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THE QUASI-ADDITIVITY LAW
IN CONFORMAL GEOMETRY

JEREMY KAHN AND MIKHAIL LYUBICH

Abstract. We consider a Riemann surface S of finite type con-
taining a family of N disjoint disks Di, and prove the following
Quasi-Additivity Law: If the total extremal width

∑

W(S r Di)
is big enough (depending on N) then it is comparable with the
extremal width W(S, ∪Di) (under a certain “separation assump-
tion”) .

We also consider a branched covering f : U → V of degree N

between two disks that restricts to a map Λ → B of degree d on
some disk Λ b U . We derive from the Quasi-Additivity Law that if
mod(UrΛ) is sufficiently small, then (under a “collar assumption”)
the modulus is quasi-invariant under f , namely mod(V r B) is
comparable with d2 mod(U r Λ).

This Covering Lemma has important consequences in holomor-
phic dynamics which will be addressed in the forthcoming notes.

1. Introduction

We denote the extremal length of a family G of curves by L(G), and
we let W(G) = L(G)−1 be the corresponding extremal width (see the
Appendix). Let S stand for a compact Riemann surface of finite type
with boundary. Given a compact subset K ⊂ int S, we let L(S,K) and
W(S,K) be respectively the extremal length and width of the family
of curves in S r K connecting ∂S to K.

An open subset A b int S is called an archipelago if its closure is a
Riemann surface of finite type (not necessarily connected) with smooth
boundary. Let Aj (j = 1, . . . , N) be a finite family of archipelagos in
S with disjoint closures.

Let us now introduce 3 conformal moduli of our family of archipela-
gos:

X = W(S,
N
⋃

j=1

Aj);
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Y =
N
∑

j=1

W(S,Aj), (1.1)

Z =
N
∑

j=1

W(S r
⋃

k 6=j

Ak, Aj).

It is easy to see that X ≤ Y ≤ Z. We say that the archipelagos are
ξ-separated if Z ≤ ξY . In this paper we show that in a near degenerate
situation (when Y is big), under the separation assumption, the moduli
X and Y are comparable:

Quasi-Additivity Law. Assume that the archipelagos Aj b int S
are ξ-separated. Then there exists K depending only on ξ and the
topological complexity of the family of archipelagos1 such that:
If Y ≥ K then Y ≤ CξX, where C is an absolute constant.2

The general principle behind this result is that families of curves
with big width have a small intersection (see §2.4), so that the families
of curves connecting ∂S to A are nearly parallel.

In §2.9 we give a variation of the Quasi-Additivity Law adapted to
the needs of holomorphic dynamics.

If we have a branched covering f : U → V of degree N between
two disks that restricts to a branched covering f : Λ → B of degree
d between smaller disks, then a simple general estimate shows that
mod(V r B) ≤ N mod(U r Λ). It turns out that given d, in a near
degenerate situation the above moduli are, in fact, comparable (under
a collar assumption):

Covering Lemma/Quasi-Invariance Law. Fix some η > 0. Let
int U ⊃ Λ′ c Λ and int V ⊃ B′ c B be two nests of Jordan disks.
Let f : (U, Λ′, Λ) → (V,B′, B) be a branched covering between the
respective disks, and let N = deg(U → V ), d = deg(Λ′ → B′). Assume
the following Collar Property:

mod(B′ r B) > η mod(U r Λ).

Then there exists an ε > 0 (depending on η and N) such that:
If mod(U r Λ) < ε then

mod(V r B) < Cη−1d2 mod(U r Λ),

where C is an absolute constant.

1See §2.3 for the precise definition
2One can take C = 144.
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Figure 1.1. Covering between two nests of three disks

We derive this lemma from the Quasi-Additivity Law by passing to
an appropriate Galois covering of U . For this application, the Quasi-
Additivity Law should be applied to a Riemann surface S of finite type
in place of the disk U , which is one of the reasons why it is formulated
in this generality.

The needed background in the extremal length techniques is sum-
marized in the Appendix.
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manuscript and making many useful comments. We also thank all the
Foundations that have supported this work: the Guggenheim Fellow-
ship, Clay Mathematics Institute, NSF, and NSERC.

2. Quasi-Additivity Law

2.1. Paths and rectangles. Let S be a connected Riemann surface
with boundary. A curve γ : [0, 1] → S is called proper if γ{0, 1} ⊂ ∂S.
Two proper curves are called properly homotopic (≡ parallel) in S if
they are homotopic through a family of proper curves. A proper curve
is called trivial if it is properly homotopic to a curve [0, 1] → ∂S. A path
in S is a curve without self-intersections, i.e., an embedded (oriented)
interval [0, 1] → S.

A (topological) rectangle Π in S is a Jordan disk with four marked
points on ∂Π. The rectangles below are assumed to be closed unless
otherwise is explicitly said. In what follows we will usually deal with
rectangles with a pair of opposite sides contained in the boundary ∂S.
These sides are called horizontal, while the other two are called vertical.
A vertical path in P is a path connecting its horizontal sides.

Similarly, a vertical path in an annulus A is a path connecting its
boundary components. If we cut the annulus along two disjoint vertical
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paths, we obtain two rectangles. This situation is special, as only one
rectangle would be cut off from any other Riemann surface:

Lemma 2.1. Assume S is not an annulus. Let C1 and C2 be two
disjoint properly homotopic non-trivial paths in S such that int C i ⊂
int S.

(i) Then there exist two unique arcs α and ω on the boundary ∂S which
together with the paths C i bound a rectangle P .

(ii) Let (Ct), 1 ≤ t ≤ 2, be a proper homotopy between the above paths,
and let (et) ⊂ ∂S be the corresponding motion of the endpoint et of Ct.
Then the curve (et)1≤t≤2 is homotopic in ∂S rel the endpoints to the
arc ω oriented from e1 to e2.

(iii) Let C3 be a third path which is disjoint and properly homotopic to
the above two. Let Pj, j = 1, 2, 3, be the rectangles bounded by the pairs
of these three paths. Then one of these rectangles is tiled by the other
two.

