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Abstract. The conformal dimension of a metric space is the infimum of the Hausdorff dimensions
of all quasisymmetrically equivalent metrics on the space. We show that certain classical self-similar
fractal subsets of Euclidean space are not minimal for conformal dimension by constructing explicit
metrics in the quasisymmetry class of the Euclidean metric with reduced Hausdorff dimension.
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1. Introduction

In most cases, the Hausdorff dimension of a metric space is not a quasisymmetric invariant. We
define the conformal dimension C dimX of a metric space X = (X, d) to be the infimum of the
Hausdorff dimensions of all metric spaces quasisymmetrically equivalent to (X, d):

C dimX = inf
d′∈QS(d)

dim(X, d′).

Here “dim” denotes Hausdorff dimension and QS(d) denotes the collection of metrics on X qua-
sisymmetrically equivalent to d: d′ ∈ QS(d) if and only if there exists an increasing homeomorphism
η of [0,∞) to itself so that
(1.1) d(x, y) ≤ td(x, z) ⇒ d′(x, y) ≤ η(t)d′(x, z)

for all x, y, z ∈ X.
The concept of conformal dimension was introduced by Pansu [13] in connection with his study of

quasiconformal and quasisymmetric maps on Carnot groups. The conformal dimension of any space
is clearly greater than or equal to the topological dimension; this inequality can be strict. In [16], the
author showed that each Ahlfors regular space X with nontrivial conformal modulus has minimal
conformal dimension, that is, C dimX = dimX. (Such spaces necessarily have dimX ≥ 1—it is
an open question whether spaces with minimal dimension exist in the case 0 < dimX < 1.) As
a corollary, it follows that a space X with minimal conformal dimension exists for each value of
dimX in the interval [1,∞).1 In fact, a set of this type can be constructed as a subset of the
Euclidean space Rn for any n ≥ dimX. These spaces can be chosen, for instance, to be classical
self-similar fractal sets. For further results in this subject, we refer the reader to [17], [1], [3], [4]
and section 15 in [6].
It is of some interest to calculate or (at the least) estimate the conformal dimension of a given

metric space. In this paper, we show that certain classical self-similar fractal subsets of Euclidean
spaces are not minimal for conformal dimension, i.e., there exist quasisymmetrically equivalent
metrics on the sets with reduced Hausdorff dimension. The sets in question are given as the
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invariant sets for finite collections of contractive similarities. They thus admit a type of “strict”
self-similarity which interacts naturally with quasisymmetry. A basic theme throughout this paper
will be the use of iteration to obtain uniform estimates as in (1.1). In order to construct new
metrics on these sets, we will impose certain finite combinatorial assumptions at the first level
of the construction; the iterative procedure by which the sets are built will then transfer these
assumptions to all levels and guarantee that they hold uniformly throughout the final space.
Our main results (Theorem 5.1 and Theorem 5.2) provide nontrivial upper bounds for the con-

formal dimension for self-similar sets satisfying two assumptions: post-critical finiteness and acces-
sibility. Lower bounds for the conformal dimension are in general much more difficult to obtain,
see [16] and the references previously mentioned. In sections 3 and 6 we present several examples,
indicating the explicit bounds for the conformal dimension which follow from Theorems 5.1 and
5.2. For example, we show that the Sierpinski gasket SG (Figure 1) satisfies

C dimSG ≤ 1.4160 . . . < 1.5849 . . . = log 3
log 2

= dimSG.

Similarly, we show that the hexagasket HG (Figure 7) satisfies

C dimHG ≤ log(2 +
√
6)

log 3
= 1.3588 . . . < 1.6309 . . . =

log 6

log 3
= dimHG.

A few words about our assumptions are in order. Roughly speaking, post-critical finiteness of
a self-similar set states that the set is “nearly disconnected”—for example, it admits finite cut
sets at all scales and locations. On the other hand, accesibility states that the set is “fairly well-
connected”—for example, it implies that the space is quasiconvex, see Proposition 2.10. Thus on
an informal level these two assumptions appear to work against each other. It is not clear precisely
how many examples of sets satisfying these two conditions exist. Nevertheless, we hope that the
ideas and techniques which we develop here in a specific context will be of use in the future for
the study of the conformal geometry of more general “quasi-self-similar” sets which arise naturally
in complex dynamics and geometric group theory, see Remark 4 in section 7. The self-similar sets
which we consider in this paper provide a convenient and manageable framework for a preliminary
understanding of the degree to which quasisymmetric maps can distort the dimension of a general
metric space.

Acknowledgements. The idea underlying the construction in section 4 stems from a conversation
I had with Tomi Laakso at the 2000 Nevanlinna Colloquium in Helsinki. I gratefully acknowledge
his contribution. I would also like to thank Chris Bishop for helpful discussions on the subject of
conformal dimension and for providing me with MATHEMATICA code for some of the figures.

2. Preliminary definitions and results

We follow Hutchinson’s approach [7], viewing self-similar sets as invariant sets for collections
of similarity mappings. Fix n ≥ 2 and consider a collection of N ≥ 2 contractive similarities
fi : Rn → Rn with contraction ratios λi < 1 and fixed points ai ∈ Rn. Thus fi(x) = ai+λi·Mi(x−ai)
for some orthogonal matricesMi. Then there exists a unique compact setK ⊂ Rn which is invariant
for the transformations f1, . . . , fN , i.e.

K =
N
⋃

i=1

Ki, Ki = fi(K).

This follows, for instance, from the completeness of the space of all compact subsets of Rn with the
Hausdorff metric, see [12, 4.13].
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Let F = {1, . . . , N}. For any string σ = (σ0, . . . , σm−1) ∈ Fm, m ∈ N, set fσ = fσm−1
◦ · · · ◦ fσ0

,
λσ = λσm−1

· · · · · λσ0
, and Kσ = fσ(K). Then

(2.1) K =
⋃

σ∈Fm

Kσ

for each m ∈ N and

(2.2) max
σ∈Fm

diamKσ ≤ λm
max diamK,

which tends to zero as m→∞ since λmax = max{λ1, . . . , λN} < 1.
We denote by P the finite-sided convex polyhedron which is the closed convex hull of the fixed

points a1, . . . , aN .

Lemma 2.3. P is the closed convex hull of K.

Proof. It suffices to prove that K ⊂ P . If not, then there exists a closed half-space H ⊂ Rn so that
ai ∈ H for each i but K \H 6= ∅. Let x0 ∈ K \H. Choose a backward orbit

· · · 7−→ xk
fjk7−→ xk−1 7−→ · · · fj27−→ x1

fj17−→ x0.

