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Abstract. Global results are proved about the way in which Boyland’s forcing partial
order organizes a set of braid types: those of periodic orbits of Smale’s horseshoe map for
which the associated train track is a star. This is a special case of a conjecture introduced
in [9], which claims that forcing organizes all horseshoe braid types into linearly ordered
families which are, in turn, parameterized by homoclinic orbits to the fixed point of code 0.
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1. Introduction and background

Given a discrete dynamical system and information about one of its periodic orbits, can
one derive further information about the system: for example, the existence of other periodic
orbits, or that it has positive topological entropy? The problem of periodic orbit forcing in
particular — that is, to determine whether the presence of a certain periodic orbit implies the
existence of other periodic orbits — has interested dynamicists for many years. Sharkovskii’s
theorem for self-maps of the real line is unrivalled in elegance: it defines a total order ¹ on
the postive integers with the property that ifm ¹ n then any continuous self-map of R which
has a periodic orbit of period n must also have a periodic orbit of period m. Moreover, the
theorem is sharp: for any initial segment of the order, there exists a continuous self-map of R
having periodic orbits of the corresponding periods and no others. In this context, periodic
orbits are specified by their period alone. One could also, for example, use the order on R to
specify a periodic orbit by its permutation, and then consider forcing among permutations.
Many authors have studied this problem, which is now quite well understood.
The corresponding problem in dimension 2 (i.e. for self-homeomorphisms of the disk D2) is

much harder. In this case, the period alone is an inadequate specification of a periodic orbit:
given any set of positive integers which includes 1, a self-homeomorphism of D2 (or indeed of
any other surface) can be constructed which has periodic orbits of the given periods and no
others. Boyland and others observed that, by analogy with the permutation in dimension 1,
adding topological information about the way in which the points of a periodic orbit of a disk
homeomorphism ‘braid around’ one another produces a non-trivial theory. More precisely,
Boyland defined the braid type bt(P, f) of a periodic orbit P of a disk homeomorphism f to
be the isotopy class of f relative to P , up to topological change of coordinates. A braid type
γ is then said to force another braid type β if every disk homeomorphism having a periodic
orbit of type γ also has one of type β. Boyland showed that forcing is a partial order on the
set of braid types. This leads to the question of how forcing organizes this set. Of course,
if the question is to be answered, one must be able to decide how two given braid types are
related by the partial order. This can be done using Bestvina and Handel’s algorithmic proof
of Thurston’s classification theorem for surface homeomorphisms up to isotopy. However,
not only is this process very time consuming in practice, but also the information it gives is
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only local, in the sense that the ability to compare two given braid types gives no information
about the global structure of the partially ordered set of braid types.
This paper gives global information about the restriction of the forcing order to a subset

of braid types, namely those of periodic orbits of Smale’s horseshoe map for which the
associated train track is a star (that is, a tree with exactly one vertex of valence larger
than 1). In [9], a conjecture is stated which describes how forcing organizes all braid types
of the horseshoe. It claims that the symbolic code of each periodic orbit can be parsed into
two segments, the prefix and the decoration. All orbits with the same decoration have the
same topological train track type, and form a family which is totally ordered by the forcing
relation; the position of an orbit within this totally ordered set is determined by its prefix.
Within families, this trivializes the problem of comparing braid types: simply compare their
symbolic codes using the unimodal order. The conjecture also describes the forcing relation
between families in terms of the forcing between homoclinic orbits associated to each family.
In this paper the conjecture is proved for the (infinite) family of decorations for which

the corresponding train track type is a star. There is one such decoration for each rational
m/n ∈ (0, 1/2]: the train track associated to m/n is a star with n edges, and the train track
map rotates the central vertex of the star by m/n.
The approach taken is to start with train track maps of the appropriate topological type,

and to identify those of their periodic orbits for which the star is itself a train track (after
it has been truncated outside the span of the orbit). The combinatorics of such orbits are
intricately related to the position of the rational m/n within the Farey graph.
Only after these train track orbits have been determined is their relationship with periodic

orbits of Smale’s horseshoe investigated. Conceptually, the most important relationship
between the horseshoe and the star maps (and indeed the relationship which motivates the
conjecture under discussion) is that the star maps (or, more accurately, the corresponding
thick tree maps) can be obtained from the horseshoe by pruning: that is, by performing
an isotopy which destroys all of the dynamics within a given open subset of the disk, while
leaving the dynamics unchanged elsewhere. Since this construction is not used elsewhere in
the paper, however, it is only described on an intuitive level, and a less general approach to
showing that star periodic orbits have horseshoe braid types is adopted.
Section 1.1 describes the parsing of the code of a horseshoe periodic orbit into prefix and

decoration, and provides a statement of the conjecture of [9] and the special case of it which
will be proved here. Section 1.2 contains a brief summary of the properties of the Farey
graph which will be used in the remainder of the paper. The main results of the paper can
be found in Section 2, in which star maps and the concept of a train track orbit are defined,
and the set of such orbits is determined. Section 3 details the connection between the star
maps and the horseshoe, and Section 4 is devoted to the proof of a technical lemma.
The paper is often technical: it is the nature of the subject. Its structure, however, is

simple. Lemma 1.17 identifies the periodic orbits of the horseshoe which have the property
that their period is equal to the sum of the denominators of the endpoints of their rotation
interval. The symbolic codes of these orbits have the property that the prefix is determined
by one endpoint of the rotation interval, and the decoration by the other. Having described
the combinatorics of train track orbits of star maps (Section 2), it is possible to compute
their rotation intervals, which have the property considered in Lemma 1.17. Since star orbits
have horseshoe braid type (Section 3), it follows that the symbolic codes of the train track
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orbits are as given by the lemma. The total order within families follows directly from the
nature of the maps being considered.

1.1. Prefix and decoration for horseshoe periodic orbits. In this paper the standard
model F : D2 → D2 of Smale’s horseshoe map [15] depicted in Fig. 1 will be used; symbolic
dynamics in the set Σ2 = {0, 1}

Z is applied in the usual way to describe points x ∈ D2 whose
(past and future) orbits lie entirely in the square S. The definitions and results summarized
in this section can be found in [11, 9].
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Figure 1. Symbolic dynamics for the horseshoe

A periodic orbit P of F of (least) period n is described by its code cP ∈ {0, 1}
n, which is

given by the first n symbols of the itinerary k(p) of its rightmost point p: thus, for example,
the period 5 orbit which contains the point with itinerary 01001 has code 10010. A word
w ∈ {0, 1}n is therefore the code of a period n horseshoe orbit if and only if it is maximal:
that is, the infinite repetition w ∈ {0, 1}N of w is strictly greater than its shifts σi(w) in the
unimodal order for 1 ≤ i < n.
The following definitions are due to Boyland [5, 6]. Let f : D2 → D2 and g : D2 → D2 be

orientation-preserving homeomorphisms having periodic orbits P and Q respectively. Then
(P, f) and (Q, g) have the same braid type if there is a homeomorphism h : (D2, P )→ (D2, Q)
such that f : (D2, P ) → (D2, P ) is isotopic (rel. P ) to h−1 ◦ g ◦ h : (D2, P ) → (D2, P ) (if
either P or Q lies on ∂D2, then the corresponding homeomorphism should first be extended
arbitrarily over an exterior collar). The braid type bt(P, f) of (P, f) is its equivalence class
under this relation. Since the braid types of period n orbits correspond to conjugacy classes
in the mapping class group of the n-punctured disk, they can be classified as finite order,
reducible, or pseudo-Anosov by means of Thurston’s classification [16]. Boyland’s forcing
relation ≤ on the set BT of braid types is defined as follows: β ≤ γ if and only if every
orientation-preserving homeomorphism f : D2 → D2 which has a periodic orbit of braid type
γ also has one of braid type β. Boyland proved [5, 6] that ≤ is a partial order on BT.
An alternative characterisation of braid type indicates the dynamical significance of the

definition: (P, f) and (Q, g) have the same braid type if and only if there exists an isotopy
{ft} from f to g and a path Pt in (D

2)n from P to Q such that Pt is a (least) period n orbit
of ft for all t.
The braid type bt(P, F ) of a horseshoe periodic orbit P will here be denoted simply by

bt(P ). It is well known that two periodic orbits P and Q of the horseshoe whose codes cP
and cQ differ only in their final symbol have the same braid type. Thus, for example, the
two orbits with codes 10010 and 10011 have the same braid type; the code of either one of
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these orbits is often written cP = 1001
0
1 to reflect the fact that the distinction between the

two is unimportant in so far as braid type is concerned.
The conjecture presented in [9] is based upon the parsing of the code of any horseshoe

periodic orbit P which is not of finite order braid type into two parts: the prefix and the
decoration. In order to define these, it is necessary first to introduce a word cq ∈ {0, 1}

n+1 for
each rational q = m/n ∈ (0, 1/2], and then to use these to define the height q(P ) ∈ Q∩(0, 1/2]
of P : this is an invariant of braid type which plays a central role in the conjecture. Motivation
for the definition is given in [11], and a program for computing heights of horseshoe periodic
orbits can be found at [12].
The definition of the words cq is first given in an easily accessible form: a more practical

way of computing them is described afterwards.

Definition 1.1. Given q = m/n ∈ Q ∩ (0, 1/2], define a word cq ∈ {0, 1}n+1 as follows. Let
Lq be the straight line in R2 from (0, 0) to (n,m). For 0 ≤ i ≤ n, let si = 1 if Lq crosses
some line y = integer for x ∈ (i− 1, i+ 1), and si = 0 otherwise. Then cq = s0s1 . . . sn.

Example 1.2. Figure 2 shows that c3/10 = 10011011001.
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Figure 2. c3/10 = 10011011001

The words cq are manifestly palindromic. Their general form is indicated by the examples
in Figure 3, in which the column headings and row headings denote the numerator and
denominator of q respectively. The n − 2m + 1 zeros are partitioned ‘as even-handedly as
possible’ into m subwords (possibly empty), separated by 11.

1 2 3 4

3 1001
4 10001
5 100001 101101
6 1000001
7 10000001 10011001 10111101
8 100000001 101101101
9 1000000001 1000110001 1011111101
10 10000000001 10011011001
11 100000000001 100001100001 100110011001 101101101101

Figure 3. Examples of the words cq
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The following more practical method for determining cq is easily shown to be equivalent:
given q = m/n, define integers κi(q) for 1 ≤ i ≤ m by

(1) κi(q) =

{
bn/mc − 1 if i = 1
bin/mc − b(i− 1)n/mc − 2 if 2 ≤ i ≤ m

(here bxc denotes the greatest integer which does not exceed x). Then
cq = 10

κ1(q)110κ2(q)11 . . . 110κm(q)1.

Example 1.3. Let q = 3/7, so κ1(q) = b7/3c − 1 = 1, κ2(q) = b14/3c − b7/3c − 2 =
4− 2− 2 = 0, and κ3(q) = b21/3c − b14/3c − 2 = 7− 4− 2 = 1. Thus c3/7 = 10111101.

Height is an invariant of horseshoe braid type taking rational values in (0, 1/2]. The
next lemma [11] is necessary for the definition, or at least for the definition to be sensible:
it implies that the height function q : {0, 1}N → [0, 1/2] is decreasing with respect to the
unimodal order ≺ on {0, 1}N.

Lemma 1.4. For each q ∈ Q ∩ (0, 1/2], the two words cq0
1 are both maximal. Moreover, if

q, r ∈ Q ∩ (0, 1/2] with q < r then cr
0
1 ≺ cq

0
1.

Definitions 1.5. Let c ∈ {0, 1}N. Then the height q(c) ∈ [0, 1/2] of c is given by

q(c) = inf{q ∈ Q ∩ (0, 1/2] : q = 1/2 or cq0 ≺ c}.

The height q(P ) of a horseshoe periodic orbit P of code cP is given by q(P ) = q (cP ).

The algorithm described in the following lemma [11] can be used to compute q(c) for
any c ∈ {0, 1}N which contains the word 010. In particular (see [11]), it can be used to
compute q(P ) for any periodic orbit P : if cP doesn’t contain the word 010, then change the
final symbol of cP from 1 to 0 before applying the algorithm. In particular, the height of a
horseshoe periodic orbit is rational and strictly positive.

Lemma 1.6. Let c ∈ {0, 1}N, and suppose that c contains the word 010. Then q(c) can be
calculated as follows. If c does not begin 10, then q(c) = 1/2. Otherwise, write

c = 10κ11µ10κ21µ2 . . . ,

where each κi ≥ 0, each µi is either 1 or 2, and µi = 1 only if κi+1 > 0 (thus κi and µi are
uniquely determined by c). For each r ≥ 1, define

Ir(c) =

(
r

2r +
∑r

i=1 κi
,

r

(2r − 1) +
∑r

i=1 κi

]
,

and let s ≥ 1 be the least integer such that either µs = 1 or
⋂s+1

i=1 Ii(c) = ∅. Write
⋂s

i=1 Ii(c) =
(x, y]. Then

q(c) =

{
x if µs = 2 and w < z for all w ∈ Is+1(c) and z ∈

⋂s
i=1 Ii(c)

y if µs = 1, or µs = 2 and w > z for all w ∈ Is+1(c) and z ∈
⋂s

i=1 Ii(c).

Notice that some µi is equal to 1 (since c contains the word 010), and hence the algorithm
terminates.

