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EARTHQUAKE CURVES
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Abstract

The first two parts of this paper concern homeomorphisms of the circle, their
associated earthquakes, earthquake laminations and shearing measures. We prove
a finite version of Thurston’s earthquake theorem [9] and show that it implies
the existence of an earthquake realizing any homeomorphism. Our approach gives
an effective way to compute the lamination. We then show how to recover the
earthquake from the measure, and give examples to show that locally finite measures
on given laminations do not necessarily yield homeomorphisms. One of them also
presents an example of a lamination L and a measure σ such that the corresponding
mapping hσ is not a homeomorphism of the circle but h2σ is.

The third part of the paper concerns the dependence between the norm ||σ||Th
of a measure σ and the norm ||h||cr of its corresponding quasisymmetric circle
homeomorphism hσ. We first show that ||σ||Th is bounded by a constant multiple
of ||h||cr. Conversely, we show for any C0 > 0, there exists a constant C > 0
depending on C0 such that for any σ, if ||σ||Th ≤ C0 then ||h||cr ≤ C||σ||Th.

The fourth part of the paper concerns the differentiability of the earthquake
curve htσ, t ≥ 0, on the parameter t. We show that for any locally finite measure
σ, htσ satisfies the nonautonomous ordinary differential equation

d

dt
htσ(x) = Vt(htσ(x)), t ≥ 0,

at any point x on the boundary of a stratum of the lamination corresponding to
the measure σ. We also show that if the norm of σ is finite, then the differential
equation extends to every point x on the boundary circle, and the solution to the
differential equation an initial condition is unique.

The fifth and last part of the paper concerns correspondence of regularity con-
ditions on the measure σ, on its corresponding mapping hσ, and on the tangent
vector

V = V0 =
d

dt

∣

∣

t=0
htσ.

We give equivalent conditions on σ, hσ and V that correspond to hσ being in
Diff 1+α classes, where 0 ≤ α < 1.
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Introduction

The earthquake theorem of Thurston gives a way to break down the data that
determine an orientation preserving homeomorphism of the circle into three parts,
a lamination, a shearing measure on that lamination and a normalization. If we
consider two homeomorphisms A ◦ h and h where A is a Möbius transformation
to be in the same class, then it is unnecessary to mention the normalization; the
class of h uniquely determines and is determined by its lamination L and its left
shearing measure σ.

The first step in finding the earthquake for the class of h is to construct its
lamination. The second step is to find a Möbius transformation ET for each stratum
T of the lamination which has the following properties:

(1) For each pair of strata T1 and T2 of the lamination, E−1
T1
◦ET2

is a hyperbolic
Möbius transformation whose axis separates T1 and T2 and moves T2 to the
left as viewed from T1.

(2) For every point p on the circle and on the boundary of a stratum T, ET (p) =
h(p).
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The third step is to construct the shearing measure σ from E. In [9] Thurston
carries out each of these steps, and shows that the homeomorphism h uniquely
determines the measure σ.

In the first two sections of this paper we give an alternative approach to these
steps based on the finite earthquake theorem. Then we go on to a fourth step,
namely, we describe a procedure by which h = hσ can be recovered from σ. This
procedure applies to any locally finite measure defined on a lamination. However,
the map hσ obtained from σ will in general only be a homeomorphism of a dense
subset of the circle into the circle. We have not found the exact condition on σ
that guarantees its associated map h is continuous everywhere. We do provide an
example that shows h2σ can be a homeomorphism of the circle while hσ is not.

In the third section we study the quantitative dependence between the Thurston
norm of a measure and a cross-ratio distortion norm of its corresponding homeomor-
phism. The Thurston norm ||σ||Th of a measure σ is defined to be the supremum
over all hyperbolic geodesic segments β of length one in the hyperbolic plane of
the total mass of the lines in the support of σ that intersect β. The cross-ratio
distortion norm ||h||cr of a homeomorphism h is defined as

||h||cr = sup
Q
|log |cr(h(Q))|| ,

where the supremum is taken over all quadruples Q = (a, b, c, d) of points arranged
in counterclockwise order on the circle such that

cr(Q) =
(b− a)(d− c)

(c− b)(d− a)
= 1.

We first show that ||σ||Th is bounded by a constant multiple of ||h||cr. In order
to show the existence of such a constant, we associate each geodesic segment β
with two suitable quadruples such that the cross-ratio distortion on one quadruple
controls the total mass of β when ||h||cr < 1, and the cross-ratio distortion on
another quadruple controls the total mass of β when ||h||cr ≥ 1. Conversely, we
show that for any constant C0 > 0, there exists a constant C > 0 depending on C0

such that for any σ, if ||σ||Th ≤ C0 then ||h||cr ≤ C||σ||Th. The work used to achieve
this result involves the approximations of hσ by finite earthquake maps hσn and
the study of the tangent vector V n

t of the curve htσn , 0 ≤ t ≤ 1, of finite earthquake
maps to the variable t. We show that the Thurston norm of the pushforward h∗tσnσn
of σn by htσn is bounded by a constant for 0 ≤ t ≤ 1, where the constant is also
independent of n but depends on C0. And therefore the Zygmund norm of V n

t has a
uniform upper bound for 0 ≤ t ≤ 1. By integrating the differential equation which
htσn satisfies, we prove that the cross-ratio distortion norm ||hσn ||cr ≤ C1||σn||Th
for a constant C1 depending on C0. Since ||σn||Th is also bounded by a constant
multiple of ||σ||Th, by passing to the limit we complete the proof.

The main result of the fourth section is to extend the ordinary differential equa-
tion of the curve of finite earthquake maps to the curve determined by any locally
finite measure σ. Furthermore, we show that if the Thurston norm of σ is finite,
then the differential equation extends to any point x on the boundary circle, and
the earthquake curve is the unique solution to the differential equation if it is nor-
malized.

In the last part of the paper, we first do further study of regularity of the tangent
vectors Vt(x) to an earthquake curve determined by a measure σ which satisfies
vanishing conditions near the boundary circle. Then we apply them to characterize
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different smoothness classes of circle homeomorphisms. At the end, we show that
the characterizations are also equivalent to the corresponding vanishing conditions
on the initial tangent vector to the earthquake curve.

In the preparation of this manuscript we are grateful to Bill Harvey and Dragomir
S̆arić for helpful discussions.

1. Homeomorphisms

In this section we begin by proving an earthquake theorem for cyclic order pre-
serving maps of a finite subset of the circle into the circle. We go on to show how
this theorem implies the existence of a unique earthquake corresponding to any
homeomorphism of the circle. After that we show how the earthquake determines
a nonnegative shearing measure supported on the lines of its lamination and how
this measure gives back the homeomorphism.

1.1. Earthquakes on finite sets. Let S be a finite subset of the unit circle con-
sisting of n ≥ 4 points and h a cyclic, order-preserving map from S into another
finite subset h(S) of the unit circle. In this section we show that data determining
h up to post-composition by a Möbius transformation can be broken into two parts.
The first part is a finite lamination and the second part is a nonnegative measure
supported on the lines of the lamination.

A finite lamination L for S is a collection of n − 3 hyperbolic lines joining the
points of S so that no two of the lines in L intersect and no line of L joins adjacent
points of S. Points a, b in S are adjacent if they are the endpoints of an interval
on the circle that contains no other points of S. L determines a decomposition of
the disc into n− 2 triangles all of whose vertices are points of S. Let Ik, 1 ≤ k ≤ n,
be the intervals on the unit circle whose endpoints are the points of S, labeled in
counterclockwise order. The triangles of the lamination are triangles whose sides
are the n intervals Ik and n − 3 non-intersecting hyperbolic lines Lj joining pairs
of non-adjacent points of S. We call the sides Ik boundary sides and the sides Lj

interior sides.
The triangles T of this decomposition are of three types. They can have two

boundary sides, one boundary side or no boundary sides. In the first case, we call
such a triangle a border triangle and denote the total number of these by t2. In
the second case, we call such a triangle a boundary triangle and denote the total
number of these by t1. Finally, in the third case, we call such a triangle an interior
triangle and denote the total number of these by t0.

If the vertices of a border triangle are labeled a, b and c in counterclockwise
order, then the line joining a to c is one of its sides and the other two sides are
intervals from a to b and from b to c. In this case we call the point b the midpoint of
the border triangle. Note that the points a, b, and the points b and c are adjacent
in S.

We will need the following lemma about finite laminations.

Lemma 1. Let L be a finite lamination on a subset S of the unit circle containing
n points, where n ≥ 4. Then the decomposition of the disc by L into triangles must
contain at least two border triangles. Moreover, t2 = t0 + 2 and there is always a
border triangle inside any half-plane bounded by a line in L.
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Proof. The total number of boundary sides is

n = 2t2 + t1.

The total number of triangles in the decomposition of the disc determined by L is

n− 2 = t0 + t1 + t2.

Eliminating n from these two equations yields

t2 = t0 + 2.

In particular, there are always at least two border triangles.
If we look at any line L of L we can consider the finite subset S ′ of S consisting

of the two endpoints a and c of L and all of the points of S lying on the boundary
of one of the half-planes H1 bounded by L and just one of the points b of S lying on
the boundary of the other half-plane H2 bounded by L. Let L′ be the lamination
of the disc consisting of the line L and the lines of L that lie in H1. The triangle
with vertices a, b, and c is one border triangle for the decomposition of the disc
induced by the L′. Another border triangle must lie in H1. ¤

By drawing a few examples, one can see that there are always n − 2 triangles.
The number of topological types of laminations for a set S of size n ≥ 4 is the
Catalan number

1

n− 1

(

2n− 4
n− 2

)

.

In particular, when n = 4 there are two types, when n = 5, there are 5 types, and
when n = 6, there are 14 types. The fourteen different types for the case n = 6 are
illustrated in Figure 1.

Now assume we are given a finite lamination L for a subset S of the circle with
n ≥ 4 points. Also assume we are given a nonnegative measure σ on L. It is the
assignment of a nonnegative number µj to each of the lines Lj of the lamination.
We can also view σ as an atomic measure on S1×S1 \(the diagonal). Each point in
the support of σ is a pair of endpoints of a line L in L. The support of σ coincides
with the pairs of endpoints of those lines Lj of L for which the weight µj is positive.

By leftward isometric shearing along the lines of L, we now describe how such a
measure σ determines a map hσ of the closed disc whose restriction to S is a cyclic
order-preserving map h of S into the unit circle. hσ is a map of the interior of the
disc with the following properties:

(1) inside any one of the triangles hσ is an isometry and
(2) if L is the common hyperbolic line of two neighboring triangles T1 and T2,

the points of T2 move to the left compared to the points of T1.

Let T1 be any one of the triangles whose sides are intervals Ik on the boundary of
the unit circle or interior lines Lj in L. At least one of the sides of T1 must be a line
L1 in L. Then L1 is also the side of a second triangle T2. Construct the hyperbolic
Möbius transformation C1 that preserves the unit circle, that has fixed points at
the two endpoints of L1 and that moves points in the interior of L1 a hyperbolic
distance µ1 to the left, relative to T1. Let a1 and b1 be the left and right endpoints
of L1 as viewed from the interior of the triangle T1. Then C1 is determined by the
equation

C1(z)− b1
C1(z)− a1

= λ1
z − b1
z − a1

,
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Figure 1. Different topological types of laminations on six points.
The upper left figure is a star, the upper right a fan, the lower left
a left accordion, and the lower right a right accordion. With this
labeling, there are two stars, six fans, three left accordions, and
three right accordions, making a total of fourteen.

where µ1 = log λ1. In the special case that µ1 = 0, the transformation C1 is the
identity and otherwise λ1 > 1. We call C1 the comparison map on the line L1.

We apply the transformation C1 to all of the triangles lying on the side of L1

opposite to the triangle T1. All of the vertices and all of the edges of these triangles
are then moved. If T2 is a border triangle, the third vertex of T2 which is not equal
to either of the endpoints of L1 is moved finally by the transformation C1. In the
other case, T2 must have another side L2 that belongs to L. It has endpoints a2

and b2, one of which is equal to either a1 or b1. Now, define C2 to be the hyperbolic
Möbius transformation with fixed points at C1(a2) and C1(b2), with translation
length µ2 and that moves the line C1(L2) to the left relative to the triangle C1(T2).
We continue in this way down every branch of the tree of triangles in the lamination.
In the end we obtain a map hσ of the closed disc whose restriction to S is a cyclic,
order-preserving map from S to another finite set in the unit circle. hσ takes every
line of L to the lines of another lamination h(L), and we call hσ the finite left
earthquake for the finite lamination L. The next lemma shows hσ is determined, up
to postcomposition by a Möbius transformation, by L and the totality of weights
assigned to each of the lines in L.

Lemma 2. Let a finite lamination and measure on this lamination be given, con-
taining triangles T1 and T2. Let h1 and h2 be the cyclic, order-preserving maps
from S into the unit circle constructed as above, starting at the triangles T1 and T2,
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respectively. Then there is a Möbius transformation B preserving the unit circle
such that B ◦ h1 = h2.

Proof. In the lamination of the disc by triangles, there is a unique chain of triangles
that join T1 to T2 with successive comparison maps C1, ..., Ck. The map h1 fixes
T1 and h2 fixes T2 and, thus, h2 postcomposed by B = Ck ◦ Ck−1 · · ·C1 coincides
with h1 on T2. By following along other comparison maps that lead to any point of
S from the interior of T2, we find that B ◦ h2 = h1 at every point of S. ¤

The point of following theorem is that every cyclic, order-preserving map of a
finite subset of the unit circle into the unit circle is realized, up to post-composition
by a Möbius transformation, by leftward isometric shearing along a finite lamination
in amounts corresponding to the nonnegative weights specified by a measure on the
lines of this finite lamination. We shall call a map constructed in this way a finite
left earthquake.

A stratum of a finite earthquake is a maximal connected union of triangles in the
lamination such that the shearing along neighboring triangles is zero. If shearing
weights are positive along each of the n − 3 lines, then each of the n − 2 triangles
is a stratum.

Of course, a finite right earthquake is a mapping created in the same way except
that all the shearing is to the right instead of to the left. The measure and lines
along which this measure is nonnegative are uniquely determined by the map.

Theorem 1. (Finite earthquake theorem) Assume h is a cyclic, order pre-
serving map from a finite subset S of the unit circle into the unit circle. Then
there exists a finite lamination L for S and a nonnegative measure σ supported on
the pairs of endpoints of lines in L, such that, up to postcomposition by a Möbius
transformation, h is the restriction to S of the finite left earthquake hσ. Moreover,
the set S and the map h uniquely determine the measure σ.

The parallel statement is also true for the realization of a given cyclic, order-
preserving map h from a finite subset S of the unit circle into the circle by a finite
right earthquake.

Proof. Suppose a, b, c and d are four points of S labelled in counterclockwise order
and let A be the Möbius transformation that maps h(a), h(b), h(c) to a, b, c, respec-
tively. If d′ = Ah(d)), then viewed from the point b, d′ lies either to the right or
to the left of d. The amount that d′ is displaced from d can be measured by the
multiplier of the Möbius transformation B that fixes a and c, and maps d to d′ and
is given by the formula

B(z)− a

B(z)− c
= λ

z − a

z − c
.

If λ ≥ 1, we say d′ is moved to the left of d by the amount log λ, if λ ≤ 1, we say
d′ is moved to the right of d by the amount log(1/λ), and if λ = 1, then d′ = d.

Lemma 3. Given the map h and any four points a, b, c and d in S and arranged
in counterclockwise order, either h moves d to the left relative to a, b and c, or h
moves a to the left relative to b, c and d.

Proof. Let Q = {a, b, c, d} and cr(Q) be the cross-ratio

(d− c)(b− a)

(c− b)(a− d)
.
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Then the amount by which h moves d to the left is log λ where λ = λ(a, b, c, d) is
the ratio of cross-ratios,

cr(h(Q))

cr(Q)
.

But, obviously, λ(a, b, c, d) = 1/λ(b, c, d, a). ¤

This lemma proves the Theorem when S has 4 points, for either h moves d to
the left relative to a, b and c or it moves a to the left relative to b, c and d. In the
former case, we let the lamination L consist of one line Lac joining a to c and the
weight assigned to this line is log λ(a, b, c, d). In the latter case, we let L consist of
the line Lbd joining b to d and the weight assigned to this line is λ(b, c, d, a).

The proof of the existence part of the theorem for n > 4 proceeds by induction.
One assumes the lamination and the measure exists for every homeomorphism h
and every finite subset of the circle with n− 1 or fewer points. In order to find the
finite lamination for a set S of size n we need the following lemma.

Lemma 4. For every triple T = {a, b, c} of points in S select a Möbius transfor-
mation AT such that AT ◦ h fixes a, b and c. There exists a triple T of points in S
so that every point of S \ {a, b, c} is either fixed or moved to the left by AT ◦ h.

Proof. For any point x in S, the set S \ {x} contains n− 1 points and by induction
we can assume the map h restricted to S \{x} is realized by a finite left earthquake
on a finite lamination for S \ {x}. By Lemma 1 the lamination for the earthquake
on S \ {x} has at least two border triangles, T1 and T2. Assume the points of one
of these border triangles are labeled in the counterclockwise direction by a, b and
c, and that b is the midpoint. The point x could be on the border side from a to b
or on the border side from b to c or in the complement of these two sides. We can
assume that it is in the complement, because if it is not in the complement for the
triangle T1, then it is necessarily in the complement for the triangle T2.

We can also assume h fixes the vertices a, b and c of a border triangle T for
the lamination on S \ {x} and all of the points of S \ {x} are moved to the left
by h, relative to to a, b and c. Also assume the points a, b and c are labelled in
counterclockwise order. There are three cases. Either x′ = h(x) lies to the left of
x, x′ = x, or x′ lies to the right of x. In the first two cases the triangle T satisfies
the conditions of the lemma. In the third case, we use the triangle T̃ with vertices
x, a and b. Now let A be the Möbius transformation that moves x′ back to x and
fixes a and b. Then A moves all of the points in the counterclockwise interval from
b to a in the counterclockwise direction. Thus, A ◦ h and the triangle determined
by these three points satisfies the conditions of the lemma. ¤

This lemma enables one to find inductively the lamination L for a given finite
set S and mapping h. To construct a line of L, one considers all of the triangles
Tabc with the properties of Lemma 4. For each such triangle one calculates the
minimum leftward motion of the points of S \ {a, b, c}. If this minimum is as small
as it can be among all such triangles, then the line Lac is a line of L. Subsequent
lines of L are found by continuing the same process for the homeomorphism h
restricted to the set S \ {b}. One of the authors [NL] has written a program that
finds the lamination for a given finite set S and a given h. We refer to the website
http://comet.lehman.cuny.edu/lakic/html/program.html.

For the remainder of the proof of the theorem we refer to page 343 of [4]. ¤
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1.2. Earthquakes on the circle. In this section we recall from [4] how the finite
earthquake theorem can be used to show that any orientation preserving home-
omorphism h is determined, up to postcomposition by a Möbius transformation,
by a lamination and a totality of leftward comparison maps for this lamination.
Conversely, if the lamination and the comparison maps are known to come from
a homeomorphism, then, up to postcomposition by a Möbius transformation, the
homeomorphism can be reconstructed from the lamination and the comparison
maps.

