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Abstract. This paper gives a proof of the conjectural phenomena on the

complex boundary one-dimensional slices: Every rational boundary point is

cusp shaped. This paper treats this problem for Bers slices, the Earle slices,

and the Maskit slice. In proving this, we also obtain the following result:

Every Teichmüller modular transformation acting on a Bers slice can be ex-

tended as a quasi-conformal mapping on its ambient space. We will observe

some similarity phenomena on the boundary of Bers slices, and discuss on the
dictionary between Kleinian groups and Rational maps concerning with these

phenomena. We will also give a result related to the theory of L.Keen and
C.Series of pleated varieties in quasifuchsian space of once punctured tori.
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1. Introduction

This paper is concerned with the following problem for once punctured torus
groups:
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Problem. How is the shape of quasifuchsian space described as the subset of rep-
resentation space?

By virtue of Bers’ simultaneous uniformization theorem, quasifuchsian space
is a domain in representation space which is biholomorphically equivalent to the
product of two Teichmüller spaces (of mutually orientation reversed surfaces). So,
in our case, this space is a two-dimensional complex manifold. On the other hand,
C.T.McMullen showed in [Mc98] that the closure of quasifuchsian space is NOT
a topological manifold with boundary (see also Ito [Ito1]). Thus the boundary of
this space has some complexities. So its shape should be investigated more. Our
strategy to conquer the problem is to investigate the shape of the boundary of
several slices (or cross sections) via holomorphic mappings from a Riemann surface
which can not admit bounded holomorphic functions, for example C or C∗ :=
C− {0}.

In this paper, we focus on three kinds of slices; Bers slices, the Earle slice, and
the Maskit slice. A Bers slice and the Earle slice are considered as cross sections
of quasifuchsian space via holomorphic mappings from one dimensional Banach
space and C∗ into representation space respectively. The Maskit slice is a cross
section of the boundary of quasifuchsian space via a holomorphic immersion from
a complex plane. Moreover, although redundant, these three slices each represent
Teichmüller space and themselves are deeply related to the moduli of Kleinian
groups. Therefore, it is important and seems natural to study the shape of the
boundaries of these three slices. The boundaries of their images are said to be the
complex boundaries. We adopt this terminology after Lipman Bers. He had used
this to indicate the boundary of Bers slices in [B81a].

Recently, thanks to beautiful work of Y.N.Minsky on the ending lamination
conjecture for once punctured torus groups, each of three embeddings can be ex-
tended homeomorphically to Thurston’s compactification of the Teichmüller space
of once punctured tori with the property that, except at most two laminations,
every rational lamination in the Thurston boundary corresponds to a geometrically
finite group which contains an accidental parabolic associated with its lamination
(cf. [Min] and [Ko]). In this paper, such boundary points of slices are called the
rational boundary points.

The central subject of the paper is to study the shape of the complex boundaries
of above three slices near rational boundary points. We will obtain a concrete proof
of the folklore conjecture:

Theorem. Each rational boundary point is cusp shaped.

D. Mumford and D. Wright draw the computer graphical picture of the Maskit
slice, a parameter space of Kleinian groups on C few decades ago. Recently, Pictures
of the Bers slice and the Earle slice were drawn by P. Liepa and Y. Yamashita
respectively. Pictures of linear slices, that is, slices defined by fixing some trace
function, had been given by C.T.McMullen and D.J.Wright. Pictures of other one-
dimensional parameter spaces, though not for once punctured torus groups, were
given by R.Riley, F.W.Gehring and G.J.Martin, and D.J.Wright. These pictures
also seem to admit cusps in their boundaries like those in our three slices. Results
given in this paper support the conjectural phenomena at the rational boundary
points of these slices, see [GeMn], [KSWY], [Mc98], [Mn], [Pe], [W], [Wr], and [Ya].
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Figure 1. A Bers slice : Courtesy of Yasushi Yamashita

We will also show that each element of the Teichmüller modular transformation
acting on a Bers slice admits a quasiconformal extension on the whole ambient
space. This is in accordance the tidiness of the arrangement of cuspidal points and
the self-similarity on the complex boundaries of Bers slices (cf. p.178 of [Mc96]).

