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Abstract. In this paper we prove that in any non-trivial real analytic family

of unimodal maps, almost any map is either regular (i.e., it has an attracting

cycle) or stochastic (i.e., it has an absolutely continuous invariant measure). To

this end we show that the space of analytic maps is foliated by codimension-

one analytic submanifolds, “hybrid classes”. This allows us to transfer the
regular or stochastic property of the quadratic family to any non-trivial real
analytic family.
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1. Introduction

In this paper we will consider the dynamics of unimodal maps of an interval I,
i.e., smooth endomorphisms of I with a unique critical point that will be assumed
to be quadratic. The simplest and most famous example of this kind is given by
the real quadratic family:

Qλ : [0, 1]→ [0, 1], Qλ(x) = λx(1− x),

where λ is a real parameter between 1 and 4. An 1976 article by R. May [May]
had a big impact on the scientific community by demonstrating that this simple
mathematical model exhibits a very interesting and complex dynamical behavior.
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The interest in this special family grew further when Milnor and Thurston [MT]
showed the qualitative universality of this family: any unimodal map has essentially
the same dynamics as some quadratic map Qλ. This statement becomes particu-
larly complete if we restrict ourselves to maps with negative Schwarzian derivative:
any such map is topologically conjugate to some quadratic map, as was shown by
Guckenheimer and Misiurewicz in late 1970’s. This suggests that a typical one pa-
rameter family {ft} of unimodal maps should have a similar qualitative dynamical
evolution as the quadratic family. Discovery of Feigenbaum, Coullet and Tresser
(made approximately at the same time) of quantitative universality of the quadratic
family raised its significance even further.

In this paper we will describe a picture of an appropriate space of real analytic
unimodal maps, which will give a justification for the special role of the quadratic
family. We will use it to transfer some important dynamical properties from the
quadratic family to any non-trivial real analytic family of unimodal maps.

A unimodal map is called regular if it has a periodic attractor. It is called
stochastic if it has an invariant measure absolutely continuous with respect to the
Lebesgue measure. Given a smooth one-parameter family {ft} of unimodal maps,
we refer to a parameter t as regular or stochastic if the corresponding map ft is such.
The set of regular parameter values is always open. The set of stochastic parameter
values has positive Lebesgue measure for an open set of families containing the
quadratic family [J, BC]. In fact, in the case of the quadratic family {Qλ} much
more is known:

• The set of regular parameter values λ is open and dense in the quadratic family
[L3, GS2].

• The set of stochastic parameter values λ has full Lebesgue measure in the com-
plement of the regular parameters [L6].

The former result was extended by Kozlovski [K1] to any non-trivial real analytic
family {ft} of real analytic unimodal maps: For an open and dense set of parameter
values t in such a family, the map ft has a finite number of periodic attractors whose
basin has full Lebesgue measure. One of our main theorems, Theorem B, extends
the latter result to all non-trivial real analytic families {ft} of unimodal maps with
negative Schwarzian derivative: In such a family the map ft is either regular or
stochastic for a set of parameter values t of full Lebesgue measure. Note that this
result fits nicely to the general program of studying attractors in finite parameter
families of dynamical systems (in all dimensions) formulated by Palis [Pa].

Let us now describe the picture which allows us to transfer the results from the
quadratic family to other families of unimodal maps. We consider an appropriate
Banach space B of real analytic unimodal maps of an interval and describe its
partition into topological classes (i.e., the classes of topologically conjugate maps).
One of our main results, Theorem A, states that each topological class is either an
open set (in the regular case) or a codimension-one Banach submanifold. Different
classes fit together nicely giving a lamination structure in a neighborhood of any
map that does not have a parabolic periodic point. This lamination is transversally
quasisymmetric.

Any non-trivial real analytic one parameter family {ft} ⊂ B is transverse to this
lamination except possibly on a closed countable set of parameter values. More-
over, the quadratic family {Qλ} is a global transversal to this lamination. Thus,
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the bifurcation locus of the quadratic family (i.e., the complement of the set of
regular parameters) has a universal quasisymmetric structure: outside a closed
countable set of parameters, the bifurcation locus in any non-trivial real analytic
family {ft} ⊂ B is locally quasisymmetrically equivalent to that in the quadratic
family. However, since quasisymmetric maps are not necessarily absolutely contin-
uous, measure-theoretical applications of this result involve some extra work.

If we had the lamination structure in a neighborhood of parabolic maps as well,
we would have a stronger result: the number of tangencies would be finite. This
would also imply the following conjecture. There is an open and dense set of an-
alytic families {ft} ⊂ B which are transverse to all topological classes and satisfy
the following property: for any nearby family {gt} there is a quasisymmetric home-
omorphism φ between the parameter intervals such that ft is quasisymmetrically
conjugate to gφ(t).

Though this paper is concerned with real unimodal maps, it is mostly based
on the complex methods. The complex tools which are particularly important for
us are the theory of holomorphic motions and the Pullback Argument, especially,
its infinitesimal version introduced in this paper. It allows us to carry out an
infinitesimal analysis of topological classes of unimodal maps which yields the above
lamination structure.

After describing the dynamical and analytic background (§2), we state the main
results of the paper (§3.1) and then give an outline of the main ideas of the proofs
(§3.2). We encourage the reader to read this part first before plunging into the
ocean of technical details. The structure of the rest of the paper containing the
proofs of the main results should be clear from the Table of Contents.

Remark 1.1. We would like to draw the reader’s attention to § A.6 of Appendix A
which implies a short proof of Yoccoz’s Rigidity Theorem.

Further development: The main results of this paper are still valid without the
negative Schwarzian derivative assumption, see [Av].

The regular or stochastic dichotomy in families of unimodal maps has been re-
cently refined, giving a better statistical description of the dynamics of typical
stochastic parameters: they satisfy the “Collet-Eckmann condition”, among other
nice properties. Those results, first obtained in the context of the quadratic fam-
ily ([AM1]), were generalized in [AM2], [Av] to non-trivial analytic families using
results and methods of this paper, and then to generic smooth families.

The lamination constructed in this paper fails to be absolutely continuous in a
rather dramatic way, see [AM3].

Acknowledgement. We are grateful to A. Douady and M. Yampolsky for
helpful discussions and suggestions. We are also thankful to SUNY at Stony Brook,
IMPA, and the Clay Institute for their kind hospitality. This work has been partially
supported by the PRONEX Project on Dynamical Systems, FAPERJ Grant E-
26/151.462/99, CNPq Grant 460110/00-4, and the NSF grant DMS-9803242.

2. Preliminaries

2.1. General terminology and notations. As usual, N = {1, 2, . . . } stands for
the set of natural numbers; R stands for the real line; C stands for the complex
plane, and C = C ∪ {∞} stands for the Riemann sphere.
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Let Dr(x) = {z ∈ C : |z − x| < r}, Dr = Dr(0), and let D = D1.
X or clX denotes the closure of a set X; intX denotes its interior.
U b V means that U is compactly contained in V , i.e., U is a compact set contained
in V .
For an open set U ⊂ C and a point z ∈ U , let U(z) stand for the connected
component of U containing z;
For two sets X and Y in C, let

dist(X,Y ) = inf
x∈X, y∈Y

|x− y|.

If S is a hyperbolic Riemann surface, we consider the hyperbolic metric distS in it
and for X,Y ⊂ S we define

distS(X,Y ) = inf
x,y

distS(x, y)

and

distS(X,Y ) = max{sup
x∈X

distS(x, Y ), sup
y∈Y

distS(y,X)},

which is the standard Hausdorff distance.
We will reserve notation I for the interval [−1, 1]. For a > 0 let

Ωa = {z ∈ C : dist(z, I) < a}.

A topological disk is a simply connected domain in C; a Jordan disk is a topological
disk bounded by a Jordan curve;
a topological annulus is a double connected domain in C.
The Lebesgue measure of a set X ⊂ R will be denoted by |X|; notation meas(X)
will be reserved for the planar Lebesgue measure of a set X ⊂ C.

A setX ⊂ C is called R-symmetric if it is invariant under the conjugacy z 7→ z. A
function, or vector field, or differential defined on an R-symmetric set will be called
R-symmetric if it commutes with the conjugacy. A set X is called 0-symmetric if
it is invariant under the 0-symmetry z 7→ −z.

For a bounded function, or a vector field, or a differential, ‖ · ‖∞ will denote its
sup-norm.
Given a bounded open set V ⊂ C, let BV be the Banach space of holomorphic
functions f : V → C which are continuous up to the boundary endowed with the
sup-norm.

The tangent space to a manifold M at a point x is denoted by TxM .

Given a map f : X → X on some metric space X, fn will denote its iterates,
n = 0, 1, 2, . . . .
For x ∈ X, orb(x) ≡ orbf (x) = {f

nx}∞n=0 will denote the forward orbit or trajectory
of x.
We will also use this notation for partially defined maps so that orbf (x) consists of
those points fn(x) which are well defined.
ω(x) ≡ ωf (x) is the limit set of orb(x):

ω(x) =

∞
⋂

n=0

orb(fn(x)).

A point x is called recurrent if x ∈ ω(x).
A point x is called fixed if f(x) = x; it is called periodic if fn(x) = x for some
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n ∈ N; the smallest n ∈ N with this property is called the period of x; The orbit of
a periodic point is also called a cycle.

id stands for the identity map, id(x) ≡ x.

Given a set Y ⊂ X, the first return map to Y is defined as follows: For y ∈ Y , let
F (y) = f l(y)(y), where l = l(y) ∈ N is the first moment when f l(y) ∈ Y . Such a
moment may or may not exist, so that the first return map is only partially defined
on Y . Somewhat abusing notations we will still write F : Y → Y .

The first landing map L : X → Y is defined as follows: For x ∈ X, let L(x) =
f l(x)(x), where l = l(x) ∈ N ∪ {0} is the first moment such that f l(x) ∈ Y . (Note
that L|Y = id.) Again, this map is only partially defined on X.

Let X ⊂ X ′ and Y ⊂ Y ′. Two maps f : X → X ′ and g : Y → Y ′ are called
topologically conjugate or topologically equivalent if there is a homeomorphism h :
X ′ → Y ′ such that

(2.1) h(f(z)) = g(h(z)), z ∈ X.

Classes of topologically conjugate maps are called topological classes.
We will also say that h is equivariant (with respect to the actions of f and g). This
terminology will also be used in the case when h is only partially defined. Then it
means that (2.1) is satisfied whenever it makes sense.

Given a diffeomorphism φ : J → J ′ between two real intervals, its distortion or
non-linearity is defined as

sup
x,y∈J

log
|Dφ(x)|

|Dφ(y)|
.

Its Schwarzian derivative is given by the formula:

Sφ =
D3φ

Dφ
−

3

2

(

D2φ

Dφ

)2

.

The condition of negative Schwarzian derivative plays an important role in one-
dimensional dynamics. This condition is preserved under composition.

Let U ⊂ C be a bounded open set. We say that a holomorphic function f : U → C
belongs to class A1(U) if f and its derivative f ′ admit a continuous extension to
the closure U . We will use the same notations f and f ′ for the extensions. We
supply A1(U) with the seminorm

(2.2) ‖f‖1 = max
z∈U

|f ′(z)|.

If f ∈ A1(U), f |U is a homeomorphism onto its image and f ′ does not vanish on
U , we say that f |U is a diffeomorphism (onto the image).

Remark 2.1. Notice that is U is a bounded connected open set then the subspace
Λz ⊂ A1(U) of functions vanishing at a given point z ∈ U then ‖ · ‖1 is a norm in
Λz and Λz is a Banach space with this norm.

2.2. Hyperbolic metric. A domain D ⊂ C is called hyperbolic if its universal
covering is conformally equivalent to the unit disc. This happens if and only if
C \ D consists of at least two points. Hyperbolic domains possess the hyperbolic
(or Poincaré) metric ρD of constant negative curvature. This metric is obtained
by pushing down the Poincaré metric dρD = |dz|/(1− |z|2)| from the unit disc D.
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In the case of a simply connected hyperbolic domain D (“conformal disk”),
dρD = pD(z)|dz| is the pull-back of the ρD by the Riemann mapping D → D. In
this case the density pD(z) is comparable with dist(z, ∂D)−1:

1

4
dist(z, ∂D)−1 ≤ pD(z) ≤ dist(z, ∂D)−1.

The main virtue of the hyperbolic metric is that it is contracted under holomor-
phic maps (Schwarz Lemma) and hence is conformally invariant.

Consider an open interval J ⊂ R. A special role in the complex dynamics of
real maps belongs to the slit plane CJ = C \ (R \ J)) endowed with the hyperbolic
metric. By symmetry, J is a hyperbolic geodesic in CJ . Let us consider hyperbolic
r-neighborhoods consisting of points z ∈ CJ whose hyperbolic distance to J is at
most r. It is easy to see that such a neighborhood is the union of two symmetric
disk sectors based on J . For φ ∈ (0, π), let Dφ(J) denote such a neighborhood
whose boundary curve meets J at angle φ. (One can easily work out the explicit
relation between r and φ.) Note that for φ = π/2 we obtained the round disk with
diameter J .

2.3. Quasiconformal maps and Beltrami differentials. We assume that the
reader is familiar with the basic theory of quasiconformal maps (see, e.g., [A, LV]).
The goal of this section is to fix terminology and notations, and to state a few basic
facts particularly important for this paper.

A homeomorphism h : U → V between two open sets U, V ⊂ C, is called
quasiconformal, or briefly qc, if it has locally integrable distributional derivatives ∂h,
∂h, and |∂h/∂h| ≤ k < 1 almost everywhere. As this local definition is conformally
invariant, one can define qc homeomorphisms between Riemann surfaces.

One can associate to a qc map an analytic object called the Beltrami differential
of h,

µ =
∂h

∂h

dz

dz
,

with ‖µ‖∞ < 1. (We will identify the Beltrami differential of a map h : C → C with
the function ∂h/∂h.) The corresponding geometric object is a measurable family
of infinitesimal ellipses (defined up to dilatation), pullbacks by Dh of the field of
infinitesimal circles. The eccentricities of these ellipses are ruled by |µ|, and are
uniformly bounded almost everywhere, while the orientation of the ellipses is ruled
by the arg µ. The dilatation

Dil(h) =
1 + ‖µ‖∞
1− ‖µ‖∞

of h is the essential supremum of the eccentricities of these ellipses. A qc map h is
called K-qc if Dil(h) ≤ K.

Weyl’s Lemma. A 1-qc map is holomorphic.

One of the most remarkable facts of analysis is that any Beltrami differential
with ‖µ∞‖ < 1 (or rather a measurable field of ellipses with essentially bounded
eccentricities) is locally generated by a qc map, unique up to post-composition with
a conformal map. Thus, such a Beltrami differential on a Riemann surface S
induces a conformal structure quasiconformally equivalent to the original structure
of S. Together with the Riemann Mapping Theorem this leads to the following
result:
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Measurable Riemann Mapping Theorem. Let µ be a Beltrami differential
on C with ‖µ∞‖ < 1. Then there is a qc map h : C → C which solves the Beltrami
equation: ∂h/∂h = µ. This solution is unique if it is normalized to fix three points
in C. The normalized solution hµ depends holomorphically 1 on µ.

A map f : U → V between domains in C is called quasiregular if it is a compo-
sition of a holomorphic map and a qc homeomorphism. Beltrami differentials can
be naturally pulled back by quasiregular maps µ 7→ f ∗µ. A Beltrami differential is
called f -invariant if f∗µ = µ a.e..

Assume that a quasiregular map f admits an invariant Beltrami differential µ.
Let us solve the Beltrami equation

∂hλ
∂hλ

= λµ, |λ| < a ≡
1

‖µ‖∞
,

by means of qc maps hλ : C → C fixing two given points. Then the maps fλ =
hλ ◦ f ◦ h

−1
λ preserve the standard conformal structure and hence are holomorphic

(by Weyl’s Lemma). This family of maps is called the Beltrami disk through f
in the direction of µ. If we restrict λ to the real interval (−a, a), we obtain the
Beltrami path through f in the direction of µ.

One more fundamental property of qc maps exploited in this paper is compact-
ness:

First Compactness Lemma. The space of K-qc maps h : C → C fixing two
points is compact in the uniform topology on the Riemann sphere.

A useful consequence is the following:

Lemma 2.1. Let S ⊂ C be a hyperbolic domain, and let H : S → S be a K-qc map
homotopic to the identity rel the boundary. Then distS(x,H(x)) ≤ C(K), x ∈ S,
where C(K)→ 0 as K → 1.

Proof. If S = D, then the situation can be normalized so that x = 0, and the
statement follows from the First Compactness Lemma. In general, cover S by the
unit disk and lift H to a qc homeomorphism of D homotopic to id rel boundary
(see Theorem 2.2 of [EM]). ¤

Let L : R+ → R+. A map h : X → Y between two metric spaces is called a
L-quasi-isometry if for any ε > 0,

dist(h(x), h(y)) ≤ max{L(ε) dist(x, y), ε}, x, y ∈ X.

Quasiconformal maps are quasi-isometries with respect to the hyperbolic metric:

Lemma 2.2. For every K ≥ 1 there exists LK : R+ → R+ such that if h : S → S̃ is
a K-qc map between two hyperbolic Riemann surfaces then h is a LK quasi-isometry
in the hyperbolic metric. Furthermore, for every ε > 0, limK→1 LK(ε) = 1.

Proof. Lifting H to the universal covering, we reduce the situation to the case when
S = D. Again, the conclusion follows from compactness argument. ¤

1The space of Beltrami differentials is the unit ball in the complex Banach space L∞(C), and
thus it is endowed with the natural complex structure. Holomorphic dependence of hµ on µ is

understood in the pointwise sense: for any z ∈ C, µ 7→ hµ(z) is holomorphic
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Lemma 2.3. Given M > m > 0, there is a constant δ with the following property.
Let S, S̃ ⊂ C be hyperbolic Riemann surfaces and h1, h2 : S → S̃ be (1+ δ)-qc maps
homotopic rel boundary. Let X and Y be subsets of S. If distS(X,Y ) > M then
distS̃(h1(X), h2(Y )) > m.

Proof. Let L = L1+δ(m) be the quasi-isometric constant for h−12 (see Lemma 2.2).
LetH = h−12 ◦h1. Assume there is a point x ∈ X such that distS̃(h1(x), h2(Y )) ≤ m.

Applying h−12 we conclude that distS(H(x), Y ) ≤ max{Lm,m} < (M + m)/2,
provided δ is sufficiently small. Hence distS(H(x), x) > (M − m)/2, which for
sufficiently small δ contradicts Lemma 2.1. ¤

A qc map h : C → C will be called normalized if it fixes points −2 and 2 (this
give a little bit of space for the dynamical interval [−1, 1]). We will use the notation
µh for the Beltrami differential of the qc map h.

A homeomorphism h : X → h(X) ⊂ C of a closed set X ⊂ C will be called
quasiconformal if it admits a qc extension to C.

If X is a measurable set and h : X → C is a homeomorphism which admits qc
extensions h1 and h2 to neighborhoods of X, it is easy to see that µh1

|X = µh2
|X

up to sets of zero Lebesgue measure. This allows us to define the dilatation of h,
Dil(h) as the essential supremum over X of the eccentricities of the corresponding
ellipsis field (or 0 if measX = 0).

A quasidisk (or quasiarc) is the image of D (or [−1, 1]) by a qc map of C.

2.4. Quasisymmetric maps. A homeomorphism f : R → R is called quasisym-
metric (briefly: “qs”) if there exists a constant κ ≥ 1 such that for any h > 0 and
any x ∈ R we have

1

κ
≤
f(x+ h)− f(x)

f(x)− f(x− h)
≤ κ.

The dilatation Dil(f) of a qs map is defined as the smallest such κ. A map f is
called κ-qs if Dil(f) ≤ κ.

Qs maps are important because of their relation to qc maps:

Theorem 2.4 (Ahlfors-Beurling). Let F : C → C be a K-qc homeomorphism
preserving the real line. Then the restriction f |R is κ(K)-qs. Vice versa, any κ-qs
homeomorphism f : R → R admits a K(κ)-qc extension to the complex plane.

Quasisymmetric maps fixing 0 and 1 are Hölder continuous with an absolute
constant and an exponent depending only on the dilatation. Since the dilatation is
invariant under compositions with affine maps, we obtain:

Lemma 2.5. Let f : R → R be a κ-qs homeomorphism. Then there exist constants
C > 0 and δ > 0 such that for any two nested intervals J ⊂ T ⊂ R we have:

|f(J)|

|f(T )|
≤ C

(

|J |

|T |

)δ

A map f on a set X ⊂ R is called quasisymmetric if f extends to a qs map of R.

2.5. Holomorphic motions and codimension-one laminations. Given a do-
main V in a complex Banach space E with a base point ∗ and a set X∗ ⊂ C, a
holomorphic motion of X∗ over V is a family of injections hλ : X∗ → C, λ ∈ V,
such that h∗ = id and hλ(z) is holomorphic in λ for any z ∈ X∗. Let Xλ = hλX∗.
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We will summarize fundamental properties of holomorphic motions which are
usually referred to as the λ-lemma. It consists of two parts: extension of the
motion and transversal quasiconformality, which will be stated separately. Let
Br ⊂ E stand for the Banach ball of radius r centered at ∗.

Extension Lemma [BR, ST]. A holomorphic motion hλ : X∗ → Xλ of a

set X∗ ⊂ C over a Banach ball Br admits an extension to a holomorphic motion
Hλ : C → C of the whole complex plane over the ball Br/3.

Remark 2.2. Assume that a complex Banach space E is supplied with an anti-
linear isometric involution conj : E → E. Let ER = {λ ∈ E| conj(λ) = λ} and
∗ ∈ ER. Let us say that a holomorphic motion of an R-symmetric set X ⊂ C over
Br is R-symmetric if hconjλ(z) = hλ(z). Then the above Extension Lemma actually
provides an R-symmetric extension of this motion over Br/3. This follows from the
fact that the extension constructed by [BR] is canonical.

In what follows, this remark will be applied to certain spaces of holomorphic
functions on some R-symmetric domains, and conj f(z) = f(z)).

Quasiconformality Lemma [MSS], [BR]. Let hλ : U∗ → Uλ be a holomorphic
motion of a domain U∗ ⊂ C over a hyperbolic domain D ⊂ C. Then the maps hλ
are K(r)-qc, where r is the hyperbolic distance between ∗ and λ in D. Moreover,
K(r) = 1 +O(r) as r → 0.

A holomorphic motion hλ : X∗ → Xλ over V can be viewed as a complex
codimension-one lamination on V × C, whose leaves are graphs of the functions
λ 7→ hλ(z), z ∈ V. More generally, a codimension-one holomorphic lamination L
on a complex Banach manifold M is a family of disjoint codimension-one Banach
submanifolds of M, called the leaves of the lamination that locally looks like a
holomorphic motion:

• For any point p ∈ M, there exists a holomorphic local chart Φ : W → V ⊕ C
(where V is a neighborhood in some complex Banach space) such that for any leaf
L and any connected component L0 of L ∩ W, the image Φ(L0) is a graph of a
holomorphic function V → C.

The neighborhood W in the above definition is called a flow box, and the con-
nected components L0 are called local leaves in this flow box.

Note that by the Extension Lemma, any holomorphic lamination extends lo-
cally, near any point p ∈ M, to a lamination whose leaves fill out a full Banach
neighborhood of p.

A one-dimensional holomorphic submanifold of M which only has transversal
intersections with the leaves of L is called a transversal to L. Given two transversals
X and Y within one flow box W, we have a partially defined local holonomy map
H : X → Y , H(p) = q iff p and q belong to the same local leaf inW. This definition
can be extended to local transversals X and Y through two points p and q on the
same leaf connected by some path γ. To this end, cover the path with finitely many
flow boxes Wi and and define the local holonomy H : X → Y as the composition
of local holonomies within the Wi.

A map H : X → Y is called locally qc at p ∈ X if it admits a qc extension to some
neighborhood of p. We say that a lamination L is transversally quasiconformal if
the holonomy between any two transversals is locally qc. The λ-lemma implies (see
e.g., [L5, Appendix 2]):
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Corollary 2.6 (Transverse qc structure). Any holomorphic lamination is transver-
sally quasiconformal.

A holomorphic motion hλ : C → C will be called normalized if it fixes points 2
and −2.

The Measurable Riemann mapping Theorem can be interpreted in terms of holo-
morphic motions in the following way. Let µλ, λ ∈ D, be a holomorphic family of
Beltrami differentials such that ‖µλ‖∞ < 1 for all λ ∈ D, and µ0 = 0. Then
there exists a unique normalized holomorphic motion hλ of C based at 0 such that
µhλ = µλ. The converse is also true:

Theorem 2.7 (see [BR], Theorem 2). Let hλ be a holomorphic motion of an open
set of C. Then µhλ is a holomorphic family of Beltrami differentials.

Holomorphic motions also enjoy the compactness properties of qc maps:

Lemma 2.8. Let X ⊂ C be a set containing 3 distinct points {a, b, c} and let V
be an open subset of a separable Banach space. Consider a holomorphic motion of
X over V as a map from V to the space of continuous maps from X to C endowed
with the uniform metric. The space of all holomorphic motions hλ : X → C, λ ∈ V,
fixing {a, b, c} is compact in the uniform topology over compacts of V.

For a proof, see [D1].

2.6. Infinitesimal deformations.

2.6.1. Quasiconformal vector fields. A continuous vector field v ≡ v/dz on an open
set U ⊂ C is called K-quasiconformal (or briefly, K-qc) if it has locally integrable
distributional partial derivatives ∂v and ∂v, and ‖∂v‖∞ ≤ K. A vector field is
quasiconformal if it is K-qc for some K.

The theory of qc vector fields has many parallels with the theory of qc maps.
Given µ ∈ L∞(C) one obtains a qc vector field α with ∂α = µ. (Global) solutions
to this problem are obtained from local ones, and those can be explicitly given (see
[AB]) using the Cauchy transform

−
1

π

∫

µ(ζ)

z − ζ
dζ ∧ dζ.

The Cauchy transform also implies that local solutions have modulus of continuity
φ(x) = −x ln(x) (see [Mc2], Theorem A.10).

Two qc vector fields α and α̃ such that ∂α = ∂α̃ differ by a conformal vector
field (this is another instance of Weyl’s Lemma). A conformal vector field on C
which vanishes at three given points vanishes on the whole sphere.

Second Compactness Lemma. The space of K-qc vector fields of the Rie-
mann sphere C vanishing at three given points is compact in the topology of uniform
convergence on C.

(See Corollary A.11, page 199 of [Mc2] for the proof.)

Corollary 2.9. For any L > 0, there exists a C > 0 such that if α is a L-qc vector
field on C that vanishes at ∞ and on the boundary of some interval T ⊂ R, then
|α(z)| < C|T |, for all z ∈ T .
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Proof. Let A : [0, 1] → T be an affine transformation and let β = A∗α. Then the
vector field β is L-qc and vanishes at 0, 1 and ∞. By the Second Compactness
Lemma, β is bounded by some universal C. Hence α is bounded by C|T |. ¤

A qc vector field will be called normalized if it vanishes on {−2, 2,∞}.
A continuous vector field v on a closed set X ⊂ C is called quasiconformal if it

extends to a qc vector field on C. If a vector field v on a closed set X admits a
normalized qc extension to C (this is always the case when X does not intersect
{−2, 2,∞}) then we let

(2.3) ‖v‖qc = inf ‖∂β‖∞,

where β runs over all normalized qc extensions of v.
Notice that if α1 and α2 are qc vector fields that coincide in some measurable

set X then ∂α1 = ∂α2 on X up to sets of zero Lebesgue measure. If we define α as
the restriction of those vector fields to X, the object ∂α ∈ L∞(X) is well defined.

Quasiconformal vector fields are the infinitesimal equivalent of qc maps. More
precisely, they are tangent at identity to holomorphic motions.

Lemma 2.10. Let hλ : X → C, λ ∈ D, be a holomorphic motion with base point
0. Then

α ≡
d

dλ
hλ

∣

∣

∣

∣

λ=0

is a qc vector field on X. Moreover, if X is an open set,

(2.4) ∂α =
d

dλ
µhλ

∣

∣

∣

∣

λ=0

.