Denote by h(x) the coefficient of x ∈ Rn in the direction orthogonal to ∂H (thus h(ai) ≥ 0 for each
i and h(x0) < 0). Then h(xk) = λ−1

jk
h(xk−1) for each k and so

h(xk) = λ−1
j1
λ−1
j2
· · ·λ−1

jk
h(x0) ≥ λ−k

maxh(x0)→∞
as k →∞, which contradicts the compactness of K. ¤

Lemma 2.4.
⋃N

i=1 Pi ⊂ P and K =
⋂∞

m=1

⋃

σ∈Fm Pσ, where Pi = fi(P ) and Pσ = fσ(P ).

Proof. Since the operation of taking the closed convex hull commutes with each contractive sim-
ilarity, Pi is the closed convex hull of Ki. Then the inclusion Pi ⊂ P follows since P is a closed
convex set containing Ki.
For each m, the inclusion K ⊂ ⋃σ∈Fm Pσ follows from (2.1). The inclusion K ⊃ ⋂∞m=1

⋃

σ∈Fm Pσ

follows from (2.2) and the compactness of K. ¤

Let O denote the interior of the convex polyhedron P . Then Oi = fi(O) ⊂ O for each i =
1, . . . , N . We impose the further assumption that

(2.5) Oi ∩Oj = ∅
for each i 6= j. This is the so-called open set condition (page 118 in [5]). From (2.5) it follows that
the Hausdorff dimension of K is the unique solution s to the equation

(2.6)
N
∑

i=1

λs
i = 1.

See, for example, Theorem 9.3 in [5].
Informally speaking, post-critically finite self-similar sets admit finite cut sets at all scales and

locations. In the physics literature, these are often referred to as “finitely ramified” sets.

Definition 2.7. The critical set for the self-similar fractal K is C(K) =
⋃

i 6=j Ki ∩ Kj . The

post-critical set PC(K) is the backward orbit of C(K), i.e.,

PC(K) =

∞
⋃

m=0

⋃

σ∈Fm

f−1
σ (C(K)) ∩K.

We say that K is post-critically finite (PCF) if PC(K) is a finite set.
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Post-critically finite self-similar fractals were introduced by Kigami [9], [8] as a natural setting
for a non-Euclidean theory of Dirichlet forms and harmonic analysis. For recent advances in this
direction, see [2], [10] and [11]. The expository article of Strichartz [14] is an excellent introduction
to this subject.
A typical example of a PCF self-similar fractal is the Sierpinski gasket SG (Figure 1) which is

the invariant set for the collection of three planar contractive similarities

f1(z) =
1
2z +

1
2 , f2(z) =

1
2z +

1
2e

2πi/3, f3(z) =
1
2z +

1
2e
−2πi/3.

a

b

c

d

e

f

Figure 1. The Sierpinski gasket SG

The gasket SG satisfies the open set condition and hence has dimension

log 3

log 2
= 1.5849 . . .

by (2.6). The critical and post-critical sets are C(SG) = {d, e, f} and PC(SG) = {a, b, c, d, e, f},
respectively.

Lemma 2.8. Let K ⊂ Rn be a PCF self-similar set. Then K has Hausdorff dimension strictly
less than n and topological dimension at most one.

Proof. Since K is PCF, K 6= P and hence
⋃N

i=1 Pi ( P . Thus

|P | >
∑

i

|Pi| =
∑

i

λn
i |P |

(where |·| denotes the Lebesgue measure) and so dimK < n by (2.6). On the other hand, every
point inK has a countable neighborhood basisKσ1

,Kσ2
, . . ., where σm ∈ Fm, and each of these sets

has boundary (in K) consisting of a finite (possibly zero) number of points by the PCF assumption.
Thus K has topological dimension at most one. ¤

We now introduce a further subclass of PCF self-similar sets (so-called accessible sets). In these
sets, any two parts of the set can be joined by a “reasonably short” curve; for a precise version of
this statement, see Proposition 2.10.

Definition 2.9. We say that a PCF self-similar set K is accessible if there exists a connected graph
Γ ⊂ P with vertex set V = PC(K) such that the following three conditions are satisfied:

(i)
⋃N

i=1 Γi is connected;

(ii) Γ ⊂ ⋃N
i=1 Γi;

(iii) for all i 6= j, Γi ∩ Γj = ∂Pi ∩ ∂Pj .

Here, as before, we denote by Γi the graph obtained by contracting Γ by the similarity map fi.
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The Sierpinski gasket SG is clearly accessible as we may choose Γ to be the graph on the vertex
set PC(SG) with edges {ae, be, bd, cd, cf, af}; see Figure 1. In this case Γ coincides with ∂P , where
P is the closed unit triangle with vertices at a, b and c. In general, the graph Γ for a accessible
set K need not agree with the 1-skeleton of P . A more complicated example of a accessible PCF
self-similar set where Γ is not the 1-skeleton of P is the hexagasket, which we discuss in section 6.

We begin with some trivial observations about accessible PCF sets. First, by condition (ii) in
Definition 2.9, Γ ⊂ ⋃σ∈Fm Γσ for all m. Since Γσ ⊂ Pσ, Lemma 2.4 implies that Γ ⊂ K. Thus the
topological dimension of K is equal to one and 1 ≤ dimK < n. We denote by

V =
∞
⋃

m=1

⋃

σ∈Fm

Vσ

and

E =
∞
⋃

m=1

⋃

σ∈Fm

Γσ

the total vertex set and total edge set of K. By (2.2), V is dense in E , which in turn is dense in K.
A rectifiably connected set A ⊂ Rn is called C-quasiconvex (C ≥ 1) if every two points x, y ∈ A

can be joined by a curve of length ≤ C|x − y|. The following proposition explains the remark
preceding Definition 2.9.

Proposition 2.10. For any accessible PCF self-similar fractal K, the total edge set E is C-
quasiconvex for some constant C <∞ depending only on the initial data f1, . . . , fN .

Specifically, the quasiconvexity constant for E will depend on the following geometric quantities
associated with the initial data. Note that computation of these values is a finite calculation if the
initial set of transformations f1, . . . , fN is specified.
First, we define the minimal relative distance between nonadjacent subpolyhedra:

(2.11) δ = min

{

dist(Pi, Pj)

diamP
: i, j = 1, . . . , N, Pi ∩ Pj = ∅

}

.

Next, we define the minimal angle between adjacent subpolyhedra:

(2.12) θ = min

{

angle between ∂Pi ∩H
and ∂Pj ∩H

:
i, j = 1, . . . , N , Pi ∩ Pj 6= ∅,

H a half-plane containing ∂Pi ∩ Pj

}

.

Finally, we let C0 be a specific (finite) coefficient of quasiconvexity for the initial edge set E0 = Γ.
(Note that such a coefficient exists because Γ is a finite polygonal graph.)
The following lemma is a simple application of the Law of Cosines.

Lemma 2.13. Let ABC be a triangle with sides of length a, b and c and angle φ opposite to the
side of length c. Then a+ b ≤ csc(φ/2)c.
Proof of Proposition 2.10. We will show that E is C-quasiconvex with

(2.14) C =
1 + λmax

1− λmax
· 1
δ
· csc(θ/2) · C0.