Example 1.7. Let P be the horseshoe periodic orbit of code 10111101111. Then q(P ) =
q(10111101110). Using the notation of the definition, κ1 = 1, µ1 = 2, κ2 = 0, µ2 = 2, κ3 = 1,
µ3 = 2, κ4 = 0, and µ4 = 1. Hence I1 = (1/3, 1/2], I2 = (2/5, 2/4] (so

⋂2
i=1 Ii = (2/5, 1/2]),
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I3 = (3/8, 3/7] (so
⋂3

i=1 Ii = (2/5, 3/7]), and I4 = (4/10, 5/9] (so
⋂4

i=1 Ii = (2/5, 3/7]). Since
µ4 = 1, it follows that q(P ) = 3/7. Although tedious to carry out by hand, the height
algorithm is easily automated [12].

The next theorem [11] summarizes the properties of height which will be used here.

Theorem 1.8. a) Let P be a horseshoe periodic orbit with height q(P ) = m/n in lowest
terms. Then P has period n if and only if it has finite order braid type: in this case, F is
isotopic rel. P to a rigid rotation through 2πm/n. Otherwise, the period of P is at least
n+ 2, and cP starts with the word cm/n.

b) Let P and R be horseshoe periodic orbits. If bt(P ) ≥ bt(R) then q(P ) ≤ q(R). In
particular, height is an invariant of braid type.

Thus the code cP of a horseshoe periodic orbit which is not of finite order braid type can
be written cP = cq(P )v for some word v of length at least 1. This makes possible the following
definitions, which are taken from [9]:

Definitions 1.9. Let P be a period N orbit of the horseshoe which is not of finite order
braid type, with height q = q(P ) = m/n. The prefix of P is the word cq. The decoration of
P is defined to be ∗ if N = n+ 2, and to be the element w of {0, 1}N−n−3 such that

cP = cq
0
1w

0
1

otherwise.

Example 1.10. Let P be the period 17 orbit with code cP = 10011011001011010. Then
q(P ) = 3/10 (using the algorithm of Lemma 1.6). Hence P has prefix 10011011001 = c3/10,
and decoration 1101.

Only certain heights q are compatible with a given decoration w (namely those for which
cq

0
1w

0
1 is a maximal word, and hence describes the rightmost point of a periodic orbit). The

following lemma (from [9]) gives the compatibility conditions:

Lemma 1.11. Let w be a decoration, and define qw ∈ Q ∩ (0, 1/2] by q∗ = 1/2 and
qw = min

0≤i≤k+2
q
(
σi
(
10w0

))

if w ∈ {0, 1}k. Then each of the four words cq
0
1w

0
1 (or each of the two words cq

0
1 when w = ∗)

is maximal of height q when 0 < q < qw, and none is maximal of height q when qw < q ≤ 1/2.

The reason that the four orbits with codes cq
0
1w

0
1 are considered together is that they all

have the same braid type: the following general result will appear in [10]. That the braid
type is unchanged on changing the final symbol of the code is a triviality: the content of
the theorem is that changing the symbol between prefix and decoration also leaves the braid
type unchanged.

Theorem 1.12. Let w 6= ∗ be a decoration, and q ∈ Q ∩ (0, qw). Then the four horseshoe
periodic orbits with codes cq

0
1w

0
1 have the same braid type.

The following conjecture is motivated and stated in [9]. It involves the notion of two
horseshoe periodic orbits of pseudo-Anosov braid type having the same topological train
track type. A formal definition of this term can be found in [9]: however its intuitive meaning
should be clear in the context of this paper (in which ‘star’ train track types are considered).
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Conjecture 1.13. a) Let P be a horseshoe periodic orbit with height q and decoration w. If
q 6= qw then P has pseudo-Anosov braid type.

b) Let P ′ be another periodic orbit with height q′ and decoration w. Then bt(P ′) ≤ bt(P )
if and only if q ≤ q′ (i.e. the set of braid types of periodic orbits with decoration w is
totally ordered by the forcing relation). Moreover, if q ′ < qw then P and P

′ have the same
topological train track type.

c) There is an equivalence relation ∼ on the set D of decorations with the property that two
horseshoe periodic orbits have the same braid type if and only if they have equal heights
and equivalent decorations.

d) There is a partial order ¹ on D/∼ with the property that if P and P ′ are periodic
orbits with heights q, q′ and decorations w, w′ such that q < q′ and [w′] ¹ [w], then
bt(P ′) ≤ bt(P ).

Notice that part b) trivializes the problem of comparing braid types within a family of
fixed decoration: the forcing order is given by the unimodal order on the codes of the periodic
orbits. As explained in [9], parts a) and b) of this conjecture (i.e., the statements which only
concern a single decoration) can be proved for certain particular choices of decoration w.
In this paper an infinite family of decorations is considered, making it possible to address
parts c) and d) of the conjecture meaningfully. The decorations concerned are those which
give rise to ‘star’ topological train track types, and are given by words wq with q ∈ Q∩(0, 1/2]
defined as follows:

Definition 1.14. Let q = m/n ∈ Q∩ (0, 1/2]. If q 6= 1/2 then wq is the element of {0, 1}
n−3

obtained by deleting the initial symbols 10 and the final symbols 01 from cq. If q = 1/2 then
wq = ∗.

Thus, for example, w1/3 is the empty decoration, w1/4 = 0, w1/5 = 00, and w2/5 = 11.
These decorations satisfy qwq = q, are mutually non-equivalent under ∼, and are totally
ordered by ¹, with wq ¹ wq′ if and only if q ≤ q′. Thus the proof of Conjecture 1.13 above
for these decorations gives the following theorem, which summarizes some of the main results
of this paper.

Theorem 1.15. Let r, r′ ∈ Q ∩ (0, 1/2] and q, q′ ∈ Q ∩ (0, 1/2) with q ≤ r and q′ ≤ r′. Let
P be a horseshoe periodic orbit of height q and decoration wr, and P

′ be a horseshoe periodic
orbit of height q′ and decoration wr′. Then

a) If q 6= r then P has pseudo-Anosov braid type.
b) If r = r′ and q, q′ < r then P and P ′ have the same (star) topological train track type.
Moreover bt(P ′) ≤ bt(P ) if and only if q ≤ q′.

c) P and P ′ have the same braid type if and only if q = q′ and r = r′.
d) If q < q′ and r ≥ r′ then bt(P ′) ≤ bt(P ).

Part a) of this theorem is given by Corollary 1.18 below, Part b) by Theorem 2.34,
and Part c) by Theorem 1.12 and Lemma 1.17, as described following the statement of
Lemma 1.17. Part d) is proved using quite different techniques from those of this paper: a
proof will appear in [10].
Lemma 1.17 below will be used to identify periodic orbits with decoration wm/n for some

m/n ∈ (0, 1/2]. Its proof is relatively long and technical, and uses methods from [11] which
are not required elsewhere in this paper — it has therefore been relegated to Section 4.
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Definitions 1.16. Let P be a horseshoe periodic orbit of period N > 1. The rotation
number ρ(P ) ∈ Q∩ (0, 1/2] of P is its F -rotation number about the fixed point with code 1.
The rotation interval of P is the set

ρi(P ) = {ρ(P ′) : bt(P ′) ≤ bt(P )}.

The rotation number of a horseshoe periodic orbit is an invariant of braid type [11] (this
statement is not quite as obvious as it may at first appear), and hence so also is the rotation
interval. By a theorem of Handel [13], ρi(P ) is equal either to {ρ(P )} or to a set of the form
Q ∩ [a, b] (which will here be denoted simply [a, b]) for some a < b ∈ Q.

Lemma 1.17. Let P be a period N > 1 orbit of the horseshoe with non-trivial rotation
interval ρi(P ) = [u/v,m/n]. Then N ≥ v+n. Moreover, N = v+n if and only if cP is one
of the four words cu/v

0
1wm/n

0
1 (or one of the two words cu/v

0
1 in the case m/n = 1/2).

In other words, if the period of P is equal to the sum of the denominators of the endpoints
of its rotation interval, then P has height u/v and decoration wm/n. Since the rotation
interval is a braid type invariant, it follows that if P has height q and decoration wr, and
P ′ is a horseshoe periodic orbit with the same braid type as P , then P ′ also has height
q and decoration wr. In particular, this establishes (and extends) the ‘only if’ part of
Theorem 1.15 c). The ‘if’ part follows from Theorem 1.12. Moreover, the following corollary
provides a proof of Theorem 1.15 a).

Corollary 1.18. Let u/v < m/n ≤ 1/2. Then the horseshoe periodic orbits of height u/v
and decoration wm/n have pseudo-Anosov braid type.

Proof. Let P be a periodic orbit of height u/v and decoration wm/n. Then ρi(P ) =
[u/v,m/n]. Periodic orbits of finite order type have trivial rotation intervals. If P had re-
ducible braid type, then a horseshoe periodic orbit of period less than v+n (namely one given
by the isotopy class corresponding to the outermost reducible component of F : (D2, P ) →
(D2, P )) would also have rotation interval [u/v,m/n], contradicting Lemma 1.17. ¤

Lemma 1.17 may be of independent interest. The authors know of no pseudo-Anosov
homeomorphism f of the annulus, relative to a single periodic orbit P , for which the sum
of the denominators of the endpoints of the rotation interval of f is less than the period n
of P . If this more general result could be proved, then (together with the fact [3] that the
rotation number m/n of P is contained in the interior of the rotation interval of f) it would
provide a natural generalization of Boyland’s theorem [4], which gives bounds on the size of
the rotation interval in the case where m and n are coprime.

1.2. The Farey Graph. In this section some well known results about Farey sequences
and the Farey graph are presented, some notation is introduced, and some simple number-
theoretic lemmas which will be used later are stated. In the usual treatment (see for exam-
ple [14], where the assertions made in this section are proved), the Farey sequences contain
rationals between 0 and 1: since only rationals between 0 and 1/2 are of interest in this
paper, the definitions have been modified accordingly. Throughout the paper, all rationals
are assumed to be written in lowest terms.

Definitions 1.19. Let n ≥ 1 be an integer. The Farey sequence Fn of order n is the (finite)
sequence of rational numbers in [0, 1/2] whose denominators do not exceed n, arranged in
ascending order. Two rationals h/k and h′/k′ in [0, 1/2] are Farey neighbours if there is some
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n such that they are consecutive elements of Fn. Given a rational h/k ∈ (0, 1/2), the left
and right Farey parents LFP(h/k) and RFP(h/k) are the elements of Fk which precede and
follow h/k; and h/k is said to be the Farey child of its parents.

In particular, both LFP(h/k) and RFP(h/k) are Farey neighbours of h/k. It is well known
that if h/k < h′/k′ are Farey neighbours, then h′k − hk′ = 1; and that if LFP(h/k) = u/v
and RFP(h/k) = p/q, then h = u+ p and k = v + q.
The rationals in [0, 1/2] can be organized as the vertices of the Farey Graph, in which an

edge joins two vertices if and only if one of the associated rationals is the left or right Farey
parent of the other. Part of the Farey graph is depicted in Fig. 4. Notice that every vertex
has infinite valence (that is, every rational is the parent of infinitely many other rationals).
The immediate left (respectively right) Farey child of a rational m/n is the rational h/k of
smallest denominator for which LFP(h/k) = m/n (respectively RFP(h/k) = m/n): it is the
child of m/n and LFP(m/n) (respectively RFP(m/n)). Thus, for example, the immediate
children of 2/5 are 3/8 and 3/7. The Farey sequences appear as finite connected subtrees of
the Farey graph: for example, F5 is shown in the figure with bolder lines.
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Figure 4. Part of the Farey Graph

Definition 1.20. Let m/n be a rational in (0, 1/2). Then the left Farey sequence LFS(m/n)
of m/n is the (finite) sequence (0 = u1/v1, u2/v2, . . . , uα/vα), where uα/vα = LFP (m/n),
and ui/vi = LFP (ui+1/vi+1) for 1 ≤ i < α.

Thus, for example, LFS(3/10) = (0, 1/4, 2/7).

Definition 1.21. Let m/n be a rational in (0, 1/2), and denote addition modulo n by +n.
Given r, s ∈ Zn, let

Om/n[r, s] = {r +n jm : 0 ≤ j ≤ k, where k ≥ 0 is least such that r +n km = s}.

That is, Om/n[r, s] is the shortest segment of the orbit of r in Zn under addition of m which
ends with s. When r ≤ s are integers, the notation [r, s] will also be used as a shorthand for
{r, r + 1, . . . , s}.
The following simple Lemma contains the results about the Farey graph which will be

needed in the remainder of the paper.

Lemma 1.22. Let m/n ∈ (0, 1/2), and suppose that LFP(m/n) = u/v and RFP(m/n) =
p/q. Then
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a) #Om/n[m,n− 1] = q = n− v, and #Om/n[m− 1, 0] = n− q = v.
b) #(Om/n[m,n− 1] ∩ [1,m]) = #(Om/n[m,n− 1] ∩ [n−m,n− 1]) = p = m− u.
c) #(Om/n[m− 1, 0] ∩ [1,m]) = #(Om/n[m− 1, 0] ∩ [n−m,n− 1] = m− p = u.

