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Abstract. Let (M, J,Ω) be a closed polarized complex manifold of Kähler type. Let G be the
maximal compact subgroup of the automorphism group of (M, J). On the space of Kähler metrics
that are invariant under G and represent the cohomology class Ω, we define a flow equation whose
critical points are extremal metrics, those that minimize the square of the L2-norm of the scalar
curvature. We prove that the dynamical system in this space of metrics defined by the said flow does
not have periodic orbits, and that its only fixed points are extremal metrics. We prove local time
existence of the flow, and conclude that if the lifespan of the solution is finite, then the supremum
of the norm of its curvature tensor must blow-up as time approaches it. While doing this, we also
prove that extremal solitons can only exist in the non-compact case, and that the range of the
holomorphy potential of the scalar curvature is an interval independent of the metric chosen to
represent Ω. We end up with some conjectures concerning the plausible existence and convergence
of global solutions under suitable geometric conditions.
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1. Introduction

We define and study a new dynamical system in the space of Kähler metrics that represent a
fixed cohomology class of a given closed complex manifold of Kähler type. The critical points of this
flow are extremal metrics, that is to say, minimizers of the functional defined by the L2-norm of the
scalar curvature. We derive the equation, describe some of its general properties, and prove that
given an initial data, the equation has a unique classical solution on some time interval. It would be
of great interest to know if the solution exist for all time, or whether it develops some singularities
in finite time. We have no general answer to this yet. However, we show some evidence indicating
that in some specific cases, the solution should exist for all time and converge to an extremal metric
as time goes to infinity.

In order to put our equation in proper perspective, we begin by recalling a different but related
one, the Ricci flow. Let M be a compact manifold M of dimension n. Given a metric g, we denote
its Ricci tensor by Riccig and its average scalar curvature by rg. The Ricci flow

dg

dt
= 2

(rg
n
g −Riccig

)

,

was introduced by R. Hamilton [11] as a mechanism to improve the properties of its initial data.
It is a non-linear heat equation in the metric, which hopefully becomes better as time passes by in
the same way as the heat equation improves an initial distribution of heat in a given region, and
makes it uniform all throughout as time goes to infinity. Hamilton used it to show that on a three
dimensional manifold, an initial metric of positive Ricci curvature flows according to this equation
towards a limit that has constant positive sectional curvature.

In the case of a Kähler manifold, Hamilton’s flow equation may be used when seeking a Kähler-
Einstein metric on the said manifold. Of course, this would a priori require that the first Chern



class c1 be signed, so that it may be represented by Kähler-Einstein metrics, or their opposites.
Regardless of that consideration, the idea inspired Cao [5] to study the equation

dω

dt
= η − ρt ,

for η a fixed real closed (1, 1)-form representing the class c1(M). Here, ω and ρ are the Kähler and
Ricci forms of the metric, respectively. Using Yau’s work on the Calabi conjecture, he proved that
solutions exists for all t ≥ 0 and that the path of metrics so defined converges to a Kähler metric
with prescribed Ricci form η as t → ∞. He went on and, under the assumption that c1(M) < 0,
replaced η in the equation above by −ωt and proved that the corresponding solution to the initial
value problem exists for all time and converges to a Kähler-Einstein metric as t → ∞, rederiving
the now famous version of the theorem of Yau and Aubin.

As good as the Ricci flow may be, when it converges it can only do so to an Einstein metric,
fact that is only possible under a priori conditions on M that might not hold in general. We are
interested in studying polarized Kähler manifolds, and in finding canonical representatives of the
polarization. Our flow is adapted to accomplishing that other somewhat different goal.

For if (M,J,Ω) is a polarized Kähler manifold, for a variety of technical reasons to be clarified
below, we consider metrics that are invariant under the action of a maximal compact subgroup of
the automorphism group of (M,J), and introduce the equation

dω

dt
= Πtρ− ρt ,

with initial condition a given metric representing Ω. Here Πt is a metric dependent projection
operator that intertwines the metric trace with the L2-orthogonal projection πt onto the space of
real holomorphy potentials, these being those real valued functions whose gradients are holomorphic
vector fields. The projection Πt is such that Πtρt − ρt is cohomologous to zero, and so all metrics
satisfying the equation represent Ω. As such, the critical points of the equation, metrics for which
Πρ = ρ, are precisely those metrics whose scalar curvatures have holomorphic gradients, or said
differently, the extremal metrics of Calabi [3]. This fact constitutes the guiding principle behind
our consideration of this new flow equation.

In general, our flow equation is different from the Kähler version of the Ricci flow, even when
Ω = ±c1. This last assertion is illustrated, for instance, by the blow-up of CP

2 at one or two points,
and the reason is basically a simple one: extremal metrics, which is what we seek when we consider
the new flow, is a concept that imposes milder conditions than those required for the metric to be
Kähler-Einstein, and when Ω = c1, the two concepts agree only if we know of additional restrictions
on c1 [7, 20]. These do not hold on the two mentioned examples. On the other hand, the flows
always coincide on Riemann surfaces (where they also agree with the two-dimensional version of the
Yamabe flow [10]) because regardless of the metric g under consideration, the holomorphy potential
πgsg, sg the scalar curvature of g, is a topological constant determined by the Euler characteristic.
In these cases, it is still of some interest to point out that the extremal flow always arises as the
gradient flow of a Riemannian functional, statement that in this dimension cannot be ascertained
for the other two flows in light of the Gauss-Bonnet theorem.

The main point of the present article will be to show that solutions to the extremal flow equation
exists locally in time. However, even if these were going to exist globally, we should not expect that
they would converge as time approaches infinity in all possible cases. We already know of examples
of Kählerian manifolds that do not admit extremal metrics [2, 16, 22].

We do have already a partial picture that explains why these examples exist. Those in [16] fail
to satisfy a necessary condition on the space of holomorphic vector fields, while those in [2] and
[22] are related to stability of the manifold under deformations of the complex structure, property
that is independent of and not reflected by those of the Lie algebra of holomorphic vector fields.
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Pointing more to the heart of the problem that interest us here, we had proven [15] that the
set of Kähler classes that can be represented by extremal metrics is open in the Kähler cone. The
study of the extremal flow equation above, and its potential convergence to a limit extremal metric,
can be seen as a general method that could decide if the the extremal cone is —or is not— closed
also.

In proving local time existence of the extremal flow, we also show that if the lifespan is finite,
then the point-wise norm of the curvature tensor must blow-up as times approaches it. We leave
for later the analysis of global existence and convergence under suitable geometric conditions, in
particular, the analysis of these issues for surfaces with positive first Chern class, where our flow
equation seems to be a promising tool for the resolution of the extremal metric problem.

We organize the paper as follows: in §2 we recall the notion and basic facts about extremal
metrics; in §3 we explain in detail the derivation of the extremal flow equation, and prove general
results about it; in §4 we linearize this flow equation, showing that it results into a pseudo-differential
perturbation of the standard time dependent heat equation. This form of the linearization is an
essential fact in our proof of local time existence, done in §5 via a fixed point type of argument.
We end with some remarks justifying our hope that solutions to the extremal flow will converge to
an extremal metric under suitable general geometric conditions.

2. Extremal Kähler Metrics

Let (M,J, g) be a closed Kähler manifold of complex dimension n. This means that (M,J) is a
closed complex manifold and that ω(X,Y ) := g(JX, Y ), which is skew-symmetric because g is a
Hermitian Riemannian metric, is a closed 2-form. The form ω is called the Kähler form, and its
cohomology class [ω] ∈ H2(M,R) is called the Kähler class.

We denote by h = h(M,J) the complex Lie algebra of holomorphic vector fields of (M,J). Since
M is compact, this is precisely the Lie algebra of the group of biholomorphism of (M,J). The
subset h0 of holomorphic vector fields with zeroes is an ideal of h, and the quotient algebra h/h0 is
Abelian.

We shall say that (M,J) is a generic complex manifold of Kähler type if h0 is trivial. Typically,
complex manifolds carry no non-zero holomorphic vector fields and are, therefore, generic in our
sense. However, our definition includes also those complex manifolds whose non-zero holomorphic
fields have empty zero sets.

By complex multi-linearity, we may extend the metric g, the Levi-Civita connection ∇ and the
curvature tensor R to the complexified tangent bundle C ⊗ TM . Since C ⊗ TM decomposes into
the ±i-eigenspaces of J , C⊗ TM = T 1,0M ⊕ T 0,1M , we can express any tensor field or differential
operator in terms of the corresponding decomposition. For example, if {z1, . . . , zn} is a holomorphic
coordinate system on M , we get induced bases {∂z} and {∂z̄ := ∂z̄} for T 1,0M and T 0,1M ,
respectively, and if we express the metric g in terms of this basis by setting gµν := g (∂zµ, ∂zν ),
where the indices µ, ν range over {1, . . . , n, 1̄, . . . , n̄}, it follows from the Hermiticity condition that
gk = ḡk̄ = 0, and that ω = ωjk̄dz

j ∧ dz̄k = igk̄dz
 ∧ dz̄k.