Proof. Consider an extension of hλ, which we still denote hλ. By Theorem 2.7, µhλ
depends holomorphically on λ, and (2.4) follows from the proof of Lemma 19 of
[AB]. ¤

2.6.2. Equivariant vector fields. Let f : Ω→ C be a holomorphic map and let v be
a holomorphic vector field on Ω. A vector field α is called equivariant on some set
X ⊂ Ω (with respect to the pair (f, v)) if for any z ∈ X,

(2.5) v(z) = α(f(z))− f ′(z)α(z).

Note that this equation can also be written in the form

(2.6) f∗α− α =
v

f ′
.

This equation tells us that α is an “infinitesimal conjugacy” between f and its
“infinitesimal deformation” v. It is obtained by linearizing the following commuta-
tive diagram:

(2.7)

Ω −→
id+εα

Ωε

f


y



yf + εv

C −→
id+εα

C

Let X ⊂ Ω and let α be a vector field on Y ≡ f(X). A vector field β is called the
lift of α to X by (f, v) if v = α ◦ f − f ′β. This equation is obtained by linearization
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of the following commutative diagram:

X −→
id+εβ

Xε

f


y



yf + εv

C −→
id+εα

C

Note that if 0 is a critical point of f , then a “liftable” vector field α must
necessarily satisfy condition v(0) = α(f(0)).

Obviously, a vector field is equivariant if and only if it is equal to its lift.
Assume now that the set X is open and the vector field α is quasiconformal.

Since β = f∗α− v/f ′ where v/f ′ is holomorphic,

∂β = ∂(f∗(α|Y )) = f∗∂(α|Y ),

where the former pullback acts on vector fields while the latter one acts on Beltrami
differentials. Hence

‖∂β‖∞ = ‖f∗∂(α|Y )‖∞ = ‖∂(α|Y )‖∞,

i.e., lifts preserve the qc norm of vector fields.

2.6.3. Variational formula. Let us consider now the iteration operator Sn : f 7→ fn

acting between some spaces of (real or complex) analytic functions. Linearizing the
expression (f + εv)n, we obtain the following formula for the differential of Sn:

(2.8) vn ≡ DSn(f)v = Dfn−1 ◦ f
n−1
∑

k=0

v ◦ fk

Dfk ◦ f
= Dfn

n−1
∑

k=0

(fk)∗
(

v

f ′

)

.

(Though f is implicit in the notation vn, it should not lead to a confusion.)
Note that if ft is a one-parameter family of analytic maps such that

d

dt
ft

∣

∣

∣

∣

t=0

= v

then

(2.9)
d

dt
fnt

∣

∣

∣

∣

t=0

= vn.

Applying to (2.6) the iterates of f∗ and summing up, we see that if α is equi-
variant with respect to (f, v) on ∪n−1k=0f

k(X), then it is equivariant with respect to
(fn, vn) on X:

(fn)∗α− α =
n−1
∑

k=0

(fk)∗(f∗α− α) =
n−1
∑

k=0

(fk)∗
(

v

f ′

)

=
vn

Dfn
.

(Another way of seeing it is to linearize the “iteration” of the diagram (2.7).)
The variational formula makes it clear that if α is a bounded vector field equi-

variant on orbf (x) and Df
k(x)→∞ then

α(x) = −
∞
∑

j=0

v ◦ f j

Df j+1
.

Note finally that if β is obtained from α by n consecutive lifts by (f, v), then β
is the lift of α by (fn, vn).
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2.7. Markov maps and expanding Cantor sets.

Definition 2.1. Consider two open sets U b Ũ and a smooth map f : Ũ → C.
The map f : U → C is called Markov if:

(i) U is the union of finitely many Jordan disks Ui with piecewise smooth
boundary and disjoint closures;

(ii) the restrictions f |Ui are diffeomorphism onto the image;
(iii) for any i and k, the curves f(∂Uk) and f(∂Ui) are either disjoint or coincide;
(iv) for any i, j, the image f(Ui) is either disjoint from Uj or contains Uj

(Markov property).

A Markov map will be called strictly Markov if the Markov property (iv) is
strengthened to the strict Markov property: fUi c Uj .

The “Julia set” of a Markov map is defined as

K(f) = {z : fnz ∈ U, n = 0, 1, 2, . . . }.

The map f and its Julia set are called expanding if K(f) is compact and there exist
constants C > 0 and ρ > 1 such that

|Dfn(z)v| ≥ Cρn, z ∈ K(f), v ∈ TzU, n = 0, 1, 2, . . . .

We will be mostly concerned with holomorphic (on Ũ) Markov maps, though we will
sometimes encounter a more general situation. It follows from the Montel Theorem
that the Julia set of a holomorphic strictly Markov map is an expanding Cantor
set.

Recall that BV stands for the Banach space of holomorphic functions f : V → C
which are continuous up to the boundary.

Proposition 2.11. Let f : U → C be a holomorphic strictly Markov map as above.
Let V be an open set such that U b V b Ũ . Then there exists a holomorphic
motion hg : U → Ug over some neighborhood V ⊂ BV of f conjugating f : U → C
to g : Ug → C.

Proof. We will give a proof of this well-known statement which illustrates a simplest
version of the so called “pull-back argument”. By property (iii) of Definition 2.1,
the image Γ = f(∂U) is a 1-cycle, i.e., a finite union of disjoint Jordan curves. Let
Un = f−nU . Since the restrictions f |Ui are univalent, each Un is a finite union of
Jordan disks with disjoint closures. Moreover,

U ≡ U0 c U1 c U2 c . . . .

Let γ = ∂U .
Let γg = g−1Γ. If g is sufficiently close to f in BV , then γg is a 1-cycle moving

holomorphically with g, where the motion h0g : γ → γg is defined by the requirement:
g(hg(z)) = f(z), z ∈ γ. Moreover, γg bounds some domain Ug and the map
g : Ug → C is a strictly Markov map.

Extend h0g to Γ as the identity. By the λ-lemma, this motion further extends to
a holomorphic motion of the whole plane over some neighborhood V ⊂ BV . Let us
keep the same notation h0g for the extension. By definition, h0g conjugates f : γ → Γ
to g : γg → Γ.

Let Ung = g−nU .

Since the restrictions f |Ui are univalent, we can lift h0g to U as follows:

g ◦ h1g|U = h0g ◦ f |U.



14 ARTUR AVILA, MIKHAIL LYUBICH, WELINGTON DE MELO

Since h0g is equivariant on γ, it matches with h1g on γ. Thus, we can let h1g = h0g
in C \ U . We obtain a holomorphic motion of the whole plane which conjugates
f : U \ U1 → C to g : Ug \ U

1
g → C.

Similarly, pulling this motion back to U 2, we obtain a motion h2g conjugating

f : U \U2 → C to g : Ug \U
2
g → C, etc. Since the motions hlg, l ≥ n, coincide with

hng on C \Un, at the end we obtain a motion hg : C \K(f)→ C \K(g) conjugating
f : U \ K(f) → C to g : U \ K(g) → C. By the λ-lemma, this motion admits
an extension through the Julia sets. Since the Julia sets are nowhere dense, this
extension conjugates f : U → C to g : Ug → C. ¤

Remark 2.3. The same result is valid for (non-strictly) Markov maps for which one
can construct a holomorphic motion h0g of γ ∪ Γ. The rest of the argument carries
to this more general situation without changes.

Given a smooth map f : U → C and a Riemannian metric ν on C, we say that
ν is expanded by f on an invariant set Q ⊂ U if there is a constant λ > 1 such
that ‖Df(x)v‖ν ≥ λ‖v‖ν for all x ∈ Q and v ∈ TxC. The following useful fact is
well-known:

Lemma 2.12. Assume that a smooth map f : U → C is expanding on a compact
invariant set Q ⊂ U . Then there exists a Riemannian metric ν which is expanded
by f on Q. If f is holomorphic then the metric ν can be selected to be conformal.

2.8. Unimodal maps. We refer to the book of de Melo & van Strien [MS] for the
general background in one-dimensional dynamics.

A smooth map f : I → I of the interval I = [−1, 1] is called unimodal if it
has a single critical point and this point is an extremum. We always assume that
the critical point is located at the origin. Let U3 be the space of C3 unimodal
maps f : I → I with quadratic critical point, which are even (symmetric), that is
f(x) = f(−x) (non-symmetric maps are discussed in Appendix C), i.e., Df(0) = 0
andD2(f(0) 6= 0. We normalize the maps so that −1 is a fixed point and f(1) = −1.
We endow U3 with the C3 topology. If Df(−1) < 1, either the dynamics is trivial
(−1 is the global attractor) or the map has a proper unimodal restriction. For this
reason we will assume further that Df(−1) ≥ 1.

We let cn = fn(0), n = 0, 1, 2, . . . .
Basic examples of unimodal maps are given by quadratic maps

(2.10) qτ : I → I, qτ (x) = τ − 1− τx2,

where τ ∈ [1/2, 2] is a real parameter.
A map f ∈ U3 is quasiquadratic if any nearby map g ∈ U3 is topologically

conjugate to some quadratic map. We denote by U ⊂ U 3 the space of quasiquadratic
maps. By the theory of Milnor-Thurston [MT] and Guckenheimer [G], a map f ∈ U 3

with negative Schwarzian derivative is quasiquadratic, so the quadratic family is
contained in U .

Let us consider a periodic point q of some period n and its cycle q = {f k(q)}n−1k=0 .
Let λ = (Dfn)(q) be its multiplier. The point q and its cycle q are called attracting,
parabolic, or repelling depending on whether |λ| < 1, |λ| = 1, or |λ| > 1. A periodic
point is called superattracting if λ = 0, which means that the cycle of this point
contains 0.
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The basin of attraction D(q) of an attracting cycle q is defined as {x ∈ I :
fn(x)→ q}. The basin of attraction D(q) of a parabolic cycle q is defined similarly,
except that the orbits landing at the cycle itself are not considered to be in the
basin (this makes the basin open).

A quasiquadratic map f is called hyperbolic or regular if it has an attracting cycle
q. In this case the orbit of the critical point 0 converges to q, hence a quasiquadratic
map can have at most one attracting cycle [Fa, Si]. Moreover, if it has one then
almost all orbits converge to this cycle (this follows from a result by Guckenheimer
and Mañé, see [M]).

A quasiquadratic map f is called parabolic if it has a parabolic cycle q. Similarly
to the hyperbolic case, in the parabolic case the critical point 0 belongs to the
basin D(q) and this basin has full Lebesgue measure in I. Thus, a quasiquadratic
map can have at most one parabolic cycle (and the map cannot be simultaneously
hyperbolic and parabolic).

Remark 2.4. Let us denote by D0(q) the union of connected components of D(q)
whose closure intersects q (the immediate basin of q).

There is a simple criteria to decide if a unimodal map f ∈ U 3 is topologically
equivalent to a quadratic map: any non-repelling periodic orbit must contain the
critical point in its immediate basin. This is a consequence of Milnor-Thurston
Theory and non-existence of wandering intervals for maps in U 3 (see [MS], Theorem
6.2, page 156 and Theorem 6.4, page 162).

To prove that a map is quasiquadratic, we need a robust version of the above
criteria given in the following:

Lemma 2.13. If f ∈ U3 is topologically conjugate to a quadratic map and has no
parabolic periodic orbit then f is quasiquadratic.

Proof. We only have to show that the criteria of Remark 2.4 is valid for all g in a
neighborhood of f .

By the result of Guckenheimer and Mañé (see also Proposition 2.15 below), if J
is a neighborhood of the critical point then f |I \ J is expanding. This property is
persistent, so we conclude that for any J there is a neighborhood V ⊂ U 3 of f such
that for g ∈ V all periodic orbits which intersect J are repelling. This implies the
result if f has an attracting periodic orbit, so let us assume that all periodic orbits
are repelling.

By Theorem A of [K2], there exists a symmetric interval Jf containing the
critical value f(c) such that the first return map to f(Jf ) has negative Schwarzian
derivative. Shrinking the interval Jf we may suppose that f(Jf ) = [p, f(0)] where
p is a repelling periodic orbit and p ∩ Jf = {pf} (this condition implies the nice
condition, to be defined in the next section).

The interval Jf has a continuation Jg for g ∈ U3 near f such that g(∂Jg) = pg
is the continuation of p, and by the proof in [K2], it is clear that there exists a
neighborhood V ⊂ U3 of f such that if g ∈ V then the first return map to g(Jg)
still has negative Schwarzian derivative. By the argument of Singer [Si], it follows
that any non-repelling periodic orbit for g which intersects Jg must contain the
critical point in its immediate basin. Shrinking V we may assume that there exists
an interval J which is contained on ∩g∈VJg. Shrinking V again, we conclude (by
the previous argument) that all periodic orbits contained in I \J are repelling, and
the result follows. ¤
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In what follows, all unimodal maps under consideration will be assumed to be
quasiquadratic.

If the fixed point −1 is repelling, then f has a unique fixed point in the interior
of I. This point will always be denoted by α. If the α-point is repelling, then it is
orientation reversing, that is, f ′(α) < 0.

A unimodal map is called preperiodic if the orbit of the the critical point 0 lands
at a repelling cycle. Simplest examples of preperiodic maps are provided by Ulam-
Neumann (or Chebyshev) maps for which f(0) = 1 (so that the second iterate of 0
lands at the fixed point −1, which is automatically repelling in this case).

A unimodal map f is renormalizable if there exists an interval J containing
the critical point and an integer n ≥ 2 such that fn(J) ⊂ J and the intervals
J, f(J), . . . , fn−1(J) have pairwise disjoint interior. The smallest such n is called
the renormalization period.

Let n be the renormalization period and J 3 0 be the maximal periodic interval
of period n as above. This interval is bounded by a periodic point (of period n if
n ≥ 3 and period 1 if n = 2) and the symmetric point. The restriction fn|J is
called the pre-renormalization of f .

Let A : I → J be the affine scaling. Then the map

R(f) ≡ A−1 ◦ fn ◦A : I → I

is called the renormalization of f .

Remark 2.5. The renormalization of a quadratic map has negative
Schwarzian derivative and hence is quasiquadratic. Since the renormalization op-
erator is an open continuous map in the topology of U 3 and respects topological
equivalence, it acts on the space of quasiquadratic maps.

If the renormalization R(f) is in turn renormalizable, then the map f is twice
renormalizable. In this way we can define n times renormalizable maps for any
n = 1, 2, . . . , including n =∞.

A hyperbolic or parabolic map with an attracting/parabolic cycle of period n > 1
is renormalizable but at most finitely many times (the last renormalization of this
map has an attracting/parabolic fixed point). Preperiodic maps are at most finitely
renormalizable. In fact, infinitely renormalizable maps have a recurrent critical
point.

A unimodal map is called Yoccoz if it is not infinitely renormalizable and has
all periodic orbits repelling. A Yoccoz map with a non-recurrent critical point is
called Misiurewicz.

2.9. Spaces of unimodal maps. Let UN stand for the set of Ulam-Neumann
maps f ∈ U3. It is a domain in an affine hyperplane of the Banach space C3.

Unimodal maps f ∈ U3 with negative Schwarzian derivative form an open subset
of U containing the quadratic family {qτ : τ ∈ [1/2, 2]}. We will be interested in
the intersection of U with some Banach spaces of real analytic unimodal maps.

Let a > 0, and let Ea ⊂ BΩa be the complex Banach space of holomorphic
maps v : Ωa → C continuous up to the boundary which are 0-symmetric (that is,
v(z) = v(−z)) and such that v(−1) = v(1) = 0, endowed with the sup-norm ‖v‖a =
‖v‖∞. It contains the real Banach space ER

a of ”real maps” v, i.e, holomorphic maps

symmetric with respect to the real line: v(z) = v(z).
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The complex affine subspace q2 + Ea will be denoted as Aa.
If f ∈ Aa, we denote the postcritical set orb(f(0)) by Of .
Let Ua = U ∩Aa. Note that Ua is the union of an open set in the affine subspace

AR
a = q2 + E

R
a and a codimension-one space of Ulam-Neumann maps.

2.10. Real puzzle. Let us start with some combinatorial preparation, which will
be used throughout this paper. We assume that both fixed points, −1 and α, of f
are repelling.

A symmetric interval J containing 0 is called nice in the sense of Martens if the
orbits of its boundary points do not intersect int J .

The real puzzle PR for a quasiquadratic map f is a collection of closed intervals
Pni , n ∈ N ∪ {0}, called real puzzle pieces such that P 00 = [−α, α] and the Pni ,
n > 0, are the components of f−nP 00 . Intervals of the puzzle containing the critical
point are called critical and are labeled as P n0 . Any critical puzzle piece P n0 is nice.
Moreover,
• any non-critical puzzle piece P ni is diffeomorphically mapped onto some other
puzzle piece Pn−1k(i) ;

• any critical puzzle piece P n0 is folded into the puzzle piece P n−11 containing the
critical value c1 in such a way that f(∂P n0 ) ⊂ ∂Pn−11 .

Take now a critical puzzle piece J0 ∈ P
R and consider the first landing map

L to it. The domain of this map consists of a family J of disjoint puzzle pieces
Ji ∈ P

R, i ∈ N, satisfying the following properties (see [Ma]): Any Ji, i > 0, is
diffeomorphically mapped by f onto some other interval Jk(i) ∈ J , and there exists
ni ∈ N such that the branch L|Ji = fni |Ji diffeomorphically maps Ji onto J0.

More generally, a similar description for the landing map applies to any nice
interval J0. In this case, we will loosely say that the collection {Ji} is the puzzle
associated to J0.

The following statement explains the role of nice intervals.

Theorem 2.14 ([Ma]). Let us consider two symmetric intervals J0 ⊂ T0 such that
the orbit of f(∂J0) does not return to intT0 (in particular, J0 is nice). Let fni :
Ji → J0 be a branch of the landing map L to J0. Then f

ni diffeomorphically maps
some interval Ti ⊃ Ji onto T0. Moreover, the distortion of L|Ji is O(|J0|/|T0|).

The following is a consequence of the result by Guckenheimer and Mañé.

Proposition 2.15 (see [MS], Corollary 1, page 248). Let f : I → I be a quasi-
quadratic map with all periodic orbits repelling and let L : ∪Ji → J0 be the first
landing map to a nice interval J0. Then the complement Q = I \ ∪ int Ji is an
expanding set.

The above expanding set is usually a Cantor set (for instance, if the boundary
points of J0 are not periodic).

For a given unimodal map f , let us construct the principal nest

(2.11) [−α, α] = T 0 ⊃ T 1 ⊃ T 2 ⊃ . . .

of real puzzle pieces. Consider the first return map g1 : ∪T 1i → T 0 to the interval
T 0. It is defined on the union of disjoint closed intervals T 1i contained in T 0.
Assuming the critical point 0 returns to T 0, one of these intervals contains the
critical point. Call it T 1 ≡ T 10 . Otherwise we stop and the principal nest consists
only of T0.
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We define inductively the first return maps

(2.12) gn : ∪Tni → Tn−1

to Tn−1, and we let Tn ≡ Tn0 be the critical interval of the domain of gn. If there
is n such that the critical point never returns to Tn, the principal nest consists of
the intervals T0, ..., Tn. In this case f is necessarily non-renormalizable and has a
non-recurrent critical point. Otherwise the principal nest is an infinite sequence of
intervals. If f is non-renormalizable, the intervals T n shrink to zero. Otherwise
they shrink to the domain of the pre-renormalization of f (see [L2]).

The scaling factors of f are defined as follows: λn = |Tn|/|Tn−1|.
We will now reformulate Theorem 2.14 in a way convenient for further references.

Theorem 2.16. Let f be a non-renormalizable quasiquadratic map with recurrent
critical point such that f(0) 6= 0. Let J0 = Tn+1, n ∈ N, and let L : ∪Ji → J0
be the corresponding first landing map. Let L|Ji = fni and J̃i be the monotonicity

interval of fni containing Ji. Then L(J̃i) ⊃ Tn and hence the distortion of L|Ji is
O(λn+1).

It is important to distinguish two combinatorial possibilities for the returns of
the critical point: central and non-central returns. The return to level n − 1 (and
the level n− 1 itself) is called central if gn(0) ∈ T

n. Let {nk − 1} be the sequence
of non-central levels in the principal nest.

The following result will provide us with a big space around certain intervals of
the principal nest.

Theorem 2.17 ([L2]). Let f be a non-renormalizable quasiquadratic map with
non-trivially recurrent critical point (that is, f(0) 6= 0). Then there exist constants
C > 0 and ρ ∈ (0, 1) such that

λnk+1 ≤ Cρk.

Combining the last two theorems, we see that the branches of the first landing
map L : ∪Ji → J0 become almost linear if J0 is selected sufficiently deep in the
principal nest.

Remark 2.6. Theorems 2.14 and 2.17 were proven in the quoted papers for quasi-
quadratic maps with negative Schwarzian derivative. The general case was reduced
to this one by Kozlovski [K2], who has proven that for sufficiently big n, the first re-
turn map to Tn−1 has negative Schwarzian derivative, and this is enough to obtain
good properties for gn.

Lemma 2.18. Let us use notations of Theorem 2.16. There is a function C(λ)→
∞ as λ → 0 with the following property. For any n, there exist topological disks
Ui ⊃ Ji such that mod(U0 \ J0) = C(λn+1) and the first landing map L|Ji extends
to a univalent map from Ui onto U0.

Proof. Fix some φ ∈ (0, π) and let U0 be the hyperbolic neighborhood Dφ(T
n) of

Tn (see § 2.2). ¤

2.11. Stochastic maps. A unimodal map f : I → I is called stochastic if it has
an invariant measure µ which is absolutely continuous with respect to the Lebesgue
measure on I (such a measure will be abbreviated as a.c.i.m.).
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Existence of an a.c.i.m. is related to the rate of expansion along the critical
orbit. It was shown by Collet & Eckmann [CE] (with a complement by Nowicki
[N]) that the map is stochastic if the expansion rate is exponential:

Dfn(c1) ≥ Cλn, C > 0, λ > 1.

This criterion was improved by Nowicki & van Strien [NS] who replaced the expo-
nential rate with the summability condition:

(2.13)
∑

|Dfn(c1)|
−1/2 <∞.

Since the strongest contraction occurs near the critical point 0, one should expect
that the rate of expansion along the critical point is related to the rate of recurrence
of the critical orbit. Here is an efficient criterion of this kind:

Theorem 2.19 (Martens & Nowicki [MN]). Let f be a non-renorma-
lizable quasiquadratic map and λn be its scaling factors. If

∑√

λn <∞

then f is stochastic (in fact, f satisfies (2.13)).

This result together with Theorem 2.17 implies the following combinatorial cri-
terion:

Theorem 2.20. Let f be a non-renormalizable quasiquadratic map. If all but
finitely many levels in its principal nest are non-central then f is stochastic.

2.12. Quadratic-like maps. A holomorphic map f : U → U ′ is called quadratic-
like if it is a double branched covering between topological disks U,U ′ such that
U b U ′. It has a single critical point which is assumed to be located at the origin 0,
unless otherwise is stated. We will also make the following technical assumptions:

• U is symmetric with respect to the origin and f is even, i.e., f(−z) = f(z).
• The domains U and U ′ are bounded by piecewise smooth curves.

Quadratic-like maps are considered up to affine conjugacy. We will say that a
quadratic-like map f is normalized at 0 if it has the following expansion at 0:

(2.14) f(z) = c+ z2 +O(z3).

A quadratic-like map is called real if the domains U and U ′ are R-symmetric and
f preserves the real line: f(U ∩ R) ⊂ R.

The filled Julia set of a quadratic-like map is defined as the set of non-escaping
point:

K(f) = {z : fnz ∈ U, n = 0, 1 . . . }.

Its boundary is called the Julia set, J(f) = ∂K(f). The sets K(f) and J(f)
are connected if and only if the critical point itself is non-escaping: 0 ∈ K(f).
Otherwise these sets are Cantor.

If f is a real quadratic-like map with connected Julia set, then K(f) ∩ R is an
interval [−β, β], where β is a fixed point of f . Since f is considered up to affine
conjugacy, we can normalize it so that β = −1.

The fundamental annulus of a quadratic-like map f : U → U ′ is the annulus
between the domain and the range of f , A = U ′ r U .

Two quadratic-like maps f and g are called topologically equivalent if they are
topologically conjugate in some neighborhoods of their Julia sets. They are called
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hybrid equivalent if they are conjugate by a qc map h with ∂h = 0 a.e. on K(f).
Note that in the hyperbolic case (when f has an attracting cycle), the hybrid class of
f consists of topologically equivalent quadratic-like maps with the same multiplier
of the attracting cycle (Douady & Hubbard).

By the Douady-Hubbard Straightening Theorem [DH1], every hybrid class with
connected Julia set intersects the quadratic family

{Pc : z 7→ z2 + c}c∈C

at a single point c of the Mandelbrot set. (Recall that the Mandelbrot set is defined
as the set of parameter values c ∈ C for which the Julia set J(Pc) is connected.)
It follows that given a real quadratic-like map f without parabolic points, the
restriction f |I is quasiquadratic (this is still true when parabolic points are allowed,
but requires an extra argument).

Theorem 2.21 ([L3, GS2]). Let us consider two real non-hyperbolic quadratic-like
maps f and g with connected Julia set. If f and g are topologically equivalent then
they are hybrid equivalent. Thus, there exists a unique quadratic polynomial qτ ,
τ ∈ [1/2, 2], in the topological class of f .

Let us now consider the real tangent line bundle L → C over the plane C.
An invariant line field on the Julia set J(f) is a measurable section X → L,
where X ⊂ J(f) is a measurable invariant set of positive (plane) Lebesgue measure
invariant under the action of f . In other words, it is a measurable function θ : X →
R mod πZ such that for a.e. z ∈ X,

θ(fz) = θ(z) + argDf(z) mod πZ.

Associated to an invariant line field on the Julia set, there is family of f -invariant
Beltrami differentials

µλ(z) = λe2iθ(z), |λ| < 1,

on X (extended by 0 to the whole complex plane). Hence any invariant line field
generates a Beltrami disk fλ = hλ ◦ f ◦ h

−1
λ , |λ| < 1, of the map f , where hλ is the

solution of the Beltrami equation ∂hλ = µλ∂hλ. This deformation is non-trivial on
the Julia set. Thus, Theorem 2.21 yields the following result due to Yoccoz (see
[H]) and McMullen [Mc1]:

Theorem 2.22. A real quadratic-like map with connected Julia set does not have
invariant line fields on the Julia set.

2.13. Real hybrid classes. Theorem 2.21 can be carried to the class of real ana-
lytic maps:

Theorem 2.23. If two non-hyperbolic real analytic maps f, g ∈ Ua are topologically
conjugate then they are quasisymmetrically conjugate.

(For a proof of a stronger statement for the Yoccoz case see Appendix B.)
The above discussion motivates the following definition. Two quasiquadratic

maps f and g of class Ua are called (real) hybrid equivalent if they are topologically
equivalent and (in the hyperbolic case) their attracting cycles have the same multi-
plier. (Because of Theorem 2.21, two quasiquadratic maps which have quadratic-like
extensions belong to the same real hybrid class if and only if they belong to the
same hybrid class as quadratic-like maps.)
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We denote by HR
f ≡ H

R
f,a ⊂ Ua the real hybrid class of f (for simplicity we often

omit a in the notation). By Theorem 2.21, each hybrid class intersects the quadratic
family {qτ}τ∈[1/2,2] at a single point. Hence we can consider the straightening map
χ : U → [1/2, 2], which associates to a quasiquadratic map f ∈ U the hybrid
equivalent quadratic polynomial.

Remark 2.7. By Milnor-Thurston theory, two quasiquadratic maps belong to the
same hybrid class if and only if they have the same kneading sequence and the
multipliers of any non-repelling cycles are the same for both maps. This is a con-
sequence of non-existence of wandering intervals for quadratic maps, and can be
easily obtained by the same argument of [MS], Corollary of Theorem 6.2, page 157.

This has the following nice consequence for the action of renormalization in
the space of quasiquadratic maps. Let f and g be renormalizable of the same
type. It is clear that they have the same kneading sequence if and only if their
renormalizations do, so f and g belong to the same hybrid class if and only if their
renormalizations do. So each renormalization operator (corresponding to some
renormalization combinatorics) acts on hybrid classes in an injective way.