For each m, let Em =
⋃

σ∈Fm Γσ. We will prove the proposition by showing that for each m, Em is
Cm-quasiconvex with

(2.15) Cm = max

{

1 + 2
m
∑

l=1

λl
max,

(

1 + 2
m−1
∑

l=1

λl
max

)

csc(θ/2)

}

· 1
δ
· C0.
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Since E = ∪mEm, the result follows.
The proof is by induction. By assumption E0 is C0-quasiconvex. Assume that Em−1 is Cm−1-

quasiconvex and let x, y ∈ Em. If x and y are contained in a common subpolyhedron Pi then (since
Pi is similar to P ) x and y can be joined by a curve in Γi of length ≤ Cm−1|x− y| ≤ Cm|x− y| by
the induction hypothesis.
We may thus assume that x ∈ Γσ and y ∈ Γτ with σ = (i1, . . . , im) and τ = (j1, . . . , jm) in Fm

and i1 6= j1. There are two cases: (i) Pi1 ∩ Pj1 = ∅ and (ii) Pi1 ∩ Pj1 6= ∅.
In case (i), choose two sequences of points

x1 ∈ Vi1 ⊂ Γi1 y1 ∈ Vj1 ⊂ Γj1
x2 ∈ V(i1,i2) ⊂ Γ(i1,i2) y2 ∈ V(j1,j2) ⊂ Γ(j1,j2)
...

...
xm ∈ V(i1,...,im) = Vσ ⊂ Γσ ym ∈ V(j1,...,jm) = Vτ ⊂ Γτ
xm+1 = x ∈ Γσ ym+1 = y ∈ Γτ ,

where Vσ = fσ(V ). As before, since each subpolyhedron (at any size) is similar to P , we find that
xl can be joined to xl+1 by a curve in Γ(i1,...,il) of length ≤ C0|xl−xl+1|. A similar statement holds
for the points yl. Finally, x1 can be joined to y1 by a curve of length ≤ C0|x1 − y1|. Let γ be
the curve from x to y formed by the concatenation of all of these curves. Then the length of γ is
bounded by

C0|x1 − y1|+ C0

m
∑

l=1

|xl − xl+1|+ C0

m
∑

l=1

|yl − yl+1|

≤C0

(

diamP +

m
∑

l=1

diamP(i1,...,il) +

m
∑

l=1

diamP(j1,...,jl)

)

≤C0

(

1 + 2
m
∑

l=1

λl
max

)

diamP

≤C0

(

1 + 2

m
∑

l=1

λl
max

)

dist(Pi, Pj)

δ
≤ Cm|x− y|

which completes the proof in this case.
In case (ii), choose z ∈ Γi ∩ Γj = ∂Pi ∩ ∂Pj . By the induction hypothesis, we can choose curves

from x to z in Pi and from z to y in Pj with lengths ≤ Cm−1|x− z| and ≤ Cm−1|z−y| respectively.
Again, the length of the concatenation of these two curves is at most

Cm−1(|x− z|+ |z − y|) ≤ Cm−1 csc(θ/2)|x− y| ≤ Cm|x− y|
by Lemma 2.13. In all cases, we see that the desired conclusion is verified. Thus the proof of
Proposition 2.10 is complete. ¤

3. An example: the Sierpinski gasket

To aid the reader in understanding the details of our construction, we will begin by briefly
summarizing the results of the following two sections in the special case of the Sierpinski gasket
SG. We introduce a class of new metrics on the gasket which are in the quasisymmetry class of
the standard metric. We then show that SG is not minimal for conformal dimension by estimating
the Hausdorff dimension of the gasket in these new metrics.
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We denote by T the closed triangle with vertices 1, e2πi/3 and e−2πi/3; this corresponds to
the polyhedron P of the previous section. Observe that SG is 2-quasiconvex and has topological
dimension equal to one.
Let Σ denote the collection of triplets (σ0, σ1, σ2) ∈ {1, 2, 3}3 for which Tσ is disjoint from ∂T .

Explicitly,
Σ = {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}.

See Figure 2. Fixing ε > 0, we define a function d = dε : SG× SG→ [0,∞) in several steps. First,
suppose that x and y are the endpoints of an edge in E3m for some m ∈ N. In this case we set

(3.1) d(x, y) = εµ(σ)|x− y|,
where µ(σ) ∈ {0, 1, . . . ,m} is equal to the number of triplets (σ0, σ1, σ2), (σ3, σ4, σ5), . . . , (σ3m−3, σ3m−2, σ3m−1)
which lie in Σ. We then extend d to V × V as a path metric: for x, y ∈ V we set

(3.2) d(x, y) = inf

{

d− length(γ) : γ ⊂ E is a finite
polygonal arc joining x to y

}

where the d-length of a finite polygonal arc γ connecting vertices x = x0, x1, . . . , xr−1, xr = y is
just

∑r
ν=1 d(xν−1, xν).

���
� ���

�

���
�

z
x y

1

ε

Figure 2. The triangles Tσ and an extremal configuration for weak quasiconfor-
mality of id : V3 → (V3, d)

We claim that d is a metric on V. The proof of this relies on two facts: first, that the value of
d(x, y) (as computed in (3.2)) is unchanged from the value given in (3.1) in the case when x and
y are the endpoints of a single edge, and second, that the distance between distinct points in V is
positive. See Proposition 4.5 and Corollary 4.6. The identity map on V from the Euclidean metric
to the new metric d is 2-Lipschitz. We can thus extend d to SG×SG by density: for x, y ∈ SG we
set

(3.3) d(x, y) = lim
n→∞

d(xn, yn)

for any sequences (xn) and (yn) in V with xn → x and yn → y. Then d continues to be a
metric on SG and the identity map from SG to (SG, d) is a 2-Lipschitz homeomorphism. We
claim that this map is also quasisymmetric. In the interest of brevity, we give here only a short
plausibility argument for this fact. By [18, Theorem 6.6] it suffices to verify that the map is weakly
quasisymmetric:

(3.4) |x− y| ≤ |x− z| ⇒ d(x, y) ≤ Hd(x, z)

for all x, y, z ∈ V and some (absolute) constant H < ∞. If x, y, z ∈ V3 then (3.4) holds with
H = 2/ε (see Figure 2); in general, (3.4) holds for all triples x, y, z ∈ V with a slightly larger choice
of H = H(ε) <∞.
See Theorem 5.1 for a detailed proof of the quasisymmetry of this map.
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To estimate the Hausdorff dimension of the new metric space (SG, d), we first show that

(3.5) εµ(σ)(
1

8
)m ≤ d− diamTσ ≤ 2εµ(σ)(

1

8
)m

for every triangle Tσ with σ ∈ {1, 2, 3}3m. See Proposition 4.10. By using the coverings of SG with
the collection of these triangles for each m ∈ N and estimating the d-diameters of these triangles
using (3.5), we find that dim(SG, d) ≤ s0, where s0 = s0(ε) is the unique solution to the equation

21 + 6εs0 = 8s0 .