The complexification of the exterior algebra can be decomposed into a direct sum of of forms of
type (p, q). Indeed, we have ∧rM =

⊕

p+q=r ∧p,qM . The integrability of J implies that the exterior

derivative d splits as d = ∂ + ∂̄, where ∂ : ∧p,qM → ∧p+1,qM , ∂̄ : ∧p,qM → ∧p,q+1M , ∂2 = ∂̄2 = 0
and ∂∂̄ = −∂̄∂. Complex conjugation also extends, and we define a form to be real if it is invariant
under this operation. An important result in Kähler geometry is that, given a d-exact real form β
of type (p, p), there exists a real form α of type (p− 1, p− 1) such that β = i∂∂α.
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The Ricci form ρ is defined in terms of the Ricci tensor r of g by ρ(X,Y ) = r(JX, Y ). It is a
closed form whose components are given by

rjk = −iρjk = − ∂2

∂zj∂zk
log det(gpq) .

The form
1

2π
ρ is the curvature of the canonical line bundle κ = Λn(T ∗M)1,0, and represents the

first Chern class c1 = c1(M,J).

The scalar curvature s is, by definition, the trace s = rµµ = 2gk̄rk̄ of the Ricci tensor, and can
be conveniently calculated by the formula

(1) s ω∧n = 2nρ ∧ ω∧(n−1) .

Since the volume form is given by dµ =
ω∧n

n!
and M is compact, this formula implies that

(2)

∫

M

s dµ =
4π

(n− 1)!
c1 ∪ [ω]∪(n−1) ,

a quantity that only depends upon the complex structure J and the cohomology class [ω], and that

generalizes the well-known Gauss-Bonnet theorem for surfaces. Notice that

∫

M

dµ =
1

n!
[ω]∪n, and

so the average scalar curvature

(3) s0 = 4πn
c1 ∪ [ω]n−1

[ω]n
,

is also a quantity that depends only on the Kähler class [ω] and the homotopy class of the complex-
structure tensor J .

Suppose that (M,J) is polarized by a positive class Ω ∈ H1,1(M,C) ∩ H2(M,R). Let MΩ be
the set of all Kähler forms representing Ω. Since any two elements ω̃ and ω of MΩ are such that
ω̃ = ω + i∂∂ϕ for some real valued potential function ϕ, at the expense of fixing a background
Kähler metric ω that represents Ω, we can describe MΩ as MΩ = {ωϕ = ω + i∂∂ϕ : ωϕ > 0}.
Thus, MΩ is an affine space modeled on an open subset of the space of smooth functions that
parametrizes the deformations of the base point ω. We may topologize it by defining a suitable
topology on the space of deformation potentials.

In what follows, we shall not distinguish between the Kähler metric and its Kähler form, passing
from one to the other at will.

Consider the functional

(4)
MΩ

ΦΩ−→ R

ω 7→
∫

M

s2ωdµω
,

where the metric associated with the form ω has scalar curvature sω and volume form dµω. A
critical point of this functional is by definition an extremal Kähler metric [3]. They were introduced
by E. Calabi with the idea of seeking canonical representatives of Ω.

Given any Kähler metric g, a smooth complex-valued function f gives rise to the (1,0) vector

field f 7→ ∂#f = ∂#
g f defined by the expression

g(∂#f, · ) = ∂f .

This vector field is holomorphic iff we require that ∂̄∂#f = 0, condition equivalent to f being in
the kernel of the operator

(5) Lgf := (∂̄∂#)∗∂̄∂#f =
1

4
∆2f +

1

2
rµν∇µ∇νf +

1

2
(∇¯̀

σ)∇¯̀f .

4



The ideal h0 consists of vector fields of the form ∂#
g f , for a function f in the kernel of Lg. In other

words, a holomorphic vector field Ξ can be written as ∂#
g f iff the zero set of Ξ is non-empty.

The variation of ΦΩ can be given in terms of the operator Lg above. Indeed,

d

dt
ΦΩ(ω + ti∂∂ϕ) |t=0= −4

∫

sωLωϕdµω .

Hence, the Euler-Lagrange’s equation for a critical point g of (4) can be cast as the fact that the

scalar curvature sg is a real valued function in the kernel of Lg. Thus, the vector field ∂#
g sg must

be holomorphic and its imaginary part is a Killing field of g.
Given a Kähler metric ω, its normalized Ricci potential ψω is defined to be the only function

orthogonal to the constants such that ρ = ρH + i∂∂ψω, where ρH is the ω-harmonic component
of ρ. In terms of the scalar curvature and its projection onto the constants, we have that ψω =
−Gω(sω − s0). If K denotes the Kähler cone of (M,J), the Futaki character [7] is defined to be the
map

(6)
F : h × K −→ C

F(Ξ, [ω]) = 2

∫

M

Ξ(ψω)dµ = −2

∫

M

Ξ(Gω(sω − s0))dµω .

It is calculated using a particular representative ω of the class, but it depends only on Ω and not
on the particular choice of representative [7, 4]. And when applied to a holomorphic vector field of
the form Ξ = ∂#f , it yields

(7) F(Ξ, [ω]) = −
∫

M

f(sω − s0) dµω .

If a metric ω ∈ MΩ is extremal, we may apply (7) to the vector field ∂#
ω sω and obtain that

F(∂#
ω sω,Ω) = −‖sω − s0‖2. Thus, the Futaki character represents an obstruction to ω being a

metric of constant scalar curvature.
Extremal metrics achieve the infimum of ΦΩ over MΩ. In fact, the critical value E(Ω) they

achieve is a differentiable function of Ω [19], and there exists a holomorphic vector field XΩ [8] such
that

(8) ΦΩ(ω) ≥ E(Ω) := s20
Ωn

n!
− F(XΩ,Ω)

for all ω ∈ MΩ.

3. Derivation of the evolution equation

Calabi [4] showed that the identity component of the isometry group of an extremal Kähler
metric g is a maximal compact subgroup of the identity component of the biholomorphism group
of (M,J). This implies that, up to conjugation, the identity components of the isometry groups of
extremal Kähler metrics coincide [15]. Therefore, modulo biholomorphisms, the search for extremal
Kähler metrics is completely equivalent to the search for extremal metrics among those that are
invariant under the action of a fixed maximal compact subgroup of the connected biholomorphism
group. This last problem, however, turns out to be technically easier to analyze.

3.1. Real holomorphy potentials. Given any Kähler metric g on (M,J), every complex-valued

function f in the kernel of Lg = (∂̄∂#
g )∗∂̄∂#

g in (5) is associated with the holomorphic vector field

Ξ = ∂#
g f , and since the operator Lg is elliptic, the space of such functions is finite dimensional.

However, Lg is not, generally speaking, a real operator. Therefore, the real and imaginary parts of
a function in its kernel do not have to be elements of the kernel also. It has been proven elsewhere
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[15] that if f is a real valued function in the kernel of Lg, then the imaginary part of ∂#
g f is a

Killing field of g, and that a Killing field arises in this way if, and only if, its zero set is not empty.
Let G be a maximal compact subgroup of the biholomorphism group of (M,J), and g be a Kähler

metric on M with Kähler class Ω. Without loss of generality, we assume that g is G-invariant. We
denote by L2

k,G the real Hilbert space of G-invariant real-valued functions of class L2
k, and consider

G-invariant deformations of this metric preserving the Kähler class:

(9) ω̃ = ω + i∂∂ϕ , ϕ ∈ L2
k+4,G , k > n.

In this expression, the condition k > n ensures that L2
k,G is a Banach algebra, making the scalar

curvature of ω̃ a well-defined function in the space.
We denote by g ⊂ h the Lie algebra of G, and by z the center of g. We let z0 = z ∩ g0, where

g0 ⊂ g is the ideal of Killing fields which have zeroes. If g̃ is any G-invariant Kähler metric on
(M,J), then each element of z0 is of the form J ∇g̃f for a real-valued solution of (5). In fact, z0
corresponds to the set of real solutions f which are invariant under G, since

∂# : ker[(∂̄∂#
g̃ )∗∂̄∂g̃] → h0

is a homomorphism of G-modules.

The restriction of ker(∂̄∂#
g̃ )∗∂̄∂g̃ to L2

k+4,G depends smoothly on theG-invariant metric g̃. Indeed,

choose a basis {X1, . . . ,Xm} for z0, and, for each (1, 1)-form χ on (M,J), consider the set of
functions

p0(χ) = 1

pj(χ) = 2iGg∂
∗

g((JXj + iXj) χ) , j = 1, . . . ,m

where Gg is the Green’s operator of the metric g. If ω̃ is the Kähler form of the G-invariant metric

g̃, then ∂#
g̃ pj(ω̃) = JXj + iX, and the set {pj(ω̃)}mj=0 consists of real-valued functions and forms

a basis for ker(∂̄∂#
g̃ )∗∂̄∂g̃. Furthermore, for metrics ω̃ as in (9), the map ϕ 7→ pj(ω + i∂∂ϕ) is, for

each j, bounded as a linear map from L2
k+4,G to L2

k+3,G.

With respect to the fixed L2 inner product, let {f 0
ω̃, . . . , f

m
ω̃ } be the orthonormal set extracted

from {pj(ω̃)} by the Gram-Schmidt procedure. We then let

πω̃ : L2
k,G → L2

k,G

u 7→
m
∑

j=0

〈f jω̃, u〉L2f jω̃(10)

denote the associated projector. In fact, by the regularity of the functions {p1, . . . , pm}, this
projection can be defined on L2

k+j,G for j = 0, 1, 2, 3, and for metrics as in (9), the map ϕ 7→ πω̃ is

smooth from a suitable neighborhood of the origin in L2
k+4,G to the real Hilbert space End(L2

k+j,G) ∼=
⊗2 L2

k+j,G.