2.14. A priori bounds. A relation between general real analytic and quadratic-
like maps is provided by the renormalization: an appropriate renormalization of a
real analytic map is quadratic-like. This statement is usually encoded as a priori
bounds:

Theorem 2.24 ([LS1, LY]). Let f be an infinitely renormalizable real analytic map
of class Ua. Then some renormalization Rnf admits a quadratic-like extension to
the complex plane.

Note that this property is robust: if it holds for some map f0 ∈ Ua then it also
holds, with the same n, for nearby maps f ∈ Ua.

2.15. Parameter geometry of the quadratic family. The real quadratic family
{qτ} can be partitioned according to the combinatorics of the first return maps [L4].
According to this construction, the set N of non-renormalizable quadratic maps
with both fixed points repelling2 is covered with countable unions Dn of intervals
∆n
i each of which is endowed with a family of first return maps glτ,i : ∪T

l
τ,i → T l−1τ of

a certain level l = l(n, i). Each interval ∆n
i contains a subinterval Πni corresponding

to the central return of the critical point: glτ,i(0) ∈ T
l
τ,0.

Theorem 2.25 ([L4]). There exist constants C > 0 and ρ ∈ (0, 1) such that

(2.15)
|Πni |

|∆n
i |
≤ Cρn.

Thus, the probability of the central return on level n is exponentially small in
n. By the Borel-Cantelli Lemma, the probability of infinitely many central returns
is equal to 0. By Theorem 2.20, almost all quadratic maps qτ with τ ∈ N are
stochastic.

By means of the renormalization, this result extends to quadratic maps which
are not infinitely renormalizable:

2N will also denote the corresponding set of parameter values τ ∈ [1/2, 2], and the same

convention applies to other sets which appear below: F , I, etc.
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Theorem 2.26 ([L4]). Almost all Yoccoz quadratic maps qτ , τ ∈ [1/2, 2], are
stochastic maps whose last renormalization satisfies the Martens-Nowicki criterion
for existence of a.c.i.m.

Recently, Avila and Moreira (see [AM1]) have strengthened the result above by
showing that almost every Yoccoz map satisfies the Collet-Eckmann condition.

2.16. Regular or Stochastic Theorem. Let I stand for the set of infinitely
renormalizable quadratic maps qτ , τ ∈ [1/2, 2].

We say that a set X ⊂ R has definite gaps everywhere if there exists a C > 0
such that for any x ∈ X and any ε > 0 there exists an interval J ⊂ (x−ε, x+ε)\X
such that

C−1 dist(x, J) ≤ |J | ≤ C dist(x, J).

By the Lebesgue Density Theorem, such a set has zero measure. But unlike the
measure zero property, the property to have definite gaps everywhere is preserved
by quasisymmetric maps.

Theorem 2.27 ([L6], §4.1). The set I has definite gaps everywhere and hence has
zero Lebesgue measure in the parameter interval [1/2, 2].

Putting together the last two theorems, we obtain:

Theorem 2.28. Almost any real quadratic map qτ is either regular or stochastic.

2.17. Invariant line fields and equivariance. In this work, the non-existence
of invariant line fields on the set of non-escaping points of a holomorphic dynamical
system will be a recurrent hypothesis. Its main interest for us will be to obtain
estimates on equivariant qc maps or vector fields. The following two Lemmas should
clarify this relation.

Lemma 2.29. Let f : U → C, f̃ : Ũ → C be two non-constant holomorphic maps
such that there exists a qc map h : C → C, h(U) = Ũ , equivariant on U . Let K(f) be
the set of non-escaping points of f . Then Dil(h) = max{Dil(h|C \U),Dil(h|K(f)}.
Furthermore, if Dil(h|K(f)) > 1 then K(f) has an invariant line field.

Proof. Equivariance implies that f∗(µh) = µh, so

Dil(h|C \K(f)) = maxDil(h|f−n(C \ U)) = Dil(h|C \ U).

If Dil(h|K(f)) > 1, µh gives an invariant line field on K(f). ¤

The same argument gives the following infinitesimal version:

Lemma 2.30. Let f : U → C be a non-constant holomorphic map and let v
be a holomorphic vector field on U such that there exists a qc vector field α on
the plane equivariant on U . Let K(f) be the set of non-escaping points. Then
‖∂α‖∞ = max{‖∂α|C \ U‖∞, ‖∂α|K(f)‖∞}. Furthermore, if ‖∂α|K(f)‖∞ > 0
then K(f) has an invariant line field.

2.18. Some generalities about Banach spaces. Let E denote a complex Ba-
nach space.

We say that a set K ⊂ E\{0} is a cone if v ∈ K implies λv ∈ C for all λ ∈ C\{0}.
We say that a codimension-one subspace F is transverse to K if F ∩ K = ∅.
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Lemma 2.31. Let F be a codimension-one subspace transverse to an open cone
K and v ∈ K. There exists C > 0 such that if w ∈ E \ K and w = w1 + λv with
w1 ∈ F then |λ| ≤ C‖w1‖E.

For a sequence of subspaces Fn ⊂ E, let

lim supFn = Lin{v ∈ E| lim inf distE(v, Fn) = 0}.

Lemma 2.32. If the Fn are codimension-one subspaces, then lim supFn is either
E or a codimension-one subspace.

Proof. Let G be any subspace of E of dimension 2. Since each Fn has codimension
one, Fn∩G contains a unitary vector vn. So there exists a subsequence converging to
some unitary vector v ∈ lim supFn. Since lim supFn is a subspace which intersects
any 2-dimensional subspace of E, we conclude that lim supFn is either E or a
codimension-one subspace. ¤

3. Results and methods

3.1. Statement of the results. We are now ready to formulate the main results
of this paper.

Fix some a > 0. Note that the affine space Aa has a natural involution around
its real subspace AR

a . A subset in Aa is called R-symmetric if it is invariant under
this involution.

Theorem A. Every real hybrid class HR
f , f ∈ Ua, is an embedded codimension-

one real analytic Banach submanifold of Ua. Furthermore, the hybrid classes lami-
nate a neighborhood of any non-parabolic map f ∈ Ua. More precisely, any f ∈ Ua
has an R-symmetric neighborhood V in the complex affine space Aa endowed with a
codimension-one R-symmetric holomorphic lamination such that for any g ∈ V∩AR

a ,

the intersection of the leaf through g with AR
a coincides with H

R
g ∩ V.

A real analytic one-parameter family {fλ}λ∈Λ of unimodal maps is called non-
trivial if it is not contained in a single real hybrid class.

Theorem B. Let {fλ}λ∈Λ ⊂ Ua be a non-trivial one-parameter real analytic
family of unimodal maps. Then for Lebesgue almost all parameter values λ ∈ Λ,
the map fλ is either regular or stochastic.

Theorem C. Under the circumstances of the previous theorem, there is an open

and dense set Λ0 ⊂ Λ of parameter values with countable complement such that
the straightening map χ(ft) is quasisymmetric on any compact interval contained
in Λ0.

Remark 3.1. The map conjugating ft to its straightening does not depend contin-
uously on t (see [NPT], Theorem 3.2, p. 15, or [DH1], Proposition 15, p. 315).

3.2. Ideas of the proofs.

3.2.1. Quadratic-like germs. The entry point for this paper is the theory of qua-
dratic-like maps g : U → U ′ described in §2.12. Briefly, the picture is as follows.
The space Q of quadratic-like germs is endowed with a natural complex analytic
structure based on families of Banach spaces. The connectedness locus C of this
space is laminated by the hybrid classes Hf each of which is a codimension-one
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complex analytic submanifold in Q. By the λ-lemma, this lamination is transver-
sally quasiconformal (but it is not transversally smooth!). The quadratic family
{Pc : z 7→ z2 + c}c∈C is a global transversal to this lamination.

The tangent (“horizontal”) space to the hybrid class Hf consists of holomorphic
vector fields v on U , which admits representation (2.5), v = α ◦ f − f ′α, where α is
a qc vector field on U whose ∂-derivative vanishes a.e. on the filled Julia set K(f).
This equation tells us that v is an “infinitesimal hybrid deformation” of f and α is
the corresponding “infinitesimal conjugacy”.

A transverse (“vertical”) direction to the hybrid class Hf can be selected as
a holomorphic vector field V tr ≡ V trf which can be represented as (2.5) in U \

K(f), where α(z)/dz is a holomorphic vector field on C \ K(f) vanishing at ∞.
This explicit description of a vertical direction exploits essentially the “external
structure” of quadratic-like maps (existence of the fundamental annulus U ′ \ U).
Lack of this structure for general real analytic maps is the source of major difficulties
addressed in this paper.

3.2.2. Horizontal space. Theorem 2.23 motivates the following definition. Assume
that f ∈ Ua is not hyperbolic, and let v be a holomorphic vector field in the
neighborhood Ωa. We say that it is horizontal if there is a qc vector field α(z) on
C satisfying (2.5) on orb(0). (This definition is designed in such a way that it will
still make sense for complex perturbations of f .)

Clearly, the horizontal vector fields form a linear space, which will be denoted
Tf . Moreover, it is easy to see (by the Implicit Function Theorem) that for simple
combinatorics, like parabolic or preperiodic, the hybrid class HR

f is a real analytic
codimension-one submanifold in Ua, whose tangent space coincides with Tf . For
general combinatorics, this is still true but requires much finer analysis; it will be
outlined below.

3.2.3. Infinitely renormalizable case. As usual in one-dimensional dynamics, the
analysis depends on the combinatorial properties of the maps under consideration.
It turns out that for our problem, the infinitely renormalizable case is easier to
handle. The reason is that by means of renormalization, it can be reduced to the
quadratic-like case.

Take some infinitely renormalizable map f ∈ Ua. By a priori bounds (Theorem
2.24) some renormalization Rnf is a quadratic-like map, and the same is true for

all (complex) f̃ ∈ Aa near to f . Moreover, all maps Rnf̃ belong to some Banach
ball V of quadratic-like maps.

The classical Runge Theorem implies that the differential DRn(f) has a dense
image in V. By the Implicit Function Theorem, the pullback of the hybrid lamina-
tion near g = Rnf in V is a holomorphic lamination near f in Aa. It is easy to see
that the real slices of the leaves of this lamination are local real hybrid classes.

3.2.4. Puzzle maps. To handle the non-renormalizable case, we need to consider a
special class of piecewise holomorphic maps. A puzzle map is defined on a disjoint
union ∪i≥0Ui of topological disks Ui called “puzzle pieces” such that the “critical”
piece U0 contains 0 and is symmetric with respect to 0, while any noncritical puzzle
piece Ui is univalently mapped by f onto some other puzzle piece Uj(i) (see Figure

1). Moreover, we require that for any i, either f(U0) contains Ui or f(U0) is disjoint
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from Ui (and there are also some other technical requirements). Let U1 denote the
puzzle piece containing the critical value c1 = f(0).

The filled Julia setK(f) of the puzzle map is defined as the set of all non-escaping
(from ∪Ui) points. It is not necessarily compact.

Let us fix from now on a non-renormalizable unimodal map f ∈ Ua with repelling
fixed points and recurrent critical point. Any such a map can be restricted to a
puzzle map in the following way. Select a nice critical interval J0 ≡ Tn in the
principal nest (see §2.10), and let U0 be an appropriate hyperbolic neighborhood
of J0 in the slit complex plane C \ (R \ J0). Consider the first landing map L :
∪j≥0Jj → J0 to J0. Then Ui ⊃ Ji are defined as the preimages of U0 under L.
The last requirement on the puzzle map can be ensured by selecting the interval
J0 = Tn sufficiently deep in the principal nest to make the corresponding scaling
factor λn so small (by Theorem 2.17 ) that f−1U1 ⊂ U0 (see Lemma 5.5).

This puzzle structure of unimodal maps f ∈ Ua will serve as a substitute for the
external structure of quadratic-like maps. A crucial property of the puzzle structure
(see §5.2) is that it is persistent under perturbations of the map, even complex, and
moreover moves holomorphically under the perturbation.

3.2.5. Key estimate. By definition, a horizontal vector field v for a puzzle map is
a holomorphic vector field on ∪Ui satisfying (2.5) with some qc vector field α on
orb(0). The key estimate says that, for any map g ∈ V in some neighborhood
V 3 f which either does not have invariant line fields on K(g) or is hyperbolic, the
dependence of α on v is uniformly bounded:

(3.1) ‖α‖qc ≤ L‖v‖a, v ∈ Tg.

(The norms ‖ · ‖qc and ‖ · ‖a are defined in §2.6.1 and 2.9.) Recall that the no-
invariant fields assumption is satisfied for all real maps which are not hyperbolic
or parabolic (see Theorem 2.22 and Lemma A.24). It is also satisfied for complex
preperiodic puzzle maps for more simple reasons (see Appendix B).

The proof goes as follows. Select an ε > 0 so that the puzzle structure is
persistent in the 2ε-neighborhood V of f , and let g belong to the ε-neighborhood of
f . Consider a holomorphic curve gλ = g + λv ∈ V tangent to v, |λ| < ε/‖v‖a. Let
hλ : (C,∪Ui)→ (C,∪Uλi ) be a holomorphic motion of the puzzle structure, and let

α0 =
dhλ
dλ

∣

∣

∣

∣

λ=0

.

PSfrag replacements

ff

f

U0 U1

f(U0)

Figure 1. Puzzle map
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Since hλ is equivariant on the boundary of the puzzle, α0 satisfies is equivariant
with respect to (g, v) on ∂U . Moreover,

∂α0 =
dµλ
dλ

∣

∣

∣

∣

λ=0

,

where µλ is the Beltrami differential of hλ. Applying the Schwarz Lemma to the
map λ 7→ µλ, we obtain: ‖∂α0‖∞ ≤ ε−1‖v‖a.

We exploit now a new tool, the “Infinitesimal Pullback Argument” (§6.2), to
construct a qc vector field β equivariant with respect to (g, v) on U , coinciding
with α on orb(0), and coinciding with α0 on C \U . Moreover, if g has no invariant
line fields on the filled Julia set, then ‖∂β‖∞ ≤ ‖∂α0‖∞, and the key estimate
follows.

3.2.6. Transverse direction. We are now approaching the most delicate issue, con-
struction of a “transverse vector field”, i.e., a non-horizontal vector field v ∈ Tf (Ua).
The idea is first to construct a smooth transverse vector field v and then to approx-
imate it with a holomorphic one. In fact, v is going to be holomorphic on the
critical value puzzle piece U1 and vanishing on all other puzzle pieces Ui, i 6= 1.
Moreover, v can be selected in such a way that it has a definite hyperbolic length
(with respect to the hyperbolic metric of U1) at any given point q ∈ J1 = U1 ∩ R,
no matter how close this point to is ∂J1 (it is essential here that v is required to
be only once smooth).

It turns out that if q = c1 and if the nice interval J0 was originally selected suffi-
ciently deep, then the vector field v cannot be horizontal. Assuming otherwise, we
use the infinitesimal pullback argument to construct a qc vector field α equivariant
on orb(0) and vanishing on the boundary of the real puzzle. Let us then consider
the first landing point p of the orb(q) in the domain W = f−1U1 b U0 (notice that
by construction, α must vanish in ∂W ∩ R). Equation (2.5) allows us to bound
from below the hyperbolic length of α(p) in U0 via the hyperbolic length of v in
U1. So, the former length is also definite. Moreover, using the ideas of the proof of
the Key estimate we are able to bound from above the qc norm of α uniformly.

But the hyperbolic diameter of W in U0 is very small, provided the nice interval
J0 was selected deep enough (note that W ∩ R is the puzzle piece of the principal
nest following J0). Hence the length of α(p) is very big compared with the diamW .
But this contradicts Corollary 2.9, since α vanishes at the boundary points ofW ∩R
and has uniformly bounded qc norm.

Next we approximate v in the union of two appropriate sectors by polynomial
vector fields vn vanishing to the first order at the boundary point of J1 where
the sectors touch. We claim that the vn are eventually not horizontal (and hence
they represent transverse directions at f in Ua). Assuming contrary, we prove the
key estimate for the corresponding vector fields αn. It follows the same lines as
described above, though technically more involved. The key estimate allows us to
pass to a limit in equation (2.5) and to conclude that v is horizontal - contradiction.

Remark 3.2. In this construction we control uniformly the ‖ · ‖1 norm of v. The
scaling invariance of the ‖ · ‖1 norm is essential for this argument, as it is for
the C1 Closing Lemma of Pugh [Pu]. In fact the construction of the transverse
direction can be seen as the infinitesimal counterpart to the C1 Connecting Lemma
of Hayashi [Ha] (we want to close the critical orbit at the infinitesimal level). The
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key estimate, based heavily on complex analysis, is what allows us to promote a C1

perturbation to an infinitesimal holomorphic perturbation.

3.2.7. Transverse cone field. Thus, the tangent space at f can be decomposed in
the direct sum of the horizontal and transverse spaces, TfAa = Tf ⊕ V trf , where

V trf = Lin{V tr} and V tr is the transverse vector field constructed above. Since Aa
is an affine space, we can use this decomposition as a “coordinate system” in it.
Let θ ∈ [0, π/2). For a complex map g ∈ Aa near f , let us consider a tangent cone
in TgAa,

Kθg = {v ∈ TgAa : ‖vh‖ ≤ tan θ ‖vtr‖},

where vh and vtr are the projections of v to Tf and V trf respectively.

If angle θ is sufficiently small and g (possibly complex) is sufficiently close to f
and does not have invariant line fields on K(g), or is hyperbolic, then

(3.2) Kθg ∩ Tg = ∅.

Otherwise there would exist a sequence of maps gn → f , either without invariant
line fields on K(gn) or hyperbolic, and a sequence of horizontal vector fields vn ∈
TgnAa converging to V tr. Let αn be a qc vector field equivariant with respect to
(gn, vn) on orbgn(0). By (3.1) and the Second Compactness Lemma, the sequence
{αn} admits a subsequence converging to a qc vector field α on orbf (0). It follows
that the vector field V tr is horizontal – contradiction.

3.2.8. Local laminations. Let V ⊂ Aa be a neighborhood of f where (3.2) holds. We
can select this neighborhood as a product Vh × Σtr where Vh ⊂ Tf and Σtr ⊂ V trf
is a transverse segment. Exploiting a macroscopic version of the Key estimate, we
show that for Σtr small enough, each hybrid class may intersect Σtr only at a single
point (the estimate we use essentially implies that if two nearby maps g1 and g2 are
hybrid conjugate then g2− g1 is almost tangent to the hybrid class of g1, so g1 and
g2 cannot be both in the transverse segment Σtr). This implies that preperiodic
and hyperbolic maps are dense in Σtr (thus, at this stage we obtain a new proof of
Kozlovski’s Theorem [K1]).

If g ∈ V is preperiodic or hyperbolic then the hybrid class Hg is a complex
analytic submanifold in Aa whose tangent space coincides with the horizontal space
Tg. By the cone transversality (3.2), this submanifold has a bounded slope in the
coordinate system Tf ⊕ V trf . This implies (together with the existence of uniform

qc conjugacies for Hg ∩ V, obtained using the Macroscopic Pullback Argument)
that it is a graph with a bounded slope over the whole neighborhood Vh. For
those simple combinatorics (preperiodic or hyperbolic), it is easy to see that the
local hybrid classes Hg ∩ V of different maps cannot intersect, so we have indeed
constructed the lamination though a dense subset of Σtr. An application of the
Extension Lemma promotes it to a lamination through the whole transversal Σtr.

Since we already dealt with infinitely renormalizable maps, the remaining case of
the construction of local laminations is for hyperbolic maps, which is much easier. If
f is hyperbolic, there is a neighborhood VR ⊂ Ua of f consisting of hyperbolic maps.
The analytic map that associates to each g ∈ VR the multiplier of its attracting
periodic orbit is a submersion. This implies that the real hybrid classes in VR form
a transversally analytic foliation.
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3.2.9. Connectivity of the hybrid classes. In the Appendix B, we prove that any
hybrid class HR

f of a Yoccoz map f is connected. To this end we complement the
puzzle structure of f with a Markov structure in such a way that the combinatorics
of this pattern depends on the combinatorics of f only, while the geometry of the
pattern is definite. In other words, these patterns are qc equivalent for any two
maps f and f̃ ∈ HR

f . By the pullback argument, f and f̃ are qc equivalent in a
complex neighborhood of the interval I.

In particular, we can select f̃ as the quadratic polynomial qτ in the hybrid class
of f . Let h be an R-symmetric qc map conjugating f to f̃ near I, and let µ be its
Beltrami differential. Let µt = tµ, 0 ≤ t ≤ 1, and let ht : C → C be the solution
of the corresponding Beltrami equation fixing 0 and 1. Then the Beltrami path
ft = ht ◦ f ◦ h

−1
t is a real analytic family of unimodal maps connecting f to f̃ in

some space Ua′ .
To get a path between f and f̃ in Ua, we construct a two parameter family in

Ua′ by adding a transverse direction and then approximate it by a two parameter
family in Ua. By the Implicit Function Theorem we get a path in Ua linking f and
f̃ .

3.2.10. Regular or Stochastic Theorem. We will outline now a proof of Theorem B.
Take some map f ∈ Ua which is not parabolic, and consider a real analytic family
ft ∈ Ua, f0 = f , transverse to the hybrid class HR

f . We wish to prove that almost
all maps ft near f are either regular or stochastic. Of course, we can assume that
f is not hyperbolic. Moreover, since maps with non-recurrent critical point have
absolutely continuous invariant measure (Misiurewicz [Mi]), it is enough to consider
the recurrent case.

Assume first that f is at most finitely renormalizable. Since the real hybrid class
HR
f is connected, there is a local holonomy from the family {ft} to the quadratic

family {qτ}. By Corollary 2.6, this holonomy is quasisymmetric.
Quasisymmetric maps are not in general absolutely continuous. However, by

Lemma 2.5, they respect the property of exponential decay of the parapuzzle ge-
ometry (Theorem 2.25). This property implies that almost any map ft near f ,
which is not hyperbolic and at most finitely renormalizable, satisfies the Martens-
Nowicki criterion for existence of a.c.i.m. Hence almost any map ft near f which
is at most finitely renormalizable is either regular or stochastic.

If f is infinitely renormalizable then some renormalization {gt = Rnft} is a
quadratic-like family near g = Rnf transverse to the real hybrid class HR

g (since
the image of DRn(f) is dense, Rn is transversally non-singular). Since the hy-
brid classes form a holomorphic lamination with connected leaves in the space of
quadratic-like germs, the holonomy from {gt} to the quadratic family {qτ} is qua-
sisymmetric. By Theorem 2.27 the set I of infinitely renormalizable quadratic maps
has definite gaps everywhere. This property carries to the family {gt} by means of
the quasisymmetric holonomy. Since Rn analytically maps {ft} to {gt}, the same
is true for the family {ft}. By the Lebesgue Density Theorem, the set of infinitely
renormalizable maps ft near f has zero Lebesgue measure.

Consider now an arbitrary non-trivial real analytic family {ft} ⊂ Ua. We show
in §9.1 that this family contains at most countably many tangencies with the real
hybrid classes and at most countably many parabolic points. At all other points it
is transverse to the hybrid classes. It follows that almost all parameter values in
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this family are either regular or stochastic. The set of transverse points is an open
set with countable complement, so this argument also proves Theorem C.

4. Infinitely renormalizable case

4.1. Hybrid lamination in the space of quadratic-like germs.

4.1.1. Banach balls of quadratic-like maps. Let U be a 0-symmetric domain, and
let B0U be the space of normalized at 0 even holomorphic functions f ∈ BU . This
is an affine subspace of BU . The ball or radius ε centered at f ∈ B0U is denoted as
B0U (f, ε).

Each class of affinely conjugate quadratic-like maps contains a unique represen-
tative normalized at 0. Let Q stand for the space of normalized at 0 quadratic-like
germs. The connectedness locus C is the set of quadratic-like maps f ∈ Q with
connected Julia set. The hybrid class Hf ⊂ Q is the set of quadratic-like maps
g ∈ Q which are hybrid equivalent to f on some neighborhoods of the filled Julia
sets.

Take some quadratic-like map f : U → U ′ in Q. Consider a 0-symmetric Jordan
domain V b U with a piecewise smooth boundary such that V ⊃ K(f) and fV c
V . Then any normalized at 0 even holomorphic function g ∈ B0U which is sufficiently
close to f restricts to a quadratic-like map g : V → V ′. Thus, we have an embedding
jV : B0U (f, ε) → Q. Its image QV (f, ε) endowed with the topology induced from
BU will be called a Banach ball (centered at f of radius ε) of quadratic-like maps.
Note that U is implicit in this notation as the domain of definition of f .

Given a set X ⊂ Q, the intersection X ∩ QV (f, ε) will be called a Banach slice
of X (by the ball QV (f, ε)).

4.1.2. Hybrid lamination. Below we will summarize the results of [L5] (specially
§4) about the hybrid lamination in the space of quadratic-like maps.

Theorem 4.1. Let f : U → U ′ be a normalized at 0 quadratic-like map with
connected Julia set. Then there exists a Banach ball V = QV (f, ε) such that for
any g ∈ V∩C, the slice of the hybrid class Hg by the ball V is a complex codimension-
one analytic submanifold in V. These submanifolds form a holomorphic lamination
in V.

In the setting of the above theorem, let us consider a map f̃ ∈ V which is hybrid
equivalent to f . Take two transversals T 3 f and T̃ 3 f̃ to Hf ∩ V. Then we have

a well defined local holonomy h : T ∩C → T̃ ∩C along the leaves of the lamination.
Moreover, by the λ-lemma, h admits a qc extension to a neighborhood of f in T .
(We will formulate this property briefly by saying that “the holonomy is locally
quasiconformal” or that the “the lamination is transversally quasiconformal”). In
fact, these holonomies can be extended to the whole hybrid class of f :

Proposition 4.2. Let f ∈ C be a normalized quadratic-like map with connected
Julia set. If f̃ ∈ Hf is hybrid equivalent to f then it can be joined to f with a path
{ft} ⊂ Hf covered with finitely many Banach balls from Theorem 4.1. Thus, there

is a well-defined local qc holonomy between any two transversals T 3 f and T̃ 3 f̃
to Hf .

The role of the quadratic family is partly explained by the following statement:
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Proposition 4.3. The quadratic family {qτ} is transverse to the hybrid lamination
(in any Banach ball from Theorem 4.1).

The tangent space Tf to the above Banach slice of Hf consists of vector fields
v ∈ BU that admit representation (2.5), v = α ◦ f − f ′α, where α is a qc vector
field on U whose ∂-derivative vanishes a.e. on the filled Julia set K(f). Such vector
fields are called horizontal.

A transverse, vertical direction to the hybrid class Hf can be selected as a holo-
morphic vector field V trf which can be represented as (2.5) in U \ K(f), where

α(z)/dz is a holomorphic vector field on C \ K(f) vanishing at ∞. The latter
condition means that near ∞, α(z) = az + h(z), where h is a bounded holomor-
phic function. If f is R-symmetric, the transverse direction can also be chosen
R-symmetric.

4.2. From real analytic to quadratic-like. Let us consider an infinitely renor-
malizable quasi-quadratic map f ∈ Ua. By the a priori bounds, there is a quadratic-
like renormalization of f . This means that there exist R-symmetric Jordan domains
U ≡ U0, . . . , Un−1, Up ≡ U ′ such that:

• Ui b Ωa, i = 0, 1, . . . , n− 1.
• U0 3 0 is 0-symmetric and f : U0 → U1 is a branched double covering;
• the maps f : Ui → Ui+1 are conformal isomorphisms, i = 1, . . . , n− 1;
• U ′ c U .

We call the map

P (f) ≡ fn : U → U ′

a quadratic-like pre-renormalization of f . If g ∈ Ua is sufficiently close to f , then
the restriction gn|U gives a quadratic-like pre-renormalization of g. Normalizing
these maps at the origin, we obtain a renormalization R : V → QR

W , where V ⊂ Ua
is some neighborhood of f and W 3 0 is an R-symmetric and 0-symmetric Jordan
disk obtained from U by little shrinking and rescaling.

To carry out the infinitesimal analysis of the renormalization operator, we will
make use of the variational formula (2.8).

Lemma 4.4. The renormalization operator R : V → QR
W is real analytic.