Taking the limit as ε→ 0, we find that

(3.6) C dimSG ≤ log 21
log 8

<
log 3

log 2
= dimSG.

In order to sharpen this estimate for C dimSG we can repeat the above construction, replacing
{1, 2, 3}3 with {1, 2, 3}k for larger values of k and using a new set of weights on the resulting 3k
triangles. In section 6 we will carry out this procedure to deduce that

C dimSG ≤ 1.4160 . . .
It is unclear precisely how far the dimension of the gasket may be reduced by using this construction,
or whether one can achieve the conformal dimension by constructions of this type. Indeed, we still
do not know the exact value of the conformal dimension of the gasket.2

4. Constructing new metrics on an accessible PCF fractal

Following the method used in the preceding section, we now introduce a class of new metrics on
a general accessible PCF self-similar fractal K. In the following section, we will show that these
new metrics are quasisymmetrically equivalent to the standard metric and we will estimate the
Hausdorff dimension of K in these new metrics.

Let K ⊂ Rn be an accessible PCF self-similar set. Fix an integer k ≥ 1. We consider weight
functions ρ on F k taking values in the interval (0, 1]. (Recall that F = {1, . . . , N}, where N denotes
the number of contractions used in the construction of K.) We denote the value of ρ on σ ∈ F k by
ρσ. For m-tuples σ = (σ0, . . . , σm−1) ∈ Fmk, m ∈ N, we write ρσ = ρσm−1

· · · · · ρσ0
. As in (3.1),

we define d(x, y) for vertices x, y which are the endpoints of an edge E in Ekm by the formula
(4.1) d(x, y) = ρσ|x− y|, E ⊂ Pσ, σ ∈ F km.

Observe that E is contained in a unique polyhedron Pσ by virtue of the PCF assumption.

Definition 4.2. We say that ρ : F k → (0, 1] is admissible if the following two conditions hold:

(i) ρσ = 1 if σ ∈ F k is such that Pσ ∩ E0 6= ∅;
(ii) for all pairs of vertices x, y ∈ V0 which are the two endpoints of a single edge in E0 and all

finite polygonal arcs γ in Ek joining x to y,
(4.3) d− length(γ) ≥ d(x, y) = |x− y|.

(Observe that the right hand equality in (4.3) follows from part (i).)

Here as before by a finite polygonal arc we mean a topological arc formed by a finite number of edges
in E and by the d-length of a finite polygonal arc γ passing through vertices x = x0, x1, . . . , xr = y
we mean the sum

∑r
ν=1 d(xν−1, xν).

2Tomi Laakso (personal communication) has indicated a variation on this construction which should show that
the conformal dimension of the Sierpinski gasket is one.
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Essentially, ρ is admissible if it does not distort the sizes of polyhedra which meet the initial
edge set and does not reduce the distances between adjacent vertices in the initial vertex set.
The function ρ on the Sierpinski gasket used in section 3, i.e., ρσ = 1 if σ 6∈ Σ(k) and ρσ = ε if

σ ∈ Σ(k), is admissible. Consider Figure 3.

y

1

1

1

1x ε

Figure 3. Sample curve joining two elements of V0(SG) in E3(SG)

Conditions (i) and (ii) in Definition 4.2 comprise a finite combinatorial assumption which is in
principle decidable for a given weight function ρ. Indeed, there are only finitely many vertices in
Vk and any two such vertices can be connected by at most finitely many polygonal arcs in Ek. We
are at present unable to give a more explicit description of the admissible weights, or to exhibit a
sufficiently large collection of examples of these weights for general fractals (see remark 2 in section
7).
For a given k ∈ N and admissible ρ : F k → (0, 1], we now define d = dk,ρ on V × V by

(4.4) d(x, y) = inf

{

d− length(γ) : γ ⊂ E is a finite
polygonal arc joining x to y

}

.

For the remainder of this section, we assume that ρ is an admissible weight and we investigate
properties of the distance function d on the total edge set E of K. We prove that d is a metric
and we establish some elementary results regarding distances between points and the sizes of the
subpolyhedra Pσ in this new metric.

Proposition 4.5. Any two points in V can be joined by a d-geodesic in E. More specifically, if
x, y ∈ Vkm for some m ∈ N, then there exists a finite polygonal arc γ0 ⊂ Ek(m+1) joining x to y
such that d(x, y) = d − length(γ0). If x and y are the vertices associated with a single edge E in
Ekm, then the value of d(x, y) as computed in (4.4) is still equal to ρσ|x−y|, where Pσ is the unique
polyhedron containing E as one of its sides.

Corollary 4.6. d(x, y) > 0 if x, y ∈ V and x 6= y. Thus d is a metric on V.
Proof of Corollary 4.6. Assume that x, y ∈ Vkm. By Proposition 4.5,

d(x, y) = d− length(γ0) ≥ ρm+1
min length(γ0) ≥ ρm+1

min |x− y| > 0
where ρmin = min{ρσ : σ ∈ F k} > 0 and γ0 denotes a d-geodesic joining x to y. Since d as defined
in (4.4) is clearly symmetric and satisfies the triangle inequality, it is a metric on V. ¤

Proof of Proposition 4.5. Let x, y ∈ Vkm. Since there are only finitely many polygonal arcs joining
x to y in Ek(m+1) (and at least one since Γ is connected), there must exist at least one such are
γ0 of minimal d-length. We will show that any other finite polygonal arc joining x to y in E must
have d-length no less than d− length(γ0).
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Let γ be such an arc. Since γ consists of finitely many segments, γ ⊂ Ekm′ for some m′ ≥ m.
The proof proceeds by replacing γ with a new finite polygonal arc γ1 ⊂ Ek(m′−1) whose d-length is
less than or equal to that of γ. Repeating this process, we produce a sequence of arcs

γ ⊂ Ekm′
γ1 ⊂ Ek(m′−1)

...

γm′−m−1 ⊂ Ek(m+1),

all joining x to y, such that the d-length is not increased at any stage. Then

d− length(γ) ≥ d− length(γm′−m+1) ≥ d− length(γ0)

and the proof is complete.
We now indicate how to carry out the typical step in this replacement procedure. Let γi be the

curve in Ek(m′−i). By the PCF assumption, there exists a sequence of points x = x0, x1, . . . , xr = y
on γi with xν ∈ Vk(m′−i−1) so that xν−1 and xν are the endpoints of an edge in Ek(m′−i−1). Then
for each ν, we can replace the portion of γi between xν−1 and xν by the corresponding straight-line
edge and not increase the d-length (see assumption (ii) in Definition 4.2). Concatenating these
straight-line segments yields a new curve γi+1 with d− length(γi+1) ≤ d− length(γi) as desired.
To complete the proof, we observe that if x and y are the endpoints of a single edge, then γ0

must be equal to that edge (again by 4.2(ii)). ¤

Proposition 4.7. (a) The identity map from V to (V, d) is Lipschitz.
(b) The metric d = dk,ρ extends to a metric on K.
(c) The identity map from K to (K, d) is a Lipschitz homeomorphism.

