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Abstract. Given an orientation-preserving circle homeomorphism h, let (E,L)

denote a Thurston’s left or right earthquake representation of h and σ the

transversal shearing measure induced by (E,L). We first show that the Thurston

norm || · ||Th of σ is equivalent to the cross-ratio distortion norm || · ||cr of h,

i.e., there exists a constant C > 0 such that

1

C
||h||cr ≤ ||σ||Th ≤ C||h||cr

for any h. Secondly we introduce two new norms on the cross-ratio distortion
of h and show they are equivalent to the Thurston norms of the measures of

the left and right earthquakes of h. Together it concludes that the Thurston
norms of the measures of the left and right earthquakes of h and the three
norms on the cross-ratio distortion of h are all equivalent. Furthermore, we
give necessary and sufficient conditions for the measures of the left and right
earthquakes to vanish in different orders near the boundary of the hyperbolic
plane. Vanishing conditions on either measure imply that the homeomorphism

h belongs to certain classes of circle diffeomorphisms classified by Sullivan
in [7].
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1. Introduction

Given any orientation-preserving homeomorphism h of the unit circle S1, ac-
cording to Thurston [4], there exists a left or right earthquake map (E,L) in the
hyperbolic plane H such that its extension to the boundary circle S1 is exactly
equal to h. Any earthquake map (E,L) naturally introduces a transversal shearing
measure σ, which quantifies the amount of shearing along the geodesic lines in the
lamination L. Let M denote the space S1 × S1 \ {the diagonal} factored by the
euqivalence relation (a, b) ∼ (b, a). Then the measure σ can be viewed as a Borel
measure onM with the support consisting of the pairs of the endpoints of the lines
in L. The Thurston norm ||σ||Th of σ is the supremum, over all hyperbolic geodesic
segments β of length one in the hyperbolic plane, of the total amount of shearing
along the lines in the support of σ that intersect β.

For any homeomorphism h, we define the cross-ratio distortion norm ||h||cr of h
as

||h||cr = sup
Q

|log cr(h(Q))| ,
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where the supremum is taken over all quadruples Q = {a, b, c, d} of four points
arranged in counterclockwise order on the circle with cr(Q) = 1, where

cr(Q) =
(b− a)(d− c)

(c− b)(d− a)
and cr(h(Q)) =

(h(b)− h(a))(h(d)− h(c))

(h(c)− h(b))(h(d)− h(a))
.

It is shown in [1] that there exists a constant C > 0 such that

(1) ||σ||Th ≤ C||h||cr
for any orientation-preserving homeomorphism h. Here we show there exists an-
other constant C > 0 such that

(2) ||h||cr ≤ C||σ||Th
for any h. Therefore we have the first main theorem.

Theorem 1. The Thurston norm || · ||Th is equivalent to the cross-ratio distortion
norm || · ||cr, i.e., there exists a constant C > 0 such that for any orientation-
preserving homeomorphism h,

1

C
||h||cr ≤ ||σ||Th ≤ C||h||cr.

Remark. The following weaker version of the inquality (2) was shown in [1]: for
any C0 > 0, there exists C > 0, depending only on C0, such that ||h||cr ≤ C||σ||Th
for any σ with ||σ||Th ≤ C0. It was proved by a quite different method by studying
the tangent vectors to the earthquake curve of σ and then integrating the vector
field.

Given an orientation-preserving homeomorphism h, let σlh and σrh denote the
transversal shearing measures inducecd by a left earthquake and a right one of
h. Since Theorem 1 holds for both σlh and σrh, we have the following corollary,
which is not trivial because the lamination for a right earthquake representation of
h may be quite different from the lamination for its left earthquake, for example,
the lamination for the right earthquake of a homeomorphism h corresponding to a
simple left earthquake consists of infinitely many geodesic lines ( [4]).

Corollary 1. For any orientation-preserving homeomorphism h,

1

C2
||σlh||Th ≤ ||σrh||Th ≤ C2||σlh||Th,

where C is the same constant in Theorem 1.

In the course of proving Theorem 1, we find that the Thurston norms of σlh and
σrh are related to the upper and lower bounds on the cross-ratio distortions of h
on certain quadruples. Therefore we introduce two new norms on the cross-ratio
distortion of h.

Definition 1. The upper and lower cross-ratio distortion norms of h are defined
as

||h||cr+ = sup
Q̃

ln cr(h(Q̃))

and
||h||cr− = − inf

Q̃

ln cr(h(Q̃)),
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where the supremum is taken over all quadruples Q̃ = {a, b, c, d} of points arranged

in counterclockwise order on the unit circle satisfying cr(Q̃) = 1, and |b − c| and
|c− d| are the two smallest lengths among |a− b|, |b− c|, |c− d| and |d− a|.

Let l = ac be a geodesic line in the lamination of a left earthquake and l′ = bd
a geodesic line perpendicular to l such that a, b, c, d are arranged on the circle in
counterclockwise direction and |b−c| and |c−d| are the two shortest lengths among

|a − b|, |b − c|, |c − d| and |d − a|. Then {a, b, c, d} forms a quadruple Q̃. Since l
is a geodesic line in the lamination of a left earthquake, one can easily check that
cr(h(Q̃)) ≥ 1. Therefore ||h||cr+ ≥ 0. Correspondingly, by using a right earthquake
of h, one can show ||h||cr− ≥ 0.

By a method similar to the one used to prove Theorem 1, we show

Theorem 2. For any orientation-preserving homeomorphism h,

1

C
||h||cr+ ≤ ||σlh||Th ≤ C||h||cr+

and
1

C
||h||cr− ≤ ||σrh||Th ≤ C||h||cr−,

where C can be taken as the same constant in Theorem 1.

Corollary 2. The cross-ratio norm, the upper cross-ratio norm and the lower
cross-ratio norm are equivalent, that is, for any orientation preserving circle home-
omorphism h,

1

C2
||h||cr+ ≤ ||h||cr ≤ C2||h||cr+

and
1

C2
||h||cr− ≤ ||h||cr ≤ C2||h||cr−,

where C is the same constant in the previous two theorems.

Suppose we take the open unit disk D centered at the origin in the complex plane
C as a model for the hyperbolic plane H. Let D be a disk in D and δ(D) denote
the Euclidean distance from D to the boundary S1 of D and massσ(D) the total
amount of shearing along the lines of the lamination of σ that intersect D. Given
any α ≥ 0, we say that a measure σ is vanishing (resp. strongly vanishing) of order
α if

massσ(D) ≤ O(δ(D)α) (resp. massσ(D) ≤ o(δ(D)α))

for all disks D of hyperbolic diameter ≤ 1.
The second main part of this work is to give necessary and sufficient conditions

for σ to vanish or strongly vanish in different order α.
Assume that four points a, b, c, d on the unit circle S1 are labelled in counter-

clockwise order. Define the minimum scale of a quadruple Q = {a, b, c, d} to be

smin(Q) = min{|a− b|, |b− c|, |c− d|, |d− a|}.
Let Q̃ be a quadruple as the same as in Definition 1. We say that an orientation-
preserving homeomorphism h of the unit circle S1 is smooth of order α from above
(resp. strongly smooth of order α from above) if

ln cr(h(Q̃)) ≤ O(smin(Q̃)α) (resp. ln cr(h(Q̃)) ≤ o(smin(Q̃)α))
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for all quadruples Q̃. Similarly we say h is smooth of order α from below (resp.
strongly smooth of order α from below) if

ln cr(h(Q̃)) ≥ −O(smin(Q̃)α) (resp. ln cr(h(Q̃)) ≥ −o(smin(Q̃)α))

for all quadruples Q̃. And finally we say that h is smooth (resp. strongly smooth)
of order α if h is smooth (resp. strongly smooth) of order α from above and below.

Theorem 3. For each α ≥ 0, any orientation-preserving circle homeomorphism
h is smooth (resp. strongly smooth) of order α from above if and only if σlh is
vanishing (resp. strongly vanishing) of order α.

Theorem 4. For each α ≥ 0, any orientation-preserving circle homeomorphism
h is smooth (resp. strongly smooth) of order α from below if and only if σrh is
vanishing (resp. strongly vanishing) of order α.