Proof. The pre-renormalization of f analytically depends on f , since it is a re-
stricted iterate of f (with the differential explicitly given by (2.8)). The normaliza-
tion of a function f is the rescaling by factor f ′′(0) analytically depending on f as
well. ¤

We want to prove that the derivative of the renormalization operator is transver-
sally non-singular, that is, the image ofDR(f) contains transverse vectors toHR

R(f).

Let us deal first with an easier case.

Lemma 4.5. Assume U i are disjoint, 0 ≤ i ≤ n − 1. Then the image of the
infinitesimal renormalization DR(f) : TfA

R
a → TR(f)Q

R
W is dense.

Proof. The operator R is a composition of the pre-renormalization operator P from
AR
a to BR

U and a rescaling operator from BR
U to QR

W . It is easy to see that the
derivative of the rescaling operator has dense image, so we just have to show that
DP (f) : TfAR

a → TR(f)B
R
U has dense image. Since P (f) is the restriction of the

iterate fn, the differential DP (f)v is given by the variational formula (2.8).
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Take an even holomorphic vector field w ∈ BR
U . Let’s define a holomorphic vector

field ṽ on ∪Ui such that DP (f)ṽ = w. First let ṽ = 0 on ∪n−1i=1 Ui. Using (2.8) with
w in the left-hand side, extend this vector field to U :

(4.1) ṽ(z) =
w(z)

Dfn−1(f(z))
.

Then ṽ is an even vector field on U , and the pre-renormalization of ṽ is equal to
w. By the Mergelyan Polynomial Approximation Theorem (see [R], Theorem 20.5,
page 423), ṽ can be approximated by a polynomial vector field v with which is even
and R-symmetric. Then the pre-renormalization of v approximates w. Rescaling
the domain U , we obtain the assertion. ¤

The above situation occurs whenever the last renormalization is not period dou-
bling. In the doubling case, the intersections between the Ui are unavoidable, since
the little Julia sets (the forward images of J(f 2n|U), where 2n is the period of
renormalization) intersect.

In this case, we can still select the Ui with the following properties:

• If the closure of Ui intersects the closure of Uj and i < j then j = i + n
and Ui ∪ Uj is simply connected;

• U0 ∩ Un is contained in a small neighborhood V of a repelling periodic
point q of period n;

• V is a topological disk such that fn|V is a diffeomorphism and V ⊂ fn(V );
hence fn|V is linearizable.

Lemma 4.6. Under the circumstances just described, DR(f) : TfA
R
a → TR(f)Q

R
W

has dense image.

Proof. As before, we just have to show that the image of DP (f) is dense.
Arguing as in Lemma 4.5, let w ∈ BR

U be an arbitrary even polynomial vector
field. Using the linearizing coordinate and the power series expansion, we see that
there exists a holomorphic vector field vlin in fn(V ) such that

w(z) = Dfn−1(fn+1(z)) vlin(f
n(z)) +Df2n−1(f(z)) vlin(z).

(The right-hand side of this equation is equal to DP (f)vlin, assuming that vlin
vanishes outside fn(V ).)

Let vn be an even polynomial vector field which is close to vlin on fn(V ), and
let v0 be an even polynomial vector field close to

w(z)−Dfn−1(fn+1(z)) vn(fn(z))

Df2n−1(f(z))

in a neighborhood of U0. Notice that v0 is close to vn on V and is even.
Let us now construct a vector field interpolating between v0 and vn. Since

we want even vector fields, we first symmetrize the domains. Let U symn (resp.
V sym) denote the union of Un (resp. V ) with its image by the 0-symmetry and let

K ⊂ V sym be a compact neighborhood of U 0 ∩ U
sym
n .

Using a partition of unity, we construct an even C∞ vector field vsm on C with
the following properties: vsm is C1 close to vn on K, vsm = v0 on U0 \ K, and
vsm = vn on U symn \K.

Consider now a normalized qc vector field α such that ∂α|U0∪U symn = ∂vsm and
∂α|C \ (U0 ∪U symn ) = 0 (see §2.6.1). Notice that ‖∂α‖∞ is close to 0 and so by the
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Second Compactness Lemma, α is close to 0. Then vsm−α ∈ B0U0∪U
sym
n

interpolates

between v0 and vn.
By the Mergelyan Theorem, there is an even polynomial vector field v which is

close to v0 on U0, to vn on Un and to 0 on the Ui, i 6= 0, n. It then follows that
DP (f)v is close to w in BU . ¤

Lemmas 4.5 and 4.6 imply:

Lemma 4.7. DR is transversally non-singular.

4.3. Local laminations near infinitely renormalizable maps.

Theorem 4.8. Let f ∈ Ua be an infinitely renormalizable map. Then some neigh-
borhood V ⊂ Ua of f is foliated by the real hybrid classes, which are codimension-one
real analytic submanifolds in V.

Proof. Consider the above renormalization operator R : V → QR
W . Let g = R(f).

By Theorem 4.1, QR
W = Tg ⊕ V

tr
g , where Tg is the tangent space to the real hybrid

class at g and V trg is the transverse vertical line. Moreover, g has a neighborhood

W ⊂ QR
W foliated by the real hybrid classes of quadratic-like maps, which are

graphs of real analytic functions Tg → V trg .

If the neighborhood V is sufficiently small, then the hybrid class HR
g ∩ V is the

zero-set of some real analytic submersion φ :W → R. By Lemma 4.7, there exists
a vector v ∈ AR

a such that w ≡ DR(f)v 6∈ Tg. Hence the composition φ◦R : V → R
is a submersion at f . By the Implicit Function Theorem, its zero-set Xf = R−1Hg
is a codimension-one submanifold near f .

Since R is real analytic and the horizontal space TG varies continuously for
G ∈ W, DR(F )v 6∈ TR(F ) for all F ∈ V sufficiently close to f . By shrinking V,
we can assume that this is valid for all F ∈ V. Applying the Implicit Function
Theorem as above we see that the preimages XF = R−1HR(F ), F ∈ V, are real
analytic codimension-one submanifolds in V. Moreover, these submanifolds are
closed in V and are transverse to v at any point F ∈ V. Hence they form a real
analytic lamination of V.

Observe finally that the leaves XF of this lamination coincide with the real
hybrid classes. Indeed, if two non-hyperbolic maps F and F̃ in V are topologically
equivalent on the real line then so are their renormalizations R(F ) and R(F̃ ). By

Theorem 2.21, these two maps are hybrid equivalent. If F and F̃ are hyperbolic
with the same multiplier then so are their renormalizations.

Vice versa, if R(F ) and R(F̃ ) are topologically equivalent on the real line then

the maps F and F̃ have the same kneading sequence. Hence, by Remark 2.7, if
R(F ) and R(F̃ ) are hybrid equivalent, then so do F and F̃ . ¤

Remark 4.1. Since the hybrid class of an infinitely renormalizable map f has just
been shown to be codimension-one submanifolds, the transverse non-singularity of
the renormalization operator at f (and the fact that hybrid classes are preserved
by the renormalization) implies that the image by DR of any vector transverse to
HR
f is transverse to HR

R(f).

4.4. Regular or stochastic property near infinitely renormalizable param-

eter values.
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Theorem 4.9. Let {ft} ⊂ Ua be a one-parameter real analytic family of quasi-
quadratic maps such that f ≡ ft0 is infinitely renormalizable. If {ft} is transverse
to the real hybrid class HR

f then for almost all t near t0, the map ft is either regular
or stochastic.

Proof. Let us consider the above renormalization operator R : V → QR
W . By

Remark 4.1, DR(f)v 6∈ HRf if v is not tangent to HR
f . Hence {gt = R(ft)} is a

real analytic family of quadratic-like maps transverse to the hybrid class HR
g ∩Q

R
W ,

where g = g0.
By Theorem 4.1, the foliation by the real hybrid classes in QR is transversally

quasisymmetric with connected leaves, so the straightening gt 7→ qχ(t) is quasisym-
metric near 0. By Theorem 2.28 and the argument of §3.2.10 (detailed in §9.4),
this implies the Regular or Stochastic property for the family {gt} near 0.

Since the map gt is regular or stochastic if and only if the corresponding map ft
is, the conclusion follows. ¤

4.5. Straightening near infinitely renormalizable parameters.

Theorem 4.10. Let {ft} be a one-parameter real analytic family of unimodal maps
such that f = ft0 is infinitely renormalizable. If {ft} is transverse to HR

f at f then
the straightening χ of this family is quasisymmetric near f .

Proof. Consider the renormalization operator R : V → Q in a neighborhood V of f
described in §4.2. Since R is transversally non-singular, it diffeomorphically maps
the family {ft} near f onto its image {Rft}.

Let q = χ(f) be the straightening of f . By Proposition 4.3, the quadratic
family qτ is transverse to the hybrid lamination. For the same reason as above,
the renormalization R diffeomorphically maps the quadratic family near q onto its
image {Rqτ} ⊂ Q.

By Proposition 4.2, there is a well-defined quasisymmetric holonomy h from the
family {Rft} to the family {Rqτ} in the space Q of quadratic-like maps. Since
χ = R−1 ◦ h ◦R, we conclude that χ is quasisymmetric as well. ¤

5. Tangent space and puzzle maps

5.1. Tangent space. To prove that a hybrid class is a Banach submanifold we
have to find a candidate for its tangent space. We will now associate to each map
f a complex vector space whose intersection with the real slice will be the tangent
space to the hybrid class whenever the map is real and unimodal.

As in the unimodal case, a map g ∈ Aa is called preperiodic if there exists k
such that ck is a periodic orbit but 0 itself is not periodic. It is called hyperbolic if
ω(0) is an attracting cycle.

Remark 5.1. For the class of maps that we are considering, there could be attracting
cycles that do not attract the critical point. However, whenever we refer to an
attracting cycle, we mean the one which does attract the critical point.

The following three propositions will motivate the definition of the tangent space
to a hybrid class.

Proposition 5.1. Let f ∈ Aa and v ∈ Ba. Let {ft} be a smooth curve in Aa such
that f0 = f and

d

dt
ft

∣

∣

∣

∣

t=0

= v.
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Then, for each n, the curve cn(t) = fnt (0) ∈ C is smooth in a neighborhood of 0. If
there is an equivariant vector field α on orbf (0) then

α(cn) =
d

dt
cn(t)

∣

∣

∣

∣

t=0

= vn(0).

Proof. The second equation follows from (2.9). Since α is also equivariant by
(fn, vn) (see § 2.6.2), we have:

α(cn) = α(cn)−Df
n(0)α(0) = vn(0).

¤

Remark 5.2. If the orbit of zero is infinite, there is always a vector field α satisfying
(2.5). If the critical orbit of f is periodic or preperiodic, the set Tf of vector
fields v for which there exists an α satisfying (2.5) is a codimension-one subspace.
Moreover, α is uniquely determined by v on the orbit of the critical value.

Recall that Of stands for the postcritical set orb(c1).

Definition 5.1. Let us consider a map f ∈ Ua. We denote by Gf the set of qc
vector fields on the closed set Of endowed with the norm ‖ · ‖qc.

Proposition 5.2. Let fλ be a holomorphic family in Aa through f ≡ f0, with non
escaping critical orbit. Assume there is a holomorphic motion hλ satisfying the
equation hλ ◦ f ◦ h

−1
λ = fλ on the critical orbit. Let

v =
d

dλ
fλ

∣

∣

∣

∣

λ=0

and

α =
d

dλ
hλ

∣

∣

∣

∣

λ=0

.

Then α is a qc vector field that satisfies equation (2.5) on the critical orbit.

Proof. Differentiating the equation

hλ ◦ f(cn) = fλ ◦ hλ(cn)

at λ = 0 we conclude that

α(cn+1) = f ′(cn+1)α(cn) + v(cn)

for every n ≥ 0, which is clearly equivalent to equation (2.5). Quasiconformality of
α follows from Lemma 2.10. ¤

If f ∈ Aa is a preperiodic map we denote by Cf ⊂ Aa the connected component
of f in the set of preperiodic maps with the same relation on the critical orbit. If f
is hyperbolic we denote by Cf the connected component of f in the set of hyperbolic
maps with the same multiplier of the attractor as f .

Definition 5.2. Let f be either a non-hyperbolic map in Ua or a complex map in
Aa with preperiodic or periodic critical point. We denote by Tf the set of vectors
v ∈ TAa such that there exists a qc vector field α equivariant on the critical orbit.

By Remark 5.2, for each v ∈ Tf , there exists a unique qc vector field α on Of
which extends to a qc vector field equivariant on the critical orbit. It is clear that
the correspondence Lf : Tf → Gf that to each v associates such an α is a linear
map.
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Remark 5.3. We will later see that Lf is a continuous linear map. This is part of
the content of the Key estimate (Lemma 6.12) and is one of the main results of our
analysis.

Proposition 5.3. Let f ∈ Aa be a preperiodic map. Then Cf is a complex
codimension-one submanifold in Aa whose tangent space at f is Tf .

Proof. If f is a preperiodic than there exists minimal p, q > 0 such that cp = cp+q.
By the Implicit Function Theorem, the solutions of the equation cp = cp+q form a
codimension-one submanifold whose tangent space at f is Tf . ¤

With this motivation we define Tf for a hyperbolic but not superattracting map
f ∈ Aa as the tangent space to Cf , which is a codimension-one complex submanifold
by the Implicit Function Theorem. The following simple proposition shows that in
this case, Tf cannot be described by Definition 5.2.

Proposition 5.4. If f ∈ Aa is hyperbolic but not superattracting and v ∈ Ba, then
there is a qc vector field on C which satisfies the equation (2.5) on the critical orbit.

Proof. Since f is hyperbolic but not superattracting, for λ small enough f is con-
jugate to fλ ≡ f + λv in a neighborhood V of the attractor. Since there are
only a finite number of n such that cn /∈ V we conclude that f is conjugate to
fλ on the critical orbit. We can now consider a holomorphic motion hλ such that
hλ(f

n(0)) = fnλ (0). The conclusion follows from Proposition 5.2. ¤

If f is hyperbolic but not superattracting and v ∈ Tf we define Lf (v) = α ∈ Gf
satisfying (2.5) which exists by the above proposition (and is unique by Remark 5.2).

It is easy to see that tangent vector fields to hyperbolic maps with a periodic
attractor p of period n satisfy the following formula,

(5.1) Dvn(p)(Dfn(p)− 1) = vn(p)D2fn(p)

(since this formula implies that the multiplier of the continuation of p along f + tv
does not change infinitesimally).

5.2. Puzzle maps. Let D ⊂ C be a topological disk. We say that D has L-
bounded shape around x ∈ D if there exists r > 0 such that

Dr(x) ⊂ D ⊂ DLr(x).

Let U ⊂ C be an open set and let X ⊂ U be measurable. We say that X is
thin in U if there exist L, ε > 0 with the following property: any x ∈ X has a
neighborhood D ⊂ U with L-bounded shape around x, such that mod(U \D) > ε
and meas(D \X)/measD > ε. Notice that this notion is qc invariant: if X is thin
in U and f : U → C is a qc map then f(X) is thin in f(U). It is also invariant with
respect to the lifting by branched coverings: if f : V → U is a holomorphic finite
branched covering and X is thin in U then f−1(X) is thin in V .

Definition 5.3. A holomorphic map f : U → C of class A1(U) is called a puzzle
map if:

• U is a countable union of quasidisks Ui i ≥ 0, called puzzle pieces, with
pairwise disjoint closures, and U0 3 0;

• For i > 0, f is a diffeomorphism of the closure of Ui onto the closure of
some Uj ;
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Figure 2. Geometric domains.

• There exists a sequence ni ≥ 0 such that fni |Ui is a diffeomorphism onto
U0;

• 0 is a critical point of f and f ′ does not vanish in ∂U0;
• f |U0 is a double covering onto the image;

• For any i, either Ui is contained in f(U0) or it does not intersect f(U0).

And furthermore the collection Ui satisfy the following geometric conditions:

(1) infUi⊂f(U0)mod(f(U0) \ Ui) > 0;

(2) ∪Ui ∩ f(U0) is thin in f(U0);
(3) limi→∞ diam(Ui) = 0.

We will use notation U1 ≡ U(c1) for the puzzle piece containing the critical value
c1 (whenever c1 ∈ U). We will also use the notation P = Pf for the collection of
puzzle pieces {Ui}.

Definition 5.4. The filled Julia set K(f) of a puzzle map f : U → C is the set of
non-escaping points in U .

Definition 5.5. Let f ∈ Ua. A geometric puzzle for f is a countable collection of
topological disks Ui (puzzle pieces) with piecewise smooth boundary such that:

• f restricted to the union of the puzzle pieces is a puzzle map;
• There is a real puzzle P such that the real slices Ji = Ui ∩ R are puzzle

pieces of P ;
• The Ui are R-symmetric;
• The closure of the union of the Ji contains a neighborhood of the interval

[−1, c1] in [−1, 1].

And furthermore, there exist 0 < φ < ψ < γ < π/2 and k > 0 such that
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(1) Dφ(Ji) ⊂ Ui ⊂ Dψ(Ji);
(2) For each i, either the closure of Dγ(Ji) is contained in f(U0) or it does not

intersect the closure of f(U0);
(3) If Ui is contained in f(U0) then mod(f(U0) \ Ui) > k;

(4) There exists Ũ0 ⊃ U0 with mod(Ũ0 \ U0) > k, such that if fni maps

Ui diffeomorphically onto U0 then there is an Ũi ⊃ Ui which is mapped
diffeomorphically onto Ũ0. Furthermore Ũi ⊂ f(U0) or Ũi ∩ f(U0) = ∅.

We will call (φ, ψ, γ, k) the geometric parameters of the puzzle.

Remark 5.4. The geometric conditions 1-4 of Definition 5.4 of a geometric puzzle
map automatically imply the geometric conditions 1-3 of Definition 5.3 of a puzzle
map.

If U is a geometric puzzle for f , then f : U → C is naturally called a geometric
puzzle map.

Definition 5.6. We say that the puzzle Pf persists in a neighborhood V of f in
Aa if there exists a normalized holomorphic motion Hg : C → C, g ∈ V, such that
g(Hg(z)) = Hg(f(z)),∀z ∈ ∂Uf . We denote Hg(U

f ) = Ug. Notice that g|U g is
automatically a puzzle map.

Lemma 5.5. Let 0 < φ < ψ < γ < π/2 and k > 0 be arbitrarily big. If f ∈ Ua is
a Yoccoz map, then there exist puzzles for f with geometric parameters (φ, ψ, γ, k).

Proof. Let g = fn : J → J be the last pre-renormalization of f and let p be the
fixed point of g in the interior of J . Let T i be the principal nest for g.

Assume first that the critical point is recurrent. By Theorem 2.17, |T i−1|/|T i|
is unbounded. Let i0 be such that |T i0−1|/|T i0 | is big. Letting J0 = T i0 , consider

the corresponding real puzzle {Ji}. Let J̃0 = T i0−1. In what follows, we discard
the puzzle pieces to the right of the puzzle piece J1. We still have that ∪Ji is a
neighborhood of [−1, c1] in [−1, 1].

By Theorem 2.16, there are intervals J̃i ⊃ Ji such that fni is a diffeomorphism
from J̃i to J̃0 and J̃i ∩ J0 = ∅ for i 6= 0.

Let θ = (φ+ψ)/2 and let U0 = Dθ(J0). By Lemma 2.18, there exist topological
disks Ui ⊃ Ji such that for each i, fni maps Ui onto U0 and extends to a univalent
map onto some Ũ0 with big mod(Ũ0 \ U0). By the Koebe Distortion Theorem,
each Ui satisfies Dφ(Ji) ⊂ Ui ⊂ Dψ(Ji). In particular the domains Ui are pairwise
disjoint.

Let us show that if Ui intersects V ≡ f(U0), then Ui is well inside V . Note first
that in this case, Ji ⊂ V ∩ R. Otherwise there would be an interval Jk such that
f(Jk) = Ji, Jk ∩ J0 = ∅, but Uk ∩ U0 6= ∅ contradicting disjointness of the Uj . It
follows that Ji is contained in the convex hull of f(∂J0) and J1 (since we assume
there are no Ji to the right of J1).

Notice also that there exists a constant ρ that only depends on θ and the initial
bounds on f such that V contains Dρ(V ∩R). It follows that there is a κ (depend-
ing only on the same data) such that for any x ∈ [f(∂J0), c1], dist(x, f(∂J0)) <
κdist(x, ∂V ).

Furthermore, the interior of J̃i does not intersect f(∂J0) since the orbit of f(∂J0)

never returns to the interior of J̃0. Since dist(Ji, ∂J̃i)/|Ji| is big when |J̃0|/|J0| is
big, we conclude that |Ji| is much smaller than dist(Ji, f(∂J0)). It follows that |Ji|
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Figure 3. Inside f(U0).

is much smaller than dist(Ji, ∂V ). Thus, Ui is well inside V as was asserted. All
other properties of a geometric puzzle are easily supplied.

Suppose now that the critical point is non-recurrent. Let T i be the last interval
of the principal nest, so that the iterates of 0 never return to the interior of T i.
It follows that the set of points in T i which do not return to the interior of T i

accumulate on 0. Let us consider a small nice interval J0 whose endpoints do not
return to T i and the associated real puzzle {Ji}.

Let J̃0 = T i. By Theorem 2.14, there are intervals J̃i ⊃ Ji such that fni is
a diffeomorphism from J̃i onto J̃0. Notice that c1 is accumulated from the right
by intervals Ji, so we can discard all Ji outside a small neighborhood of [−1, c1]
and still get a neighborhood of [−1, c1] in [−1, 1]. We can now argue exactly as
before. ¤

Remark 5.5. Notice that the above construction can be adapted to construct a
(non-geometric) puzzle for f with any central puzzle piece U0 with a reasonable
shape. More precisely, given 0 < φ < ψ < π, if |Tn|/|Tn−1| is small enough, then
any U0 trapped in between Dφ(Tn) and Dψ(Tn) (i.e., Dφ(Tn) ⊂ U0 ⊂ Dψ(Tn))
generates a puzzle {Uj} whose real trace {Jj} form a real puzzle for f .

Lemma 5.6. Let 0 < φ < ψ < γ < π/2 and k > 0 be arbitrarily big. If f ∈ Ua is a
Yoccoz map, then there exists a puzzle for f with geometric parameters (φ, ψ, γ, k)
which persists on a neighborhood V ⊂ Aa of f .

Proof. We will show that the puzzle given by Lemma 5.5 is a persistent puzzle. We
will keep the notation of that lemma. We show how to define a holomorphic motion
Hg in a neighborhood of f .

We first observe that the Cantor set Q of points which never enter J0 is con-
tained in a persistent Markov family {Mj}, that is, f restricted to {Mj} is strictly
Markov. So by Proposition 2.11 there is a holomorphic motion hg of ∪Mj over
a neighborhood of f such that hg ◦ f = g ◦ hg on M . We consider a normalized
extension of this holomorphic motion to C, which we still denote by hg.

Let us show that there is a neighborhood V of f such that for any i there is a
holomorphic motion hig of Q ∪Ui such that hig|Q = hg and hg ◦ f

ni+1 = gni+1 ◦ hig
in Ui. It is clear that for any fixed i we can get a neighborhood Vi where such a
holomorphic motion is defined.
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To deal with all i at the same time we notice that all but finitely many Ui are
compactly contained in the domain of the persistent Markov partition. Let I be
the set of Ui which are not contained in ∪Mj . Let J be the set of Ui which are
contained in ∪Mj but f(Ui) are in I. Shrinking the neighborhood V if needed, we
may suppose that for g ∈ V, hig is defined for Ui ∈ I ∪ J , and hig(Ui) ⊂ ∪hg(Mj)
for Ui ∈ J .

Now, if Ui /∈ I ∪J , there is a unique k such that fk(Ui) = Uj belongs to J . We
then define hig|Ui so that gk ◦hig = hjg ◦f

k in Ui. These are the desired holomorphic

motions hig.

We extend each of the holomorphic motions hig to normalized holomorphic mo-
tions of C.

The property that orb(f(∂J0)) never enters int J̃0 implies that J̃j ∩ Ji = ∅,
for all i 6= j with ni ≤ nj (compare the proof of the previous Lemma). Hence
dist(Jj , ∂Ji) is much bigger than |Jj |. By the condition 1 in the definition of
geometric parameters, we have for all k, Uk ⊂ Dπ/2(Jk), hence

inf
i6=j

distS(Ui, Uj) > 0,(5.2)

where S = C\Q (use the Schwarz Lemma and ∂Jj ⊂ Q). Moreover, by condition 4

in the definition of geometric parameters, for all k there exists Ũi with Ũi ∩∂V = ∅
and mod(Ũi \ Ui) > k, so by similar considerations,

inf
i
distS(Ui, ∂V ) > 0, where V ≡ f(U0).(5.3)

By the Quasiconformality Lemma (see § 2.5), V can be shrunk so that the di-
latation of the motions hg and hig will be close to 1. By Lemma 2.3,

inf
i6=j

disthg(S)(h
i
g(Ui), h

j
g(Uj)) > 0,

inf
i
disthg(S)(h

i
g(Ui), hg(∂V )) > 0.(5.4)

So we can define a holomorphic motion Hg which agrees with hg on Q∪ ∂V and
with hig on Ui. This concludes the proof of the lemma. ¤

Remark 5.6. The above proof also shows that the holomorphic motion Hg, g ∈ V
associated to the persistent puzzle Pf may be taken R-symmetric. More precisely,
we can choose V to be a small ball around f and construct Hg with the property

that Hg(z) = Hconj(g)(z), where conj(g)(z) = g(z). To see this, notice that all
the constructive (dynamical) steps in the above proof respect the R-symmetry. If
we also choose all neighborhoods of f to be small balls centered at f , then the
successive applications of the Extension Lemma in the above argument yield R-
symmetric holomorphic motions by Remark 2.2.

From now on, when considering a holomorphic motion associated to a persistent
geometric puzzle we will always assume it is R-symmetric. In particular, if g ∈ Ua∩V
then Hg is an R-symmetric qc map.

Remark 5.7. The above construction is refined in Lemma 7.9. For a related but
different construction see also Lemma 12.5 of [LS2].
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6. Pullback arguments and the key estimate

6.1. Macroscopic pullback argument. Let f : U f → C and f̃ : U f̃ → C be

two puzzle maps, and let h be a homeomorphism of C such that h(U f ) = U f̃ ,

equivariant on ∂Uf . If h(f(0)) = f̃(0), then there is a unique homeomorphism h1
coinciding with h on C \U f and such that h ◦ f = f̃ ◦ h1 on U

f . It is called the lift
of h.

Definition 6.1. We say that a homeomorphism h : C → C is a combinatorial
equivalence between f and f̃ if it is equivariant on ∂U f and the lift h1 of h is
homotopic to h rel ∂U f ∪ orbf (0).

Lemma 6.1. Let h be a qc combinatorial equivalence between f and f̃ . Then the
lift h1 of h is a qc combinatorial equivalence between f and f̃ and Dil(h1) ≤ Dil(h).

Proof. Let Ht be a homotopy between h and h1 rel ∂Uf ∪ orbf (0), and let Ht
1 be

the lift of Ht. Then Ht
1 is a homotopy rel ∂U f ∪ orbf (0) between h1 and its lift h2.

Define a sequence of homeomorphisms ψk as follows

ψk =

{

h1 on ∪kj=0U
f
j

h otherwise.

We notice that ψk is quasiconformal on C\(∪kj=0∂Uj∪{0}), since it coincides with
h on the complement of ∪kj=0Uj and is the conformal lift of h on ∪kj=0Uj \{0}. Since
quasiarcs and points are qc removable, ψk is quasiconformal on the whole complex
plane. Since quasiarcs have zero Lebesgue measure, the estimate Dil(ψk) ≤ Dil(h)
follows from the fact that conformal lifts preserve the norm of Beltrami differentials.

Since ψk → h1 pointwise, the result follows from the First Compactness Lemma.
¤

The Pullback Argument in the context of quadratic-like maps was formulated
by Sullivan, see [MS], Chapter 6, Section 4. The following result adapts it to the
context of puzzle maps.