Proof. For x and y in V, the inequality
(4.8) d(x, y) ≤ Cqcvx|x− y|
follows from (4.4), where Cqcvx denotes the quasiconvexity constant of K determined in Proposition
2.10. By appealing to Proposition 4.7, we may extend d to a metric on all of K by density:

(4.9) d(x, y) = lim
n→∞

d(xn, yn), x, y ∈ K,

for any sequences (xn) and (yn) in V with xn → x and yn → y. The identity map from K to (K, d)
is also Lipschitz since (4.8) extends to all points x, y ∈ K. Finally, this map is a homeomorphism
since K is compact. ¤

Proposition 4.10. Let K be a accessible PCF self-similar fractal. Then

(a) there exist constants 0 < c1 ≤ c2 <∞ so that

(4.11) c1ρσ|x− y| ≤ d(x, y) ≤ c2ρσ|x− y|
whenever x and y are points in K and Pσ is the smallest polyhedron (with σ ∈ F km for
some m) containing x and y;

(b) there exist constants 0 < c3 ≤ c4 <∞ so that

(4.12) c3ρσ diamPσ ≤ d− diamPσ ≤ c4ρσ diamPσ

for all σ.

Here and henceforth, we write diam for the diameter in the Euclidean metric and d − diam for
the diameter in the new metric.
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Proof. (a) It suffices to verify (4.11) for x, y ∈ V. Fix x, y ∈ V and let Pσ, σ ∈ F km, be the smallest
polyhedron containing both x and y. Then x can be joined to y by a curve γ of length at most
Cqcvx|x − y| contained entirely in Pσ; see Proposition 2.10. By (4.4) and the fact that ρσ ≤ 1 for
all σ, it follows that

d(x, y) ≤ d− length(γ) ≤ ρσ length(γ) ≤ Cqcvx ρσ|x− y|.
Thus the right hand inequality holds with c2 = Cqcvx.

For the left hand inequality, we let Pα and Pβ be subpolyhedra of Pσ with α, β ∈ F k(m+1) and
x ∈ Pα \ Pβ and y ∈ Pβ \ Pα. Let γ0 be a d-geodesic joining x to y.

If Pα and Pβ are disjoint, then γ0 travels through at least one other Pω, ω ∈ F k(m+1), which is
a child of Pσ. Denote by min. edge(Pω) the minimal length of an edge in Γω and let

(4.13) HP =
diamP

min. edgeP
.

Then

d(x, y) ≥ ρωmin. edge(Pω) ≥
ρmin

HP
ρσ diamPω

≥ ρminλmin

HP
ρσ diamPσ ≥

ρminλmin

HP
ρσ|x− y|.

On the other hand, if Pα and Pβ are not disjoint, then Pα ∩Pβ consists of a single point w (by the
PCF assumption). Choose further subpolyhedra Pα′ , Pβ′ of maximal size so that w ∈ Pα′ , x 6∈ Pα′ ,
w ∈ Pβ′ , and y 6∈ Pβ′ . In this case ρα′ = ρα and ρβ′ = ρβ (by assumption (i) in Definition 4.2) and
diamPα′ + diamPβ′ ≥ λmin|x− y| (by the maximality of Pα′ and Pβ′). Then

d(x, y) ≥ ρα′ min. edge(Pα′) + ρβ′ min. edge(Pβ′)

≥ 1

HP
(ρα diamPα′ + ρβ diamPβ′)

≥ ρmin

HP
ρσ(diamPα′ + diamPβ′) ≥

ρminλmin

HP
ρσ|x− y|.

In every case, we see that the left hand inequality holds with c1 = ρminλmin/HP .
(b) The right hand inequality in (4.12) follows from the corresponding inequality in (4.11) with

c4 = c2 = Cqcvx. To see why the left hand inequality holds true, we let x, y be two vertices in
Vσ = fσ(V0) which are joined by an edge in E . By Proposition 4.5,

d− diamPσ ≥ d(x, y) = ρσ|x− y| ≥ 1

HP
ρσ diamPσ,

where HP is as in (4.13). Thus the left hand inequality in (4.11) holds with c3 = H−1
P . ¤

5. Estimating the conformal dimension

The new metrics constructed in the previous section allow us to estimate from above the con-
formal dimensions of certain accessible PCF self-similar sets. In this section, we will prove the
following two theorems.

Theorem 5.1. Let K ⊂ Rn be an accessible PCF self-similar set generated by contraction mappings
fi : Rn → Rn. Assume that all of the contraction factors are equal: λi ≡ λ. Then dk,ρ is
in the quasisymmetry class of the standard metric on K for each k ∈ N and each admissible
ρ : F k → (0, 1].
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Theorem 5.2. Let K be any accessible PCF self-similar set. For k and ρ as in Theorem 5.1,
dim(K, dk,ρ) ≤ s0, where s0 = s0(k,ρ) is the unique positive solution to the equation

(5.3)
∑

σ∈F k

ρs0σ λ
s0
σ = 1.

Observe that under the assumptions of Theorem 5.1, equation (5.3) reduces to

(5.4)
∑

σ∈F k

ρs0σ =

(

1

λ

)ks0

.

Note that in the undeformed case ρσ ≡ 1, (5.4) becomes Nk = (1/λ)ks0 and s0 = logN/ log(1/λ) =
dimK.
By combining Theorems 5.1 and 5.2, we derive an upper bound for the conformal dimension of

K.

Corollary 5.5. Under the assumptions of Theorem 5.1,

C dimK ≤ inf
k
inf
ρ
s0(k,ρ),

where the second infimum is taken over all admissible weights ρ : F k → (0, 1].

Proof of Theorem 5.2. Let s > s0(k,ρ). Then
∑

σ∈F k ρs0σ λ
s0
σ < 1. For each m ∈ N, K can be

covered by the Nkm sets Pσ, σ ∈ F km. By Proposition 4.10(b), d − diamPσ ≤ c4ρσ diamPσ.
Denoting by Hδ

s the s-dimensional Hausdorff premeasure at scale δ > 0, we have

Hc4λkm
max diamP

s (K, d) ≤
∑

σ∈F km

(d− diamPσ)
s

≤ cs4
∑

σ∈F km

ρsσλ
s
σ

= cs4





∑

σ∈F k

ρsσλ
s
σ





m

which tends to zero as m→∞. The conclusion follows. ¤

Proof of Theorem 5.1. Recall the statement we seek to prove: there exists an increasing homeo-
morphism η = ηd,ρ : (0,∞)→ (0,∞) such that

(5.6)
d(x, y)

d(x, z)
≤ η

( |x− y|
|x− z|

)

for all x, y, z ∈ K, x 6= y, x 6= z, where d = dk,ρ. Recall also that we require λi ≡ λ in the
hypotheses.
We begin with a few obvious simplifications. By a preliminary scaling, we may assume that

diamP = 1. By [15, Theorem 2.25], it suffices to verify (5.6) for x, y, z ∈ V. Finally, the self-
similarity of K implies that it is enough to verify (5.6) in the case when the smallest polyhedron
containing all three points x, y, and z is the initial polyhedron P .
Denote by Pσ the smallest polyhedron containing x and y and by Pτ the smallest polyhedron

containing x and z. By Proposition 4.10(a), d(x, y) ≈ ρσ|x− y| and d(x, z) ≈ ρτ |x− z|, where the
notation A ≈ B means A/C ≤ B ≤ CA for some constant C. We consider three cases:

(i) Pσ ⊂ Pτ = P ;
(ii) Pτ ⊂ Pσ = P ;
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(iii) Pσ 6⊂ Pτ = P and Pτ 6⊂ Pσ.