Theorem 5. For each α ≥ 0, any orientation-preserving circle homeomorphism
h is smooth (resp. strongly smooth) of order α if and only if both σlh and σrh are
vanishing (resp. strongly vanishing) of order α.

When α = 0, h is smooth of order 0 means h is quasisymmetric. The previ-
ous theorem includes a known result that h is quasisymmetric if and only if σ is
Thurston bounded, which was proved in [1] and [5] by different methods. The
method of [1] is to study the tangent vectors to the earthquake curves of finite
approximations of σ and then to integrate the vector fields. The method of [5] is
to show that the earthquake curve of σ depends holomorphically on the parame-
ter t and then to apply Slodkowski’s theorem for the extension of a holomorphic
motion [6]. In this paper, we provides a unified proof for the equivalence of two
conditions on h and σ for all orders by improving the method used to show Theorem
1. Also, observe that Theorems 1, 2 and Corollary 1 imply that the quasisymmetry
of h is equivalent to the boundness of either σlh or σrh. It also raises a question
whether or not σlh and σrh vanish in the same order α for any α ≥ 0, which may
have different answers for different values of α.

Let us notice that if h is smooth from above (resp. from below) of order α > 2
or h is strongly smooth from above (resp from below) of order α ≥ 2, then h has
Schwarzian derivative ≤ 0 (resp. ≥ 0). And therefore if h is smooth of order α > 2
or strongly smooth of order α ≥ 2, then h has Schwarzian derivative 0, and hence
h is a Möbius transformation and σ = 0. Therefore the previous theorem is only
interesting when 0 ≤ α ≤ 2 in smooth cases and 0 ≤ α < 2 in strongly smooth
cases.

Another consequence of the technique developed in this paper is that the vanish-
ing conditions on either σlh or σrh in different orders imply that h belongs to certain
classes of circle diffeomorphisms classified by Sullivan in [7]. Define the maximum
scale of a quadruple Q = {a, b, c, d} to be

smax(Q) = max{|a− b|, |b− c|, |c− d|, |d− a|}.
Theorem 6. For any α ≥ 0, if σlh or σrh is vanishing (resp. strongly vanishing) of
order α, then

| ln cr(h(Q))| = O(smax(Q)α) (resp. | ln cr(h(Q))| = o(smax(Q)α))

for all quadruples Q = {a, b, c, d} with cr(Q) = 1, where a, b, c, d are arranged on
the circle in counterclockwise direction.
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Corollary 3. For any α ≥ 0, if σlh or σrh is vanishing (resp. strongly vanishing)
of order α, then

| ln 3cr(h(Q))| = O(smax(Q)α) (resp. | ln 3cr(h(Q))| = o(smax(Q)α))

for all quadruples Q = {a, b, c, d} with cr(Q) = 1
3 , where a, b, c, d are arranged on

the circle in counterclockwise direction.

Four points a < b < c < d on the real line is called a standard 4-tuple if
b − a = c − b = d − c, denoted by Q′. In [7], Sullivan classified the smoothness of
one-dimensional homeomorphisms h according to the comparison between the cross-
ratio distortion of h on Q′ and the scale of Q′. Let us say that a homeomorphism
h : R → R is Sullivan smooth (resp. strongly Sullivan smooth) of order α for α ≥ 0
if the cross-ratio distortion of h on any standard 4-tuple Q′ is O(s(Q′)α) (resp.
o(s(Q′)α)). And then a circle homeomorphism h is Sullivan smooth (resp. strongly
Sullivan smooth) of order α if there is a smooth coordinate system for the circle,
consisting of finitely many charts, such that h is Sullivan smooth (resp. strongly
Sullivan smooth) of order α on each chart. One can also find an outline in [7] to
prove the following dichotomy: for 0 < α < 1, h is Sullivan smooth of order α if and
only if h is a diffeomorphism and φ = lnh′ is α-Hölder continuous; h is Sullivan
smooth of order 1 if and only if h is a diffeomorphism and φ satisfies Zygmund
condition; for 1 < α ≤ 2, h is Sullivan smooth of order α if and only if h is a
diffeomorphism and φ is C1, α−1; and h is strongly Sullivan smooth of order 2 if
and only if h is a Möbius transformation.

Let h be an orientation-preserving circle homeomorphism, σlh and σrh be the
transversal shearing measures induced by a left earthquake and a right one of h
respectively. From Corollary 3, it is easy to see that for each α ≥ 0, if either σlh
or σrh is vanishing (resp. strongly vanishing) of order α, then h is Sullivan smooth
(resp. strongly Sullivan smooth) of order α. On the other hand, we have

Theorem 7. For each 0 ≤ α < 1, if h is Sullivan smooth (resp. strongly Sullivan
smooth) of order α, then h is smooth of order α.

Theorems 3 and 4, Corollary 3 and Theorem 7 imply

Theorem 8. For each 0 ≤ α < 1, the following statements are equivalent:
(1) h is smooth (resp. strongly smooth) of order α;
(2) h is smooth (resp. strongly smooth) of order α from above;
(3) h is smooth (resp. strongly smooth) of order α from below;
(4) σlh is vanishing (resp. strongly vanishing) of order α;
(5) σrh is vanishing (resp. strongly vanishing) of order α;
(6) h is Sullivan smooth (resp. strongly Sullivan smooth) of order α.

Corollary 4. The following statements are equivalent:
(1) h is quasisymmetric;
(2) ||h||cr is finite;
(3) ||h||cr+ is finite;
(4) ||h||cr− is finite;
(5) σlh is Thurston bounded;
(6) σrh is Thurston bounded;
(7) h is Sullivan smooth of order 0.

Corollary 5. The following statements are equivalent:
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(1) h is symmetric;
(2) h is strongly smooth of order 0;
(3) h is strongly smooth of order 0 from above;
(4) h is strongly smooth of order 0 from below;
(5) σlh(D) vanishes uniformly as the disk D approaches the boundary;
(6) σrh(D) vanishes uniformly as the disk D approaches the boundary;
(7) h is strongly Sullivan smooth of order 0.

Remark. The equivalence of (1) and (4) in Theorem 8 was first proved in [1],
however, the proof of the part (4) =⇒ (1) in [1] is quite long because it applies the
method of studying the regularities of the tangent vectors to the earthquake curves
and then integrating the vector fields to derive the smooth regularities for h. In
this paper, we give a direct and relatively shorter proof of that part by using some
work of Sullivan in [7] and our corollary 3 and theorem 7.

We conclude the introduction by extending Sullivan’s dichotomy to a trichotomy
that includes characterizations corresponding to earthquake measures. In the fol-
lowing table, let Q denote a standard 4-tuple in one of the finitely many charts in
a smooth coordinate system of the unit circle, D a disk in the hyperbolic plane of
hyperbolic diameter 1, and s(Q) the scale of Q and δ(D) the Euclidean distance
from D to the boundary circle of the hyperbolic plane. When h is a diffeomorphism,
we denote by φ = lnh′. Furthermore, φ ∈ Cα means that φ is α-Hölder continuous;
φ ∈ CZ means that φ satisfies Zygmund condition; φ ∈ C1,α, 0 < α < 1, means that
φ is C1 and φ′ is α-Hölder continuous; and finally φ ∈ C1,1 means that φ ∈ C1 and
φ′ satisfies Lipschitz condition. Also, observe that if φ satisfies Zygmund condition
then φ is α-Hölder continuous for any 0 < α < 1 ( [3]).

Order Smoothness Distortion Measure

α h | ln cr(h(Q))| σ(D)
0 quasisymmetric ⇐⇒ ||h||cr < +∞ ⇐⇒ ||σ||Th < +∞
0 symmetric ⇐⇒ o(1) ⇐⇒ o(1)

0 < · < 1 diffeo., φ ∈ Cα ⇐⇒ O(s(Q)α) ⇐⇒ O(δ(D)α)
0 < · < 1 diffeo., φ ∈ Cα, ⇐⇒ o(s(Q)α) ⇐⇒ o(δ(D)α)

Hölder const. = o(1)
1 diffeo., φ ∈ CZ ⇐⇒ O(s(Q)) ⇐= O(δ(D))
1 diffeo., φ ∈ CZ , ⇐⇒ o(s(Q)) ⇐= o(δ(D))

Zygmund const. = o(1)
1 < · < 2 diffeo, φ ∈ C1, α−1 ⇐⇒ O(s(Q)α) ⇐= O(δ(D)α)
1 < · < 2 diffeo, φ ∈ C1, α−1, ⇐⇒ o(s(Q)α) ⇐= o(δ(D)α)

Hölder const. = o(1)
2 diffeo., φ ∈ C1,1 ⇐⇒ O(s(Q)2) ⇐= O(δ(D)2)
2 Möbius trans. ⇐⇒ o(s(Q)2) ⇐⇒ o(δ(D)2)

The paper is arranged as follows. Necessary backgrounds on earthquake maps
and transversal shearing measures are given in section 2. Theorems 1 and 2 are
proved in section 3 and the proofs of the remaining theorems are included in the
last section.
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2. Earthquake map and shearing measure

Assume that we take the unit disk D centered at the origin of the complex plane
C as a model for the hyperbolic plane H.