Proof.

a) By definition of R = Om/n[m,n − 1] its cardinality is k + 1, where k ∈ Zn is such that
m+km ≡ n−1 mod n: that is, (k+1)(m−n) ≡ −1 mod n, so k+1 is the multiplicative
inverse (n−m)n

−1 of n−m in Zn.
Since p/q = RFP(m/n), it follows that q ∈ [1, n − 1], and that qm = np − 1. Thus

q(n − m) ≡ −qm ≡ 1 mod n, so (n − m)n
−1 = q as required. However v + q = n, so

#R = n − v also. Since R and S = Om/n[m − 1, 0] partition Zn, the cardinality of S
follows.

b) Let # (R ∩ [1,m]) = s. Since R has cardinality q, it follows that m + (q − 1)m =
n− 1 + (s− 1)n, or qm+ 1 = sn. Thus s = p. However u+ p = m, so s = m− u also. A
similar argument applies to R ∩ [n−m,n− 1].

c) Immediate from part b). ¤

The function defined in the following lemma will play a central role in this paper.

Lemma 1.23. Let u/v < p/q be Farey neighbours. Then the function

ξu/v,p/q : (0, 1) ∩Q → (u/v, p/q) ∩Q

defined by

ξu/v,p/q

(r
s

)
=
rp+ (s− r)u

rq + (s− r)v

is an increasing bijection.

Proof. Since u/v < p/q are Farey neighbours, pv − qu = 1. Hence if m/n ∈ (u/v, p/q),
then m/n = ξu/v,p/q((vm − un)/((v − q)m + (p − u)n)) (note that 0 < vm − un < (v −
q)m+ (p− u)n = (vm− un) + (pn− qm) (since u/v < m/n < p/q), and that vm− un and
(v− q)m+ (p− u)n are coprime (since m = (vm− un)(p− u) + ((v− q)m+ (p− u)n)u and
n = (vm − un)(q − v) + ((v − q)m + (p − u)n)v are coprime)). Thus ξu/v,p/q is surjective.
It is also strictly increasing, since if 0 < r/s < a/b < 1 then ξu/v,p/q(a/b) − ξu/v,p/q(r/s) =

as−br
(aq+(b−a)v)(rq+(s−r)v)

> 0. ¤

Notice in particular that ξu/v,p/q(1/2) = (u+ p)/(v + q) is the Farey child of u/v and p/q.

2. Periodic orbits of star maps

2.1. Star maps and ∗-orbits. For each n ≥ 2 let Γn ⊆ D2 be an n-star: that is, a
tree with n edges e0, . . . , en−1 of equal length, each of which has a valence 1 vertex at its
initial point, and which meet at a valence n vertex v at their final points, cyclically ordered
according to their indices. For each rational m/n ∈ (0, 1/2] (written in its lowest terms), let
fm/n : Γn → Γn be the tree map (see Fig. 5) with image edge paths

fm/n(e0) = e0e1e1e2e2 . . . emem

fm/n(er) = er+nm (r 6= 0),

which expands each edge uniformly away from the preimages of vertices (each connected
component of which is either a nontrivial interval or, in the case of the preimage component
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containing v, is homeomorphic to Γn). Figures depicting fm/n : Γn → Γn (with the exception
of Fig. 11) are always drawn with e0 and en−m horizontal.

PSfrag replacements

e0

e1
e2

e3

e4

f2/5(e3)

f2/5(e4)

f2/5(e0)

f2/5(e1)

f2/5(e2)

f2/5

Figure 5. The tree map f2/5 : Γ5 → Γ5 and the thick tree map F2/5 : T5 → T5

Let Fm/n : Tn → Tn be a thick tree map (see for example [8] for a formal definition)
corresponding to fm/n : Γn → Γn (see Fig. 5). Thus Tn ⊆ D2 is a topological disk, and there
is a continuous map p : Tn → Γn such that p

−1(x) is a disk if x is a vertex of Γn, and an
interval otherwise. The map Fm/n is an embedding which contracts each such decomposition
element p−1(x) into a decomposition element, in such a way that it induces fm/n on Γn
(so Fm/n(p

−1(x)) ⊂ p−1(fm/n(x)) for all x ∈ Γn). Where necessary, Fm/n is considered as
a homeomorphism D2 → D2, by extending from Tn without introducing any new periodic
orbits.
There is a natural one-to-one correspondence (which will be invoked without comment in

the remainder of the paper) between the periodic orbits of fm/n and those of Fm/n (with
a periodic point x of fm/n corresponding to the unique periodic point of Fm/n in p

−1(x)).
Notice that F1/2 is the horseshoe map F after blowing up the leaf containing the fixed point
of code 1 into a disk: in particular, there is a braid type preserving bijection between the
set of periodic orbits of F1/2 and the set of periodic orbits of F .
In this paper only periodic orbits P which satisfy certain non-triviality conditions are

considered:

Definition 2.1. A periodic orbit P of fm/n : Γn → Γn is called a ∗-orbit if

∗ a) P 6= {v}.
∗ b) P ∩ er 6= ∅ for all r.
∗ c) fm/n(P ∩ e0) 6⊆ em.
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∗ d) If pr denotes the point of P ∩ er closest to the initial point of er, then fm/n(pr) = pr+nm

for all r 6= 0.

The reasons for imposing three of these conditions are intuitively clear: a) states that
P is not a fixed point; b) that it explores each of the edges of Γn; and c) that the points
of P in e0 have images in more than one edge: if this were not true, the braid type of P
would either be finite order (if each edge contained just one point of P ) or reducible (with n
reducing curves, each bounding a disk containing the points of P on one of the edges of Γn).
Condition d) is less clear: the motivation is that when fm/n is ‘truncated’ with respect to P
(see Definition 2.5), there is only one point of P (namely the preimage of pm) at which fm/n

is not locally injective. Lemma 2.3 below is one important consequence of this condition.

Definition 2.2. Let P be a periodic orbit of fm/n. Then the span Γ
P
n of P is the smallest

connected subset of Γn containing P .

Lemma 2.3. Let m/n ∈ (0, 1/2]. Then the set of spans of ∗-orbits of fm/n is totally ordered
by inclusion.

Proof. Let P and P ′ be ∗-orbits of fm/n, and for each 0 ≤ r < n let pr, p
′
r ∈ er be the

points of the orbits closest to the initial point of er (which exist by ∗ b)). If pm is closer to
the initial point of em than p

′
m, then applying ∗ d) inductively gives that pr is closer than p

′
r

to the initial point of er for all r, and hence Γ
P ′

n ⊆ ΓPn . ¤

The following result, which is contained in Theorem 3.3 below, makes it possible to identify
the braid types of ∗-orbits using Lemma 1.17. It reflects the fact that the thick tree maps
Fm/n : Tn → Tn can be obtained from the horseshoe by pruning (i.e. by destroying some
dynamics), as described in Section 3.1.

Lemma 2.4. Every ∗-orbit of fm/n has the braid type of some periodic orbit of the horseshoe.

2.2. Describing ∗-orbits. In this section a combinatorial method for describing ∗-orbits
is developed. Since fm/n(er) = er+nm for r 6= 0, the main work required is in describing
the images of the points of the orbit in e0. The first step is to make precise the notion of
truncating fm/n with respect to a ∗-orbit P .

Definition 2.5. Let P be a ∗-orbit of fm/n. Let rP : Γn → ΓPn be the map defined by
rP (x) = x if x ∈ ΓPn , and rP (x) is the endpoint of Γ

P
n contained on the same edge of Γn as x if

x 6∈ ΓPn . The truncation f
P
m/n of fm/n with respect to P is the map f

P
m/n = rP◦fm/n : Γ

P
n → ΓPn .

The following definitions give a basic classification of ∗-orbits.

Definitions 2.6. Let P be a ∗-orbit of fm/n with #(P ∩ e0) = N , and label the points of
P ∩ e0 as p0, p1, . . . , pN−1 in order from the initial to the final point of e0. Define a partition

{0, . . . , N − 1} = A ∪B ∪ C

by

i ∈





A if fPm/n is locally orientation-reversing at pi
B if fPm/n is locally orientation-preserving at pi
C if fPm/n is not locally injective at pi.

Observe that i ∈ C if and only if fm/n(pi) is the point of P closest to the initial point of
em, and hence #C = 1.
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Given a rational m/n ∈ (0, 1/2], an integer k ∈ {0, . . . ,m − 1}, and γ ∈ {A,B} (with
γ = B if k = 0), write P(m/n, k, γ) for the set of all ∗-orbits of fm/n with f(p0) ∈ ek and
0 ∈ γ, P(m/n, k) = P(m/n, k, A) ∪ P(m/n, k,B), and P(m/n) =

⋃
k P(m/n, k), the set of

all ∗-orbits of fm/n.

The rest of the description of a ∗-orbit is contained in the next definitions.

Definitions 2.7. For each integer n ≥ 2, define Dn to be the set of all triples

d = ((N0, . . . , Nn−1), π, (A,B,C)) ,

where Nr is a positive integer for 0 ≤ r < n; π is a cyclic permutation of the set

L = Ld = {(r, s) : 0 ≤ r < n, 0 ≤ s < Nr};

and (A,B,C) is a partition of {0, . . . , N0 − 1} with #C = 1.
Let P ∈ P(m/n, k, γ). Then the data of P is the element

d(P ) = ((N0, . . . , Nn−1), π, (A,B,C))

of Dn obtained as follows: Nr = #(P ∩ er) for each r with 0 ≤ r < n. Identify P with
L = Ld(P ) = {(r, s) : 0 ≤ r < n, 0 ≤ s < Nr} by labelling the points of P ∩ er as
(r, 0), (r, 1), . . . (r,Nr − 1) from the initial to the final point of er, and let π = f |P : L → L.
Finally, let (A,B,C) be the partition of {0, . . . , N − 1} given by Definitions 2.6.

Having the same data is the basic equivalence relation which says that two ∗-orbits have
the same ‘shape’. In particular, it is clear that two ∗-orbits with the same data have the
same braid type as periodic orbits of Fm/n : Tn → Tn. In this paper no distinction is made
between orbits with the same data: thus, for example, the statement that fm/n has exactly
one ∗-orbit with a given property should be interpreted as meaning that ∗-orbits with the
given property exist, and all have the same data.

Example 2.8. Let P ∈ P(2/5, 1, A) be the periodic orbit depicted in Fig. 6. Then N0 =
N1 = N3 = 2 and N2 = N4 = 1; and A = {0}, B = ∅, and C = {1}. The cyclic permutation
π is given by

A

(0, 0)→ (1, 1)→ (3, 1)→
C

(0, 1)→ (2, 0)→ (4, 0)→ (1, 0)→ (3, 0).

Figure 6. An example of a ∗-orbit

The data of a periodic orbit will usually be written in the form above: the partition
A ∪ B ∪ C is denoted by letters above the elements (0, s) of L, and the integers Nr can be
deduced from the elements of L. For simplicity, it is not explicitly noted that (3, 0)→ (0, 0).
Note that by ∗ d), the cycle notation of π always ends (m, 0)→ (2m, 0)→ · · · → (n−m, 0).
The reader seeking further clarification should consult Examples 2.12, 2.21, and 2.30, where
other ∗-orbits are described in this way.
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Write τ1, τ2 : L → N for the projections of L onto the first and second components respec-
tively; and write π1 = τ1 ◦ π and π2 = τ2 ◦ π. Sometimes, with an abuse of notation, π1

−1

and π2
−1 will be used to denote τ1 ◦ π

−1 and τ2 ◦ π
−1 respectively.

Given d ∈ Dn, one can ask whether or not there exists P ∈ P(m/n, k, γ) with d(P ) = d.
This imposes obvious conditions on d, which are expressed by the following result. While
hardly concise, the conditions are in an ideal form for later use. If d ∈ Dn satisfies these
conditions, it will be said that d is legal data.

Lemma 2.9. An element ((Nr), π, (A,B,C)) of Dn is equal to d(P ) for some P ∈ P(m/n, k, γ)
if and only if the following conditions hold:

LDa) For all r > 0:
i) π1(r, s) = r +n m for all s, and π2(r, s) is increasing in s.
ii) π2(r, 0) = 0.

LD b) For r = 0:
i) 0 ∈ γ.
ii) π1(0, 0) = k.
iii) If c ∈ {0, . . . , N0 − 1} is the unique element of C, then π(0, c) = (m, 0).
iv) π1(0, s) ∈ {k, . . . ,m} for all s, and is increasing in s.
v) If s1 < s2, π1(0, s1) = π1(0, s2) and s1 ∈ B ∪ C then s2 ∈ B.
vi) If s1 < s2, π1(0, s1) = π1(0, s2), and s1, s2 ∈ A (respectively s1, s2 ∈ B) then

π2(0, s1) > π2(0, s2) (respectively π2(0, s1) < π2(0, s2)).