In case (i), ρτ = 1 and

d(x, y)

d(x, z)
≈ ρσ|x− y|

|x− z| ≤ |x− y|
|x− z| .

In case (iii) we must have Pσ ∩ Pτ = {x}. Thus Pσ and Pτ are adjacent polyhedra (possibly at
different levels) and

ρσ ≤
1

ρmin
ρτ

by the admissibility condition 4.2(i) for the weight ρ. In this case

d(x, y)

d(x, z)
≈ ρσ|x− y|

ρτ |x− z| ≤
1

ρmin
· |x− y|
|x− z| .

It remains to consider case (ii). Here ρσ = 1 and so

(5.7)
d(x, y)

d(x, z)
≈ 1

ρτ

|x− y|
|x− z| .

Assume that τ ∈ F km, m ∈ N. We divide this case into two further subcases, according to whether
the distance between x and y is comparable to the diameter of P or relatively small compared to
diamP .
Suppose first that |x− y| ≥ λ/HP (recall that we assume diamP = 1). Since

|x− z| ≤ diamPτ ≤ λkm,

we see that

|x− y|
|x− z| ≥

λ

HP

(

1

λ

)km

.

Set

(5.8) q =
log(1/ρmin)

k log(1/λ)
.

Then

d(x, y)

d(x, z)
≈ 1

ρτ

|x− y|
|x− z|

≤
(

1

ρmin

)m |x− y|
|x− z|

=

(

1

λ

)kmq |x− y|
|x− z|

≤
(

HP

λ

)q ( |x− y|
|x− z|

)1+q

.

We are thus reduced to the study of the case when x and y are relatively close: |x− y| ≤ λ/HP . It
follows from this that x and y are contained in adjacent subpolyhedra Pα and Pβ with α, β ∈ F k,
i.e., {w} = Pα ∩ Pβ 6= ∅. Write

τ = (α, τ1, . . . , τm−1) ∈ F km,
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where τi ∈ F k for each i. Define an integer p = p(w, x) ∈ {0, 1, . . . ,m− 1} to be the largest index
for which P(α,τ1,...,τp) contains w. Then

(5.9) |x− w| ≥ λk(p+2)

HP

since P(α,τ1,...,τp,τp+1) 63 w.
Observe that ρτi = 1 for each i = 1, 2, . . . , p. Thus

ρτ = ρτ̃

where τ̃ = (α, τp+1, . . . , τm−1) ∈ F k(m−p). Returning to (5.7), we estimate

d(x, y)

d(x, z)
≈ 1

ρτ

|x− y|
|x− z| =

1

ρτ̃

|x− y|
|x− z|

≤
(

1

ρmin

)m−p |x− y|
|x− z|

=

(

1

λ

)k(m−p)q |x− y|
|x− z| .

(5.10)

We next rewrite (5.9) in the form

λpk ≤ HP |x− w|
λ2k

.

Using this together with the trivial estimate |x− z| ≤ λkm, we deduce that

(5.11)

(

1

λ

)k(m−p)

≤ HP |x− w|
λ2k|x− z| .

Combining (5.10) and (5.11), we find that

d(x, y)

d(x, z)
≤ C

|x− w|q|x− y|
|x− z|1+q

≤ C

( |x− y|
|x− z|

)1+q

,

where the inequality |x − w| ≤ C ′|x − y| with C ′ = csc(θ/2) (θ as in (2.12)) follows from Lemma
2.13.
Thus in every case we see that (5.6) holds with η(t) = Cmax{t, t1+q}, where q is defined in

5.8. This completes the proof of the quasisymmetric equivalence of d with the Euclidean metric on
K. ¤

Remark 5.12. The reason why we must impose the additional assumption that all of the λi’s are
equal is clear from the last case in the proof. If we consider the situation for general values of λi,
we find that (5.9) must be replaced by

|x− w| ≥ λ
k(p+2)
min

HP
.

However, the only upper bound for |x− z| which we can give in general is the trivial estimate
|x− z| ≤ λkm

max

and it is clear that in this case we cannot uniquely define q as in (5.8) so that the distortion estimate

d(x, y)

d(x, z)
≤ C

( |x− y|
|x− z|

)1+q

holds.
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6. Examples

1. Further estimates for the conformal dimension of SG. We can apply Corollary 5.5 to
other admissible metrics on the Sierpinski gasket to improve the upper bound (3.6) for the conformal
dimension. For example, when k = 4 we can choose the admissible metric ρ = ρ4,ε : {1, 2, 3}4 →
(0, 1] indicated in Figure 4. Here ε > 0 can be taken to be any positive value. Among the 81 total
subtriangles Tσ, σ ∈ {1, 2, 3}4, there are 45 triangles with ρσ = 1, 24 triangles with ρσ = 1

2 , and 12
triangles with ρσ = ε. According to Corollary 5.5,

C dimSG ≤ s0(4, ε),

where s0 = s0(4, ε) is the unique positive solution to the equation

45 + 24 · 2−s0 + 12εs0 = 16s0 .

Letting ε→ 0,

C dimSG ≤ s0 = 1.43778 . . . ,

where now s0 is the unique positive solution to the equation

45 + 24 · 2−s0 = 16s0 .

a

b

c

d

e

f

=weight 1

=weight 1/2

=weight ε

Figure 4. Values of ρ4,ε

It is not clear how far this construction can be extended, i.e., how small the upper bound for
C dimSG can be made by this method. We have found a collection of admissible weight functions
ρ6,ε on {1, 2, 3}6. The following table gives the number of triangles Tσ, σ ∈ {1, 2, 3}6, which recieve
each of the values taken on by ρ6,ε. (In the interest of simplicity, we omit the figure showing where
these triangles are located. The reader is invited to reconstruct the missing figure using the table
as a hint.)