Proof. (i) Let us consider the universal covering π : Ŝ → S of S. It is
conformally equivalent to D̄ r K, where D̄ is the closed unit disk and
K ⊂ T is a nowhere dense compact subset of the unit circle (the limit
set of the Fuchsian group of deck transformations). Since the paths
Ci are properly homotopic, they lift to (disjoint) properly homotopic

paths Ĉi in Ŝ. Let these lifts begin at points bi ∈ T and end at points
ei ∈ T. Then b1 and b2 (resp., e1 and e2) bound an arc α̂ ⊂ ∂Ŝ (resp.

ω̂ ⊂ ∂Ŝ). These two arcs are disjoint since the paths C i are non-trivial.

They are also disjoint from the int C i ⊂ int Ŝ. Hence the four paths,
C1, C2, α̂ and ω̂, bound a closed rectangle P̂ in Ŝ.

Let us consider all the lifts Ĉi
j of Ci that cross P̂ , where Ĉi

0 ≡ Ĉi. For

each i = 1, 2, the lifts Ĉi
j are pairwise disjoint since the paths C i do not

have self-intersections. Any two paths Ĉ1
j and Ĉ2

k are disjoint as well

since C1 and C2 do not cross each other. Hence each Ĉi
j is completely

contained in P and moreover, ∂Ĉi
j ⊂ α̂ ∪ ω̂. But ∂Ĉi

j cannot belong to

one horizontal side, α or ω, since the paths C i are non-trivial. Thus,
we obtain a family of disjoint vertical paths Ĉi

j in P̂ .
If one the above curves, say C1, has more than one lift, then let us

consider the lift Ĉ1
1 such that there are no other lifts in between Ĉ1

0 and

Ĉ1
0 . Then Ĉ1

0 and Ĉ1
1 , together with two subarcs of α̂, and ω̂ bound a

rectangle Π̂. The projection of this rectangle to S is a clopen annulus
A in S. Since S is connected, S = A contradicting our assumption.
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Thus, each curve Ci has only one lift to P̂ , so P̂ ∩ π−1(Ci) = Ĉi.

It follows that the paths Ci lie on the boundary of P ≡ π(P̂ ). Hence

π(∂P̂ ) ⊂ ∂P , and the map π : P̂ → P is proper. Moreover, it is

injective over Ci and hence has degree 1. Thus, the map π : P̂ → P is
a homeomorphism.

If there were two rectangles P 1 and P 2 as above then they would be
glued along the paths Ci to form an annulus.

(ii) The homotopy (Ct) lifts to a proper homotopy Ĉt on Ŝ between

the lifts Ĉi considered in (i). The endpoint êt of this lift moves along the

component ξ̂ of ∂Ŝ. Since ξ̂ is an interval, the curve (êt) is homotopic

to the arc ω̂ on ξ̂ rel the endpoints. Hence (et) is homotopic to ω on
∂S rel the endpoints.

(iii) The paths Ci lift to proper paths Ĉi in Ŝ that begin and end on

the same component of ∂Ŝ. Then one of the lifted rectangles P̂j is tiled

by the other two. Since π : P̂j → Pj is a homeomorphism, the same is
true for the Pj’s.

�

Somewhat loosely, we will say that the above rectangle P is bounded
by the curves C1 and C2. According to our convention, the sides α
and ω of P are called horizontal, while the sides C i are called vertical.
Moreover, we assume that the paths C i begin on α and end on ω. Then
α is called the base of P , while ω is called the roof.

Note that P is endowed with a vertical orientation, i.e., the orien-
tation of the vertical paths in P consistent with the orientation of its
vertical sides (namely, a positively oriented vertical path begins on α
and ends on ω.)

To avoid the ambiguity in the choice of the rectangle P , in what
follows we assume that the Riemann surface S under consideration is
not an annulus. This assumption does not reduce generality since we
can always puncture the surface at one point and this does not change
extremal lengths of paths families under consideration.

Let us consider an archipelago A in S. Given a proper path C in S
that crosses Ā, let a be the last point of intersection of C with Ā, and
let δ ⊂ S r A be the terminal closed segment of C which connects a to
∂S. Note that int δ ⊂ int(S rA). If we have several paths C i as above,
we naturally label the corresponding objects as ai and δi, etc.

Two disjoint proper paths C1 and C2 in S that cross Ā are called roof
parallel (rel A) if:
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• C1 and C2 are properly homotopic in S, and hence they bound
a “big rectangle” P ;

• The paths δi are properly homotopic in S r A, and hence they
bound a “terminal little rectangle” Q ⊂ S r A;

• The rectangles P and Q share the roof (Figure 2.1 illustrates
that this is not automatic.)

C2

δ2

C1

P

σ

A

α

δ1

Q

Figure 2.1. Strange configuration of rectangles

Two paths are called base parallel (rel A) if after reversing orientation
they become roof parallel. Initial segments of these paths bound an
initial little rectangle Q1 ⊂ S r A which shares the base with P . Two
paths a called parallel if they are roof and base parallel.

We will now formulate several statements about roof parallel paths.
The corresponding statements about base parallel paths are obtained
by reversing orientation, and the corresponding statements about par-
allel paths immediately follow.

Lemma 2.2. Let C1 and C2 be two roof parallel (rel A) proper paths
in S, and P and Q be the corresponding big and little rectangles. Let
C be a positively oriented vertical path in P which is disjoint from the
Ci. Then it is roof parallel to each C i. Moreover, its terminal segment
δ is a vertical path in Q.
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Proof. Any vertical path in P is properly homotopic to the sides C i.
Let P i be the big rectangles bounded by the paths C and C i, and let
ωi be their roofs, i = 1, 2. Of course, they tile the roof ω, overlapping
at the endpoint e of C.

Let C ′ be the path C with reverse orientation. Since P and Q share
the roof, some initial segment of C ′ is contained in Q. Since C ′ is proper,
it must exit Q. Since int C ′ is disjoint from the vertical sides and the
roof of Q, it can exit Q only through its base, σ. Let a be the first
point of intersection between C ′ and σ. Then the terminal segment δ
of C that begins at a is a positively oriented vertical path in Q. Hence
it is properly homotopic in S r A to the paths δi.

