQ
− ∪ {(v′0, w

′
0)} ∪ BQ

+

I will study the left half, comparatively with the vertical left half BST
−,v.

We know that there is a bijective correspondence between secondary intersections along
BST

−,v and BQ
− that associates to each intersection in BST

−,v one with =Q(γ2) = =ST (γ2) in BQ
−

.We would like to prove that these secondary intersections occur on both BST
−,v and BQ

− in the
same decreasing order of =(γ2), going from the boundary towards the primary intersection. In
other words, we prove that the bijection is order preserving.

Fix m ≥ 1. Call (l1,m1) the first distinguished point in
⋃

k≤m Dk
Q on BQ

− (from (v′1, 1) along
the connected curve, with the regular order inherited by the order on (0, 1) ⊂ R).

From theorem 2.15 we know that there is a corresponding distinguished point (α, β) ∈
⋃

k≤m Dk
ST ⊂ BST

−,v with the same critical itineraries :

1. =ST (γ1)(α, β) = =Q(γ1)(l1,m1) and

2. =ST (γ2)(α, β) = =Q(γ2)(l1,m1)

Claim. (α, β) is the first point to occur in
⋃

k≤m Dk
ST along BST

−,v.
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Suppose not. Then there exists a point (v∗, w∗) ∈
⋃

k≤m Dk
ST between the boundary point

(v1, 1) and (α, β). We then have:

=m
ST (γ2)(v1, 1) > =m

ST (γ2)(v
∗, w∗) > =m

ST (γ2)(α, β)

=m
ST (γ2)(v1, 1) = =m

Q (γ2)(v
′
1, 1)

=m
Q (γ2)(l1,m1) = =m

ST (γ2)(α, β)

The contradiction follows easily. (Note, for instance, that the conditions imply that the pair of
critical itineraries at (v1, 1) has to be the same as the pair at a point right before (α, β)).

So the distinguished point in (α, β) ∈ BST
− with itinerary =ST (γ2)(α, β) = =Q(γ2)(l1,m1) is

the first to occur in
⋃

k≤m Dk
ST . Continuing the procedure shows that the order of occurrence

of all points in
⋃

k≤m Dk
ST along BST

−,v is the same as the order of points in
⋃

k≤m Dk
Q along BQ

−
(i.e. the decreasing order of the itinerary =m(γ2)). We can state this as follows.

Theorem 2.20. For a fixed m ≥ 1, going along BST
−,v from (v0, w0) to (v1, 1) and along BQ

−
from (v′0, w

′
0) to (v′1, 1), the itinerary =m(γ2) is monotonely increasing, with actual changes

occurring at each distinguished point in
⋃

k≤m Dk
ST and

⋃

k≤m Dk
Q, respectectively. Hence the

infinite itinerary =(γ2) is monotonely increasing along BST
−,v.

Theorem 2.21. For a fixed m ≥ 1, going along [0, 1] × {1} ⊂ ∂P ST and [0, 1] × {1} ⊂
∂PQ, the itinerary =(γ2) = (Γ2, R1, L2, L1) stays constant, but the itinerary =m(γ1) increases
monotonically, with an actual change at each end-point of a bone of period 2k ≤ 2m.

2.11 The big picture

Overview of results:
Fix m ≥ 1. Going along BST

− from (v0, w0) to (v1, 1) and along BQ
− from (v′0, w

′
0) to (v′1, 1),

the truncated itinerary =m(γ2) increases monotonically, with an actual increase at each crossing
with a right bone. There is a one-to-one correspondence between the crossing points of bones
of period at most 2m in the two families, correspondence that preserves the order of critical
itineraries (i.e. of the joint order-data).

Slide from left to right along the upper boundary of the two parameter spaces ([0, 1]×{1} ⊂
∂PST and [0, 1]×{1} ⊂ ∂P Q). The itinerary =(γ2) does not change, and the truncated itinerary
=m(γ1) increases monotonely, with an actual change at each end-point of a left bone. There is
a one-to-one correspondence between all boundary points of bones of period smaller than 2m in
the two families, correspondence that preserves the order of the critical itineraries.

We want to restate the results in terms of kneading-data. In essence, we are looking to
obtain in PQ a similar property to the following in P ST (see [R]):

We will use the following lemma:

Lemma 2.22. (a) Consider two arbitrary (v′1, w
′
1), (v

′
2, w

′
2) ∈ BQ

− and the itineraries =i
Q(γ2) of

γ2 under qw′

i
◦ qv′

i
, for i = 1, 2. If =1

Q(γ2) < =2
Q(γ2) then the kneading data K(qw1 ◦ qv1) <<

K(qw2 ◦ qv2).
(b) If (v′1, 1), (v′2, 1) ∈ [0, 1] × {1} are such that =1

Q(γ1) < =2
Q(γ1), then K(q1 ◦ qv1) <<

K(q1 ◦ qv2).

We restate two important conclusions in P Q.
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Theorem 2.23. In the parameter space P Q, the kneading-data of the maps qw′ ◦ qv′ increases
along a left bone-arc from its primary intersection towards either boundary point and increases
along the upper boundary interval [0, 1]×{1} ∈ ∂P Q from left to right (see picture). A symmetric
statement holds for right bones and the right boundary interval.

We know (see for example [MT]) that the order of the kneading-data of two maps is
preserved into the order of their topological entropies. Hence:

Theorem 2.24. The topological entropy increases in P Q along each bone-arc from its primary
intersection towards the boundary ∂P Q and along the boundary segments [0, 1]×{1} and {1}×
[0, 1] towards the upper right corner (see picture).

Figure 9: The arrows show the direction of increasing entropy along the bones and the boundary
in PST and PQ.

We want to point out a few major consequences of our results, crucially important for later
goals.

We showed that every bone in P Q is composed of a bone-arc (that we called BQ in a
previous section) and possible loop components. We will eventually rule out the existence of
bone-loops. For the time being, a step towards this conclusion follows as a consequence of
Thurston’s uniqueness: for any arbitrary left bone in P Q, the bone-arc BQ contains all possible
post-critically finite kneading data (itineraries) admissible for the given bone. In consequence,
any loop component that the bone may have can not contain any post-critically finite points.

Definition 2.25. Fix n ∈ N. We define the n-skeleton in either parameter space to be :
SST

n = the union of all (left and right) bones BST
2k ⊂ PST of period 2k ≤ 2n, together with

the boundary ∂PST ;
SQ

n = the union of all (left and right) bones BQ
2k ⊂ PQ of period 2k ≤ 2n, together with the

boundary ∂PQ.
By a vertex of either skeleton we mean either an end-point of its bones or a (primary or

secondary) intersection point.