The holomorphic vector field XΩ of the class that yields the lower bound (8) is given by XΩ =

∂#
g (πgsg − s0). As such, it may depend on the choice of maximal compact subgroup G of the

automorphism group of (M,J), but the value of F(XΩ,Ω) does not. The critical value E(Ω), or
energy of the class Ω, is nothing more than

E(Ω) =

∫

(πgsg)
2dµg .

(This way of computing the energy of the class through G-invariant metrics is very convenient and
has been used several times elsewhere [18, 20, 21] with other (but related) purposes in mind.)

Remark 1. For generic manifolds (M,J), the space of real holomorphy potentials consists of
the constant functions only. Thus, πgsg is the constant given in (3) no matter what G-invariant

6



representative g of the class Ω we consider. However, this last function could be constant even under
the presence of non-trivial holomorphic vector fields with zeroes. For that, the Futaki invariant of
the class must vanish, and in that case, the vector field XΩ associated to Ω is trivial.

A simple instance of this is given by a compact Riemann surface Σ, where for any G-invariant
metric g, we have that πgsg = 4πχ(Σ)/µg(Σ) where χ(Σ) is the Euler characteristic. Indeed,
Riemann surfaces are either hyperbolic, parabolic or elliptic. The first two of these are generic,
and the assertion is clear then. For the remaining case, that of the Riemann sphere, the space
h0 is non-trivial but the Futaki character vanishes. The assertion follows from the Gauss-Bonnet
theorem embodied in (2), and the identity (7) applied to f = πgsg. �

From now on, we shall denote by MΩ,G the set of G-invariant Kähler metrics representing the

class Ω. Given a path of metrics ωt ∈ MΩ,G, since the kernel of (∂̄∂#
g̃ )∗∂̄∂g̃ depends smoothly on

g̃, the differential of πtst is well-defined. Here, πt and st are the projection operator and scalar
curvature associated to the metric ωt, respectively. Since πtst is of order four in the potential of the
metric, naively we would expect its differential to be an operator of order four on the tangent space
to MΩ,G at ωt. However, we get something significantly better, and gain quite a bit of regularity.
This fact will be very convenient later on.

Lemma 2. Let ωt = ω+ i∂∂ϕt be a path of metrics in MΩ,G with ω0 = ω. Consider the projection

πtst of the scalar curvature st onto the space of real holomorphy potentials, and let ϕ̇t = d
dt
ϕt. Then

d

dt
(πtst) = ∂ϕ̇t XΩ = (∂#ϕ̇t,XΩ)t = (∂ϕ̇t, ∂(πtst))t ,

where XΩ = ∂#
t πtst is the holomorphic vector field of the class Ω. In particular, this derivative is

a differential operator of order one in ϕ̇t whose coefficients depend non-linearly on the metric ωt.

Proof. By the invariance of the Futaki character, if πωsω is constant then so will be πω̃sω̃ for any
other metric ω̃ in MΩ,G (see §4 of [20]). In that case, XΩ is trivial and both sides of the expression
in the statement are zero. The result follows.

So let us assume that πtst is not constant. Here and below we use the subscript t to denote

geometric quantities associated with ωt. Thus, the imaginary part of XΩ = ∂#
ωtπtst is a non-trivial

Killing vector field, and in the construction of the projection map above, we can choose a basis

{Xj} for z0 such that XΩ = ∂#
ωt(πtst) = JX1 + iX1 = XΩ. Hence,

πtst = 2iGt∂
∗

t (ωt XΩ) + s0 ,

where s0 is the projection (3) of s onto the constants, a function that depends on Ω and J but not
on the particular choice of metric in MΩ,G.

By the Kähler identity ∂
∗

t = −i[Λt, ∂], we conclude that

πtst = 2GtΛt∂(ωt XΩ) + s0

and, therefore,

d

dt
πtst = 2GtΛt∂(ω̇t XΩ) + 2GtΛ̇t∂(ωt XΩ) + 2ĠtΛt∂(ωt XΩ) .

The last two terms in the expression above cancel each other out. Indeed, ωt XΩ = −i∂(πtst)

and computing the derivative of Λ̇t in terms of ϕ̇t, we see that 2GtΛ̇t∂(ωt XΩ) = 2Gt(i∂∂ϕ̇t, i∂∂(πtst))t.

On the other hand, the differential of the Green’s operator is given by −Gt∆̇tGt, and we obtain
that 2ĠtΛt∂(ωt XΩ) = 2Gt∆̇tGtΛti∂∂(πtst) = −Gt∆̇t(πtst) = −2Gt(i∂∂ϕ̇t, i∂∂(πtst))t.

Since the real and imaginary parts of XΩ are Killing vector fields and the metric potential ϕt
is G-invariant, we have that XΩ(ϕ̇t) = 0, and so ∂ϕ̇t XΩ = (∂ϕ̇t, i∂(πtst))t is orthogonal to the

constants. On the other hand, since XΩ is holomorphic, we have that ω̇t XΩ = i∂∂ϕ̇t XΩ =
7



−i∂(∂ϕ̇t XΩ). Hence, 2GtΛt∂(ω̇t XΩ) = −2GtΛti∂∂(∂ϕ̇t XΩ), and the desired result follows
now because Gt is the inverse of the Laplacian in the complement of the constants. �

Given any Kähler metric g in MΩ,G, we have seen that the extremal vector field XΩ of the class

can be written as XΩ = ∂#
g (πgsg). Thus, the critical points of πgsg corresponds to zeroes of XΩ,

and are therefore, independent of g. We may use the Lemma above to strengthen this assertion a
bit, and derive the following remarkable consequence. This result is reminiscent of the convexity
theorem on the image of moment mappings [1, 9].

Theorem 3. Let ω be any metric in MΩ,G and consider the function πωsω obtained by projection

of the scalar curvature onto the space of real holomorphy potentials. Then the range of πωsω is a

closed interval on the real line that only depends on the class Ω and the complex structure J , but

not on the particular choice of metric ω ∈ MΩ,G.

Proof. Let ωt = ω + i∂∂ϕt be a path in MΩ,G. By Lemma 2, we have that

d

dt
πtst = (∂ϕ̇t, ∂(πtst))t .

Since the maximum and minimum of πtst occur at critical points, this expression shows that these
extrema values do not change with t. The result follows because MΩ,G is path connected. �

The projection πg onto holomorphy potentials has an appropriate lift Πg to the level of G-

invariant (1, 1) forms, which we discuss now. We denote by ∧1,1
k,G the space of real forms of type

(1, 1) that are invariant under G and of class L2
k.

Lemma 4. Given any G-invariant metric ω̃, there exists a uniquely defined continuous projection

map

(11) Πω̃ : ∧1,1
k+2,G 7→ ∧1,1

k+2,G ,

that intertwines the trace with the projection map πω̃ in (10), and it is such that η − Πω̃η is

cohomologous to zero for all η ∈ ∧1,1
k+2,G. For metrics ω̃ as in (9), the map ϕ 7→ Πω̃ from L2

k+4,G to

End(∧1,1
k+2,G) is smooth.

Proof. Let η ∈ ∧1,1
k+2,G. Since Πω̃ η must be of the form η + i∂∂f for some real valued function

f , the intertwining property of the projection and trace gives that

traceω̃ η −
1

2
∆ω̃f = πω̃ traceω̃ η ,

and so

∆ω̃f = −2(πω̃ − 1)traceω̃η .

The right side of this expression is a G-invariant real valued function in the complement of the
constants. Thus, we can solve the equation for f to obtain a real valued function that is invariant
under G. By the continuity properties of the map πω̃ for metrics as in (9), we conclude that ϕ 7→ Πω̃

is a smooth map from a suitable neighborhood of the origin in L2
k+4,G to the real Hilbert space

End(∧1,1
k+2,G). �

3.2. Extremal flow equation. The projection operators πg and Πg are essential elements in our
study of extremal Kähler metrics. To begin with, they lead to alternative characterizations of the
extremality condition of a metric that are quite suitable for analytical purposes. Indeed, if g is an
extremal metric, it must be invariant under a maximal compact subgroup G of Aut(M,J) and we
have that

(12) ρg = Πgρg .
8



Conversely, any metric g that is G-invariant and satisfies this equation must be extremal. Evidently,
this tensorial equation for the G-invariant metric g can be recast in terms of the equivalent scalar
equation

(13) sg = πgsg ,

which also serves as a characterization of the extremal condition of g.
Notwithstanding the richer set-up, the definition of extremality embodied by (12) is analogous to

the definition of an Einstein metric, and its algebraic nature is quite suitable and direct for analytical
purposes. For instance, rephrasing the proof for Einstein metrics, we may use it to show that any
G-invariant metric that is a C1,α weak solution of the extremal equation in harmonic coordinates,
must be in fact a smooth extremal Kähler metric (compare this statement with Lemma 1 in [13]).