Sketch Proof. The necessity of the conditions is obvious. Their sufficiency can be shown
as follows: divide e0 into 2m + 1 subintervals, each mapped by fm/n over exactly one edge
of Γn; constuct a Markov graph for fm/n using these subintervals and the edges er with
r > 0 as the Markov partition. Given k, γ, and an element d = ((Nr), π, (A,B,C)) of Dn

satisfying LDa) and LDb), conditions a)i), b)iii) and b)iv) ensure that there are exactly
two loops in the Markov graph which are compatible with the first component π1 of π and
with the partition (A,B,C) (two since the element (0, s) of L with s ∈ C corresponds to
the common endpoint of two intervals in the partition). Pick either of these loops, and let
P be the periodic orbit of fm/n corresponding to it. Then conditions b)i) and b)ii) ensure
that it belongs to P(m/n, k, γ), conditions b)iv) – vi) ensure that the data of P agree with
the second component π2 of π, and condition a)ii) ensures that P is a ∗-orbit. ¤

Example 2.10. In this example, Lemma 2.9 will be used to show that there is a bijection

ψ : P(1/3, 0, B)→ P(1/2, 0, B)

given by deleting all occurences of (2, s) in the cycle representation of π. Thus if
d(P ) = ((N0, N1, N2), π, (A,B,C)), then d(ψ(P )) = ((N0, N1), π

′, (A,B,C)), where π′ is
obtained from π by deleting each occurence of (2, s) in its cycle representation.
ψ is first shown to be well defined: if d(P ) = ((N0, N1, N2), π, (A,B,C)) is legal data, then

so is ((N0, N1), π
′, (A,B,C)). Notice that the legality of d(P ) implies that N1 = N2, that

π(1, s) = (2, s) for all s < N1, and that π1(2, s) = 0 for all s. Hence

π′(r, s) =

{
π(r, s) if r = 0
π2(r, s) if r = 1.
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Now condition LDa) holds since π′1(1, s) = τ1◦π
2(1, s) = 0, π′2(1, s) = τ2◦π

2(1, s) is increasing
in s by condition LDa)i) for d(P ), and π′(1, 0) = π2(1, 0) = (0, 0). Condition LDb) holds
because π′ = π when r = 0.
Define φ : P(1/2, 0, B)→ P(1/3, 0, B) by following every (1, s) with (2, s) in the cycle repre-

sentation of π. That is, if d(P ) = ((N0, N1), π, (A,B,C)), then d(φ(P )) = ((N0, N1, N1), π
′, (A,B,C)),

where π′ is obtained from π by following each occurence of (1, s) with (2, s) in its cycle no-
tation. It can be shown as above that φ is well defined, and it is clearly an inverse to
ψ.

This sort of argument is routine and tedious, and will be abbreviated when it occurs in
earnest in the proof of Theorem 2.20.

2.3. The Train Track Condition. The main question addressed in this paper is: for which
P ∈ P(m/n) is ΓPn itself a train track for the isotopy class of Fm/n relative to P? The essential
property of a train track is efficiency: intuitively, this says that at any point x of ΓP

n at which
(fPm/n)

i is not locally injective for some i, the image (fP
m/n)

i(U) of a small neighbourhood U
of x ‘wraps around’ a point of P , and hence cannot be ‘pulled tight’ without passing through
P . Efficiency can be detected as follows. By condition ∗ d), the only point at which such
pulling tight could occur is (m, 0). For each point p of P which is not an endpoint of ΓP

n (i.e.
p 6= (r, 0) for 0 ≤ r < n), an arc passing on one side of p will wrap around (m, 0) under the
appropriate iterate of fP

m/n, while an arc passing on the other side will not, and its image can

be pulled tight. Provided all of the arcs in the image fP
m/n(Γ

P
n ) of Γ

P
n pass on the ‘correct’

side of each point of P , the map fP
m/n is efficient, and hence is a train track map for the

isotopy class of Fm/n : D
2 \ P → D2 \ P .

The first part of the next definition gives a partition of P \ {(r, 0) : 0 ≤ r < n} into
two sets, α and β: for those points p of P in α, an arc passing p to the left (according to
the orientation of the edge er containing p) wraps around (m, 0); while for those in β, an
arc passing to the right wraps around (m, 0). It is then possible to make a combinatorial
definition of efficiency, as given by conditions TTa) –TTd) below.

Definitions 2.11. Let P ∈ P(m/n, k, γ) have data d(P ) = ((Nr), π, (A,B,C)). Define a
partition

L \ {(r, 0) : 0 ≤ r < n} = α ∪ β

inductively as follows. π−1(m, 0) ∈ β. For each i with 2 ≤ i ≤ #P − n, the two elements
π−i(m, 0) and π−i+1(m, 0) are in different sets if τ1(π

−i(m, 0)) = 0 and τ2(π
−i(m, 0)) ∈ A,

and are in the same set otherwise.
P is a train track orbit (or P is TT) if and only if the following conditions hold:

TTa) For all 0 ≤ s < N0 − 1,

π(0, s) ∈

{
α if s ∈ B
β if s ∈ A.

TTb) If k < r < m then Nr+n−m = 1.
TT c) If π2(k + n−m, s) > π2(0, 0) for some s > 0, then π(k + n−m, s) ∈ β.
TTd) If γ = A then π2(k + n−m, s) > π2(0, 0) for all s > 0.

The set of all train track orbits in P(m/n, k, γ), in P(m/n, k), and in P(m/n) will be
denoted TT (m/n, k, γ), TT (m/n, k), and TT (m/n).
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Example 2.12. Let P ∈ P(1/3, 0, B) have data

B

(0, 0)→
A

(0, 1)
α

→ (1, 1)
β

→ (2, 1)
β

→
C

(0, 2)
β

→ (1, 0)→ (2, 0)

(see Fig. 7). The partition α∪ β is shown on the cycle representation of π. This partition is
easy to write down: start with (0, 2) (the unique element of C) in β, and move backwards
through the permutation, switching from β to α or vice-versa at each occurence of A.

Figure 7. A periodic orbit satisfying the TT conditions

The TT conditions can easily be checked:

a) π(0, 0) ∈ α and π(0, 1) ∈ β.
b) Vacuous, since there are no r with 0 = k < r < m = 1.
c) k+n−m = 0+3−1 = 2, so the condition requires that π(2, s) ∈ β whenever π2(2, s) > 1:
i.e. π(2, 1) ∈ β, which is true.

d) Vacuous, since γ = B.

The TT conditions have intuitive motivations. TTa) ensures that arcs of f P
m/n(Γ

P
n ) pass

on the ‘correct’ side of images of points of P ∩ e0: for example, if s ∈ B and π1(0, s) = r,
then an arc of fP

m/n(er+n−m) passes to the left of π(0, s) and hence π(0, s) must lie in α to

avoid a violation of efficiency. TTb) reflects the fact that for k < r < m, the image of e0

passes images of points of P ∩ er+n−m on both sides: hence efficiency will be violated if there
is any such point other than the one with image (r, 0). TT c) reflects that the image of e0

passes to the right of those images of points of P ∩ ek+n−m which are further from the initial
point of ek than π(0, 0); and TTd) is a stronger version of the same condition in the case
γ = A, when the image of e0 passes on both sides of points of ek between the initial point
and π(0, 0).
The TT conditions above are stated in a way which reflects this intuitive motivation.

However they can be replaced by equivalent alternatives which are easier to work with in
practice. This will be done in Lemma 2.17 below.
The reader familiar with this approach to train tracks should accept without further

argument that the TT conditions are the appropriate combinatorial expression of efficiency.
However, a more precise statement is given by the following definition (which connects the
intuitive notion of a train track with the definition due to Bestvina and Handel [1], and in
particular, by introducing peripheral loops around the points of P , makes it possible to be
precise about the concept of ‘wrapping around’ a point of P ) and by Theorem 2.15. The
rather contorted definition can most easily be understood by referring to Fig. 8.

Definitions 2.13. Let P ∈ P(m/n), and let L∪R be a partition of L \ {(r, 0) : 0 ≤ r < n}.
The (L,R)-Bestvina-Handel star graph BH(P,L,R) ⊂ Tn of P is defined as follows:

a) There are #P + 1 vertices; one vertex v contained in the central decomposition element
of Tn, and #P vertices {vr,s : (r, s) ∈ L} with vr,s contained in the same decomposition
element of Tn as the point (r, s) of P . If s > 0 then vr,s is to the left or right of (r, s)
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(with respect to the orientation of er) according as (r, s) ∈ L or (r, s) ∈ R. (If s = 0 then
vr,s can be chosen to the left or the right of (r, s).)

b) There are #P peripheral edges {pr,s : (r, s) ∈ L}: the peripheral edge pr,s has both
endpoints at vr,s, and forms a loop bounding a disk with the point (r, s) of P in its
interior. The peripheral edges are small enough that no two of them intersect any given
decomposition element of Tn.

c) There are #P main edges {er,s : (r, s) ∈ L}: the main edge er,s goes from vr,s to vr,s+1

if s < Nr − 1, and goes from vr,s to v if s = Nr − 1. The main edges are chosen so that
each interval decomposition element of Tn contains at most one point of the union of the
interiors of the main edges.

Since BH(P,L,R) is a spine of Tn \ P , the thick tree map Fm/n : Tn → Tn induces a well
defined homotopy class of graph maps g : BH(P,L,R) → BH(P,L,R). If g is required to
restrict to a homeomorphism of the subgraph of peripheral edges, to send vertices to vertices,
and to be locally injective away from its vertices, then the image edge-paths of g are also
well-defined. BH(P,L,R) is said to be a Bestvina-Handel star train track for P if such a
graph map is a train track map: that is, if

a) It is absorbed: the image edge path of each main edge begins and ends with main edges.
b) It is efficient: there is no backtracking in the edge path gi(er,s) for any (r, s) ∈ L and

i > 0.

The ∗-orbit P ∈ P(m/n) is said to have a Bestvina-Handel star train track if BH(P,L,R)
is a Bestvina-Handel star train track for some choice of the partition L \ {(r, 0) : 0 ≤ r <
n} = L ∪R.

Remarks 2.14. a) If BH(P,L,R) is efficient but not absorbed, then there is some other
partition L′ ∪ R′ such that BH(P,L′, R′) is both efficient and absorbed (obtained, for
example, by applying the Bestvina-Handel operation of absorbing into the peripheral
subgraph). Requiring train track maps to be absorbed as well as efficient means that if P
has a Bestvina-Handel star train track, then there is a unique choice of partition L ∪ R
such that BH(P,L,R) is a Bestvina-Handel star train track (see the first paragraph of
the proof of Theorem 2.15).

b) It follows from the results of [1] that if P has a Bestvina-Handel star train track, and
if the transition matrix for the main edges of that star train track is irreducible, then
P has pseudo-Anosov braid type, and the train track yields a Markov partition for the
pseudo-Anosov representative in the isotopy class of Fm/n in D

2 \ P . Moreover, because
the n edge germs at v are permuted by g they all lie in different gates: hence such a
pseudo-Anosov must have an interior n-pronged singularity (whose prongs are rotated by
m under the action of the pseudo-Anosov), 1-pronged singularities at each of the points
of P , and a (#P − n)-pronged singularity at the boundary.

Theorem 2.15. Let P ∈ P(m/n, k, γ). Then P has a Bestvina-Handel star train track if
and only if P is TT.

Sketch Proof. A straightforward argument shows that BH(P,L,R) is absorbed if and only
if L = β and R = α: the procedure for constructing inductively the unique partition L ∪ R
for which BH(P,L,R) is absorbed is identical to that by which the partition α∪β is defined.
Thus it is only required to show that BH(P, β, α) is efficient if and only if P is TT. For

each u 6= v with 0 ≤ u, v < n, write tu,v for the edge-path eu,Nu−1ev,Nv−1, and observe that
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BH(P, β, α) is efficient if and only if the image edge-path g(er,s) of each main edge can be
written in the form

g(er,s) = m1p1m2p2 . . . ,mk−1pk−1mk,

where each pi is a peripheral edge (or its inverse), and each mi is either a main edge (or
its inverse), or one of the edge-paths tu,v. If this condition holds, then a straightforward
induction shows that it holds also for gn(er,s) for all n > 0, and hence there cannot be any
cancellation in any of these edge-paths. If the condition fails, then the edge-path g(er,s)
contains some word eu,veu,v+1 (or its inverse), which under iteration yields the word em,0em,0.
If P is not TT, then one of the conditions TTa) –TTd) fails. In each case, an argument

arising from the intuitive motivation of the conditions can be used to show that there is
some g(er,s) which contains a word of the form eu,veu,v+1 or its inverse. Hence BH(P, β, α)
is not efficient.
For the converse, suppose that P is TT. If BH(P, β, α) is not efficient, then there is some

edge eu,v such that g(eu,v) contains a word of the form er,s−1er,s or er,ser,s−1. This implies
that u = 0 or u ≥ k + n −m (i.e. that 0 ≤ r ≤ m), since otherwise g(eu,v) = eu+nm,v is an
edge-path of length 1.
There are two cases to consider. First suppose that π1

−1(r, s) 6= 0. Then TTb) gives
r = k (and hence π1

−1(r, s) = k+n−m). Thus u = 0, since only e0 and ek+n−m have images
intersecting ek. If γ = B then, since g(e0,v) passes to the right of (r, s), it can only contain
the word ek,s−1ek,s if π2(0, v) < s and (r, s) ∈ α. This contradicts TT c). If γ = A then a
similar contradiction to TT c) and TTd) arises.
The case where π1

−1(r, s) = 0 can be treated similarly using TTa). ¤

Example 2.16. The Bestvina-Handel and Thurston train tracks for the TT orbit of Ex-
ample 2.12 are shown in Fig. 8. The Bestvina-Handel train track is obtained by replacing
each point of the orbit with a peripheral loop, and putting the vertex of this loop on the
left or right according as the point of the orbit belongs to β or α. The Thurston train track
is obtained from the Bestvina-Handel train track using the techniques of [1] (in the case of
∗-orbits, this is simply a matter of replacing the central valence n vertex with an n-gon, and
each of the loops with a 1-gon, as shown in the figure).

Figure 8. Bestvina-Handel and Thurston Train Tracks for the example of Fig. 7

As mentioned above, there is an alternative form of the TT conditions which is often easier
to work with:

Lemma 2.17. Consider the conditions

TT ′a) #A = 1, and if A = {s} and j > 0 is least such that τ1(π
j(0, s)) = 0, then C =

{τ2(π
j(0, s))}.