A geodesic lamination L in the hyperbolic plane H is a collection of geodesics
which foliate a closed subset L of H. The set L is called the locus of L, the geodesics
are called the leaves of L, the connected components of H \ L are called the gaps,
and the gaps and the leaves of L are called the strata of the lamination.

Let L be a geodesic lamination in H. By a L-left earthquake map E we mean
that E is an injective and surjective (and often discontinuous) map from H to H
satisfying

(1) the restriction of E on each stratum A of the lamination is the restriction of
a Möbius transformation, which maps H onto H, on A, and

(2) for any two strata A and B, the comparison map

cmp(A,B) = (E|A)−1 ◦ E|B : H → H

is a hyperbolic transformation whose axis weakly separates A and B and which
translates to the left as viewed from A. Here E|A and E|B denote the Möbius
transformations representing E on A and B. A line l weakly separates two sets A
and B if any path connecting a point a ∈ A to a point b ∈ B intersects l.

Thurston [4] showed that each left earthquake map (E,L) extends uniquely to a

map Ẽ defined on H∪S1. The extension is continous at each point x ∈ S1, and the
restriction of Ẽ to S1 is a homeomorphism. Conversely, every circle homeomorphism
f is realized in this way, in other words, for any circle homeomorphism f there exists
a left earthquake map E with lamination L such that Ẽ|S1 = f . We will say that
(E,L) is a left earthquake representation of f .

Similarly one can define a right earthquake map. And by an earthquake map
we mean it is either a left earthquake or a right one. In general, left and right
earthquakes have parallel results. In this paper, unless otherwise indicated, we
assume earthquakes are left earthquakes.

Each earthquake map naturally introduces a transversal shearing measure which
quantifies the amount of shearing along the geodesics in the lamination.

Given a hyperbolic Möbius transformation s from H onto H, the translation
length of s can be defined to be the logarithm of the derivative at its expanding fixed
point, it is denoted by τ(s). We say that two hyperbolic Möbius tranformations s
and t from H onto H with disjoint axes translate in the same direction if the region
between the axes of s and t induces an orientation on the axes that agrees with the
direction of one axis and disagrees with the other.

Let s and t be two hyperbolic Möbius transformations form H onto H which
have disjoint axes and translate in the same direction. From Figure 2.5 in [4], one
can show that the composition s ◦ t is a hyperbolic Möbius transformation from H
onto H whose axis weakly separates the axes of s and t, and the translation length



8 JUN HU

of s ◦ t is greater than or equal to the sum of the translation lengths of s and t, i.e.,

(3) τ(s ◦ t) ≥ τ(s) + τ(t).

See the details for its proof in [1].
Given an earthquake map (E,L) and two geodesic lines l∗ and l∗ in L, let β be a

closed geodesic segment which is transversal to both l∗ and l∗ and intersects them
at its endpoints. The amount ν(β) of relative transversal shearing of the earthquake
map (E,L) along β is defined as follows. Let P = {Ii}ni=1 be a partition of β into
small geodesic segments, and Ti the translation length of the comparison map of
the strata containing the endpoints of the segment Ii. Define

ν(P ) =

n
∑

i=1

Ti.

By the inequality (3), ν(P ) decreases as the partition P is refined. We define the
relative transversal shearing of (E,L) along β to be

ν(β) = inf
P
ν(P ).

As pointed out by Thurston in [4], ν(β) can be well approximated by the sum of
the translation lengths of comparison maps.

Proposition 1 ( [4]). Let (E,L) be an earthquake map and ν(β) be defined as
above. Then for any infinite sequence {Pn}∞n=1 of nested partitions of β with
limn→∞ d(Pn) = 0, ν(Pn) converges to ν(β) as n → ∞. Furthermore, for any
partition P of β, we have

(4) ν(P )−O(ν(P )d(P )2) ≤ ν(β) ≤ ν(P ),

where d(P ) denotes the maximal hyperbolic length of the segments in a partition P
of β.

Lemma 1. Let d denote a small positive number. Suppose that s and t are two
hyperbolic Möbius transformations from H onto H which have disjoint axes and
translate in the same direction, and suppose that the distance from the axis of s to
the axis of t in the hyperbolic metric is d. Then

(5) |τ(s) + τ(t)− τ(s ◦ t)| = O(min {τ(s), τ(t)}d2).

This lemma was pointed out in [4], and a complete proof was given in [1] (Lemma
8). We now apply this lemma to prove Proposition 1.

Proof. Given two infinite sequences {Pn}∞n=1 and {Qn}∞n=1 of nested partitions of β
with limn→∞ d(Pn) = limn→∞ d(Qn) = 0, {Pn∪Qn}∞n=1 is also an infinite sequence
of nested partitions of β with limn→∞ d(Pn ∪Qn) = 0. By Lemma 1,

|ν(Pn)− ν(Pn ∪Qn)| = O(ν(Pn)d(Pn)
2),

and

|ν(Qn)− ν(Pn ∪Qn)| = O(ν(Qn)d(Qn)
2),

and by the inequality (3), ν(Pn), ν(Qn) and ν(Pn ∪Qn) are decreasing sequences.
Together, ν(Pn) and ν(Qn) converge to the limit of ν(Pn ∪ Qn) as n → ∞. This
implies the first part of the proposition.
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To show the other part, we consider a special infinite sequence {Pn}∞n=1 of nested
partitions of β such that P1 = P and Pn+1 is an even bisection of Pn for any n ∈ N.
Applying Lemma 1 again,

|ν(Pn+1)− ν(Pn)| = O(ν(Pn)d(Pn)
2).

By the inequality (3), ν(Pn+1) ≤ ν(Pn) for any n ∈ N, and therefore,

|ν(Pn)− ν(P )| = O(ν(P )d(P )2
n−1
∑

i=0

1

22i
).

The proof follows by taking the limit as n→∞. ¤

Notice that if a geodesic segment β is transversal to one leaf of a lamination L
then it transversally intersects any leaf of L at most once. The earthquake measure
σ(β) of a closed geodesic segment β, induced by the earthquake map (E,L), is
defined to be

(6) σ(β) = inf
β′
ν(β′)

where β′ is a closed geodesic segment containing β in its interior.
It is easy to see that the earthquake measure induced by an earthquake map with

finitely many leaves is an atomic measure supported on those leaves. In general, σ
extends to a Borel measure on the spaceM with the support consisting of all pairs of
the endpoints of the leaves in L, whereM denotes the space S1×S1\{the diagonal}
factored by the euqivalence relation (a, b) ∼ (b, a). The Thurston norm of σ is

||σ||Th = sup
l(β)≤1

σ(β) = sup
l(β)=1

σ(β),

where β is a closed geodesic segment transversal to the lamination L and l(β)
denotes the hyperbolic length of β. We also define the norm of ν by

||ν|| = sup
l(β)≤1

ν(β) = sup
l(β)=1

ν(β),

where β is a closed geodesic segment transversal to the lamination L. The Thurston
norm of σ is equivalent to the norm of ν.

Proposition 2. For any earthquake map (E,L), the induced ν and σ satisfy

||ν|| ≤ ||σ||Th ≤ 2||ν||.

Proof. Without loss of generality, let β denote a closed geodesic segment of hyper-
bolic length 1. Given any closed geodesic segment β ′ containing β in its interior,
ν(β′) ≥ ν(β), and hence

σ(β) = inf
β′
ν(β′) ≥ ν(β).