By studying the cusps, we treat the behavior of the rational pleating varieties
at the boundary of quasifuchsian space. We will see that the local pleating theo-
rem due to L.Keen and C.Series can be extended for geometrically finite boundary
groups. Namely, for a given representation near a geometrically finite boundary
punctured torus group, we show that if the trace functions corresponding to acci-
dental parabolics are real and greater than 4, the image of the given representation
is discrete and the boundary of the convex core of its Kleinian manifold is bent
along the corresponding geodesics (see [KS99]).

1.1. Statements of results. The main purpose of this paper is to prove the folk-
lore conjecture:

Theorem 1. (Rational boundary points are cusps) Every rational boundary point
of three slices is a (2, 3)-cusp.

Corollary 1. All Bers slices, the Earle slice, and the Maskit slice are not qua-
sidisks.
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Figure 2. The upper half of the Earle slice : Courtesy of Peter Liepa

Figure 3. The Maskit slice : Courtesy of David J. Wright

The definition of a (2, 3)-cusp is given in §2. Roughly speaking, a (2, 3)-cusp is a
boundary point sandwiched between singularities of two Diocles’ cissods. Corollary
for the case of the Maskit slice is observed in author’s earlier paper [M1].

Theorem 1 is related to the D.J.Wright’s conjecture in [W]: In the late 1980’s,
D.Mumford, C.T.McMullen, and D.J.Wright drew the computer graphical picture
of the Maskit embedding and found many cusps on its boundary. In drawing
this picture, Wright conjectured that, in the case of the Maskit embedding, every
rational boundary point is a simple zero of corresponding trace function, while he
found that this conjecture implies that the folklore conjecture in the case of the
Maskit embedding is correct. Actually, Theorem 1 is given by proving the following
theorem, which contains the affirmative answer to Wright’s conjecture:

Theorem 2. (Rational boundary points are simple zeros) For each of the three
slices, every rational boundary point is a simple zero of the trace function corre-
sponding to its accidental parabolic.
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1.2. Geometry of a Bers slice. Outer radius. The outer radius of a Bers slice
is an important notion from the function theoretic point of view. Furthermore, the
extreme point for outer radius often has some extremal properties (cf. Lehto [Leh]).

Corollary 2. (Extreme point for outer radius) The outer radius of a Bers slice is
attained at a boundary point corresponding to a totally degenerate group.

Indeed, it can be observed from Euclidean geometry that at any (2, 3)-cusp the
outer radius can not be attained.

Self-similarity. In his book [Mc96], C.T.McMullen posed the following problem:

Problem Is the boundary of a Bers slice self-similar about the fixed points of every
hyperbolic modular transformation?

The following theorem is obtained in part of the proof of the folklore conjecture
for Bers slices.

Theorem 3. (Modular transformation has qc-extension) Every Teichmüller mod-
ular transformation acting on a Bers slice has a quasiconformal extension to the
whole ambient space. Furthermore, the maximal dilatation of its extension can be
dominated by the maximal dilatation of the extremal quasiconformal self-mapping
acting on the base surface of its Bers slice, which is homotopic to the homeomor-
phism corresponding to the given modular transformation.

Thus, we obtain a version of an answer for his problem.

Corollary 3. The closure of a Bers slice is weakly quasiconformally self-similar
about the fixed points of any hyperbolic modular transformation.

In this paper, a set E ⊂ Ĉ is called weakly quasiconformally self-similar about
e0 ∈ E if there exist a quasiconformal mapping f of Ĉ and at most one point
e1 ∈ E \ {e0} satisfying the following:

(1) f(E) = E, f(e0) = e0, and ∂̄f ≡ 0 on the interior of E.

(2) For any neighborhood U of e0 in Ĉ\{e1}, E \{e1} = ∪n∈Nfn(U ∩E) holds.

We observe that the following similarity phenomenon among cusps in the bound-
ary of a Bers slice in §11:

Corollary 4. (All rational boundary points are similar each other) Every
Teichmüller modular transformation acting on a Bers slice is C1+α-conformal at
all rational boundary points, where α > 0 is depend only on the base point of given
Bers slice, independent of the choice of elements of modular transformation.

In Appendix A, we will discuss on similarity phenomena about the boundary of
the Mandelbrot set concerning with this corollary.