TT ′d) If γ = A then π(0, 0) = (k, 1).
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Then TTa) and TT ′a) are equivalent; and if they hold then TTd) and TT ′d) are equivalent.
Moreover, if TT a) and TT c) hold then there is at most one s with π2(k+n−m, s) ≥ π2(0, 0).

Proof. The equivalence of TTa) and TT ′a) follows easily from the definition of the
partition α∪β: note that TT ′a) says simply that reading the partition A∪B ∪C along the
cycle notation of π, one sees BN0−2AC. In particular, since the cycle notation starts with
(0, 0), this implies that if γ = A then N0 = 2: since π1(0, 1) = m and π1(0, 0) = k < m, the
equivalence of TTd) and TT ′d) follows. For the final statement, note that the elements of
β are precisely those which lie between the element of A and the element and the element
of C in the cycle notation of π, and only one such can lie in ek: also it is not possible that
π2(k + n−m, s) = π2(0, 0), since this would imply π(k + n−m, s) = π(0, 0). ¤

If P ∈ TT (m/n), then it follows from the results of [1] that the set of braid types forced
by bt(P ) is precisely the set of braid types of periodic orbits of fm/n whose span is contained
in the span of P . In particular, Lemma 2.3 gives:

Theorem 2.18. The set {bt(P, Fm/n) : P ∈ TT (m/n)} is totally ordered by the forcing
relation.

2.4. The TT condition in the horseshoe. The elements of TT (1/2) = TT (1/2, 0, B)
were calculated in [11]: in this case the partition α ∪ β is precisely that defined on page 880
of [11], and conditions TTa) and TTc) are equivalent to the condition that π has no bogus
transitions, also on page 880 of [11] (while TTb) and TTd) are vacuous). Theorem 2.1 and
lemma 2.4 of [11] then give the following result (in which the words cq are as defined in
Section 1.1).

Theorem 2.19. The function Q ∩ (0, 1/2) → P(1/2, 0, B) which takes a rational q to the
periodic orbit Pq with code cq

0
1 is a bijection onto TT (1/2, 0, B). If r/s ∈ (0, 1/2), the data

d(Pr/s) = ((N0, N1), π, (A,B,C)) of Pr/s satisfies N0 = s− r + 1 and N1 = r + 1.

2.5. Renomalizing horseshoe TT orbits (the case k = m − 1). Theorem 2.19 gives
a relatively straightforward approach to determining the elements of TT (m/n,m − 1, B)
for each m/n ∈ (0, 1/2): the next result defines a ‘renormalization operator’ φ, which is a
bijection from the set P(1/2, 0, B) of horseshoe periodic orbits to the set P(m/n,m− 1, B)
with the property that φ(P ) is TT if and only if P is TT. Example 2.10 is the simplest case
of this operator, when m/n = 1/3.
For notational simplicity, m/n will be taken to be a fixed rational in (0, 1/2) throughout

this section, and the dependence of some objects (such as φ) upon it will be dropped.

Theorem 2.20. There is a bijection φ : P(1/2, 0, B)→ P(m/n,m−1, B) given by replacing

each occurence of
γ

(0, s) (where γ ∈ {A,B,C}) in the cycle representation of π by

(m− 1, s)→ (2m− 1, s)→ · · · → (n−m, s)→
γ

(0, s)

and each occurence of (1, s) by

(m, s)→ (2m, s)→ · · · → (n−m− 1, s)→ (n− 1, s).

Moreover, φ restricts to a bijection TT (1/2, 0, B)→ TT (m/n,m− 1, B).
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Example 2.21. Consider the periodic orbit P ∈ P(1/2, 0, B) given by

B

(0, 0)→
A

(0, 1)
α

→ (1, 1)
β

→
C

(0, 2)
β

→ (1, 0)

(see Fig. 9).

Figure 9. A periodic orbit in the horseshoe

Then φ(P ) ∈ P(2/5, 1, B) is given by

(1, 0)→ (3, 0)→
B

(0, 0)

︸ ︷︷ ︸
from (0,0)

→ (1, 1)
α

→ (3, 1)
α

→
A

(0, 1)
α︸ ︷︷ ︸

from (0,1)

→ (2, 1)
β

→ (4, 1)
β︸ ︷︷ ︸

from (1,1)

→ (1, 2)
β

→ (3, 2)
β

→
C

(0, 2)
β︸ ︷︷ ︸

from (0,2)

→ (2, 0)→ (4, 0)

︸ ︷︷ ︸
from (1,0)

(see Fig. 10). It can easily be checked that both of these orbits are TT. The figures also
show the idea of the construction: the pattern of the periodic orbit of f1/2 is replicated in
the edges em−1 and em of Γn.

Figure 10. The periodic orbit in P(2/5, 1, B) obtained from that of Fig. 9

Proof. The first step is to show that the construction yields a well-defined function
φ : P(1/2, 0, B)→ P(m/n,m− 1, B): that is, that it transforms legal data to legal data.
Suppose, then, that P ∈ P(1/2, 0, B) has data d(P ) = ((N0, N1), π, (A,B,C)). Since

Om/n[m− 1, 0] and Om/n[m,n− 1] partition Zn, if the construction does give an element P
′

of P(m/n,m− 1, B) it must have data

d(P ′) = ((N ′
r), π

′, (A,B,C)) ,

where

N ′
r =

{
N0 if r ∈ Om/n[m− 1, 0]
N1 if r ∈ Om/n[m,n− 1],

and

π′(r, s) =





(π1(0, s) +m− 1, π2(0, s)) if r = 0

(π1(1, s) +m− 1, π2(1, s)) if r = n− 1

(m+n r, s) otherwise.
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(The sets A, B, and C are unchanged by construction.)
It is routine to show that conditions LDa) and LDb) of Lemma 2.9 hold for this data, and

hence that φ : P(1/2, 0, B)→ P(m/n,m− 1, B) is well defined as required. To show that it
is a bijection, observe that if P ∈ P(m/n,m − 1, B) has data d(P ) = ((Nr), π, (A,B,C)),
then conditions LDa)i) and LDb)iv) ensure that every occurrence of (m− 1, s) in the cycle
representation of π is followed by

(m− 1, s)→ (2m− 1, s)→ · · · → (n−m, s)→
γ

(0, s)

for some γ ∈ {A,B,C}, and every occurrence of (m, s) is followed by

(m, s)→ (2m, s)→ · · · → (n−m− 1, s)→ (n− 1, s).

Replacing the first type of block with
γ

(0, s) and the second with (1, s) thus defines an inverse
ψ : P(m/n,m−1, B)→ P(1/2, 0, B) of φ (checking that the data so obtained is legal is again
routine).
Finally, it must be shown that the bijection φ preserves the TT conditions. Let P ∈

P(1/2, 0, B) and P ′ = φ(P ) ∈ P(m/n,m − 1, B). Since the sets A, B, and C are the same
for P and P ′, the condition TT ′a) is satisfied either for neither or for both of P and P ′.
Conditions TTb) and TTd) are vacuous for both P and P ′. Condition TT c) for P reads

π(1, s) ∈ β whenever π2(1, s) > π2(0, 0),

while for P ′ it reads

π′(n− 1, s) ∈ β whenever π′2(n− 1, s) > π′2(0, 0).

Since π′(n−1, s) ∈ β if and only if π(1, s) ∈ β; π′2(n−1, s) = π2(1, s); and π
′
2(0, 0) = π2(0, 0)

(these last two by the expression for π′ above), TT c) is also satisfied either for neither or
for both of P and P ′. ¤

The next step is to use Lemma 1.17 to identify the orbits φ(Pr/s) which make up TT (m/n,m−
1, B). The function ξu/v,p/q in the statement of the next theorem is the one defined in
Lemma 1.23.

Theorem 2.22. Let u/v = LFP (m/n) and p/q = RFP (m/n). Let r/s ∈ (0, 1/2). Then
φ(Pr/s) has height ξu/v,p/q(r/s) and decoration wm/n.

Proof. By Theorem 2.19, φ(Pr/s) has period

(s− r + 1)#Om/n[m− 1, 0] + (r + 1)#Om/n[m,n− 1],

which, by Lemma 1.22, is equal to (s− r+ 1)v + (r+ 1)q. It will be shown that φ(Pr/s) has
rotation interval [

(s− r)u+ rp

(s− r)v + rq
,
u+ p

v + q

]
=
[
ξu/v,p/q

(r
s

)
,
m

n

]
,

which will establish the result by Lemmas 1.17 and 2.4.
If P is a ∗-orbit with data d(P ) = ((Nr), π, (A,B,C)), then the rotation number of P

about the fixed point is given by the number of times it cycles around Γn divided by its
period: that is,

ρ(P ) =

∑n−1
r=n−mNr∑n−1
r=0 Nr

.
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Let P ∈ P(1/2, 0, B). Then ρ(P ) = N1/(N0+N1), and if φ(P ) has data ((N
′
r), π, (A,B,C))

then by Lemma 1.22, and the fact that N ′
r = N0 for all r ∈ Om/n[m− 1, 0] and N

′
r = N1 for

all r ∈ Om/n[m,n− 1],
∑

r∈Om/n[m,n−1],r≥n−m

N ′
r

∑

r∈Om/n[m,n−1]

N ′
r

=
p

q
and

∑

r∈Om/n[m−1,0],r≥n−m

N ′
r

∑

r∈Om/n[m−1,0]

N ′
r

=
u

v
,

and hence

ρ(φ(P )) =
N0u+N1p

N0v +N1q
.

If P has period b and rotation number a/b then N0 = b− a and N1 = a, and so

ρ(φ(P )) =
(b− a)u+ ap

(b− a)v + aq
= ξu/v,p/q(a/b).

Now the rotation interval [r/s, 1/2] of Pr/s is the set of rotation numbers of periodic orbits
of f1/2 contained in the span of Pr/s, and, by a theorem of Boyland [4], for each such rotation
number a/b there exists such an orbit with period b. Likewise, the rotation interval of φ(Pr/s)
is the set of rotation numbers of periodic orbits of fm/n contained in the span of φ(Pr/s); but
these orbits are precisely the images under φ of those defining the rotation interval of Pr/s.
Hence the rotation interval of φ(Pr/s) is

{
ξu/v,p/q

(a
b

)
:
a

b
∈

[
r

s
,
1

2

]}
= ξu/v,p/q

([
r

s
,
1

2

])
=
[
ξu/v,p/q

(r
s

)
,
m

n

]

as required. ¤

Remark 2.23. If n ≥ 2 then P(1/n) = P(1/n, 0, B), and hence the results of this section

give a complete description of TT (1/n): there is a bijection q 7→ P
1/n
q from Q ∩ (0, 1/n) to

TT (1/n) such that P
1/n
q has height q and decoration w1/n = 0

n−3. In other words, P
1/n
q has

the same braid type as the horseshoe orbits of code cq
0
10n−30

1.
In general, since ξu/v,p/q : (0, 1/2) → (u/v,m/n) is an increasing bijection, the results of

this section yield a bijection q 7→ P
m/n
q from (LFP(m/n),m/n) ∩ Q to TT (m/n,m − 1, B)

with the property that P
m/n
q has height q and decoration wm/n.

2.6. Admissible k. Condition TTb) gives restrictions on the values of k for which TT (m/n, k)
is non-empty: in this section it will be shown that the number of such admissible values of
k is equal to the length of the left Farey sequence of m/n.

Definition 2.24. Let m/n ∈ (0, 1/2). An integer k ∈ [0,m− 1] is m/n-admissible if

[k + 1,m− 1] ∩ Om/n[k, 0] = ∅.

The set of all m/n-admissible integers k is denoted Am/n.

Lemma 2.25. Let m/n ∈ (0, 1/2) and k ∈ [0,m − 1]. If k 6∈ Am/n, then TT (m/n, k) is
empty.
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Proof. Suppose P ∈ TT (m/n, k) has data d(P ) = ((Nr), π, (A,B,C)). Then by TTb),
Nr+n−m = 1 for all r with k < r < m. Applying LDa) i) inductively, it follows thatNs = 1 for
all s ∈

⋃
k<r<m Om/n[m, r + n−m]. However Nk > 1, since π2(0, 0) = π2(k + n−m, 0) = k.

Thus TT (m/n, k) must be empty unless k 6∈
⋃

k<r<m Om/n[m, r + n − m]. However, this
condition is equivalent to k ∈ Om/n[r, 0] for all r with k < r < m; which is in turn equivalent
to r 6∈ Om/n[k, 0] for all r with k < r < m: that is, to m/n-admissibility. ¤

The remainder of this section is devoted to studying the structure of the set Am/n. It
will be seen in Section 2.7 that the converse to Lemma 2.25 is also true: if k ∈ Am/n, then
TT (m/n, k) is non-empty.
Notice that 0,m − 1 ∈ Am/n for all m/n: in particular A1/n = {0}. Lemma 2.26 below

connects Am/n with ALFP(m/n), and hence yields an inductive description of Am/n for all
m/n.
Let m/n ∈ (0, 1/2) with LFP(m/n) = u/v, and write Rm/n = Om/n[m,n − 1]. By

Lemma 1.22, Rm/n has cardinality n− v. Moreover, Rm/n ∩Am/n = ∅: for if k ∈ Rm/n, then
Om/n[k, 0] contains the complement of R, and in particular contains m−1. Define a function
ψm/n : Zn → Zv by

ψm/n(k) = k −#
(
Rm/n ∩ [0, k]

)
.