Theorem 2.26. For any fixed n ∈ N, there is a homeomorphism:

ηn : PST −→ PQ

which maps SST
n onto SQ

n , carrying ∂PST to ∂PQ, carrying bones to corresponding bones and
and vertexes to vertexes with the same data.
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Proof. We use the result that will be proved independently in the next two chapters:
the bones in PQ are smooth C1 curves, intersecting transversally with each other and with
the boundary. There are no bone loops in P Q, so each bone is a smooth arc connecting two
boundary points. Moreover, each such bone-arc contains all post-critically finite kneading-data
existing on the corresponding bone in P ST , in the same order of occurrence.

The construction of the homeomorphism is topologically straightforward. Define ηn on the
set of vertexes by corresponding to each vertex in SST

n the unique one in SQ
n with the same data.

Along each bone, ηn preserves the order of the vertexes. Hence we can extend it continuously
to the intervals on the bones or boundary between each two vertexes, then to each skeleton-
enclosed region. This can easily be done in such a way that the resulting continuous map
ηn : PST −→ PQ is a homeomorphism. 2

η3

ψ3 = η−1
3

Figure 10: The n-skeletons define topological cell-complexes in both parameter spaces. The map
ηn is a homeomorphism between these complexes. The picture illustrates n = 3.

We can associate to the n-skeleton in either parameter space a topological cell-structure as
follows:

• the 0-cells are points, more precisely the vertexes of the n-skeleton;
• the 1-cells are the connected components of the bones obtained by deleting the vertexes,

hence they are homeo to open intervals;
• the 2-cells are the connected components of the complement of the n-skeleton in the

respective parameter space, hence they are homeo to open discs.
We will also use the closures of such cells, which are homeo to points, closed intervals and

closed discs respectively.

We call the resulting complexes: P ST
n in PST and PQ

n in PQ. The map ηn : PST
n −→ PQ

n

is a homeomorphism of cell complexes, taking each cell in P ST
n to a corresponding cell in P Q

n by
carrying vertexes to vertexes with the same entropy and edges to edges with the same interval
of entropies.

3 Hyperbolicity in PQ

3.1 The mapping schema of a hyperbolic map

Definition 3.1. Let M be a finite disjoint union of copies of C and let f : M −→ M be a
proper holomorphic map of degree ≥ 2 on each component of M . We say that f is hyperbolic if
every critical orbit converges to an attracting cycle.
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Let f be a hyperbolic map as above. Let W (f) be the union of the basins of attraction of
all attracting cycles of f . f carries each component Wα ⊂ W (f) onto a component Wβ by a
map of degree dα ≥ 1. Also let W c(f) be the union of all critical components Wα ⊂ W (f), that
is of all Wα that contain critical points of f .

We define the reduced mapping schema S(f) = (| S |, F, w) associated to f as the triplet
made of:

• a set of vertexes | S |, obtained by associating a vertex α to each critical component
Wα ⊂ W c(f);

• a weight function w :| S |−→| S |, defined as w(α) = the number of critical points of f in
Wα;

• a set of edges F :| S |−→| S | , F (α) = β, where Wβ is the image of Wα under the first
return map to W c(f).

The critical weight of S(f) is defined as w(f) =
∑

α w(α)
All hyperbolic maps that interest us have reduced mapping schemata of critical weight 2,

so we will only look at the cases that appear for w = 2. For a more general analysis, see [M1].
To a fixed mapping schema with w = 2, we associate the universal polynomial model space

P. This will be the space of all maps f from C1 t C2 to itself such that the restriction of f to
each copy of C is a monic centered polynomial of degree 2. More precisely:

f(z) = z2 − a1, for all z ∈ C1

f(z) = z2 − a2, for all z ∈ C2

where a1, a2 ∈ C.

We say that a map f ∈ P belongs to the connectedness locus C if its filled Julia set K(f)
intersects both C1 and C2 in a connected set. The hyperbolic connectedness locus H ⊂ C is the
open set of all f ∈ P for which the orbits of both critical points 0 ∈ C1 and 0 ∈ C2 converge to
attracting periodic orbits.

Such hyperbolic maps can be roughly classified into the three following types (see [M3]):

(1) Bitransitive case: 0 ∈ C1 and 0 ∈ C2 belong to U1 ⊂ C1 and U2 ⊂ C2 such that: U1

is mapped to U2 under q1 iterates of f and U2 is mapped to U1 under q2 iterates.

U1 3 0

f◦q1

f◦q2

U2 3 0

Figure 11: The behavior of a bitransitive hyperbolic map.

(2) Capture case: 0 ∈ U1 ⊂ C1 and 0 ∈ U2 ⊂ C2 such that U1 is periodic and U2 is not,
but some forward image of U2 coincides with U1. Also its symmetric case.

(3) Disjoint periodic sinks: 0 ∈ U1 and 0 ∈ U2, where U1 and U2 are periodic of periods
q1 and q2, but no forward image of U1 coincides with U2 and vice-versa.

For maps f ∈ H, we may consider their reduced mapping schemata S(f). These schemata
will all have critical weight 2, but not all are isomorphic (see figure 14). However, all maps in
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U1 3 0 f◦q1

U2 3 0

f◦qf◦q2

f◦q1(U1) = f◦q(U2)

Figure 12: The behavior of a map in the capture case.

U1 3 0

f◦q2

U2 3 0

f◦q1

Figure 13: The behavior of a map in the disjoint sinks case.

each connected component of H clearly have isomorphic schemata. Furthermore, by theorem
4.1 in [M1]:

Theorem 3.2. If Hα ⊂ C is a hyperbolic component of H with maps having reduced schemata
isomorphic to S, then Hα is diffeomorphic to a model space B(S). In particular, any two
hyperbolic components Hα and Hβ with schemata isomorphic to S are diffeomorphic. Moreover,
each Hα contains a unique post-critically finite map fα, called its center.

(3)(2) (1) 

α2

α1

α1
α2α2α1

Figure 14: (1) Bitransitive case: | S |= {α1, α2}, F (α1) = α2, F (α2) = α1, ω(α1) =
ω(α2) = 1. (2) Capture case: | S |= {α1, α2}, F (α1) = α1, F (α2) = α1, ω(α1) = ω(α2) =
1. (3) Disjoint sinks case: | S |= {α1, α2}, F (α1) = α1, F (α2) = α2, ω(α1) = ω(α2) = 1

Definition 3.3. A real form of the mapping schema S is an antiholomorphic involution ρ :
C1tC2 −→ C1tC2 which commutes with the special map fS

0 : C1tC2 −→ C1tC2, fS
0 (z) = z2.