First we need two definitions.

Definition 1. A geodesic lamination L is a closed subset of the hyperbolic plane
written as a disjoint union of non-intersecting hyperbolic lines. The components
of the complement in the hyperbolic plane of the lamination are its gaps and the
completions of these gaps in the Poincaré metric are called the complete gaps. The
gaps together with the lines in L are its strata.

Obviously the union of all of the strata for a lamination is the whole disc, a
lamination determines its strata and the totality of its strata determine the lami-
nation. Also, if we are given two laminations, L and L′, and every stratum of L is
a stratum of L′, then L = L′.

The intersection of the unit circle with the closure of any stratum T of L is a
closed set of points bd(T ) on the unit circle. T is reconstructed from bd(T ) by
taking the convex hull of the union of all hyperbolic lines joining pairs of points of
bd(T ). No hyperbolic line in the interior of T is in L and every hyperbolic line on
the boundary of T is in L.

Definition 2. If L is a lamination in the hyperbolic plane, a L-left earthquake map
is an injective and surjective map E from the hyperbolic plane to the hyperbolic
plane that is an isometry on each stratum of L. If T1 and T2 are two strata of L,
then the comparison map cmp(T1, T2) = (E|T1)

−1 ◦ (E|T2) must be a hyperbolic
transformation with axis that weakly separates T1 from T2, and moves points of T2

to the left relative to T1.

A hyperbolic line L weakly separates T1 from T2 if any path joining a point in
T1 to a point in T2 necessarily intersects L. In case a stratum T1 is a single line on
the boundary of a stratum T2, we allow the comparison map cmp(T1, T2) to be the
identity, and otherwise we require the translation length of cmp(T1, T2) be strictly
positive.

Theorem 2. (General earthquake theorem)(Thurston) Let an orientation
preserving homeomorphism h from the unit circle to itself be given. Then there is
a left earthquake map E associated to a lamination L, such that h is the restriction
of E to the boundary of the unit disc. h uniquely determines the lamination L.
Moreover, h determines all of the isometries E|T for every stratum T in L with
the possible exception of the choices for E on any leaf L in L where E has a
discontinuity. If there is a discontinuity, the possible choices for the isometry E|L
all have the same image but may differ by translations ranging between the limiting
values for E on the two sides of L.

The parallel statement is also true for the realization of a given homeomorphism
h of the unit circle by a right earthquake.

Proof. We use as a model for the hyperbolic plane the upper half-plane H, and
take an ascending sequence of finite subsets Sn of R whose union is dense in R.
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For each set Sn we form the corresponding finite earthquake measure σn and the
finite earthquake maps hn = hσn . Since the restriction of hn to Sn coincides with
h restricted to Sn and since both hn and h are monotone, hn and h−1

n converge
uniformly on the unit circle to h and h−1, respectively.

For each n, let Tn be a triangular part of a stratum associated to a finite lamina-
tion of the finite left earthquake map hn that coincides with h on Sn. Let vertices
of Tn be an, bn and cn. Then the restriction of hn to Tn is equal to the Möbius
transformation Mn for which M−1

n ◦hn fixes an, bn, and cn. M
−1
n ◦hn moves every

other point of Sn to the left. By passing to a subsequence, we may assume an → a,
bn → b, and cn → c. If the points a, b and c coincide, then we say that the sequence
of triangles Tn is degenerating. If all three of the points a, b and c are distinct,
then since Mn(an) = h(an), Mn(bn) = h(bn) and Mn(cn) = h(cn), the sequence
Mn is a normal family, and by passing to another subsequence, we may assume Mn

converges to a Möbius transformation M. Taking the limit as n → ∞, we obtain
M(a) = h(a), M(b) = h(b), and M(c) = h(c). If T is the triangle with vertices at
a, b and c, we say that M : T →M(T ) is the limiting map of the sequence Tn.

Suppose now that card{a, b, c} = 2. By relabeling we may assume a 6= b = c, and
by passing to a subsequence again, we may assume M−1

n (z) converges to F (z) for
all z. Either F is a Möbius transformation or F (z) equals the same boundary point
for all but one value of z. Since we are using H as the model for the hyperbolic
plane, we may take an, bn, and cn to be real numbers with an < bn < cn for all n,
and so a < b = c. If F is not a Möbius transformation, then either M−1

n (z)→ a for
all z ∈ H \ {h(c)} or M−1

n (z)→ c for all z ∈ H \ {a}. Let p be a point contained in
one of the sets Sn0

such that a < p < c. Note that p since Sn0
⊂ Sn, p is all of the

sets Sn for n > n0. Since M−1
n ◦ h moves all points of Sn to the left (with respect

to the triangle Tn), we have M−1
n ◦ h(p) > p for sufficiently large n. Therefore

M−1
n (h(p)) cannot converge to a. If q is a point contained in one of the sets Sn such

that q < a, then M−1
n ◦ h(q) > q. Therefore M−1

n (h(q)) cannot converge to c. This
implies that F must be a Möbius transformation, and therefore Mn converges to a
Möbius transformation M = F−1. If T is the hyperbolic line with endpoints at a
and c, we say that M : T →M(T ) is a limiting map of the sequence Tn.

By taking subsequences enough times, we may assume every non-degenerate se-
quence of triangles Tn has a limit T that is either a triangle or a line and the Möbius
transformations Mn converge to a Möbius transformation M = M(T ) associated
to T. Let A be the set of all limiting maps M : TM 7→M(TM ) of non-degenerating
sequences Tn. The basic properties of the set A are summarized in the following
three lemmas.

Lemma 5. H ⊂
⋃

M∈A TM .

Proof. Let p be a point in H. Pick a triangle Tn of the finite lamination for the finite
earthquake associated to the restriction of h to Sn, such that p is in the closure of
Tn. Since all of the triangles Tn contain the point p, the subsequences for which Tn
converges cannot degenerate, and the limiting map M contains p in its domain. ¤

Lemma 6. For every limiting map M, the composition M−1 ◦h fixes the endpoints
of TM and moves every other point to the left.

Proof. From the finite earthquake theorem, the map M−1
n ◦ h fixes the endpoints

of Tn and moves every other point of Sn to the left. Since the union of ascending
sets Sn is dense in R, the result follows by taking the limit as n→∞. ¤
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Lemma 7. Let l1 and l2 be distinct geodesic lines such that l1 ⊂ TM1
and l2 ⊂ TM2

for two limiting maps M1 and M2. If M1 6= M2, then l1 does not intersect l2 in H,
and M−1

2 ◦M1 is a hyperbolic Möbius transformation whose axis separates l1 and
l2.

Proof. The proof is based on the reasoning from the proof of Lemma 4. If a and b
are the endpoints of l1 and c and d are the endpoints of l2, such that a < c < b < d,
then the composition E−1

2 ◦E1 would have to be a Möbius transformation fixing at
least four points. Therefore M−1

2 ◦M1 is the identity map, a contradiction. Similar
reasoning shows that if a < b < c < d, then M−1

2 ◦M1 has fixed points in the
intervals [a, b] and [c, d]. ¤

Let L0 be the set of all geodesic lines L such that L is a subset of some TM .
For every L in L0 choose one of the limiting maps M = M(L) with L ⊂ TM .
Define an equivalence relation on the elements of L0 be letting L1 be equivalent
to L2 if M(L1) = M(L2). For every equivalence class {L} let ∂(hull({L})) be the
boundary of the convex hull of all lines L in {L}. Let L be the union over all of
these equivalence classes of all lines in ∂(hull({L})). Since the sets TM are limiting
sets, clearly, L0 is closed. Therefore, L is also closed, and by Lemma 7, L is a
disjoint union of geodesics. We conclude that L is a lamination.

We define the map E on each stratum of L by the following method. If a point
p belongs to the interior of some triangle TM , we let E(p) = MT (p). In the case
p belongs to a geodesic line L contained in some TM , we let E(p) = M(L)(p). By
Lemma 7, E is well-defined and E restricted to any stratum s of L is equal to a
single Möbius transformation Ms on that stratum. Lemma 5 implies E is defined
for all points p in H. Lemma 6 implies for every stratum s of L, the map M−1

s ◦ h
fixes the boundary points of s on R and moves all other points of R to the left. By
Lemma 7, E is an L-left earthquake. Let q be a point in R. If q is on the boundary
of some TE , then by Lemma 6, E(q) = h(q). If q is not on the boundary of any
TE , by Lemma 5 select a line or triangle TMk

that contains the point q+ i/k. Then
select a point qk on the boundary of TMk

that is closest to the point q+ i/k. Since
qk → q and E(qk) = h(qk), by taking the limit, we conclude that E(q) = h(q).
Therefore h is the restriction to the real axis of the earthquake E.

It remains to show uniqueness. Suppose E and E ′ are L-left and L′-left earth-
quakes yielding the same homeomorphism h. Let p be a point on a line L of L. Since
the union of the lines and gaps for L′ fill the hyperbolic plane, either p is in a line
L′ of L′ or p is in an open gap of L′. In the first case, L′ must equal L. If L′ were
not equal to L, then by considering their four endpoints a, b, c, and d, we would
find that h would have to move d both to the left and to the right relative to a, b,
and c. In the second case p is in the open gap G′, and the line L either crosses a
hyperbolic line bounding this gap or it lies in the interior of G′ and joins two points
in bd(G′). In the first case, we again find a line L′ in L that intersects L, and we
have just shown this leads to a contradiction. In the second case, L = Lab divides
G′ into two parts G′1 and G′2. Either there are lines of L that intersect boundary
lines of G′ or there are two gaps of L, G1 and G2 lying on the same sides of L
as G′1 and G′2, respectively. The gaps and lines of L cover G′1 and we can assume
none of the lines of L intersect the boundary lines of G′1, because no line of L can
intersect a line of L′. Thus either another line L1 of L is contained in G′1 or a gap
G of L has a boundary point c in common with a boundary point of G′1 that is
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not equal to either of the endpoints of L. Then E would move all the points on the
other side of L to the left relative to a, b and c, whereas E ′ holds the boundary
points of G′ fixed relative to a, b, and c. We conclude that L = L′, and E and E′

must agree on every stratum unless it happens to be a line of L where E and E ′

are discontinuous. ¤

1.3. Construction of shearing measures. In this section we assume a homeo-
morphism h of the circle and its associated left earthquake E with lamination L are
given. From this data we construct a nonnegative shearing measure σ for E. Let
M be S1×S1−{the diagonal} factored by the equivalence relation (a, b) ∼ (b, a).
The support of σ is the closed subset ofM consisting of pairs of endpoints of lines
in L.

To define σ it suffices to define the mass σ(I × J), where I and J are disjoint,
closed intervals in a sufficiently large class. If there are no lines of L joining I to J,
we let this mass be zero. If there is just one line l of L joining I to J, and if one
of the endpoints of that line is interior to either I or J, we let T1 be the stratum
on one side of l, T2 be the stratum on the other side, and we let σ(I × J) be the
translation length of E(T1)

−1 ◦E(T2). If both endpoints of that line meet endpoints
of I and J, we do not bother to define σ(I×J); we will still have a sufficiently large
class to determine the measure σ.

Otherwise, there are at least two lines in L joining I to J and let l1 be the
first and l2 be the last. Label them so that moving around in a counterclockwise
direction, the line l1, a subinterval of I1 of I, the line l2, and a subinterval of J1 of J
surround a topological rectangle and all of the lines of L that join I to J lie inside
this rectangle. Let β be the common perpendicular and β ′ a geodesic segment
containing β in its interior such that the length of β ′n equal the length of β plus 1

2n .
Let Pn be a sequence of finite subsets of β′n such that Pn∩β′n+1 is a subset of Pn+1,
such that the distance between any two adjacent points in β ′n is less than 1/2n, and
the union of the intervals between adjacent points covers β ′n. Assume T1, . . . , Tm
are strata of L arranged in order and such that each Tk contains the k-th point of
Pn. Let tk be the translation length of the comparison map E(Tk)

−1 ◦E(Tk+1) and
σn(Pn) =

∑m
k=0 tk.

If Qn is another sequence of finite subsets of β ′n having the same properties as
Pn, we use the following lemma to show that the sequences σn(Pn) and σ(Qn)
converge to the same limit.

Lemma 8. Assume LS and LT are nonintersecting axes of hyperbolic Möbius trans-
formations S and T with translation lengths τ(S) and τ(T ), and assume the axis
of S ◦ T separates LS and LT . Also assume the hyperbolic distance d from LS to
LT is small. Then

(1) τ(S) + τ(T ) ≤ τ(S ◦ T ) ≤ τ(S) + τ(T ) +O(min{τ(T ), τ(S)}d2).

Proof. We may assume S(z) = λSz, with λS ≥ 1 and fixed points at 0 and ∞.
Also we may assume T has fixed points at a and b with 0 < a < b = 1/a, and with
multiplier λT . The formula for T is

T (z) =
λT (b− a)(z − a)

(λT − 1)(z − a) + (b− a)
+ a.
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Thus,

S ◦ T (z) =
λSλT (b− a)(z − a)

(λT − 1)(z − a) + (b− a)
+ λSa.

Note that the repelling fixed point of S ◦T is a number x between 0 and a, and the
multiplier of a hyperbolic Möbius transformation is equal to its derivative evaluated
at its repelling fixed point. Thus, from the equation

(S ◦ T )′(x) =
(b− a)2λSλT

((λT − 1)(x− a) + (b− a))
2

we obtain

(2) τ(S ◦ T ) = τ(S) + τ(T )− 2 log

(

(b− a) + (λT − 1)(x− a)

b− a

)

.

We claim that

(3) 0 <

(

(b− a) + (λT − 1)(x− a)

b− a

)

< 1.

The right hand part of (3) follows from 0 < x < a < b and λT > 1. Since x is a
fixed point of S ◦ T,

x− λSa =
λSλT (b− a)(x− a)

(λT − 1)(x− a) + (b− a)
.

The left hand side of this equation is negative and the numerator of the fraction
on the right hand side is negative. Therefore, (λT − 1)(x− a) + (b− a) is positive
and we obtain the left hand part of (3). Therefore equation (2) implies the the left
hand part (1).

(4) τ(S ◦ T ) ≤ τ(S) + τ(T ) +O(τ(T )d2)

follows from (2) and the observations that |x− a| < a, b = 1/a,
∣

∣

∣

∣

x− a

b− a

∣

∣

∣

∣

≤
a2

1− a2

and when a is small, a ∼ d. The right hand part of (1) follows from (4) and the
same result applied to T−1 ◦ S−1. ¤

Associated to the finite sets Pn and Pn ∪ Qn there are translation lengths tj
and tjk such that

∑

k tjk ≤ tj . If dn is the maximum hyperbolic distance between
adjacent points in Pn, the preceding lemma implies tj ≤

∑

k tjk + tjd
2
n. Thus,

∑

j tj ≤
∑

j

∑

k tjk+ d2
n

∑

j tj . Since the last sum is bounded, this implies that the
difference between the sum of the translation lengths corresponding to the set Pn
and the sum of the translation lengths corresponding to the set Qn approaches zero.
We thus obtain a nonnegative number σ(I×J) for every pair of disjoint, closed sets
I and J. By taking countable unions and intersections we obtain a sigma-additive,
Borel measure σ on S1 × S1 \ {diagonal}.

To summarize, we have the following proposition concerning approximations of
σ, due to Thurston (see [9]).

Proposition 1. Let β denote a closed hyperbolic geodesic segment which is transver-
sal to the lamination L, P = {pk}

n
k=0 a partition of β, and tk the translation length

of the comparison map of the strata containing two adjacent points pk and pk−1.
Then σ(β) modulo a constant c(β) differs from σ(P) =

∑n
k=1 tk by an amount
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equal to O(σ(P)d(P)2), where d(P) is the maximal hyperbolic distance between two
adjacent points in P, and c(β) is independent of P.

2. Earthquake Measures

In this section we first show how any locally finite measure whose support is a
lamination produces a homeomorphism of a dense subset of the unit circle into the
unit circle. We go on to show that this construction of an earthquake is compatible
with the construction of the measure in the first section. Finally, we show that this
homeomorphism may not be extendable to a homeomorphism of the whole unit
circle.

2.1. Constructing earthquakes from measures. Let σ be a non-negative lo-
cally finite measure whose support is a lamination L. To construct a homeomor-
phism whose earthquake measure equals σ, we use finite approximations. Since the
construction is relatively long, we divide it into several steps.

Step I Atomic approximations of σ

Fix a geodesic line l such that l belongs to L. Without loss of generality, we work
in the upper half-plane model and assume l joins 0 to ∞. Let T1, T2, T3, . . . be an
enumeration of all strata of L that contain interior points. Since there are at most
countably many such strata and the boundary of each such stratum Ti can contain
at most countably many sides, there are at most countably many boundary sides
of strata with interior points. Let Q = {q1, q2, q3, . . .} be the collection of all such
sides in L. Choose a sequence of finite laminations Ln, such that

l ⊂ L1 ⊂ L2 ⊂ L3 ⊂ . . . ⊂ L,

in the following way. Divide the hyperbolic disc D(i, n) with center at i and radius
n into finitely many pieces, each with diameter less than 1

n . For every piece P that
has non-empty intersection with L, choose one line lP from L which intersects that
piece, and stipulate that lP belongs to a lamination L′n. Also add to L′n all lines
of Qn = {q1, q2, . . . , gn} ⊂ Q that intersect D(i, n). More precisely, L′n is the union
of L′n−1, the lines q from Qn which intersect D(i, n), and the lines lP . We say two
lines l1 in l2 in L′n are adjacent if no other line of L′n separates l1 from l2. Let γ
be a geodesic segment that joins l1 and l2. Divide γ into finitely many subsegments
Si, each with length less than 1

n . Let ei be an endpoint of some subsegment Si. If

there is a line l̃ in L passing through ei, we pick such a line l̃ and call it a special
line. If there is no such line, then there are two lines l̃1 and l̃2 in Q, such that the
subsegment of γ joining l̃1 and l̃2 contains the point e1 and does not intersect L. In
that case we say that both l̃1 and l̃2 are special lines. Let Ln be the set of all lines
in L′n plus all special lines obtained using this algorithm for every pair of adjacent
lines in L′n. This refinement Ln of L′n has the property that any two adjacent lines
l1 and l2 in Ln are either within distance 1

n or there are no lines in L separating l1
from l2.

Note that the following condition holds for every n. If D is a hyperbolic disc
with radius r ≥ 1

n and center c ∈ L whose distance to the point i is less than n,
then there is a line ln in Ln which intersects D.