Value of ρ6,ε 1 1/2 1/3 1/5 1/6 1/15 1/30 ε
Number of triangles 333 24 36 84 24 36 24 168

As before, using Corollary 5.5 and letting ε→ 0 we obtain the bound

C dimSG ≤ s0 = 1.4160 . . .

mentioned in the introduction, where s0 is obtained as the unique positive solution to the equation

333 + 24 · 2−s0 + 36 · 3−s0 + 84 · 5−s0 + 24 · 6−s0 + 36 · 15−s0 + 24 · 30−s0 = 64s0 .
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2. Higher dimensional “Sierpinski simplices”. Let T denote the unit simplex in Rn−1, n ≥ 3.
Thus T is the closed convex hull of a set of n points in Rn−1, any two of which are at a unit distance
apart. For i = 1, . . . , n, let fi denote the conformal contraction with scale factor 1/2 whose fixed
point is the ith vertex of T . Then the maps f1, . . . , fn give rise to a accessible PCF fractal K of
dimension

log n

log 2
.

The level n weight function which puts weight one on each boundary simplex and an arbitrarily
small weight ε on each interior simplex is admissible. It is clear that the number of interior simplices
at level n is n! (since each of the n indices must occur). Thus the conformal dimension of K is

≤ log(n
n − n!)

log(2n)
=
log n

log 2
− log(1− n!/nn)

n log 2
.

This bound could of course be further reduced by using more elaborate weights as in the previous
subsection.

3. Dendrites. Define five planar contractive similarities fj(z) =
1
3z +

2
3aj , where a1 = −1 + i,

a2 = 1+ i, a3 = 0, a4 = −1− i and a5 = 1− i, and consider the invariant set X for this collection.
See Figure 5(a). It is clear that X satisfies the open set condition and hence has dimension

log 5

log 3
= 1.46497 . . .

Moreover,X is PCF, with critical set C(K) = {e, f, g, h} and post-critical set PC(K) = {a, b, c, d, e, f, g, h}
and accessible; the graph Γ (Figure 5(b)) with edges {ae, eh, hd, bf, fg, gc} satisfies the conditions
in Definition 2.9.

a b

c d

e

f

g h

Figure 5. (a) A dendrite X; (b) An accessible graph on X

For any k ≥ 2 and ε > 0 let ρk,ε denote the weight function on {1, 2, 3, 4, 5}k which assigns
weight 1 to all subsquares which meet the initial graph Γ0 = Γ and weight ε to all other subsquares.
See Figure 6 for the cases k = 2, 3. This weight function is admissible. The number of level k
subsquares which recieve weight 1 is 2 · 3k − 1.
Let dk,ε denote the corresponding metric on X (as defined in section 4). According to Theorem

5.2, the dimension of (X, dk,ε) is at most s0 = s0(k, ε), the unique positive solution to the equation

3ks0 = 2 · 3k − 1 + (5k − 2 · 3k + 1)εs0 .
Letting ε→ 0 and applying Corollary 5.5, we find that

C dimX ≤ inf
k

log(2 · 3k − 1)
k log 3

= 1.

Consequently, C dimX = 1.
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1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

ε

ε

ε

ε

ε

ε

ε ε

=weight 1
=weight ε

Figure 6. Values of ρk,ε for k = 2, 3

The preceding argument clearly applies to a wide variety of dendritic fractals. Furthermore—
although it is not clear from the arguments in sections 4 and 5—the conformal dimension of these
sets can in fact be attained by considering only the images of X under quasiconformal self-maps
of C. In fact, for each k and ε, there exists a quasiconformal map f : C → C so that (X, dk,ε) is
bi-Lipschitz equivalent with f(X) ⊂ C. (This is an easy modification of the main result of [3].)
These examples and the examples of [4] are the only known examples of self-similar fractals for
which the conformal dimension can be calculated exactly.

4. The hexagasket. For our final example, we consider the so-called hexagasket. Consider the
six planar contractive similarities

fj(z) =
1

3
z +

2

3
e2πij/6, j = 1, . . . , 6.

The invariant set for this collection of mappings is called the hexagasket and we denote it by HG.
See Figure 7(a). It is clear that HG satisfies the open set condition and hence has dimension

log 6

log 3
= 1.6309 . . .

Furthermore, HG is PCF, with critical set C(K) = {g, h, i, j, k, l} and post-critical set PC(K) =
{a, b, c, d, e, f, g, h, i, j, k, l} and accessible; the “star of David” graph Γ (Figure 7(b)) with edges
{ag, gh, ha, bh, hi, ib, . . . , fg, gl, lf} satisfies the conditions in Definition 2.9.

f

a b

c

de

g

h

i

j

k

l

Figure 7. (a) The hexagasket HG; (b) An accessible graph on the hexagasket

As in the previous subsection, we define a collection of admissible metrics dk,ε on HG for each

integer k ≥ 3 and ε > 0. Each dk,ε will correspond to a weight ρk,ε : {1, . . . , 6}k → (0, 1] which will

take on only the values 1, 1
3 , . . . ,

1
3k−3 , ε. Figure 8 shows a magnification of one of the six primary

subhexagons in HG, indicating the values taken on by ρk,ε for k = 3, 4. Observe that ρk,ε = 1 on
each hexagon which meets the initial edge set E0 as required by 4.2(i).
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1

1                 1

1

1 1

1                   1

1

1

1

1
1

1

1

1

1

ε

ε

ε

ε

ε

ε

ε

ε

ε

A

B

C

D

E

F
1          1

1         1

1          1

1          1

1         1

=weight 1

=weight 1/3

=weight ε

Figure 8. Values of ρk,ε for k = 3, 4

We now proceed with a more precise description of these admissible weights. Let us call the
second level hexagons marked A,C,E in Figure 8 medial hexagons and those marked B,D,F
terminal hexagons. For k ≥ 3 and j = 0, 1, . . . , k − 3, let

mk,j =
number of level k subhexagons of a medial

hexagon which are given weight 3−j by ρk,ε,

tk,j =
number of level k subhexagons of a terminal

hexagon which are given weight 3−j by ρk,ε,

mk,ε =
number of level k subhexagons of a medial

hexagon which are given weight ε by ρk,ε,

tk,ε =
number of level k subhexagons of a terminal

hexagon which are given weight ε by ρk,ε.

Then m3,0 = 4, m3,ε = 2, t3,0 = 5, t3,ε = 1, and we have the recursion relations

mk+1,j = 4mk,j + 2mk,j−1

mk+1,ε = 6mk,ε

tk+1,j = tk,j + 4mk,j

tk+1,ε = tk,ε + 4mk,ε + 6
k−2.

(6.1)

where mk,j = tk,j = 0 if j > k − 3. Note that

(6.2)
k−3
∑

j=1

mk,j +mk,ε =
k−3
∑

j=1

tk,j + tk,ε = 6
k−2

for each k ≥ 3,3 which is the number of level k hexagons contained in any second level hexagon
(medial or terminal).