However, the key use we shall make of these projections will be to define the extremal Kähler

flow, a tool intended to govern the improvement of an initial representative of the class Ω towards
one that is extremal.

The idea of using good flows to better geometric quantities was originally used by Eells and
Sampson [6] in another context, and reconsidered by Hamilton [11] in his definition of the Ricci
flow. In our case, we are given a metric in MΩ,G and try to improve it by means of a non-linear
pseudo-differential heat equation, requiring the velocity of the curve to equal the component of the
Ricci curvature that is perpendicular to the image of Π.

More precisely, we fix a maximal compact subgroup G of the automorphism group of (M,J),
and work on MΩ,G, the space of all G-invariant Kähler forms that represent Ω. Given ω ∈ MΩ,G,
we consider a path ωt of Kähler metrics that starts at ω when t = 0 and obeys the flow equation
∂tωt = −ρt + Πtρt. Since −ρt + Πtρt is cohomologous to zero and G-invariant, for as long as the
solution exists, we will have that ωt ∈ MΩ,G. Thus, our evolution equation is given by the initial
value problem

(14)
∂tωt = −ρt + Πtρt ,
ω0 = ω .

Critical points of this equation correspond precisely to extremal metrics, those that satisfy (12).
In the same manner as (12) has the alternative scalar description (13), we may reformulate (14)

as an scalar equation. If ωt = ω+ i∂∂ϕt, we have that Πtρt−ρt = i∂∂Gt(st−πtst), where Gt is the
Green’s operator of the metric ωt. By compactness of M , we see that the deformation potential ϕt
evolves according to

(15)
∂tϕt = Gt(st − πtst) ,
ϕ0 = 0 .

A critical point of (15) is given by a metric for which Gω(sω − πωsω) = 0. Since sω − πωsω is
orthogonal to the constant, this condition is precisely the extremality condition (13).

3.3. General properties of the extremal flow. We begin by making a rather expected obser-
vation.

Proposition 5. Let ωt be a solution of the initial value problem (14). If dµt is the volume form,

we have that
d

dt
dµt =

1

2
(πtst − st)dµt .

In particular, the volume of ωt is constant.

Proof. The volume form is given by

dµt =
ωnt
n!

.
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Differentiating with respect to t, we obtain:

d

dt
dµt =

1

(n− 1)!
ωn−1
t ∧ ω̇t =

1

(n− 1)!
ωn−1
t ∧ (Πtρt − ρt) =

1

2
(πtst − st)dµt ,

as desired. Notice that this form of maximal rank is exact. �

Our next results address the plausible existence of fixed points or periodic solutions of the flow
equation.

Observe that (14) is invariant under the group of diffeomorphism that preserve the complex
structure J . An extremal soliton is a solution that changes only by such a diffeomorphism. Then,
there must be a holomorphic vector field V = (V i) such that Vi,j̄ + Vj̄,i = Πρij̄ − ρij̄ . If the vector
field V has a holomorphy potential f , we refer to the pair (g, V ) as a gradient extremal soliton.

Proposition 6. There are no extremal solitons other than extremal metrics.

Proof. Suppose we have an extremal gradient soliton (g, V ) defined by a holomorphic potential
f . Then

i∂∂f = Πρ− ρ ,

and therefore,

f = Gg(s− πs) .

This implies that ∆f = s− πs and since ∆ is a real operator, the holomorphy potential f must be
real. But f is a holomorphy potential, so it is L2-orthogonal to s− πs. Hence,

‖∇f‖2 =

∫

f∆fdµg =

∫

f(1 − π)s dµ = 0 .

Thus, f is constant, and therefore, necessarily zero.
Thus, a non-trivial soliton, if any, must be given by a holomorphic vector field V that is not a

gradient. The set of all such vector fields forms an Abelian subalgebra of the algebra of holomor-
phic vector fields. The group of diffeomorphism they generate must be in the maximal compact
subgroup G of isometries of the metric. This vector field does not change the metric and so
ωt = (exp(tV ))∗ω = ω. Hence, ω̇t = 0 = Πρ− ρ, and the metric is extremal. �

Remark 7. Evidently, the compactness of M plays an important rôle in this argument that rules
out extremal solitons other than extremal metrics. They do exist in the non-compact case, where
they give rise to certain points in the moduli space of these metrics. �

We now show that the evolution equation (14) is essentially the gradient flow of the K-energy,
function that also serve to characterize extremal Kähler metrics [17]. Indeed, given two elements
ω0 and ω1 of MΩ,G, there exists a G-invariant function ϕ, unique modulo constants, such that

ω1 = ω0 + i∂∂ϕ. Let ϕt be a curve of G-invariant functions such that ωt = ω0 + i∂∂ϕt ∈ MΩ,G and
ω(0) = ω0, ω(1) = ω1. We set

M(ω0, ω1) = −
∫ 1

0
dt

∫

M

ϕ̇t(st − πtst)dµt ,

where st and dµt are the scalar curvature and volume form of the metric ωt, πt is the projection
(10) onto the space of G-invariant holomorphic potentials associated with this same metric, and

ϕ̇t =
dϕt
dt

. This definition is independent of the curve t→ ϕt chosen.

Fix ω0 ∈ MΩ,G. The K-energy is defined to be

(16)
MΩ,G

κ−→ R

ω → M(ω0, ω) .
10



We have (see Proposition 2 in [17]) that

d

dt
κ(ωt) = −

∫

M

ϕ̇t(st − πtst)dµt .

Thus, up to the action of the non-negative Green’s operator, the gradient of κ is given by the
right-side of (15). Indeed, along flow paths, the t-derivative of κ(ωt) is just the negative L2

ωt
-inner

product of st − πtst and Gt(st − πtst), respectively.

Proposition 8. Let ωt be a solution of the initial value problem (14). Then

d

dt
κ(ωt) = −

∫

M

(st − πtst)Gt(st − πtst)dµt .

We use this result and the non-negativity of the Green’s operator to rule out non-trivial periodic
orbits of the flow (14). This must be done because in addition to the ones studied above, the flow
equation is also invariant under the one-parameter group of homotheties, where time scales like the
square of the distance. In principle, such an invariance could give rise to periodic orbits.

Proposition 9. The only periodic orbits of the flow equation (14) are its fixed points, that is to

say, the extremal metrics (if any) in MΩ,G.

Proof. Consider the K-energy suitably normalized by a volume factor to make it scale invariant.
If there is a loop solution ωt of (14) for t ∈ [t1, t2], since the volume remains constant, we will have
that κ(ωt1) = κ(ωt2). By the previous proposition, since Gt is a non-negative operator, we conclude
that Gt(st−πtst) = 0 on this time interval. This says that ωt is extremal for each t on the interval,
and so the right side of the evolution equation is zero. Thus, the loop is trivial, a fixed point of the
flow. �

We end this section by showing that the functional (4) decreases along the flow (14). This should
be clear from the way the equation was set-up, or at the very least, expected.

Proposition 10. Let ωt be a path in MΩ,G that solves the flow equation (14). Then

d

dt
ΦΩ(ωt) = −4

∫

(st − πtst)LtGt(st − πtst)dµt ≤ 0 ,

and the equality is achieved if and only if ωt is extremal. In this expression, Lt = (∂∂#)∗(∂∂#) and

Gt is the Green’s operator if ωt.

Proof. Given any variation of the metric with potential function ϕ, we know that

d

dt
Φ(ωt) = −4

∫

sLtϕ̇dµt .

But ϕ̇ = Gt(st − πtst), and since πtst is a holomorphy potential and Lt is self-adjoint, we see that

d

dt
Φ(ωt) = −4

∫

(st − πtst)LtGt(st − πtst)dµt .

Both Lt and Gt are non-negative elliptic operators. Thus, LtGt is elliptic and, furthermore, its
spectrum is contained in [0,∞). For if LtGtϕ = λϕ, we have that GtLtGtϕ = λGtϕ, and taking the
L2-inner product with ϕ itself, we conclude that λ must be real and non-negative. Therefore, the
the expression above for the derivative of ΦΩ along flow paths must be non-positive. If it reaches
the value zero at some t, then we must have that ft = Gt(st − πtst) is a holomorphy potential and
∆tf = (1 − πt)st is an element of the image of 1 − πt. Thus, ft is L2-orthogonal to (1 − πt)st.
An integration by parts argument yields then that ∇tft must be zero, and so the function ft is a
constant, which is necessarily zero. Thus, st = πtst and the metric ωt is extremal. �

It is clear that we could have used the function ΦΩ in the rôle that κ played when proving that
the flow does not have periodic orbits other than its fixed points. In fact, it is better to work
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with ΦΩ itself. For we do not know if κ is in general bounded below on MΩ,G, but the energy
functional ΦΩ has that property indeed. If the solution to the flow equation were to exist for all
t ∈ [0,∞), the monotonicity result above would lead us to expect that, as t→ ∞, the sequence ωt
should be getting closer and closer to an extremal metric. We shall make several remarks about
this possibility later on, but our discussion here of both, κ and ΦΩ, serves to show the similarities
in their behaviour along solution paths to the the extremal flow equation. This is rather natural
since they are both functions that can be used to characterize extremal Kähler metrics.