Hölder continuity at boundary Combining Theorem 3 and the Hölder con-
tinuity of quasiconformal mappings (see p.70 of Lehto-Virtanen [LeV]), we also
obtain a refinement of a result of Bers in p.51 of [B81a]:

Corollary 5. Every Teichmüller modular transformation acting on a Bers slice
can be extended Hölder-continuously on the closure of its Bers slice.
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1.3. Extended Local Pleating Theorem. We extend the local pleating theorem
due to L.Keen and C.Series to a neighborhood of geometrically finite boundary
groups (cf. [KS99] and §12). The once punctured torus group [η] is called a boundary
group if it is Kleinian but not quasifuchsian1 If a boundary group is geometrically
finite, it has either one or two conjugacy classes of primitive accidental parabolics.
In this paper, a geometrically finite boundary group is of type n if it admits n
conjugacy classes of primitive accidental parabolics.

Theorem 4. (Extended local pleating theorem, The rational case) Let [η0] be a
geometrically finite boundary group. Then there exists a neighborhood U of [η0]
in representation space satisfying the following: Suppose [ρ0] is of type n and let
{wi}1≤i≤n be elements of the fundamental group of a once punctured torus such
that η0(wi) are primitive accidental parabolics. For [η] ∈ U , if tr2η(wi) are real
and greater than 4, then [η] is a quasifuchsian representation. Furthermore the
convex core of the Kleinian manifold associated with [η] is bent along the geodesic
corresponding to η(wi) (1 ≤ i ≤ n).

Theorem 4 is related to the following result of J.P.Otal in [O]:

Theorem (Otal) Let η be a Kleinian once punctured torus group. Let w be
an element of the fundamental group of a once punctured torus which represents
a simple closed curve. If η(w) is hyperbolic and if its translation length is less
than some universal constant, then the boundary of convex core of the associated
Kleinian manifold is bent along the geodesic corresponding to η(w).

Our theorem is proved without using this result of Otal. The resemblance be-
tween ours and Otal’s is that both theorems are concerned with when a geodesic
corresponding to a hyperbolic element which is sufficiently near parabolic appears
as the pleating locus of the convex core. There are two differences between two the-
ses: The first is an advantage of ours. In Otal’s case, a given group for which it is
to be ascertained whether the associate convex core is bent or not, is assumed to be
discrete at the beginning. This is not so in our case. Furthermore our theorem gives
a decision as to whether the group is discrete. The second is a disadvantage of ours.
In our case, we are looking only near geometrically finite groups. However, Otal’s
theorem treats any once punctured torus group and points out the universality for
the condition of translation length.

1.4. Outline of the paper. In §2, we give the notation and definitions used in
this paper. The definition of Minsky’s end invariants and the statement of his pivot
theorem (the special case) are recalled in §3.
§4 treats a relation between the shape of the complex boundary near a rational

boundary point and the trace function associated with given rational boundary
point. We will show that Theorem 2 implies Theorem 1 in this section (Proposition
4.3). The most crucial reason why rational boundary points are cuspidal is that
when groups move along complex boundaries converging to the group of given
rational boundary point, the suitable branch of the complex length of corresponding
trace function converges to zero along a path running parallel to a circle which is
contained in the right half plane and tangent to zero. This phenomenon can be
completely analyzed by using Minsky’s pivot theorem.

1By virtue of Minsky’s theorem, boundary groups can be characterized by this property in the

case of once punctured torus groups.
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In the proof of Theorem 2 the theory of pleating coordinates occupy an important
position ([KS99] and [Mc98]). In Sections 5 and 6, we recall notation concerning
with geometries and moduli of convex core of Kleinian manifolds, for example,
pleating rays, F -peripheral disks and subgroups, and so forth.

In §7, Theorem 10, which is the most important theorem for the proof of Theo-
rem 2, is stated. Theorem 10 tells us that along a pleating ray, the derivative of the
complex length of a trace function not associating with the bending locus is domi-
nated by a linear function of the length of bending locus. In §7.3 we define certain
quasiconformal deformations of groups on pleating rays which are used to calculate
the derivative of trace functions. In §7.4, we state two theorems, Theorem 12 and
13, which imply Theorem 10. We prove Theorem 10 at §7.4. We complete to prove
Theorem 12 and 13 at §8 and 9, respectively. In §10, one can find how Theorem 10
contributes to the proof of Theorem 2, independently of proving Theorem 10.