Let Qi ⊂ S r Ā be the little rectangles bounded by the paths δ and
δi, i = 1, 2. Since δ is a vertical path in Q ending at e, the arcs ωi are
the roofs of the little rectangles Qi. Thus, Qi respectively share the
roofs with Pi. �

Lemma 2.3. Let Ci be three disjoint properly homotopic paths in S
crossing the archipelago Ā in such a way that their terminal segments
δi are properly homotopic in S r A. Then at least two of these paths
are roof parallel rel Ā.

Proof. For i = 1, 2, 3, let Pi be the big rectangle bounded by the paths
Ck and Cl with {i, k, l} = {1, 2, 3}, and let Qi be the corresponding
little rectangles. Let ωi be the roofs of the Pi, and let λi be the roofs
of the Qi. We need to show that one of the roofs ωi coincides with the
corresponding λi.

Since by Lemma 2.1 (iii) one of the big rectangles, say P1, is tiled
by the other two, the roof ω1 is tiled by ω2 and ω3. Denote the com-
plements of the roofs ωi by ω′

i. If ωi 6= λi for i = 2, 3, then λ2 = ω′
2 =

ω′
1 ∪ ω3 and similarly λ3 = ω′

1 ∪ ω2. Hence λ2 ∪ λ3 = ω′
1 ∪ ω2 ∪ ω3 = η,

where η is the whole component of ∂S containing the endpoints of
the paths Ci. But it is impossible since one of the roofs λi is tiled by
the other two (as one of the little rectangles Qi is tiled by the other
two). �

Corollary 2.4. Let Ci be five disjoint properly homotopic paths in S
crossing the archipelago Ā in such a way that their terminal and initial
segments are (respectively) properly homotopic in S r A. Then at least
two of these paths are parallel rel Ā.

Let us now enlarge the notion of parallel to an equivalence relation
on the class A of all proper curves C in S crossing the archipelago Ā.
Let us say that two curves C1 and C2 of class A are roof equivalent if

• They are properly homotopic in C;
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• The terminal segments δ1 and δ2 are properly homotopic in
S r A;

• The motions of the endpoints, (et) and (qt), of the above ho-
motopies are homotopic (rel endpoints) curves on ∂S.

The definitions of base equivalent and equivalent paths are straight-
forward. Again, we restrict ourselves to a statement concerning roof
equivalence only:

Lemma 2.5. Two disjoint curves C1 and C2 of class A are roof parallel
if and only if they are roof equivalent.

Proof. If C1 and C2 are roof parallel then they are homotopic within
the big rectangle P in such a way that the endpoint et parametrizes
the roof ω. Similarly, the curves δ1 and δ2 are homotopic in Q in such
a way that qt parametrizes the same roof ω. So, the motions of the
endpoints are homotopic.

Vice versa, by Lemma 2.1 (ii), the homotopy class of the endpoint
motion determines the roof of the rectangle. �

In what follows, (roof/base) equivalent curves (not necessarily dis-
joint) will also be called (roof/base) parallel. Also, “parallel in S (rel ∅)”
just means “properly homotopic” in S.

2.2. Routes and associated rectangles. Let us now consider a finite
family of archipelagos Aj (j = 1, . . . , N) in S with disjoint closures. Let
us consider a path C in S that begins at b ⊂ ∂S and ends at a point
e on some archipelago Ā. Such a path is called good if int C does not
intersect ∂S ∪ Ā.

Given a good path C in S, let {A1, . . . , Al ≡ A} be the set of asso-
ciated archipelagos whose closures are crossed by C ordered according
to their first appearance.3 Let ej be the first point of intersection of C
with Aj , and let Cj be the segment of C bounded by b ≡ e0 and ej . In
this way we obtain the associated sequence

C1 ⊂ C2 ⊂ . . . Cl ≡ C

of good paths in S. We let |C| = l and call it the height of C.
Let

Λj =
N
⋃

i=j

Ai, Ωj =

j−1
⋃

i=1

Ai.

(Note that Ω1 = ∅. Also, we let Λ ≡ Λ1 be the union of all archipela-
gos.) Then Cj is a proper path in S r Λj , and Ωj is an archipelago in
S r Λj. Let αj be the class of proper paths in S r Λj parallel to Cj

3We then order the other archipelagos arbitrarily: Al+1, . . . , AN .
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rel Ωj. We say that these paths and classes are associated to C. The
sequence of the associated parallel classes,

R(C) = (αj)
l
j=1,

is called the route of C. Note that the route determines the base com-
ponent of ∂S where C begins, and the components of ∂Aj where the
curves Cj end. Two good paths are called parallel rel the family of
archipelagos Ai if they have the same route.

Let us consider two disjoint parallel good paths C1 and C2 with route
of height l. By Lemma 2.1, these two path, together with a base α and
a roof ω, bound a good big rectangle P . Moreover, for each j = 1, . . . , l,
the associated good paths C1

j and C2
j , together with a base αj and a

roof ωj , bound an associated good big rectangle Pj ⊂ S r Λj, where
Pl ≡ P . In fact, they share the same base, i.e. α = αj, since they
share the base with the same associated initial little rectangle Q1 ≡
P1. Furthermore, each rectangle Pj shares the roof with associated
(terminal) little rectangle Qj, j = 2, . . . , l, bounded by the paths δ1

j and

δ2
j , a base σj, and the roof ωj .

4 All the above rectangles are vertically
orientated.

We say that a path C (positively) vertically overflows a little rectangle
Qj if C contains a segment δ which is a (positively oriented) vertical
path in Qj.

Lemma 2.6. Let C1 and C2 be two parallel good paths of height l, and
let P ≡ Pl be the corresponding good big rectangle. Let C be a positively
oriented vertical path in a P . Then it is parallel to C1 and C2 rel the
family (Ai) and, in particular, it has height l. Moreover, C positively
vertically overflows all associated little rectangles Qj, j = 1, . . . , l.

Proof. Let us begin with the last assertion. For j = l and j = 1
it immediately follows from Lemma 2.2 (by reversing orientation for
j = 1). Let 1 < j < l. Since Pj has the same base α ⊂ ∂S as P , a
little initial segment of C is contained in Pj. On the other hand, the
endpoint of C belongs to the archipelago Āl which is disjoint from Pj

since
Pj ⊂ S r Λj ⊂ S r Λ̄l.