4. The linearized flow equation

Consider a family of metrics in MΩ,G of the form ωt(v) = ωϕ + i∂∂α(t, v), with α(t, 0) = 0. We

set β = βt =
dα(t, v)

dv
|v=0. The linearization of (15) at ωϕ in the direction of β is given by

∂tβt =
d

dv
(G(t,v)((1 − π(t,v))s(t,v))) |v=0 .

Of course, the argument of the v-differentiation in the right side involves quantities associated with
the metric ωt(v).

In the remaining part of this section we use the subscript ϕ, or no subscript at all, to denote
geometric quantities associated with the metric ωϕ.

We have that
ds(t,v)

dv
|v=0= −1

2
∆2
ϕβ − 2(ρϕ, i∂∂β)ϕ .

Since the variation of the Green’s operator is −Gϕ( d
dv

∆(t,v))Gϕ (keep in mind that this operator
needs to be applied only to s−πs, a function that is orthogonal to the constants), using the relation
between ρϕ and Πϕρϕ, we obtain that

∂tβ = −1

2
∆ϕβ − 2Gϕ(Πϕρϕ, i∂∂β)ϕ −Gϕ

(

d

dv
π(t,v)s(t,v) |v=0

)

.

By Lemma 2, we may write this as

(17) ∂tβ = −1

2
∆ϕβ − 2Gϕ(Πϕρϕ, i∂∂β)ϕ −Gϕ(∂#

ϕ β,XΩ)ϕ ,

where XΩ = ∂#
ϕ (πϕsϕ) is the holomorphic vector field of the class Ω. Notice that

Pϕ(β) := Gϕ(∂#
ϕ β,XΩ)ϕ

is a pseudo-differential operators of order −1 in β whose coefficients depend non-linearly on the
coefficients of the metric ωϕ.

We summarize our discussion into the following

Theorem 11. Let (M,J,Ω) be a polarized Kähler manifold and let G be a maximal compact

subgroup of Aut(M,J). The extremal flow equation (15) (or equivalently, (14)) in MΩ,G is a non-

linear pseudo-differential parabolic equation.

Remark 12. For a generic manifold (M,J) the non-trivial holomorphic fields, if any, have no
zeroes, and the space of real holomorphy potentials reduces to the constant functions. Under that
hypothesis, the pseudo-differential term of order −1 in the right side of the linearized flow equation
(17) vanishes, and the equation reduces to

∂tβt = −1

2
∆ϕβ − 2Gϕ(Πϕρϕ, i∂∂β)ϕ .
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This is still a pseudo-differential equation, a zeroth-order perturbation of pseudo-differential type
of the standard time dependent heat equation. Thus, even for generic complex manifolds of Kähler
type, the pseudo-differential nature of our flow equation remains in place. �

Remark 13. Even when the cohomology class Ω under study is the canonical class c1 (which a
fortiori must then have a sign), the extremal and Ricci flow do not necessarily coincide with one
another. That will only be the case if we know a priori that πs is a constant, which as we saw
earlier, is a rather non-trivial condition to impose and only happens if the Futaki character of the
canonical class vanishes. Such a restrictive condition fails, for instance, when the manifold is the
blow-up of CP

2 at one or two points. �

We now introduced an approximate linearized equation whose solution is needed in our study of
local solvability of (15). In order to do so, we make some preliminary observations.

Let T be a positive real number to be determined later and set I = [0, T ]. A scale Y = {Yj}j≥0

of Banach spaces is a countable family of complete normed spaces such that Yj ⊃ Yj+1 and each
Yj is dense in Y0. Given one such, we define

C(j,k)(I;Y) = C0(I;Yj) ∩ · · · ∩ Cj−k(I;Yk) ,
and provide it with the norm

‖v‖j,k = sup
t∈I

{ sup
0≤r≤j−k

{‖∂rt v(t)‖j−r}} .

In what follows, where we shall consider metrics of the form ωt = ω+ i∂∂ϕt for path of functions
ϕt that begin at 0 when t = 0, we shall always use the scale of Sobolev spaces

Yj = L2
2j,G(M)

as defined by the background metric ω. When t varies on the interval [0, T ], if we choose T
sufficiently small, all the metrics ωt will be equivalent, and the Sobolev spaces defined by them will
be equivalent to each other, with equivalent norms. We let the Sobolev order jump by 2 because
the operator F (ϕ) in the right side of (15),

F (ϕ) := Gt(st − πtst) ,

is of second order, the one reason for the peculiar definition of the scale Yj we shall use. And recall
that by the Sobolev embedding theorem, we know that L2

k(M) is a Banach algebra whenever k > n.
Thus, for as long as the metric ωt is equivalent to ω, provided that k > n, we have a continuous
mapping

F : L2
k+4(M) 7→ L2

k+2(M) .

Proposition 14. Assume that a solution ϕ(t) of (15) is in C(k+1,0)(I;Y) on the interval I for some

integer k such that 2k > n + 2. Then all the values of ∂rtϕ(t) (1 ≤ r ≤ k + 1) restricted to t = 0
are completely determined and ∂rtϕ(t) |t=0:= ϕr ∈ Yk+1−r = L2

2k+2−2r,G(M).

Proof. The initial condition ϕ |t=0 is zero, and the equation itself sets the value of ∂tϕ |t=0=
F (0) = Gω(sω − πωsω) that is evidently in L2

2k,G(M).

The relation (17) for β = ∂tϕt says that

d

dt
β = −1

2
∆ϕβ + P0(ϕ)β ,

where P0 is a pseudo-differential operator of order zero whose coefficients depend on the coefficients
of the metric ωϕ and its curvature tensor. Since ϕt ∈ C(I;L22k(M)) and 2k > n+2, by the Sobolev
embedding theorem, these coefficients are continuous functions. By regularity of pseudo-differential
operators on Sobolev spaces, we obtain that ∂tβ = ∂2

t ϕt ∈ L2
2(k−1)(M), which is still a continuous

function because 2(k − 1) > n.
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If we differentiate the expression above for β = ∂tϕt with respect to t, we obtain

d2

dt2
β = −1

2
∆ϕ

d

dt
β − 1

2
Lϕ(β)β + P0(ϕ)

d

dt
β + P0,ϕ(β)β ,

where Lϕ(β) and P0,ϕ(β) are the linearizations of ∆ϕ and P0(ϕ) at ϕ in the direction of ∂tϕ,
respectively. The first is an operator of order two whose coefficients are continuous. By the metric
dependence of P0(ϕ), the latter is a pseudo-differential operator of order zero whose coefficients are
also continuous functions. Hence, ∂2

t β = ∂3
t ϕt ∈ L2

2(k−2)(M).

Iteration of the argument above yields that

∂rtϕ = Fr(ϕ, ∂tϕ, . . . , ∂
r−1
t ϕ) ,

where Fr is some operator whose coefficients depend upon the coefficients of the metric ωϕ =

ω + i∂∂ϕ. The desired result for the regularity of ∂rtϕ follows again using the Sobolev embedding

theorem and the known regularity of the lower order time derivatives ∂jtϕ, 0 ≤ j ≤ r − 1. �

Assume given Cauchy data ϕ0 = 0 for (15) and let ϕr = ∂rtϕ(t) |t=0 be the sequence of coefficients
of the Taylor series of ϕ(t) given by the proposition above. The Cauchy data ϕ0 determines the
sequence ϕr, 1 ≤ r ≤ k + 1. We consider the metric space:

(18) W (I) = W k(I) = {ψ(t) ∈ C(k+1,0)(I;Y) : ∂rtψ(t) |t=0= ϕr, 0 ≤ r ≤ k + 1} .
It is not empty, as can be seen by solving the Cauchy problem for a suitable parabolic equation.

By a continuity argument, for any ψ(t) ∈ W (I) the form ωψ = ω + i∂∂ψ(t) is positive provided
that t is sufficiently small. Hence, ωψ defines a Kähler metric. This metric is not smooth in general.
However, if 2k > n+ 2, by the Sobolev embedding theorem, ωψ is at least C2, and the operator in
the right side of (17) will make sense when ψ plays the rôle of ϕ. Thus, we set

(19) P0(ψ)b = −2Gψ(Πψρψ, i∂∂b)ψ −Gψ(∂#
ψ b,XΩ)ψ .

Then P0(ψ) is a pseudo-differential operator of order zero in b, whose coefficients depend upon the
coefficients of the metric ωψ and its curvature tensor, all of which are continuous functions. For
each t on a time interval where all the metrics ωψ are uniformly equivalent, we have that

(20) −1

2
∆ψ + P0(ψ) : L2

2,G(M) → L0
0,G(M) = L2(M)

continuously. We consider the equation

(21)
d

dt
b = −1

2
∆ψb+ P0(ψ)b ,

whose Cauchy problem will be studied in the next section. We shall refer to it as the approximate

linearized equation, the reasons being —we hope— clear at this point.
We end this section with the following

Proposition 15. Let ϕ1 be the Cauchy data for (21). If b(t) ∈ C(k,0)(I,Y) is a solution, then

∂rt b |t=0= ϕr+1, 0 ≤ r ≤ k.