To assign the atomic measures σn to the laminations Ln, we start with the line
l, and we let σn(l) = σ(l). Let l0 be any other line of the lamination Ln. If a and
c are two endpoints of l0 with a < c, then either both a and c are non-positive
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or both a and c are non-negative. Suppose that both a and c are non-negative.
The geodesic lines l0 and l are separated by the lines l0, l1, l2, . . . , lk = l in Ln.
The endpoints ai and ci of the lines li satisfy c ≤ c1 ≤ c2 ≤ . . . ≤ ck = ∞ and
a ≥ a1 ≥ a2 ≥ . . . ≥ ak = 0. We let

σn(l0) = σ([a1, a]× [c, c1])− σ(l1),

where σ([a1, a] × [c, c1]) is the σ−measure of the set of lines in L which have one
endpoint in [a1, a] and another in [c, c1]. In the special case when l1 = l, σn(l0) =
σ([0, a]×[c,∞])−σ(l). We define σ similarly on geodesic lines of Ln whose endpoints
are nonpositive.

The lamination L and the measure σn determine the finite earthquake map En.
We normalize En by letting En be equal to the identity mapping on the stratum
that belongs to the second quadrant and has l as a boundary side.

Step II Convergence of finite earthquakes

We first investigate the convergence of the sequence {h1, h2, h3, . . .} of earthquake
mappings on each line in Ln. Let l0 be any line of Ln. Suppose the endpoints of l0
are non-negative. Again observe that the geodesic lines l0 and l are separated by
the lines l0, l1, l2, . . . , lk = l in Ln, and the endpoints ai and ci of the lines li satisfy
c ≤ c1 ≤ c2 ≤ . . . ≤ ck =∞ and a ≥ a1 ≥ a2 ≥ . . . ≥ ak = 0.

To fix the values of hn on l0 we let

hn|l0 = Lk ◦ Lk−1 ◦ . . . ◦ L1 ◦ L0,

where Li is a hyperbolic Möbius transformation with translation length σn(li),
attracting fixed point at ci, and repelling fixed point at ai. Similarly, we prescribe
the values of hn on the lines of Ln with non-positive endpoints, again requesting
that hn takes the maximal possible weight along each such line. By Lemma 1, the

translation length τ of hn|l0 is greater than or equal to
∑k

i=0 σn(Li) = σ([0, a] ×
[c,∞]). Hence, σ([0, a]×[c,∞]) is a lower bound for τ. The following theorem implies
that there is also an upper bound for τ .

Theorem 3. For any positive integer n0 and any line l0 in Ln0
, the sequence

(hn|l0 , n = n0, n0 + 1, n0 + 2, n0 + 3, . . .) is a normal family of Möbius transforma-
tions.

Before we prove this theorem, we summarize some techniques in the following
lemmas and corollaries, which will also be used in Sections 3.1 and 5.5. In these
lemmas we use the following notation. Let {a, b, c, d} be a quadruple of points on
the real axis with a < b < c < d, and L,M,R and T stand for the left, middle,
right and total intervals, i.e., L = [a, b],M = [b, c], R = [c, d] and T = [a, d]. We
also identify L,M,R, and T with the corresponding lengths b− a, c − b, d − c and
d− a.

Lemma 9. Assume a < b < c < x < y < d and hx and hy are simple left
earthquake maps, each with multiplier λ > 1, and supported on the lines that join x
to ∞ and y to ∞, respectively. Let Lx,Mx, Rx, Tx and Ly,My, Ry, Ty be the images
of the intervals L,M,R and T under the mappings hx and hy. Then

(5)
LxRx

MxTx
>

LyRy

MyTy
.
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Moreover, if a < y < x < b < c < d, then

(6)
LxRx

MxTx
<

LyRy

MyTy
.

Proof. Both hx and hy are equal to the identity on L and M, so L = Lx = Ly and
M = Mx = My. Also,

Rx

Tx
=

λ(d− x) + x− c

λ(d− x) + x− a
,

and
Ry

Ty
=

λ(d− y) + y − c

λ(d− y) + y − a
.

Thus,
Rx

Tx
>

Ry

Ty
,

and inequality (5) follows. The proof of (6) is similar. ¤

Lemma 10. With the same notation as in the previous lemma, suppose a < b <
x < y < c < d. Then

(7)
LyRy

MyTy
>

LxRx

MxTx
.

Proof. hx(z) equals z for z < x and λ(z − x) + x for z ≥ x, and similarly, hy(z)
equals z for z < y and λ(z−y)+y for z ≥ y. We have hx(L) = hy(L) = L, hx(R) =
Rx = λR = hy(R) = Ry = λR. And since x < y and λ > 1, hx(M) = Mx >
hy(M) = My, hx(T ) = Tx > hy(T ) = Ty, which implies the lemma. ¤

Given a quadruple Q = {a, b, c, d} with a < b < c < d, denote by cr(Q) the

cross ratio LR
MT = (b−a)(d−c)

(c−b)(d−a) . For a homeomorphism h defined on the real line,

let cr(h(Q)) denote the cross-ratio of the quadruple h(Q). We have the following
corollaries of the previous lemmas respectively.

Corollary 1. Let Q = {a, b, c, d} be a quadruple on the real line with a < b <
c < d, and c ≤ s ≤ d and d < t. Suppose that A(s,t) is the hyperbolic Möbius
transformation with the repelling fixed point at s and the attracting fixed point at
t and its derivative at the repelling fixed point equal to λ > 1, and f(s,t) : R → R
is defined to be equal to A(s,t) on the interval [s, t] and equal to the identity on the
complement of [s, t]. Let a, b, c, d and λ be temporarily fixed. Then the cross-ratio
of the image quadruple f(s,t)(Q) considered as a function of two variables s ∈ [y, z]
and t ∈ (z,+∞) decreases in s for each fixed t and increases in t for each fixed s.

Corollary 2. With the same notations as in the previous corollary, suppose b ≤
s ≤ c and d ≤ t. Then the cross-ratio of the image quadruple f(s,t)(Q) is increasing
in s for each fixed t and also increasing in t for each fixed s.

Now we begin the proof of Theorem 3.

Proof. The Möbius transformation Tn = En|l0 is a hyperbolic Möbius transforma-
tion with the attracting fixed point in the interval [c,∞] and the repelling fixed
point in the interval [0, a]. Let ã = a+c

2 . To prove the theorem, we find an upper
bound on Tn(ã) and a positive lower bound on the cross ratio |crn| of the four

points ∞, 0, Tn(ã), Tn(c). Here |crn| =
Tn(c)−Tn(ã)

Tn(ã) = Tn(c)
T (nã)

− 1.
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If λn is the multiplier of Tn and cn = Tn(c) and both λn and cn approach
infinity, then Tn(ã) approaches infinity. Thus an upper bound on Tn(ã) implies
that if cn → ∞ then a subsequence of λn converges. On the other hand, if cn
is bounded then a positive lower bound on |crn| also implies a subsequence of λn
converges. In either case, {Tn}

∞
n=1 is a normal family.

Let us first show that there exists a positive lower bound for |crn|. By Corollary
2,

cr(∞, 0, hn(ã), hn(c))

= cr(∞, 0, Lk(Lk−1 ◦ . . . ◦ L1 ◦ L0(ã)), Lk(Lk−1 ◦ . . . ◦ L1 ◦ L0(c)))

≥ cr(∞, 0, Ak(Lk−1 ◦ . . . ◦ L1 ◦ L0(ã)), Ak(Lk−1 ◦ . . . ◦ L1 ◦ L0(c))),

where Ak is the hyperbolic transformation with translation length σn(Lk), a re-
pelling fixed point at 0 and an attracting fixed point at ck−1. The Möbius trans-

formation L̃k−1 = Ak ◦ Lk−1 is a hyperbolic transformation with an attracting
fixed point at ck−1, a repelling fixed point in [0, ak−1], and translation length

σn(Lk) + σn(Lk−1). Move the axis of L̃k−1 to the geodesic connecting 0 to ck−2 to
have a hyperbolic Möbius transformation Ak−1, again applying the Corollary 2, we
have

cr(∞, 0, L̃k−1 ◦ . . . ◦ L1 ◦ L0(ã), L̃k−1 ◦ . . . ◦ L1 ◦ L0(c))

≥ cr(∞, 0, Ak−1(Lk−2 ◦ . . . ◦ L1 ◦ L0(ã)), Ak−1(Lk−2 ◦ . . . ◦ L1 ◦ L0(c)))

Let L̃k−2 = Ak−1◦Lk−2. It is a hyperbolic Möbius tranformation with an attracting
point at ck−2, a repelling fixed point in [0, ak−2], and translation length σn(Lk) +

σn(Lk−1) + σn(Lk−2). Repeating the above process of moving the axis of L̃k−2

finitely many times, we obtain

|cr(∞, 0, Tn(ã), Tn(c))| ≥ |cr(∞, 0, A(ã), A(c))|,

where A is a hyperbolic Möbius transformation with attracting fixed point at c,

repelling fixed point at 0, and with translation length equal to
∑k

i=0 σn(Li) =
σ([0, a]× [c,∞]) = σ <∞. thus, if λ = eσ then

A(x) =
λcx

(λ− 1)x+ c
,

and |crn| is bounded below by c−a
c+ae

−σ.

To obtain an upper bound on Tn(ã) we apply Corollary 1 to the four points
−∞,−1, 0 and ã. Similar reasonings yield T (ã) ≤ ãeσ = a+c

2 eσ. ¤

Step III The earthquake mapping restricted to the laminations Ln.

Now we define the earthquake E whose earthquake measure equals σ. We first define
E on the laminations Ln. Let s be a point in

⋃∞
n=1 Ln. Then there exists n0 and

a line l0 in Ln0
such that s ∈ l0 and so s ∈ l0 ⊂ Ln for all n ≥ n0. By Theorem

3, the sequence En|l0 has a convergent sequence. There are countably many lines
in S, and by diagonalization, we may pass to a subsequence so that the restriction
of En to any line l̃ in S converges to a Möbius transformation A = A(l̃). We let

E(z) = A(l̃)(z) for every z on l̃, and every l̃ in
⋃∞
n=1 Ln.

For any two lines l0 and l1 in
⋃∞
n=1 Ln, there exists n0 such that both l0 and

l1 belong to Ln0
. By the leftward property of the earthquake mapping hn, the

composition
(En|l0)

−1 ◦ (En|l1)
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is a hyperbolic transformation whose axis weakly separates l1 and l0, and moves to
the left, when viewed from l0 (for all n ≥ n0). By passing to the limit as n → ∞,
we see that the same properties hold for the transformation

(A(l0))
−1 ◦ (A(l1)).

Therefore, if l0 is any line in
⋃∞
n=1 Ln, then the restriction A(l0) of E to l0 satisfies

the following property: the composition A(l0)
−1 ◦ E fixes the points on the line l0

and moves every other point in
⋃∞
n=1 Ln to the left, when viewed from l0. We say

that E satisfies the leftward property on S.

Step IV Extending the earthquake map to L

Let l0 be any line in the lamination L. Then there exist a sequence of lines ln
converging to the line l0, such that ln ⊂ Ln for each n. To see this, take any
point s on l0 and take the hyperbolic disk Dn with center at s and radius 1

n . For
sufficiently large n, there exists a line ln in Ln such that ln intersects Dn. Let An be
the restriction of hn to the line ln. By a generalization of Theorem 3, the sequence
An is a normal family. Therefore, there exists a subsequence Ank of An which
converges to a Möbius transformation A = A(l0). We let h(z) = A(l0)(z) for all z
on l0. If l1 is any line in

⋃∞
n=1 Ln, then the transformation (Enk |l1)

−1◦(Enk |lnk) is a
hyperbolic transformation whose axis weakly separates l1 and lnk , and moves to the
left, when viewed from l1. By passing to the limit, we conclude that the mapping
A(l1)

−1 ◦ A(l0) is a hyperbolic transformation whose axis weakly separates l1 and
l0, and moves to the left, when viewed from l1.

Suppose now that l̃1 and l̃2 are any two lines in L\
⋃∞
n=1 Ln. Then there exists a

line l̃ in L which separates l̃1 and l̃2. Therefore we can find a positive integer n0 and
a line l0 in Ln0

such that l0 separates l̃1 and l̃2. Using the comparison isometries

for h between l0 and l̃1, and between l0 and l̃2, and applying the same arguments
from the previous paragraph, we conclude that the restriction of h to L satisfies
the leftward property.

Step V Extending the earthquake map to the upper half-plane

Suppose a point z in the upper half-plane belongs to the complement of L. Then
z is an interior point of a stratum T for L. Let γ be a geodesic ray which starts
at the point z and ends at a point on the geodesic line l joining 0 and ∞, such
that γ is perpendicular to l. Let a be the first intersection of γ with L. Then a
belongs to a line l0 in L. We let h(z) = A(l0)(z). Observe that this definition yields
h(w) = A(l0)(w) for all w in T. Therefore, to show that h restricted to the upper
half-plane satisfies the leftward property, it is enough to prove it for the comparison
mapping A between a stratum T with an interior point, and its boundary side l̃ in
⋃∞
n=1 Ln. Note that A is the comparison map between two boundary sides l0 and

l̃ of T. There exists a positive integer n0 such that both l0 and l̃ belong to Ln0
.

Since there is no line in Ln with n ≥ n0 which separates l0 and l̃, we conclude that
(En|l0)

−1◦(En|l̃) is a hyperbolic Möbius transformation with axis l0 and translation

length σ(l̃). By passing to the limit as n→∞, we obtain the leftward property for
E on L.

Step VI Extending the earthquake map to the real line
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The mapping E extends trivially to the Euclidean boundary of any stratum T of
L and we let we let h(x) = ET (x) for every point x on the boundary of T. The
leftward property trivially extends to the set consisting of all boundary points of
strata of L.

Let P be the set of all points which belong to the boundary of a stratum of L.
Obviously, P contains the points at 0 and ∞ and P is dense in the extended real
line. The points of P are called the boundary points of L. If x is any boundary
point of L, by the leftward property, h(x) = A(x), where A is a hyperbolic Möbius
transformation whose axis separates x from the line l that joins 0 to ∞. Further-
more, A moves its axis to the right when viewed from x. Therefore, xh(x) ≥ 0 and
h(x) ≥ x for all points x in P.

Let a and b be any two boundary points of L with a < b. Suppose first that
a < 0 < b. Then, since ah(a) ≥ 0 and bh(b) ≥ 0, we conclude h(a) ≤ 0 ≤ h(b).
Suppose now that both a and b are positive. Since all finite approximations hn fix 0
and∞, we conclude h(a) ≤ h(b) for all a and b in the boundary of S such that a < b.
Since any two lines in L\

⋃∞
n=1 Ln are separated by a line in

⋃∞
n=1 Ln, h(a) ≤ h(b)

for all a and b in P with a < b. By the leftward property, h(a) = A(a) and
h(b) = B(b) where A and B are Möbius transformations such that the comparison
map L = A−1 ◦ B is a hyperbolic transformation whose repelling fixed point s
belongs to the interval [a, b] and the attracting fixed point t is outside the interval
(a, b). Therefore, A−1 ◦ B(b) 6= a and hence h(b) 6= h(a). Similar reasoning shows
that h(a) < h(b) in the case when a and b are both negative. Therefore, h is strictly
increasing on the set P.

Now suppose x is not in P. Then there exists a sequence of lines ln in L with
endpoints at an and bn, such that an < x < bn and both an and bn converge to x.
The sequence h(an) is an increasing sequence, while h(bn) is a decreasing sequence.
Let h(x) = limn→∞ h(an).

Step VII h is strictly increasing

The restriction of h to the set P is a strictly increasing function. Let x and y
be any two points on the real line such that x < y. By the definition, there exist
two sequences xn and yn in P, such that xn → x, yn → y, h(xn) → h(x) and
h(yn) → h(y). (If x or y is in P, we simply take a constant sequence.) Since
h(xn) < h(yn) whenever xn < yn we conclude that h(x) ≤ h(y). Furthermore,
since P is dense in the real line, there are two points z and w in P such that
x < z < w < y. Hence h(x) ≤ h(z) < h(w) ≤ h(y). Therefore, h is strictly
increasing on the whole real line.

Step VIII h is continuous

The restriction of h to the set P is a continuous function. Let x ∈ P, and let
xn be a sequence in P, such that xn → x as n → ∞. If x belongs to a line l0
in L, then h(x) = A(l0)(x). Similarly, h(xn) = A(ln)(xn), where ln is a line in
L containing the point xn. Furthermore, the mapping Ln = A(l0)

−1 ◦ A(ln) is a
hyperbolic Möbius transformation whose axis separates points xn and x, and the
attracting fixed point of Ln belongs to the interval In from xn to x. Therefore
|h(xn)−h(x)| = |A(l0)(Ln(xn))−A(l0)(x)| ≤ diameter(A(l0)(In))→ 0 as n→∞.

Step IX Pointwise convergence of finite approximations
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Since clearly hn(x) → h(x) for all x in the boundary of S, the continuity and the
monotonicity of both hn and h at boundary points yield the following corollary.

Corollary 3. hn(x)→ h(x) as n→∞ for all boundary points x.

In general, for an arbitrarily locally finite measure (σ,L), the map h is not
necessarily continuously extendable to the points on the circle which are not in
P (called the accumulation points with respect to the lamination L). See some
examples in Section 2.4. However, if σ is Thurston bounded, then h is continuously
extendable to the accumulation points, and therefore becomes a homeomorphism
of the circle. In the remaining part of this section, we assume that σ is Thurston
bounded.

Lemma 11. Let l1 and l2 be any two lines in L and let d be the hyperbolic distance
from l1 to l2. If d ≥ 1, then the hyperbolic distance from h(l1) to h(l2) is greater
then C, where C is a positive constant only depending on the total measure of all
intermediate lines.

Proof. Conjugating by a Möbius transformation, we may assume that the endpoints
of l1 are at 0 and ∞, while the endpoints of l2 are at the points 1 and c with c > 1.
To prove the lemma it is enough to find an upper bound on the cross ratio |cr| =
|cr(h(∞), h(0), h(1), h(c)|. Since the finite earthquake approximations hn converge
to h at the four points a, b, c, d, it is enough to find a uniform bound on |crn| =
|cr(hn(∞), hn(0), hn(1), hn(c)|. Postcomposing by another Möbius transformation
if necessary, we may assume that hn fixes all points on the line l1. Using the method
of proving Theorem 3, one can show that the cross ratio |crn| is maximized when
all lines of L separating l1 and l2 are the same and equal to the line that joins 1
and ∞. Therefore,

|crn| ≤ |cr(∞, 0, 1, L(c)|,

where L is a hyperbolic transformation with the attracting fixed point at 1, repelling
fixed point at ∞, and the translation length σ([0, 1]× [c,∞]). Therefore

|cr| ≤ σ([0, 1]× [c,∞])|cr(0,∞, 1, c)|.

Since the function d2|cr(0,∞, 1, c)| is bounded away from 0 and from ∞ for any c
in a compact interval, the lemma follows. ¤

Proposition 2. If σ is Thurston bounded, then h is a homeomorphism on the
circle.