In §11, we will prove Theorem 3. The soul of the proof is to recognize quasi-
fuchsian space and the cotangent bundle over the Teichmüller space as the total
spaces of the holomorphic families of Bers slices and their ambient spaces over the
Teichmüller space respectively. Applying the global triviality of the cotangent bun-
dle, we can understand that Bers slices move holomorphically in C when their base
surfaces also move complex analytically. After these considerations, the proof is ob-
tained by applying improved lambda-lemma and the Bers’marking trick in [B81a]
(that is, diagonal action of the mapping class group on quasifuchsian space). One
can read this section independently of the other results.

We prove Theorem 4 in §12. To prove this theorem we will define a local co-
ordinate near a geometrically finite boundary group in representation space using
associated trace functions, which is a key tool for proving this theorem.

In Appendix, we will give how our result relates to contribution to increase
columns of dictionary between Kleinian groups and Rational maps.

Notation A ³ B and A . B means A/C < B < CA and A < CB for some
implicit constant C, respectively. And for z, w ∈ H and c > 0, z ≈c w means that
a bound c on hyperbolic distance in H between z and w.

2. Preliminaries

In this section, we fix our notations and recall some basic definitions and facts.

2.1. (2, 3)-cusps. Let a, r > 0. Define

C+(a, r) = {z = x+ iy ∈ C | |z| < r, y2 > ax3, x ≥ 0} ∪ {|z| < r, x < 0} and

C−(a, r) = {z = x+ iy ∈ C | |z| < r, y2 < ax3 x ≥ 0}.

Let E be a domain in C and ζ0 ∈ ∂E ∩ C. We say that ζ0 is a (2, 3)-cusp of E if
there exists a > b > 0, r > 0, and θ ∈ R so that

ζ0 + eθ · C+(a, r) ⊂ E, and {ζ0 + eθ · C−(b, r)} ∩ E = ∅.

By definition, being (2, 3)-cusped is a local property. Namely, for a domain
E, a boundary point ζ0 is a (2, 3)-cusp of E if and only if so is E ∩ U for some
neighborhood U of ζ0. A typical example of a (2, 3)-cusp is the cuspidal point of
the cardioid {z2 ∈ C | |z − 1| < 1}.
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Figure 4. A (2,3)-cusp

2.2. Once punctured torus groups. Throughout this paper, we denote by Σ
an oriented once punctured torus and by π1 the fundamental group of Σ. For
a′,a′′ ∈ π1, the product a′a′′ means the homotopy class of a curve which first
passes along a curve in a′′ and next passes along a curve in a′.

Enumeration of simple closed curves An ordered pair (a,b) of generators of
π1 is called canonical if the algebraic intersection number of a and b with respect
to the given orientation of Σ is equal to +1. The commutator [a,b] = a−1b−1ab
represent a loop around the puncture. Henceforth, we fix a canonical generator
pair (a,b) of π1.

We review an identification between the homotopy classes of all simple closed
curves on Σ and Q̂ = Q ∪ {1/0}. Henceforth, we will always express rational
numbers in the form p/q where p and q are relatively prime integers and q > 0.

Set w(1/0) = a−1 and w(n/1) = a−nb (n ∈ Z). For p/q, p′/q′ ∈ Q̂ with
pq′−p′q = −1, we define w((p+p′)/(q+q′)) = w(p′/q′)w(p/q). Then, w(p/q) ∈ π1
can be defined for all p/q ∈ Q̂ and the homology class of a simple closed curve in
w(p/q) is equal to that in a−pbq. See for instance, Keen-Series [KS93], Komori-
Series [KoS], Mumford-McMullen-Wright [MMcW], and Wright [W].

Representation space R A homomorphism from π1 to PSL2(C) is called admis-
sible if it sends the commutator [a,b] to a parabolic transformation. Denote by R
the PSL2(C)-representation space of π1, that is, the set of conjugacy classes of ad-
missible homomorphisms. The space R has a complex structure of two-dimensional
complex analytic space so that every irreducible representation corresponds a reg-
ular point, and the trace function of w ∈ π1

R 3 [η] 7→ tr2η(w) ∈ C

becomes holomorphic. Notice that all family of representations given below moves
holomorphically on its parameter space.

Once punctured torus groups An admissible homomorphism (or its PSL2(C)-
conjugacy class) is said to be a once punctured torus group if it is a conjugacy class
of a discrete and faithful representation; by abuse of language, such a representation
itself is called by same terminology. Let D be the set of all once punctured torus
groups and QF the subset of D which consists of all quasifuchsian representations.
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Y.Minsky proved that the closure of QF coincides with D (cf.[Min]). QF is called
quasifuchsian space.