Proof. We have seen above that if ϕ(t) satisfies (15), then

∂rtϕ = Fr(ϕ, ∂tϕ, . . . , ∂
r−1
t ϕ) , r ≥ 2 ,

where Fr is some operator whose coefficients depend upon the coefficients of the metric ωϕ =

ω + i∂∂ϕ, and whose restriction to t = 0 depends only on the sequence ϕ0, ϕ1, . . . , ϕr−1. The
approximate linearized equation (21) is obtained from the linearization of (15) given in (17), when
we replace the rôle played by ϕ(t) by that of ψ(t). But ψ(t) and ϕ(t) have the same coefficients in
their Taylor expansions up to order k + 1. Therefore, the solution b(t) to the Cauchy problem of
(21) with data b(0) = ϕ1 will have necessarily a Taylor series of order k that agrees with the Taylor
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series of the solution to the Cauchy problem of linearized equation (17). The conclusion follows by
Proposition 14. �

5. Local solvability of the extremal flow equation

In this section, we prove local time existence of solutions to the extremal flow (15). We do
so by adapting to our situation a method of T. Kato for the solvability of abstract differential
equations and non-linear problems [12]. The pseudo-differential nature of our linearized equation
(17) makes the task harder. But fortunately enough, the strictly pseudo-differential part of the
equation is lower order, and most of the analysis is based on that of the standard time-dependent
heat equation.

5.1. The Cauchy problem for the approximate linearized equation. From now on, we take
k to be an integer such that 2k > n + 2 and Yj = L2

2j,G(M) as in the previous section. Given

Cauchy data ϕ0 = 0 for (15), Proposition 14 determines the sequence {ϕj}k+1
j=0 , and that in turn

allows us to define the space W (I) of (18). The interval I = [0, T ] will be determined later.
For ψ ∈ W (I), we consider the metrics ωψ = ω + i∂∂ψ and the Cauchy problem of the approx-

imate linearized equation (21). Notice that in that equation, P0(ψ) is given by (19), a pseudo-
differential operator of order zero whose coefficients depend non-linearly on the coefficients of the
metric ωψ and its curvature tensor.

Let p(t, s) be the evolution operator of

d

dt
b = −1

2
∆ψb .

Thus, p(t, s) is a two-parameter family of strongly continuous operators on Y0 and Y1, respectively,
such that p(t, s)p(s, r) = p(t, r), p(t, t) = 1, and for b ∈ Y1 we have

(22)
∂tp(t, s)b = −1

2∆ψ(t)p(t, s)b ,
∂sp(t, s)b = −1

2p(t, s)∆ψ(s)b .

This family of operators exists for 0 ≤ s ≤ t ≤ T , and their operator norm is bounded uniformly by
a constant that only depends upon a bound on I = [0, T ] of the coefficients of ωψ(t). The function
solving (21) with Cauchy data β must satisfy the integral equation

(23) b(t) = p(t, 0)β +

∫ t

0
p(t, s)P0(ψ(s))b(s)ds .

Consider the set of functions b(t) in C(1,0)(I;Y) = C(I;Y0) ∩ C1(I;Y1) such that b(0) = β. The
right hand side of the expression above defines an operator in this space,

P : b 7→ p(t, 0)β +

∫ t

0
p(t, s)P0(ψ(s))b(s)ds ,

and by the explicit form of the coefficients of P0(ψ) mentioned above, combined with the continuity
of pseudo-differential operators on Sobolev spaces, we have that

‖Pb− P b̃‖ ≤ CT‖b− b̃‖ ,
where C is a constant that depends upon the L∞-norm of the coefficients of ωψ(t) and its curvature
tensor on the time interval I. A fixed point argument now yields the following result:

Theorem 16. Consider the Cauchy problem for (21) with Cauchy data b(t) |t=0∈ Y1. Then there

exists T such that this problem has a unique solution in C(1,0)(I;Y) = C(I;Y0) ∩ C1(I;Y1). The

value of T only depends on supremum norms of the coefficients of ωψ(t) and its curvature tensor.
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Of course, the regularity of the solution in the theorem above can be improved if we start with
a better initial condition. For that observe that the coefficients of the operator ∆ψ are curves in
C(k,0)(I;Y), and consequently,

∆ψ(t) : L2
2j(M) 7→ L2

2j−2(M) , 1 ≤ j ≤ k ,

continuously. While the metrics remain equivalent, we can choose a uniform constant for the
operator norm of these maps, and (22) holds for b ∈ L2

2j(M) with j’s in this range. Then we have

Corollary 17. If the initial data b(t) |t=0= ϕ1 ∈ Yk, the solution to the Cauchy problem for (21)
belongs to C(k,0)(I;Y) = C(I;Yk) ∩ · · · ∩ Ck(I,Y0).

Proof. The arguments in the proof of the theorem and the remarks made above show that we
now have a solution b(t) to the Cauchy problem for (21) that is in C(I;Yk) ∩ C1(I;Yk−1). This
solution satisfies (23) with β = ϕ1.

We can differentiate repeatedly the identity (21) in order to show that the regularity of b(t) with
this initial condition can be improved. Notice that the coefficients of the second order operators
drt∆ψ(t), 1 ≤ r ≤ k − 1, are curves in C(I;L2

2k−2r), and so we have drt∆ψ(t) ∈ C(I;L(Yj+r+1,Yj))
for 0 ≤ j ≤ k−1− r. Here, L(X,Y ) is the space of linear bounded operators from X to Y , and the
assertion follows because in the stated range, L2

2k−2r · L2
2j+2r ⊂ L2

2j. This suffices to conclude that

the contributions to dl+1
t b arising from dlt∆ψb are in L2

2k−2l−2 if we already know that b ∈ C(k,l)(I;Y).

The analysis of the contributions to dl+1
t b arising from dlt(P0(ψ)b) is similar. This time, the

coefficients of the operators drt (Pψ(t)) are curves in C(I;H2k−2r−2), one degree worse than those of
drt∆ψ(t), but the operators are of pseudo-differentials of order zero instead. The desired improved
regularity follows by the same arguments as the ones in the previous paragraph. �

5.2. An elliptic equation for γ − F . Let us recall that F (ϕ) = Gϕ(sϕ − πϕsϕ) is the second
order non-linear operator defined by the right side (15). The derivative Lψ of this map at a general
point ψ in Yk+1 was computed in §4 and equals the operator in the right side of (17):

(24) Lψb = −1

2
∆ψb− 2Gψ(Πψρψ, i∂∂b)ψ −Gψ(∂#

ψ b,XΩ)ψ .

Since the top part of this linearization is the negative operator − 1
2∆ψ, while the lower order term

is a pseudo-differential operator of order zero, coercive estimates for this linearization imply that
λ− Lψ is an invertible operator as a map, say, from Y1 to Y0, for a sufficiently large constant λ.

Let us then take a constant λ, and consider the non-linear elliptic map

(25)
Yk+1 −→ Yk

ϕ 7→ λϕ− F (ϕ) .

We remind the reader here of the sequence {ϕr} given by Proposition 14, whose first element is
ϕ0 = 0.

Proposition 18. For λ sufficiently large, there are neighborhoods O and V of ϕ0 and −ϕ1 in Yk+1

and Yk, respectively, such that the restriction of (25) to O is an isomorphism onto V.

Proof. This is a consequence of the Inverse Function Theorem. Indeed, the linearization λ−L0 is
an invertible operator from Y1 to Y0. Hence, if f ∈ Yk, there exists an element b ∈ Y1 that satisfies
the equation

(λ− L0)b = f .

We just need now to show that the regularity of b can be improved.
For that observe that identity above says that the image of b under L0 is in Y1, and by the

regularity properties of λ − L0, we must have b ∈ Y2. By iteration of this argument, we conclude
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that b ∈ Yk+1, and so, b is an element of the tangent space of Yk+1 at 0. The desired result
follows. �

Corollary 19. Let ψ ∈ Yk be sufficiently closed to −ϕ1. Then, for large λ, the equation

λϕ− F (ϕ) = ψ

has a solution ϕ ∈ Yk+1. The solution is unique if it is required to be closed enough to ϕ0 = 0.

In the sequel, we let D = Dk be the open neighborhood of ϕ0 in Yk+1 where the operator F (ϕ)
is defined and smooth.

5.3. A fixed point argument: local solvability of the non-linear equation. Proceeding by
analogy with [12], we define Eϕ0

(I) to be the set of curves ψ(t) ∈W k(I) ⊂ C(k+1,0)(I;Y) such that

‖∂ltψ(t) − ϕl‖k+1−l ≤ R, l = 0, . . . , k, t ∈ I ,

for some positive constant R. The value of R is chosen so the ball in Yk+1 with center ϕ0 and radius
R is contained in the domain D where the operator F (ϕ) is defined. This space is not empty for
some R > 0 and some I = [0, T ].

By the form (24) of the linearization of F (ϕ) at ψ, we may conclude that if ψ1 and ψ2 are
elements of Yk+1, then the operator norm, as a map from Yk to Y0, satisfies the estimate

‖Lψ1
− Lψ2

‖k,0 ≤ C‖ψ1 − ψ2‖1 ,

for some constant C. Indeed, the top part of Lψ in (24) is half of the Laplacian, and its lower
order part is a zeroth order pseudo-differential operator with nicely behaved coefficients. Then the
regularity of pseudo-differential operators on Sobolev spaces yields the assertion made.