Therefore ||σ||Th ≥ ||ν||.
On the other hand, let β′ be a closed geodesic segment of hyperbolic length 2

and containing β in its interior. Suppose that β ′ = β1 ∪ β2, where both β1 and β2

are closed geodesic segments and have hyperbolic length 1. Then

σ(β) ≤ ν(β′) = ν(β1) + ν(β2) ≤ 2||ν||.
And therefore ||σ||Th ≤ 2||ν||. ¤
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Notice that the constant 2 in the previous proposition is sharp in the sense that
there exists an earthquake map such that the induced σ and ν satisfy ||σ||Th = 2||ν||.
For an example, let L consist of two geodesic lines l1 and l2 which have hyperbolic
distance equal to 1. Let G1, G2 and G3 denote the gaps, and G2 is in the middle,
G1 and G2 share one side l1 and G2 and G3 share one side l2. Suppose that E|G1

is the identity, E|l1 = E|G2
, E|l2 = E|G3

, and the comparison maps of G2 to G1

and G3 to G1 have the same nonzero translation length. One can easily check that
||σ||Th = 2||ν||.

Given a geodesic lamination L and a closed disk D in H, we say that L inter-
sects D in a parallel fashion if there are two geodesic lines l∗ and l∗ among those
intersecting D such that any other intersecting line separates l∗ from l∗. And we
say that an open disk intersects a lamination in a parallel fashion if its closure
does so. There exists a constant a > 1 (the maximal value of such constants is

ln(1 +
√

3
2 )), independent of the lamination L, such that for any disk D in H of

hyperbolic diameter < a, L intersects D in a parallel fashion. Suppose that D is a
disk in H of hyperbolic diameter ≤ 1. Let l∗ and l∗ be the two leaves which bound
all leaves intersecting D. Let I and J denote the smallest arcs on S1 bounded by
the endpoints of l∗ and l∗ such that any leaf intersecting D connects a point of I
to a point of J , and let r be the closed geodesic segment perpendicular to both l∗
and l∗. Then any leaf in L intersecting r connects a point of I to a point of J . We
call σ(r) the mass of the earthquake measure σ in the disk D, denoted by

massσ(D) = σ(r).

3. Equivalence of two norms

Let Q = {a, b, c, d} be a quadruple consisting of four points a, b, c and d on
the unit circle arranged in the counterclockwise direction. Given an orientation-
preserving homeomorphism h on the unit circle S1, the cross-ratio distortion norm
of h is

||h||cr = sup
cr(Q)=1

|ln cr(h(Q))| ,

where

cr(Q) =
(b− a)(d− c)

(c− b)(d− a)
and cr(h(Q)) =

(h(b)− h(a))(h(d)− h(c))

(h(c)− h(b))(h(d)− h(a))
.

It is easy to see that the cross-ratio distortion norm of h is invariant under pre-
or post-composition by Möbius transformations. It is also true that h is quasisym-
metric if and only if ||h||cr is finite.

Let (E,L) be an earthquake map representing h and σ be the induced the earth-
quake measure, and let ν denote the relative transveral shearing. In this section,
we show that there exists a constant C > 0, independent of h and σ, such that

||h||cr ≤ C||ν||.
Thus, by Proposition 2, we have

||h||cr ≤ C||σ||Th.
Combining this result with Theorem 8 of [1], we have Theorem 1. In the following
we first summarize some techniques into several lemmas. We use D to denote the
unit open disk centered at the origin of the complex plane C and H to denote the
upper half plane.
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Lemma 2. A quadruple Q has cr(Q) = 1 if and only if the geodesic ac from a to
c is perperdicular to the geodesic bd from b to d, and if and only if the hyperbolic
distance from ab to cd (or bc to da) is equal to ln(3 + 2

√
2).

Proof. Let A be the Möbius transformation mapping D onto H such that A(a) =
−1, A(b) = 0 and A(c) = 1. Since cr(A(Q)) = cr(Q) = 1, A(d) = ∞. Clearly, the
geodesic from −1 to 1 is perpendicular to the geodesic from 0 to ∞, and then the
geodesic ac is perpendicular to bd.

Let β denote the geodesic in D which is perpendicular to both the geodesics ab
to cd. There exists a Möbius transformation B from D → H which maps β to the
imaginary axis, and a to −1 and b to 1. Assume that B(d) = −x and B(c) = x

with x > 1. Since cr(B(Q)) = 1, x = 3 + 2
√
2. And therefore, taking |dz|

y
as the

hyperbolic metric in H, the distance from ab to cd is ln(3 + 2
√
2). By a symmetry

argument, the hyperbolic distance from bc to da is equal to the same value. ¤

In this paper, we let C0 = 2, which is the smallest positive integer greater than
ln(3 + 2

√
2) = 1.7627471 · · · .

Lemma 3. Consider in the hyperbolic plane H. Let ln denote the geodesic connect-
ing −e−n to e−n for each n ∈ {0}∪N, L the lamination consisting of ln’s, and Gn+1

the gap between ln and ln+1 and G0 the remained gap. Suppose that an earthquake
map E is defined as follows: E|G0

is the indentity map, for each n ∈ {0} ∪ N, the
comparison map E|−1

Gn
◦ E|Gn+1

is the hyperbolic Möbius transformation with axis
ln and hyperbolic translation length lnλn, and E|ln = E|Gn+1

. Let h denote the
extension of E to the boundary of H, and Q the quadruple {1,∞,−1, 0}. If there
exists λ ≥ 1 such that λn ≤ λ for each n ∈ {0} ∪ N, then there exists a constant
C1 > 0, independent of λ, such that

0 ≤ ln cr(h(Q)) ≤ C1 lnλ.

Proof. Denote by A0 = E|G0
, and An = E|−1

Gn−1
◦ E|Gn for each n ∈ N. Clearly

h(Q) = {1,∞,−1, h(0)}, and
h(0) = lim

n→∞
A1 ◦A2 ◦ · · · ◦An(0).

Let xn denote the point −e−n and yn the point e−n on the real axis for each
n ∈ {0} ∪ N. Since the derivative of An decreases from λn to 1

λn
on the interval

[xn, yn], by the mean value theorem,

yn −An(0) = An(yn)−An(0) ≥ ynλ
−1
n ≥ e−nλ−1.

Then

yn−1 −An−1 ◦An(0) = An−1(yn−1)−An−1 ◦An(0) ≥ (yn−1 −An(0))λ
−1
n−1

≥ (yn−1 − yn + yn −An(0))λ
−1 ≥ (e−n+1 − e−n)λ−1 + e−nλ−2.

Inductively,
y0 −A0 ◦A2 ◦ · · · ◦An(0)

≥ (1− e−1)λ−1 + (e−1 − e−2)λ−2 + · · ·+ (e−n+1 − e−n)λ−n + e−nλ−n−1

= (e− 1)[e−1λ−1 + e−2λ−2 + · · ·+ e−nλ−n] + e−nλ−(n+1).

As n→∞,

y0 − h(0) ≥ e− 1

eλ− 1
.
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Now we estimate cr(h(Q)). Clearly

cr(h(Q)) = cr(h({1,∞,−1, 0})) = cr(h({∞,−1, 0, 1}))−1 =
h(0) + 1

1− h(0)
.

Therefore

1 ≤ cr(h(Q)) ≤
2− e−1

eλ−1
e−1
eλ−1

=
2eλ− e− 1

e− 1
.

Let σ = lnλ, then

0 ≤ ln cr(h(Q)) ≤ ln
2e1+σ − e− 1

e− 1
.

Let φ(σ) = ln 2e1+σ−e−1
e−1 . Clearly φ′(σ) = 1

1− e+1

2e1+σ

. Then 1 ≤ φ′(σ) ≤ 2e
e−1 for any

σ ∈ [0,+∞). By the mean value theorem again,

φ(σ)− φ(0) ≤ 2e

e− 1
σ.

Since φ(0) = 0,

0 ≤ ln cr(h(Q)) ≤ φ(σ) ≤ C1 lnλ,

where C1 = 2e
e−1 . ¤

The following two lemmas are technical tools needed to compare the norms of σ
and h. They have been applied to prove several results in [1], for example, Theorem
8 there. See the corollaries 1 and 2 in [1] for their proofs.