Hence the curve C must exit the rectangle Pj. But since C is a vertical
curve in P , it can exit Pj only through the roof ωj. Let ej be the first
intersection point of C with this roof. Then the initial segment Cj of C
with endpoint ej is a vertical path of Pj. By Lemma 2.2, it positively
vertically overflows the little rectangle Qj. All the more, C does so.

4Note that the little rectangles Qj are not necessarily contained in the big rec-
tangle P .
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Since each Pj is a good big rectangle as well, we can apply to it the
previous result and conclude that for any i ≤ j, Cj vertically overflows
Qi. In particular it crosses the roof ωi ⊂ ∂Ai, and hence Ci ⊂ Cj.

Let us show that C1 ⊂ · · · ⊂ Cl is the associated sequence of good
paths. Since all the paths Cj are good initial segments of C, it is part of
the associated sequence. Moreover, C does not contain any other good
initial segment since all other archipelagos Ak, k = l + 1, . . . , N , are
disjoint from P .

In particular, C has the same height l as C1. Moreover, by Lemma 2.2,
the paths Cj are parallel to C1

j and C2
j rel Ωj. Hence C is parallel to C1

and C2 rel (Aj). �

The previous lemma can be sharpened as follows:

Lemma 2.7. Let C1 and C2 be two parallel good paths of height l, and
let P ≡ Pl be the corresponding good big rectangle with base α. Let C
be a disjoint good path which begins on α. Then either the route R(C)
extends R(C1) = R(C2), or the other way around.

Proof. Assume C is not contained in the rectangle P . Then it must
exit P through the roof ω. Let e be the first point of intersection of C
with ω. Then the initial segment C∗ of C ending at e is a vertical path
in P . By Lemma 2.6, R(C∗) = R(C1), so that R(C) extends R(C1).

Assume now that C ⊂ P . Let us consider the biggest j ≤ l such that
C intersects the roof ωj of the good big rectangle Pj, and let ej ∈ C∩ωj

be the first intersection point. Then the initial segment Cj of C with
endpoint ej is a vertical path in Pj. By Lemma 2.6, it has the same
route as C1

j . In particular, it crosses all the archipelagos Ai, i = 1, . . . , j.
But in fact, C = Cj, for otherwise C (being good) would end at

some archipelago Ai with i > j. For i > l it is impossible since those
archipelagos are disjoint from P . For i ∈ [j + 1, l] it is impossible for
otherwise C would exit the rectangle int Pi and hence would cross the
roof ωi.

We conclude that R(C1) is an extension of R(Cj) = R(C). �

Let us now consider two disjoint vertical curves Γ1 and Γ2 in a good
rectangle P . Together with appropriate base and roof arcs, they bound
a truncated good rectangle P̃ ⊂ P .

Lemma 2.8. For the associated sequence of little rectangles, we have:
Q̃j ⊂ Qj.

Proof. By Lemma 2.6, Γ1 and Γ2 have the same route as P . Let us
consider the associated sequences of good curves Γ1

j and Γ2
j , j = 1, . . . , l.
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Let δ̃1
j and δ̃2

j be the terminal paths in S r ∪Aj of these curves. By

definition, Q̃j is the rectangle bounded by these two paths, together

with two appropriate horizontal arcs. By Lemma 2.6, the δ̃i
j are vertical

paths in the little rectangle Qj. Hence Q̃j ⊂ Qj. �

Finally, we have the following important disjointness property:

Proposition 2.9. Let P and P ′ be two good rectangles with disjoint
vertical boundaries. Assume that some associated little rectangles, Qj

and Q′
k, have a non-trivial overlap with matched vertical orientations.

Then one of the routes, R(P ) or R(P ′), is an extension of the other,
and j = k.

Proof. Since the overlapping little rectangles Qj and Q′
k have disjoint

vertical boundaries, one of the vertical boundary components, say δ ′k ⊂
∂Q′

k, must be a vertical path in the other rectangle, Qj. Let C ′ be the
vertical boundary component of P ′ containing the path δ′k, and let C ′

k

be the associated good curve ending with the path δ′k.
Let us consider the associated with P good big rectangle Pj (with

the little rectangle Qj just under its roof ωj). Since the path δ′k is
positively oriented in Qj, it ends on the roof ωj. Thus, the whole curve
C ′

k also ends on ωj. But since C ′
k is good, its interior does not cross ωj .

Neither can it cross the vertical boundary of Pj (by the assumption).
Hence C ′

k is trapped in Pj, and must begin on the base αj of Pj.
Thus, C ′

k is a vertical curve in Pj. By Lemma 2.6, C ′
k and Pj have the

same height, so that k = j. By Lemma 2.7, the route R(C ′) = R(P ′)
is either an extension of R(P ), or the other way around. �

2.3. Vertical foliations. In what follows, S is a Riemann surface of
finite topological type with boundary ∂S and punctures pk (made in
an ambient compact surface).

Let S stand for the set of all subfamilies of our family of archipelagos
Aj, and let βi(U) stand for the Betti numbers of a surface U . We call
the number

Top = Top(S,Aj) = max
S

(β0 + β1)(S r
⋃

Aj∈S

Aj)

the topological complexity of the family of archipelagos.
By making a few artificial punctures (depending only on the topo-

logical complexity of the family of archipelagos), we can ensure that no
component of SrAj is an annulus. (Note that making extra punctures
would not change extremal lengths of the path families in question.)

Let us consider the harmonic measure ωj(z) = ωSrAj
(∂Aj, z) of ∂Aj

in the Riemann surface S r Aj (see [A]). It is a harmonic function on
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int(S r Aj) equal to 1 on ∂Aj and vanishing on ∂S. For instance, if S
and Aj are disks, then ωj is the height function on the annulus S r Aj

uniformized by the flat cylinder Cj with height 1 in such a way that
∂S is the base of it.