The collection of maps f ∈ P that commute with ρ is an affine space PR(ρ), which we call the
real form of P associated with ρ. We also define the corresponding real connectedness locus and
the real hyperbolic locus as:

CR(ρ) = C ∩ PR(ρ)
HR(ρ) = H ∩ PR(ρ)
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For each mapping schema of weight 2, there are exactly two real forms. The form ρ0(z) = z
corresponds to the space PR(ρ0) of real polynomials in P. If we restate theorem 6.4 of [M1] in
our particular case, we obtain:

Theorem 3.4. Any hyperbolic component in CR = CR(ρ0) ⊂ PR(ρ0) is a topological 2-cell with
a unique “center point” and is real analytically homeomorphic to a space of Blaschke products
βR(S, ρ0).

In other words, all hyperbolic components with the same schemata in CR are diffeomorphic
to each other. For example, all bitransitive components are diffeo to the principal component
centered at:

fS
0 : C1 t C2 −→ C1 t C2, fS

0 (z) = z2

For a detailed characterization of the construction and properties of the suitable Blaschke-
products model spaces, see [M1].

3.2 Hyperbolic components in PQ

Let us return to our space, containing real quartic polynomials that are compositions qw ◦qv

of logistic maps.
Let C1 and C2 be two copies of the complex plane and consider qv : C1 −→ C2 and qw :

C2 −→ C1 the complex extensions of two fixed logistic maps of the interval. We define a new
map: qv

w : C1 t C2 −→ C1 t C2, acting as qv on C1 and as qw on C2.
Let W (qv

w) ⊂ C1tC2 be the open set consisting of all complex numbers in C1 and C2 whose
forward orbit under qv

w converges to an attracting periodic orbit of qv
w.

Under iteration of qv
w, each component of W (qv

w) is mapped onto a component of W (qv
w).

As before, we will say that qv
w is hyperbolic if both γ1 ∈ I1 ⊂ C1 and γ2 ∈ I2 ⊂ C2 are contained

in W (qv
w).

It would be convenient to find a correspondence between our family of pairs of real quadratic
maps, parametrized by (v, w) ∈ P Q and the family of degree 2 normal polynomials. It can be
shown that each map qw ◦ qv : C1 −→ C2 is conjugated by a complex affine map L to a
composition of maps z −→ z2 − a1 and z −→ z2 − a2. Moreover, the correspondence (v, w) →
(a1, a2) is “nice” enough to permit us to carry over to P Q properties we have in the space of
normal forms. More precisely:

Theorem 3.5. Let U be the subset of PQ consisting of pairs (v, w) with vw > 1
16 . For each

such pair (v, w) ∈ U there is a unique pair (A,B) ∈ R
2 such that qw ◦ qv is linearly conjugate

to z −→ z4 + Az2 + B; there also exists a unique pair (a1, a2) ∈ R
2 so that qw ◦ qv is linearly

conjugate to the composition of z −→ z2 − a1 and z −→ z2 − a2.
Furthermore, recall that the connectedness locus CR ⊂ R

2 is the subset of parametes (a1, a2) ∈
R2 for which the complex critical points of (z2 − a1)

2 − a2 have bounded orbits. The correspon-
dence described above:

Ξ : U −→ CR

Ξ(λ, µ) = (a1, a2)

is a bijective diffeomorphism.

Proof. Each qw ◦ qv with (v, w) ∈ PQ is conjugated by an affine map L(z) = − 8
3√

v2w
z + 1

2 to

a composition of the two monic centered quadratic complex maps: z −→ ζ = z2 − a1(λ, µ) and
ζ −→ z = w2 − a2(λ, µ). The correspondence:
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Φ : U −→ R
2, Φ(v, w) = (A,B)

is a diffeomorphism onto its image, where the image Ξ(U) is exactly the real connectedness
locus CR in PR. 2

Remarks. (1) The region P Q \U = {(v, w) / vw < 1
16} is itself a hyperbolic component of

PQ, whose maps have all critical points attracted to zero. The map Ξ folds this region and the
principal component centered at (v, w) = ( 2 , 1

2) ∈ PQ onto the same component in CR.
(2) All bones in PQ are contained in U . Indeed, suppose there is a (v, w) on a bone such

that (v, w) /∈ U . The fixed origin is not repelling for the map qw ◦ qv with negative Schwarzian
derivative, so it attracts all critical points, hence (v, w) can’t be on a bone, contradiction.

A. B.

Figure 15: A. Hyperbolic components in R
2 for the classical family of pairs quadratic monic

centered maps. The picture shows the parameter window (a1, a2) ∈ [−2, 2] × [−2, 2]. B. Hy-
perbolic components in U ∈ PQ. The principal component in both cases is visible as the large
central shaded region.

We use the results in the previous sections to give the needed description of the hyperbolic
components in our original parameter space P Q. Hyperbolic components within each class
(bitransitive, capture and disjoint sinks) are diffeomorphic to each other. The center points in
each case will be respectively a primary intersection, a capture point or a secondary intersection.

Theorem 3.6. Each hyperbolic component in U ∈ P Q is a topological 2-cell which contains a
unique post-critically finite point, called its center. Moreover, every bone that intersects such a
component does it along a simple arc passing through the center. Subsequently, there could be
either one bone crossing the component through its center (capture case) or a pair of left-right
bones intersecting transversally at the center point (bitransitive and disjoint sinks cases).

3.3 Density of hyperbolicity in PQ

We aim to prove the following main result:

Theorem 3.7. Hyperbolicity is dense in the parameter space P Q.

Remark. The theorem is a modification of the more general Fatou conjecture (see [KSvS]).
The reference gives a proof that makes use of the following Rigidity Theorem, that we will also
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be used to prove theorem 3.7.

Rigidity Theorem. Let f and f ′ be two polynomials with real coefficients, real non-degenerate
critical points, connected Julia set and no neutral periodic points. If f and f ′ are topologically
conjugate as dynamical systems on the real line R, then they are quasiconformally conjugate as
dynamical systems on the complex plane C.