Notice that

ψm/n(k) =

{
ψm/n(k − 1) + 1 if k 6∈ Rm/n

ψm/n(k − 1) if k ∈ Rm/n

It can easily be seen that ψm/n(0) = 0, ψm/n(m − 1) = ψm/n(m) = u (using Lemma 1.22),
and ψm/n(n− 1) = v − 1. In particular, ψm/n is an increasing surjection.

Lemma 2.26. Let m/n ∈ (0, 1/2) with m > 1, u/v = LFP(m/n), and k ∈ [0,m−2]\Rm/n.
Then k ∈ Am/n if and only if ψm/n(k) ∈ Au/v.

Proof. Observe that ψm/n|Zn\Rm/n
: Zn \ Rm/n → Zv is a bijection which conjugates the

function +u/v : Zv → Zv given by +u/v(k) = k +v u to the function +̃m/n : Zn \ Rm/n →
Zn \Rm/n given by

+̃m/n(k) =

{
k +n m if k 6= 0
m− 1 if k = 0.

Since k ∈ [0,m− 2] and m− 1 6∈ Rm/n, it follows that ψm/n(k) ≤ ψm/n(m− 1)− 1 = u− 1.
Now

k ∈ Am/n ⇐⇒ r 6∈ Om/n[k, 0] for k < r < m

⇐⇒ r 6∈ O+̃m/n
[k, 0] for k < r < m and r 6∈ Rm/n

⇐⇒ ψm/n(r) 6∈ Ou/v[ψm/n(k), ψm/n(0)] for k < r < m and r 6∈ Rm/n

⇐⇒ s 6∈ Ou/v[ψm/n(k), 0] for ψm/n(k) < s < ψm/n(m) = u

⇐⇒ ψm/n(k) ∈ Au/v

(where the penultimate equivalence uses that Rm/n contains neither k nor m− 1). ¤

It follows that Am/n = {m− 1} ∪ ψm/n|Zn\Rm/n

−1(Au/v), and in particular that Am/n has

one more element than Au/v. Since A1/n = {0} for all n, the following result holds:

Corollary 2.27. Let m/n ∈ (0, 1/2). Then Am/n has the same cardinality as LFS(m/n).

The following result will be important in the next section.
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Lemma 2.28. Let LFS(m/n) = (0 = u1/v1, u2/v2, . . . , uα/vα), and let the elements of Am/n

be 0 = k1 < k2 < · · · < kα = m − 1. Then Om/n[ki, 0] has cardinality vi for each i. In
particular, the elements of Am/n appear in decreasing order along the orbit Om/n[m, 0].

Proof. That Om/n[m − 1, 0] has cardinality vα follows from Lemma 1.22. The proof
of Lemma 2.26 shows that if k ∈ Am/n is distinct from m − 1, then Ou/v[ψm/n(k), 0] =
ψm/n(Om/n[k, 0]), and the result follows by induction. ¤

2.7. Train track orbits with k < m−1. Letm/n ∈ (0, 1/2) withm > 1, and LFS(m/n) =
(0 = u1/v1, u2/v2, . . . , uα/vα). By Corollary 2.27, Am/n has α elements, which will be denoted
0 = k1 < k2 < · · · < kα = m− 1. Let i < α, and define

R = Om/n[m, ki+1 + n−m]

S = Om/n[ki+1, ki + n−m]

T = Om/n[ki, 0].

The dependence of the sets on m/n and i is suppressed, since these two variables will remain
fixed throughout the section. R, S, and T are mutually disjoint by Lemma 2.28, and hence
define a partition of Zn. The cardinalities of T and S are given by Lemma 2.28, and the
cardinality of R can therefore be deduced:

#R = n− vi+1

#S = vi+1 − vi

#T = vi.

The following theorem gives a complete description of TT (m/n, ki, B):

Theorem 2.29. There is a bijection from (0, 1) ∩Q to TT (m/n, ki, B), defined as follows:
if p/q ∈ (0, 1), then the element Pi,p/q,m/n of TT (m/n, ki, B) corresponding to p/q has data
d(Pi,p/q,m/n) = ((Nr), π, (A,B,C)) given by: A = {p}, B = {0, . . . , q − 1} \ {p}, C = {q},

Nr =




1 if r ∈ R
q + 1− p if r ∈ S
q + 1 if r ∈ T,

and

π(0, s) =





(ki, q − p+ s) if 0 ≤ s < p
(ki+1, q − p) if s = p
(ki+1, s− p) if p+ 1 ≤ s < q
(m, 0) if s = q

π(ki + n−m, q − p) = (ki, q)

π(r, s) = (r +n m, s) for all other (r, s).

A schematic representation of Pi,p/q,m/n is shown in Fig. 11, which depicts the image of e0

and of eki+n−m through to en−1. e0 contains q + 1 points of P , of which p are mapped to
eki
(the other q + 1− p points of P on eki

are images of points of P on eki+n−m); q − p are
mapped to eki+1

in the configuration shown; and one is mapped to em.

Example 2.30. Let m/n = 3/7. Now LFS(3/7) = (0, 1/3, 2/5) has three elements, and
hence A3/7 = {0, 1, 2}, with k1 = 0, k2 = 1, and k3 = 2. Pick i = 2. Then R = O3/7[3, 2 +
7− 3] = {3, 6}, S = O3/7[2, 1 + 7− 3] = {2, 5}, and T = O3/7[1, 0] = {1, 4, 0}.
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PSfrag replacements
eki

eki+1

em

Figure 11. A schematic representation of an element of TT (m/n, ki, B)

Consider the orbit P1,1/3,3/7: by the statement of the theorem (with p/q = 1/3) it has data

B

(0, 0)→ (1, 2)→ (4, 2)→
B

(0, 2)→ (2, 1)→ (5, 1)→ (1, 1)

→ (4, 1)→
A

(0, 1)→ (2, 2)→ (5, 2)→ (1, 3)→ (4, 3)→
C

(0, 3)

→ (3, 0)→ (6, 0)→ (2, 0)→ (5, 0)→ (1, 0)→ (4, 0)

(see Fig. 12).

Figure 12. The periodic orbit P1,1/3,3/7

Proof. Suppose P ∈ TT (m/n, ki, B) has data d(P ) = ((Nr), π, (A,B,C)). Let µ ≤ N0− 1
be greatest such that either µ ∈ A or π1(0, µ) < ki+1. Then µ ∈ [1, N0 − 2] since 0 ∈ B and
π1(N0− 1, 0) = m. It will be shown that the data of P must be as given in the statement of
the theorem, with p/q = µ/(N0 − 1). The proof is broken down into several short steps.

i) T ∩ [ki + 1,m− 1] = ∅ (by the definition of m/n-admissibility of ki).
ii) If r ∈ R, then Nr = 1 and π(r, 0) = (r +n m, 0).

Since ki < ki+1 < m, TTb) gives Nki+1+n−m = 1, and applying LDa) i) inductively
gives the result.

iii) If r ∈ T then Nr = N0, and if r 6= 0 then π(r, s) = (r +n m, s) for all s < N0.
By i), if j ∈ T with j 6= 0, the points of P ∩ ej+nm are precisely the images of the

points of P ∩ ej.
iv) π(ki + n−m,Nki+n−m − 1) = (ki, N0 − 1).

Nm = 1 by ii), so π(0, N0 − 1) = (m, 0). Hence N0 − 1 ∈ β (by definition of the
partition α∪ β), and it follows from iii) that (r,N0− 1) ∈ β for all r ∈ T : in particular,
(ki, N0−1) ∈ β. By TTa), if π1

−1(ki, N0−1) = 0 then π2
−1(ki, N0−1) ∈ A, contradicting

LDb) i),ii),v). Hence π1
−1(ki, N0 − 1) = ki + n−m, and the result follows.

v) If s < Nki+n−m − 1, then π(ki + n−m, s) = (ki, s) (by iv) and Lemma 2.17).
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vi) S ∩ [ki,m] = {ki+1}.
Suppose not: let k be the last element in the orbit segment from ki+1 to ki + n −m

under addition ofm modulo n which lies in [ki,m]. Then Om/n[k, 0] contains no elements
of [k + 1,m− 1], and hence k ∈ Am/n; moreover, ki < k < ki+1 by Lemma 2.28. This is
a contradiction, since ki and ki+1 are successive elements of Am/n.

vii) [ki + 1,m] \ {ki+1} ⊆ R (by i) and vi)).
viii) A = {µ} and π1(0, s) is equal to ki if 0 ≤ s < µ, to ki+1 if µ ≤ s < N0 − 1, and to m if

s = N0 − 1.
That π1(0, s) is equal to ki, ki+1 or m for all s follows from ii) and vii). Then A = {µ}

by the definition of µ, ii), and LDb) i),iii),v): the stated values of π1(0, s) are then
immediate.

ix) If r ∈ S then Nr = N0 − µ, and if r 6= ki + n − m then π(r, s) = (r +n m, s) for all
s < N0 − µ.
By viii), Nki+1

= 1 +#[µ,N0 − 2] = N0 − µ. The result follows by vi) and LDa) i).
x) π(0, µ) = (ki+1, N0 − µ− 1)

By ii), iii), iv) and ix), there is a segment of the orbit of π as follows:

(0, s) → (ki+1, N0 − µ− 1)→ · · · → (ki + n−m,N0 − µ− 1)︸ ︷︷ ︸
S

→ (ki, N0 − 1)→ · · · →
C

(0, N0 − 1)︸ ︷︷ ︸
T

→ (m, 0)

for some s. However s ∈ A by TT ′a), and hence s = µ by viii).

These results are enough to show that d(P ) is as given in the statement of the theorem
with p = µ and q = N0 − 1. Conversely, the data given in the statement defines an element
of TT (m/n, ki, B) by construction, provided only that π is a cyclic permutation. The proof
is therefore completed by showing that given two integers p and q with 0 < p < q, the
permutation π given in the statement is cyclic if and only if p and q are coprime. It is clear
that for any (r, s), there is someK such that τ1(π

K(r, s)) = 0; and that πvi(0, 0) = (0, q−p) 6=
(0, 0). Hence the cyclicity of π is equivalent to the cyclicity of the first return permutation of π
on {(0, s) : 1 ≤ s ≤ q}. Let ρ be this first return permutation, i.e. ρ(s) = τ2(π

Ks(0, s)), where
Ks > 0 is least such that τ1(π

Ks(0, s)) = 0 and τ2(π
Ks(0, s)) 6= 0. Then a straightforward

calculation shows that ρ is a rotation of [1, q] by −p, and hence is cyclic if and only if p and
q are coprime. ¤

The next step is to identify the horseshoe braid types of these orbits: it will be shown

that Pi,p/q,m/n has period n + vip + vi+1(q − p) and rotation interval [uip+ui+1(q−p)
vip+vi+1(q−p)

, m
n
] =

[ξui/vi,ui+1/vi+1
(p/q),m/n], and hence has height ξui/vi,ui+1/vi+1

(p/q) and decoration wm/n by
Lemma 1.17. In constrast to the situation in Section 2.5, there is no renormalization operator
to provide a short cut to these rotation intervals: instead, they will be calculated by Markov
partition techniques. Although the calculation is rather complicated the techniques are quite
standard, and as such only a sketch proof, outlining the main steps, is given, so as to enable
the enthusiastic reader to reconstruct the proof without too much difficulty.

Theorem 2.31. Pi,p/q,m/n ∈ TT (m/n, ki, B) has height ξui/vi,ui+1/vi+1
(p/q) and decoration

wm/n.
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Sketch Proof. That P = Pi,p/q,m/n has period n + vip + vi+1(q − p) is immediate from
Theorem 2.29 and the cardinalities of the sets R, S, and T . The rotation interval of P can
be determined using Markov partition techniques, using the partition of ΓP

n into intervals
whose endpoints are the points of P and the valence n vertex v: the interval with endpoints
(r, s) and either (r, s + 1) or v is labelled < r, s >. The Markov graph with these intervals
as vertices can in principle be determined from the expression for π given in Theorem 2.29.
Each loop in the Markov graph corresponds to a periodic orbit Q of fm/n whose braid type
is forced by that of P : the rotation interval of P is the set of rotation numbers of such orbits
about v. To calculate the rotation number corresponding to a given loop, one counts the
number of times it goes around the star (i.e. the number of occurences of < r, s > in the
loop where r ≥ n−m), and divides by its length.
It is clear that no such orbit can have rotation number greater than m/n, and that there is

an orbit with this rotation number (namely the one given by the loop through the intervals
with endpoint v). Thus it only remains to calculate the smallest possible rotation number; by
standard arguments, this will be realized by a minimal loop (i.e. one which passes through
each vertex at most once). The full Markov graph is too complicated to study in its entirety,
so a sequence of simplifications is made.

i) Every loop must contain < 0, s > for some s (i.e. {< 0, s >: 0 ≤ s ≤ q} is a rome [2]
for the Markov graph): the structure of all loops is therefore given by considering only
these intervals, and making a list of minimal paths between such intervals. Each such
basic path has associated a rotation number (the number of occurences of < r, s >
with r ≥ n − m divided by its length), and the rotation number of a loop made by
concatenating basic paths is the Farey sum of the corresponding rotation numbers.
Because of the structure of π (the only transition from < r, s > is to < r +n m, s >

unless r = 0, ki + n −m, or ki+1 + n −m), most of these paths correspond to passing
either through T , or through S ∪ T , or through R ∪ S ∪ T : a short calculation (similar
in spirit to the proof of Lemma 1.22) shows that the rotation numbers corresponding to
these three types of path are ui/vi < ui+1/vi+1 < m/n respectively.

ii) There are basic paths from < 0, q > to < 0, s > for all s ∈ [0, q], each with rotation
number m/n. Any loop passing through < 0, q > can be replaced by one with smaller
rotation number, and < 0, q > can therefore be ignored.

iii) There is a rotation loop which passes through each < 0, s > with 0 ≤ s < q exactly
once, made of basic paths from < 0, s > to < 0, s −q p >, each of which has rotation
number either ui/vi or ui+1/vi+1. Hence given any loop which uses a basic path with
rotation number greater than ui+1/vi+1, another loop of smaller rotation number can
be constructed by replacing this basic path with a segment of the rotation loop. Thus
the loop with minimal rotation number cannot use basic paths with rotation numbers
greater than ui+1/vi+1.

iv) The only basic paths which now remain to be considered are the following:

< 0, s >→< 0, q − p+ s > for 0 ≤ s ≤ p− 1, with rotation ui/vi

< 0, p >→< 0, t > for 0 ≤ t ≤ q − 1, with rotation ui+1/vi+1

< 0, s >→< 0, s− p > for p+ 1 ≤ s ≤ q − 2, with rotation ui+1/vi+1

< 0, q − 1 >→< 0, t > for q − p− 1 ≤ t ≤ q − 1, with rotation ui+1/vi+1.
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One can then argue that basic paths from < 0, p > to < 0, t > for t 6= 0, or from
< 0, q − 1 > to < 0, t > for t 6= q − p − 1 could be replaced by compound paths with
lower rotation number. Hence the rotation loop realizes the minimum rotation number.