The vertical foliation Fj on S is the phase portrait of the gradient
flow γt

j of ωj. It has finitely many saddle type singularities (with finitely
many incoming and outgoing separatrices), where the punctures are
considered to be singularities as well. It is oriented according to the
direction of the gradient flow. Each non-singular leaf of Fj begins on
∂S and ends on ∂Aj. In the case of the annulus, Fj is the actual
vertical foliation on the uniformizing cylinder Cj.

Let us remove from S r Aj all separatrices Ok of the foliation Fj

and take the closures of the components of S r Aj r ∪Ok. We obtain
finitely many (non-closed) rectangles Π = Πm

j foliated by the vertical

leaves. Indeed, take some component λ of ∂S r ∪Ok. The gradient
flow brings every point z ∈ λ in time 1 to some archipelago Aj , and
these trajectories fill in some component Π of S r Aj r∪Ok. The map

(z, t) → (z, γt
j(z)), z ∈ λ, t ∈ [0, 1],

provides us with the rectangular structure on Π. (Since every annuli
component of S r Aj contains a puncture, there are no annuli among
the Πi’s.)

The conjugate harmonic function ω∗
j induces the natural transverse

measure on the Πm
j . In fact, the map ωj + iω∗

j provides us with the
uniformization of Πm

j by a standard Cartesian rectangle of height 1.
Every rectangle Πm

j represents some non-trivial proper homotopy
class of paths in S r Aj. Moreover, different rectangles represent dif-
ferent classes. Indeed, if two leaves, γ and γ ′, of Fj are properly ho-
motopic in S r Aj, then by Lemma 2.1 they bound a rectangle Q in
S r Aj . The conjugate harmonic functions ωj and ω∗

j are well defined
on Q, and ωj is constant on its horizontal sides, while ω∗

j is constant
on the vertical sides. Hence ωj + iω∗

j is a conformal map of Q onto a
Cartesian rectangle, so that neither ωj nor ω∗

j has critical points in Q.
It follows that Q is contained in one of the rectangles Πm

j .
A polar rectangle in S is a subrectangle of some Πm

j saturated by the
leaves of Fj.

Any leaf C of a vertical foliation Fj represents a good path in S.
Notice that the route R(C) determines the properly homotopy class of
C in S r Aj, and hence determines the foliation Fj and the rectangle
Πm

j containing C. These remark, together with Lemma 2.6 imply that
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Figure 2.2. Vertical foliation

the leaves with the same route, R(C) = α, form a (non-closed) polar
rectangle P (α) in S.

Associated big and little rectangles, Pj(α) and Qj(α), j = 1, . . . l,
come together with any polar rectangle.

Let P stand for the family of big good rectangles P (α). Since the
maximal number of possible disjoint routes α is bounded in terms of
the topological complexity of our family of archipelagos (taking into
account Corollary 2.4), the number of the big good rectangles P (α) is
bounded in the same way: |P| ≤ s = s(Top).

2.4. Buffers and the Small-Overlapping Principle. We are going
to make use of an important principle saying that two wide path families
have a relatively small overlap:

Lemma 2.10. Let us consider a vertical lamination5 Λ in some annu-
lus or rectangle A and a path family S. If W(Λ) > κ and W(S) > κ,
then there exists a path γ ∈ S that intersects less than 1/κ of the total
width of Λ.6 In particular, if κ = 1 then there is a path γ ∈ S that does
not cross some leaf of Λ.

Proof. Assume for definiteness that A is an annulus. Let us uniformize
A by a Euclidean cylinder C = T × [0, h] such that the projection of
Λ onto T has length κ. Since W(Λ) ≥ κ, we conclude that h ≤ 1, and
thus area(Λ) ≤ κ.

Let us consider the slice of the second family S by A as it appears
on C. If every curve of this slice (perhaps, disconnected) intersected
at least 1/κ of the total width of Λ, then the Euclidean length of
these slices on C would be at least 1. Then W(S) ≤ area(C) = κ,
contradicting the assumption. �

Take some number M > 8. Given a polar rectangle P (α) of width
greater than M , let us define two buffers, B l(α) ⊂ P (α) and Br(α) ⊂

5i.e., a sublamination of the vertical foliation.
6In the sense of the natural transverse measure of Λ
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P (α), as polar rectangles of width M/2 attached to the vertical sides
of P (α).

Lemma 2.11. Let us consider two polar rectangles P (α) and P (β) of
width greater than M . Then one can select four disjoint vertical leaves,
one from each of the corresponding four buffers.

Proof. Let Λ be the vertical foliation in B l(α) ∪ Br(α), and let S be
the vertical foliation of Bl(β). Applying the previous lemma to this
data, we conclude that there is a vertical leaf Γl(β) in S that crosses
less than 1/4 of the total width of Λ. Hence it crosses less than 1/2 of
the total width of each Bl(α) and Br(α).

Similarly, there is a vertical leaf Γr(β) that crosses less than 1/2
of the total width of each Bl(α) and Br(α). Together, Γl(β) and
Γr(β) cross less than full width of each Bl(α) and Br(α). Hence each
Bl(α) and Br(α) contains a vertical leaf, Γl(α) and Γr(α) respectively,
disjoint from both Γl(β) and Γr(β). �

2.5. Truncated rectangles and Disjointness Property. Let us re-
move the buffers from our polar rectangles:

P̃ (α) = cl(P (α) r (Bl(α) ∪ Br(α))).

The associated truncated big and little rectangles will be naturally
marked with tilde: P̃j(α) and Q̃j(α).

We can now formulate the key disjointness property for the truncated
rectangles:

Lemma 2.12. If two associated truncated little rectangles Q̃j(α) and

Q̃k(β) overlap with matched vertical orientation, then one of the routes,
α or β, is an extension of the other, and j = k.