Lemma 4 (GHL). Let Q = {a, b, c, d} be a quadruple on the real line with −∞ ≤
a < b < c < d, and c ≤ s ≤ d and d < t. Suppose that A(s,t) is the hyperbolic Möbius
transformation with the repelling fixed point at s and the attracting fixed point at
t and its derivative at the repelling fixed point equal to λ > 1, and f(s,t) : R → R
is defined to be equal to A(s,t) on the interval [s, t] and equal to the identity on
the complement of [s, t]. Then the cross-ratio of the image quadruple f(s,t)(Q)
considered as a function of two variables s ∈ [y, z] and t ∈ (z,+∞) decreases in s
for each fixed t and increases in t for each fixed s.

Lemma 5 (GHL). With the same notations as in the previous corollary, suppose
b ≤ s ≤ c and d ≤ t. Then the cross-ratio of the image quadruple f(s,t)(Q) is
increasing in s for each fixed t and also increasing in t for each fixed s.

Let h denote an orientation-preserving circle homeomorphism and (E,L) an
earthquake representation of h, and σ the induced earthquake measure by (E,L).
Theorem 9. There exists a universal constant C > 0, independent of h and σ,
such that

||h||cr ≤ C||σ||Th.
In fact, one can take C = C0 + 2C1C2, where C0 is the smallest positive integer
greater than or equal to ln(3 + 2

√
2), C1 = 2e

e−1 , and C2 is the smallest positive

integer greater than or equal to ln(e+
√
e2 − 1).

We divide the proof into several cases. Given a quadruple Q = {a, b, c, d} with
cr(Q) = 1, we first assume that three points a, b and c belong to the same stratum
A, and estimate cr(h(Q)) in this case. By a Möbius change of coordinates, we may
assume that a = 1, b = ∞, c = −1, d = 0, and by postcomposing E with another
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Möbius transformation, we may also assume that the earthquake E is the identity
map on the stratum A. We will show there is a constant C such that

0 ≤ ln cr(h(Q)) ≤ C||σ||Th.
Let xn denote the point −e−n and yn the point e−n on the real axis for each
n ∈ {0} ∪ N. And let L′ denote the collection of the lines in L which connect
points of the interval [−1, 0) to points of (0, 1]. Let L−0 denote the lines in L′ which
connect points of [x0, x1) to points of (0, y0], and L+

0 denote the lines in L′ which
connect points of [x0, 0) to points of (y1, y0]. Let L0 = L−0 ∪ L+

0 . Then any line in
L′ \ L0 must connect a point in [x1, 0) to a point in (0, y1]. Inductively, for each
n ∈ N, let L−n denote the collection of the lines in L′ \ (L0 ∪ L1 ∪ · · · Ln−1) which
connect points of [xn, xn+1) to points of (0, yn], and L+

n the collection of the lines
in L′ \ (L0 ∪ L1 ∪ · · · Ln−1) which connect points of [xn, 0) to points of (yn+1, yn],
and Ln = L−n ∪ L+

n . We have the following three lemmas.

Lemma 6. For each n ∈ {0} ∪ N, any line in Ln must connect a point in [xn, 0)
to a point in (0, yn].

Proof. It can be easily proved by an induction on n. ¤

Lemma 7. There exists a constant C2 > 0, independent of h and σ, such that
σ(Ln) ≤ C2||σ||Th for any n ∈ {0} ∪ N.

Proof. For each n ∈ {0}∪N, let ln denote the geodesic line connecting the point xn
to the point yn. And for any n ∈ N, let l−n denote the geodesic connecting the point
xn to 0, and l+n the geodesic connecting 0 to the point yn. The hyperbolic distance
from ln to l−n+1 (or l+n+1), n ∈ {0} ∪ N, is equal to a constant, which is equal to

ln(e+
√
e2 − 1). Let C2 denote the smallest positive integer which is greater than

or equal to ln(e+
√
e2 − 1). Then σ(Ln) ≤ C2||σ||Th for each n ∈ {0} ∪ N. ¤

Let Ẽ be the same earthquake map as the one defined in Lemma 3 with lnλn =
σ(Ln).

Lemma 8. One has the following inequality:

cr(h(Q)) ≤ cr(Ẽ(Q)).

Proof. For each n ∈ {0} ∪ N, let l′n denote the geodesic line in Ln above all of the
other geodesic lines in Ln, let En be the earthquake which induces the earthquake
measure (σ|Ln ,Ln) and which is the identity on the stratum above the geodesic
line l′n. In the case when Ln is an empty collection, we let En be the identity map.
Denote hn = E0 ◦ E1 ◦ · · · ◦ En. Clearly

h(d) = h(0) = lim
n→∞

hn(0).

We only need to show that for each n ∈ {0} ∪ N,

cr(hn(Q)) ≤ cr(A0 ◦A1 ◦ · · · ◦An(Q)),

where Ai’s are the maps defined in the proof of Lemma 3. Now we compare
cr(An(Q)) with cr(En(Q)). Let the geodesic lines li’s be the same ones defined
in Lemma 3. By Lemmas 4 and 6, if we move the weights of the geodesic lines in
Ln to the geodesic line ln, we only increase the cross ratio of the image of Q, that
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is, cr(En(0)) ≤ cr(An(Q)). Therefore En(0) ≤ An(0). Since An−1 is monotone
increasing on the interval [−en, en],

An−1(En(0)) ≤ An−1(An(0)).

By Lemmas 4 and 6 again, we move the weights of the geodesic lines in Ln−1 to
the geodesic line ln−1, we only increse the cross ratio of the image of the quadruple
{1,∞,−1, En(0)}, that is,

cr(En−1({1,∞,−1, En(0)})) ≤ cr(An−1({1,∞,−1, En(0)})).
Hence

En−1 ◦ En(0) ≤ An−1 ◦ En(0) ≤ An−1 ◦An(0).

Inductively, for each 0 ≤ i ≤ n, we see that

Ei+1 ◦ · · · ◦ En−1 ◦ En(0) ≤ Ai+1 ◦ · · · ◦An−1 ◦An(0).

By the monotonicity of Ai on the interval [−ei, ei], one has

Ai(Ei+1 ◦ · · · ◦ En−1 ◦ En(0)) ≤ Ai(Ai+1 ◦ · · · ◦An−1 ◦An(0)).

And by Lemmas 4 and 6 and moving the weights of the geodesic lines in Li to the
geodesic line li, we have

cr(Ei({1,∞,−1, Ei+1 ◦ · · · ◦ En−1 ◦ En(0)}))
≤ cr(Ai({1,∞,−1, Ei+1 ◦ · · · ◦ En−1 ◦ En(0)})),

and therefore

Ei ◦ Ei+1 ◦ · · · ◦ En−1 ◦ En(0) ≤ Ai ◦ Ei+1 ◦ · · · ◦ En−1 ◦ En(0)

≤ Ai ◦Ai+1 ◦ · · · ◦An−1 ◦An(0).

When i = 0, the above inequality implies

cr(hn(Q)) ≤ cr(A0 ◦A1 ◦ · · · ◦An(Q)).

By taking the limit as n→∞, we have

cr(h(Q)) ≤ cr(Ẽ(Q)).

¤

Lemmas 8, 3 and 7 imply the following proposition.

Proposition 3. If cr(Q) = 1 and a, b, c belong to the same stratum of the earth-
quake represention (E,L) of h, then

0 ≤ ln cr(h(Q)) ≤ C1C2||σ||Th.
Proposition 4. If cr(Q) = 1 and a, c belong to the same stratum of the earthquake
represention (E,L) of h, then

0 ≤ ln cr(h(Q)) ≤ 2C1C2||σ||Th.
Proof. Recall that we may assume that a = ∞, b = −1, c = 0, d = 1, and the
earthquake E is the identity map on the stratum A containing the points a and c.
By the proof of the previous proposition,

0 ≤ ln cr({a, b, c, h(d)} ≤ C1C2||σ||Th
and

0 ≤ ln cr({a, h(b), c, d} ≤ C1C2||σ||Th.
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Figure 1. Five subcollections of L in the proof of Proposition 5.

And hence

1 ≤ h(d) ≤ eC1C2||σ||Th and 1 ≥ −h(b) ≥ e−C1C2||σ||Th .