Proof. We define the family S4 as the set of complex polynomials Q : C → C of degree 4,
“boundary anchored” (i.e. Q(0) = Q(1) = 0) and such that Q(z) = Q(1 − z), for all z ∈ C.

Consider Xs to be the subset of maps in S4 with the following properties:
• They have real coefficients.
• Their three critical points are real and nondegenerate.
• all critical points and values are in [0,1]. Hence their Julia sets are connected (see for

example theorem 17.3 in [M4]).
• The boundary {0, 1} is repelling.

w = 1
2

v = 1
2

vw = 1
16

Figure 16: All maps in {vw < 1
2} and in {v < 1

2 , w < 1
2} are hyperbolic. Hyperbolic maps are

dense in {vw > 1
16 , v ≥ 1

2} (slant shaded). By symmetry, they are dense in {vw > 1
16 , w ≥ 1

2}
(horizontaly shaded). The region vw > 1

16 contains all left and right bones.

In other words:

Xs = {qw ◦ qv, where (v, w) ∈ PQ, v ≥
1

2
, vw >

1

16
}

Indeed, recall that the three complex critical points of an arbitrary P ∈ P Q are C1, C2 = 1
2 and

C3 = −C1. An equivalent condition to C1 ∈ R is that:

qv(
1

2
) ≥

1

2
⇔ v ≥

1

2

We claim that hyperbolic polynomials are dense in Xs. Then the proof of 3.7 follows
relatively easily. Indeed, the claim implies directly density of hyperbolicity in the region in P Q

where vw > 1
16 and v ≥ 1

2 . By the symmetry property (2), the result follows in the region where
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vw > 1
16 and w ≥ 1

2 . In the regions {vw > 1
16 , v < 1

2 , w < 1
2} and {vw < 1

2} the proof is trivial:
if vw < 1

16 then all three critical orbits of qw ◦ qv converge to zero, while if v < 1
2 , w < 1

2 and
vw > 1

16 then all critical orbits converge to a point in (0, 1
2). 2

Next, we aim to prove density of hyperbolicity in Xs.

Lemma 3.8. Consider P ∈ Xs with one parabolic cycle {z1, ..., zm}. We can approximate P
by a polynomial S ∈ Xs for which the cycle is attracting.

Sketch of proof: Fix P ∈ Xs as above.
It is fairly easy to show the existence of a polynomial Q : C −→ C with real coefficients

and the following properties (see [R]):
• Q(z) = Q(1 − z), ∀ z ∈ C

• Q(zj) = 0, ∀ j = 1,m
• Q(0) = Q(1) = 0
• Q′(x) = 0 when P ′(x) = 0

•
∑ Q′(zj)

P ′(zj)
< 0

Consider the new polynomial R = P + εQ. For small real values of ε, R perturbes the
neutral cycle of P to an attracting cycle:

∑

log | R′(zj) | =
∑

log | P ′(zj) | +
∑

log | 1 + ε
Q′(zj)

P ′(zj)
| =

= ε
∑ Q′(zj)

P ′(zj)
+ o(ε2) < 0

For small enough values of ε, R has the following properties:
• the parabolic cycle of P is attracting for R;
• the attracting/repelling cycles of P change to attracting/repelling cycles for R (hence {0}

remains a repelling fixed boundary point for R);
• R(z) = R(1 − z), ∀ z ∈ C and R(0) = R(1) = 0, hence R ∈ S4;
• R has real coefficients;
• the critical points of R are the same as the critical points of P , hence they are real,

nondegenerate; all critical points and values are contained in [0, 1], hence the Julia set J(R) is
connected;

However, in order to satisfy all required conditions, Q (hence R) may have degree larger
than 4. We use the Straightening Theorem to obtain a degree 4 polynomial S ∈ Xs with the
same behavior as R (see for example [CG]or [R]). 2

For every Q ∈ S4, let τ(Q) be the number of critical points contained in the attracting basin
of a hyperbolic attracting cycle of Q. Define:

X ′
s = {Q ∈ Xs / τ(Q) has a local maximum at Q}

As τ is uniformly bounded above, X ′
s is dense in Xs. Moreover, τ is locally constant at any

P ∈ X ′
s, hence we have the following:

Proposition 3.9. X ′
s is open and dense in Xs.

Proposition 3.10. No map in X ′
s has a neutral cycle.
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Proof. Consider P ∈ X ′
s and Q given by the lemma. By making the perturbation small

enough, we can arrange that the other hyperbolic attractors of P do not disappear. Moreover,
we can also make sure that the critical points that were attracted to the attracting cycles remain
so under the perturbation.

On the other hand, each attracting cycle attracts at least one critical point. Hence intro-
ducing a new attractor by perturbing P to Q will change τ as :

τ(Q) ≥ τ(P ) + 1

contradiction with the local maximality of τ at P . 2

We finish by giving a reduced statement, from which theorem 3.7 follows now immediately.
The proof is detailed in section 3.4.

Theorem 3.11. Hyperbolic polynomials are dense in X ′
s.

3.4 A reduced density result

Recall that two points z1 and z2 are in the same foliated equivalence class of a map f if
their grand orbits under f have the same closure. For a fixed f , we denote by nac the number
of foliated equivalence classes of acyclic critical points in the Fatou set of f . By [MS], the
complex dimension of the Teichmuller space of a map f : C → C is given by:

dim(Teich(f)) = nac + nhr + nlf + np, where:

nac = # of foliated equivalence classes of acyclic critical points in the Fatou set F (f);

nhr = # of Herman rings of f ;

nlf = # invariant line fields;

np = # parabolic cycles.

If P ∈ X ′
s, P has no Herman rings and no Siegel discs. By [KSvS] and [S], P does not

support an invariant line field in its Julia set. We also proved in lemma 3.8 that P does not
have any parabolic basins. So all connected components of its Fatou set are attracting basins.
Hence:

nhr = nlf = np = 0 ⇒ dim(Teich(P )) = nac

Hence the set:

QC(P ) = {Q ∈ S4 / Q quasiconformally conjugate toP}

is covered by countably many complex submanifolds of dimension nac. Subsequently, the set:

QCR(P ) = QC(P ) ∩ Xs

is covered by countably many embedded real analytic submanifolds of Xs with real dimension
nac.

We will also use the following( [dMvS], pp 93):
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Definition 3.12. If the 3-modal maps P,Q : [0, 1] → [0, 1] are such that
hQ

P :
⋃

n,iP
n(ci(P )) →

⋃

n,iQ
n(ci(Q)) i = 1, 2, 3

defined by :
hQ

P (Pn(ci(P ))) = Qn(ci(Q)), ∀i = 1, 2, 3, ∀n ∈ N

is an order-preserving bijection, then we say that P and Q are combinatorially equivalent as
3-modal maps of the interval.