Proof. Let us select in the buffers of Pj(α) and Pk(β) two disjoint
pairs of leaves (by Lemma 2.11) and consider the rectangles Pj(α) ⊂
Pj(α) and Pk(β) ⊂ Pk(β) bounded by the corresponding pairs. By
Lemma 2.8, their associated little rectangles, Qj(α) and Qk(β), con-

tain the respective little rectangles Q̃j(α) and Q̃k(β). Hence Qj(α)
and Qk(β) overlap with matched vertical orientation. Since the big
rectangles Pj(α) and Pk(β) have disjoint vertical boundaries, we can
apply Lemma 2.9 and complete the proof. �

Let us now go back to the family P of rectangles P (α) described at
the end of §2.3. Truncating these rectangles (by removing the buffers of
width M/2), we obtain a family P̃ of rectangles P̃ (α). Since the total
width of the rectangles P (α) is equal to the modulus Y (1.1), while
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the number of the rectangles if bounded by s = s(Top), we conclude:
If Y > 2Ms then

∑

P̃

W(P̃ (α)) >
1

2
Y. (2.1)

2.6. a- and b-moduli. Let S(α) be a copy of the Riemann surface S
labeled by a route α. Let us consider the disjoint union of these copies,

S =
⊔

S(α),

viewed as a disconnected Riemann surface, and let π : S → S be the
natural projection. This surface is decomposed into subsurfaces

S(k) =
⊔

|α|=k

S(α),

according to the height of the route α.
Let us now consider the disjoint union of all rectangles P̃ (α) of family

P̃ naturally embedded into S:

P =
⊔

P̃

P̃ (α) ⊂ S,

and decomposed accordingly into sheets P(k) ⊂ S(k). Let P̃(k) be the
family of rectangles P̃ (α) ∈ P̃ of height k that assemble the sheet P(k).

Let us also consider the family Q of all associated vertically oriented
little rectangles Qi(α) and their disjoint union:

Q =
⊔

Q

Qi(α) ⊂ S,

decomposed into sheets Q(k) ⊂ S(k). Let Q(k) stand for the family of
little rectangles that assemble Q(k).

The surface Q is also decomposed into layers of height i:

Qi =
⊔

|α|≥i

Qi(α).

Taking their slices by the sheets, we obtain the decomposition of each
layer (and dually: each sheet) Qi into sheet-layers Qi(k). The notations
Qi and Qi(k) are self-explanatory.

Lemma 2.12 implies:

(A1) The projection π embeds the first sheet-layer Q1(k) of every sheet
Q(k) into S r∪Aj. Indeed, all little rectangles Q1(α) of the first layer
are oriented so that they begin on the base ∂S. Hence if two rectangles
Q1(α) and Q1(β) overlap, then they have the same orientation. By
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Lemma 2.12, the heights of α and β are different, so that Q1(α) and
Q1(β) lie on different sheets.

(A2) Let us select one sheet-layer Qi(ki) from every layer Qi, and let
R = ∪Qi(ki). Then the projection π : R → Sr∪Aj is at most 2−to−1.
(In particular, π is at most 2 − to − 1 on every sheet Q(k).) Indeed,
if three little rectangles Qi(α) that assemble R overlapped, then two
of them would have the same orientation. Then by Lemma 2.12, they
would belong to two different sheets of the same layer Qi, contradicting
the structure of R.

Furthermore, the Riemann surface P is endowed with the vertical
path family. Let us consider its width, as well as the width of the
individual sheets:

a ≡ W(P) =
∑

P̃

W(P̃ (α)), ak ≡ W(P(k)) =
∑

P̃(k)

W(P̃ (α).

Of course, a =
∑

ak.
Similarly, we have the vertical path family on Q, and we can consider

the width of its sheet-layers:

W(Qi(k)) =
∑

Q(k)

mod Qi(α).

Let us maximize them over the sheets:

bi = max
k≥i

W(Qi(k)), b =
l
∑

i=1

bi. (2.2)

We let

x ⊕ y =
1

1
x

+ 1
y

be the harmonic sum of two numbers.

Lemma 2.13. The a- and b-moduli are related by the Series Inequality:

ak ≤
k
⊕

i=1

bi.

Proof. By Lemma 2.6, every vertical curve of P(k) overflows each of
the sheet-layers Qi(k), By the Series Law,

ak = W(P(k)) ≤
k
⊕

i=1

W(Qi(k)) ≤
k
⊕

i=1

bi.

�
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Let us now relate the a- and b-moduli to the geometric moduli X,Y
and Z in the Quasi-Additivity Law (see the Introduction). By (2.1),

a ≥
1

2
Y. (2.3)

Furthermore,

Lemma 2.14. b1 ≤ X.

Proof. By property (A1), the first sheet-layer Q1(k) of every sheet em-
beds into S r Λ, where Λ = ∪Aj . Moreover, under this embedding
the vertical path family of Q1(k) is mapped into a vertical path family
of S r Λ (the latter consists of paths connecting ∂S to ∂Λ in S r Λ).
Hence W(Q1(k)) ≤ W(S, Λ). Taking maximum over k completes the
proof. �

Lemma 2.15. b ≤ 2Z ≤ 2ξY.

Proof. The second estimate follows from the Separation Assumption of
the Quasi-Additivity Law, so we only need to prove the first one.

Take some height i and find a level ki ≥ i such that bi = W(Qi(ki)).
Letting R = ∪Qi(ki), we conclude that W(R) = b.

By property (A2), the map π : R → S r Λ is at most 2 − to − 1.
Moreover, every vertical path of R connects some archipelagos Āj to
∂S ∪ (∪k 6=j∂Ak). Hence W(R) ≤ 2Z, and we are done. �

2.7. An arithmetic inequality.

Lemma 2.16. Consider two sequences of positive numbers, {ai}n
i=1

and {bi}
n
i=1, such that a1 = b1, ai+1 ≤ ai ⊕ bi+1. Then

(

n
∑

i=1

ai

)2

≤ 18 b1

n
∑

i=1

bi. (2.4)

Proof. By letting ai+1 = ai⊕bi+1, we increase the ai’s without changing
the bi’s, so that it is sufficient to consider this extreme case. Also,
because the inequality is homogeneous, we can assume that a1 = b1 = 1.

First note that the (ai) form a decreasing sequence. For each natural
n, let mn be the least natural number satisfying amn

≤ 2−n. Let
N ⊂ N be the set of n for which mn+1 > mn, and let ln = mn+1−mn−1
whenever n ∈ N . Then for n ∈ N , we have

2−n ≥ amn
> . . . > amn+ln > 2−(n+1),
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and hence

a ≡
∞
∑

i=1

ai ≤
∑

n∈N

(ln + 1)2−n ≤ 2 +
∑

n∈N

ln2−n. (2.5)

We can also estimate b ≡
∑∞

i=1 bi from below as follows. Suppose
that ln > 0. Then

amn+ln = amn
⊕

mn+ln
⊕

i=mn+1

bi.