Therefore

1 ≤ cr(a, h(b), c, h(d)) =
h(d)

−h(b) ≤ e2C1C2||σ||Th ,

which implies

0 ≤ ln cr(h(Q)) ≤ 2C1C2||σ||Th.
¤

Proposition 5. If cr(Q) = 1, and assume that there exists at least one geodesic
line in the lamination L which separates the vertices a, b from the vertices c, d, then

| ln(cr(Q))| ≤ (C0 + 2C1C2)||σ||Th.

Proof. Given two points x and y on the unit circle, we use [x, y] to denote the arc
on S1 from x to y in counterclockwise direction. Let LI denote the collection of the
geodesic lines in L that connect points of the arc [d, a] to points of the arc [b, c].
By Lemma 2, σ(LI) ≤ C0||σ||Th. Let LII denote the collection of the lines in L
that connect points of the arc (d, a) to points of the arc (a, b), LIII the collection
of the lines in L that connect points of the arc (a, b) to points of the arc (b, c),
LIV the collection of the lines in L that connect points of the arc (b, c) to points
of the arc (c, d), and finally LV the collection of the lines in L that connect points
of the arc (c, d) to points of the arc (d, a). First notice that the motion of a (resp.
c) under the earthquake map E along the lines in LII (resp. LIV ) only decreases
the cross ratio of Q. Therefore the cross ratio cr(h(Q)) is less than or equal to the
cross ratio cr(E′(Q)), where E′ is the new earthquake by omitting the earthquake
motion along the geodesic lines in L \ (LI ∪ LIII ∪ LV ).

By a Möbius change of coordinates, we may assume a = −∞, b = −1, c = 0,
d = 1. Then the goedesic lines in LI connect the points of [−1, 0] to the points of
[1,+∞]. By Lemma 5, if one moves all the lines in LI to the geodesic line from
0 to ∞ without changing the total amount of shearing along the lines in LI to
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obtain a new earthquake E′′, then the cross ratio of the image quadruple of Q
under the earthquake is possibly increased, that is, cr(E ′(Q)) ≤ cr(E′′(Q)). As
usual, by postcomposing with a Möbius transformation, we may assume that E ′′ is
the identity map on the geodesic line from 0 to ∞.

Let EIII (resp. EV ) denote the earthquake obtained by omitting the earthquake
motion along all lines in L \ LIII (resp. L \ LV ). Then by Proposition 3 and the
same argument in the proof of Proposition 4, we have

1 ≤ EV (d) ≤ eC1C2||σ||Th and 1 ≥ EIII(b) ≥ e−C1C2||σ||Th .

Then

1 ≤ E′′(d) ≤ e(C1C2+C0)||σ||Th and 1 ≥ E′′(b) ≥ e−C1C2||σ||Th .

Therefore

cr(E(Q)) ≤ cr(E′(Q)) ≤ cr(E′′(Q)) ≤ e(2C1C2+C0)||σ||Th .

Now we omit the motion of E along the geodesic lines in LIII and LV , and move
all geodesic lines in LI to the goedesic line bd. By similar reasoning, we obtain

cr(E(Q)) ≥ e−(2C1C2+C0)||σ||Th .

This completes the proof of the proposition. ¤

Now the proof of Theorem 9 can be organized as follows.

Proof. Let C = C0 + 2C1C2. We show that for any quadruple Q with cr(Q) = 1,

| ln cr(h(Q))| ≤ C||σ||Th.
We divide the proof into three cases.

Case 1: The quadruple Q has three vertices belonging to the same stratum.
Then either a, b, c or b, c, d or c, d, a or d, a, b belongs to the same stratum. By
Proposition 3, either

0 ≤ ln cr(h(Q)) ≤ C1C2||σ||Th
or

0 ≤ ln cr(h({b, c, d, a})) ≤ C1C2||σ||Th.
Clearly cr(h({b, c, d, a})) = 1

cr(h(Q)) , and hence

| ln cr(h(Q))| ≤ C1C2||σ||Th < C||σ||Th.
Case 2: The quadruple Q has two opposite vertices belonging to the same stra-

tum. Then either a and c or b and d belong to the same stratum. By Proposition
4 and the same reasoning in Case 1, we have

| ln cr(h(Q))| ≤ 2C1C2||σ||Th < C||σ||Th.
Case 3: The quadruple Q has no opposite vertices belonging to the same stratum.

Then either there exists a geodesic line in L which separates a and b from c and
d or there exists a geodesic line in L which separates b and c from d and a. By
Proposition 5 and the same reasoning in Case 1, we have

| ln cr(h(Q))| ≤ (C0 + 2C1C2)||σ||Th = C||σ||Th.
This completes the proof. ¤

Our Theorem 9 and Theorem 8 of [1] imply Theorem 1.
Now we prove Theorem 2.
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Figure 2. Construction 1 of the quadruple Q̃ in the proof of The-
orem 2.

Proof. Let σlh be the earthquake measure induced by a left earthquake representa-
tion E of h. Theorem 9 implies

||h||cr+ ≤ C||σlh||Th,

where C is the same constant in Theorem 9. It remains to show that there exists
another constant C ′ > 0 such that ||σlh||Th ≤ C ′||h||cr+. The proof for this part is
very similar to the proof of Theorem 8 in [1] with some extra work on the selection

of four points a, b, c, d in order to have a quadruple Q̃ satisfying the conditions in
the definition of ||h||cr+ (Definition 1). It is divided into two parts: (i) there exists
a constant C3 > 0 such that ||σlh||Th ≤ C3||h||cr+ if ||h||cr+ < 1

2 ln
1
3
e+1
e−1 ; (ii) there

exists another constant C4 > 0 such that ||σlh||Th ≤ ||h||cr+ + C4. Clearly (ii)

implies ||σlh||Th ≤ (1 + C4
1
2

ln 1
3
e+1
e−1

)||h||cr+ if ||h||cr+ ≥ 1
2 ln

1
3
e+1
e−1 . Therefore

||σlh||Th ≤ max{C3, 1 +
C4

1
2 ln

1
3
e+1
e−1

}||h||cr+.

Let D be a closed disk in D of hyperbolic diameter 1, l1 and l2 be the lines in the
lamination Ll of σlh which have the maximal hyperbolic distance among the lines
of Ll that intersect D. Let β denote the geodesic perpendicular to both l1 and l2
(in the case that l1 and l2 only share one endpoint, we will only require β to be
perpendicular to l1 with the hyperbolic length of the segment on β between l1 and
l2 is smaller than or equal to 1

2 ). Label the endpoints of β by x and y so that the
arc from x to y going in the counterclockwise direction is no longer than the arc
from y to x. By postcomposition by a Möbius transformation, we may assume that
the earthquake map is the identity map on the geodesic line l1. Let A : D → H
be a Möbius transformation mapping x to 0, y to ∞, the arc (xy) to the positive
half real line, and the geodesic l1 to the geodesic connecting −1 to 1 and l2 to a
geodesic line connecting −s to s with 1

e
≤ s ≤ 1. Let E′ = A ◦E ◦A−1. If a = −1,

b = 1
2 , c = 1 and d = 2, then {a, b, c, d} forms a quadruple Q̃. Moreover, A−1(Q̃)

also forms a quadruple Q̃ on S1 for E. We now show that cr(E′(Q̃)) is bounded
from below by a function φ(λ) satisfying φ(1) = 1, φ′(1) > 0 and φ(λ) ≥ 1 for any

λ ≥ 1, where λ = eσ
l

h
(D).

Let E′′ be the earthquake by omitting all earthquake shifts of E ′ along the lines
in A(Ll) except those intersecting the disk A(D). Note that

cr(E′(Q̃)) ≤ cr(E′′(Q̃)).
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Figure 3. Construction 2 of the quadruple Q̃ in the proof of The-
orem 2.

Let B be the hyperbolic transformation with axis equal to the geodesic connecting

− 1
e
to 1

e
, translation length equal to λ = eσ

l

h
(D) and repelling fixed point at − 1

e
.

Define f : R → R to be equal to B on the interval [− 1
e
, 1
e
] and the indentity on the

complement. Applying Lemma 4 to cr(E ′′({c, d, a, b})),
cr(E′′(Q̃)) = cr(E′′({c, d, a, b})) ≥ cr(f({c, d, a, b})).