Proof. We only need to show that h is continuous at the accumulation points. Let
x be such a point, and {ln}

∞
n=1 a sequence of lines ln in L with endpoints at an

and bn such that an < x < bn and both an and bn converge to x. We want to
show that h is continuous at x. Since h is strictly increasing, it is enough to show
that h(bn) converges to h(x). We choose the lines in the sequence l1, l2, l3, . . . so
that the distance between any two consecutive lines is minimal possible but yet not
less than 1. This forces the measure of all intermediate lines for any consecutive
pair to be at most ||σ||Th. Let di be the distance from li to li+1, and let d̃i be the

distance from h(li) to h(li+1). By Lemma 11, d̃i ≥ C(||σ||Th) for all i. Since the

distance from h(li) to h(li+k) is greater than or equal to
∑j=i+k

j=i d̃j , we conclude

that limn→∞ h(an) = limn→∞ h(bn), and the continuity of h at x follows. ¤
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The monotonicities of hn’s and the continuity of h yield the following.

Theorem 4. (1) hn(x)→ h(x) as n→∞ at any point x on the real line.
(2) If one considers the unit disk as the hyperbolic plane, then hn converges to

h uniformly on the unit circle.

In the next, we show that the atomic approximations σn have uniformly bounded
Thurston norm. Let l0 be any line in the lamination Ln. By Step I there exists a
line l1 in Ln such that l0 and l1 are adjecent lines in Ln and σn(l0) is equal to the
σ− measure of the set S0 of all lines in L which separate l0 from l1, including l0 and
excluding l1. If the distance from l0 to l1 is more that 1

n , then by the construction
of Ln in Step 1, σ(S0) = σ(l1). Therefore, in both cases we conclude that

(8) σn(l0) ≤ ||σ||Th.

for all lines l0 in Ln.

Proposition 3.
||σn||Th ≤ 3||σ||Th for all n.

Proof. Suppose that l0 and l1 are two lines from the lamination Ln such that the
distance from l0 to l1 is at most 1. Let l1, l2, l3, . . . , lk = l0 be the set of all lines in
Ln which weakly separate l0 and l1. The lines li have the endpoints at the intervals
I and J determined by l0 and l1. By the definition from Step I, σn(li) = σ(Si)
where Si are corresponding sets, obtained using the link from l to li. Therefore, all
but at most two of the sets Si are disjoint subsets of I×J. The inequality (8) yields
σn(li) ≤ ||σ||Th for each i, and the theorem follows. ¤

2.2. Recovering measures. Let σ be a locally finite measure whose support is a
lamination L. The construction in 2.1 produces a homeomorphism h = H(σ) of a
dense subset P = P (σ) of the unit circle into the unit circle. Furthermore, there
is an earthquake map E = Eh whose lamination is the support L of σ and whose
restriction to P is h and h is continuous at every point of P. The construction in
1.3 produces a locally finite measure σ1 = F (h) using the values of the earthquake
extension of h to the unit disk. The next theorem shows that this construction is
the inverse of the construction given in 2.1, that is, σ1 = σ.

Theorem 5. If σ is a locally finite measure whose support is a lamination, then

F (H(σ)) = σ.

Proof. Let I and J be any two open intervals on the extended real line such that
the closures of I and J are disjoint. We have to show that σ(I × J) = σ1(I × J).
σ(I × J) is the σ-measure of the set of all lines in L which separate two geodesic
lines l0 and l1. We can assume the set of the endpoints of I and J is the same
as the set of the endpoints of the two lines l0 and l1. By the additive property of
the two measures, we may also assume that the line l0 separates the line l1 from
the line l joining 0 to ∞. Suppose first that both lines l0 and l1 belong to Ln0

for some n0. Let N be a large positive integer. Choose a sufficiently large n such
that n ≥ n0 and the set {l1, l2, l3, . . . , lk(n) = l0} of all lines in Ln which separate
l1 from l0 satisfies the following property. Any two consecutive lines li and li+1

are either within distance less than 1
N , or there are no lines in L separating li

and li+1. If Ai is the restriction of Eh to li, then, by the left hand inequality in
Lemma 8, the sum of the translation lengths τ((Ai)

−1 ◦ Ai+1) of all comparison
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mappings is greater than or equal to σ1(I × J). By the right hand inequality in
Lemma 8, τ((Ai)

−1◦Ai+1) ≤ τ((Ai,n)
−1◦Ai+1,n)+

C
N2 where Ai,n is the restriction

of Ehn to li. Therefore, the sum of τ((Ai,n)
−1 ◦ Ai+1,n) is greater than or equal

to σ1(I × J)− C
N2 . On the other hand, the sum of τ((Ai,n)

−1 ◦Ai+1,n) is equal to

σ(I×J)−σ(l0). Suppose now that I and J are any two open intervals with disjoint
closures. Approximating I × J by a sequence of the products of subintervals with
end points in S =

⋃

n Ln we obtain

σ(I × J) ≥ σ1(I × J).

To prove the converse, let ε > 0. Suppose first that both lines l0 and l1 belong
to Ln0

for some n0. There exists a positive integer n ≥ n0 such that the set
{l1, l2, l3, . . . , lk(n) = l0} of all lines in Ln satisfies the following property. If Ai is the

restriction of Eh to li, then the sum of the translation lengths τ((Ai)
−1 ◦ Ai+1) of

all comparison mappings is less than σ1(I×J)−σ1(l0)+ε. Since τ((Ai)
−1◦Ai+1) =

limk→∞ τ((Ai,k)
−1 ◦Ai+1,k) where Ai,k is the restriction of Ehk to li, we conclude

that the sum of τ((Ai,k)
−1 ◦Ai+1,k) is less than σ1(I×J)−σ1(l0)+ ε. On the other

hand, by the left hand side of (1) in Lemma 8, the sum of τ((Ai,k)
−1 ◦ Ai+1,k) is

greater than or equal to σ(I×J)−σ(l0). Approximating a general I×J again by a
sequence of the products of subintervals with end points in S =

⋃

n Ln and letting
ε→∞, we obtain

σ(I × J) ≤ σ1(I × J).

Therefore σ1 coincides with σ. ¤

Corollary 4. The mapping H is one-to-one on the space of locally finite measures
with lamination-support.

Proof. Let σ and σ0 be two locally finite measures with lamination-support. If
H(σ) = H(σ0), then σ = F (H(σ)) = F (H(σ0)) = σ0. ¤

2.3. Recovering homeomorphisms. If a measure σ and its support L naturally
come from an earthquake representation (see Theorem 2) of a homeomorphism h,
then the earthquake map E constructed in Section 1.2 is extendable to a circle
homeomorphism h1, and in fact h1 and h are equal up to postcomposition by a
Möbius transformation. This statement is a consequence of the following result,
which applies to earthquakes sharing the same lamination and shearing measure,
but which do not necessarily extend to homeomorphisms of the circle.

Proposition 4. Let E1 and E2 be two earthquake maps with the same source
lamination L. If the shearing measures introduced in Section 1.3 for E1 and E2 are
the same, then there is a Möbius transformation A such that E2 is equal to A ◦E1

on the boundary of the unit circle.

The proof we give is due to Thurston [9], who stated it for the case that the
restriction of E1 to the unit circle is a homeomorphism. Since we are claiming the
result in a slightly more general context, we give the complete proof here. We begin
with the following lemma which applies to two Möbius transformations with nearly
equal translation length and nearby, but possibly intersecting translation axes.

Lemma 12. Assume that two goedesic lines l1 and l2 in the upper half plane are
so close that they are contained in a strip S bounded by two semicircles which
share a center in the real line and have hyperbolic distance apart equal to d, where
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0 ≤ d ≤ ε. Denote the endpoints of l1 by a and c with a < c. Suppose that
A1 and A2 are two hyperbolic transformations with axes l1 and l2, and translation
lengths log λ1 and log λ2 respectively. If 1 ≤ λ1, λ2 ≤ M and | log λ1 − log λ2| ≤
Cd2 max{log λ1, log λ2} for two constants C,M > 0, then for sufficient small ε,
A2 ◦A

−1
1 (x) differs from x by at most O(d(c− a)max{log λ1, log λ2}) for any x in

the interval [a, c], where the constant in O only depends on ε, C and M .

Proof. Let us first assume l2 shares the endpoint c with l1. Denote the other
endpoint l2 by b. Let B(x) = x−a

c−x , then B(l1) is the half imaginary axis and B(l2)

is a geodesic connecting b′ to infinity, where |b′| ≤ C1d and the constant C1 depends
on ε. Clearly

B ◦A1 ◦B
−1(y) = λ1y and B ◦A2 ◦B

−1(y) = λ2(y − b′) + b′.

Then

B ◦A2 ◦A
−1
1 ◦B−1(y) = λ2(

y

λ1
− b′) + b′ =

λ2

λ1
y + b′(1− λ2),

and

A2 ◦A
−1
1 (x) = B−1[

λ2

λ1
B(x) + b′(1− λ2)].

Therefore

(9) A2 ◦A
−1
1 (x)− x =

(λ2

λ1
− 1)(x− a) + b′(1− λ2)(c− x)

λ2

λ1
(x− a) + [1 + b′(1− λ2)](c− x)

· (c− x).

For any a ≤ x ≤ c, divide the numerator and the denominator of the above quotient
by x− a (or c− x) if x− a ≥ c− x (resp. c− x > x− a). Since | log λ1 − log λ2| ≤
Cd2 max{log λ1, log λ2}, |b

′| ≤ C1d, 0 ≤ d ≤ ε, and 1 ≤ λ2 ≤M ,

|
λ2

λ1
− 1| ≤ C2d

2 max{log λ1, log λ2} and |b′(1− λ2)| ≤ C3d log λ2

for two constants C2, C3 > 0. Then the numerator in (9) is equal to

O(d2 max{log λ1, log λ2}+ d log λ2) = O(dmax{log λ1, log λ2}).

When ε is small enough, both summands in the denominator are positive and at
least one of them is bounded away from zero. Therefore

A2 ◦A
−1
1 (x)− x = O(d|a− c|max{log λ1, log λ2}),

where the constant O depends on ε, C and M .
Similarly, we have the same estimate if l2 shares the endpoint a with l1.
If the geodesic l2 does not share any endpoint with l1, then we select a geodesic

l that joins the endpoint a of l1 to the endpoint of l2 which is near c, and let A be
the hyperbolic Möbius transformation with the axis l, translation length λ1, and
translating in the same direction as A1 and A2. We rewrite

A2 ◦A
−1
1 (x)− x = [(A2 ◦A

−1) ◦ (A ◦A−1
1 )(x)− (A ◦A−1

1 )(x)] + [(A ◦A−1
1 )(x)− x].

Then the proof of the lemma follows by the two special cases already proved applied
to the Möbius transformations A and A1 and to the Möbius transformations A and
A2. ¤

We will use the follwoing straightforward corollary of the previous lemma to
derive the ordinary differential equation of general earthquake curves in Section 4.
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Corollary 5. With the same assumptions in the previous lemma, for any x ∈ [a, c],

|A2(x)−A1(x)| = O(d(c− a)max{log λ1, log λ2}).

Now we begin the proof of Proposition 4.

Proof. Let E = E2 ◦ E−1
1 . We do not know if the map E is an earthquake map

defined on the target lamination of E1, but we can still consider the comparison
maps for E. For any two lines l and l′ in the source lamination of E1 with hyperbolic
distance < 1, we show that the comparison map (E|E1(l))

−1(E|E1(l′)) is the identity,
and therefore E is a single Möbius transformation B, that is, E2 = B ◦ E1.

We seperate the proof into two cases according whether the hyperbolic distance
between l and l′ is zero or not. We first treat the case in which it is not zero. By
conjugating by a Möbius transformation, we may assume l and l′ are two semicircles
in the upper half-plane centered at the origin. Let r be the segment on the imaginary
axis joining l to l′. We may also assume l′ joins −1 to 1 and l joins −a to a, with 1 ≤
a ≤ e. We also assume there are infinitely many lines in the lamination intersecting
r and the intersections are dense in r. Otherwise, we consider subintervals of r in
which the lines of the lamination are dense and the gaps between them. Now, let
Pn = {ri} be a sequence of partitions of r into short segments, each with hyperbolic
length ≤ d(n), where d(n) → 0 as n → ∞. Assume lines of the lamination are
labeled in order with l0 = l, l1, l2, · · · , ln = l′, and assume the restriction of E1

on l0 is the identity, and E1|li = A1 ◦ · · · ◦ Ai for 1 ≤ i ≤ n, and E2|l0 = Id,
E2|li = B1◦· · ·◦Bi for 1 ≤ i ≤ n. Then for each 1 ≤ i ≤ n, Ai and Bi are hyperbolic
transformations which translate in the same direction and with axes are sufficiently
close such that they are contained in a strip Si bounded by two semicircles centered
at a point in [−1, 1] with hyperbolic distance < d, where d = O(d(n)). Let log λi
denote the translation of Ai and log νi the translation length of Bi, 1 ≤ i ≤ n. Let
σ(r) = σ1(r) = σ2(r) and σi = σ1(ri) = σ2(ri), 1 ≤ i ≤ n. By Proposition 1, both
log λi and log νi differ from the measure σi by O(log λid(n)

2) = O(log νid(n)
2) =

O(σid(n)
2), and therefore | log λi − log νi| = O(σid(n)

2).
The comparison map Al′l = (E|E1(l))

−1(E|E1(l′)) is equal to

(10) Bn ◦Bn−1 ◦ · · · ◦B2 ◦B1 ◦A
−1
1 ◦A−1

2 ◦ · · · ◦A−1
n−1 ◦A

−1
n .

Let x be a point near the origin. We will show that Al′l is the identity by showing
that the the long composition (10) for Al′l applied to x is arbitrarily near x.

Let x−i = A−1
i ◦A−1

(i−1) ◦ · · · ◦A
−1
1 (x), 1 ≤ i ≤ n− 1. By Lemma 12, we have

Bn ◦A
−1
n (x−(n−1)) = x−(n−1) +O(d(n)σn),

and by the mean value theorem and Lemma 12 again,

Bn−1(x−(n−1) +O(d(n)σn)) = Bn−1(x−(n−1)) +O(eνn−1d(n)σn)

= Bn−1 ◦A
−1
n−1(x−(n−2)) +O(d(n)eσn−1σn).

Inductively using the mean value theorem and Lemma 12, we have

Al′l(x) = x+O(d(n)σ1) +O(d(n)eσ1σ2) +O(d(n)eσ1+σ2σ3) + · · ·

+O(d(n)eσ1+σ2+···+σn−1σn) = x+O(d(n)eσ(r)σ(r)).

Since σ(r) is finite and d(n) converges to 0 as n goes to ∞, Al′l(x) = x. Thus Al′l

is the identity map.
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If l1 and l2 share an endpoint, after conjugation by a Möbius transformation,
we may assume that l1 is the semicircle connecting −1 to 1 and l2 is a semicircle
connecting −1 to a for some a > 1. These two semicircles cut the imaginary axis to
the segment r. Using the partitions of r and the same arguement in the previous
case, we can again show the comparison map (E|E1(l))

−1(E|E1(l′)) is the identity
map. ¤

Using Theorem 5 and the previous proposition, we have the following theorem.

Theorem 6. Let h be a homeomorphism of the unit circle and σ the shearing
measure corresponding to the earthquake representation (E,L) of h. If E1 is the
earthquake map constructed in Section 2.1 for (σ,L), then E1 extends to a homeo-
morphism h1 on the boundary circle, and h1 = A◦h for some Möbius transformation
A.

Proof. Let σ1 denote the shearing measure induced by E1. By Theorem 5, σ1 = σ
with support L. Now by the previous proposition, there exists a Möbius transfor-
mation A such that E1 = A ◦ E. Since E extends to h on the boundary circle, E1

extends to A ◦ h on the boundary circle. ¤

2.4. Measures that do not yield homeomorphisms. In this section we provide
examples of locally finite measures σ such that the maps hσ cannot be extended to
homeomorphisms of the whole unit circle. We prefer to work with the upper half
plane.

The first example is due to Thurston [8]. Let ln be the geodesic line connecting
−n to infinity, where n = 0, 1, 2, · · · , n, · · · , and L the collection of all ln’s. Suppose
that the weight on each line is ln 2, and the left earthquake map E restricted on the
right upper half plane is the identity map. Then E|−1

ln+1
◦ E|ln(x) =

1
2 (x+ n) − n,

and therefore for each n > 0,

E|ln(−n) = −(
1

2
+

1

4
+ · · ·+

1

2n
).

Clearly E|ln(−n) converges to −1 as n goes to infinity, hence the map E maps the
whole upper half plane into the quarter on the right of l1. This implies that E does
not extend to a homeomorphism on the boundary R.

The second example shows that there is a locally finite measure σ supported on
a lamination L such that Eσ does not extend to a homeomorphism on R̄ but E2σ

does.
Pick any quadruple {a1, b1, e1, f1} on the real line such that a1 < e1 < f1 <

b1. Let L1 be the geodesic line joining a1 to b1. For every λ > 0, let Aλ
1 be the

hyperbolic isometry with translation length log λ, attracting fixed point at b1 and
repelling fixed point at a1. Note that Aλ

1 (e1)→ b1 and (Aλ
1 )
−1(f1)→ a1 as λ→∞.

Therefore, we may choose sufficiently large λ1 so that the transformations A1 = Aλ1
1

and A−1
1 map the points e1 and f1 to c1 and d1, and e2 and f2, respectively, such

that

a1 < e2 < f2 < e1 < f1 < c1 < d1 < b1,

d1 − c1 <
f1 − e1

2
, and

f2 − e2 <
f1 − e1

2
.
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Since A2
1(e2) = c1 and A2

1(f2) = d1, we can choose two points a2 and b2 sufficiently
close to e2 and f2 respectively, so that

a1 < a2 < e2 < f2 < b2 < e1,

b2 − a2 <
f1 − e1

2
, and

A2
1(b2)−A2

1(a2) <
f1 − e1

2
.

Now let L2 be the geodesic line joining a2 to b2. Again let Aλ
2 be the hyperbolic

isometry with translation length log λ, attracting fixed point at b2 and repelling
fixed point at a2. Note that (A2

1 ◦ Aλ
2 )(e2) → A2

1(b2) and (Aλ
2 )
−1(f2) → a2 as

λ→∞. Therefore, we may choose sufficiently large λ2 so that the transformations
A2 = Aλ2

2 satisfies

A−1
2 (e2) = e3, A−1

2 (e3) = f3, A2
1 ◦A2(e2) = c2, A2

1 ◦A2(f2) = d2,

a2 < e3 < f3 < e2 < d1 < c2 < d2 < A2
1(b2),

d2 − c2 <
f2 − e2

2
, and

f3 − e3 <
f2 − e2

2
.

Since A2
1 ◦ A

2
2(e3) = c2 and A2

1 ◦ A
2
2(f3) = d2, we can choose two points a3 and b3

sufficiently close to e3 and f3 respectively, so that

a2 < a3 < e3 < f3 < b3 < e2,

b3 − a3 <
f2 − e2

2
, and

A2
1 ◦A

2
2(b3)−A2

1 ◦A
2
2(a3) <

f2 − e2

2
<

f1 − e1

4
.