Theorem 6.2. Let us consider two puzzle maps f and f̃ with all periodic orbits
hyperbolic. Let h be a qc combinatorial equivalence between f and f̃ . Then there is
a qc homeomorphism H : C → C such that H ◦f = f̃ ◦H on Uf , H = h on C\Uf ,
and Dil(H) ≤ Dil(h). If there are no invariant line fields on K(f) or if f and f̃
are hyperbolic maps with the same multiplier, then Dil(H) ≤ Dil(h|C \ U f ).
Proof. Assume first that all periodic orbits are repelling. In this case K(f) has
empty interior by Lemma A.21.

Let h0 = h and define by induction hk+1 as the lift of hk. By the previous lemma
all hk are qc maps with Dil(hk) ≤ Dil(h). By the First Compactness Lemma, there
exists a limit H of hk which is quasiconformal and whose dilatation is bounded by
the dilatation of h. Since the hk(z) are eventually the same for any z ∈ C \K(f),

H is a conjugacy between f and f̃ on Uf \K(f). Since K(f) has empty interior,

H is a conjugacy between f and f̃ on Uf .
Moreover, Dil(H|C \K(f) ≤ Dil(h|C \U f ). Hence, if there are no invariant line

fields on K(f), then the dilatation of H on the entire complex plane has the same
bound.

If f and f̃ are hyperbolic maps with the same multiplier we can use Lemma A.26
to modify h inside K(f) in order to have ∂h|K(f) = 0. ¤
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Remark 6.1. We will show in the Appendix that the assumption that a puzzle
map f has only hyperbolic periodic orbits is satisfied for all complex preperiodic or
hyperbolic maps (Lemma A.23), as well as for the puzzle extensions of unimodal
maps without parabolic points on I (Lemma A.20).

Lemma 6.3. There exists a constant L > 0 with the following property. Let f ∈ Ua
be a Yoccoz map and Pf be a geometric puzzle which persists in an ε-neighborhood
of f in Aa. Let V be an ε/2-neighborhood of f . If g ∈ Ua ∩ V is preperiodic or
hyperbolic and g̃ belongs to the same connected component of Cg ∩ V, then there is
a normalized L-qc homeomorphism h : C → C equivariant with respect to g and g̃
on Ug.

Proof. Let Hg be the holomorphic motion of Pf . By the λ-lemma, the dilatation
of the motion restricted to V is bounded by some constant L.

Consider some g ∈ Ua ∩ V and a holomorphic path gλ, λ ∈ D, in Cg ∩ V. Let Hλ

denote the corresponding holomorphic motion of the puzzle with base point g.
Let hλ = Hλ on the complement of U g and hλ(g

n(0)) = gnλ(0) whenever g
n(0) ∈

Ug.
Assume first that the critical orbit of g never escapes U g. Since g is a real

preperiodic or hyperbolic map,

(6.1) dist(orbg(0), ∂U
g) > 0.

Let us consider the setW of points λ0 ∈ D such that hλ is injective in a neighbor-
hood of λ0. It follows from (6.1) that 0 ∈W . Let W0 be the connected component
of W containing 0.

By the Quasiconformality Lemma, hλ, λ ∈ W0, extends to a qc combinatorial
equivalence between g and gλ. By Theorem 6.2 (together with Remark 6.1), there
exists an L-qc map of C which conjugates gλ to g on Ug. By the First Compactness
Lemma, for any λ ∈W 0 ∩ D, gλ is L-qc conjugate to g on U g.

Vice versa, if gλ is qc conjugate to g on U g, then there exists a neighborhood
of λ where hλ is injective, so λ ∈ W . Hence W 0 ∩ D ⊂ W0, so that W0 is open
and closed. Thus, W0 = D, so that hλ is always injective and gλ is always L-qc
conjugate to g on U g.

Assume now that the critical orbit of g escapes U . Since g is real, there is a
smallest n such that gn(0) belongs to the invariant Cantor set Q ≡ ∂U g ∩ R (see
Proposition 2.15). The holomorphic motion Hλ restricts to the dynamical motion
of Q given by Proposition 2.11. Hence Hλ(g

m(0)) = gmλ (0), for m ≥ n, so that the
maps hλ are equivariant on orbg(0) ∪ ∂Ug.

By the same argument of the non-escaping case, the points gmλ (0) = hλ(g
m(0)),

m < n, do not collide with Hλ(C \ Ug), which yields the desired statement. ¤

Remark 6.2. In the above Lemma we constructed, for each g̃ in the connected
component of g in Cg ∩ V, a qc map hg̃ which has the three following properties:

• hg̃|C \ Ug = Hg̃ ◦ H
−1
g is a holomorphic motion of the puzzle with base

point g;
• hg̃ is equivariant on Ug;

• ∂hg̃ = 0 on K(g).

It is easy to see that such a qc map hg̃ is uniquely defined by the above prop-
erties (once the motion Hg̃ is fixed). It follows that g̃ 7→ hg̃|C \ intK(g) depends
holomorphically on g̃ along the connected component of g in Cg ∩V. Indeed, this is
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automatic in the case where K(g) has empty interior. By Lemma A.22, since g is
R-symmetric, if K(g) has non-empty interior then intK(g) is the basin of attrac-
tion of an attracting periodic cycle. The holomorphic dependence of the linearizing
coordinate of an attracting periodic cycle implies that hg̃ depends holomorphically
in intK(g) as well.

6.2. Infinitesimal Pullback Argument. The “Infinitesimal Pullback Argument”
introduced in this section will allow us to reconstruct, by means of consecutive lift-
ings (see § 2.6.2), a qc vector field which is equivariant on some essential part of the
dynamical domain into a qc vector field which is equivariant on the whole domain.
One step of the pullback argument is given by the following lemma:

Lemma 6.4. Let Ω 3 0 be a quasidisk. Consider a map f ∈ A1(Ω) whose derivative
does not vanish on Ω \ {0}. Assume that f : Ω→ f(Ω) is either a diffeomorphism
or a double branched covering ramified at 0. Let v ∈ BΩ. Let α and β be qc vector
fields on C such that β|∂Ω is the lift of α by (f, v). Moreover, if f is a double
branched covering, we assume that v(0) = α(f(0)). Then there exists a qc vector
field γ such that γ|Ω is the lift of α by (f, v), γ|C \ Ω = β, and

(6.2) ‖∂γ‖∞ ≤ max {‖∂α‖∞, ‖∂β‖∞}.

Proof. Define a continuous vector field γ on C \ {0} by letting γ = β on C \Ω and
letting γ = (α ◦ f − v)/f ′ on Ω \ {0}.

If f is a diffeomorphism then γ clearly extends to 0. Assume f is a branched
double covering. Since the modulus of continuity of qc vector fields is φ(x) =
−x ln(x) (see § 2.6.1), we have for z near 0:

|α(f(z))− α(f(0))| = O(φ(|f(z)− f(0)|)) = O(φ(|z|2)).

Since v(0) = α(f(0)), we have

γ(z) =
v(0)− v(z)

f ′(z)
+O(φ(|z|)).

Since f ′ has a simple root at 0, the first term is a regular holomorphic function.
Hence γ admits a continuous extension to 0.

It is clear that γ is quasiconformal on C\(∂Ω∪{0}). Since quasiarcs and isolated
points are qc removable, γ is quasiconformal on the whole complex plane.

Since the lifts preserve the qc norm of vector fields, we have ‖∂γ‖∞ = ‖∂α‖∞ on
Ω, while we have ‖∂γ‖∞ = ‖∂β‖∞ on C \ Ω. Since quasiarcs are removable, (6.2)
follows. ¤

Remark 6.3. This lemma extends to branched coverings of any degree n with some
extra conditions on the derivatives of v (which assure that the critical point does
not bifurcate infinitesimally along f + tv).

Theorem 6.5. Let f : U → C be a puzzle map with non-escaping critical point
and let v be a tangent vector field at f . Assume there exists a qc vector field β on
C which is equivariant on ∂U ∪ orb(0). Then there exists an equivariant (on U) qc
vector field α with ‖∂α‖∞ ≤ ‖∂β‖∞ which coincides with β on C\U . Furthermore,
if there are no invariant line fields on K(f), then ‖∂α‖∞ ≤ ‖∂β |C \ U‖∞.

Proof. This proof is the essence of the “infinitesimal pullback argument”.
Using Lemma 6.4, let us lift the vector field β to the puzzle piece U0 by means of

f : U0 → C. We obtain a qc vector field γ0 on C with ‖∂γ0‖∞ ≤ ‖∂β‖∞, coinciding
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with β on C \ U0. Let Um = f−mU0. Define inductively a sequence of qc vector
fields γm on C by letting γm on Um be the lift of γm−1 and letting γm = γm−1 on
C \ Um. Since holomorphic lifts preserve the qc norm, ‖∂γn‖∞ ≤ ‖∂γn−1‖∞.

By The Second Compactness Lemma, this sequence of vector fields is precom-
pact. Since it stabilizes pointwise, it converges to a qc vector field α1. This vector
field satisfies the following properties:

• α1|U0 is the lift of β;
• α1|U \ U0 is equivariant;
• α1|C \ U = β;
• ‖∂α1‖∞ ≤ ‖∂β‖∞.

Replace now β ≡ α0 with α1 and repeat the procedure. In this way we will
construct a sequence of qc vector fields αn with the following properties

(i) αn|U0 is the lift of αn−1;
(ii) αn|U \ U0 is equivariant;
(iii) αn|C \ U = αn−1;
(iv) ‖∂αn‖∞ ≤ ‖∂αn−1‖∞.

Taking any Cesaro limit of this sequence (which exists by the Second Compact-
ness Lemma),

α = lim
1

ni

ni−1
∑

k=0

αk,

we obtain a qc vector field α with ‖∂α‖∞ ≤ ‖∂β‖∞. Properties (i)-(iii) imply that
α is equivariant everywhere on U .

Note that α on C\K(f) is obtained by consecutive liftings of β on C\U . Hence

‖∂α |C \K(f)‖∞ ≤ ‖∂β |C \ U‖∞.
If there are no invariant line fields on K(f) then

‖∂α‖∞ = ‖∂α |C \K(f)‖∞,

and the last assertion follows (see Lemma 2.30). ¤

Remark 6.4. The same proof also applies to the case when the critical point escapes.
More precisely, let f be a puzzle map and Ω ⊂ U be a union of puzzle pieces. Let
n = min{k ≥ 0|ck /∈ Ω} (the escaping time of the critical point). Assuming the
critical point escapes Ω, we have n <∞. If β is a vector field equivariant on ∂Ω and
on ck, 0 ≤ k ≤ n− 1, then there exists a vector field α equivariant on Ω coinciding
with β outside of Ω and such that ‖∂α‖∞ ≤ ‖∂β‖∞. By Lemma A.23, K(f |Ω) has
zero Lebesgue measure, so ‖∂α‖∞ ≤ ‖∂β|C \ U‖∞.

6.2.1. Gluing qc vector fields. Assume now that we have two qc vector fields βi on
C which respect some dynamic data on sets Xi ⊂ C, i = 0, 1. Let us say that these
vector fields can be glued if there is a qc vector field on C coinciding with βi on Xi.
The case which will interest us is when X1 = Of , X0 = C \ U .

Note first that if X0 and X1 have disjoint closures, the vector fields βi can be
obviously glued using partition of unity. Together with Theorem 6.5 this implies:

Lemma 6.6. Let f be a puzzle map with non-escaping critical point such that
the postcritical set Of is disjoint from ∂U , and let v ∈ BU . Assume that there
are qc vector fields β0 and β1 on C such that β1 is equivariant on orbf (0) and
β0 equivariant on ∂U . Then there exists an equivariant qc vector field α on U
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coinciding with β0 on C\U and coinciding with β1 on Of . If there are no invariant

line fields on K(f), then ‖∂α‖∞ ≤ ‖∂β0 |C \ U‖∞.

If the postcritical set intersects the boundary of the puzzle, the gluing method
is much more delicate. It will be based on a pullback construction.

Lemma 6.7. Let f be a puzzle map such that c1 ∈ U . Let v ∈ BU , and let β0 be a
qc vector field on C equivariant on ∂U . Then there are constants C1 and C2 with
the following property. Consider a point x ∈ U such that 0 ∈ ω(x). If there exists
a bounded vector field β equivariant on orb(x) then there exists a qc vector field α
on C such that

• ‖∂α‖∞ ≤ C1 + C2‖β‖∞;
• α(x) = β(x);
• α coincides with β0 outside of U(x).

Proof. Let W = (f |U0)
−1(U) (the domain of the first return map to U0) and

W0 =W (0) (the central domain of the first return map).
Let β1 be a qc vector field on C coinciding with β0 on C \ U1 and such that

v(0) = β1(c1). By Lemma 6.4 there exists a qc vector field ζ coinciding with β0 on
C \ U0 and such that ζ is the lift of β1 on U0. So ζ is equivariant on ∂U ∪ ∂W .

SinceW 0 ⊂ U0, there exist qc vector fields θ0, θ1 such that θ0|W0 = 1, θ0|C\U0 =
0, and θ1|W0 = 0, θ1|C \ U0 = β0. We let

C1 = max{‖∂β0‖∞, ‖∂ζ‖∞, ‖∂θ1‖∞} and C2 = ‖∂θ0‖∞.

Let si denote the sequence of landing moments of x, that is,

s0 = min{k ≥ 0|fk(x) ∈ U0} and si+1 = min{k > si|f
k(x) ∈ U0}.

Let m = min{k ≥ 0|f sk(x) ∈ W0}, so that fsm(x) is the first landing of x on W0

(m <∞ since 0 ∈ ω(x)). For each k ≤ m there exists a unique quasidisk Vk around
x such that f sk |V k is a diffeomorphism onto U 0.

Let η = θ1 + β(fsm(x))θ0, so that

η|C \ U0 = β0, η(fsm(x)) = β(fsm(x)), ‖∂η‖∞ ≤ C1 + C2‖β‖∞.

Let γm be the lift to Vm of η by (fsm , vsm). For each k < m, let γk be the lift
to Vk of ζ by (fsk , vsk). So we have constructed, for k ≤ m, qc vector fields γk on
Vk such that ‖∂γk‖∞ ≤ C1 + C2‖β‖∞.

Notice that the equivariance of ζ on ∂U ∪ ∂W implies that, for k < m, γk and
γk+1 coincide on ∂Vk+1. It also follows that β0 coincides with γ0 on ∂V0.

Let α = β0 outside V0, α = γk on Vk \ Vk+1, k < m, and α = γm on Vm.
Then α is a continuous vector field on C and since quasiarcs are removable, α is
a qc vector field with ‖∂α‖∞ ≤ C1 + C2‖β‖∞. By equivariance of β on orb(x),
α(x) = β(x). ¤

Remark 6.5. The proof above uses that 0 ∈ ω(x) only to assure that there exists an
m <∞ such that f sm(x) ∈W0. If this is not the case (but x is still non-escaping),
then one can show that the conclusion still holds under the (weak) assumption
|Dfsk(x)| → ∞.

Lemma 6.8. Let f be a puzzle map with a recurrent critical point such that orb(0)
intersects infinitely many puzzle pieces, and let v ∈ BU . Assume there are qc vector
fields β0 and β1 on C such that β1 is equivariant on orb(0) and β0 equivariant
on ∂U . Then there is a qc vector field α equivariant on U coinciding with β0 on



REAL ANALYTIC DYNAMICS 45

C \ U . Furthermore, if there are no invariant line fields on K(f), then ‖∂α‖∞ ≤
‖∂β0|C \ U‖∞.

Proof. By the assumption, there exists a sequence k(j)→∞ and a sequence Vj of
components of U such that

ck(j) ∈ Vj but ci /∈ Vj , i < k(j).

Let Ωj = U \ Vj .
We first construct an uniformly bounded sequence of vector fields αj equivariant

only on Ωj . This is done in three steps.
In the first, we modify the vector field β0 inside Vj to obtain the correct value

(given by β1) on ck(j), uniform bounds come from Lemma 6.7. In other words,

there exists a constant C and a sequence γj of vector fields such that ‖∂γj‖∞ ≤ C,
γj(ck(j)) = β1(ck(j)), and γj coincides with β0 on the complement of U .

In the second step, we prepare ourselves for a pullback argument by modifying
γj inside Ωj to obtain the correct values in the finite set {ci, 0 ≤ i < k(j)}. More
precisely, we define a sequence ζj of qc vector fields on C such that ζj coincides
with γj on C \ Ωj and ζj coincides with β on ci, 0 ≤ i ≤ k(j). In this step we lose
uniform estimates, which are recovered in the next one.

The third step is the pullback argument truncated to Ωj . Since ζj is equivariant
on ∂Ωj and on ci, 0 ≤ i < k(j), we can apply the Infinitesimal Pullback Argument
(or rather, its escaping version outlined in Remark 6.4) to obtain a qc vector field
αj equivariant on Ωj and coinciding with ζj on C \ Ωj . Moreover, ‖∂αj‖∞ ≤ C.

To obtain the desired vector field equivariant on all of U we just need to take a
limit α of the vector fields αj (using the second compactness Lemma). If there are
no invariant line fields, the estimate on α follows as before. ¤

Remark 6.6. In the above proof, it was only used that the vector field β1 is bounded
on orb(0). No assumption of quasiconformality or even continuity is necessary.

Lemmas 6.6 and 6.8 immediately imply:

Theorem 6.9. Let f be a puzzle map with a recurrent critical point, and let v ∈ BU .
Assume there are qc vector fields β0 and β1 such that β1 is equivariant on orb(0)
and β0 is equivariant on ∂U . Then there is a qc vector field α equivariant on U
coinciding with β0 on C \ U . Furthermore, if there are no invariant line fields on
K(f), then ‖∂α‖∞ ≤ ‖∂β0|C \ U‖∞.

Let us finish this section with a discussion of infinitesimal deformations of hy-
perbolic puzzle maps.

Lemma 6.10. Let f be a hyperbolic puzzle map. If v satisfies equation (5.1)
then there exists a qc vector field α on C which is equivariant and conformal on a
neighborhood of orb(0).

Proof. Equation (5.1) immediately implies (using the linearizating coordinate) the
existence of a holomorphic vector field α0 defined and equivariant (with respect to
(f, v)) in a neighborhood of the periodic attractor orb(p). It is easy to see (also
using the linearizing coordinate) that there exists a non-trivial holomorphic vector
field β defined in a neighborhood of orb(p) such that β is equivariant with respect
to (f, 0). In particular, β(cm) 6= 0 for m sufficiently big. Clearly, for any λ ∈ C,
α0 + λβ is equivariant with respect to (f, v) on a neighborhood of orb(p).
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Letting m be such that cm belongs to this neighborhood and choosing a conve-
nient λ, we obtain a vector field α = α0 + λβ such that α(cm) = vm(0). We make
α equivariant in a neighborhood of orbf (0) by defining it in a neighborhood of ck,
k < m as the lift of α by (fm−k, vm−k), which is possible by our choice of α(cm).

¤

Lemma 6.11. Let f be a hyperbolic puzzle map and let v ∈ BU be a vector field
satisfying equation (5.1). Let β0 be a qc vector field on C equivariant on ∂U . Then
there exists a vector field α on C equivariant on U such that ‖∂α‖∞ ≤ ‖∂β0|C\U‖∞.

Proof. Let β be the vector field given by Lemma (6.10). We can create a vector
field γ by gluing β0 on the complement of U with β on a neighborhood of orb(0).
Applying the Infinitesimal Pullback Argument (Theorem 6.5), we obtain a vector
field α which is equivariant on U , conformal on the basin of attraction intK(f) and
satisfies

‖∂α|C \K(f)‖∞ ≤ ‖∂β0|C \ U‖∞.
By Lemma A.21, ∂K(f) has zero Lebesgue measure for a hyperbolic puzzle map,
so the estimate follows. ¤

6.3. Key estimate. We say that a preperiodic or hyperbolic complex map g has
special combinatorics with respect to V, a complex neighborhood of g, if the con-
nected component of g in Cg ∩ V contains a real map. Recall that Lg is the linear
map which associates to any tangent vector field v ∈ Tg the unique qc vector field
α on the postcritical set such that v = α ◦ f − αf ′ and v(0) = α(c1).

Lemma 6.12 (Key estimate). Let f ∈ Ua be a Yoccoz map. There exists a neigh-
borhood V of f in Aa and a constant C > 0 such that, for any g with special
combinatorics with respect to V, the operator norm of Lg is bounded by C.

Proof. Consider a persistent puzzle for f given by Lemma 5.6. Take an ε > 0 such
that this puzzle persists in an ε-neighborhood of f , and let Hg be the associated
holomorphic motion. Let V be an ε/2-neighborhood of f and let C = 2/ε. Given
g ∈ V with special combinatorics and v ∈ Tg with ‖v‖a = 1, let hλ = Hg+λv ◦
H−1g , λ ∈ Dε/2. Let

β0 =
d

dλ
hλ

∣

∣

∣

∣

λ=0

.

By Theorem 2.7, µhλ is a holomorphic function on Dε/2 with values in the unit ball
of L∞(C). By Lemma 2.10,

∂β0 =
d

dλ
µhλ

∣

∣

∣

∣

λ=0

.

Since µh0
= 0, we can apply the Schwarz Lemma to get ‖∂β0‖∞ ≤ 2/ε.

Assume g is preperiodic. By Lemma A.23, g has no invariant line fields on K(g).
By Theorem 6.5, we conclude that there exists a qc vector field α equivariant on

Ug, coinciding with β0 on C \ U , and such that ‖∂α‖∞ ≤ C.
In the hyperbolic case we proceed as above using Lemma 6.11. ¤

Remark 6.7. It is possible to show that for each f ∈ Ua, Lf has a bounded operator
norm. Near infinitely renormalizable maps, we can reduce to a persistent quadratic-
like renormalization, and our argument works unchanged. For the hyperbolic and
parabolic case, one can obtain explicit estimates, using the formulas for the tangent
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space. However, in the parabolic case those explicit estimates are less stable than
the ones in our arguments, and do not seem to allow to obtain estimates for nearby
maps.

7. Transverse direction

In this section we will construct a transverse direction to the tangent space Tf
for at most finitely renormalizable maps f . Later on, in §8.3, we will identify Tf
with the genuine tangent space to Hf . Let us start with simple cases.

7.1. Non-recurrent cases. In the hyperbolic case Tf was actually defined as the
tangent space to the hybrid class Hf , which is a codimension-one submanifold (see
§5.1). This tangent space is explicitly given by equation (5.1), so that the transverse
vector fields are those which satisfy the inequality

(7.1) Dvn(p)(Dfn(p)− 1)− vn(p)D2fn(p) 6= 0,

where p is the attracting periodic orbit of period n.
In the parabolic case with Dfn(p) = 1, Definition 5.1 implies that vn(p) = 0 for

v ∈ Tf . Obviously this condition specifies a codimension-one subspace.
The parabolic case with Dfn(p) = −1 is more delicate:

Lemma 7.1. Let f ∈ Ua be a parabolic map such that the multiplier of its parabolic
orbit is −1 and let v ∈ Tf . Then v satisfies (5.1), that is

−2Dvn(p)− vn(p)D2fn(p) = 0.

Proof. Let v be a vector field in Tf and let α be a qc vector field of C, equivariant
on Of . Since 0 is attracted by p, we may assume limk→∞ ckn = p.

Equivariance allows us to write

vn(ckn) = α(c(k+1)n)−Df
n(ckn)α(ckn).

By continuity of α on Of , α(ckn)− α(p) = o(1). Thus,

vn(p) +Dvn(p)(ckn − p) =

α(c(k+1)n) + α(ckn)−D
2fn(p)α(p)(ckn − p) + o(1)(ckn − p).

Subtracting the above equation for k + 1, k, we may estimate

(Dvn(p) +D2fn(p)α(p))(c(k+1)n − ckn) = α(c(k+2)n)− α(ckn) + o(ckn − p).

Since p is parabolic, c(k+1)n − ckn = −2(ckn − p) + o(ckn − p). Thus,

lim
k→∞

α(c(k+2)n)− α(ckn)

ckn − p
= 2Dvn(p) + 2D2fn(p)α(p).

Equivariance gives v(p) = 2α(p), so to obtain (5.1) we just have to show that

lim
k→∞

α(c(2k+2)n)− α(c2kn)

c2kn − p
= 0.

To see this, notice that c2kn − p approaches p from one of the sides, that is,
for big k, all c2kn − p have the same sign. Since p is parabolic, c(2k+2)n − c2kn =

O((c2kn − p)
2), so

∑

k c2kn − p diverges. Since α is uniformly bounded on orb(0),
∑

k

α(c(2k+2)n)− α(c2kn)
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is bounded. Since the limit

lim
k→∞

α(c(2k+2)n)− α(c2kn)

c2kn − p

exists, it must be 0, proving the Lemma. ¤

By Lemma 7.1, Tf is contained in a codimension-one subspace, and transverse
directions may be obtained again by (7.1).

We will now construct the transverse direction in the Misiurewicz case.
Let δx denote the Dirac measure concentrated on x. Let

νn =
n
∑

k=0

δck
(fk)′(c1)

,

which are signed measures on the interval I or equivalently bounded functionals
acting on C0(I). By Proposition 2.15, in the Misiurewicz case f is expanding on
Of , so that |(fn)′(c1)| grows exponentially fast. Therefore, the νn converge in the
weak-∗ topology to a signed measure ν.

Lemma 7.2. There exists a polynomial p ∈ TfAR
a such that ν(p) 6= 0.

Proof. Since the critical point is non-recurrent, ν(J) = 1 for a small interval J
around 0 such that cj /∈ J for j ≥ 1. So the signed measure ν does not vanish and
hence there exists a continuous function φ ∈ C0(I) such that ν(φ) 6= 0. Since any
continuous function can be approximated by a polynomial, the assertion follows. ¤

Lemma 7.3. If ν(v) 6= 0, then v /∈ Tf .

Proof. Let v ∈ Tf , and let α be a qc vector field equivariant on orbf (0). Then
α(cn+1) = vn+1(0) = (fn)′(c1)νn(v), so that

lim
|α(cn+1)|

|(fn)′(c1)|
= |ν(v)|.

Since α is a qc vector field, α(cn+1) is uniformly bounded, so ν(v) = 0. ¤

The existence of the transverse direction follows from Lemmas 7.2 and 7.3. Once
we show that Tf has codimension-one, it will follow that Tf = Ker(ν).

Remark 7.1. More generally, this analysis allows to obtain transverse directions for
maps f which satisfy the summability condition

∞
∑

k=0

1

|Dfk(c1)|
<∞.

7.2. Smooth transverse vector field. We will now proceed with analysis of puz-
zle maps satisfying certain geometric assumptions, which will allow us to handle the
case of at most finitely renormalizable maps with a recurrent non-periodic critical
point. In this section we will construct a smooth transverse vector field, which is
holomorphic on the puzzle piece containing the critical value U1 and vanishes on
the other puzzle pieces.

Definition 7.1. An equipped holomorphic family of puzzle maps over some neigh-
borhood V 3 0 in a complex Banach space is a pair (fλ, hλ), λ ∈ V, where
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fλ : ∪Uλi → C is a puzzle map and hλ : C → C is a holomorphic motion of C
that maps U0i onto Uλi and such that

(7.2) hλ ◦ f0(z) = fλ ◦ hλ(z)

for z ∈ ∪(∂U0i ).

Let U ⊂ C be an R-symmetric open set which intersects the real line in some
interval J . We denote by Υ(U) the Banach space of holomorphic vector fields of
class A1(U) that vanish together with their derivatives at ∂J , endowed with the A1

norm ‖ · ‖1, that is ‖v‖1 = supz∈U |v
′|, see (2.2) (‖ · ‖1 is a norm in Υ(U) because

of the boundary conditions). We will extend those vector fields to the whole real
line as 0 outside J . (The case that will interest us most is U = Dγ(J).)

Recall that for a puzzle map f : ∪Ui → C, we denote by Ji the real slices of of
the domains Ui.

Proposition 7.4. Let f : ∪Ui → C be a geometric puzzle map with parameters
(φ, ψ, γ, k). Then there is an ε > 0 depending only on ψ and γ, and there ex-
ists an equipped holomorphic family of puzzle maps (fv, hv) over the Banach ball
Bε(Υ(Dγ(J1))) such that:

• hv is the identity on Uj , j 6= 1, on ∂(f(U0)), and is normalized;
• (id+v) ◦ hv is the identity on ∂U1;
• fv = f in Uj , j 6= i;
• fv = f ◦ (id+v) in Uv1 .