Define φ(λ) = cr(f({c, d, a, b})). By elementary calculation,

φ(λ) = cr(f({c, d, a, b})) =
λ 1−s
t−1 t+ s

λ 1−s
t−1 + 1

,

where s = 1
3
e−1
e+1 < 1 and t = 1

3
e+1
e−1 > 1. It is easy to see that φ(λ) increases from

1 to t as λ increases from 1 to +∞. Let λ0 be the positive real number (greater

than 1) such that φ(λ0) =
√

1
3
e+1
e−1 , and C ′3 be the minimal value of the derivative

of φ on [1, λ0]. One can check that C ′3 > 0. By the mean value theorem,

φ(λ)− 1 ≥ C ′3(λ− 1)

for each λ ∈ [1, λ0]. Now we have

e||h||cr+ ≥ cr(E′(Q̃)) ≥ cr(E′′(Q̃)) ≥ cr(f(Q̃)) = φ(λ).

Therefore, if ||h||cr+ ≤ 1
2 ln

1
3
e+1
e−1 then e||h||cr+ ≤

√

1
3
e+1
e−1 , and hence

e||h||cr+ ≥ φ(λ) ≥ 1 + C ′3(λ− 1).

Then

σlh(D) = lnλ ≤ λ− 1 ≤ 1

C ′3
(e||h||cr+ − 1).

Since ||h||cr+ ≤ 1
2 ln

1
3
e+1
e−1 , there exists a constant C3 > 0 such that

σlh(D) ≤ C3||h||cr+,
which implies (i).

To prove (ii), we construct a quadruple Q̃ for E′ = A ◦ E ◦ A−1 as follows. Let
u be the midpoint between −1 and 1

e
and b be the midpoint between u and 1

e
. Let

bd be the geodesic perpendicular to the geodesic connecting −1 to 1
e
, where d is on

the real line. Therefore b = 3−e
4e and d = 3+e

2e . Notice that d > 1. Let a = −1 and
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c = 1
e
. Then {a, b, c, d} forms a quadruple Q̃ for E′, and moreover A−1(Q̃) also

forms a quadruple Q̃ on S1 for E. Now we show that cr(E ′(Q̃)) is bounded from

below by a function ξ(λ), where λ = eσ
l

h
(D). Again let E′′ be the earthquake by

omitting the shifts along the goedesics in A(Ll) except those intersecting the disk
A(D). Notice that

cr(E′(Q̃)) ≤ cr(E′′(Q̃)).

Let F be the hyperbolic Möbius transformation with axis equal to the geodesic
connecting − 1

e
to 1, repelling fixed point at − 1

e
and translation length λ. Define

g : R → R to be equal to F on the interval [− 1
e
, 1] and the identity on the comple-

ment. By moving the weights along the geodesics intersecting A(D) to the geodesic
connecting − 1

e
to 1 and applying Lemma 5, we have

cr(E′′(Q̃)) ≥ cr(g(Q̃)).

In order to have the exact expression for cr(g(Q̃)), let G be the Möbius transfor-
mation which maps b to 0, d to ∞ and fixes a (and therefore it maps c to 1). Then
W = G ◦ F ◦ G−1 is the hyperbolic Möbius transformation with axis equal to the
geodesic connecting s0 to t0, repelling fixed point at s0 and translation length λ,
where s0 = −cr({− 1

e
, b, c, d}) and t0 = cr({d, a, b, 1}). Notice that −1 < s0 < 0

and t0 > 1. Clearly
W (z)− s0
t0 −W (z)

= λ
z − s0
t0 − z

,

and hence

W (z) =
(λt0 − s0)z + (s0t0 − λs0t0)

(λ− 1)z + (t0 − λs0)
.

Define ξ(λ) = cr(g(Q̃)). Therefore

ξ(λ) = cr(g(Q̃)) = cr((G ◦ g ◦G−1)({−1, 0, 1,∞})) = W (0) + 1

W (1)−W (0)
.

Clearly

W (0) + 1 =
s0t0 − λs0t0 − λs0 + t0

t0 − λs0
and

W (1)−W (0) =
λ(t0 − s0)

2

(λ− 1 + t0 − λs0)(t0 − λs0)
,

hence

ξ(λ) =
[(1− s0)λ+ (t0 − 1)][−s0(t0 + 1)λ+ (s0 + 1)t0]

λ(t0 − s0)2
.

Since the coefficients of λ and the constant terms in the above expression are posi-
tive, for any λ ≥ 1,

ξ(λ) ≥ C ′4λ,

where C ′4 = (1−s0)(−s0(t0+1))
(t0−s0)2 > 0. Therefore

e||h||cr+ ≥ cr(E′(Q̃)) ≥ cr(E′′(Q̃)) ≥ ξ(λ) ≥ C ′4λ,

and then

σlh(D) = lnλ ≤ ||h||cr+ + C4,

where C4 = − lnC ′4. This completes the proof of (ii).
The proof for ||h||cr− and σrh to be equivalent is similar. ¤



20 JUN HU

Remark. In fact, the proof of (ii) provides an alternative proof of (i), and hence
a unified way to prove ||σ||Th ≤ C||h||cr in Theorem 1 and ||σlh||Th ≤ C||h||cr+
and ||σrh||Th ≤ C||h||cr− in Theorem 2. Through explicit calculations, one can find
s0 = − 7−e

5+e and t0 = 5e−3
3−e in the part (ii) of the previous proof, and hence

(s0 + 1)(t0 + 1) < 2.

Therefore

ξ′(1) =
2− (s0 + 1)(t0 + 1)

t0 − s0
> 0.

Applying the inverse function theorem and mean value theorem to ξ(λ) in a small
neighborhood of 1, there exist δ > 0 and C ′5 > 0 such that if 1 ≤ ξ(λ) < 1 + δ then
ξ(λ) ≥ 1+C ′5(λ−1). Therefore if ||h||cr+ < ln(1+δ) then 1 ≤ ξ(λ) ≤ e||h||cr+ < 1+δ,
and then

e||h||cr+ ≥ ξ(λ) ≥ 1 + C ′5(λ− 1),

which implies that

σlh(D) = lnλ ≤ λ− 1 ≤ C5||h||cr+
for some constant C5 > 0.

4. Smooth circle homeomorphisms

The purpose of this section is to prove Theorems 3, 6 and 7. The proof of
Theorem 4 is similar to the proof of Theorem 3, and Theorem 5 is the consequence
of Theorems 3 and 4.

Now we first show Theorem 3.

Proof. Let (E,L) be a left earthquake representation of an orientation-preserving
circle homeomorphism h and σlh the earthquake measure induced by (E,L). Clearly,
Theorem 2 implies that h is smooth from above of order 0 if and only if σlh is
vanishing of order 0. It remains to prove the statement for other cases. We will
give details to show that for each α > 0, h is smooth from above of order α if and
only if σlh is vanishing of the same order. The proof for the equivalence between
strongly smooth of h and strongly vanishing of σlh is similar.

Let α > 0. We first show that if σlh is vanishing of order α then h is smooth
from above of the same order.

Consider D as the hyperbolic plane. Let Q̃ be a quadruple consisting of four
points a, b, c, d arranged on the unit circle S1 in the counterclockwise direction
satisfying that cr(Q̃) = 1 and |b− c| and |d− c| are the two smallest lengths among
|b− a|, |c− b|, |d− c| and |a− d|.

Let β be the common perpendicular geodesic segment to the geodesics ab and
cd and β′ be the common perpendicular geodesic segement to bc and da. Note that
the maximal Euclidean distance from a point on β (or β ′) to the boundary circle

is O(smin(Q̃)).

In order to estimate the cross ratio cr(h(Q̃)) of the image quadruple h(Q̃), we
need to consider the relative patterns between the lamination L and the quadruple
Q̃. The following two cases are crucial. One case is that there is a geodesic in L
which connects the arc (b, c) to the arc (d, a), and the other case is that there is
a geodesic in L which connects the arc (c, d) to the arc (a, b). There may be no
geodesic in L connecting (b, c) to (d, a) nor any geodesic in L connecting (c, d) to
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(a, b), but this situation can be included in the first or second case. We give the
details for the first case. The proof for the second case is similar.