The relationship between combinatorial equivalence and topological conjugacy in our space
Xs can be described by the following theorem ( [dMvS]):

Theorem 3.13. Call F the family of maps f of the interval satisfying the following:
(1) they are of class C3;
(2) they have nonflat critical points ( i.e. D2f(c) 6= 0, ∀c such that Df(c) = 0 );
(3) they have negative Schwartzian derivative: Sf < 0;
(4) the boundary of the interval is repelling (in other words | Df(x) |> 1, if x ∈ {0, 1});
(5) they have no one-sided periodic attractors.

Two maps f, g ∈ F are topologically conjugate (f
top
∼

R
g) if and only if they are combinato-

rially equivalent (f
c.e.
∼

R
g).

Remark. If P and Q are maps in X ′
s restricted to the interval [0, 1], then both the conditions of

theorem 3.13 and the Rigidity Theorem are satisfied, hence we have the following implications:

P
c.e.
∼

R
Q ⇔ P

top
∼

R
Q ⇒ P

qc.
∼

C
Q

Proof of theorem ... Fix P ∈ X ′
s.

We think of S4 ⊂ C
2 and we consider the three holomorphic functions ci : U → C, i =

1, 2, 3 that give the three critical points of each map Q ∈ U . By taking B ⊂ U ⊂ S4 to be a small
ball around P , we can arrange to have c1(Q) < c2(Q) < c3(Q) = −c1(Q), for any Q ∈ B ∩ Xs.
Take B small enough for τ to be constant: τ = τ(Q), ∀Q ∈ B ∩ Xs (recall τ is locally constant
at each P ∈ X ′

s).

We want to prove (by contradiction) that B ∩ Xs contains hyperbolic maps. Suppose the
maps in U ∩ Xs are not hyperbolic, hence τ < 3. There are two cases that remain for analysis:

(1) τ = 1 (only C2 is attracted) or τ = 2 (only C1 and C3 are attracted). Either way, there is
only one foliated equivalent class of critical points in the Fatou set, hence nac ≤ 1 (note that the
critical points are not necessarily acyclic). Hence QCR(Q) is in this case at most a countable
union of lines in Xs, for any Q ∈ B ∩ Xs.

(2) τ = 0 (no critical points are attracted). Hence nac = 0, so QCR(Q) is a countable union
of points in Xs, for any Q ∈ B ∩ Xs.

A. Suppose first there are no bones crossing the neighbourhood B.

If there are no other “critical relations” in B (i.e. there are no m,n ∈ N such that
Qm(c1(Q)) = Qn(c2(Q)) for some Q ∈ B), then for any arbitrary Q ∈ B the map hQ

P de-
fined in 3.12 is order preserving.(Note that we do not consider Q(c1(Q)) = Q(c3(Q)) a critical
relation.) Indeed: Suppose that h reverses the order of two elements:

P k(ci(P )) < P l(cj(P )) and
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Qk(ci(Q)) > Ql(cj(Q))
By continuity, there exists a T ∈ B such that:

T k(ci(T )) = T l(cj(T )), contradiction.

Since hQ
P is order-preserving for any Q ∈ B ∩ Xs, it follows that P is combinatorially

equivalent to any Q ∈ B ∩ Xs, hence P is quasiconformally conjugate to any Q ∈ B ∩ Xs. This
contradicts the fact that QCR(P ) is at most a union of countably many lines in Xs.

Clearly, the “no critical relations” condition applies in the case τ = 1 or τ = 2.
If τ = 0, it could happen that all neibourhoods of τ , arbitrarily small, contain critical

relations. In other words, there exists a map R arbitrarily close to P that has a critical relation,
say Rm(c1(R)) = Rn(c2(R)).

Consider Σ = {Q ∈ B ∩ Xs /Qm(c1(Q)) = Qn(c2(Q))}. This is a 1-dim curve in B ∩ Xs.
There clearly are no other critical relations on Σ, hence the map hQ

R is order-preserving for any
Q ∈ Σ. Subsequently, all maps in Σ are combinatorially equivalent to R, hence quasiconformally
conjugate to R. This contradicts the fact that QCR(R) is a collection of countably many points
in Xs, as τ = 0.

B. If B ∩ Xs is crossed by a bone B, let R ∈ B ∩ B ∩ Xs.
Bones can’t accumulate at R, or R would be hyperbolic. So there exists a neighbourhood

V of R, V ⊂ B ∩ Xs that intersects no other bones than B. Take S ∈ V\B and take W
a neighbourhood of S in V\B. Then the argument at A. applies for W and leads us to a
contradiction. 2

The proof of theorem 3.7 is now finished.

4 Topological properties of the Q-bones

4.1 Smoothness of the Q-bones

As we have stated before, a bone in P Q is an algebraic variety with two boundary points in
∂PQ. As far as we presently know, the bone curves may not even be connected. We will rule
this out in chapter 4.3, where we show independently that a bone can’t contain any loops. For
now, we dedicate this paragraph to proving that:

Theorem 4.1. The bones are smooth C1 curves that intersect transversally.

Recall that we use the notations BQ
L,2n and BQ

R,2n for a left/right bone in P Q of period 2n

and given order-data. Fix an arbitrary point p0 = (v0, w0) on a left bone BQ
L,2n. We want to

show that BQ
L,2n is smooth at p0 = (v0, w0).

For the map h = qw0 ◦ qv0 , γ1 has a superattracting periodic orbit of period 2n. Let
Uh = Uh(γ1) be the immediate attracting basin of γ1. Hence, if K(h) is the filled Julia set of
h, then Uh ⊂ K(h) is a simply connected bounded open neighbourhood of γ1 that is carried to
itself by h◦n. We point out the two cases that could appear, depending on the behavior of the
other two (complex) critical points of h, called C1 and C3.

Case 1. The map h is hyperbolic (i.e. C1 and C3 are attracted).

Proof. Each hyperbolic component in P Q is biholomorpfic to a Blaschke model. Within each
of these components, the locus of the maps with a specific superattracting orbit is a smooth
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complex manifold. Each bones intersection is a center point for some hyperbolic component,
and it has been proved that these intersections are transverse. 2

Case 2. The map h is not hyperbolic (i.e. C1 and C3 are not attracted to attracting cycles).