3Exercise: prove (6.2) by induction using (6.1) and the initial values m3,0, t3,0, m3,ε, t3,ε.
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The recursive equations in (6.1) can be solved explicitly and we find that

mk,j =

(

k − 3
j

)

22k−j−4, j = 0, . . . , k − 3,

mk,ε = 2 · 6k−3,

tk,j =











1
3(16 · 4k−3 − 1), j = 0,

2j+4
∑k−j−4

l=0

(

l+j
j

)

22l, j = 1, . . . , k − 4,
0, j = k − 3,

tk,ε =
6 · 4k−3 − 1

3
.

The total hexagasket HG contains 18 medial hexagons and 18 terminal hexagons. Thus the weight
ρk,ε on HG assigns weight 3−j to 18mk,j +18tk,j level k hexagons and assigns weight ε to 18mk,ε+
18tk,ε level k hexagons. According to Theorem 5.2, the dimension of (HG, dk,ε) is at most s0 =
s0(k, ε), the unique positive solution to the equation

3ks0 =
∑

σ

ρs0σ =
k−3
∑

j=0

(18mk,j + 18tk,j)3
−js0 + (18mk,ε + 18tk,ε)ε

s0 .

Letting ε→ 0 and applying Corollary 5.5, we find that

C dimHG ≤ inf
k
s0(k),

where s0 = s0(k) is the unique positive solution to the equation

3ks0 = 18
k−3
∑

j=0

(mk,j + tk,j)3
−js0

= 18
k−3
∑

j=0

(

k − 3
j

)

22k−j−43−js0 + 96 · 4k−3 − 6

+ 18
k−4
∑

j=1

2j+4
k−j−4
∑

l=0

(

l + j

j

)

22l3−js0

= 18
(28 + 8 · 3−s0)(4 + 2 · 3−s0)k−3 + 10 · 3−s0 − 1

3 + 2 · 3−s0
.

Let

Fk(x) := 18x
k (28 + 8x)(4 + 2x)

k−3 + 10x− 1
3 + 2x

and let x = xk denote the unique positive root of the polynomial equation Fk(x) = 1. Then

xk = 3
−s0(k) and so

C dimHG ≤ inf
k

log(1/xk)

log 3
=
log(1/ supk xk)

log 3
.

Writing Fk(x) in the form

Fk(x) =
72x3(7 + 2x)(4x+ 2x2)k−3 + 18(10x− 1)xk

3 + 2x

shows that Fk(a) < 1 for sufficiently large values of k if a <
1
2

√
6− 1. (Observe that 1

2

√
6− 1 is the

unique positive solution to the quadratic equation 4x+ 2x2 = 1.) Thus 1
2

√
6− 1 ≤ supk xk.
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On the other hand, if a > 1
2

√
6− 1 > 0.1 then for each k

Fk(a) >
72a3(7 + 2a)

3 + 2a
.

The right hand side is an increasing function of a and so

Fk(a) >
72(5 +

√
6)(12

√
6− 1)3

1 +
√
6

= 1.765 . . . > 1.

Consequently supk xk ≤ 1
2

√
6− 1.

In conclusion, supk xk =
1
2

√
6− 1 = 1

2+
√

6
and

(6.3) C dimHG ≤ log(2 +
√
6)

log 3
= 1.3588 . . .

as mentioned in the introduction.

It is unlikely that this estimate is best possible, even if we only consider those bounds that
can be obtained from Theorem 2.6. It should be possible to arrange the weights on the level k
hexagons more evenly and reduce this upper bound even further. Also, other metrics on HG may
turn out to have even smaller Hausdorff dimension. The construction presented here, however, has
the advantages that it is reasonably straightforward to compute the new dimensions as well as to
show the quasisymmetric equivalence with the standard metric.

7. Further questions

In this final section, we mention some questions related to this paper which would be of interest
for further study.

1. What is the connection between accessibility and post-critical finiteness? The PCF assumption
says (roughly speaking) that the set is “almost not connected”, while accessibility implies quasi-
convexity, i.e., any two points in the set can be joined by a relatively short curve. Observe that
among the N -sided polygaskets (see Figure 9), only the usual Sierpinski gasket (N = 3) and the
hexagasket (N = 6) are both accessible and PCF, although these sets are always PCF whenever
N is not a multiple of 4. All of the planar examples of accessible PCF fractals in this paper arise
from lattices. Which lattices give rise to (at least) one accessible PCF fractal?

2. Can we determine more explicitly the class of admissible weights ρ for a given accessible PCF
fractal K? In other words, can we solve the finite combinatorial problem embedded in Definition
4.2(ii)? Observe that this is essentially just an optimization problem; we must minimze the (im-
plicitly defined) value of s0(k,ρ) (see Theorem 5.2) subject to the system of linear constraints on
ρ implied by the admissibility condition 4.2. The solution to this problem would lead to a more
explicit upper bound for the conformal dimension of K in Theorem 2.6. What additional conditions
(if any) must we impose to ensure that the conformal dimension of K is one?

3. Is it possible to estimate the conformal dimension if some of the assumptions on K are relaxed?
Recall the three assumptions which we impose: accessibility, post-critical finiteness, and the re-
quirement that the subpolyhedra Pi = fi(P ) be of equal size. The last condition was a technical
assumption which was needed in the proof of Theorem 5.1; without it we are at present unable to
show that the new metrics are quasisymmetrically equivalent with the standard metric. Accessibil-
ity was used in an essential way in defining the new metrics d = dk,ρ via the path metric definition
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Figure 9. N -sided polygaskets for N = 3, 5, 6, 8, 9

(4.4). (Note that K must be at least rectifiably connected for this definition to have any chance of
yielding a metric.) It may be possible construct other metrics on self-similar fractals without using
rectifiable connectedness and thus avoid using accessibility. Finally, the PCF condition was used
at several points (Proposition 4.5, Proposition 4.10(i) and Theorem 5.1) to conclude that adjacent
subpolyhedra intersect at precisely one point. A typical example of a non-PCF set is the Sierpinski
carpet SC, see Figure 10. We still do not know the value of the conformal dimension of SC, in
particular, we do not know if its dimension can be reduced by any quasisymmetric map. Note,
however, that it is certainly not possible for SC to have conformal dimension one by the results of
[16], since SC ⊃ C × [0, 1] (where C denotes the usual 1

3 -Cantor set) and

C dim(C × [0, 1]) = dim(C × [0, 1]) = 1 + dimC > 1.

Figure 10. The Sierpinski carpet SC

4. What can be done for sets with less self-similarity? For example, what can we say if we assume
that the maps fi are merely bi-Lipschitz (rather than similarities)? Note that estimates for the
conformal dimension are of particular interest in complex dynamics (for Julia sets of rational maps)
and in hyperbolic geometry (for the limit sets of Kleinian groups), and these sets typically admit a
“quasi-self-similar” structure of precisely this type. The PCF assumption is often satisfied in these
settings, but the accessibility condition is rarely satisfied as these sets typically admit no rectifiable
curves.
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