If we continue this construction, we are going to get a sequence of lines Li with
endpoints at ai and bi such that both ai and bi converge to the same point a on
the real line. Let L be the lamination consisting of lines L1, L2, L3, . . . , and let σ
be the measure defined on L such that the weight of σ on each Li is equal to log λi.
If we normalize h = hσ to be equal the identity mapping on the segment [−∞, a1],
then the restriction of h to the line Li is equal to A1 ◦ A2 ◦ A3 ◦ . . . ◦ Ai. The
Möbius transformation Ai has axis Li and weight log λi. Furthermore, the points
A2

1 ◦A
2
2 ◦A

2
3 ◦ . . . A

2
i (ai+1) and A2

1 ◦A
2
2 ◦A

2
3 ◦ . . . A

2
i (bi+1) converge to the same point

c as n→∞.

Theorem 7. The mapping hσ is well-defined at each point on the extended real line
except at the point a. Furthermore, hσ is strictly increasing. However, hσ cannot be
continuously extended to the homeomorphism of R. On the other hand, the mapping
h2σ does extend to a homeomorphism of R.

Proof. The first two statements follow from Section 1.4. To verify the third, observe
that no point in the interval (e1, f1) is in the image of hσ. Finally, the map h2σ

extends continuously with h(a) = c. ¤

Corollary 6. There exists a locally finite measure σ for which H(σ) is not a
homeomorphism of the circle.

Corollary 7. There exist earthquake curves t 7→ htσ that do not preserve homeo-
morphisms.
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Proof. For σ as constructed in the previous theorem, hσ is not a homeomorphism
but h2σ is. ¤

One of the consequences of the results of the next section is that if h is qua-
sisymmetric, then so is htσ for all t ≥ 0.

3. Quasisymmetric homeomorphisms

Let I and J be two contiguous intervals on the unit circle of equal Euclidean
length and each of length less than π/4, and denote the length of I by |I|. A circle
homeomorphism h is quasisymmetric if there is a constant M, such that

1/M ≤
|h(J)|

|h(I)|
≤M

for all such I and J.
An equivalent condition for quasisymmetry can be given in terms of the distortion

by h of cross-ratios of quadruples Q on the unit circle. Assume Q consists of four
points a, b, c and d on the circle arranged in counterclockwise order and let the cross
ratio of Q be

cr(Q) =
(d− c)(b− a)

(c− b)(a− d)
.

Define the norm of h to be

(11) ||h||cr = sup

∣

∣

∣

∣

log
cr(h(Q))

cr(Q)

∣

∣

∣

∣

,

where the supremum is taken over all Q for which cr(Q) = −1. It turns out that h
is quasisymmetric if, and only if, ||h||cr is finite. ||h||cr has the convenient property
that ||A ◦ h||cr = ||h||cr = ||h ◦B||cr for any Möbius transformations A and B.

We also need a norm on the earthquake measure σ for h. Let β be an arbitrary
hyperbolic, closed geodesic segment in the unit disc of length 1. Since L is closed the
intersection of the lines of L is a closed set in β, and if this closed set is non-empty
we can select lines l1 and l2 in L that meet β at points on β which are the maximum
possible distance apart. The lines l1 and l2 together with two closed intervals I
and J on the unit circle surround a topological rectangle. We define massσ(β) to
be σ(I × J) and

(12) ||σ||Th = supmassσ(β),

where the supremum is taken over all hyperbolic, closed geodesic segments of length
1. We call ||σ||Th the Thurston norm of σ. The primary purpose of this section is
to show there is a positive constant C such that

||σ||Th ≤ C||h||cr

and, given any positive constant C0, there exists a positive constant C1 such that
if ||σ|| ≤ C0, then

||h||cr ≤ C1||σ||Th.
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3.1. Quasisymmetry implies a Thurston bound. Consider a hyperbolic geo-
desic segment β of length 1. We will show there is a constant C such that

massσ(β) ≤ C||h||cr.

To prove this we first show there exists a positive constant C1 such that for any h,
if ||h||cr < 1, then

(13) massσ(β) ≤ C1||h||cr.

Then we show there exists another positive constant C2 such that

(14) massσ(β) ≤ ||h||cr + C2

for any h. Thus if ||h||cr ≥ 1, then

massσ(β) ≤ (1 + C2)||h||cr.

Consequently, for any h, we have

massσ(β) ≤ max{C1, (1 + C2)}||h||cr.

To prove inequalities (13) and (14) we use Lemmas 9 and Lemma 10.
Let l1 and l2 denote the lines in L that meet β at points the maximum possible

distance apart. There are three situations of relative positions of l1 and l2 we need
to consider: l1 and l2 share no endpoints, or one endpoint or two points.

Let us first assume that l1 and l2 do not have a common endpoint. In this case we
replace β by the geodesic segment perpendicular to both l1 and l2, which we continue
to denote by β. By a normalization we may assume β is an arc on the imaginary
axis between i and ib with 1 ≤ b ≤ e. Clearly, massσ(β) = σ([−b,−1]× [1, b]) and
the length of β is log b. We also assume that l1 is the geodesic connecting −1 to 1
and l2 is the one connecting −b to b.

By postcomposition by a Möbius transformation, we can assume that h fixes
the geodesic l2. Consider the sublamination L′ consisting only of those lines of L
that intersect β and the measure σ′ which is the measure σ restricted to the closed
subset L′. Then σ′ induces a homeomorphism h′, we assume that h′ also fixes the
geodesic l2. To prove the inequalities (13) and (14), we will compare the cross ratio
distortions by h and h′ on certain quadruples Q and give bounds for the cross ratio
distortions by h′ on the quadruples. To prove (13), we take Q = {b,−∞,−b, 0}, and

to prove (14), we take Q = {−∞,−b, 1+(−b)
2 , 1}. Note that in each case cr(Q) = 1.

In the situation that l1 and l2 share two endpoints, i.e., l1 = l2, we substitute the
above b by 1 and −b by −1 everywhere. In the other situation that l1 and l2 share
one endpoint, we replace β by a geodesic segment of small hyperbolic length which
is perpendicular to l1 and transversal to l2 (still call it β); through a conjugation
by a Möbius transformation, we normalize β to be an arc on the imaginary axis
between i and ib′ with b′ > 1, and assume that l1 is the geodesic connecting −1 to
1 and l2 is the geodesic connecting −1 to b with b > 1; we can further assume that
b ≤ e by taking a replacement of β with small enough hyperbolic length; finally we
substitute the above −b by −1 everywhere.

The rest of the proofs for the three situations are the same as follows.
Let us begin with the proof of (13). Note first that the cross ratio distortion by

h on Q is bounded below by the cross ratio distortion by h′ on Q. To estimate the
amount that h′ distorts the cross ratio of Q, we approximate h′ by compositions
of finitely many hyperbolic isometries. For any positive integer n, by the definition
of massσ(β), there exist finitely many hyperbolic isometries A1, A2, . . . , Ak whose
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axes Li are non-intersecting lines with one endpoint on [−b,−1] and the other on
[1, b], such that the composition

h′σn = A1 ◦A2 ◦ · · · ◦Ak

coincides with h′ on the intervals (−∞,−b] and [b,∞),

massσ(β) ≤ massσn(β) =

k
∑

i=1

τ(Ai) < massσ(β) +
1

n
,

and

|cr(h′σn(Q))− cr(h′(Q))| <
1

n
.

For successive lines Li and Li+1 draw a hyperbolic line L′ that connects the
endpoint of Li on [−b,−1] to the endpoint of Li+1 on [1, e]. By inductively applying
Lemma 9 to all of the lines Li, one sees that the amount of the cross ratio by which
h′σ distorts on Q is least if h′σ is equal to the identity above the line l1 joining −1
to 1, and below l1, it is equal to the hyperbolic Möbius transformation with axis l1
and multiplier λn, where log λn = massσn(β). In that case, h′σn fixes −∞,−1 and
1; denote h′σn(z) by w for any z below l1, then

w + 1

w − 1
= λn

z + 1

z − 1
,

and therefore h′σn(0) =
λn−1
λn+1 ; the ratio in (11) works out to be b+an

b−an
, where an =

λn−1
λn+1 . Now we have

e||h||cr ≥ cr(h(Q)) ≥ cr(h′(Q)) > cr(h′σn(Q))−
1

n
≥

b+ an
b− an

−
1

n
.

Let n go to infinity,

e||h||cr ≥
b+ a

b− a
,

where a = λ−1
λ+1 and log λ = massσ(β). Since 1 ≤ b ≤ e and 0 ≤ a < 1,

e||h||cr ≥
b+ a

b− a
≥

e+ a

e− a
.

Let

v(λ) =
e+ a

e− a
=

(e+ 1)λ+ (e− 1)

(e− 1)λ+ (e+ 1)
.

Elementary analysis of v(λ) yields that v(λ) ≤ e||h||cr and e||h||cr < e+1
e−1 imply that

λ ≤ v−1(e||h||cr ). But v−1(e) = e2+1
2e+1−e2 < 5, so by the mean value theorem applied

to v−1,

v−1(e||h||cr ) = v−1(1) + (v−1)′(u)(e||h||cr − 1) ≤ 1 +
1

v′(5)
(e||h||cr − 1),

where 1 ≤ u ≤ v−1(e||h||cr ) < v−1(e) < 5 since ||h||cr < 1. Therefore

log λ ≤ λ− 1 ≤
1

v′(5)
(e||h||cr − 1) ≤

e

v′(5)
||h||cr

when ||h||cr < 1. Let C1 = e
v′(5) = (6e−4)2

4 = (3e− 2)2. Then

massσ(β) = log λ ≤ C1||h||cr
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for any h with ||h||cr ≤ 1. This proves inequality (13). Also note that when the
cross-ratio norm ||h||cr decreases to 0, the constant C1 decreases to 1.

In the remainder of this section, we prove inequality (14) by considering the
cross-ratio distortion of h on the quadruple Q = {−∞,−b, 1−b

2 , 1}. Just as in the
previous case, we first notice that the cross-ratio distortion of h on Q is less than
or equal to the cross-ratio distortion of h′ on Q. By Lemma 10, the amount by
which h′σn distorts the cross-ratio of Q is the greatest if we assume all of the mass
of σn in β is concentrated on one geodesic line joining −1 to b and the map h′σn
is the identity outside the interval [−1, b] and inside this interval it is given by the
Möbius transformation z 7→ w = h′σn(z), where

w + 1

w − b
= λn

z + 1

z − b
.

Taking the limit when n goes to infinity, we see that the amount by which h′σ
distorts the cross-ratio of Q is the greatest if we assume all of the mass of σ in
β is concentrated on one geodesic line joining −1 to b and the map h′σ is the
identity outside the interval [−1, b] and inside this interval it is given by the Möbius
transformation z 7→ w = h′σ(z) = A(z), where

w + 1

w − b
= λ

z + 1

z − b
.

In that case, hσ maps −∞ to −∞, −b to −b, 1−b
2 to A( 1−b

2 ) = w1, and 1 to

A(1) = w2. If B(s) = 1
b+1 (s+1), then B ◦A ◦B−1 has multiplier λ, fixed points at

0 and 1, and

(15) B ◦A ◦B−1(t) =
λt

(λ− 1)t+ 1
.

Let x = B(−b) = 1−b
1+b , y = B( 1−b

2 ) = 3−b
2(b+1) , z = B(1) = 2

b+1 . We must calculate

the distortion of the map h̃ that fixes −∞ and −b and maps y to B ◦ A ◦ B−1(y)
and z to B ◦A ◦B−1(z). From (15), the distortion is

cr(h̃(Q)) =

λz
(λ−1)z+1 −

λy
(λ−1)y+1

λy
(λ−1)y+1 − x

=
λ(z − y)

λ2(y − yx) + λ ((y − yx)(1− z) + (yx− x)z) + (yx− x)(1− z)
.

Thus, the reciprocal of this distortion is

(16) λ
z(y − yx)

z − y
+

yz(2z − 1) + y − x(y + z)

z − y
+

x(y − 1)(1− z)

λ(z − y)
.

Since the last two terms in (16) are positive, we obtain

log
1

cr(h̃(Q))
≥ log λ+ log

zy(1− x)

z − y
.

Since cr(h(Q)) ≤ cr(h′σ(Q)) ≤ cr(h̃(Q)) ≤ 1,

||h||cr ≥ | log cr(h(Q)| ≥ | log cr(h̃(Q))| = log
1

cr(h̃(Q))
,

and hence

||h||cr ≥ log λ+ log
zy(1− x)

z − y
.
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By substituting in the values of x, y and z, the term log zy(1−x)
z−y is a function of b

for 1 ≤ b ≤ e which has a lower bound − log (e+1)3

4e(3−e) . Therefore,

log λ ≤ ||h||cr + log
(e+ 1)3

4e(3− e)
.

We have completed a proof of the inequality (14).
Notice that by careful study of the function of λ defined by the formula (16)

when λ is near 1, one can also prove inequality (13). The method used in the proof
of the inequality (13) has more applications in Section 5.4.

In summary, we have proved the following theorem.

Theorem 8. There are positive constants C1 and C2 such that if h is a quasisym-
metric homeomorphism of the circle and σ its left earthquake measure, then

||σ||Th ≤ C1||h||cr,

and

(17) ||σ||Th ≤ ||h||cr + C2,

where C1 = max{(3e− 2)2, 1 + C2} and C2 = log (e+1)3

4e(3−e) .

3.2. Finite ordinary differential equations. For any finite earthquake measure
σ with lamination L, tσ has same lamination and all of its weights have been
multiplied by t. By the finite earthquake theorem, if t ≥ 0, tσ determines, up to
postcomposition by a Möbius transformation, a homeomorphism ht = H(tσ). If
we assume both h and ht are normalized at three points, then h1 = h, and ht is
a curve of homeomorphisms which satisfies an ordinary differential equation, [3].
The equation is non-autonomous and can be written in the following way:

(18) ht+s ◦ (ht)
−1(x) = x+ sVt(x) + o(s),

where Vt is a vector field determined by the measure σ transported by ht to the
lamination ht(L).

We now describe a formula for the vector field Vt. In order to do this, we take
the upper half-plane as a model for the hyperbolic plane and h and ht are homeo-
morphisms of R. Define a vector field Eab(x) by the following formula:

(19) Eab(x) =

{

(x−a)(x−b)
a−b for a ≤ x ≤ b,

0 otherwise,

For each line Lj in L with endpoints aj , bj , let pj = σ({(aj , bj)}) be the weight of σ
on Lj . Let Lj(t) = ht(Lj) have endpoints ht(aj) = aj(t) and ht(bj) = bj(t). Then

(20) Vt(x) =
∑

j

pjEaj(t)bj(t)(x),

where the sum is over all endpoints aj(t), bj(t) of lines ht(Lj) in the target lamina-
tion ht(L).

Formula (18) where Vt is given by (20) is verified in two steps. One first shows
that it is correct when t = 0. At a general point t, one uses the fact that, for s > 0,
E(t+s)σ ◦ (Etσ)

−1 is a left earthquake whose lamination is ht(L) and whose measure
is sh∗t (σ).
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Given a finite earthquake measure σ, there is a linear map E from σ to V given
by

E(σ)(x) = V (x) =
∑

j

σ({(aj , bj)})Eajbj (x),

where the sum is over all pairs of endpoints (aj , bj) of lines Lj in L. We introduce
the following invariant norm on the space of vector fields, V :

(21) ||V ||cr = sup
Q
|cr(Q)ρ(cr(Q))V [Q]| ,

where

(22) V [Q] =
V (b)− V (a)

b− a
−

V (c)− V (b)

c− b
+

V (d)− V (c)

d− c
−

V (d)− V (a)

d− a

and ρ is the infinitesimal form of the Poincaré metric for the sphere punctured at
0, 1 and ∞. In [4] it is shown that E is a bounded operator in the sense that

(23) ||E(σ)|| ≤ C||σ||Th.

3.3. Thurston bound implies quasisymmetry. In this section, we control the
norm ||h||cr in terms of the norm ||σ||Th. More precisely, we show that for any C0 >,
there exists a constant C > 0 depending on C0 such that for any σ, if ||σ||Th ≤ C0

then ||h||cr ≤ C||σ||Th.
Let σ be a Thurston bounded measure with lamination L, and h is determined

by σ up to postcomposition by a Möbius transformation. Assume two lines L1 and
L2 in the source lamination have a common perpendicular β with length greater
than or equal to 1. In Lemma 11, we have shown the hyperbolic distance between
h(L1) and h(L2) is greater than or equal to a constant C, where C depends only on
the total mass of the lines L in L which cross the commom perpendicular segment
β.

Lemma 13. Let C0 > 0 and let σt be the pushforward by ht of the measure σ on
L. Then for 0 ≤ t ≤ 1 and ||σ||Th ≤ C0, we have ||σt||Th ≤ C||σ||Th. The constant
C depends only on C0.

Proof. Let L be the support lamination for the measure σ. Let ht(l1) and ht(l2)
be any two lines in ht(L) whose distance is at most 1. Then the total σt−measure
of all lines separating ht(l1) from ht(l2) is σt(ht(I) × ht(J)) where I = [a, b] and
J = [c, d] are two disjoint intervals whose endpoints are the endpoints of l1 and

l2. Choose a sequence of lines l̃1 = l1, l̃2, l̃3, . . . l̃k = l2 in the following way. Start
with i = 1 and let l̃i+1 be the line in L which weakly separates l̃i from l2 and the

common geodesic to l̃i and l̃i+1 has length 1 + ε where ε is the smallest possible
nonnegative number. Continue this process for i = 2, 3, 4, . . . . Eventually, the
distance from l̃i to l2 will be less than 1. In that case, we let l̃i+1 = l2 and stop.

This forces the σ−measure of all intermediate lines for any consecutive pair l̃i and
l̃i+1 be at most ||σ||Th. Let d̃i be the distance from ht(l̃i) to ht(l̃i+1). By Lemma

11, d̃i ≥ C(||σ||Th) for all i ≤ k − 2. The distance from ht(l1) to ht(l2) is greater

than or equal to
∑j=k−2

j=1 d̃j , which is greater than or equal to (k−2)C(||σ||Th). On

the other hand, σ(I × J) ≤ (k − 1)||σ||Th. Therefore,

(24) σt(ht(I)× ht(J)) = σ(I × J) ≤
2||σ||Th

C
,
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where C = C(C0) is the constant from Lemma 11. ¤

Theorem 9. Let C0 > 0. Then there is a positive constant C, such that if σ is a
locally finite measure whose support is a lamination L, and h = H(σ), then

||h||cr ≤ C||σ||Th

for all σ with ||σ||Th ≤ C0. The constant C depends only on C0. In particular, h is
a homeomorphism of the unit circle.

Proof. Select a quadruple Q = {a, b, c, d}, where a, b, c and d are in counterclockwise
order and

cr(Q) =
(b− a)(d− c)

(c− b)(d− a)
= 1.