Proof. Let ε > 0 and v ∈ Υ(Dγ(J1)) such that ‖v‖1 < ε. If ε < 1 then Iv ≡

(id+v)|Dγ(J1) is a diffeomorphism fixing ∂J1 with I
′
v|∂J1 = 1 (using the convexity

of Dγ(J)). If ε is small (depending only on ψ and γ, then Iv(Dγ(J1)) contains
Dψ(J1) ⊃ U1. Hence I−1v (U1) ⊂ Dγ(J1). By definition of geometric parameters,
the domain I−1v (U1) is disjoint from Uj , j 6= i, and from ∂(f(U0)).

Thus, we can define fv in I−1v (U1) as f ◦Iv. We then define hv as the identity on
Uj , j 6= 1, and on ∂(f(U0)), and we let hv|U1 = I−1v |U1. Since U1 ⊂ Iv(Dγ(J1)),
I−1v |U1 depends holomorphically on v. We obtain a holomorphic motion hv on
U ∪ ∂(f(U0)). By the Extension Lemma, it can be extended to a normalized
holomorphic motion of the whole sphere over a Banach ball of radius ε/3. ¤

To motivate the next statement, note that the tangent vector to the curve t 7→ ftv
at t = 0 is given by the vector field v(z)f ′(z). This vector field is tangent to the
hybrid class of f if there exists a qc vector field α on the orbit of the critical value
c1 such that α(c1) = 0 and

v(z)f ′(z) = α(f(z))− α(z)f ′(z).

This equation can be written in the following concise form:

(7.3) v = f∗α− α,

where f∗α is the pullback of α by f , compare equation (2.6).
If U is a hyperbolic domain and v is a tangent vector at a point x ∈ U , we denote

‖v‖Uhyp the hyperbolic length of v.

Lemma 7.5. Given (ψ, γ), there exists an L > 0 with the following property. Let
f be a geometric puzzle map without invariant line fields on K(f) with parameters
(φ, ψ, γ, k). Let v ∈ Υ(Dγ(J1)) be a holomorphic vector field such that there is a qc
vector field α on the closed set Of with α(c1) = 0, satisfying (7.3).
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Then α has a normalized L‖v‖1-qc extension, which satisfies (7.3) on U and
vanishes on ∂(U ∩ R).

Proof. Without loss of generality we can assume that v is normalized: ‖v‖1 = 1.
Take an ε > 0 as in the above proposition and consider the corresponding equipped
holomorphic family of puzzle maps (fλv, hλv), |λ| < ε. Let

α0 =
d

dλ
hλv

∣

∣

∣

∣

λ=0

.

Since hλv satisfies (7.2) for z ∈ ∂U , α0 satisfies (7.3) for z ∈ ∂U .
As in Lemma 6.12 we conclude that ‖α0‖ ≤ L‖v‖1 with L = 1/ε.
Now we can use Theorem 6.9 to conclude that there exists a qc vector field β

that coincides with α on the orbit of the critical value, coincides with α0 on the
complement of U and satisfies the equation (7.3) on U . Moreover, by Lemma A.24,
there are no invariant line fields on K(f), so we conclude that ‖∂β‖∞ ≤ L‖v‖1.

This vector fields vanishes on the ∂(U ∩R), since hλv|∂(U ∩R) = id, |λ| < ε. ¤

Lemma 7.6. Let f be a geometric puzzle map with geometric parameters (φ, ψ, γ, k)
such that c1 ∈ U . Then there exists a vector field v ∈ Υ(Dγ(J1)) such that ‖v‖1 = 1

and ‖v(c1)‖
U1

hyp > 1/7.

Proof. Let

wn(z) = (1− z2)(1− e−2n) +
2

n
(e−n(1+z) + e−n(1−z) − e−2n − 1).

Then wn ∈ Υ(D). Also, ‖wn‖1 < 6 and wn(z)→ 1−z2 pointwise in D as n→∞.
Hence the hyperbolic norm of wn(z) in D goes to |1 − z2|/(1 − |z2|) ≥ 1. Take a
big n and let w be the restriction of wn to Dγ(I) normalized so that ‖w‖1 = 1.
Rescaling Dγ(I) to Dγ(J1), we obtain a vector field v in the latter domain with
desired properties, because both the norm ‖·‖1 and the hyperbolic norm are scaling
invariant. ¤

Lemma 7.7. Given φ and k0, there exists a κ > 0 with the following property. Let
f : U → C be a geometric puzzle map with parameters (φ, ψ, γ, k), with k > k0,
such that the critical value c1 returns to U1, and let v ∈ Υ(Dγ(J1)) be a vector field
from Lemma 7.6. If there exists a qc vector field α on C, satisfying (7.3) on U ,
then there exists q ∈ f−1(U1) ∩ R such that |α(q)| > κd(q, ∂J0).

Proof. Let n > 1 be minimal such that cn ∈ U1. Let us show that

(7.4) ‖α(cn−1)‖
U0

hyp ≥ ‖v(c1)‖
U1

hyp.

Since n − 2 is the first landing time of c1 in f−1(U1), there exists a domain
W ⊂ U1 containing c1, which is univalently mapped onto U0 by f

n−2 (see e.g., [L3,
Lemma 3.5]). Moreover the orbit of this domain, f k(W ), k = 1, 2, . . . , n − 2, does
not intersect U1.

Equation (7.3) implies

(fn−2)∗α− α =

n−3
∑

k=0

(fk)∗v.
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Evaluating it at c1 we obtain (fn−2)∗α(c1) = v(c1) (since v vanishes outside U1
and α(c1) = 0). Since fn−2 :W → U0 is a hyperbolic isometry,

‖α(cn−1)‖
U0

hyp = ‖v(c1)‖
W
hyp.

This equation implies (7.4) by the Schwarz Lemma.
Let q = cn−1. Then [−q, q] ⊂ V ≡ f−1(U1). By condition 4 of the definition of

geometric puzzle map, mod(U0 \V ) > k/2, hence there exists a constant depending

only on k which bounds from below dist(q, ∂J0)/diam J0. Since ‖α(q)‖U0

hyp > 1/7

and U0 ⊃ Dφ(J0), there is a constant κ depending on φ and k only such that
|α(q)| > c dist(q, ∂J0). ¤

Lemma 7.8. Given (φ, ψ, γ), there exists a k > 0 with the following property.
Let f : U → C be a geometric puzzle map with parameters (φ, ψ, γ, k) such that
the critical value c1 returns back to the domain U1. Assume that f does not have
invariant line fields on K(f). Then there exists a vector field v ∈ Υ(Dγ(J1)) such
that there are no qc vector fields α satisfying (7.3) on the critical orbit. Moreover,
v|J1 is real.

Proof. Let L be the constant from Lemma 7.5 associated to ψ and γ. Fix some
k0 > 0 and let κ be the constant from Lemma 7.7 associated to φ and k0. Let
T = f−1J1 ∩R and let C be the constant from Lemma 2.9 corresponding to L and
T .

If k > k0 is big enough then |T | ≤ κC−1 dist(T, ∂J). Let v be the vector field
given by Lemma 7.7. Suppose by contradiction that equation (7.3) is satisfied on the
critical orbit for some qc vector field. Then by Lemma 7.5, this equation is satisfied
by some normalized L-qc vector field α on ∪Uj which vanishes at ∂(∪ int Jj). By
(7.3), α vanishes at ∂T as well. By Corollary 2.9, α(z) ≤ C|T | ≤ κdist(T, ∂J0) for
z ∈ T . On the other hand, Lemma 7.7 yields existence of a point q ∈ J such that
|α(q)| > κdist(q, J0). This is a contradiction. ¤

7.3. Puzzle motion. In this section we will show that the puzzle moves holomor-
phically over an appropriate neighborhood of a geometric puzzle map. First, let us
introduce some notations.

Let us consider a unimodal map f ∈ Ua supplied with a geometric puzzle {Ui}
with parameters (φ, ψ, γ, k). Every puzzle piece Ui is univalently mapped onto U0
by some iterate of f , fni : Ui → U0. Recall that the (closed) real slices of the Ui
are denoted by Ji. and that J1 stands for the interval containing the critical value
c1. Let J1 = [q, r], where q < r, and let N = [−q, q]. Let us consider the union of
two (open) hyperbolic disks based upon the intervals N and J1 together with their
real boundary points:

Z ≡ Zf = Dγ(N) ∪Dγ(J1) ∪ {−q, q, r}.

In what follows we will consider only puzzle pieces Ui which intersect Z. Notice
that this family of puzzle pieces is forward invariant, except that f(U0) does not
belong to it.

Let E ≡ Ef = orb(∂J0)∪{0} (notice that this is a finite set). Let Λ ≡ Λf be the
space of odd vector fields v ∈ A1(Z) which vanish to the first order on E (where
“odd” means that v(z) = −v(−z) whenever both z and −z belong to Z).

Notice that Υ(Dγ(J1)) ⊂ Λ and the inclusion is an isometry.
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Figure 4. Set Z and the puzzle

We assume that the angle γ is so small that f is defined on some neighborhood
of Z. For v ∈ Λ, we let fv = f ◦ (id+v). For small enough v, this map is well
defined on on Z, fv ∈ A1(Z), and depends continuously on v.

Lemma 7.9 (Puzzle Motion). Let f as above be a geometric puzzle map with
parameters (φ, ψ, γ, k) which is a restriction of a map in Ua. Assume f is hyperbolic
on I\J0. Then for some ε > 0 there is a holomorphic family of puzzle maps (fv, hv),
v ∈ Bε(Λ), satisfying the following properties:

• hv is the identity on ∂(f(U0)) ∪ ∂Z and is normalized;
• hv is equivariant on each ∂Ui, so that fni+1v ◦ hv = fni+1.

The proof of this lemma will be based on several lemmas. Let Q ≡ Qf =
∂(∪ int Ji). Fix a real analytic expanding metric ν from Lemma 2.12.

Lemma 7.10. The map fv = f ◦ (id+v) has an invariant expanding Cantor set
Qv ⊂ Z, Q0 ≡ Q, which moves holomorphically over some neighborhood V ⊂ Λf of
0.

Proof. We will construct a holomorphically moving Markov partition Mv for fv
whose elements are contained in Z. To this end let us use the linearizing coordinate
Lv : (D, p) → (C, 0) near the orientation reversing fixed point pv of fv normalized
by L′v(pv) = 1. The Lv-preimages of the straight rays landing at 0 will be called
“rays” of fv landing at pv:

Rv(ζ) = L−1v {tζ : 0 ≤ t ≤ 1}.

Since the multiplier of pv is real, the second iterate of any ray “overflows” itself.
Since the linearizing coordinate depends holomorphically on v, the ray Rv(ζ) with
a given ζ moves holomorphically over some neighborhood V ⊂ Λf . Moreover, this
ray (viewed as a smooth arc in C) smoothly depends on v.
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Let xv be a preimage of pv under some iterate of fv. If xv is different from the
special points q, −q and r, then all sufficiently short rays landing at pv can be
pulled back to xv providing us with “rays” landing at xv.

Assume xv = q. Let f l(q) = p. Let us consider the union S(q) of two R-
symmetric Euclidean sectors of size 2γ/3 centered at q. Then the map fn1

v is
holomorphic on S(q) near q and f l(S(q)) contains the union S(p) of two sectors
centered at p of size γ/2. Hence we can take the preimages of the rays landing at
p within the sectors S(p) and obtain “rays” landing at q.

Similarly we construct rays landing at points −q and r within appropriate sectors
centered at those points (one sector for each of the points).

Clearly, all the rays we have constructed move holomorphically with v and
smoothly depend on v. We will fix now θ < γ/2 and only consider rays which
make this angle with the real line.

Let us now defined “h-rays” for f as the rays truncated on the height ±h with
respect to the metric ν. For any point xv, they are well-defined provided h is small
enough. We define h-rays for fv as the holomorphic motions of these rays. Since
the metric ν is expanding, this family of rays satisfies the following overflowing
property: If Γ is an h-ray landing at xv at angle θ with the real line, then the image
fvΓ strictly contains the h-ray landing at fv(xv) at angle θ or π − θ.

Given some n, we will now consider a real Markov covering {Mj} of Q by parti-
tioning [−1, 1] by the set Q ∩ ∪nk=0f

−k(p) and taking only those (closed) intervals
of the partition which intersect Q. For n big enough, this covering is contained in
a small neighborhood of Q.

Let us now complexify this covering. The complex domains of the coverings will
be R-symmetric (smooth) hexagons Hj based upon the intervals Mj . Take some
Mj = [a, b]. Consider four h-rays landing at points a and b at angle θ with the
interval Mj . We obtain four sides of Hj . Join two endpoints of the rays lying in
the upper half-plane with a horizontal interval on height h, and similarly in the
lower half-plane. Since the h-rays are smoothly close to the straight rays for h
sufficiently small, we obtain a smooth hexagon Hj (see Figure 5). Since the h-rays
move holomorphically with v, the hexagons also do (on the top and bottom sides
of the hexagon the motion can be defined by linear interpolation). This defines
hexagons Hv

j .
The overflowing property of the family of rays implies that the family of hexagons

Hv
j is Markov family. By Proposition 2.11 (and the remark following it), the set of

non-escaping points,

Qv = {z : fnv z ∈ ∪H
v
j , n = 0, 1, . . . },

is a holomorphically moving invariant Cantor set.
Smooth dependence of the rays on v implies that all the hexagons are contained

in Z provided v is sufficiently small. Hence Qv ⊂ Z as well. ¤

Let hg be the holomorphic motion of the Markov partition {Hj} in the above
lemma.

Lemma 7.11. There exists a neighborhood V of 0 in Λ such that for each Ui there
is a holomorphic motion hiv of Ui ∪ Z ∪Q such that hv ◦ f

ni+1 = fni+1v ◦ hiv in Ui
and hiv = hv in ∂Z ∪Q.
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Figure 5. A hexagonal Markov piece.

Proof. Suppose first that i = 1. Notice that fn1+1 is a ramified double covering
map over a neighborhood of f(U0). Using that both f and fv are symmetric, we
conclude that for any v ∈ Λ sufficiently small we can associate w ∈ Υ(Dγ(J1))
such that fn1+1

v = fn1+1 ◦ (id+w) and this association is continuous. We can then
argue exactly like in Lemma 7.4 that for w ∈ Υ(Dγ(J1)) small enough, id+w is
a diffeomorphism from Dγ(J1) onto a set which contains U1, which allows us to
define the motion as (id+w)−1 in U1.

If i 6= 1 is fixed, it is clear that there exists a neighborhood Vi where such
holomorphic motion is defined.

We now argue exactly as in Lemma 5.6. We notice that all but finitely many Ui
are compactilly contained in the domain of the persistent Markov partition {Hj}.
Let I be the set of Ui which are not contained in any Hj . Let J be the set of
Ui which are contained in some Hj but f(Ui) is in I. Shrinking the neighborhood
if needed, we may suppose that in V, hg is defined, hig is defined for Ui ∈ I ∪ J

(a finite set of domains) and hig(Ui) ⊂ ∪hg(Hj) for Ui ∈ J . This allows us to
construct the motion of all Ui in V by pulling back, as in Lemma 5.6. ¤

Let S = C \ Q. As in Lemma 5.6 we conclude the estimates (5.2) and (5.3),
which imply by Lemma 2.3 the estimates (5.4).

So we can define a holomorphic motion Hv which agrees with hv on Zf∪∂f(U0)∪
Q and with hiv on Ui. This conclude the proof of the Lemma 7.9.

7.4. Existence of transverse direction. Let Pf be the set of all p ∈ Λf such
that pf ′ is a polynomial.

Lemma 7.12. PR
f is dense in ΛR

f .

Proof. This follows from the Mergelyan Polynomial Approximation Theorem (see
[R], Theorem 20.5, page 423). ¤
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Lemma 7.13. Given f as above, there exists an L with the following property.
Assume v ∈ Λf and there is a qc vector field α satisfying equation (7.3) on orbf (0).
Then α has a normalized L‖v‖1-qc extension.

Proof. We argue as in Lemma 6.12.
Let V be a neighborhood of 0 in Λ given by Lemma 7.9. Arguing as in Lemma

6.12 we conclude that β = d
dthtv

∣

∣

t=0
is a normalized qc vector field such that

‖β‖qc ≤ L‖v‖1 for some constant L. Applying Theorem 6.9 and Lemma A.24 we
get a normalized qc vector field α with the same estimates. ¤

Corollary 7.14. The set of v ∈ Λf satisfying equation (7.3) is closed.

Proof. Follows from Lemma 7.13 and the Second Compactness Lemma. ¤

Theorem 7.15. If f ∈ Ua is at most finitely renormalizable then there exists a
vector field v ∈ AR

a which does not belong to Tf .

Proof. The non-recurrent case was treated in §7.1, so let us assume that f has
a recurrent critical point. By Lemma 5.6 there exists a geometric puzzle for f
satisfying the assumptions of Lemma 7.8. By Lemmas 7.8, 7.12, and Corollary 7.14,
there exists a real polynomial pf ′ such that pf ′ does not belong to Tf . ¤

Remark 7.2. Existence of the transverse direction can be proved for maps with
minimal postcritical set (which includes infinitely renormalizable and some finitely
renormalizable combinatorics) by different means.

This construction is based on a renormalization approach: the assumption of
minimality is used to obtain a renormalization which is polynomial-like with finitely
many branches. The first step is the construction of the transverse direction for the
renormalization through a variation of the construction in the case of quadratic-like
maps in §4.5 of [L5]. This is possible since polynomial-like maps still enjoy a tame
“external structure”.

The second step is to show that the derivative of the renormalization operator
has dense image and is based on the construction of Lemma 4.5.

This allows to generalize this work for classes of unimodal maps without any
decay of geometry and will be elaborated elsewhere (for maps such that the closure
of the critical orbit is not a minimal set, there is some decay of geometry and the
construction of the transverse direction we develop here can be applied).

8. Local laminations

8.1. Transverse cone field.

Lemma 8.1. Let f be a Yoccoz map and consider two sequences fn, gn in Ua such
that fn is hybrid equivalent to gn and lim fn = lim gn = f . Assume that

lim
gn − fn
‖gn − fn‖a

= w.

Then w ∈ Tf .

Proof. Denote by Vε an ε-neighborhood of f in Aa.
Consider a geometric puzzle Pf for f which persists in Vε (see Lemma 5.6),

and let ψg : C → C be a normalized holomorphic motion of the puzzle. For

F,G ∈ Vε, denote by µ(F,G) the Beltrami coefficient of ψG◦ψ
−1
F . It follows from the
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Quasiconformality Lemma that there exists a constant C such that ‖µ(F,G)‖∞ ≤
C‖G− F‖a, provided F and G belongs to Vε/2.

By Remark 5.6, ψgn ◦ψ
−1
fn

is an R-symmetric map. By Lemma A.25, there exists

a normalized qc map Hn, equivariant with respect to fn and gn on Ufn , such that

‖µHn‖∞ ≤ ‖µ(fn, gn)‖∞ ≤ C‖gn − fn‖a.

Let µHn = λnµn with ‖µn‖∞ = 1. It follows that f∗n(µn) = µn on Ufn . We may
assume also that τ ≡ limλn/‖gn − fn‖a exists, so that |τ | ≤ C.

Let Hn,λ be a normalized holomorphic motion over D with Beltrami coefficient
λµn. Let fn,λ : Hn,λ(U

fn)→ C be defined as

fn,λ = Hn,λ ◦ fn ◦H
−1
n,λ.

Since µn is invariant by fn, we conclude that fn,λ is holomorphic on Hn,λ(U
fn).

Moreover, we have fn,λn |U
gn = gn.

By Lemma 2.8, passing to a subsequence, we may assume that the Hn,λ converge
to some normalized holomorphic motion Hλ uniformly on compacts of D.

Let fλ : Hλ(U
f )→ C be defined as

fλ = Hλ ◦ f ◦H
−1
λ .

It follows that for each λ ∈ D, fn,λ converges to fλ uniformly on compacts of
Hλ(U

f ), so that fλ is holomorphic.
For any fixed compact set K ⊂ U f , there exists δ > 0 such that H−1λ (K) ⊂ Uf ,

λ ∈ Dδ. It follows that (λ, z) 7→ fn,λ(z) converges uniformly to (λ, z) 7→ fλ(z) on
Dδ/2×K. By uniform convergence of derivatives of holomorphic maps, we conclude

that for any z ∈ Uf ,

τ
d

dλ
fλ(z)

∣

∣

∣

∣

λ=0

= lim
λn

‖gn − fn‖a
lim

fn,λn(z)− fn,0(z)

λn

= lim
gn − fn
‖gn − fn‖a

= w(z).

Since ‖w‖a = 1, it does not vanish identically, so that τ 6= 0. Let

α =
d

dλ
Hλ

∣

∣

∣

∣

λ=0

.

By the argument of Proposition 5.2, α is a qc vector field equivariant with respect
to (f, w/τ) on orb(0), so w ∈ Tf . ¤

From now on, let us fix a Yoccoz map f , and let v ∈ AR
a be a transverse vector

field given by Lemma 7.15 such that ‖v‖a = 1.

Corollary 8.2. Let Σε = {f + tv|t ∈ (−ε, ε)}. Then there exists an ε such that Σε
intersects each hybrid class in at most one point.

Proof. If this is not the case, there exist sequences t1,n, t2,n → 0 such that t1,n 6= t2,n
with f+ t1,nv hybrid conjugate to f+ t2,nv. Applying Lemma 8.1 we conclude that
v ∈ Tf , which is a contradiction. ¤

Remark 8.1. It follows that the straightening χ : Σε → [1/2, 2] is a homeomorphism
onto the image. Since hyperbolic maps are dense in the quadratic family, they are
dense in Σε as well.
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Below we use the notion of special combinatorics defined in § 6.3.

Lemma 8.3. There exists a neighborhood V of f such that if fn → f is a sequence
of maps with special combinatorics with respect to V, then lim supTfn ⊂ Tf .

Proof. Consider a geometric puzzle for f which persists in a neighborhood of f and
take a neighborhood V of f as in Lemma 6.12. Let fn → f be a sequence of maps
with special combinatorics with respect to V, and let vn ∈ Tfn be a sequence of
vector fields converging to some vector field v. Since ‖vn‖a is uniformly bounded,
and the operator norm of Lfn is uniformly bounded, there exists a qc vector field αn,
equivariant on orbf (0), and such that ‖αn‖qc < C. Denote by βn some normalized

extension of αn to C with ‖∂βn‖∞ < C. By the Second Compactness Lemma,
we may assume that βn converges to some vector field β. It is easy to see that β
is equivariant with respect to (f, v) on orb(0). α = β|Of . It is easy to see that
v = α ◦ f − αf ′. So v ∈ Tf , and since Tf is a vector space, lim supTfn ⊂ Tf . ¤

Corollary 8.4. There exists a neighborhood V of f in Aa and an open cone K
such that for any g ∈ V which has special combinatorics with respect to V, Tg is
transverse to K.

Proof. Suppose that the statement is false. Let Vn ⊂ Aa be a 1/n-neighborhood of
f and let Wn ⊂ TAa be a 1/n neighborhood of v. Since the cone generated by Wn

is an open cone, there exists a sequence fn ∈ Vn, with special combinatorics with
respect to Vn, such that Tfn ∩Wn 6= ∅. So lim supTfn 6⊂ Tf .

To obtain a contradiction with Lemma 8.3, we observe that, for a fixed neigh-
borhood V of f , Vn ⊂ V for all n big enough, so that fn has special combinatorics
also with respect to V. ¤

Corollary 8.5. Tf is a codimension-one subspace of TAa.

Proof. By Remark 8.1, there exists a sequence fn → f with special combina-
torics. For each fn, Tfn is codimension-one, so by Lemma 2.32, either lim supTfn is
codimension-one or is equal to TAa. By Lemma 8.3, Tf ⊃ lim supTfn , so Tf must
be a codimension-one subspace, since v /∈ Tf . ¤

8.2. Proof of Theorem A. The construction of the lamination in the infinitely
renormalizable case was carried out in Theorem 4.8. The lamination near hyper-
bolic maps is trivial to construct and parabolic combinatorics are codimension-one
submanifolds by the Implicit Function Theorem. We will construct the lamination
near a Yoccoz map f .

Fix a puzzle for f and let V and K be as in Lemmas 6.3, 6.12 and Corollary 8.4
and v be as in last section. Let Π1 : TAa → Tf , Π2 : TAa → C be the projections
along Tf and v, that is, w = Π1(w) + Π2(w)v. From Lemma 2.31, there exists a
constant C such that for any w ∈ E\K, Π2(w) ≤ C‖Π1(w)‖a. In particular, tangent
spaces as in Corollary 8.4 are C-Lipschitz graphics from Tf to the transversal one-
dimensional subspace spanned by v.

Fix ε very small and let Λ be an ε-neighborhood of 0 in Tf and let Σ = Σε be
as in Corollary 8.2.

Let g ∈ Aa. We say that γ : W → Aa is a g-graphic (from W) if W is a
neighborhood of 0 in Tf and if γ(0) = g and Π1 ◦ γ − id = Π1(g). We say that a
g-graphic is c-Lipschitz if ‖Π2 ◦Dγ‖ ≤ c. We say that a g-graphic is contained in
some set X if γ(W) ⊂ X.
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We say that a set X ⊂ Aa is a definite g-graphic if there is a g-graphic from Λ
onto X.

Lemma 8.6. If g ∈ Σ has special combinatorics and γ : W → Cg, W ⊂ Λ is a
g-graphic, then γ is C-Lipschitz.

Proof. This is an immediate consequence of Corollary 8.4. ¤

Lemma 8.7. If g ∈ Σ has special combinatorics then Cg contains a definite g-
graphic.

Proof. Since Cg is a codimension-one submanifold transverse to v at g, there exists
a g-graphic contained in Cg.

LetW ⊂ Λ be the set of all w such that there exists a neighborhoodWw of [0, w]
in Tf and a g-graphic from Ww contained in Cg.

Since Cg is a codimension one submanifold, it is also clear that the continuation
property is valid, that is, if γ1 is a g1-graphic from W1 and γ2 is a g2-graphic from
W2 which are contained in Cg, andW1∩W2 is simply connected, then γ1|W1∩W2 =
γ2|W1 ∩W2. It follows that there exists a g-graphic γ : W → Cg. So we just have
to show that Λ =W.

If this is not the case, there exists w0 ∈ Λ \ {0} such that [0, w0) ⊂ W, but
w0 /∈ W. By Lemma 8.6, γ is C-Lipschitz, so that γ(W) is contained in a small
neighborhood of g, and limw→w0

γw exists and will be denoted by γ(w0). By
Lemma 6.3, for any w ∈ W, γ(w) is L-qc conjugate to g on U g. Using the First
Compactness Lemma, we conclude that γ(w0) is L-qc conjugate to g on U g, so
w0 ∈ Cg and w0 has special combinatorics with respect to V. By Corollary 8.4,
v is transverse to Tγ(w0), so there exists a γ(w0)-graphic contained in Cg. By the
continuation property, w0 ∈ W, which is a contradiction. ¤

Let γg be the definite g-graphic contained in Cg. Let ∆g = γg(Λ) ⊂ Cg.
By the continuation property, if g1, g2 ∈ Σ have special combinatorics and are

different, then ∆g1 ∩∆g2 = ∅.
By Remark 8.1 and the Extension Lemma for holomorphic motions, there is a

unique extension of the lamination ∆g whose leaves passes through every point of Σ
(uniqueness follows from continuity). Given now g ∈ Σ not necessarily with special
combinatorics, we let ∆g be the leaf of the extended lamination. It is clear that
each ∆g is still a definite g-graphic, which is C-Lipschitz.

By continuity each ∆g intersects Ua transversally at some hybrid class (and more-
over continuity and the First Compactness Lemma implies that each leaf consists
of L-qc conjugate maps). This completes the proof of Theorem A.

Remark 8.2. The present proof for the existence of the laminations given the ex-
istence of the transverse direction (see Remark 7.2) also works in the infinitely
renormalizable case.

This proof also apply to a class of maps considered in [LS2], namely covering
maps of the circle with a unique critical point of inflection type (for which the exis-
tence of the transverse direction is automatic). This application will be elaborated
elsewhere.