Therefore
mn+ln
⊕

i=mn+1

bi > 2−n,

and it follows from the Arithmetic-Harmonic Mean inequality that

mn+ln
∑

i=mn+1

bi > l2n 2−n.

All the more,

mn+ln
∑

i=mn

bi > l2n 2−n,

where the last estimate is valid for ln = 0 as well. Hence

b >
∑

n∈N

l2n 2−n.

By the Cauchy-Schwarz inequality,

(

∑

n∈N

ln 2−n

)2

≤
∑

n∈N

l2n 2−n
∑

n∈N

2−n ≤ 2
∑

n∈N

l2n 2−n < 2b.

Together with (2.5), this yields:

(a − 2)2 < 2b,

which, along with b ≥ 1, implies

a2 < 18 b.

�
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2.8. Completion of the proof of the Quasi-Additivity Law. Let
us consider the a- and b-moduli from §2.6. Lemma 2.13 puts us into a
position to apply estimate (2.4) to these moduli. Incorporating (2.3)
and Lemmas 2.14 and 2.15 into (2.4), we obtain:

1

4
Y 2 ≤ 18 · 2ξY X,

and we are done. tu

2.9. Variation. In conclusion, for further reference in holomorphic dy-
namics, let us formulate a variation of the Quasi-Additivity Law:

Quasi-Additivity Law (Variation). Fix some η > 0. Let W b

int U and D′
i b int W , i = 1, . . . , N , be topological disks such that the

closures of D′
i are pairwise disjoint, and let Di b D′

i be smaller disks.
Then there exists a δ0 > 0 (depending on η and N) such that:
If for some δ ∈ (0, δ0), mod(U r Di) < δ, while mod(D′

i r Di) > ηδ
(the Collar Assumption), then

mod(U r W ) <
Cη−1δ

N
,

where C is an absolute constant.

Remark. In the Quasi-Additivity Law, in place of smooth archipela-
gos we can consider compact sets with finite topology, i.e., sets rep-
resented as intersections of nested smooth archipelagos with bounded
topological complexity. Similarly, in the Quasi-Invariance Law, in place
of smooth disks Λ, B, we can consider arbitrary cellular (i.e, connected
full compact) sets.

3. Proof of the Covering Lemma.

We will make use of the following well-known result:

Proposition 3.1. Let f : U → V be a branched cover of Riemann
surfaces of degree N . Then there is a Galois branched cover g : S → V
of degree at most N ! that factors as g = f ◦ h for some h : S → U .
Moreover, g is ramified only over critical values of f .

The proof uses a lemma that is a simple exercise in group theory:

Lemma 3.2. Suppose that H is a subgroup of a group G, and
[G : H] = N . Then there is a normal subgroup L of G such that
L < H, and [G : L] ≤ N !.
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Proof. The coset action of G on G/H provides a homomorphism from
G to the group of permutations of G/H, which has order at most
N !. We let L be the kernel of this homomorphism; it has the desired
properties. �

Proof of Proposition 3.1. Let X be the set of critical values of f , and let
E = f−1(X). Then f : UrE → V rX is an unbranched cover of degree
N . Hence f∗π1(U r E) has index N in π1(V r X), so by Lemma 3.2
we can find a subgroup of f∗π1(U r E) that is a normal subgroup of
π1(V rX) of degree at most N !. There is then the corresponding cover
g : S ′ → V r X which we can complete to a branched cover g : S → V
with the desired properties. tu

Now we are ready to give a proof of the Covering Lemma.
First of all, we will consider a more general case when Λ is an

archipelago rather than a single domain. Second, we can assume with-
out loss of generality that Λ = (f |Λ′)−1(B).

Let X ⊂ V be the set of critical values of f , and let E = f−1(X) ⊂ U .
By Proposition 3.1, there exists a branched covering h : S → U of
degree at most (N − 1)! with critical values in E such that g = f ◦ h :
S → U is a Galois branched covering, i.e., the fibers of g are orbits of
a group Γ of conformal symmetries of S.

Let A′
j ⊂ S be the connected components of g−1(B′), j = 1, . . . , L,

labeled in such a way that h(A′
1) = Λ′; we let A′ ≡ A′

1. These compo-
nents are transitively permuted by Γ. Let us also consider the corre-
sponding archipelagos Aj = (g|A′

j)
−1(B) in S, and let A ≡ A1.

We now let X, Y and Z be the moduli from the Introduction as-
sociated with this family of archipelagos. By Lemma 4.4 from the
Appendix, we have:

X = |Γ|W(V,B). (3.1)

Let l = deg(A → Λ). Then A consists of ld islands, and |Γ| = ldL.
Since all the archipelagos are symmetric in S, we have:

Y = LW(S,A) ≥ LlW(U, Λ) =
|Γ|

d
W(U, Λ), (3.2)

where the inequality follows from Lemma 4.3 from the Appendix.
Using symmetry of the archipelagos and Lemma 4.4 once again, we

obtain:

Z ≤ LW(A′, A) = |Γ|W(B′, B). (3.3)
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Putting (3.2) and (3.3) together with the Collar Assumption, we
obtain the separation property for our archipelagos:

Z ≤ |Γ|W(B′, B) ≤ η−1|Γ|W(U, Λ) ≤ η−1d Y.

We are now in the position to apply the Quasi-Additivity Law. To-
gether with (3.1) and (3.2), it implies the desired estimate:

|Γ|

d
W(U, Λ) ≤ Y ≤ Cη−1dX = Cη−1d |Γ|W(V,B).

tu

Remark. The Covering Lemma can be also proved directly, along
the lines of the proof of the Quasi-Additivity Law. (It gives a better
bound on ε(N).)

4. Appendix: Extremal length and width

There is a worth of sources containing background material on ex-
tremal length, see, e.g., the book of Ahlfors [A]. We will briefly sum-
marize the necessary minimum.