Let I = [a, b], J = [c, d] and Lad and Lbc be the hyperbolic geodesics joining a to d
and b to c, respectively. Finally, let β be the closed segment which is the common
perpendicular to the to lines Lad and Lbc. Now, select the finite earthquakes with
measures σn chosen in Section 2.1. Recall that the homeomorphisms hσn converge
pointwise to hσ on the unit circle, and

||σn||Th ≤ 3||σ||Th.

Therefore, the theorem follows if we can show

|log cr(hσn(Q))| ≤ C||σn||Th,

where the constant C is independent of n. Therefore, it suffices to prove the theorem
for finite earthquakes and to treat this case we can use the ordinary differential
equation (18).

Assume h is a finite earthquake map with finite earthquake measure σ, and
consider the curve of quadruples Qt = {ht(a), ht(b), ht(c), ht(d)} = {at, bt, ct, dt}.
We wish to estimate |log cr(Q1)| . The curve g(t) = cr(Qt) takes values on the
negative real axis and g(0) = 1 and

g′(t) = g(t) (log g(t))
′
(t) = cr(Qt)Vt[Q],

where

Vt[Q] =
Vt(bt)− Vt(at)

bt − at
−

Vt(ct)− Vt(bt)

ct − bt
+

Vt(dt)− Vt(ct)

dt − ct
−

Vt(dt)− Vt(at)

dt − at
.

Thus, by Lemma 13 and the linear bound of inequality (23), we obtain a bound on
∫ 1

0

ρ(g(t))|g′(t)|dt.

This bound implies g(1) is bounded away from 0,−1 and ∞ and yields a bound on
|log |cr(h(Q1)|| depending only on ||σ||Th. ¤

Therefore, we have proved the following corollaries.

Corollary 8. Let σ be a locally finite measure whose support is a lamination L.
Then h = H(σ) is a quasisymmetric homeomorphism of the unit circle, if, and only
if, σ is Thurston bounded.

Corollary 9. If h is quasisymmetric, then there is a unique shearing measure on
the lamination L for h, h = hσ and htσ is quasisymmetric for all t ≥ 0.
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4. Ordinary Differential Equations

Let σ be an earthquake measure supported on a lamination L which has finitely
many leaves. For any t ≥ 0, (tσ,L) determines up to postcomposition by a Möbius
transformation a circle homeomorphism ht = htσ. We assume that for every t ≥
0, ht fixes the same three points. Such a curve is called an earthquake curve
determined by (tσ,L). Then h0 is the identity map and for any point x on the
circle ht(x) is differentiable with respect to t and the derivative d

dtht satisfies the
following nonautonomous ordinary differential equation

(25)
d

dt
ht(x) = Vt(ht(x)),

where Vt is the vector field given by

Vt(x) =

∫ ∫

Eht(a)ht(b)(x)dσ(a, b) + a quadratic polynomial,

where Eab(x) =
(x−a)(x−b)

a−b if x ∈ [a, b], and otherwise Eab(x) = 0.
In Section 4.1, we show that any earthquake curve corresponding to a locally

finite earthquake measure σ supported on lamination L safisfies the above ordinary
differential equation for any point x contained in the boundary of a stratum. Notice
that the union of the boundary points of all strata does not necessarily cover the
whole circle, and the earthquake map Et, determined by (tσ,L), is not necessarily
extendable continuously. In Section 4.2 we show that if ||σ||Th < ∞, then the
ordinary differential equation extends to any point on the boundary circle and the
earthquake curve is the unique solution of the equation.

Recently Dragomir S̆arić [11] has shown that if σ is Thurston bounded, then for
each x on the boundary circle, the earthquake curve ht(x) extends to a complex
analytic function of t in a disk D(t) centered at t and whose radius depends on t and
||σ||Th.One can use this result to give an alternative proof that the earthquake curve
satisfies the ordinary differential equation in the quasisymmetric case. However our
result is more general and does not depend on S̆arić’s result.

4.1. Differentiation of earthquake curves. Let σ be a locally finite earthquake
measure supported on a lamination L, and l0 be a line in L. Let Et = Etσ be the
earthquake map determined by (tσ,L) with the normalization of fixing the line l0
for t ≥ 0. Let S denote the union of the boundaries of all strata. Then Et extends
to a continuous injective map ht = htσ from S into the circle. In this section we
show that for each x ∈ S, ht(x) is differentiable in t and it satisfies the ordinary
differential equation (25). We first show ht(x) is differentiable at t = 0.

Lemma 14. For each x ∈ S,

lim
t→0+

ht(x)− x

t
=

∫ ∫

Eab(x)dσ(a, b),

where Eab(x) =
(x−a)(x−b)

a−b if x ∈ [a, b], and otherwise Eab(x) = 0.

Proof. Let T denote the stratum whose boundary on the circle contains the point
x, l the geodesic boundary line of T which is the closest one to l0 in the hyperbolic
metric, and r the geodesic arc perpendicular to both l0 and l. (In the case that l0
and l1 share one endpoint, we may choose any geodesic arc which is transversal to
both of them.) Denote by L′ the set of all leaves of L in the strip bounded by l0
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and l which are parallel to l0 and l. Let σ′ denote the restriction of σ to L.′ and
E′t = Etσ′ be the earthquake map determined by (L′, tσ′) normalized to fix the line
l0. Then E′t extends to a homeomorphism h′t on the circle S1. Clearly ht(x) = h′t(x)
for any t ≥ 0. Denote by V (x) =

∫ ∫

Eab(x)dσ(a, b), then

V (x) =

∫ ∫

Eab(x)dσ
′(a, b).

Let P = {zi}
n
i=0 be a partition of the tranversal arc r, and d the maximum of

the hyperbolic lengths of the small arcs in the partition. Assume that z0 belongs
to l0 and zn belongs to l. Denote by Ti the stratum that contains zi, 0 ≤ i ≤ n.
Let ri denote the arc (zi−1, zi] on r, and li a line in L′ intersecting ri, 1 ≤ i ≤ n.
Denote in order by Ti the strata containing the endpoints of ri’s, 0 ≤ i ≤ n. Let
σ′1 = σ′([z0, z1]), and σ′i = σ′(ri), 2 ≤ i ≤ n. And let Ln denote the collection of
li, 1 ≤ i ≤ n, νn the measure supported on Ln with the weight σ′i on li, 1 ≤ i ≤ n.
Let Fn

t = F t
1 ◦ F

t
2 ◦ · · · ◦ F

t
n denote the curve of the finite earthquake maps which

fix the line l0, have lamination Ln and measure tνn, where t ≥ 0. Let Et
i = E′t|Ti .

Then

ht(x) = h′t(x) = E′t(x) = Et
1 ◦ E

t
2 ◦ · · · ◦ E

t
n(x).

Clearly each F t
i is a hyperbolic Möbius transformation with axis li and translation

length σ′i. Each Et
i is also a hyperbolic Möbius transformation with axis intersecting

the arc [zi−1, zi], and by Proposition 1 its translation length differs from σ′i by an
amount O(σ′il(ri)), where l(ri)) denotes the hyperbolic length of the arc ri.
Sublemma:

|h′t(x)− Fn
t (x)| = O(td(n)σ′(r)etσ

′(r)),

where d(n) denote the maximum of the hyperbolic lengths of ri’s.
Let us first use this sublemma to prove the differentiability of ht(x) at t = 0.
Define

Vn(x) =

∫ ∫

Eab(x)dνn(a, b).

One can easily show that Vn(x) approaches V (x) as n approaches infinity.
Now we write

ht(x)− x

t
− V (x) =

h′t(x)− x

t
− V (x)

=
E′t(x)− Fn

t (x)

t
+ [

Fn
t (x)− x

t
− Vn(x)] + [Vn(x)− V (x)].

Let ε denote an arbitrarily small positive. Because of the sublemma, for every

ε > 0, if n is sufficiently large, |
E′

t(x)−Fnt (x)
t | < ε

3 . and |Vn(x) − V (x)| < ε
3 . For a

fixed large value of n, if t is small enough, then |
Fnt (x)−x

t − Vn(x)| <
ε
3 . Therefore

there exists δ > 0, such that for any 0 ≤ t < δ,

|
ht(x)− x

t
− V (x)| < ε.

This means that d
dtht(x)|t=0 = V (x).

Now we prove the sublemma by a method similar to the one used to prove
Proposition 4. Let xti = Et

n−i+1 ◦E
t
n−i+2 ◦ · · · ◦E

t
n(x) and yti = F t

n−i+1 ◦ F
t
n−i+2 ◦

· · · ◦ F t
n(x), 1 ≤ i ≤ n. By Corollary 5, xt1 = Et

n(x) differs from yt1 = F t
n(x) by at

most O(l(rn)tσ
′(rn)) = O(d(n)tσ′n). By Corollary 5 again,

xt2 = Et
n−1(x

t
1) = F t

n−1(x
t
1) +O(d(n)tσ′n−1).
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By the mean value theorem,

|F t
n−1(x

t
1)− F t

n−1(y
t
1)| ≤ etσ

′

n−1 |xt1 − yt1)|,

and therefore

xt2 = yt2 +O(d(n)tσ′n−1) +O(d(n)etσ
′

n−1tσ′n).

Inductively using Corollary 5 and the mean value theorem, we have

xtn = ytn +O(d(n)tσ′1) +O(d(n)etσ
′

1tσ′2) +O(d(n)etσ
′

1+tσ
′

2tσ′3) + · · ·

+O(d(n)etσ
′

1+tσ
′

2+···+tσ
′

n−1tσ′n) = xtn +O(d(n)etσ
′(r)tσ′(r)),

which proves the sublemma. ¤

Suppose that t and s are positive. Let ht denote the curve of earthquake maps
that fix l0, have source lamination L and measure tσ. Let Lt denote the target
lamination of ht and h∗t (σ) be the pushforward of the measure (σ,L) under ht,

whose support is Lt. Let h̃s be the curve of earthquake maps that fix the line l0
and have lamination Lt and measure sh∗t (σ), s ≥ 0.

Lemma 15. For each x ∈ S.

ht+s(x) = h̃s(ht(x)).

Proof. We use the notations in the proof of the previous lemma. Let Ẽ′s, s ≥ 0, be
the earthquake map determined by (E ′t(L

′), s(h′t)
∗(σ′)) normalized to fix the line

l0 = h′t(l0), and h̃′s be the extension of Ẽ′s to the boundary circle. We only need
to show

h′t+s(x) = h̃′s(h
′
t(x)).

Let hnt denote the extension of the finite earthquake map F n
t to the boundary

circle. The method used to show the sublemma in the proof of Lemma 14 implies
that hnt converges to h′t on the boundary circle. For each finite earthquake curve
Fn
t , Fn

t+s ◦ (F
n
t )
−1 is also a left earthquake with the source lamination F n

t (Ln)

and measure s(hnt )
∗(νn). Let Ẽn

s denote the finite earthquake curve determined by

(Fn
t (Ln), s(h

n
t )
∗(νn)) normalized to fix l0, and h̃ns the extension of Ẽn

s to S1. Then
for each y ∈ S1,

hnt+s(y) = h̃ns (h
n
t (y)).

In particular,

hnt+s(x) = h̃ns (h
n
t (x)).

As n approaches infinity, hnt+s(x) approaches to h′t+s(x). In fact, for any t ≥ 0,
hnt converges to h′t unformly on S1. It remains to show that the right-hand side

of the above equation converges to h̃′s(h
′
t(x)). We first show that h̃ns converges to

h̃′s in C0 topology. Since hnt converges to h′t uniformly on S1, the images of the
leaves in Ln under Fn

t are uniformly close to their images under E ′t. Now we write

the map h̃′s as a long composition of the comparison maps with respect to the
finitely many lines in the lamination E ′t(Ln). Because we require Ẽ′s to fix the line
l0, the comparison maps are hyperbolic Möbius transformations. And of course
the finite earthquake map Ẽn

s is also a long composition of hyperbolic Möbius
transformations. Consider respectively the Möbius transformations in these two
long compositions. They have nearby axes and nearly equal translation lengths.
Again using the method to show the sublemma in the proof of the previous lemma,
we conclude that maxy∈S1 |h̃ns (y)− h̃′s(y)| converges to zero as n approaches infinity.
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Now we write
h̃ns (h

n
t (x))− h̃′s(h

′
t(x))

= [h̃ns (h
n
t (x))− h̃′s(h

n
t (x))] + [h̃′s(h

n
t (x))− h̃′s(h

′
t(x))],

and deduce the convergence of h̃ns (h
n
t (x)) to h̃′s(h

′
t(x)). ¤

Theorem 10. For each x ∈ S, ht(x) is differentiable for any t ≥ 0, and

d

dt
ht(x) = Vt(ht(x)),

where Vt(y) =
∫ ∫

Eht(a)ht(b)(y)dσ(a, b).

Proof. By definition,
d

dt
ht(x) = lim

s→0

ht+s(x)− ht(x)

s
.

When s > 0, by Lemma 15,

ht+s(x)− ht(x)

s
=

h̃s(ht(x))− ht(x)

s
=

h̃s(y)− y

s
,

where y = ht(x). By Lemma 14,

lim
s→0+

h̃s(y)− y

s
= Ṽ (y),

where Ṽ (y) =
∫ ∫

Eab(y)dh
∗
tσ(a, b). And clearly

Ṽ (y) =

∫ ∫

Eab(y)dh
∗
tσ(a, b) =

∫ ∫

Eht(a)ht(b)(y)dσ(a, b) = Vt(y).

Therefore

lim
s→0+

ht+s(x)− ht(x)

s
= Vt(ht(x)).

Now we consider the limit lims→0+
ht−s(x)−ht(x)

−s . Following arguments similar

to the arguments in Lemma 15, one can show that ht−s(x) = h̄s(ht(x)), where h̄s,
s ≥ 0, is the right earthquake map determined by (ht(L), sh

∗
t (σ)) normalized to fix

l0. Just as in Lemma 14, one can show that

lim
s→0+

h̄s(y)− y

s
=

∫ ∫

Eba(y)dh
∗
tσ(b, a) = −

∫ ∫

Eab(y)dh
∗
tσ(a, b) = −Vt(y).

Therefore

lim
s→0+

ht−s(x)− ht(x)

−s
= Vt(ht(x)).

This completes the proof. ¤

4.2. Uniqueness of solution. If the measure σ has bounded Thurston norm then
each earthquake map Etσ, t ≥ 0, extends to a homeomorphism on the boundary
circle (see Proposition 2 in Section 2.1). In this section, we will first show that for
a Thurston bounded measure σ, ht(x) is differentiable on t ≥ 0 for any point x on
the circle. We will also prove that under that condition, the normalized earthquake
curve is the unique solution to the ordinary differential equation.

Given a lamination L, a point x on the boundary circle is called a accumulation
point with respect to L if there exists an infinite sequence {ln}

∞
n=0 of distinct,

nonintersecting lines in L such that both endpoints of ln converge to x in the
Euclidean metric. Let Sa denote the set of all accumulation points with respect to
L. Let ht(x) be the curve of earthquake maps determined by (L, tσ) normalized to
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fix l0 in L. In order to conclude that the normalized curve ht(x) is differentiable
on t ≥ 0 for any x on the circle, by Theorem 10 we only need to prove that ht(x)
is differentiable on t for any any accumulation point x of L.

Lemma 16. For any x ∈ Sc,

lim
t→0+

ht(x)− x

t
=

∫ ∫

Eab(x)dσ(a, b),

where Eab(x) =
(x−a)(x−b)

a−b if x ∈ [a, b], and otherwise Eab(x) = 0.

Proof. Let l⊥0 denote the geodesic that passes through x and is perpendicular to l0.
Conjugating by a Möbius transformation, we may assume that l⊥0 is the imaginary
axis of the upper half plane, x is at the origin, and l0 is the geodesic connecting −1
to 1. Let L′ denote the collection of those lines in L that connect a point in [−1, 0)
to a point in (0, 1], and σ′ the restriction of σ to L′. Let an = −e−n and bn = e−n,
where n ≥ 0. Let ln be a line in L′ which connects a point a′n in [an−1, an) to a point
b′n in (bn, bn−1]. If there is no such a line, then we add such a line with zero weight
to the lamination L′. Clearly for each n ∈ N the hyperbolic distance between ln−1

and ln is less than or equal to 2, and |a′n − b′n| ≤ |an−1 − bn−1| = 2e−(n−1).
For each n ∈ N, let (L(n), σ(n)) denote the restriction of (L′, σ′) on [a0, a

′
n) ×

(b′n, b0], and E
(n)
t be the curve of the earthquake maps determined by (L(n), tσ(n))

with the normalization of fixing l0.

Sublemma 1: If t is small enough such that 2t||σ||Th < 1, then

max
y∈S1

|E
(n+1)
t (y)− E

(n)
t (y)| = O(t||σ||e−n(1−2t||σ||)).

Proof. We first notice that the measure σ′([a′n−1, a
′
n)× (b′n−1, b

′
n]) = σ([a′n−1, a

′
n)×

(b′n−1, b
′
n]) is bounded above by 2||σ|| for each n ∈ N. Clearly

0 ≤ (E
(n)
t )−1 ◦ E

(n+1)
t (y)− a′n ≤ e2t||σ||(y − a′n)

for each y ∈ [a′n, b
′
n], and therefore for each y ∈ S1,

|(E
(n)
t )−1 ◦ E

(n+1)
t (y)− y| ≤ (e2t||σ|| − 1)|b′n − a′n|.

And then

max
y∈S1

|E
(n+1)
t (y)− E

(n)
t (y)| ≤ (e2t||σ||)n(e2t||σ|| − 1)2e−(n−1).

Hence
max
y∈S1

|E
(n+1)
t (y)− E

(n)
t (y)| = O(t||σ||e−n(1−2t||σ||)).

¤

From this sublemma we see that if t < 1
2||σ||Th

, then E
(n)
t converges uniformly

to E′t on the circle. In the remaining part of the proof, we assume x = 0. Then

Et(x)− E
(n)
t (x) = E′t(x)− E

(n)
t (x) = O(t||σ||e−n(1−2t||σ||)).

If Vn(x) =
∫ ∫

Eab(x)dσ
(n)(a, b), and V (x) =

∫ ∫

Eab(x)dσ(a, b) then clearly

V (x) =

∫ ∫

Eab(x)dσ
′(a, b).

Sublemma 2: limn→∞ Vn(x) = V (x).
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Proof. Since

V (x)− Vn(x) =

∫ ∫

[a′n,0)×(0,b′n]

Eab(x)dσ
′(a, b)

= O(

∞
∑

k=n

|a′k − b′k|||σ
′||) = O(e−(n−1)||σ||),

Vn(x) converges to V (x) as n goes to infinity. ¤

We now write

ht(x)− x

t
− V (x) =

E′t(x)− E
(n)
t (x)

t
+

[

E
(n)
t (x)− x

t
− Vn(x)

]

+ [Vn(x)− V (x)] .