8.3. Characterization of the tangent space. Let us remark further that each
∆g constructed above consists of maps g̃ which are L-qc conjugate to g on U g. This
is a consequence of the First Compactness Lemma and the fact that this holds for g
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with special combinatorics (see the proof of Lemma 8.7). Moreover, the conjugacy
between g and g̃ can be chosen to vary holomorphically inside ∆g:

Proposition 8.8. For each g ∈ Σ there is a normalized holomorphic motion hg̃,
g̃ ∈ ∆g such that hg̃(Ug) = Ug̃ and hg̃ is equivariant with respect to g and g̃ on Ug.

Proof. Let us fix a holomorphic motion Hg of the puzzle on V. For g with special
combinatorics, it follows from Remark 6.2 that there exists a holomorphic motion
hg̃ over ∆g, equivariant on Ug and coinciding with Hg̃ on C \ Ug.

In general, ∆g is the limit of a sequence ∆gn , gn with special combinatorics.
By Lemma 2.8, there exists a holomorphic motion over ∆g which is a limit of the
holomorphic motions over ∆gn . By continuity, this holomorphic motion is also
equivariant. ¤

Though the above proof only applies for our construction of the lamination in
a neighborhood of a Yoccoz map, a similar statement still holds near infinitely
renormalizable maps. In this case instead of using persistent puzzles, the situation
can be reduced to the quadratic-like case by means of the renormalization. The
hyperbolic case can be dealt in an easier way with a construction based on the
persistence of the basin of attraction (in a similar argument to Proposition 5.4).
Similarly, the case of parabolic maps can be dealt using the persistence of attracting
petals along the submanifold where the parabolic point persists. All those cases
are summarized below:

Proposition 8.9. Let g ∈ Ua. There exists a codimension-one complex submanifold
∆g ⊂ Aa, such that ∆g ∩ Ua ⊂ Hg and a normalized holomorphic motion hg̃,
g̃ ∈ ∆g, which is equivariant on I. Moreover, the ∆g form a lamination near any
non-parabolic map f ∈ Ua.

Recall that except in the hyperbolic but not superattracting case, the “tangent
space” Tf was defined as the set of vector fields admitting a representation v =
α ◦ f − f ′α on orbf (0) for a qc vector field α. The following proposition shows that
this choice was completely justified:

Theorem 8.10. Tf = TfHf .

Proof. First we notice that Tf contains the tangent space to the real hybrid class
of f . Indeed, if v ∈ TfHf then there exists a path fλ ∈ Hf through f tangent to
v at f . By Proposition 8.9, fλ can be equipped with an equivariant holomorphic
motion of the interval. By Proposition 5.2, v ∈ Tf .

We obtained in § 7 a transverse vector field to Tf for at most finitely renormal-
izable maps f . Since TfHf is codimension-one, Tf = TfHf .

Let now f be infinitely renormalizable, and let R be the renormalization operator
of § 4, so that R(f) : U → U ′ is a quadratic-like map. Let v be a vector field
transverse to TfHf . By transverse non-singularity of R, DR(f)v /∈ TR(f)HR(f)
(see Remark 4.1).

By the characterization of the tangent space to the hybrid class of a quadratic-
like map (see § 4.1.2), there are no qc vector fields α equivariant with respect to
(R(f), DR(f)v) on U satisfying ∂α|K(R(F )) = 0. However, this last condition is
vacuous since there are no invariant line fields on K(R(f)) (Theorem 2.22). By the
Infinitesimal Pullback Argument (in the quadratic-like setting), we see that this is
equivalent to non-existence of a qc vector field α equivariant just on orbR(f)(0). In
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particular, there is no qc vector field equivariant with respect to (f, v) on orbf (0),
so v /∈ Tf . ¤

9. Regular or stochastic theorem

9.1. Tangencies between holomorphic curves and holomorphic lamina-

tions. Let us consider a codimension-one holomorphic lamination F in an open
set V of a complex Banach space B. For a point a ∈ V in the support of the lamina-
tion, denote by La the leaf of F through a and by Ta the tangent space to this leaf
at a. Let γ : D → V be a holomorphic curve. We say that γ has a tangency with F
at some parameter value λ0 if γ(λ0) belongs to the support of the lamination and

d

dλ
γ(λ)

∣

∣

∣

∣

λ=λ0

∈ Tγ(λ0).

The set of tangencies is clearly closed in D.

Lemma 9.1 (A.Douady). If the curve γ is not contained in any leaf of F then the
set of tangencies is discrete.

Proof. We may assume that we have flow box coordinates W ⊕ C, in other words,
the leaves of the lamination are graphs over W. Let’s consider a parameter λ0
where γ has a tangency with the lamination.

By a change of coordinates we may assume λ0 = 0 and that the leaf containing
γ(0) is the graph of the zero function from W to C. If γ is not contained in a leaf,
we may write for z near 0, γ(z) = (φ(z), znψ(z)) where ψ(0) 6= 0 and n ≥ 2.

Let S : W ⊕ C → W ⊕ C be defined by S(z, w) = (z, wn). and F̃ be the
lamination in W ⊕C whose leaves are connected components of preimages by S of
leaves of F .

It is easy to see that if γ̃ is a path in V ⊕C and if S ◦ γ̃ has a tangency at λ with
F then either γ̃ has a tangency at λ with F̃ or γ̃(λ) ∈ V × {0}.

Let then γ̃ = (φ(z), zψ(z)1/n) for z near 0. Then γ̃ is transverse to F̃ at 0, and
so there is no tangency in a neighborhood of 0. We conclude that 0 is the unique
tangency of γ = S ◦ γ̃ in a neighborhood of 0. ¤

9.2. Connectivity of some hybrid classes.

Theorem 9.2. If f is a Yoccoz map, then there exists a one parameter real analytic
family {ft}t∈[0,1] ⊂ Ua in the hybrid class of f connecting f0 = f with the quadratic
map f1 = qχ(f).

Proof. It follows from Theorem B.1 that f is qc conjugate to the quadratic polyno-
mial qχ(f) in a neighborhood of the interval I. Moreover, this conjugacy fixes 0 and
1, and commutes with the reflections with respect to 0 and R (we will call such maps
“symmetric”). Extend it to a global symmetric qc homeomorphism h : C → C. Let
µ be its Beltrami differential. Solving the Beltrami equation with differential λµ,
we obtain a holomorphic family

hλ : C → C, |λ| < 1/‖µ‖∞,

of symmetric qc maps fixing 0 & 1. Let fλ : hλ(Ωa) → C be defined by fλ =
hλ ◦ f ◦h

−1
λ . Then there is some a′ < a such that {ft}t∈[0,1] is a real analytic curve

in Ua′ contained in the hybrid class of f .
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Let us show that this curve can be approximated, in the topology of Ua′ by a
similar curve taking values in Ua. To this end, let us consider a one-parameter real
analytic family of vector fields {vt}t∈[0,1] in TUa′ such that for any t, vt is transverse
to the hybrid class of f in Ua′ . Consider a 2-parameter family

G(t, s) = gt + sv(t) in Ua′ , (t, s) ∈ [0, 1]× [−1, 1].

Letting ζ0 : [0, 1] → [0, 1] × [−1, 1] be the natural inclusion ζ0(t) = (t, 0), we have
gt = G ◦ ζ0(t).

Let us now consider a real analytic family F : [0, 1] × [−1, 1] → Ua such that
F (0, 0) = G(0, 0) and F (1, 0) = G(1, 0). We may also require that Πa,a′ ◦ F is
C1 close to G, where Πa,a′ : Ua → Ua′ is the inclusion. By the Implicit Function
Theorem, there exists a real analytic curve ζ : [0, 1] → [0, 1] × [−1, 1], C1 close to
ζ0, such that Πa,a′ ◦ F ◦ ζ is contained in Hf,a′ . In particular, F ◦ ζ : [0, 1]→ Ua is
a real analytic path connecting f0 to f1 in Hf,a. ¤

9.3. Proof of Theorem C. Let {ft} be a real analytic family in Ua. Assume {ft}
is non-trivial. By Theorem A each hybrid class is a real analytic codimension-one
submanifold. Let T ⊂ R be the union of the set of parabolic parameters and the
set of tangencies of ft with the hybrid classes.

Lemma 9.3. T is countable.

Proof. We notice that the set of parabolic parameters is countable. Indeed, those
are associated with countably many analytic equations of the type f kt (x) = x,
|Dfkt (x)| = 1, where k > 0 is an integer. Since {ft} is not contained in a leaf, each
of these equations corresponds to a discrete set of parameters.

So if T is not countable there is a parameter t such that ft is not parabolic and
any neighborhood of t intersects T in infinite many points. By Theorem A, since ft
is not parabolic there exists a neighborhood of fλ in Aa which is holomorphically
laminated by the hybrid classes. By Lemma 9.1, the set of tangencies in a smaller
neighborhood is finite. This is a contradiction. ¤

To conclude the proof of Theorem C, it is enough to show that each parameter in
the complement of T has a neighborhood where the straightening is quasisymmetric.

Consider then a parameter λ0 /∈ T . If fλ0
is hyperbolic, χ is clearly analytic in

a neighborhood of λ0. If fλ0
is infinitely renormalizable, we can apply Theorem

4.10. Assume then that fλ0
is a Yoccoz map. In this case, there is a path con-

necting it to the quadratic family and we can just use the transversality at λ0 to
conclude the quasisymmetry of χ, since codimension-one real analytic laminations
are transversally quasisymmetric.

9.4. Proof of Theorem B. Let X be the complement of the set of parameters of
the quadratic family which are either hyperbolic or are Yoccoz maps and have at
most a finite number of central levels in the principal nest of their last renormal-
ization. By Theorem 2.20, a map which is neither regular or stochastic is hybrid
equivalent to a parameter in X. In view of Theorem C, it is enough to prove the
following:

Lemma 9.4. The image of X by any qs map has zero Lebesgue measure.

Proof. We first decompose X = I ∪ F ∪ P where I are infinitely renormalizable
parameters, F are Yoccoz parameters and P are parabolic. Let h be a qs map.
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Then |h(P)| = 0 since P is countable, and |h(I)| = 0 follows from Theorem 2.27,
since the property of having definite gaps everywhere is preserved by quasisymmet-
ric maps.

Parameters in F can be further decomposed as a countable union ∪Fj , where
parameters in each Fj have the same combinatorics for their smallest renormal-
ization interval. Let us show that each h(Fj) has zero Lebesgue measure. For
simplicity, let us consider the case F0 ⊂ N of non-renormalizable maps, the general
case reduces to this one by renormalization.

According to §2.15, for each n there exists a covering of N by disjoint intervals
∆n
i ⊂ [1/2, 2] (“real parapuzzle pieces of level n”), and each of the ∆n

i contains a
central interval Πni satisfying (2.15). Furthermore, a parameter belongs to F0 if
and only if it belongs to infinitely many Πni . By Lemma 2.4, there exists constants

C̃ > 0 and 0 < ρ̃ < 1 such that

|h(Πni )|

|h(∆n
i )|

≤ C̃ρ̃n,

so that
∑

n

∑

i |h(Π
n
i )| <∞. By the Borel-Cantelli Lemma, |h(F0)| = 0. ¤

Appendix A. Complex return maps

The dynamics of certain classes of complex return maps was described in the
works of Branner-Hubbard [BH], Yoccoz [H], and Lyubich [L1], [L3]. The precise
hypothesis on the dynamics change from work to work. In this appendix we adapt
those ideas for our setting, collecting the results needed for the analysis of puzzle
maps.

A.1. Definitions. Let W be a quasidisk and let {Wj} be a family of at least 2
quasidisks inside W with pairwise disjoint closures such that 0 ∈ W0. Assume
further that

(A.1) inf mod(W \Wj) > 0,

that ∪Wj is thin in W (see definition in the beginning of § 5.2, and diam(Wj)→ 0.
An R-map is a holomorphic map F : ∪Wj → W such that for any j 6= 0, F |Wj

is a univalent map onto W , and F |W0 is a double covering onto W branched at 0
(“R” stands for “Return”). We let W n = F−n(W ) and we define the filled Julia
set K(F ) as ∩Wn.

The components of F−n(W ) are called puzzle pieces of depth n. For x ∈ F−n(W ),
we let Pn(x) be the puzzle piece of depth n containing x. Puzzle pieces containing
0 are called critical.

An R-map F is called renormalizable if there exists a puzzle piece V = P n(0),
n ≥ 1, and an integer p > 0 such that V ⊂ F p(V ), the puzzle pieces F j(V ) 1 ≤ j ≤ p
are pairwise disjoint, and Fmp(0) ∈ V , m > 0. The map R(F ) = F p|Pn(0) with
minimal n as above will be called the renormalization of F . It is a quadratic-like
map with connected Julia set.

Let F : ∪Wj → W and F̃ : ∪W̃j → W be two R-maps, and let h be a homeo-

morphism of C equivariant on ∪∂Wj . If h(F (0)) = F̃ (0), then for each j there is

a unique homeomorphism ψj : cl Wj → cl W̃j coinciding with h on ∂Wj and such
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that h ◦ F = F̃ ◦ ψj on Wj . Let

h1 =

{

ψj on Wj

h on C \ ∪Wj .

Since diamWj → 0, h1 is a homeomorphism of C. It is called the lift of h (compare
§ 6.1).

We say that a homeomorphism h : C → C is a combinatorial equivalence between
F and F̃ if it is equivariant on ∪ ∂Wj and the lift h1 of h is homotopic to h rel
∪ ∂Wj ∪ orbF (0).

The notions of topological/qc/hybrid equivalence between two R-maps are self-
evident.

A.2. Divergence property. For x ∈ K(F ), we let

An(x) = Pn(x) \Wn+1.

We define modAn(x) as the extremal length of the family of curves in An(x) joining
∂Pn(x) to ∂Wn+1(x) ∩ Pn(x).

Theorem A.1. Assume that F : ∪mj=1Wj → W is a non-renormalizable R-map
defined on the union of finitely many domains Wj. Then for any x ∈ K(F ),

(A.2)
∑

modAn(x) =∞.

Proof. Fix x ∈ K(F ) and let µnk = modAn(F k(x)). These numbers satisfy the

following rules: µnk = µn−1k+1 if Pn(x) is not critical and 2µnk = µn−1k+1 otherwise.

Since there are only finitely manyWj , ∪Wj ⊂W . This implies that µ0k (which in
fact does not depend on k) is positive. Since F is non-renormalizable, the “tableau”
{Pnk (0)}n,k is aperiodic in k. By the work of Branner and Hubbard, Theorem 4.3,
p.264 of [BH], these properties imply (A.2). ¤

A compact set X ⊂ C is called removable if any qc map H : C \X → C extends
to a qc homeomorphism of C.

Corollary A.2. Under the assumptions of the previous theorem, the filled Julia
set K(F ) is removable and hence has zero Lebesgue measure.

Proof. Since there are only finitely many domains Wj , the filled Julia set K(F ) is
compact. Now the result follows from the divergence property (A.2) by [SN], §1
(see also McMullen in [BH], §5.4). ¤

A.3. Geometry of puzzle pieces. Let us say that x ∈ K(F ) shadows the critical
orbit if for any k and all m ≥ m(k), there exists j ≤ m such that the puzzle piece
P k+j(Fm−j(x)) is critical (in other words, the map Fm : P k+m(x) → P k(Fm(x))
is not univalent). In particular, for m ≥ m(k), P k(Fm(x)) intersects the critical
orbit. Moreover, for all k, orbF (x) ∩ P k(0) 6= ∅.

Lemma A.3. Let F be an R-map and let x ∈ K(F ). If

mod(Pn(x) \ Pn+1(x))→ 0

then x shadows the critical orbit.
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Proof. Assume that x does not shadow the critical orbit. Then there exist k and
arbitrarily big m such that the map Fm : P k+m(x) → P k(Fm(x)) is univalent.
Hence

mod(P k+m(x) \ P k+m+1(x)) = mod(P k(Fm(x)) \ P k+1(Fm(x))).

Taking k more iterates of Fm(x), we conclude that

mod(P k(Fm(x)) \ P k+1(Fm(x))) ≥
1

2k
mod(W \ P 1(Fm+k(x))).

By the definition of R-map, the later modulus is bounded away from 0. This is a
contradiction. ¤

Lemma A.4. If F is renormalizable and x shadows the critical orbit then there
exists k such that F k(x) ∈ K(R(F )).

Proof. Let R(F ) = F p|Pn(0) and let Ui = Pn(F i(0)). Then {Ui}
p−1
i=0 is a disjoint

cover of the orbit of 0. Let Kj = F j(K(R(F ))) so that

Kj = {x ∈ Uj : F
k(x) ∈ ∪p−1i=0Ui, k = 0, 1, ...}.

Let x ∈ K(F ) shadow the critical orbit and let m0 be such that

Pn(Fm(x)) ∩ orbF (0) 6= ∅ for m ≥ m0.

Hence, Pn(Fm(x)) ⊂ ∪Ui for all m ≥ m0, and the conclusion follows. ¤

Theorem A.5. Let F be an R-map and let x ∈ K(F ) satisfy
∑

mod(Pn(x) \ Pn+1(x)) <∞.

Then F is renormalizable and F k(x) ∈ K(R(F )) for some k.

Proof. For x ∈ K(F ), let Bn(x) = mod(Pn(x) \ Pn+1(x)). Let x be a point such
that

∑

Bn(x) < ∞. By Lemma A.3, P k(0) intersects orbF (x) for every k. In
particular, if mk is minimum such that Fmk(x) ∈ P k+1(0), Bk+mk

(x) = Bk(0).
Since the sequence k +mk is strictly increasing, we conclude that

∑

Bk(0) <∞.
Assume first that orbF (0) intersects infinitely many domains Wj . Then F (0)

does not shadow the critical orbit: if m is minimal with Fm(F (0)) ∈ Wj , the
map Fm : Pm+1(F (0)) → P 1(Fm(F (0))) is a diffeomorphism. In particular, by
Lemma A.3, Bk(F (0)) does not converge to 0, so neither does Bk(0), and this
contradicts

∑

Bn(0) <∞.

Thus, orbF (0) intersects only finitely many Wj . Let F̃ be the R-map obtained
by restricting F to those. The sequence Bk(0) does not change by taking this

restriction. The Divergence Property of Theorem A.1 implies that F̃ is renormal-
izable. So F is also renormalizable, and since x shadows the critical orbit we have
F k(x) ∈ K(R(F )) for some k by Lemma A.4.. ¤

Corollary A.6. If F is a non-renormalizable puzzle map, for every x ∈ K(F ),
∩Pn(x) = {x}.

Lemma A.7. Let F be an R-map such that intK(F ) 6= ∅. Then F is renormaliz-
able and intK(F ) = ∪F−n(intK(R(F ))). Furthermore, R(F ) has a non-repelling
periodic orbit.
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Proof. Let x ∈ intK(F ). Notice that ∂P n(x) is not contained in K(F ), so ∩P n(x)
contains a neighborhood V of x. By Theorem A.5, F is renormalizable, and F k(x) ∈
K(R(F )) for some k. Since K(R(F )) = ∩P n(0), we have:

F k(V ) ⊂ F k(∩Pn(x)) ⊂ K(R(F )).

Hence F k(x) ∈ intK(R(F )). By the classification of Fatou components, see [Mc1]
p. 37, a quadratic polynomial whose filled-in Julia set has non-empty interior must
have either a hyperbolic or parabolic periodic orbit or an indifferent periodic orbit
associated to a Siegel disk, so in all cases it must have a non-repelling periodic orbit.
The same conclusion hold for R(F ) via the Straightening Theorem of Douady-
Hubbard (see § 2.12). ¤

A.4. Measure of the Julia set. In this section we generalize the results of [L1]
and [Sh] on the Lebesgue measure of the Julia sets of quadratic polynomials to the
setting of R-maps.

Lemma A.8. Let F be an R-map. Then almost every x ∈ K(F ) shadows the
critical orbit.

Proof. Consider a point x ∈ K(F ) which does not shadow the critical orbit. Then
there exist k and a sequence mj → ∞ such that each map Fmj : Pmj+k(x) →
P k(Fmj (x)) is univalent. Applying a few more iterates of F , we will find a critical
puzzle piece P k−nj (0) such that the map Fmj+nj : Pmj+k → P k−nj (0) is also
univalent.

Since the property of being thin is invariant under lifts by branched coverings,
the filled Julia set K(F ) is thin in each P l(0), 0 ≤ l ≤ k. By the Koebe Distortion
Theorem, K(F ) is also uniformly thin in all puzzle pieces Pmj+k(x). Since the
puzzle pieces Pmj+k(x) shrink to x (by Lemma A.3), x is not a density point of
K(F ). The conclusion follows from the Lebesgue Density Points Theorem. ¤

Corollary A.9. If F has an escaping critical point then measK(F ) = 0.

Proof. In this case there are no points which shadow the critical orbit. ¤

Theorem A.10. Let F be an R-map. If measK(F ) > 0, then F is renormalizable
and K(F ) \ ∪F−nK(R(F )) has zero Lebesgue measure.

Proof. Assume F is non-renormalizable. Consider a point x ∈ K(F ) which shadows
the critical orbit. Recall that orbF (x) intersects all critical puzzle pieces.

Assume that the critical point intersect infinitely many Wj , and let jk →∞ be
a sequence such that orbF (0) ∩Wjk 6= ∅. Let nk be the first landing time of the
orbit of 0 at Wjk , and let mk be the first landing time of x at P nk+1(0). Notice
that the maps Fnk : Pnk(F (0)) → W and Fmk : Pnk+mk+1(x) → Pnk+1(0) are
univalent.

Since ∪Wj is thin in W , K(F ) is uniformly thin in Pmk(F (0)) by the Koebe
Distortion Theorem. Pulling back by the double covering F |P 1(0), we conclude
that K(F ) is uniformly thin in Pmk+1(0). Pulling back again, we get that K(F )
is uniformly thin in Pnk+mk+1(x). Since the Pn(x) shrink to x (Corollary A.6),
x is not a density point of K(F ). By the Lebesgue Density Point Theorem and
Lemma A.8, K(F ) has zero Lebesgue measure.

Assume now that orbF (0) intersects only finitely many Wj . Let us consider the
R-map F# which is the restriction of F to the Wj visited by the critical point. It
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follows that ∪F−n(K(F#)) contain all points x ∈ K(F ) which shadow the critical
orbit. By Corollary A.2, measK(F#) = 0, and by Lemma A.8, K(F ) has zero
Lebesgue measure.

Thus, F is renormalizable, and the last assertion follows from Lemma A.3 and
Lemma A.4. ¤

A.5. Periodic orbits.

Lemma A.11. Let F be an R-map and let p be a non-repelling periodic orbit.
Then for all n, p intersects P n(0).

Proof. Let k be the period of p and assume that p does not intersect P n(0). Then

F k|Pn+k(p) is univalent onto P n(p). Since Pn+k ⊂ Pn(p), p is repelling by the
Schwarz Lemma. ¤

Lemma A.12. Let F be an R-map and assume F has a non-repelling periodic
orbit p. Then F is renormalizable, p intersects K(R(F )), and p is the unique
non-repelling periodic orbit of F . Furthermore, if F is R-symmetric, ω(0) = p, so
p ⊂ R.

Proof. By the previous lemma, p intersects ∩P n(0). By Corollary A.6, if F is
non-renormalizable then ∩P n(0) = {0}, so 0 ∈ orbF (p). Since 0 is periodic, F is
renormalizable, contradiction. So F is renormalizable, and in this case ∩P n(0) =
K(R(F )), so K(R(F )) intersects p. By [D2], a quadratic-like map has at most one
non-repelling periodic orbit, and this yields uniqueness of p.

If F is R-symmetric, then R(F ) is R-symmetric and the straightening map can
also be chosen R-symmetric. By the classical theory of Fatou and Julia, a non-
repelling periodic orbit of a R-symmetric quadratic polynomial must be contained
in R, and this yields the conclusion for F . ¤

Lemma A.13. Let F be an R-map which has an attracting hyperbolic periodic
orbit p . Then K(F ) \ intK(F ) has zero Lebesgue measure and intK(F ) is the
basin of attraction of p.

Proof. By the previous lemma, F is renormalizable and R(F ) is a quadratic-
like map with a unique attracting periodic orbit (the intersection of orbF (p) and
K(R(F ))). It is well known that this implies that intK(R(F )) is the basin of
attraction of orbF (p) ∩ K(R(F )) and ∂K(R(F )) has zero Lebesgue measure. By
Lemma A.7, it follows that intK(F ) is the basin of attraction of p. By Theo-
rem A.10, K(F ) \ intK(F ) is equal to the union of preimages of ∂K(R(F )) up to
some set of zero Lebesgue measure, so it has zero Lebesgue measure. ¤

A.6. Rigidity. The following lemma is analogous to Lemma 6.1.

Lemma A.14. Let h be a combinatorial equivalence between two R-maps F and
F̃ . Then the lift h1 of h is a combinatorial equivalence between F and F̃ . If h is
quasiconformal then h1 is quasiconformal and Dil(h1) ≤ Dil(h).

Lemma A.15. Let h : C → C be a qc map which is a combinatorial equivariance
between two R-maps F and F̃ . Assume intK(F ) = ∅. Then there exists a qc
conjugacy H : C → C such that H|C \ ∪Wj = h and Dil(H) ≤ Dil(h).

Proof. As in the puzzle case (Lemma 6.2) we can obtain a qc map H : C → C as a
limit of a series of lifts of h. This qc map automatically satisfies Dil(H) ≤ Dil(h)
and is equivariant on C \K(F ). Since intK(F ) = ∅, the conclusion follows. ¤
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Theorem A.16. Let F and F̃ be non-renormalizable R-maps which are combina-
torially equivalent and let h be a combinatorial equivalence between them. Assume
that h|C \ ∪Wj extends to a qc map of C. Then there exists a hybrid conjugacy
H : C → C such that H|C \ ∪Wj = h.

Proof. Let us assume first that the domain of F has finitely many components Wj .
We let h0 = h and define hi+1 be the lift of hi. Then hi(z) is eventually constant

for every z /∈ K(F ). Let H be the limit of hi on W \ K(F ). Then H is a qc
homeomorphism and by Corollary A.2 H extends to a qc homeomorphism of C.
Since K(F ) has empty interior and H is equivariant on C\K(F ), the result follows.

Assume now that there are infinitely many Wj , but orbF (0) intersects only
finitely many of them (in particular this covers the case of escaping critical orbit).

Consider the restrictions F# and F̃# to the union of those puzzle pieces. Let

ĥ : C → C be a qc extension of h|C \ ∪Wj . For every j 6= 0 let ψj be the lift of ĥ
to Wj . Let us define Ψ as follows

Ψ =

{

ψj on Wj , for Wj ∩ orbF (0) = ∅

h otherwise.

Then Ψ is a combinatorial equivalence between F# and F̃# which is quasiconformal
on the complement of the domain of F#. By the previous case, we obtain a qc

conjugacy H# between F# and F̃#. Moreover, H# : C → C is also a combinatorial

equivalence between F and F̃ , so by Lemma A.15, it can be turned into the desired
qc conjugacy.

Now let us assume that the critical orbit intersects infinitely many puzzle pieces.
Since W is a quasidisk, the qc homeomorphism h|C \W can be extended to a qc

homeomorphism ĥ : C → C taking F (0) to F̃ (0). As above, let ψj be the lift of ĥ
to Wj and let

Ψ =

{

ψj on Wj

h otherwise.

For x ∈W0, y ∈ W̃0, let hx,y be a qc map coinciding with h on C\W and taking
x to y. It is clear that we may choose hx,y in such way that

sup
x∈W0,y∈W̃0

Dil(hx,y) <∞.

There exist jk, nk → ∞ such that nk is the first landing moment of the critical
orbit at Wjk . Let mk be the first landing moment of F nk(0) at W0. Assume first

that mk <∞. Let V jk = P j(Fnk(0)). Define

ψj,k : V jk \ V
j+1
k → Ṽ jk \ Ṽ

j+1
k , 0 ≤ j ≤ mk − 1,

as the lift of Ψ by the pair (F j , F̃ j). Let φk : V mk

k → Ṽ mk

k be the lift of

hFmk (0),F̃mk (0) by the pair (Fmk , F̃mk). Define Ψk as follows:

Ψk =















ψj,k on V jk \ V
j+1
k , 0 ≤ j ≤ mk − 1

φk on V mk

k

h on C \W .