In the first case, let LI ,LII ,LIII ,LIV and LV be the same as they are defined
in the proof of Proposition 5. First notice again that the motion of a or b under the
earthquake map E along the lines in LII or LIV only decreases the cross ratio of Q̃.
Therefore the cross ratio cr(h(Q̃)) is less than or equal to the cross ratio cr(E ′(Q̃)),
where E′ is the new earthquake obtained from E by omitting the earthquake motion
along the geodesic lines in L \ (LI ∪ LIII ∪ LV ). Let EIII (resp. EV ) denote the
earthquake obtained from E′ by omitting the earthquake motion along the lines in
L \ LIII (resp. L \ LV ) and fixing c, d, a (resp. a, b, c).

By Lemma 2 and the fact that the maximal Euclidean distance from a point on
β to the boundary circle is O(smin(Q̃)),

σ(LI) = σ(β) = C0O(smin(Q̃)α).

Let p denote the intersection point between ac and bd. Let z0 = p and take a
sequence {zn}∞n=0 of the points on pd such that the hyperbolic distance between
adjacent points zn and zn+1 is 1 for each n ∈ {0} ∪ N. For each n ∈ {0} ∪ N, let
ln = xnyn be the geodesic perpendicular to pd, and assume x0 = c, xn, n ∈ N,
lie on the arc (c, d) in counterclockwise direction, and y0 = a, yn, n ∈ N, lie on
the arc (d, a) in clockwise direction. Now divide the geodesic lines of LV into the
same groups Ln, n ∈ {0} ∪N, as we have done in the proof of Proposition 3. Then

σ(Ln) = C2O(smin(Q̃)α) for each n ∈ {0} ∪ N. Therefore

0 ≤ ln cr({a, b, c, EV (d)}) ≤ C1C2O(smin(Q̃)α).

Similarly, one can show

0 ≤ ln cr({a,EIII(b), c, d}) ≤ C1C2(smin(Q̃)α).

The same method used to prove Proposition 5 shows

ln cr(h(Q)) ≤ (C0 + 2C1C2)O(smin(Q̃)α).

In the second case that there exists a geodesic line in L connecting the arc (c, d)
to the arc (a, b), a similar method shows

ln cr(h(Q)) ≤ (C0 + 2C1C2)O(smin(Q̃)α).

Together, we have shown that if σlh is vanishing of order α then h is smooth from
above of the same order.

It remains to show that if h is smooth from above of order α then σlh is vanishing
of the same order. The proof goes as the same as the proof of part (i) in the proof

of Theorem 2 plus showing that smin(A
−1(Q̃)) = O(δ(D)), which is indeed true.

We omit the details here. ¤

Now let Q denote a quadruple consisting of four points a, b, c, d arranged on S1

in counterclockwise direction with cr(Q) = 1. Let β (resp. β ′) be the common
perpendicular geodesic segment to ab and cd (resp. bc and da). Note that the
maximal Euclidean distance from a point on β (or β ′) to the boundary circle is
O(smax(Q)) and the maximal Euclidean distance from a point on the geodesic line
ac (or bd) to the boundary circle is also O(smax(Q)). Applying the above method,
which is used to prove that for each α > 0 if σlh is vanishing of order α then h is



22 JUN HU

smooth from above of the same order, one can also show that for each α > 0 if σlh
is vanishing of order α then

| ln cr(h(Q))| = O(smax(Q)α)

for all quadruples Q = {a, b, c, d} with cr(Q) = 1. This is Theorem 6.
Similarly one can prove Corollary 3 by using the quadruple Q with cr(Q) = 1

3 .
In the final part of this section, we show Theorem 7. We first introduce a

proposition proved by Sullivan in [7].

Proposition 6 ( [7]). For each 0 ≤ α < 1, a homeomorphism h : R → R is Sullivan
smooth of order α if and only if h is a diffeomorphism and φ = lnh′ is α-Hölder
continuous. Furthermore, h is strongly Sullivan smooth of order α if and only if h
is a diffeomorphism and the α-Hölder constant of φ = lnh′ is a little o of the scale.

The following lemma is due to a similar result in [2].

Lemma 9. Let 0 ≤ α < 1 and suppose that h : R → R is Sullivan smooth of order
α. Let C > 0 and suppose that a quadruple Q of four points a < b < c < d on the
real line satisfies cr(Q) = 1, |d−a| < C, and |b− c| and |c−d| are the two smallest
lengths among |a− b|, |b− c| and |d− c|. Then

| ln cr(h(Q))| = O(smin(Q)α),

where the constant O depends on C and the α-Hölder constant of φ. Furthermore,
if h is strongly Sullivan smooth of order α then

| ln cr(h(Q))| = o(smin(Q)α).

Proof. Let L = |b − a|,M = |c − b|, R = |d − c| and T = |d − a|, and h(L) =
|h(b)− h(a)|, h(M) = |h(c)− h(b)|, h(R) = |h(d)− h(c)| and h(T ) = |h(d)− h(a)|.
Since cr(Q) = LR

MT
= 1, L

M
= T

R
> 1 and R

M
= T

L
> 1. Furthermore, R

M
=

T
L

= L+M+R
L

≤ 3 since M and R are the two smallest ones among L,M and R.

Therefore, 1 < R
M
≤ 3.

We will give the details to show the first half of the lemma, the proof for the
second half only needs a slight modification. We also assume α > 0. When α = 0,
the proof is in fact quite easy.

Applying Proposition 6 and the mean value theorem,

| ln h(R)

h(M)
/
R

M
| = O(Mα).

Now we estimate ln cr(h(Q)). Rewrite ln cr(h(Q)) as

ln cr(h(Q)) = ln
cr(h(Q)

cr(Q)
= ln

h(L)h(R)
h(M)h(T )

LR
MT

= ln

h(L)
h(T )

L
T

+ ln

h(R)
h(M)

R
M

.

It remains to show that ln h(L)
h(T )/

L
T

is a big O of Mα. If M
L
≥ δ for a positive

constant δ, then L is commensurable to M and R, and hence Proposition 6 and
the mean value theorem imply

| ln h(L)
h(T )

/
L

T
| = O(Mα),
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where the constant O depends on δ and the α-Hölder constant of φ. When M
L

is
sufficiently small, rewrite

ln

h(L)
h(T )

L
T

= ln
T
L

h(T )
h(L)

= ln
1 + M

L
+ R

L

1 + h(M)
h(L) + h(R)

h(L)

.

Clearly h(M)
h(L) ≤ M

L
eO(Lα) and L ≤ C. If M

L
is sufficiently small, then h(M)

h(L) is also

sufficiently small. One can see that R
L

and h(R)
h(L) are also sufficiently small. Then

| ln
h(L)
h(T )

L
T

| = O([
M

L
−h(M)

h(L)
]+[

R

L
−h(R)
h(L)

]) = O(
M

L
[1−h(M)

h(L)
/
M

L
]+

R

L
[1−h(R)

h(L)
/
R

L
])

= O(
M

L
O(Lα) +

R

L
O(Lα)) = O((

M

L
)1−αMα + (

R

L
)1−αRα) = O((smin(Q))α).

It completes the proof. ¤

Now we show Theorem 7.

Proof. Let S1 = {eiθ : 0 ≤ θ < 2π} and U1 = S1 \{1}, U2 = S1 \{i}, U3 = S1 \{−1}
and U4 = S1 \ {−i}. For each 1 ≤ n ≤ 4, let xn = S1 \ Un and define

Φn : Un → R : z 7→ z + xn
i(z − xn)

.

Consider Un, n = 1, 2, 3, 4, as a open cover of S1 and Φn, n = 1, 2, 3, 4, as coordinate
charts.

Given a quadruple Q of four points a, b, c, d arranged on the circle in counter-
clockwise direction, without loss of generality, we assume sminQ is small enough
and |b− c| and |c− d| are the two smallest lengths among |b− a|, |c− b|, |d− c| and
|a− d|. There exists Uk for some 1 ≤ k ≤ 4 such that Φk(Q) is contained in an in-
terval centered at the origin with length no longer than a constant C, where C only
depends on the coordinate charts. Therefore smax(Φk(Q)) ≤ C and smin(Φk(Q))
is commensurable with smin(Q).

Applying Lemma 9 to the composition h̃ = Φj ◦ h ◦ Φ−1
k , we have

| ln cr(h(Q))| = | ln h̃(Φk(Q))| = O((smin(Φk(Q)))α) = O((smin(Q))α).

This completes the proof. ¤
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