Given ε > 0, because of the above sublemmas, there exists a big n, such that

|
E′

t(x)−E
(n)
t (x)

t | < ε
3 and |Vn(x) − V (x)| < ε

3 . Since x is a boundary point with

respect to the lamination L(n), by Theorem 10, for large enough n, there exists
δ > 0 such that for any 0 ≤ t < δ,

∣

∣

∣

∣

∣

E
(n)
t (x)− x

t
− Vn(x)

∣

∣

∣

∣

∣

<
ε

3
.

Therefore

lim
t→0+

ht(x)− x

t
= V (x).

¤

We need the following lemma, which is analogous to Lemma 15.

Lemma 17. For each x ∈ Sc and t, s ≥ 0,

ht+s(x) = h̃s(ht(x)).

Proof. We follow the notations of lemma 16. It suffices to show that h′t+s(x) =

h̃′s(h
′
t(x)). Let h

(n)
t denote the extension of E

(n)
t to the boundary circle, and Ẽn

s

be the curve of earthquake maps determined by (E
(n)
t (L(n)), s(h

(n)
t )∗(σ(n))) with

the normalization of fixing l0 and h̃
(n)
s the extension of Ẽn

s to the boundary circle.
Since x is a boundary point of some stratum of L(n), by Lemma 15,

h
(n)
t+s(x) = h̃(n)

s (h
(n)
t (x)).

We need to do pass to the limit in this equation. By the Proposition 2 in Section

2.1, h
(n)
t (x) converges to h′t(x) as n goes to infinity. By the same argument used

in sublemma 1 in the proof of the Lemma 16, if s ≥ 0 is small enough, then h̃
(n)
s

converges to h̃′s uniformly on the boundary circle, where the size of s depends on
the Thurston norm of (h′t)

∗(σ′), and hence depends on t and σ. Now we rewrite

h
(n)
t+s(x) = [h̃(n)

s (h
(n)
t (x))− h̃′s(h

(n)
t (x))] + h̃′s(h

(n)
t (x)).

Passing the limit, we finish the proof. ¤

Theorem 10 and Lemmas 16 and 17 imply the following theorem.
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Theorem 11. Let (σ,L) be a Thurston bounded measure and ht(x), t ≥ 0, be the
curve of the earthquake maps determined by (tσ,L) normalized to fix l0 in L. Then

d

dt
ht(x) = Vt(ht(x)),

where Vt(y) =
∫ ∫

Eht(a)ht(b)(y)dσ(a, b).

In the remainder of this section, we show the uniqueness of the solution to the
ordinary differential equation.

Theorem 12. Let ||σ||Th <∞. Any normalized solution to the ordinary differential
equation (25) must coincide with htσ.

Proof. Note that the vector field Vtσ is a Zygmund bounded function and thus
Vtσ(x) satisfies a |ε log ε|-modulus of continuity that is uniform for 0 ≤ t ≤ t0.

If we put ω(s) = s log(1/s) for 0 < s < 1/2, ω is called the modulus of continuity.

Since
∫ 1/2

0
ds
ω(s) = ∞, ω satisfies the W. Osgood criterion for the uniqueness of

solution to an ordinary differential equation. The proof of the criterion is simple.
Let x(t) = htσ(x) be the solution the solution to (25) and suppose y(t) is another
solution with y(0) = x(0). We have

ẋ = W (t, x) and ẏ = W (t, y),

where
W (t, z) = Vt(z),

Thus the difference z(t) = y(t)− x(t) satisfies

ż = W (t, y)−W (t, x),

and
|ż| ≤ Cω(z),

where ω(z) is the modulus of continuity. We may assume there is a value t0 where
z0 = z(t0) = 0 and another value t1 > t0 where z1 = z(t1) > 0 and z(t) > 0 for
t0 < t < t1. We have

∫ z1

z0

dz

ω(z)
=

∫ t1

t0

ż(t)

ω(z(t))
dt,

and
∫ t1

t0

ż(t)

ω(z(t))
dt ≤ C

∫ t1

t0

dt = C(t1 − t0).

But this is a contradiction because
∫ z1
z0

dz
ω(z) =∞. ¤

5. Smoothness Classes

In this last part of the paper, we first investigate the regularities of the tangent
vectors Vt(x) to earthquake curves determined by measures σ which satisfy van-
ishing conditions near the boundary circle. Then we apply them to characterize
different smooth classes of circle homeomorphisms. At the end, we show that the
characterizations are also equivalent to the corresponding vanishing conditions on
the initial tangent vectors V0(x) to the earthquake curves.

Let α ≥ 0, D be a disk in the unit disk of diameter 1 in the hyperbolic metric,
and δ(D) denote the Euclidean distance from D to the unit circle. We say that σ
is vanishing of order α if

(26) massσ(D) ≤ C1δ(D)α,
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for some constant C1 > 0, where massσ(D) is the total σ-mass of the lines of the
lamination for σ that meet D.

Four distinct points a, b, c and d on the unit circle forms a quadruple. We assume
that a, b, c and d are labelled in counterclockwise order. Define the scale s of the
quadruple {a, b, c, d} to be

(27) s({a, b, c, d}) = min{|a− b|, |b− c|, |c− d|, |d− a|}.

We say that a homeomorphism h of the unit circle is smooth of order α if there
exists a constant C2 > 0, such that

(28)

∣

∣

∣

∣

log

∣

∣

∣

∣

(h(b)− h(a))(h(d)− h(c))

(h(b)− h(c))(h(d)− h(a))

∣

∣

∣

∣

∣

∣

∣

∣

≤ C2s
α,

for any four distinct points a, b, c, d on the unit circle in counterclockwise order such

that cr(a, b, c, d) = (b−a)(d−c)
(c−b)(d−a) = 1.

Remark. In fact, h is smooth of order 0 means that h is quasisymmetric; h is
smooth of order α, 0 < α < 1, is equivalent to saying that h is C1+α ( [10]); and h
is smooth of order 1 is equivalent to saying that h is C1+Zygmund [7]. Also see [7]
and [5] for applications of these smooth conditions in the study of the dynamics of
circle diffeomorphisms.

Theorem 13. Let 0 ≤ α < 1. Then a circle homeomorphism h is smooth of order
α if and only if the measure σ determining h is vanishing of order α. Moreover,
the constants C1 and C2 can be extimated in terms of each other.

When α = 0, the above theorem is the corollary of Theorems 8 and 9. When
0 < α < 1, the proof of “if” part is divided into sections 5.2, 5.3 and 5.4, and the
proof for “only if” part is given in section 5.5.

Let htσ, t ≥ 0, be a curve of earthquake maps determined by the measure tσ,
and V (x) denote the tangent vector of htσ(x) at t = 0, i.e.,

(29) V (x) =
d

dt

∣

∣

∣

∣

t=0

htσ(x)

=

∫ ∫

Eht(a)ht(b)(x)dσ(a, b) + a quadratic polynomial,

where Eab(x) =
(x−a)(x−b)

a−b if x ∈ [a, b], and otherwise Eab(x) = 0. Clearly, if σ is
vanishing of order α then it has a finite Thurston norm. And then the norm of V
is bounded in the sense of the norm defined in (21) in Section 3.2. We say that the
vector V is vanishing of order α if there exists a constant C3 > 0, such that

(30) |V [Q]| ≤ C3s
α,

for any four distinct points a, b, c, d on the unit circle in counterclockwise order such

that cr(a, b, c, d) = (b−a)(d−c)
(c−b)(d−a) = 1, where V [Q] is defined in (22) in section 3.2.

Theorem 14. Let 0 ≤ α < 1. Then the initial tangent vector V given in above
formula (30) is vanishing of order α if and only if the measure σ is vanishing of
same order. Moreover, the constants C1 and C3 can be estimated in terms of each
other.
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The proof of “if” part comes out the work of Sections 5.4, and the other half
proof is given in Section 5.6.

We have the following corollary from Theorems 13 and 14.

Corollary 10. Let 0 ≤ α < 1. The following three conditions are equivalent.

(1) There exists a constant C1 such that σ is vanishing of order α with constant
C1.

(2) There exists a constant C2 such that h is smooth of order α with constant
C2.

(3) There exists a constant C3 such that V is vanishing of order α with constant
C3.

Moreover, the constants C1, C2 and C3 can be estimated in terms of each other.

An open question is to study whether the three conditions in the above corollary
are equivalent for α = 1.

5.1. Norms of tangent vectors. For a point ζ in the unit circle, we let z be the
stereographic projection of ζ to the real axis. Then ζ is related to z by the formula
ζ = T1(z, ) where

ζ = T1(z) = i
i− z

i+ z
.

A vector field V on the circle transforms by T to a vector field W1 on the real axis
by the formula

W1(z) = V (T1(z))(T
′
1(z))

−1 = V (T1(z))
2

(i+ z)2
.

Similarly, if we use the stereographic projection from the south pole,

T2(z) = −T1(z),

we obtain

W2(z) = V (T2(z))(T
′
2(z)

−1) = V (T2(z))(−
2

(i+ z)2
).

If we let I be the interval from −2 to 2, then T1(I) and T2(I) form a covering
of the circle by two coordinate patches. We introduce a Zygmund norm on V
depending on these coordinate patches by defining

||V ||Z = max{||W1||1, ||W2||2},

where

||Wj ||j = sup

∣

∣

∣

∣

Wj(x− s) +Wj(x+ s)− 2Wj(x)

s

∣

∣

∣

∣

,

where the supremum is taken over all x and s such that x− s and x+ s belong to
[−2, 2]. We leave it to the reader to show the following lemma.

Lemma 18. Assume V (z) ∂
∂z is a continuous vector field on the unit circle nor-

malized to vanish at three points. Then ||V ||Z is bounded if and only if

sup
x,s

∣

∣

∣

∣

V (ei(x−s)) + V (ei(x+s))− 2V (eix)

s

∣

∣

∣

∣

is bounded. Moreover, there is a constant C > 0 such that for 0 < s < 1/2,

1

C

∣

∣

∣

∣

V (ei(x−s)) + V (ei(x+s))− 2V (eix)

s

∣

∣

∣

∣
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≤ max
j

sup
x,s

{
∣

∣

∣

∣

Wj(x− s) +Wj(x+ s)− 2Wj(x)

s

∣

∣

∣

∣

}

≤ C

∣

∣

∣

∣

V (ei(x−s)) + V (ei(x+s))− 2V (eix)

s

∣

∣

∣

∣

.

5.2. Scales of quadruples. Let l1 and l2 be two nonintersecting geodesic lines.
Then the strip S bounded by l1 and l2 in the unit disk is of the form [a, b]× [c, d],
where a, d and b, c are the endpoints of l1 and l2, respectively. Assume that l1 and
l2 share no endpoints, let β be the geodesic segment in S perpendicular to both l1
and l2. Recall that the scale s(a, b, c, d) of a quadruple {a, b, c, c} is defined in (27).

Lemma 19. If the hyperbolic length of β is equal to 1, then there exists a constant
C such that

1

C
δ(β) ≤ s(a, b, c, d) ≤ Cδ(β),

where δ(β) is the Euclidean distance from β to the unit circle, and the constant C
is universal, independent of α, l1 or l2.

Proof. Since the hyperbolic length of β is equal to 1, the cross ratio
∣

∣

∣

∣

(a− b)(c− d)

(d− a)(c− b)

∣

∣

∣

∣

is equal to

(e− 1)2

4e
= C < 1.

Therefore |a − b||c − d| = C|d − a||b − c|. Let s = s(a, b, c, d). By relabelling, if
necessary, we may assume that s = |a − b| or s = |b − c|. Suppose first that
s = |a− b|. Then

C|d− a||b− c| = s|c− d| ≤ s(s+ |d− a|+ |b− c|) ≤ 3smax{|d− a|, |b− c|}.

Therefore,

min{|d− a|, |b− c|} ≤
3

C
s.

Suppose now that s = |b− c|. Similar reasoning yields

min{|d− c|, |b− a|} ≤ 3Cs.

Therefore, in all cases,

min{|d− b|, |a− c|} ≤
6

C
s.

Without loss of generality, we may assume |a−c| ≤ |a−b|+ |b−c| ≤ 6
C s. Therefore

the Euclidean distance from the endpoint of β which lies on the line l2 to the unit
circle is less than 6

C s. Therefore,

s(a, b, c, d) ≥
C

6
δ(β).

Now we prove the second inequality. Since the hyperbolic length of β equals 1,
the Euclidean distance from any point on β to the unit circle is at most eδ(β). By
relabelling, we may assume |a− b| ≤ |c− d|. Let l3 and l4 be geodesics joining a to
b, and c to d, respectively. Let d0 be the Euclidean distance from 0 to l3 and let D
be a closed Euclidean disc with center at 0 and radius d0. Since |a− b| ≤ |c− d|, D
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intersects the line l4. Therefore, the set T = D
⋃

l3
⋃

l4 separates l1 \T from l2 \T.
Hence there is a point p in β such that p ∈ D. Therefore, a simple calculation yields

δ(β) ≥
1

e
(1− |p|) ≥

1

e

1

2 tan 3π
8

|a− b| ≥
1

2e tan 3π
8

s(a, b, c, d).

Therefore Lemma 19 follows with the constant

C = max{2e tan
3π

8
,

24e

(e− 1)2
} ≤ 23.

¤

5.3. Bounds on vanishing measures.

Lemma 20. Let σ be an earthquake measure vanishing of order α > 0 with constant
C1, and assume the lamination L of σ contains the line l which joins −1 to 1. If l1
and l2 are any two lines in the lamination L, then the total σ-measure of all lines in
L that separate l1 from l2 is less than a finite constant C. The constant C depends
only on α and C1.

Proof. Without loss of generality, we may assume l2 = l, and l1 connects a point in
[−1, 1] to another point in [−1, 1]. Let σ0 be the pull back of σ by a stereographic
projection T1 or T2 which moves the endpoints of l1 to points x, y with −1 ≤ x <
y = x + s ≤ 1. Let Sk be a set of all lines in L which have one endpoint in the
interval [x−(2k−1)s, x−(2k−1−1)s] and another endpoint in the interval [x+s, 1].
Observe that

σ0([−1, x]× [x+ s, 1]) =
n
∑

i=1

σ(Si),

where n is chosen so that

x− (2n − 1)s ≤ −1 ≤ x− (2n−1 − 1)s.

Thus, by the smoothness property of σ and Lemma 14,

σ0([−1, x]× [x+ s, 1]) ≤

n
∑

i=1

(Const)(2i−1s)α ≤

Const.4α
n
∑

i=1

(2α)i−n ≤ Const.

¤

5.4. Smooth homeomorphisms from vanishing measures. Suppose that σ is
vanishing of order α. Let Vt(x) denote the derivative of an earthquake curve htσ on
the variable t. Then

h(t+s)σ ◦ h
−1
tσ (x) = x+ sVt(x) + o(s),

where the earthquake measure σt of Vt is the pushforward of σ under htσ, which is
supported on the lamination htσ(L). By Lemma 20, there exists a constant C > 0
depending only on α and C1 such that

(31) σt(I × J) ≤ C,

for any two disjoint closed subarcs I and J of the unit circle.
We divide the proof of the smoothness of order α of h into several steps. In the

different steps we will use the same letter C for a constant that varies from step to
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step. The important point is that C depends only on ||σ||Th and on the constant
C1 in the statement of Theorem 13. We first show that the tangent vectors Vt are
uniformly Lipschitz continuous.

Step I There exists a constant C such that

(32) |Vt(x)− Vt(y)| ≤ C|x− y|,

for all x and y on the unit circle, and all 0 ≤ t ≤ 1.

Proof. Since Lipschitz continuity is a local condition, it is enough to show (32) for
the two restrictions of Vt, one to the upper semi-circle and the other to the lower
semi-circle. Therefore, if Wt is the pull-back of the tangent vector Vt to the real
axis by one of the stereographic projections, T1 or T2, it is enough to show that Wt

is uniformly Lipschitz continuous on the interval [−1, 1]. Let σ∗t be the measure for
Wt and L

∗
t its associated lamination in the upper half-plane. We have

Wt(x)−Wt(y) =

∫∫

L∗t

(Eab(x)− Eab(y))dσ
∗
t (a, b) =

∫∫

L∗t

(Eab(x)− Eab(y))dσ1(a, b) +

∫∫

L∗t

(Eab(x)− Eab(y))dσ2(a, b),

where σ1 is the restriction of σ∗t to the set of all lines in L∗t which meet the interval
between x and y, and σ2 = σ∗t − σ1. Let Wi(x) =

∫∫

L∗t
Eab(x)dσi(x). We may

assume −1 ≤ x < y = x+ s < 1. The inequality (31) yields

σ2([−1, x]× [x+ s, 1]) ≤ C.

On the other hand, if a is a point in [−1, x] and b is a point in [x+ s, 1], then

|Eab(x)− Eab(y)| = |
s(a+ b− 2x)− s2

b− a
| ≤ s.

Therefore,
|W2(x)−W2(y)| ≤ sσ([−1, x]× [x+ s, 1]) ≤ Cs.

To show W1 is Lipschitz continuous, observe that

W1(x)−W1(y) =

∫∫

L∗t

(Eab(x)− Eab(y))dσ1(a, b) =

∫∫

L∗t

(Eab(x)− Eab(y))dσ3(a, b) +

∫∫

L∗t

(Eab(x)− Eab(y))dσ4(a, b),

where σ3 is the restriction of σ1 to the set of all lines in L with endpoints a and b
such that a < x ≤ b ≤ y, and σ4 = σ1 − σ3. Therefore

W3(x)−W3(y) =

∫∫

L

(Eab(x)− Eab(y))dσ3(a, b) =

∫∫

L∗t

(x− a)(b− x)

b− a
dσ3(a, b) ≤ s

∫∫

L∗t

dσ3(a, b) =

s lim
c→0+

∫∫

[−1,x−c]×[x,y]

dσ3(a, b) ≤ Cs,

again by inequality (31).
Similar reasoning shows |W4(x)−W4(y)| ≤ C|x−y|. Therefore |Wt(x)−Wt(y)| ≤

3C|x− y|. ¤



46 F. P. GARDINER, J. HU, AND N. LAKIC

In the next step we show that the functions ht = htσ are uniformly bi-Lipschitz
continuous for 0 ≤ t ≤ 1.

Step II There exists a constant C such that

(33)
1

C
|x− y| ≤ |ht(x)− ht(y)| ≤ C|x− y|,

for all x and y on the unit circle, and all 0 ≤ t ≤ 1.

Proof. Let F (t) = log |ht(x)− ht(y)|, where x and y are any two distinct points on
the unit circle. Step I yields

|F ′(t)| = |
Vt(ht(x))− Vt(ht(y))

ht(x)− ht(y)
| ≤ C.

Therefore

C ≥ |F (1)− F (0)| = | log |
ht(x)− ht(y)

x− y
||,

and

e−C ≤ |
ht(x)− ht(y)

x− y
| ≤ eC .

¤

Step III The measures σt are uniformly vanishing of order α.