Then the Ψk are qc maps such that Ψk(F
nk(0)) = F̃nk(0) and supDil(Ψk) <∞.
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If mk =∞, define

Ψk =















ψj,k on V jk \ V
j+1
k , j ≥ 0

F̃nk(0) at Fnk(0)

h on C \W .

Notice that since ∩jV
j
k = {Fnk(0)}, this map has the same properties as before.

Let now Fk = F | ∪j 6=jk Wj and F̃k = F̃ | ∪j 6=jk Wj . Modify Ψk on finitely many
domains Wj which contain points f l(0), l = 0, ..., nk − 1, so that it becomes a qc

combinatorial equivalence Φk between Fk and F̃k. We are now in the escaping case
considered above, so that we can turn Φk into a qc conjugacy Hk between Fk and
F̃k. Moreover,

Dil(Hk) ≤ Dil(Φk|C \ ∪Wj) ≤ Dil(Ψk),

since K(Fk) has zero Lebesgue measure. Take some limit H of the Hk. This is the
desired qc conjugacy.

Since measK(F ) = 0 (see Theorem A.10), H is automatically a hybrid conju-
gacy. ¤

Remark A.1. Note that the above theorem leads to a simple proof of the Yoccoz
Rigidity Theorem for non-renormalizable quadratic polynomials (see [H]). Indeed
such a quadratic map can be renormalized in a generalized sense to an R-map (see
[L3], §3). The conjugacy between the corresponding R-maps lifts to a conjugacy
between the quadratic polynomials by means of the pullback argument.

The following lemma is a slight modification of well known results, see [DH1].

Lemma A.17. Let F : U → U ′ and F̃ : Ũ → Ũ ′ be quadratic-like maps with
connected Julia set which are qc conjugate and let ψ be a qc conjugacy on a neigh-
borhood of K(F ). Let h : C → C be a qc map equivariant on ∂U . Then there exists
a qc homeomorphism H : C → C such that H|C \ U = h and H|K(F ) = ψ.

Proof. Let Φ : C \ K(F ) → C \ K(F̃ ) be obtained as a limit of a series of lifts

of h by the unbranched double covering f |U \ K(F ) → Ũ ′ \ K(F̃ ). Then Φ is
quasiconformal and equivariant on U \K(F ).

Let V ′ = F−n(U) be a small neighborhood of K(F ) which is contained in the

domain of ψ and let V = F−1(V ). Let A = V
′
\V . Consider a homotopy Φt : A→

Ũ \K(F̃ ) between Φ|A and ψ which is equivariant on ∂V (the existence of such a
homotopy follows from the fact that F has degree 2).

By means of successive lifts, we obtain a homotopy Φt : V
′
\K(F )→ Ũ \K(F̃ ),

between Φ|V
′
\K(F ) and ψ, equivariant on V \K(F ).

Let us supply Ũ \K(F̃ ) with the hyperbolic metric. Given a point x ∈ V ′\K(F ),
let c(x) be the length of the hyperbolic geodesic joining Φ0(x) = Φ(x) and Φ1(x) =
ψ(x), homotopic to the path t→ Φt(x). By compactness, c(x) is bounded on V ′\V .

Let x ∈ V and let Fm(x) be the first landing time of x on V ′\V . By the Schwarz
Lemma, c(x) ≤ c(Fn(x)), so c(x) is uniformly bounded in V ′ \ K(F ) as well. In
particular, if x is close to K(F ), |ψ(x)− Φ(x)| is close to 0.

Let

H =

{

Φ on C \K(F )

ψ on K(F ).



REAL ANALYTIC DYNAMICS 69

By the previous estimate, H is continuous, so by the Gluing Lemma (see [B],
Lemma 2, pg. 93), H is quasiconformal. It is also clearly a conjugacy. ¤

Lemma A.18. Consider two renormalizable R-maps F and F̃ . Assume that they
are combinatorially equivalent and let h be a combinatorial equivalence between
them such that h|C \W 1 admits a qc extension to C. Assume R(F ) and R̃(F ) are
qc (resp. hybrid) conjugate. Then there exists a qc (resp. hybrid) conjugacy H

between F and F̃ such that H|C \W 1 = h.

Proof. Let R(F ) = F p|Pn(0). Let ψ be the (n + p)-fold lift of h. Then ψ is

equivariant on W 1 \Wn+p. Let Vp = Pn(0), V0 = Pn+p(0). Let ψp : Vp → Ṽp be

a qc conjugacy between R(F ) and R(F̃ ), homotopic to ψ rel C \ V0 (which can be
obtained using Lemma A.17).

Let Vj = Pn+p−j(F j(0)), 1 ≤ j < p. Let ψj : Vj → Ṽj be the lift of ψp by

(F p−j , F̃ p−j(0). Then ψ0 coincides with ψp|V0. Let

Ψ =

{

ψj on Vj , 1 ≤ j ≤ p

ψ on C \ ∪Vj .

Let us show that Ψ is a combinatorial equivalence between F and F̃ . Let Ψ1 :
C → C be the lift of Ψ by (F, F̃ ). Then Ψ and Ψ1 coincide on C \ Wn+p by

equivariance, as well as on Vj , 0 ≤ j < p by construction. The setW n+p \∪p−1j=0Vj is

a countable union of Jordan disks with shrinking diameters (by the thin condition),

so Ψ is homotopic to Ψ1 rel C \ (Wn+p \ ∪p−1j=0Vj). Since orbF (0) ⊂ ∪
p−1
j=0Vj , Ψ is a

combinatorial equivalence between F and F̃ .
Let φ be a qc map homotopic to Ψ rel (C \W 1)∪∪pj=1Vj . Then φ is a qc combi-

natorial equivalence between F and F̃ . We can obtain a qc conjugacy H as a limit
of a series of lifts as before. Notice that H|K(R(F )) = ψ0, so by Theorem A.10,
Dil(H|K(F )) = Dil(ψ0|K(R(F )), and if ψ0 is hybrid then so is H. ¤

A.7. Non-critical R-maps. Let Wj and W be as in the definition of R-maps
except that 0 /∈ ∪Wj . A holomorphic map F : ∪Wj → W will be called a non-
critical R-map if F |Wj is univalent onto W for all j. The definition of puzzle pieces
and filled Julia set goes as before. By a trivialization of the arguments for R-maps
we obtain:

Lemma A.19. Let F be a non-critical R-map. Then measK(F ) = 0 and for

every x ∈ K(F ), ∩Pn(x) = {x}. Given another non-critical R-map F̃ and a qc
map h : C\∪Wj → C equivariant on ∪∂Wj there exists a qc conjugacy H such that
H|C \ ∪Wj = h.

A.8. Application to puzzle maps. Let f : U → C be a puzzle map and let Q(f)
be the first return map to U0. Then its domain consist of connected components
of (f |U0)

−1(U) and Q(f) is either an R-map (if f(0) ∈ U) or a non-critical R-map
(otherwise). We will now use the results on complex return maps (applied to Q(f))
to understand f .

It is easy to see that K(f) = ∪(fni |Ui)
−1(K(Q(f)). As a consequence, the

following three lemmas can be deduced for puzzle maps f from the corresponding
statements for Q(f) (respectively Lemmas A.12, A.7 and A.13).
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Lemma A.20. Let f be a puzzle map and assume it has a non-repelling periodic
orbit. Then this non-repelling periodic orbit is unique and Q(f) is renormalizable.
If f is R-symmetric then such an orbit is necessarily real.

Lemma A.21. Let f be a puzzle map. If intK(f) 6= ∅ then f has a non-repelling
periodic orbit.

Lemma A.22. Let f be a hyperbolic puzzle map. Then measK(f)\interK(F ) = 0
and intK(f) coincides with the basin of attraction of the attracting cycle.

The next lemmas extend well-known properties of quadratic-like maps.

Lemma A.23. Let f be a puzzle map whose critical point either escapes or is prepe-
riodic but not periodic. Then measK(f) = 0 and all periodic orbits are repelling.

Proof. Assume that measK(f) > 0 or that f has a non-repelling periodic orbit.
By Lemmas A.12 and A.10, Q(f) is renormalizable and measK(R(Q(f))) > 0
or R(Q(f)) has a non-repelling periodic orbit. Since Q(f) is renormalizable, the
critical point of f is non-escaping.

It is well known that if F is a quadratic-like map which has a preperiodic but
not periodic critical point then measK(F ) = 0 and all periodic orbits are repelling.
In particular, R(Q(f)) (and hence f) cannot have a preperiodic but not periodic
critical point. ¤

Lemma A.24. Let f be an R-symmetric puzzle map. Then either f has an at-
tracting or parabolic periodic orbit or K(f) has no invariant line fields.

Proof. Since K(f) is the union of preimages of K(Q(f)), if K(f) has an invariant
line field, then so does K(Q(f)).

In particular Q(f) is renormalizable and R(Q(f)) is a quadratic-like map with
invariant line-field. Since f is real, the result follows from Theorem 2.22. ¤

Lemma A.25. Let f, g be R-symmetric puzzle maps in the same hybrid class and
h be an R-symmetric qc homeomorphism equivariant on ∂U f . Then there is an
R-symmetric conjugacy H between f and g on U f coinciding with h on C \U f and
such that ∂H = 0 in K(f). In particular, Dil(H) ≤ Dil(h).

Proof. Given h we first redefine it inside ∪U fi so that it coincides with the topolog-

ical conjugacy between f and f̃ on ∪Jfi . The resulting map can still be required to

be a homeomorphism (we use that h is real and diam(J fi )→ 0).

We can now lift this map to U f0 to obtain a homeomorphism Ψ. It turns out

that Ψ is a combinatorial equivalence between Q(f) and Q(f̃). Indeed, Ψ coincides
with its lift Ψ1 outside (f |U0)−1(U) \ R. This set is a union of Jordan disks with
diameter going to 0, so Ψ is homotopic to Ψ1 rel its boundary.

If Q(f) is renormalizable, then R(Q(f)) is hybrid conjugate to R(Q(f̃)) by The-
orem 2.21. By Lemma A.18 and Theorem A.16, there exists a hybrid conjugacy

between Q(f) and Q(f̃) coinciding with h on ∂U f0 \ (f |U
f
0 )
−1(Uf ). Let ψj be the

lift of this conjugacy by (fnj |Ufj , f̃
nj |U f̃j ). We let H be defined as

H =

{

ψj on Ufj

h on C \ Uf .
¤
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Lemma A.26. Let f : U → C and f̃ : Ũ → C be qc conjugate hyperbolic puzzle
maps with the same multiplier and let h : C → C be a qc conjugacy between them.
Then there exists a qc conjugacy H : C → C, such that H|C \ K(f) = h and
∂h|K(f) = 0.

Proof. In this case, Q(f) is renormalizable, and h is a qc conjugacy between Q(f)

and Q(f̃). Since R(Q(f)) is qc conjugate to R(Q(f̃)) and both are hyperbolic with
the same multiplier, it follows that they are hybrid equivalent. By Lemma A.18,
there is a hybrid equivalence H between Q(f) and Q(f̃) coinciding with h outside
K(Q(f)), and this equivalence can be lifted to a hybrid equivalence between f and

f̃ with the desired properties. ¤

Appendix B. Quasiconformal conjugacies for Yoccoz maps

The aim of this appendix is to prove the following theorem:

Theorem B.1. Let f, f̃ ∈ Ua topologically conjugate Yoccoz maps. Then there
is a qc map h : C → C, symmetric with respect to the real line and 0, which is
equivariant with respect to f and f̃ in a neighborhood I.

This is stronger than the statement that f and f̃ are qs conjugate on I. Diffi-
culties arise essentially because of the lack of a nice external structure (if f and f̃
have quadratic-like extension, both statements are equivalent using Sullivan’s pull-
back argument). To compensate for this, we will provide some geometrical external
structure, constructed by hand. This particular construction is based on existence
of small scaling factors in the principal nest, and does not immediately adapt to
the case of, say, infinitely renormalizable maps of bounded type.

To simplify the exposition we will assume that the Yoccoz maps we are dealing
with are in fact non-renormalizable and have a recurrent critical point. The finitely
renormalizable case is analogous and the proof applies with obvious modifications
to the Misiurewicz case.

B.1. Compatible external structures. We have so far concentrated mostly on
the description of puzzle structures, which is suitable to analyze the set of points
which eventually land in a given nice interval. We have also in Lemma 7.10 used
a Markov structure to treat the points which never land on the nice interval. We
will here describe how both constructions can be made compatible in the presence
of good geometric parameters.

Let p be the fixed point of f . Fix a sufficiently deep stage in the principal nest
in a way that |Tn|/|Tn−1| is very small, and let J0 = Tn = [−q, q].

Let Q be the set of points in I that never land on J0 and Q
′ be a truncation of Q,

so that Q′ = Q ∩ [−1, r], where r is the right endpoint of J1. So Q
′ is a hyperbolic

Cantor set and we may use Lemma 2.12 to obtain a real analytic conformal metric
ν which is expanded by f . We assume ν to be symmetric with respect to the real
line and to 0. In what follows we will only measure distances with respect to the
metric ν.

Let Qm = Q′ ∩ ∪mj=0f
−j(p) ∪ {−1}, so Qm is a finite forward invariant set

contained in Q.

Lemma B.2. Fix a small ε > 0. For all sufficiently small h, there exists a family
of curves (called v-segments) Γ(x), x ∈ Q, with the following properties:
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(i) Γ(x) is an R-symmetric continuous path;
(ii) Γ(x) \ x is a C∞ curve whose tangent is ε-close to the vertical direction;
(iii) distν(∂Γ(x), x) = h;
(iv) overflowing: Γ(f(x)) ⊂ f(Γ(x)).

Proof. Let us consider a complex strictly Markov covering {Vj} of Q, which is R-
symmetric and 0-symmetric. Let V k = {x | f j(x) ∈ V 0, 0 ≤ j ≤ k}, V∞ = ∩V k

(note that V∞ contains Q but does not necessarily coincide with it).
Let us define g = gk : V k → C which is R-symmetric, 0-symmetric, and for each

connected component V kj , there exists z ∈ V
k
j such that g(w) = f(z)+f ′(z)(w−z),

w ∈ V kj . It is easy to see that gk : V k → C is a strictly Markov map provided k is
big enough. The map g is a linear model for f . This lemma is obvious for g, since
we can take vertical segments for v-segments.

Let H : C → C be a smooth diffeomorphism, R-symmetric, 0-symmetric, which
coincides with the identity near ∂V k and is equivariant near ∂V k+1. We may select
H arbitrarily close to id choosing k sufficiently big. By Proposition 2.11, we can
turn H into a qc map h equivariant on V k+1 and coinciding with H on C \ V k+1.

Notice that =(Df(x))/|Df(x)| = O(=(x)). Since f |V 0 is expanding,

(B.1)
|=(Dh(x))|

|Dh(x)|
< ε/2, x ∈ C \ V∞,

provided k is sufficiently big. For each x ∈ Q, consider the arc Γ̂(x), the preimage

by h of the vertical line through h(x). Let Γ(x) be the truncation of Γ̂(x) at height
h. Properties (i) and (iii) of this family of curves are obvious. Property (ii) follows
from B.1. The overflowing property (iv) follows from the corresponding property
of the linear model and the expanding property of the metric ν. ¤

Let us now describe the central puzzle piece U0 of the external puzzle structure.
It is an R-symmetric hexagon whose real trace is J0. Its boundary consists of
the arcs Γ(−q), Γ(q) (the wall of U0) and four straight segments (the roof of U0)
constructed as follows. Let Γ(−q) have as upper endpoint (−x, y). Then one of
the straight segments joins (−x, y) to (0, x + y) and the others are obtained by
symmetries with respect to the real line and 0. Let Λ be the roof of U0.

Since f |Q′ expands ν, there is a neighborhood V of q and a constant C ′ > 1
such that f |V expands distances by C ′. By construction, dist(f(Λ) \ f(V ), [−1, r])
is uniformly bounded from below, independent of how small h is chosen. On the
other hand, dist(Λ, I) = h(1 + o(1)) (since ν is conformal and continuous). So we
conclude that there exists 1 < C < C ′ such that

(B.2) dist(f(Λ), [−1, r]) > Ch

for h small enough.
By Remark 5.5, U0 generates a complex puzzle P{Uj}. The boundary of the of

the puzzle pieces Uj can be described in terms of walls and roofs which are taken
by fnj onto the wall and the roof of U0. By the overflowing property of Lemma
B.2, the walls of Uj consist of truncated v-segments.

Let us now construct an external Markov structure. Let {MR
j } be the family of

those components of [−1, r] \Qm which are different from the puzzle pieces Jj . We
want m to be so big that the diameter of any MR

j is smaller than h/10.
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The complexification of each MR
j = [a, b] is obtained by taking four arcs, Γ(a),

Γ(b) and straight almost horizontal segments linking the upper endpoints as well
as the lower endpoints. The closed cell bounded by those arcs will be denoted Mj .

Notice that if m is big enough, then {−q, q} ⊂ Qm. Furthermore, whenever
the boundary of some J jm intersects Qm, its boundary is contained in Qm. By the
combinatorics of the construction, given MR

k and Jj , there are two possibilities for
intersection: either Jj is compactly contained in intMR

k , or their interiors do not
intersect. Similarly, given Mk and Uj , either Uj is compactly contained in intMk,
or their interiors are disjoint. Furthermore, if their boundaries do intersect, the
intersection is one of the walls of Uj . This follows from the property that no puzzle
piece Uj has the roof crossing the boundary of some Markov piece Mk (they can
only touch at an endpoint of the roof).

To see this, notice that the roof of Uj cannot cross laterals of Markov pieces by
geometric considerations (using that the angle of a U -segment is nearly π/4 and
a Γ-segment is nearly vertical). As a consequence, the roof of Uj cannot intersect
∂Mk if Jj is not contained inMR

k . Furthermore, the base ofMk is at least ten times
smaller then its height, while the height of Uj is almost half the size of its base since
it is mapped in U0 with small distortion (depending on |Tn|/|Tn−1|), assuring that
its roof do not intersect the top of Mk if Jj ⊂Mk.

Observe also that all Markov pieces are in a neighborhood of [−1, r] of size near
h(1 + o(1) (by choosing m big), so they do not intersect f(Λ) by (B.2).

We construct the family {M ′
j} as the set of all (f |Mk)

−1(Ml) for pieces Mk and
Ml such that Ml ∩ int f(Mk) 6= ∅. We let M = ∪ intMj , M

′ = ∪ intM ′
j , and

U = ∪ intUj .

LetW =M\M ′ ∪ U . This is the union of Jordan domains with piecewise smooth
boundary. The maximal smooth segments contained in the boundary of those
Jordan domains will be called W -segments. The boundaries of the Jordan domains
can intersect, but only along a W -segment. A W -segment is either contained in
∂M , ∂M ′ or is the roof of some Uj .

Figure 6 shows the interior of a piece Mk which contains two pieces M ′
l and M

′
r,

with a unique Uj whose interior is contained in Mk \ (M
′
l ∪M

′
r). The component

of W inside Mk (shown shaded) is bounded by segments of ∂Mk, segments of ∂M ′
l

and ∂M ′
r, and U -segments of ∂Uj . The picture is skewed to show better the details,

actual Markov pieces are much narrower (their bases being at least ten times smaller
then the heights).

Notice in conclusion that if x ∈ M \ U , then either fn(x) ∈ W for some n,
or x ∈ Q′. For this reason, W will work as a fundamental domain for the map
f :M ′ \ U →M \ U .

B.2. Construction of the conjugacy. Let us now consider a map f̃ topologically
conjugate to f . Then it is possible to make the above construction simultaneously,
the only care we have to take is choose n and m the same for both maps. Each
object for f (say, a given segment in ∂M \ ∂M ′) has a corresponding object for f̃ ,
said to have “the same combinatorics”. We will mark the corresponding objects for
f̃ with a ∼ e.g., Ũ , M̃ , Λ̃.

The construction has essentially two parts: first we obtain a qc map relating the
fundamental domains W and W̃ (and some additional structures), and then use



74 ARTUR AVILA, MIKHAIL LYUBICH, WELINGTON DE MELO

PSfrag replacements

W

Mk

M ′
l M ′

r

Uj

Wall

Roof

Figure 6. Inside a Markov piece

the Macroscopic pullback argument to obtain a conjugacy on a neighborhood of
the interval.

Let us first define an R-symmetric homeomorphism h0 on some relevant parts
of the boundary of the puzzle and Markov pieces. The construction below will be
R-symmetric and also 0-symmetric “where defined” (that is, if x and −x belong to
the domain of h0 then −h0(−x) = h0(x)).

Let us start the construction with the ray Γ(p) through the fixed point p. It is
well-known that conformal maps are locally qc conjugate near repelling fixed points
in such a way that the conjugacy is smooth outside the fixed points themselves. In
particular, f near p is qc conjugate to f̃ near p̃ so that the conjugacy is smooth
in the punctured neighborhoods. Moreover, it is easy to select a conjugacy so that
it maps Γ(p) onto Γ̃(p̃). Similarly we can construct a local qc conjugacy near -
1 carrying Γ(−1) to Γ(−1). Let h0 stand for the restriction of the above local
conjugacies to Γ(p) ∪ Γ(−1).

Recall that points ofQm+1\{−1} are preimages of p. By the overflowing property
of the family of rays Γ(x), it is easy to extend h0 to a homeomorphism

h0 : ∆ ≡
⋃

x∈Qm+1

Γ(x)→
⋃

x̃∈Q̃m+1

Γ̃(x̃)

which admits a qc extension to a neighborhood of ∆, is piecewise smooth on ∆\R,

and is equivariant on ∆ ∩M
′
.

Thus, the map h0 is defined on the laterals of M and M ′ (which are the arcs of
∆) and is equivariant on the laterals of M ′. Extend it to the tops of M and M ′ so
that it is equivariant on ∂M ′. Then extend it to the roof of U0 and to f(∂U0) \M
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(this set is the image of the roof of U0 and the part of its wall that is not contained
in M ′), so that h0 is now equivariant also on ∂U0.

Notice that there are only a finite number of roofs which are not contained in
M ′. By a finite number of lifts, extend h0 to those roofs. This concludes the
definition of h0. It is defined on the set Z1 consisting of f(∂U0), ∂M , ∂M ′ and a
finite number of roofs not contained in M ′. Moreover, this map is equivariant on
the set Z2 consisting of ∂U0, ∂M

′ and the same union of roofs.
Notice that each embedded arc on Z1 is a quasiarc since it consists of smooth

arcs meeting at a positive angle. Hence the notion of a quasisymmetric map on Z1
makes an obvious sense. The map h0 being piecewise smooth is quasisymmetric on
Z1. The set C \ Z1 is a finite union of quasidisks, so by Ahlfors-Beurling criteria
(see [LV]), h0 has a qc extension to C, denoted by h1, which can be required to be
also R-symmetric.

Since h1 is equivariant on ∂M ′, we can apply the simple version of the Macro-
scopic pullback argument (see Remark 2.3) to f :M ′ →M . It provides us with a qc
map (still denoted by h1) which is equivariant onM ′. In the course of this pullback
procedure h1 is not modified on Z2. Hence it is equivariant on ∂U ⊂M ′ ∪ Z2.

By Lemma A.25, there is a qc map h2 which is equivariant on U and coincides
with h1 on C \ U . Since this does not modify h1 on M \ U , h2 is also equivariant
on M ′ \ U . Thus, h2 is equivariant on M ′ ∪ U . On the left, this set is bounded by
the ray Γ(−1), so it fails to be a neighborhood of the repelling fixed point −1. It
is easy to modify h2 in the complement of M ∪ U in order to make it equivariant
on a small neighborhood V of −1 as well.

The last problem is that the set V ∪M ∪U is a neighborhood of [−1, f(0)] rather
than of [−1, 1]. By lifting h2 to the neighborhood f−1(V ∪M ∪ U) of [−1, 1], we
obtain the desired map h. This concludes the proof of Theorem B.1.

Appendix C. Non-symmetric maps

So far we restricted our attention to a class of symmetric (i.e. even) unimodal
maps. Below we will show how to extend our results to an appropriate space of
asymmetric unimodal maps. The idea is to reduce one case to the other by means
of a transversally non-singular projection from the space of asymmetric maps to
the space of symmetric maps.

Let Ũk, k ≥ 3 be the space of (not necessarily symmetric) Ck unimodal maps
f : I → I, that is, f(−1) = f(1) = −1 and f has a unique non-degenerate critical

point at 0. Let Ũ ⊂ Ũ3 be the set of quasiquadratic unimodal maps, that is, maps
f which have a neighborhood V such that for all g ∈ V, g is topologically conjugate
to a quadratic map. Let Ẽa ⊂ BΩa be the subspace of holomorphic maps v with

v(−1) = v(1) = 0. Let Ãa = q2 + Ẽa and Ũa = Ũ ∩ Ãa.
Denote by cf the critical point of f and let qf be the quadratic unimodal map

with the same critical value as f . Define Θ : Ũ∞ → C∞(I) which associates to each
f the unique diffeomorphism of I such that f = qf ◦ Θ(f). Define the projection

Π : Ũ∞ → U∞ by Π(f) = Θ(f) ◦ qf .
Obviously, Π(f) is a symmetric unimodal map. It is conjugate to f , since Π(f) =

Θ(f) ◦ f ◦ Θ(f)−1. Moreover, any unimodal map g ∈ Ũ3 near Π(f) is conjugate

to some unimodal map near f , namely, to Θ(f)−1 ◦ g ◦Θ(f) ∈ Ũ3. Hence Π(f) is
quasiquadratic. Clearly, if f is analytic then Π(f) analytic as well. We conclude

that Π acts from Ũ to U .
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Moreover, if Γ is an analytic family of unimodal maps in some Ũa then Π ◦ Γ is
an analytic family of unimodal maps in some Ua′ . It follows that Theorems B and
C can be “lifted” to the asymmetric setting.

To “lift” Theorem A we need some extra information: the derivative of Π (re-
stricted to appropriate Banach spaces of analytic unimodal maps) has a dense
image, and therefore it is transversally non-singular with respect to the hybrid
lamination we constructed in the symmetric case. This is analogous to what we did
in the infinitely renormalizable case in preparation for the proof of Theorem 4.8,
where we used the renormalization operator instead of Π.

Lemma C.1. Let f ∈ Ũa. Then there exist b > 0 and a neighborhood V ⊂ Ũa of f
such that Π(V) ⊂ Ub, Π : V → Ub is real analytic, and DΠ(f) : T Ũa → TUb has a
dense image.

Proof. Let a > a′ > 0 be such that Θ(f) ∈ BΩa′ . Let V ⊂ Ua′ be a small neigh-
borhood of f . If b > 0 is small enough, then Π(V) ⊂ Ub and Π : V → Ub is real
analytic. Since the derivative of the inclusion from Ua into Ua′ has a dense image,
it is enough to prove that DΠ(f) : T Ũa′ → TUb has a dense image.

To this end, let us consider a polynomial vector field w0 ∈ TUb, and let us try
to find v ∈ T Ũa′ such that

(C.1) DΠ(f)v = w0.

It is easier to computeDΠ(f)v for the case of a vector field v such that v(cf ) = 0. In
this case the quadratic polynomial qf does not vary infinitesimally, and we obtain:

w ≡ DΘ(f)v =
v

q′f ◦Θ(f)
,(C.2)

DΠ(f)v = w ◦ qf .

Since w0 is even, we can represent it in the form w0 = w ◦ qf where w is a
polynomial vector field. Let v = w · (q′f ◦Θ(f)). Then v ∈ BΩa′ and v(cf ) = 0, and

(C.1) follows from (C.2). ¤

Using this Lemma the argument of Theorem 4.8 can be applied to obtain The-
orem A for asymmetric maps.
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[Fa] P. Fatou. Sur les équations fonctionnelles. Bul. Soc. Math. France, v. 47 (1919).

[G] J. Guckenheimer. Sensitive dependence to initial conditions for one-dimensional maps.
Comm. Math. Physics., v. 70 (1979), 133-160.

[GS1] J. Graczyk & G. Swiatek. Induced expansion for quadratic polynomials. Ann. Sci. Éc.
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