Proof. We will use quasiconformal surgery in the neighbourhood of our fixed map h ∈ P Q.
No iterates of the other two critical points of h belong to Uh, the immediate attracting basin of
γ1, hence Uh is isomorphic to the open unit disc, parametrized by its Bottcher coordinate. I.e.,
there exists a biholomorphic isomorphism that conjugates h◦n to the squaring map z −→ z2:

β : Uh −→ D

β(h◦n(z)) = (β(z))2

We want to replace the superattracting basin Uh by a basin with small positive multiplier
Λ. For each Λ in a small disc centered at zero, we will construct a new map hΛ corresponding
to a (vΛ, wΛ) ∈ PQ in such a way that Λ −→ hΛ ∼ (vΛ, wΛ) is analytic and that h0 = h.

The composition of smooth (analytic) maps

Λ −→ hΛ ∼ (vΛ, wΛ) ∈ PQ −→ m(hΛ)

is the identity. (Here m denotes again the function that assigns to each map in P Q its multi-
plier at the specified attracting point). It follows that the partial derivatives ∂m

∂v , ∂m
∂w can’t be

simultaneously zero on a small neighbourhood of h ∈ P Q. By the Implicit Function Theorem,
the bone curve is smooth C1 on a small neighbourhood of h. 2

4.2 Quasiconformal surgery construction

Consider the map f(z) = z2 on the open unit disk D (which is the Bottcher parametrization
of h◦n). Its unique critical point is the origin. Fix a small ε > 0 (along the proof we will make
specific requirements of how small we want ε to be) and let Λ be an arbitrary complex number
such that 0 ≤| Λ |≤ ε.

Using a partition of unity, we perturb the map f to a new degree 2 map gΛ such that:

• gΛ has the same dynamics as fΛ(z) = z2+Λz inside a small disc around zero; in particular,
the origin will be fixed, with multiplier Λ;

• gΛ has the same dynamics as f(z) = z2 outside a larger disc around zero.

Choose a radius r such that:

ε

2
≤ r ≤ min(

1

2
, 1 − ε)

This will insure that fΛ maps ∆r2 into itself and that the critical point of fΛ is in ∆r2 .
Construct a C1 partition of unity ρ : C −→ R with
• ρ = 0 outside ∆ r

2
;

• ρ = 1 inside ∆r2 ;
• 0 ≤ ρ ≤ 1 on ∆r/2\∆r2

Define gΛ : C −→ C as:
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gΛ(z) = z2 + Λρ(z)z

If we ask for r
2( r

2 + ε) ≤ r2, i.e.2ε
3 ≤ r and by making ε smaller, if necessary, we can insure

that gΛ has no critical point outside ∆r2, for any 0 ≤| Λ |≤ ε. (Recall that the critical point of
g0(z) = f(z) = z2 is 0 ∈ ∆r2 and the dependence Λ −→ gΛ is smooth for | Λ |≤ ε).

For short: For any fixed | Λ |≤ ε, the map gΛ : D → D constructed above is a 2-to-1
C1 smooth map that carries ∆r\∆r2 into ∆r2 and carries ∆r2 into itself. gΛ coincides with fΛ

inside ∆r2 and with f outside of ∆ r
2

(in particular it is conformal outside ∆r) and has no critical
points in ∆r\∆r2. We would like to emphasize that, as ∆r\∆r2 is mapped by gΛ directly into
∆r2 , the annulus ∆r\∆r2 is intersected at most once by any orbit under gΛ.

We pull gΛ back to Uh through the Bottcher biholomorpic diffeomorphism β:

GΛ = β−1 ◦ gΛ ◦ β : Uh → Uh

The new map GΛ is 2-to-1 and C1 smooth, and has similar properties as the ones stated
above for gΛ (see figure):

gΛ = f

∆ r

2

∆r

∆r2
Wh

GΛ = h◦n

Vh

β

Xh

Figure 17: Xh, Vh and Wh are the preimages under the Bottcher map β of ∆r, ∆ r
2

and ∆r2,

respectively. The map gΛ : D → D pulls back as the C1-map GΛ, that acts as h◦n outside Vh

and carries Vh to Wh.

But h : C → C carries

Uh → h(Uh)
∼
−→ ...

∼
−→ h◦(n−1)(Uh)

∼
−→ h◦n(Uh) = Uh

(acting as a diffeo except on Uh). So we can define HΛ as:
HΛ = h outside Vh and

HΛ = h
◦(1−n)

◦ GΛ inside Xh

The new HΛ is C1 (notice that the two definitions coincide on Xh\Vh) and has the desired
dynamical behavior. However, it may fail to be analytic, hence it may not be a map in P Q.
The rest of the construction aims to transform HΛ into a polynomial hΛ ∈ PQ, preserving the
dynamics.

The Beltrami dilatation of HΛ is:

µHΛ
(z) =

(HΛ)z

(HΛ)z

Recall that gΛ has no critical point in ∆r\∆r2, so (gΛ)z 6= 0 on ∆r\∆r2. Hence the denom-
inator of:
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µgΛ(z) =
(gΛ)z

(gΛ)z

never vanishes. Moreover, for fixed z, both top and bottom above are linear in Λ, so it follows
easily that:

Λ → µgΛ

is an analytic dependence. Hence µHΛ
(z) depends itself analytically on Λ and :

• µHΛ
(z) = µGΛ

(z) = µgΛ(β(z))β′(z)
β(z) on Xh

• µHΛ
(z) = 0 outside Vh

Under iteration of gΛ, points hit the annulus ∆r\∆r2 at most once, hence µgΛ is bounded
less than 1 in modulus.

| µHΛ
(z) |=| µgΛ(β(z)) || β′(z)

β′(z) |=| µgΛ(β(z)) |≤ 1 on Xh\Wh and

µHΛ
(z) = 0 outside Xh\Wh.

We define an ellipse field starting with circles inside Wh and outside all preimages of Xh

under HΛ and pulling it back invariantly under HΛ. All orbits hit Xh\Wh (the annular region
where HΛ is not analytic) at most once, so the ellipse field is distorted at most once along any
orbit. Let µΛ be the coefficient of this field. The dependence of µΛ on Λ is holomorphic on
| Λ |≤ ε.

Let φΛ solve the Beltrami equation:

φz

φz
= µΛ

determined uniquely by the normalization φΛ(0) = 0, φΛ(1) = 1, φΛ(∞) = ∞,
With this choice for φΛ, hΛ = φΛ ◦HΛ ◦φ−1

Λ is a quartic complex polynomial. Moreover, for
Λ ∈ R, | Λ |< ε, hΛ corresponds to a pair in the Q -family (see [R]).