We now define a key mapping in our proof of the local time existence to the extremal flow. Let
ψ(t) be an element of Eϕ0

(I), and consider the solution b(t) of (21) given in Theorem 16, with
initial data ϕ1. We then solve the equation

(26) λϕ− F (ϕ) = −b(t) + λ

(

ϕ0 +

∫ t

0
b(u)du

)

,

where we use a real number λ such that, if L0 is the linearization (24) of F (ϕ) at ϕ = ϕ0, then
λ− L0 is an isomorphism.

We think of this as a stationary equation in ϕ, that is solved for each t ∈ I. Since for t sufficiently
small the right side of the equation lies in a neighborhood of −ϕ1, Corollary 19 applies to produce
a solution ϕ(t) in a neighborhood of ϕ0.

The following two results are the versions of Proposition 7.4 and Proposition 7.6 in [12] adapted
to our problem. We give proofs here for the sake of completeness.

Proposition 20. For sufficiently small t, (26) has a unique solution ϕ(t) in a neighborhood of ϕ0 in

D ⊂ Yk+1, with ϕ(0) = ϕ0 = 0. Furthermore, ϕ(t) ∈ C(k+1,0)(I;Y) and ∂rtϕ(t) |t=0= ϕr, 0 ≤ r ≤ k
provided T is chosen sufficiently small, uniformly in ψ ∈ Eϕ0

(I). In that case, ϕ(t) ∈ Eϕ0
(I).

Proof. The operator ϕ 7→ λϕ − F (ϕ) is a local diffeomorphism of a neighborhood of ψ(t) in
Yk+1 into a neighborhood of λψ − F (ψ) in Yk. By Theorem 16, the right side of (26) is a curve
in C(I,Yk) that has value −ϕ1 at t = 0. By Corollary 19, we may solve the equation uniquely for
ϕ(t) in a Yk+1-neighborhood of ϕ0 and obtain that ϕ(t) ∈ C(I,Yk+1). This requires to choose T
sufficiently small but uniformly in ψ ∈ Eϕ0

(I).
Formal differentiation of the equation solved by ϕ(t) yields that

(λ− Lϕ(t))∂tϕ = λb− ∂tb = (λ− Lψ(t))b(t) .

By the invertibility of the operator λ−Lϕ(t) and the known regularity of the right side, it follows that
∂tϕ ∈ C(I,Yk) and has value ϕ1 at t = 0. Iterated differentiation yields that ϕ(t) ∈ C(k+1,0)(I;Y)
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and has the desired coefficients in its Taylor series expansion up to order k. Moreover, the way the
equation is solved, we have that

‖∂ltϕ(t) − ϕl‖k+1−l ≤ R

for t ∈ I. This completes the proof. �

Proposition 21. For ψ ∈ Eϕ0
(I), let ϕ(t) ∈ Eϕ0

(I) be the solution curve given by the previous

proposition. If T is sufficiently small, the mapping

(27)
Eϕ0

(I) −→ Eϕ0
(I)

ψ(t) −→ ϕ(t)

is a contraction in the metric induced by the norm |||w|||1 = supt∈I ‖w(t)‖1, relative to which,

Eϕ0
(I) is complete.

Proof. Given a curve b(t) in Yq, we define a norm by |||b|||q = supt∈I ‖b(t)‖q. We shall only make
use of the 1 and 0 norm, respectively.

Let ψ1 and ψ2 be two elements of Eϕ0
(I) and let b1 and b2 be the solutions to the corresponding

approximate linearized equations with the same initial condition ϕ1. We then have that

b1(t) = pψ1
(t, 0)ϕ1 , b2(t) = pψ2

(t, 0)ϕ1 ,

where pψ1
(t, s) and pψ2

(t, 0) are the evolution operators of the linear equations ∂tv = Lψ1(t)v and
∂tv = Lψ2(t)v, respectively. Consequently,

b2(t) − b1(t) = (pψ2
(t, 0) − pψ1

(t, 0))ϕ1 ,

and using the identity

pψ2
(t, 0)ϕ− pψ1

(t, 0)ϕ = −
∫ t

0
pψ2

(t, τ)(Lψ2(τ) − Lψ1(τ))pψ1
(τ, 0)ϕdτ ,

we obtain the estimate

‖b2(t) − b1(t)‖0 ≤ C‖ϕ1‖k
∫ t

0
‖Lψ2(τ) − Lψ1(τ)‖k,0dτ

for some constant C. But we have observed that ‖Lψ2(τ) − Lψ1(τ)‖k,0 is bounded by a constant
times ‖ψ2(τ) − ψ1(τ)‖1. For small enough R, this last constant can be chosen uniformly. We then
obtain that

|||b2 − b1|||0 ≤ CT‖ϕ1‖k|||ψ2 − ψ1|||1 ,
showing that the map

ψ(t) 7→ b(t)

is a contraction from the 1-norm to the 0-norm, with contraction factor arbitrarily small with T .
That the map ψ(t) 7→ ϕ(t) is a contraction now follows because the map b(t) 7→ ϕ(t) is uniformly

C1 from the 0-norm to the 1-norm. This last map is simply the inverse of ϕ 7→ λϕ−F (ϕ) from Y1

to Y0, and we have that λ−Lϕ(t) is an isomorphism from Y1 to Y0, uniformly in ψ(t) when ψ(t) is
close to ϕ0. �

In view of the previous results, there exists a unique fixed point ϕ(t) of the map (27). Since b(t)
solves (21) with initial data ϕ1, differentiating with respect to t in (26) we obtain:

(λ− Lϕ(t))∂tϕ(t) = −ḃ(t) + λb(t) = (λ− Lϕ(t))b(t) ,

and since λ− Lϕ(t) is injective, we must have that

b(t) = ∂tϕ(t) .

We may now use this fact in carrying the time integral in (26), and conclude that

d

dt
ϕ(t) = F (ϕ(t)) .
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Thus, the fixed point ϕ(t) ∈ Eϕ0
(I) is a solution to the initial value problem (15).

We thus arrive at the following

Theorem 22. Let (M,J,Ω) be a polarized Kähler manifold and let G be a maximal compact

subgroup of Aut(M,J). The extremal flow equation

∂tωt = −ρt + Πtρt

in MΩ,G with a given initial data has a unique solution for a short time.

In fact, our proof carefully analyses how the time of existence depends upon the coefficients of
the metric and its curvature tensor. Indeed, it shows that the local time of existence depends on
the L∞-norm of the coefficients of the initial metric and its curvature operator. We can improve a
bit the statement above in relation to the lifespan of the extremal flow.

Corollary 23. Given an initial condition ω ∈ MΩ,G, the extremal evolution equation has a unique

solution on a maximal time interval 0 ≤ t < T ≤ ∞. If T <∞, then the maximum of the point-wise

norm of the curvature tensor blows-up as t→ T .

The blow-up above, if any, occurs on the Ricci part of the curvature tensor, rather than the full
curvature tensor itself.

6. Further remarks

It is of course important to know when the extremal flow has solutions for all time. Indeed,
once the local time existence is known, the next problem to consider is the use of the flow to
show the existence of extremal metrics representing a given cohomology class Ω, task that could
be accomplished if we manage to prove global time existence and convergence of the metrics as
t→ ∞.

This scheme could not possible work in all cases, as we already know of examples of polarized
Kähler manifolds without extremal metrics [2]. But as a testing ground of its usefulness, we have
started its analysis when pursuing extremal metrics on polarized manifolds (M,J,Ω) with c1 < 0, or
on polarized complex surfaces with c1 > 0. The partial results obtained so far are quite encouraging.

We have two types of fairly strong reasons supporting our belief that this approach will produce
extremal metrics in the said cases. The first of these is directly related to the flow itself, while the
other one involves some relation between this flow and the study of families of extremal problems
as we vary the cohomology class Ω. We discuss them briefly in this section.

The evolution equation (14) implies evolution equations for various metric tensors associated to
the varying metrics. For instance, the Ricci form evolves according to the equation

d

dt
ρ = −1

2
∆ρ+

i∂∂(πs)

2
,

the scalar curvature evolves according to the equation

d

dt
s = −1

2
∆(s− πs) − 2(ρ, i∂∂G(s− πs)) ,

and the Ricci potential evolves according to the equation

d

dt
ψ = −1

2
∆ψ − 2G(ρH , i∂∂(ψ +G(πs))) − (πs− s0) +

1

2µ(M)

∫

ψ(s− πs)dµ .

Here ρH is the harmonic component of ρ, and µ(M) is the volume of M relative to ω.
The first of these equations above shows that the form ρ is a solution to the heat equation for the

time dependent Hodge Laplacian. One might expect that Hamilton’s maximum principle (Theorem
9.1 in [11]) for solutions to the heat equation of the rough Laplacian could be extended to this new
setting. If so, such a result would allow us to conclude that if the initial condition for ρ has a sign,

19



then that sign should be preserve along the flow (14) for 0 ≤ t ≤ T , T the lifespan of the solution.
At the very least, such a result should hold for generic manifolds (M,J).

We could then apply this to manifolds with no non-trivial holomorphic vector fields, such as any
complex manifold (M,J) with negative first Chern class, or most complex surfaces with positive
first Chern classes. Notice that for the blow-up of CP

2 at one point, a manifold that carries non-
trivial holomorphic vector fields, the positivity of the Ricci form is preserved along the flow. This
makes it even more likely that such a result would also hold on any complex surface with positive
c1.