Proof. By Step II, the mapping htσ quasipreserves the scales of quadruples, which
are by Lemma 19, equivalent to the Euclidean distance from the common perpen-
dicular segment to the unit circle. By Theorem 9, htσ quasipreserves the hyperbolic
length of this segment. See [1] for another proof of this statement. Therefore, the
measures σt are uniformly vanishing of the same order as tσ. ¤

Now we start to prove that h is vanishing of order α. Let a, b, c and d be any

four distinct points on the unit circle such that cr(a, b, c, d) = (d−c)(b−a)
(b−c)(d−a) = 1. We

want to show

(34) log |cr(h(a), h(b), h(c), h(d))| ≤ (Const)s(a, b, c, d)α,

If we let

G(t) = log |cr(ht(a), ht(b), ht(c), ht(d))|,

then by the proof of Theorem 9,

(35) G′(t) = |Vt[ht(a), ht(b), ht(c), ht(d)]|,

Here we are using the square bracket notation defined in equation (22). By Step II,

s(a, b, c, d)

C
≤ s(ht(a), ht(b), ht(c), ht(d)) ≤ s(a, b, c, d) C.

Furthermore, Theorem 9 yields

(36)
1

C
≤ |cr(ht(a), ht(b), ht(c), ht(d))| ≤ C.

Let s = s(a, b, c, d). By the proof of Lemma 19, we may assume |a−b|+ |b−c| ≤ Cs.
By taking s to be sufficiently small, we may assume that the Euclidean distance
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from all three points a, b, c to the same one point 1 or −1 is at least 1
2 . We first

show that there exists a (universal) constant C such that

(37) |Vt[ht(a), ht(b), ht(c), ht(d)]| ≤ Csα.

We may assume that

(38) max{|ht(a)− 1|, |ht(b)− 1|, |ht(c)− 1|} ≥
1

2
.

The pull-back W of Vt by the stereographic projection T3(z) = iT1(z) vanishes at
0 and ∞. Furthermore, proving inequality (37) is equivalent to proving

(39) |W [ã, b̃, c̃, d̃]| ≤ Csα,

where ã, b̃, c̃, d̃ are images under the projection T3 of ht(a), ht(b), ht(c), ht(d), re-
spectively. We prove this inequality in Step V. Inequality (38) implies

(40) −3 ≤ ã, b̃, c̃ ≤ 3.

We first prove a preliminary Step.

Step IV There exists a constant C such that

(41)

∣

∣

∣

∣

W (x+ s) +W (x− s)− 2W (x)

s

∣

∣

∣

∣

≤ Csα,

whenever −3 ≤ x− s < x < x+ s ≤ 3. The constant C depends only on α and C1.

Proof. Let σ0 be the earthquake measure of W = Wσ0
and let L0 be its support

lamination. Let L0 = L1

⋃

L2, where L1 is the set of all lines in L both of whose
endpoints belong to the interval [x−3s, x+3s]. Let σ1 be the restriction of σ0 to L1,
and let σ2 = σ0 − σ1. By Step III, σ0 is uniformly vanishing of order α. Therefore,
the inequality (36) yields

∣

∣

∣

∣

Wσ1
(x+ s) +Wσ1

(x− s)− 2Wσ1
(x)

s

∣

∣

∣

∣

= |Wσ1
[x− s, x, x+ s,∞]|

≤ C||σ1||Th ≤ Csα.

Thus, it is enough to show
∣

∣

∣

∣

Wσ2
(x+ s) +Wσ2

(x− s)− 2Wσ2
(x)

s

∣

∣

∣

∣

≤ Csα.

Let L2 = L3

⋃

L4, where L4 is the set of all lines in L which meet the interval
[x − s, x + s]. Let σ3 be the restriction of σ2 to L3, and let σ4 = σ2 − σ3. If a
geodesic line lab is in L4, then one of its endpoints a, b belongs to the interval

[x − s, x + s]. Therefore Eab(y) = (y−a)(b−y)
b−a ≤ 2s for every point y inside the

interval [x− s, x+ s]. Thus,
∣

∣

∣

∣

Wσ4
(x+ s) +Wσ4

(x− s)− 2Wσ4
(x)

s

∣

∣

∣

∣

≤ 8(σ0([x− s, x+ s]× [x+ 3s,∞])+

σ0([−∞, x− 3s]× [x− s, x+ s]) ≤ Csα,

by Lemma 19. Finally we show

|
Wσ3

(x+ s) +Wσ3
(x− s)− 2Wσ3

(x)

s
| ≤ Csα.
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Let gk be the segment on the geodesic line joining x to ∞, such that the endpoints
of gk are at x + 2k−1si and x + 2ksi. Let σ3(gk) be the total σ3 measure of all
lines in L3 which intersect gk. By the vanishing property of σ0 and Lemma 14,
σ(gk) ≤ (Const)(2k−1s)α. Furthermore if a line lab in L3 has endpoints at a and b,
then we may assume a ≤ x− s < x+ s ≤ b. Therefore

Eab(x+ s) + Eab(x− s)− 2Eab(x) =
−2s2

b− a
≤
−2s2

2ks
.

Thus,
∣

∣

∣

∣

Wσ3
(x+ s) +Wσ3

(x− s)− 2Wσ3
(x)

s

∣

∣

∣

∣

≤

∞
∑

k=1

2s

2ks
σ(gk)

≤ Csα
∞
∑

k=0

(2α−1)k ≤ Csα.

¤

Step V There exists a universal constant C such that

(42)
∣

∣

∣
W [ã, b̃, c̃, d̃]

∣

∣

∣
≤ Csα.

Proof. Note first that
∣

∣

∣
W [ã, b̃, c̃, d̃]

∣

∣

∣
≤

∣

∣

∣

∣

∣

W (ã)−W (b̃)

ã− b̃
−

W (c̃)−W (b̃)

c̃− b̃

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

W (ã)−W (d̃)

ã− d̃
−

W (c̃)−W (d̃)

c̃− d̃

∣

∣

∣

∣

∣

.

By the proof of Step IV,
∣

∣

∣

∣

∣

W (ã)−W (b̃)

ã− b̃
−

W (c̃)−W (b̃)

c̃− b̃

∣

∣

∣

∣

∣

≤ Csα.

Therefore it is enough to show

A =

∣

∣

∣

∣

∣

W (ã)−W (d̃)

ã− d̃
−

W (c̃)−W (d̃)

c̃− d̃

∣

∣

∣

∣

∣

≤ Csα.

If d̃ ≥ 4, then by Step I,

A ≤
|W (c̃)−W (ã)|

|c̃− ã|
+ |c̃− ã|

|W (d̃)−W (ã)|

|d̃− ã||d̃− c̃|
≤ C|c− a|.

Therefore we may assume

−3 ≤ ã < b̃ < c̃ < d̃ ≤ 4.

Now choose x and y so that ã is the midpoint of x and c̃ and c̃ is the midpoint of
ã and y. Note that

A =

∣

∣

∣

∣

∣

∫∫

(

Epq(d̃)− Epq(c̃)

d̃− c̃
−

Epq(d̃)− Epq(ã)

d̃− ã

)

dσ(p, q)

∣

∣

∣

∣

∣

≤

7
∑

i=1

Ai,

where

Ai =

∣

∣

∣

∣

∣

∫∫

(

Epq(d̃)− Epq(c̃)

d̃− c̃
−

Epq(d̃)− Epq(ã)

d̃− ã

)

dσi(p, q)

∣

∣

∣

∣

∣

,
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where σ1 is the restriction of σ to the set of geodesic lines with endpoints p and q
inside the interval [x, y],
σ2 is the restriction of σ − σ1 to the set of geodesic lines having endpoints p and q
with p ≤ ã and q ≥ d̃,
σ3 is the restriction of σ − σ1 − σ2 to the set of geodesic lines having endpoints p
and q with p ≤ ã and c̃ ≤ q ≤ d̃,
σ4 is the restriction of σ−σ1−σ2−σ3 to the set of geodesic lines having endpoints
p and q with ã ≤ p ≤ c̃ and q ≥ d̃,
σ5 is the restriction of σ − σ1 − σ2 − σ3 − σ4 to the set of geodesic lines having
endpoints p and q with c̃ ≤ p ≤ d̃ and q ≥ d̃,
σ6 is the restriction of σ−σ1−σ2−σ3−σ4−σ5 to the set of geodesic lines having
endpoints p and q with ã ≤ p ≤ c̃ and y ≤ q ≤ d̃, and
σ7 is the restriction of σ − σ1 − σ2 − σ3 − σ4 − σ5 − σ6 to the set of geodesic lines
having endpoints p and q with p ≤ x and ã ≤ q ≤ c̃.

Since σ is vanishing of order α, we have ||σ1||Th ≤ Csα. Thus,

A1 = |Vσ1
(c̃, d̃, ã,∞)| ≤ C||σ1||Th ≤ (Const)sα.

A simple calculation shows

A2 =

∫∫

c̃− ã

q − p
dσ2(p, q) ≤

∑

k

∫∫

2k≤ q−ã
c̃−ã

≤2k+1

c̃− ã

q − p
dσ2(p, q) ≤

∑

k

∫∫

[−∞,ã]×[ã+2k(c̃−ã),ã+2k+1(c̃−ã)]

c̃− ã

q − p
dσ2(p, q)

≤ C
∑

k

(2ks)α
s

2ks
≤ Csα.

Similarly,

A3 =

∣

∣

∣

∣

∣

∫∫

(c̃− ã)[(d̃− c̃)(d̃− ã) + (q − d̃)(d̃− p)]

(q − p)(d̃− c̃)(d̃− ã)
dσ3(p, q)

∣

∣

∣

∣

∣

≤ 3

∫∫

c̃− ã

q − c̃
dσ3(p, q) ≤

∑

k

∫∫

2k≤ q−ã
c̃−ã

≤2k+1

c̃− ã

q − c̃
dσ3(p, q) ≤

∑

k

∫∫

[−∞,ã]×[ã+2k(c̃−ã),ã+2k+1(c̃−ã)]

c̃− ã

q − c̃
dσ3(p, q) ≤

C
∑

k

(2ks)α
s

2ks
≤ Csα.

Furthermore,

A4 =

∣

∣

∣

∣

∣

∫∫

[

q + p− d̃− c̃

q − p
−

(q − d̃)(d̃− p)

(d̃− ã)(q − p)

]

dσ4(p, q)

∣

∣

∣

∣

∣

≤

2

∫∫

[ã,c̃]×[d̃,∞]

dσ4(p, q) ≤ 2

∫∫

[ã,c̃]×[y,∞]

dσ4(p, q) ≤ Csα.

Similarly,

A5 =

∫∫

c̃− ã

(d̃− c̃)(d̃− ã)
Epq(d̃)dσ5(p, q) =
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∫∫

q−d̃≥d̃−c̃

c̃− ã

(d̃− c̃)(d̃− ã)
Epq(d̃)dσ5(p, q)+

∑

k

∫∫

2−k−1≤ q−d̃

d̃−c̃
≤2−k

c̃− ã

(d̃− c̃)(d̃− ã)
Epq(d̃)dσ5(p, q) ≤

c̃− ã

d̃− c̃
σ5([c̃, d̃]× [d̃+ d̃− c̃,∞])+

∣

∣

∣

∣

∣

∑

k

∫∫

[−∞,d̃]×[d̃+(d̃−c̃)2−k−1,d̃+(d̃−c̃)2−k]

c̃− ã

(d̃− c̃)
dσ5(p, q)

∣

∣

∣

∣

∣

≤

C
c̃− ã

d̃− c̃
(d̃− c̃)α + C

c̃− ã

d̃− c̃

∑

k

(
d̃− c̃

2k
)α ≤

C(c̃− ã)α.

Furthermore,

A6 =

∫∫

(q − c̃)(c̃− p)

(q − p)(d̃− c̃)
dσ6(p, q) ≤ σ([ã, c̃]× [y,∞]) ≤ Csα.

Finally,

A7 =

∫∫

(q − ã)(ã− p)

(c̃− ã)(q − p)
dσ7(p, q) ≤ σ([−∞, x]× [ã, c̃]) ≤ Csα.

¤

Step VI Inequality (34) holds.

Proof. By Step V, |G′(t)| ≤ Csα. Therefore,

|G(1)−G(0)| ≤ Csα,

and this inequality yields inequality (34). Thus, h is vanishing of order α. ¤

5.5. Vanishing measures from smooth homeomorphisms. In this section we
show that the measure σ is vanishing of order α if h is smooth of order α.

LetD be a disk of hyperbolic diameter 1 in the unit disk, l1 and l2 be two geodesic
lines in the laminatin L which bound all lines of L intersecting D. Suppose that a, d
and b, c are the endpoints of l2 and l1 respectively, and a, b, c, d are arranged on the
unit circle S1 in counter clockwise direction. Notice that the hyperbolic distance
between l1 and l2 is between 0 and 1 and the scale of the quadruple {a, b, c, d} is
not necessarily commeasurable to the Euclidean distance of the disk D to the unit
circle. Therefore we will first construct a special quadruple Q such that cr(Q) = 1,
cr(h(Q)) ≥ 1 and the scale of Q is commeasurable to δ(D), and then we apply a
similar idea of proving (13) to compare log cr(h(Q)) with massσ(D) and show that
massσ(D) = O((log cr(h(Q)))α).

Lemma 21. Let 0 ≤ s ≤ s0 < 1 and t ≥ t0 > 1, and A(s,t) be the hyperbolic
Möbius transformation with the repelling fixed point at s and the attracting fixed
point at t and its derivative at the repelling fixed point equal to λ ≥ 1. Suppose that
f(s,t) : R → R is defined to be equal to A(s,t) on the interval [s, t] and equal to the
identity on the complement of [s, t]. Then the logarithm of the cross ratio distortion
of f(s,t) on the quadruple Q = {∞,−1, 0, 1} is greater than or equal to C log λ for
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some constant C > 0 when log cr(f(s,t)(Q)) < δ for some constant δ > 0, where
both C and δ only depend on s0 and t0.

Proof. Let Q denote the quadruple {∞,−1, 0, 1}. By Corollary 1,

cr(f(s,t)(Q)) ≥ cr(f(s0,t0)(Q)).

Clearly,

cr(f(s0,t0)(Q)) =
λ 1−s0
t0−1 t0 + s0

λ 1−s0
t0−1 + 1

.

Consider log cr(f(s0,t0)(Q)) as a function of λ, applying the inverse function theorem
and mean value theorem to it in a small neighborhood of λ = 1, one can complete
the proof. ¤

Without loss of generality, we may assume |b−a| = min{|b−a|, |d−c|}. Through
post-composition by a Möbius transformation, we may also assume that the earth-
quake representation E of h is the identity map on l2. Let β′ be the geodesic which
is perpendicular to both l2 and l1 if l2 and l1 don’t share any endpoint, otherwise
take β′ to be a geodesic perpendicular to l2 such that the hyperbolic length of the
segment on β′ between l2 and l1 is less than or equal to 1

2 . Let x′ and y′ denote
the endpoints of β′ such that d, x′, a, y′ are arranged in the counterclockwise di-
rection on the unit circle. Given two points u and v on the unit circle, we use
ûv to denote the geodesic connecting u to v. Let x̂′y denote the geodesic pass-
ing through x′ and perpendicular to the geodesic ây′, and x̂y the geodesic passing

through y and perpendicular to the geodesic d̂a. One can easily check that the
points d, x′, x, a, b, y, y′, c and a are presented on the unit circle in the counterclock-

wise direction. Let Q = {d, x, a, y}. Since the geodesic x̂y is perpendicular to d̂a,
cr(Q) = 1. Furthermore, one can show that cr(h(Q)) ≥ 1 and the scale s(Q) is
commensurable to δ(D). Let A be the Möbius transformation which maps x′ to
infinity, y′ to 0, a to −1 and d to 1. Denote A(b) and A(c) by −s and t, respectively,

with 0 < s ≤ 1 and 0 < t ≤ 1. When β′ = ˆy′x′ is both perpendicular to l2 and l1,
1
e ≤ s = t ≤ 1; when l2 and l1 share one endpoint, s = 1 and 1

e ≤ t ≤ 1. As we
constructed,

A(y) = −
1

2
and A(x) = −2.

Denote by s0 = cr({d, x, a, b}) and t0 = cr({d, x, a, c}). Then

s0 = cr({A(d), A(x), A(a), A(b)}) = cr({1,−2,−1,−s}) = 3
1− s

1 + s
,

and

t0 = cr({A(d), A(x), A(a), A(c)}) = cr({1,−2,−1, t}) = 3
1 + t

t− 1
.

Clearly,

0 ≤ s0 ≤ 3
e− 1

e+ 1
< 1 and t0 ≥ 3

e+ 1

e− 1
> 1.

Now let B denote the Möbius transformation which maps the hyperbolic plane
to the upper half plane, and d to ∞, a to 0 and x to −1. Then A maps y to 1, b to
s0 and c to t0. Denote by h̃ = B◦h◦B−1. Suppose that Ã is the hyperbolic Möbius
transformation with the repelling fixed point at s0 and attracting fixed point at t0,
and translation length log λ, and f̃ is equal to Ã on the interval [s0, t0] and the
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identity map on the complement of [s0, t0] in the real line, where λ = emassσ(D).
Using the same idea in the proof of (13), one can show that

cr(h(Q)) = cr(h̃(Q)) ≥ cr(f̃(Q)).

Applying the previous lemma, if log cr(h(Q)) > 0 is small enough, then

log cr(h(Q)) ≥ C log λ = C ·massσ(D),

and hence

massσ(D) ≤
1

C
log cr(h(Q)) = O(δ(D)α)

when δ(D) is small enough.
From Theorem 8, one can easily see that massσ(D) = O(δ(D)α) when δ(D) is

bigger than a positive constant.

Remark. In fact, we prove the same result of this section for any α > 0.

5.6. Vanishing measures from vanishing initial vectors. The conclusion of
Step V in Section 5.4 includes the “if” part of Theorem 14. To complete the proof
of Theorem 14 we must show that if σ is an earthquake measure not vanishing
of order α, then there is a sequence of points xj − sj , xj , xj + sj such that the
corresponding normalized vector V given by formula (29) satisfies

∣

∣

∣

∣

∣

V (xj + sj) + V (xj − sj)− 2V (xj)

s1+α
j

∣

∣

∣

∣

∣

→∞.

The proof is similar to the work in the above Section 5.5. But we prove it by
making a contradiction. Suppose that σ is not vanishing of order α. Then there is
a sequence of discs Dj of hyperbolic diameter equal to one such that

massσ(Dj)

δ(Dj)α
→∞.

After a change of coordinates by Möbius transformations we may assume the earth-
quake acts on the upper half-plane and the discs Dj approach zero. Follow the idea
used to prove (13), we can see that there exists a sequence of symmetrically triples
xj − sj , xj , xj + sj with xj approaching 0 and with 1/Csj ≤ δ(Dj) ≤ Csj such
that the mapping htσ distorts the quadruple −∞, x− sj , xj , xj + sj by an amount
greater than or equal to Mjts

α
j , where Mj approaches ∞. Taking the derivative of

this distortion with respect to t at t = 0 and using the definition of V in (29), we
obtain a contradiction.
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