Let η be a once punctured torus group with invariant component. An invariant
component ∆ of η is called distinguished if η induces an orientation preserving
homeomorphism from Σ onto ∆/η(π1).

Teichmüller space We denote by Teich(Σ) the Teichmüller space of Σ. A point in
Teich(Σ) is represented by a pair (f, S) of an orientation preserving homeomorphism
f of Σ to an analytically finite Riemann surface S. We say that two pairs (f, S),
(f ′, S′) are equivalent if there exists a conformal mapping h from S onto S ′ which
is homotopic to f ′ ◦ f−1. The Teichmüller distance is defined by

dTeich(Σ)((f, S), (f
′, S′)) = log inf

h
K(h)

where h runs over quasiconformal mappings h of S to S ′ which are homotopic to
f ′ ◦ f−1 and K(h) is the maximal dilation of h. This infimum is alway attained
by the unique so-called extremal quasiconformal mapping (cf. Imayoshi-Taniguchi
[IT]). We know that the Teichmüller distance coincides with the Kobayashi distance
on the Teichmüller space.

Quasifuchsian groups, Bers’ uniformization Henceforth, for any 3-manifold
M with boundary, the following orientation convention is applied to ∂M : A frame
f on ∂M is positive if the frame (f, n) is positive with respect to that of M where
n is an inward-pointing vector on ∂M . Notice that if M is a Kleinian 3-manifold,
the orientation on ∂M is same as that inherited from the Riemann sphere.

Let Σ denote Σ with the orientation reversed. Let x = (f, S) ∈ Teich(Σ) and
y = (g, S) ∈ Teich(Σ). Bers’ simultaneous uniformization tells us that x and y
determine a marked quasifuchsian group G(x, y) (up to conjugation in PSL2(C))
such that the quasifuchsian manifold

Mx
y := (H3 ∪ Ω(x, y))/G(x, y)

(Ω(x, y) means the region of discontinuity of G(x, y)) is bounded by Riemann sur-
faces R and S, and such that there exists a homeomorphism between Σ × [0, 1]
to Mx

y , compatible with corresponding markings and orientations between their
boundaries. Furthermore, let ηG(x,y) be the representation associated with the
marked quasifuchsian group G(x, y). Then the map

Teich(Σ)× Teich(Σ) 3 (x, y) 7→ [ηG(x,y)] ∈ QF

becomes biholomorphic.

2.3. Definitions of Slices. The Bers embedding BG In this paper, we treat
a Bers slice in somehow extended sense from usual one (cf.e.g. Imayoshi-Taniguchi
[IT]). Usually, to define a Bers slice, we consider a fuchsian group acting on the
upper half plane and the space of Schwarzian derivatives on the lower half plane,
and use univalent functions on the lower half plane to represent deformations of the
fuchsian group. In our sense, we use a quasifuchsian group instead of a fuchsian
group, and recognize the lower half plane as the invariant component correspond-
ing to the Riemann surface whose orientation induced from the Riemann sphere
is reversing to that induced from the representation corresponding to given quasi-
fuchsian group.
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Let us give more detail definition of Bers slices in our sense. we fix a pair
(x0, y0) ∈ Teich(Σ)× Teich(Σ). We keep using this point in discussing about Bers
slice unless we specify other points. Let ηG(x0,y0) be a representation associated
with G(x0, y0) as the previous section. We normalize this so that the limit set
contains three points 0, 1, and∞. Denote by Ω+(x0, y0) the distinguished invariant
component of G(x0, y0), and by Ω−(x0, y0) the other component.

Let (x, y) ∈ Teich(Σ) × Teich(Σ), there exists a quasiconformal mapping W x
y

which fixes the three points {0, 1,∞} such that W x
y G(x0, y0)(W

x
y )
−1 is a quasi-

fuchsian group and

[ηG(x,y)] = [a′ 7→W x
y ◦ ηG(x0,y0)(a

′) ◦ (W x
y )
−1].