We may also refine our earlier Theorem 3 when dealing with a complex surface of positive first
Chern class. Indeed, we have the following result, whose proof will be given elsewhere.

Theorem 24. Let (M,J,Ω) be a polarized complex surface of positive first Chern class. Given any

Kähler metric g in MΩ,G, the image of the holomorphy potential πgsg is an interval contained in

the set of positive real numbers, interval that only depends on Ω and not on g.

Thus, if for a given initial condition with positive Ricci curvature on a c1-positive surface we
have that solutions to the flow (14) exists for all time, and converge to an extremal metric as time
goes to infinity, the extremal metric so obtained would have positive scalar curvature, as expected.

The preservation of the sign of the Ricci tensor should have very strong implications on the global
analysis of (14). This property has been of utmost importance already in the work of Hamilton
[11], and should remain so in the general analysis of our flow equation as well. If c1 > 0, we could
combine this with plausible global time existence results, and pass to a Cheeger-Gromov-Hausdorff
limit, an important step towards settling the convergence issue.

We venture the following two conjectures.

Conjecture 25. Let (M,J) be a complex manifold of Kähler type polarized by a Kähler class
Ω. If c1(M,J) < 0, there exists an initial condition to the extremal flow (15) equation so that the
solution exists on [0,∞) and, as t→ ∞, converges to a metric of constant negative scalar curvature
representing Ω.

Conjecture 26. Let (M,J) be a complex surface of positive first Chern class polarized by a
Kähler class Ω. Then there exists an initial condition to the extremal flow (15) equation so that
the solution exists on [0,∞) and, as t → ∞, converges to an extremal metric of positive scalar
curvature representing Ω.

The initial condition we have in mind in these two cases is given by a metric whose Ricci form
is negative or positive, respectively. After the work of Yau [23] on the Calabi conjecture, we know
we can always find this type of metrics on any given polarization.

These conjectures are further supported by the results in [21], that we proceed to describe in
brief detail. For a complex manifold (M,J) of complex dimension n, we denote by M the space
of Kähler metrics on (M,J). As before, given a positive class Ω ∈ H1,1(M,C) ∩H2(M,R), we let
MΩ be the space of of Kähler metrics whose Kähler forms represent Ω. We shall also consider the
space M1 of Kähler metrics of volume one, and K1, the space of cohomology classes that can be
represented by Kähler forms of metrics in M1:

(28) K1 = {Ω ∈ H1,1(M,C) : Ω = [ω] for some ω ∈ M1} .

Extremal metrics in MΩ achieve the infimum of the functional ΦΩ in (4), and we have the lower
bound (8):

E(Ω) =

∫

(πgsg)
2dµg .
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One approach to providing (M,J) with a canonical shape would be to find critical points of the
functional

(29)
M1 → R

ω 7→
∫

M

s2ωdµω .

A special metric ω of this type must have the following properties:

a) ω achieves the lower bound E([ω]), that is to say, ω is extremal relative to the polarization
defined by the Kähler class Ω = [ω] that it represents;

b) the Kähler class Ω = [ω] is a critical point of E(Ω) as a functional defined over K1.

Thus, the search for critical points of (29) —or strongly extremal metrics [18]— achieving an
optimal lower bound involves the solution of back-to-back minimization problems: the first solving
for critical points of (4) within a fixed cohomology class Ω, and the second solving for those classes
that minimize the critical value E(Ω) as the class Ω varies within K1. Naturally, we separate the
two problems by, in addition to (4), introducing the functional

(30)
K1 → R

Ω 7→ E(Ω) =

∫

M

(πs)2dµ ,

where the geometric quantities in the right are those associated with any G-invariant metric that
represents Ω, for G a fixed maximal compact subgroup of the automorphism group of (M,J). Its
extremal points will be called either critical or canonical classes. We then have [20] the following

Theorem 27. Let Ω be a cohomology class that is represented by a Kähler metric g, assumed to

be invariant under the maximal compact subgroup G of the biholomorphism group of (M,J). Then

Ω is critical class if and only if
∫

M

(πgsg)(Πgρ, α)dµg = 0

for any trace-free harmonic (1, 1)-form α. In this expression, ρ is the Ricci form of the metric g, π
is the L2 projection (10) onto the space of holomorphy potentials, and Π is its lift (11) at the level

of (1,1)-forms.

This theorem states that Ω is a critical class of (30) if and only if
∫

M

(πgsg)(Πgρ, α)dµg = 0

for any trace-free harmonic (1, 1)-form α. In other words, the form πsΠρ is L2-perpendicular to the
space of trace-free harmonic (1,1)-forms, and therefore, by Hodge decomposition, the class must be
such that

(31) πsΠρ = λω + ∂G∂(∂
∗(πsΠρ)) + ∂∗G∂(∂(πsΠρ)) ,

for λ equal to the L2-projection of (πs)2 onto the constants, divided by 2n:

(32) λ =
1

2n

∫

(πs)2dµg .

In order to study the existence of critical classes, we may consider [21] the evolution equation

(33)
dΩ

dt
= πsΠρ− λω + ∂G∂(∂

∗(πsΠρ)) + ∂∗G∂(∂(πsΠρ)) .

The flow equation (33) defines a dynamical system on K1 provided the solutions remain in K1

throughout time. Unfortunately, this is not true in general [21].
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In the generic case where all non-trivial holomorphic vector fields of (M,J) have no zeroes,
equation (33) can be extended to a dynamical system on

K1 = {Ω ∈ H1,1(M,C) ∩H2(M,R) :
Ωn

n!
= 1} .

Indeed, given Ω ∈ K1, let us define the function

sΩ := 4πn
c1 · Ωn−1

Ωn
.

If Ω were a Kähler class represented by a metric g, this function would be precisely the holomorphy
potential πgsg. The equation

(34)
d

dt
Ω = 2πsΩc1 −

s2Ω
2n

Ω ,

extends (33), which as such is defined only on K1, all the way to a dynamical system on K1.
Solutions to (34) with initial data in K1 remain in K1. In fact, we have that [21]

Theorem 28. Suppose that all non-trivial holomorphic vector fields of (M,J) have no zeroes. Then

solutions to (34) with initial data in K1 converge, as t → ∞, to a stationary point of the equation

in the space K1.

It is then of natural interest to see if solutions to the equation with Cauchy data given by a
positive class, that is to say, an element of K1, remain positive thereafter. We already know [21] of
examples where this is not so, with solutions to the flow equation that are initially in the Kähler
cone but that, in converging to a critical point of the flow in K1, must eventually leave the cone
through its walls.

In fact, this situation occurs already on complex surfaces, where the stability of K1 under the
flow (34) can be analyzed using a criterion giving necessary and sufficient for a cohomology class
to be Kähler, criterion that extends that of Nakai for integral classes. Applied to our problem, if
the Chern number c21 6= 0, we have that a path Ωt solving (34) with initial condition in K1 stays
there forever after if, and only if,

Ω0 · [D] + 8π2(c1 · Ω0)(c1 · [D])

(

ec
2
1
t − 1

c21

)

> 0

for all t ≥ 0 and for all effective divisors D in (M,J). When c21 = 0 we still obtain a similar
criterion, replacing the expression in parentheses above by its limit t as c21 → 0.

This forward stability of the Kähler cone holds in very general situations, as can be seen by a
run-down of the various cases in the Enriques-Kodaira classification of complex surfaces [21]. In
particular, it holds if the complex surface has a signed first Chern class c1, condition under which
all solutions to the flow (34) that start in K1 stay there forever after, and as t → ∞, they either
converge to the only critical class

√
2(sgn c1)c1/c

2
1 of (30) if c21 > 0, or all classes are critical and

the flow is constant if c1 = 0.
Notice that the positivity condition above involves the evaluation of c1 over the divisor D, and

only in the case when there are effective divisors D for which c1 · [D] changes sign from one to
another could the condition fail to hold. Merely fixing the sign of c1 prevents this from happening,
but the counterpart to that is of great interest. It shows that the existence of divisors on which c1
achieves values of opposite signs is in effect part of the reason why the the Kähler cone might be
poorly behaved in relation to the flow (33).

When the surface in question has positive first Chern class and carries non-trivial holomorphic
fields, the forward stability of the Kähler cone under the flow (33) seems to hold also, though we
have only verified that for the case of CP

2 blown-up at one point.
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In higher dimension and for manifolds (M,J) where c1 is either positive or negative, the space of
Kähler classes is also forward stable under the flow (34). As a matter of fact, there is a positivity
criterion that generalizes the one outlined above for surfaces, which guarantees forward stability
of the Kähler cone under the flow. Manifolds with signed first Chern classes meet this criterion,
though for these particular cases one can also give a direct argument that proves the flow stability
of the cone.

All of these facts combined give further support to the conjectures made earlier. We end up
venturing a final one.

Conjecture 29. Suppose the flow equation (34) with initial data in the Kähler cone converges to
a stationary point that is outside it. Then the extremal Kähler cone is not a closed subset of the
Kähler cone.

In other words, under the given hypothesis, there should exist cohomology classes in the Kähler
cone that cannot be represented by extremal metrics.
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