In the rotation loop, p of the basic paths have rotation number ui/vi, and the other q − p
have rotation number ui+1/vi+1. Hence Pi,p/q,m/n has rotation interval[

uip+ ui+1(q − p)

vip+ vi+1(q − p)
,
m

n

]
=
[
ξui/vi,ui+1/vi+1

(p/q),
m

n

]
.

Since it has period n+ vip+ vi+1(q − p), the result follows by Lemma 1.17. ¤

Hence TT (m/n, ki, B) consists of exactly one orbit with height r/s and decoration wm/n for
each r/s ∈ (ui/vi, ui+1/vi+1). Combining this with the results of Section 2.7,

⋃
k TT (m/n, k,B)

consists of one orbit with height r/s and decoration wm/n for each r/s ∈ (0,m/n)\LFS(m/n).
The ‘missing’ heights r/s ∈ LFS(m/n) \ {0} are supplied by orbits in

⋃
k TT (m/n, k, A), as

described by Theorem 2.32 below. The case γ = A is much easier than the case γ = B, since
by Lemma 2.17 (and its proof), if P ∈ TT (m/n, k, A) has data d(P ) = ((Nr), π, (A,B,C)),
then k > 0, N0 = 2, and π(0, 0) = (k, 1): thus TT (m/n, k, A) is empty if k 6∈ Am/n, and has
at most one element if k ∈ Am/n. The details are left to the reader.

Theorem 2.32. Let 0 < i < α. Then TT (m/n, ki, A) consists of a single periodic orbit P ,
whose data d(P ) = ((Nr), π, (A,B,C)) satisfies: Nr = 2 for r ∈ T , Nr = 1 for r 6∈ T ,
A = {0}, B = ∅, C = {1}, and

π(0, 0) = (ki, 1)

π(0, 1) = (m, 0)

π(r, s) = (r +n m, s) if r > 0.

P has height ui/vi and decoration wm/n.

Example 2.33. The unique element of TT (2/5, 1, A) is the ∗-orbit of Example 2.8.

Combining the results of Theorems 2.19, 2.20, 2.22, 2.29, 2.31, 2.32, 2.18 and 1.8b) gives the
main result of this paper:

Theorem 2.34. Let m/n ∈ (0, 1/2]. Then TT (m/n) consists exactly of one orbit P
m/n
q

of height q and decoration wm/n for each rational q ∈ (0,m/n). The set of braid types of

elements of TT (m/n) is totally ordered by the forcing relation, with bt(P
m/n
q ) ≤ bt(P

m/n
q′ ) if

and only if q ≥ q′.

3. Stars and the full horseshoe

The aim of this section is to clarify the relationship between the thick tree maps Fm/n : Tn →
Tn and the full horseshoe F1/2 : T2 → T2. The strongest connection is provided by pruning
theory. Each thick tree map Fm/n can be obtained from the full horseshoe by pruning: that
is, by performing an isotopy which destroys all of the dynamics of the horseshoe in an open
subset U of D2 (after the isotopy every point of U is wandering), while leaving the dynamics
unchanged elsewhere (the isotopy is supported on U). Although this process is conceptually
valuable, it is not required in the main body of the paper: since it is rather complicated
and assumes an understanding of the methods and results of [7, 8], the treatment given in
Section 3.1 below is on an intuitive level.
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The only aspect of the relationship between stars and the full horseshoe which was used
in Section 2 is the fact that every ∗-orbit of fm/n has the same braid type as some horseshoe
periodic orbit. A rather straightforward proof of this is given in Section 3.2: it has the
additional advantage of providing, for each ∗-orbit P , the code of a horseshoe periodic orbit
of the same braid type as P .

3.1. The pruning approach. As stated above, the approach taken throughout this sub-
section is intuitive: the interested reader is referred to [8] for details of the constructions
outlined.
The aim is to start with the full horseshoe map F1/2, to perform a sequence of isotopies

which decrease the dynamics monotonically, remaining within the category of thick tree
maps, and to arrive at a given thick tree map Fm/n : Tn → Tn. Two distinct types of
operation are used. The first redefines the thick tree structure (that is, the subset ofD2 which
is regarded as the thick tree and the decomposition elements which give it its structure), but
leaves the dynamics unchanged. The second is an isotopy which destroys the dynamics in
some region which corresponds to an interval in the underlying tree endomorphism whose
image backtracks.
Both of these operations have counterparts on the level of the underlying tree maps, and

will be described on this level for the sake of both conceptual and diagrammatic simplicity.
The important point is that the operations performed on the tree endomorphisms can be
realised by isotopies of the corresponding homeomorphisms of the disk. Both the trees and
their endomorphisms have additional structure due to the fact that they are induced by thick
tree maps: in particular, the edges incident on a vertex have a cyclic order; and when several
edge images backtrack over a common edge, there is a well-defined notion of the ‘innermost’
backtracking. This observation is, of course, reflected in the way that tree maps have been
drawn throughout this paper.
Suppose that the image f(er) = . . . eses . . . of an edge er contains an innermost backtrack-

ing over the edge es. The following two operations can be performed:

Glueing er: Let I be the subinterval of er whose image is eses. Identify those points
of I which have the same image (so all points of I except the preimage of the initial
point of es are identified in pairs). In the constructions described below, I always
has the central vertex v of the star as an endpoint: glueing therefore preserves the
star structure, but increases the valence of v by 1. It does not change the dynamics
of f .

Pulling tight er: Delete the word eses from f(er). This decreases the dynamics of f ,
while leaving the tree unchanged.

A second family of endomorphisms gm/n of Γn are needed for the construction: they differ
from fm/n only in the image of the edge en−1.
Given m/n ∈ (0, 1/2), let gm/n : Γn → Γn be the tree map defined by

g(e0) = e0e1e1e2e2 . . . emem

g(er) = er+nm (1 ≤ r ≤ n− 2)

g(en−1) = em−1emem.

As an example, g4/11 is depicted in Fig. 13. These maps are endowed with additional ‘2-
dimensional’ structure as indicated in the figure.
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Figure 13. The tree map g4/11 : Γ11 → Γ11

The aim, then, is to construct the entire family fm/n of star maps starting from f1/2

by applying the operations of glueing and pulling tight. This can be accomplished by a
combination of two compound procedures (together with the observation that one can pass
from gm/n to fm/n by pulling tight en−1).

Procedure L: starts with fm/n and yields gp/q, where p/q is the immediate left Farey
child of m/n.

Procedure R: starts with gm/n and yields gu/v, where u/v is the immediate right Farey
child of m/n.

To construct fm/n one navigates through the Farey graph from 1/2 to m/n, passing at
each step from parent to immediate child: at each step to the left (respectively right) one
applies Procedure L (respectively Procedure R). Thus, for example, to obtain f3/10 from f1/2

one applies Procedure L to obtain g1/3; pulls tight to obtain f1/3; applies Procedure L to
obtain g1/4; applies Procedure R to obtain g2/7; applies Procedure R to obtain g3/10; and
pulls tight to obtain f3/10.
Procedure L: Start with fm/n and glue e0 (that is, identify pairs of points in e0 which
have the same image in em). This creates a new edge, which is labelled en. Now the image
of en−m backtracks over en; glue en−m. This creates another new edge en+1, and the image
of en−2m backtracks over it. Continue this procedure until edge em−1 has been glued; each
time an edge ej is glued with 1 ≤ j ≤ m − 1, pull tight the innermost backtracking of the
image of e0 over ej before proceeding. This yields gp/q, where p/q is the immediate left Farey
child of m/n.
Applying Lemma 1.22, observe that if LFP(m/n) = a/b, a total of #Om/n[m − 1, 0] = b

glueings are performed, and hence at the end of the procedure the star has n+ b = q edges;
and #(Om/n[m − 1, 0] ∩ [0,m − 1]) = a of the edges glued are between e0 and em so that,
after relabelling the edges in cyclic order, the image of e0 crosses edges e0 to em+a = ep.

Example 3.1. Let m/n = 3/7: thus procedure L gives a construction of g5/12 from f3/7.
The edges e0, e4, e1, e5, and e2 are glued successively: the new edges thereby created are
labelled e7, e8, e9, e10 and e11 respectively. Since m − 1 = 2, the only pulling tights occur
after glueing e1 and e2. The procedure is shown in Fig. 14.

Procedure R: is similar. Start with gm/n. Since gm/n(en−1) backtracks over em one can
successively glue en−1, en−m−1, en−2m−1, . . . , em, pulling tight e0 each time an edge ej is
glued with 1 ≤ j ≤ m− 1. This yields gu/v, where u/v is the immediate right Farey child of
m/n.
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Figure 14. Constructing g5/12 from f3/7

3.2. Horseshoe symbolics for ∗-orbits. In this section a more direct approach to the
problem of showing that ∗-orbits have horseshoe braid type is outlined. It makes use of
the notion of the line diagram of an isotopy class of homeomorphisms of the punctured
disk. For each n ≥ 2, let Dn be a standard model of the n-punctured disk in which the
punctures (or marked points) are equally spaced along the horizontal diameter of the disk.
The line diagram of a homeomorphism f : Dn → Dn is the sequence ([f(α1)], . . . , [f(αn−1)])
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of homotopy classes of the images of the horizontal arcs αi joining the i
th to the (i + 1)th

puncture. It is straightforward to show that two homeomorphisms f, g : Dn → Dn are
isotopic if and only if they have the same line diagram.
If F : D2 → D2 is an orientation-preserving homeomorphism having a period n orbit P ,

then conjugating F so that the points of P coincide with the punctures of Dn yields a
homeomorphism of Dn and thence a line diagram. Different conjugacies naturally give rise
to different line diagrams, but periodic orbits P and Q of homeomorphisms F and G have
the same braid type if and only if the conjugacies can be chosen so as to give the same line
diagrams.
If F is the horseshoe, then there is a natural choice of (isotopy class of) conjugacy, namely

one which sends vertical leaves to vertical leaves in an order-preserving manner. Such a con-
jugacy gives rise to ‘unimodal’ line diagrams which reflect the underlying unimodal structure
of the horseshoe: for example, the periodic orbit of code 10010 gives rise to the line diagram
of Fig. 9.
Thus to show that a ∗-orbit P of Fm/n has horseshoe braid type, it is necessary to construct

a conjugacy which places the points of P along the horizontal diameter of D2 in such a
way that the resulting line diagram is unimodal. This will be achieved by drawing an arc
through the points of the orbit which will be mapped by the conjugacy onto an interval of
the horizontal diameter of D2. Not only does this show that P has horseshoe braid type, it
also yields the code of a horseshoe periodic orbit of the same braid type as P : those points
whose images are on the increasing segment of the unimodal line diagram are coded 0, while
those on the decreasing segment are coded 1 – the critical point can be coded either 0 or 1.
The crucial observation is that if αm/n denotes the path

αm/n = e0e1e1e2e2 . . . en−m−1en−m−1en−1en−1en−2en−2 . . . en−m+1en−m+1en−m,

then its image

fm/n(αm/n) = e0e1e1 . . . en−1en−1em−1em−1em−2em−2 . . . e1e1e0

can be obtained from the image

hm/n(αm/n) = αm/nαm/n = e0e1e1e2e2 . . . en−m−1en−m−1

(en−1en−1en−2en−2 . . . en−m+1en−m+1) en−men−men−m+1 . . . en−1en−1

(en−m−1en−m−1 . . . emem) em−1em−1 . . . e1e1e0

of αm/n under the horseshoe hm/n by removing the bracketed words (see Fig. 15, which
illustrates this for m/n = 2/5). Notice that if Γn is drawn (as in this paper) so that e0 and
en−m are horizontal, then αm/n passes along e0, then around each of the edges below the
horizontal in the positive direction, then around each of the edges above the horizontal in
the negative direction, and finally along en−m.
It follows that if P is a ∗-orbit of fm/n, then P has horseshoe braid type provided that

an arc α projecting to αm/n can be passed through the points of P in the thick tree Tn in
such a way that Fm/n(α) projects to fm/n(αm/n). Moreover, horseshoe symbolics for P can
be obtained by coding with 0 those points of P which either lie in e0 ∪ · · · ∪ en−2m−1, or lie
in en−2m and have α pass through them with the orientation of en−2m (these are precisely
the points whose images lie in the increasing segment of the unimodal line diagram); and
coding with 1 the other points of P .
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The only issue in constructing such an arc is to decide whether it should pass through each
point of P with the orientation of er, or with the orientation of er. The following partition
of L\{(r, 0) : 0 ≤ r < n} gives the unique coherent way of doing this: points which α passes
through with the orientation of er lie in I.