4.3 The impossibility of bone-loops

Our plan for this section is to prove that bones in the parameter space P Q can not contain
any loops (i.e. simple closed curves). Recall that we proved in section 2 that each bone contains
a simple bone-arc connecting two boundary points, and that all possible distinguished kneading
data of the bone can be found in a certain order along this bone-arc.

We argue by contradiction. Suppose there exists a bone loop L. We will show next that the
interior U of the loop can’t contain any hyperbolic maps. This will contradict the genericity of
hyperbolicity stated in theorem 3.7.

Remark. The following statements and proofs are given for left bones, but apply by symmetry
to right bones.

Lemma 4.2. A left bone loop in PQ can’t contain any distinguished point, hence it can’t contain
any crossing with a right bone.

Proof. Any distinguished point on the loop L would need to have a kneading-data already
achieved along the bone arc. Thurston’s Theorem shows easily that this is impossible. 2
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Theorem 4.3. The region enclosed by a left bone loop in P Q can’t contain any hyperbolic maps.

Proof. We know by theorem 3.6 that each hyperbolic component in P Q is an open topo-
logical 2-cell that contains a unique post-critically finite point, called “center”. Moreover, the
intersection of any bone with a hyperbolic component must be a simple arc passing through the
center.

Suppose, by contradiction, that some hyperbolic component H intersects the region U . We
have two cases:

(1) H ⊂ U . then there is a bone that passes through the center of H. This can only be a
bone arc, as bone loops can’t contain distinguished points (by lemma 4.2). From the Jordan
Curve Theorem, this bone arc has to intersect the bone loop L, contradiction with lemma 4.2.

(2) H intersects the loop L. Then the loop must contain the center point of H, again
contradiction. 2

5 Topological conclusions

5.1 The entropy and the bones

Recall that our final claim is: for each fixed h0 ∈ [0, log 4], the level-set i(h0) = {h = h0} of
the entropy function in either parameter space, called h0-isentrope, is connected.

In the ST -family, the analysis of the properties of entropy level-sets is an easy exercise. One
can obtain the following fairly straight-foreward (see [MT] and [R]):

Theorem 5.1. In PST , the entropy is a monotone function of either coordinate. For each
h0 ∈ [0, log 4], the corresponding h0-isentrope is contractible, as it is a deformation retract of
the contractible region {h ≤ h0}.

To obtain similar results in the quartic family, we will need some notations and results from
the general theory of m-modal maps of the interval.

If f : I → I is an m-modal map with folding points c1 ≤ c2 ≤ ... ≤ cm, we define the sign of
the fixed point x of f◦k with itinerary =(x) = (A0, A1, ..., Ak−1) as the number:

sign(x) = ε(A0)ε(A1)...ε(Ak−1)

where ε(Aj) = +1, −1 or 0 according to Aj being an increasing/decreasing lap of f or a folding
point c1, ..., cm. If sign(x) = −1 we say that x is a fixed point of negative type of f ◦k.

We define Neg(f◦k) as the number of fixed points of negative type of f ◦k.

Theorem 5.2. ( [MT], page 22) If f is an interval m-modal map, then its topological entropy
is:

h(f) = lim
k→∞

1

k
log+(Neg(f◦k))

where log+ s = max(log(s), 0).

Remark: Neg(f◦k) is an integer ≥ 1 unless f ◦k has no fixed points of negative type; in that
case, log+(Neg(f◦k)) = 0.

The following result is a simple consequence of theorem 5.2 (see [R] for proof and details).
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Lemma 5.3. If for two m-modal interval maps f and g the topological entropies h(f) 6= h(g),
then the sequence | Neg(f◦k) − Neg(g◦k) | must be unbounded as k → ∞.

Notation. For p = (v, w) ∈ P Q, call Qp = qw◦qv and for p = (v, w) ∈ P ST , call STp = stw◦stv.

Lemma 5.4. Consider p1 = (v1, w1) and p2 = (v2, w2) in PQ such that

h(Qp1) 6= h(Qp2)

Then any path in PQ from p1 to p2 crosses infinitely many bones.

Proof.

Consider an arbitrary path in P Q from p1 to p2:

p : [0, 1] → PQ , p(t) = (v(t), w(t))
p(0) = p1 = (v1, w1) , p(1) = p2 = (v2, w2)

For a fixed k ∈ N, as t goes from 0 to 1, Neg(Q◦k
p(t)) changes whenever a fixed point of Q◦k

p(t)

( i.e. a periodic point of Qp(t) of period dividing k ) of negative type appears or disappears.

An existing negative-type fixed point of Q◦k
p(t) can be lost under continuous deformations of the

map by becoming a positive-type fixed point. Conversely, a such fixed point can appear by a
reverse process. Both changes imply the existence of an intermediate state, corresponding to
some t∗ ∈ [0, 1], in which the respective fixed point is a critical point of Q◦k

p(t∗).
In other words, a critical point of Qp(t∗) has to be periodic of period dividing k. This implies

that p(t∗) = (v(t∗), w(t∗)) ∈ PQ is on either a left or a right bone of period 2n | 2k.
So if the integer Neg ((qw(t) ◦ qv(t))

◦k) has an actual change at t = t∗, then the path p(t)
crosses a bone at t = t∗.

To end the proof of the lemma, suppose that the path p(t) only crosses N bones. Then, for
all k ∈ N,

| Neg(Q◦k
p1

) − Neg(Q◦k
p2

) |

would be bounded by N , contradiction with lemma 5.3. 2

5.2 The entropy and the cellular structure

Recall that either parameter space P ST and PQ has for each fixed value of n an associ-
ated cellular complex structure, called P ST

n and PQ
n , respectivelly. The two cell complexes are

homeomorphic through the function η defined in section 2.11.
The following lemma is valid for either complexes Pn = PST

n or Pn = PQ
n .

Lemma 5.5. For any ε > 0, there exists n ∈ N such that, if p and p′ belong to the same closed
cell in Pn, then the corresponding maps satisfy:

| hp − hp′ |< ε

Proof. Suppose the contrary: there exists ε > 0 such that, for all n ∈ N, there are two
parameters pn and p′n in some common cell of Pn with:

| hpn − hp′n |≥ ε
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By the compactness of P , we can choose a subsequence (kn)n ⊂ N such that both (pkn
)n

and (p′kn
)n converge in P :

pkn
−→ p as n → ∞

p′kn
−→ p′ as n → ∞

The entropy function is a continuous function of parameters in either family (see for example
[MT]). Using this and passing to the limit:

| hpkn
− hp′

kn
|≥ ε ⇒ | hp − hp′ |≥ ε

Moreover, the closed cells of Pn are nested as n increases (in other words, the cell complex
gets “finer” with larger values of n ).