4.1. Definitions. Let G be a family of curves on a Riemann surface
U . Given a (measurable) conformal metric µ = µ(z)|dz| on U , let

µ(G) = inf
γ∈G

µ(γ).

where µ(γ) stands for the µ-length of γ. The length of G with respect
to µ is defined as

Lµ(G) =
µ(G)2

µ2(U)
,

where µ2 = µ(z)2dz ∧ d̄z is an area form of µ. Taking the supremum
over all conformal metrics µ, we obtain the extremal length L(G) of the
family G.

The extremal width is the inverse of the extremal length:

W(G) = L−1(G).

It can be also defined as follows. Consider all conformal metrics µ such
that µ(γ) ≥ 1 for any γ ∈ G. Then W(G) is the infimum of the areas
µ2(U) of all such metrics.
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4.2. Electric circuits laws. We say that a family G of curves over-
flows a family H if any curve of G contains some curve of H. We say
that two families, G1 and G2, are disjoint if any two curves, γ1 ∈ G1 and
γ2 ∈ G2, are disjoint.

We let x ⊕ y = (x−1 + y−1)−1 be the harmonic sum of x and y (it is
conjugate to the usual sum by the inversion map x 7→ x−1).

The following crucial properties of the extremal length and width
show that the former behaves like the resistance in electric circuits,
while the latter behaves like conductance.

Series Law/Grötzsch Inequality. Let G1 and G2 be two disjoint
families of curves, and let G be a third family that overflows both G1

and G2. Then

L(G) ≥ L(G1) + L(G2),

or equivalently,

W(G) ≤ W(G1)
⊕

W(G2).

Parallel Law. For any two families G1 and G2 of curves we have:

W(G1 ∪ G2) ≤ W(G1) + W(G2).

If G1 and G2 are disjoint then

W(G1 ∪ G2) = W(G1) + W(G2)

Note that the Parallel Law inequality implies the estimate X ≤ Y
between the moduli from the Introduction.

4.3. Transformation rules. Both extremal length and extremal width
are conformal invariants. More generally, we have:

Lemma 4.1. Let f : U → V be a holomorphic map between two Rie-
mann surfaces, and let G be a family of curves on U . Then

L(f(G)) ≥ L(G).

Moreover, if f is at most d − to − 1, then

L(f(G)) ≤ d · L(G).

Proof. Let µ be a conformal metric on U . Let us push-forward the area
form µ2 by f . We obtain the area form ν2 = f∗(µ

2) of some conformal
metric ν on V . Then ν2(V ) = µ2(U) and f ∗(ν) ≥ µ. It follows that

Lµ(G) ≤ Lν(f(G)) ≤ L(f(G)).

Taking the supremum over µ completes the proof of the first assertion.
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For the second assertion, let us consider a conformal metric ν on V
and pull it back to U , µ = f ∗ν. Then µ(γ) = ν(f(γ)) for any γ ∈ G,
while µ2(U) ≤ d · ν2(V ). Hence

L(G) ≥ Lµ(G) ≥
1

d
Lν(f(G)),

and taking the supremum over ν completes the proof. �

4.4. Extremal distance and Dirichlet integral. Given a compact
subset K ⊂ int U , the extremal distance

L(U,K) ≡ mod(U,K)

(between ∂U and K) is defined as L(G), where G is the family of curves
connecting ∂U and K. In case when U is a topological disk and K is
connected, we obtain the usual modulus mod(U r K) of the annulus
U r K.

Remark. L(U,K) can also be defined as L(G ′) where G ′ is the family
of curves in U r K connecting ∂U to K. Indeed, since G ⊃ G ′, L(G) ≤
L(G ′). Since each curve of G overflows some curve of G ′, L(G) ≥ L(G ′).
One can also make a compromise and use the intermediate family of
curves in U connecting ∂U to K.

We let W(U,K) = L−1(U,K).

Lemma 4.2. Let f : U → V be a branched covering of degree N
between two compact Riemann surfaces with boundary. Let A be a
compact subset of int U and let B = f(A). Then

mod(U,A) ≤ mod(V,B) ≤ N mod(U,A).

Proof. Let G be the family of curves in U connecting ∂U to A, and
let H be the similar family in V . Notice that every curve γ ∈ H lifts
to a curve in G: begin the lifting on A, and it must end on ∂U since
f : U → V is proper. Thus, H = f(G), and Lemma 4.1 completes the
proof. �

Extremal width W(U,A) can be explicitly expressed as the Dirichlet
integral of the harmonic measure (see [A, §4-9]):

W(U,A) = 4

∫

UrA

|∂h|2

where h : V r B → R is the harmonic function equal to 1 on ∂B
and vanishing on ∂U , and |∂h|2 is the area form associated with the
holomorphic differential ∂h = (∂h/∂z)dz.
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4.5. More transformation rules. The Dirichlet integral formulation
allows us to sharpen the lower bound in Lemma 4.2:

Lemma 4.3. Let f : U → V be a branched covering between two
compact Riemann surfaces with boundary. Let A be an archipelago in
U , B = f(A), and assume that f : A → B is a branched covering of
degree d. Then

mod(V,B) ≥ d mod(U,A).

Proof. The Riemann surface V r B is decomposed into finitely many
rectangles saturated by the leaves of the harmonic flow (see §2.3). Slit
these rectangles by the leaves containing the critical values of f . We
obtain finitely many foliated rectangles Πi such that

∑

W(Πi) = W(V,B).

Each of these rectangles lifts to d properly embedded rectangles P j
i in

U r A (with the horizontal sides on ∂U and ∂A). Moreover, W(P j
i ) =

W(Πi). Hence

W(U,A) ≥
∑

W(P j
i ) = dW(V,B).

�

Remark. A similar estimate is still valid for an arbitrary compact
set A, and can be proved by approximating A by archipelagos.

Putting the above two lemmas together (or using directly that the
Dirichlet integral is transformed as the area under branched coverings)
we obtain:

Lemma 4.4. Let (U,A) and (V,B) be as above, and let f : U r A →
V r B be a branched covering of degree N . Then

mod(V,B) = N mod(U,A).
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