Definition 3.2. Let P ∈ P(m/n) have data d(P ) = ((Nr), π, (A,B,C)). Define a partition

L \ {(r, 0) : 0 ≤ r < n} = I ∪O

inductively as follows. π(0, 0) lies in I (respectively O) if 0 ∈ B (respectively 0 ∈ A). For
each i with 2 ≤ i ≤ #P − n, let πi−1(0, 0) = (r, s). Then πi(0, 0) and πi−1(0, 0) are in the
same set if r = 0 and s ∈ B, or if 0 < r < n − 2m. They are in different sets if r = 0 and
s ∈ A, or if n− 2m < r < n. If r = n− 2m, then πi(0, 0) ∈ O.

The following theorem then follows from the discussion above.

Theorem 3.3. Let P be a period N orbit in P(m/n) for some m/n 6= 1/2. Define a map
c : L → {0, 1} by

c(r, s) =

{
0 if r < n− 2m or r = n− 2m and (r, s) ∈ O or (r, s) = (n− 2m, 0)
1 if r > n− 2m or r = n− 2m and (r, s) ∈ I.

Then P has the same braid type as the horseshoe periodic orbit of code

c(n−m, 0)c(π(n−m, 0))c(π2(n−m, 0)) . . . c(πN−1(n−m, 0)).

Example 3.4. Let P ∈ P(2/5, 1, A) be the periodic orbit with data

A

(0, 0)
I

→ (1, 1)
O

→ (3, 1)
O

→
C

(0, 1)
I

→ (2, 0)→ (4, 0)→ (1, 0)→ (3, 0).
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The partition L\{(r, 0) : r > 0} = I∪O is indicated with this data. The horseshoe symbolics
of P can then be written down:

(0, 0)
0

→ (1, 1)
0

→ (3, 1)
1

→ (0, 1)
0

→ (2, 0)
1

→ (4, 0)
1

→ (1, 0)
0

→ (3, 0)
1

.

Hence P has the same braid type as the horseshoe orbit of code 10010110. Thus P
has height 1/3 and decoration 11 = w2/5, as expected since P is the unique element of
TT (2/5, 1, A) discussed in examples 2.8 and 2.33.

Notice that since the cycle notation of π always ends (m, 0)→ (2m, 0)→ · · · → (n−m, 0),
every element of P(m/n) has the same braid type as a horseshoe orbit whose code ends wm/n0.

4. Proof of Lemma 1.17

The following lemma summarizes the results of [11] which will be used in the proof of
Lemma 1.17. Part a) is theorem 3.10 of [11], part b) is theorem 3.11, part c) is lemma 3.4
(in which the notation dr/s is used to mean 0wr/s), and part d) is a combination of theorem 3.5
and lemma 3.6. The first part of the lemma gives an algorithm for computing the rotation
interval of an arbitrary horeseshoe periodic orbit. Although it is complicated to state, it
is much easier to explain intuitively. For each block of 0s in cP , calculate the heights of
the sequences obtained by moving forwards and backwards through cP starting at the 1
immediately before the block of 0s: if the backward sequence starts 11, then first replace
the second 1 with a 0. If the backward height is not less than the forward height, then the
interval between the two is contained in the rotation interval. The union of all such intervals
is the rotation interval.

Lemma 4.1. a) Let P be a horseshoe periodic orbit which contains the point of itinerary

0κ11µ10κ21µ2 . . . 0κr1µr

(written in such a way that κi, µi > 0 for all i). Then P has rotation interval

ρi(P ) =
r⋃

i=1

[ξi, ηi],

where
ξi = q

(
1
(
0κi1µi0κi+11µi+1 . . . 1µr0κ1 . . . 0κi−11µi−1

))
and

ηi =

{
q
(
10κi−11µi−20κi−2 . . . 0κ11µr . . . 1µi0κi

)
if µi−1 = 1

q
(
10
(
1µi−1−20κi−11µi−20κi−2 . . . 0κ11µr . . . 1µi0κi12

))
if µi−1 > 1

(and [ξi, ηi] = ∅ if ηi < ξi).
b) Let P be a horseshoe periodic orbit. Then the left hand endpoint of ρi(P ) is q(P ).
c) Let 0 < r/s < 1/2. Then c ∈ {0, 1}N has height q(c) = r/s if and only if

10wr/s1 ¹ c ¹ 10 wr/s011

(where the inequalities are with respect to the unimodal order on {0, 1}N). In particular,
if q(c) = r/s then c = 10wr/s

0
11 . . ., and the first isolated 1 in c cannot appear before the

s+ 1th symbol.
d) If P is a period N horseshoe orbit which is not of finite order braid type and which has
height q(P ) = u/v, then N ≥ v + 2. Moreover, if N = v + 2 then cP = cu/v

0
1 (and P has

rotation interval [u/v, 1/2]).
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The following lemma will also be needed:

Lemma 4.2. Let m/n < 1/2, and write cm/n = 10κ1120κ212 . . . 120κm1 (where the κi =
κi(m/n) are given by formula (1) on page 5). Let 1 ≤ r ≤ m. Then the word

c = 10κr+1120κr+112 . . . 120κm1

disagrees with cm/n within the shorter of their lengths, and is greater than it in the unimodal
order.

Proof. If the two words didn’t disagree, then it would follow that κr + 1 = κ1 and that
κm = κm−r+1, contradicting the fact that cm/n is palindromic.
Observe that formula (1) gives, for each s with 1 ≤ s ≤ m+ 1− r,

s∑

i=1

κi =
⌊sn
m

⌋
− (2s− 1),

and

κr + 1 +
r+s−1∑

i=r+1

κi =

⌊
(r + s− 1)n

m

⌋
−

⌊
(r − 1)n

m

⌋
− 2s+ 1

≥

⌊
(r + s− 1)n

m
−
(r − 1)n

m

⌋
− 2s+ 1

=
⌊sn
m

⌋
− (2s− 1).

Hence at the point where they first disagree c has a longer block of 0s than cm/n, and so is
greater in the unimodal order. ¤

Lemma 1.17 Let P be a period N > 1 orbit of the horseshoe with non-trivial rotation
interval ρi(P ) = [u/v,m/n]. Then N ≥ v+n. Moreover, N = v+n if and only if cP is one
of the four words cu/v

0
1wm/n

0
1 (or one of the two words cu/v

0
1 in the case m/n = 1/2).

Proof. By induction on N , with the case N = 2 vacuous since the only period 2 horseshoe
orbit has trivial rotation interval. The case m/n = 1/2 follows immediately from parts b)
and d) of Lemma 4.1, so it will be assumed that m/n < 1/2. By parts b) and d) of
Lemma 4.1, it then follows that N ≥ v+3: let k = N − v ≥ 3. By Theorem 1.8 a), the code
of P is of the form

cP = cu/v
0
1w

0
1,

for some word w of length k−3. The four cases cP = cu/v0w0, cu/v0w1, cu/v1w0, and cu/v1w1
need to be considered separately.
Case a) Suppose that

cP = cu/v0w0

= 10κ1120κ212 . . . 120κu 10λ11ν10λ21ν2 . . . 1νt−10λt ,

where κi = κi(u/v) for 1 ≤ i ≤ u, and λi and νi are chosen to be positive for all i. Note that
the initial word of cP up to 0

κu has length v, and the complementary word has length k. For
1 ≤ i ≤ u, let [ξ1

i , η
1
i ] be the contribution to the rotation interval corresponding to the block
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0κi of 0s; and for 1 ≤ i ≤ t, let [ξ2
i , η

2
i ] be the contribution corresponding to 0

λi . Thus

ρi(P ) =
u⋃

i=1

[
ξ1
i , η

1
i

]
∪

t⋃

i=1

[
ξ2
i , η

2
i

]
.

Now for 2 ≤ i ≤ u, η1
i = q(10κi−1+1120κi−212 . . . 120κ110 . . .), which, by Lemmas 4.2

and 4.1 c) and the fact that cu/v is palindromic, is less than u/v. Hence, since ρi(P ) =
[u/v,m/n], the interval [ξ1

i , η
1
i ] must be empty. On the other hand, ξ

1
1 = u/v, and

η1
1 = q

(
10λt1µt−1 . . . 1µ10λ110 . . .

)

Let η1
1 = r/s: then by Lemma 4.1 c), k + 1 ≥ s+ 1, or k ≥ s. It follows that

⋃u
i=1 [ξ

1
i , η

1
i ] is

equal either to {u/v}, or to [u/v, r/s] for some r/s with s ≤ k = N − v.
Now consider the intervals [ξ2

i , η
2
i ]. First, η

2
1 = u/v, while ξ2

1 ≥ u/v (since cP has height
u/v and q : {0, 1}N → (0, 1/2] is order-reversing). Hence [ξ2

1 , η
2
1] is either empty or equal to

{u/v}. By Lemma 4.1 c), all of the other [ξ2
j , η

2
j ] are either empty or of the form [a/b, c/d],

where both b and d are less than k.
Hence ρi(P ) = [u/v,m/n], where n ≤ k = N − v, and the first statement of the lemma

follows. For the second statement, observe from the argument above that if n = k then

m/n = η1
1 = q

(
10λt1µt−1 . . . 1µ10λ110 . . .

)
,

and using Lemma 4.1 c) it follows that w = wm/n as required.
Case b) Suppose that cP = cu/v0w1 for some word w of length k − 3. If cu/v0w0 is a
maximal (non-repetitive) word, then it is the code of an orbit of the same braid type as P ,
and the result follows from the case a). If it is not maximal, then P is the period-doubling
of a horseshoe orbit of half its period with the same rotation interval, and the result follows
from the inductive hypothesis.
Case c) If cP = cu/v1w0 = 10

κ1120κ212 . . . 120κu 1ν10λ11ν20λ21ν3 . . . 1νt0λt , decompose ρi(P )
into intervals [ξ1

i , η
1
i ] for 1 ≤ i ≤ u and [ξ2

i , η
2
i ] for 1 ≤ i ≤ t as in case a). Just as in

that case, it can be shown that [ξ1
i , η

1
i ] is empty for 2 ≤ i ≤ u. Thus either η1

1 or some η
2
i

is equal to m/n. By Lemma 4.1 a) and c), this means that the reverse ĉP of the code of

P has the property that ĉP contains one of the words 01
0
1wm/n

0
11: equivalently (since wm/n

is palindromic), cP contains one of the words 1
0
1wm/n

0
110. If there is such a word which is

disjoint from the prefix 10κ1120κ212 . . . 120κu1 of cP , then the proof can be completed as in
the case a). It remains to show, therefore, that if such a word overlaps the prefix, then
the corresponding contribution to ρi(P ) can not have right hand endpoint m/n. (It is not
necessary to consider words contained entirely within the prefix, since it has already been
shown that η1

i < u/v for i ≥ 2.)

Write κ′i = κi(m/n) for 1 ≤ i ≤ m, and suppose first that ĉP contains a word

010wm/n01 = 010
κ′1120κ

′

212 . . . 120κ
′

m1

whose associated interval has right hand endpoint m/n, and suppose that the final block
0κ
′

m of 0s in this (reverse) word coincides with the block 0κr of 0s in the prefix. Then r ≥ 2,
since otherwise P would have height m/n. By Lemma 4.1 a), the right hand endpoint of the
associated interval being m/n gives

q(10κ
′

112 . . . 120κ
′

m120κr−112 . . . 120κ110 . . .) = q(10wm/n0110
κr−112 . . . 120κ110 . . .) = m/n.
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Hence by Lemma 4.1 c), 0κr−112 . . . 120κ110 . . . Â wm/n011, or equivalently

10κr−1+1120κr−212 . . . 120κ110 . . . ≺ 10wm/n011.

Applying Lemma 4.1 c) again gives q(10κr−1+1120κr−212 . . . 120κ110 . . .) ≥ m/n > u/v, so that

10κr−1+1120κr−212 . . . 120κ110 . . . ≺ 10κ1120κ212 . . . 0κm10 . . . ,

contradicting Lemma 4.2.
Exactly the same argument works if the contributing word in ĉP is 011wm/n01. If the word

is one of 010
1wm/n11, then comparing the overlapping segments of this word and the prefix of

P gives κr = κ′m − 1 and hence (using again that wm/n is palindromic)

10κ
′

1120κ
′

212 . . . 120κ
′

m−r120κ
′

m−r+1 . . . = 10κr+1120κr+112 . . . 120κm−1120κm . . .

Â 10κ1120κ212 . . . 120κm . . . ,

(where the final inequality is by Lemma 4.2). Taking heights gives

m/n = q(10κ
′

1120κ
′

212 . . . 120κ
′

m−r120κ
′

m−r+1 . . .) < q(10κ1120κ212 . . . 120κm . . .) = u/v,

a contradiction.
Case d) The proof for cP = cu/v1w1 follows from case c) in the same way that case b)
follows from case a). ¤
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