Fix an arbitrary N ∈ N. For all kn ≥ N , pkn
and p′kn

are in the same closed cell of Pkn
,

hence in the same closed cell of PN .
In conclusion, for any arbitrary N ∈ N, p and p′ are in the same closed cell of PN , yet:

| hp − hp′ |≥ ε > 0

contradiction with lemma ... 2

Lemma 5.6. Fix n ∈ N. In either parameter space P , the entropy function:

Pn −→ [0, log4]

p −→ h(gp)

restricted to any closed cell in Pn takes its maximum and minimum values on the boundary of
the cell ( more precisely on the boundary vertexes ).

Proof. In the case Pn = PST
n , the proof is a simple corollary of lemma ... We have to prove

the identical statement for Pn = PQ
n .

For the fixed n ∈ N, suppose the lemma is not true for some closed cell CQ
n ∈ PQ

n , that is :
there exists p∗ = (v∗, w∗) ∈ int(CQ

n ) such that

h(Qp∗) = h(qw∗ ◦ qv∗) > hmax ,

where hmax is the maximum value of the entropy on the boundary δ(CQ
n ).

Let

ε =
h(Qp∗) − hmax

2
≥ 0

By lemma 5.5, there exists m ∈ N such that the entropy variation on all closed cells of P Q
m is

less than ε. WLOG, we can take m > n. Call CQ
m the closed cell in P Q

m such that p∗ ∈ CQ
m ⊂ CQ

n

and consider any arbitrary vertex pm = (vm, wm) of CQ
m.

As p∗, pm ∈ Cq
m, we automatically have:

| h(Qp∗) − h(Qpm) |< ε

But hmax + 2ε ≤ h(Qp∗) , so:

h(Qpm) > hmax

The homeomorphism of complexes η−1
m : PQ

m −→ PST
m carries vertexes to vertexes with

the same entropy, edge to edge with the same interval of entropies and 2-cells to 2-cells. So
CST

m = η−1
m (CQ

m) will be a 2-cell in P ST
m and qm = η−1

m (pm) will be a vertex of CST
m . Also,
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η−1
n (δCQ

n ) = δ(CQ
n ) = δCST

n , so the maximum value hmax(δCQ
n ) of the entropy on δCQ

n is the
same as the maximum value hmax(δCST

n ) on CST
n . Hence, in the stunted family:

h(STqm) = h(Qpm) > hmax(δCQ
n ) = hmax(δCST

n ) ,

contradiction, since the result has already been proved for P ST . 2

Corollary 5.7. For a fixed n ∈ N, the interval of entropy values realized by any cell in P Q
n is

the same as the interval of values for the corresponding cell in P ST
N .

For h0 ∈ [0, log4] we will use the following notation for the h0-isentrope in either family:

iST (h0) = {(v, w) ∈ PST / h(stw ◦ stv) = h0}

iQ(h0) = {(v, w) ∈ PQ / h(qw ◦ qv) = h0}

For a fixed n ∈ N
∗, we also use the following notations:

NST
n (h0) =

⋃

{CST
n / CST

n ∈ PST
n , CST

n ∩ iST (h0) 6= Φ}

NQ
n (h0) =

⋃

{CQ
n / CQ

n ∈ PQ
n , CQ

n ∩ iQ(h0) 6= Φ}

Remarks : (1) Clearly: iST (h0) ⊂ NST
n (h0) and iQ(h0) ⊂ NQ

n (h0).
(2) Recall that for fixed n we have the homeomorphism of cell complexes:

ηn : PST
n → PQ

n

If CST
n is a cell in P ST

n that touches iST (h0), then the corresponding cell CQ
n = ηn(CST

n ) will
touch iQ(h0) and conversely. This follows from corollary 5.7, which states that the interval of
entropy values is the same in the two closed cells CST

n and CQ
n .

Fix an entropy value h0 ∈ [0, log4] and an n ∈ N
∗.

Since NST
n (h0) and NQ

n (h0) are both unions of closed cells, they are compact subsets of
PST and PQ, respectively. By the previous theorem, NST

n (h0) is connected, so its image
NQ

n (h0) = ηn(NST
n (h0) is also connected. Hence we have the following:

Summary. For any n ∈ N
∗, the set NQ

n (h0) is compact, connected and contains iQ(h0).

We have now a quite comprehensive description of the sets NQ
n (h0). To obtain topological

properties of iQ(h0), we try to relate it to the collection {NQ
n (h0)}n∈N.

Lemma 5.8.
⋂

NQ
n (h0) = iQ(h0)

Proof. Since iQ(h0) ⊂ NQ
n (h0) for all n ∈ N

∗, the inclusion iQ(h0) ⊂
⋂

NQ
n (h0) is trivial.

For the converse, suppose there exists (v, w) ∈
⋂

NQ
n (h0)\i

Q(h0). In other words: for any
arbitrary n ∈ N

∗, (v, w) is contained in a closed cell CQ
n ⊂ PQ

n that touches iQ(h0), but such
that (v, w) /∈ iQ(h0). For any such closed cell CQ

n , there exists (v∗n, w∗
n) ∈ iQ(h0) ∩ CQ

n .
The sequence (v∗n, w∗

n)n∈N∗ satisfies in particular:

(1) (v∗n, w∗
n) 6= (v, w), ∀n ∈ N

∗

(2) h(qw∗

n
◦ qv∗

n
) = h0
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Figure 18: The isentropes in PQ appear to be either arcs joining two points in ∂P Q, or connected
regions between such arcs, or a single point (the case (v, w) = (1, 1) of entropy log 4.

We calculate:

| h(qw∗ ◦ qv∗) − h(qw ◦ qv) |= | h0 − h(qw ◦ qv) |

This contradicts the statement of lemma 5.5: the maximal variation of the entropy over cells
in PQ

n can be made arbitrarily small by increasing n. 2

Theorem 5.9. iQ(h0), the h0-isentrope in PQ, is connected.

Proof. iQ(h0) is an intersection of compact, connected sets in P Q, therefore it is compact
and connected. 2
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