In the case of y = y0, we may assume that fx,x0
y0

:= W x
y0
◦ (W x0

y0
)−1 is conformal

on Ω−(x0, y0). Let Q−4(x0, y0) the complex Banach space of automorphic forms
of weight −4 with the hyperbolic L∞-norm. Then the Bers embedding βx0

y0
(with

respect to G(x0, y0)) is the mapping from the Teichmüller space Teich(Σ) into a
complex vector space Q−4(x0, y0) defined by the equation:

βx0
y0
(x) = S(fx,x0

y0
),

where S(−) means the Schwarzian derivative. By the same argument as in the usual
sense, we can see that βx0

y0
is embedding and whose image BG(x0,y0) is a bounded

domain in Q−4(x0, y0). The image is called the Bers slice with respect to G(x0, y0).
In showing the main theorem, it is convenient to recognize a point in BG(x0,y0) as

a point of Teichmüller space via Bers embedding and to specify the distinguished
invariant component. Let us introduce the following notation: Henceforth, let
G = G(x0, y0) for simplicity and let ϕ ∈ BG and x ∈ Teich(Σ) so that ϕ = βx0

y0
(x).

Then, we put2 :

ρbϕ(−) =W x
y0
◦ ηG(x0,y0)(−) ◦ (W

x
y0
)−1 and

Ωb
ϕ =W x

y0
(Ω+(x0, y0)).

We know that for p/q ∈ Q there exists a unique point xb(p/q) ∈ ∂BG such that
the image of ρbxb(p/q) is a terminal regular b-group with one primitive accidental

parabolic transformation ρbxb(p/q)(w(p/q)). A boundary point ϕ of BG corresponds

to a geometrically finite group if and only if ϕ = xb(p/q) for some p/q ∈ Q. The
boundary points {xb(p/q)}p/q∈Q̂ are nothing but the rational boundary points of

the Bers slice BG.
As noted in Introduction, the Bers slice BG can be recognized as a slice of holo-

morphic mapping from Q−4(x0, y0) to R as follows: Let ϕ ∈ Q−4(x0, y0). In solv-
ing the Schwarzian equation S(−) = ϕ, we obtain the monodromy homomorphism
ρbϕ : π1 → PSL2(C) (see e.g. [Hej] and [Sh]). Then we can define the holomorphic
mapping

Q−4(x0, y0) 3 ϕ 7→ [ρbϕ] ∈ R.

Then the Bers slice BG is the component of pre-image of quasifuchsian space under
this mapping containing the origin (cf. [Sh]).

The Earle embedding E Most of facts in this subsection can be referred in
Komori and Series’s paper [KoS].

2The superscript “b” comes from the name “Bers slice”.
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For d ∈ C∗, we define a homomorphism ρed from π1 to PSL2(C) by

ρed(a) =

[

d2+1
d

d3

2d2+1
2d2+1

d d

]

, ρed(b) =

[

d2+1
d − d3

2d2+1

− 2d2+1
d d

]

.

The domain E in C is defined by

E = {d ∈ C | Re d > 0, [ρed] ∈ QF}.

Denote by Ωe
d the distinguished invariant component of ρed(π1). Then as in the

case of the Bers embedding, we obtain the isomorphism, called the Earle embed-
ding, from Teich(Σ) onto E . We know that ρed(π1) has an elliptic involution z 7→ −z
which gives the conjugation between ρed(a) and ρ

e
d(b). Thus, the Earle embedding

represents a point of Teich(Σ) by a quasifuchsian group with suitable elliptic invo-
lution (cf. Earle [E] and Kra-Maskit [KrM82]). The domain E is invariant under
the complex conjugation d 7→ d̄. One can imagine the shape of the whole E by
taking the reflection of P.Liepa’s figure along its bottom break.

The above elliptic involution induces the relation tr2ρed(w(p/q)) ≡ tr2ρed(w(q/p))

on C∗. It is known that for every p/q ∈ Q̂ \ {±1/1}, there exists a unique point
xe(p/q) in ∂E such that the image of ρexe(p/q) is a maximally parabolic group with

parabolic transformations ρexe(p/q)(w(p/q)), ρexe(p/q)(w(q/p)), and ρexe(p/q)([a,b]),

and Imxe(p/q) > 0 if −1 < p/q < 1. By a maximal parabolic group we mean
a Kleinian group with the largest number of the non-conjugate rank 1 maximal
parabolic subgroup, see Keen-Maskit-Series [KMsS].

The boundary point d of E corresponds to a geometrically finite group if and
only if d = xe(p/q) for some p/q ∈ Q̂ \ {±1/1}. Notice that xe(p/q) and xe(q/p)

are different. In fact, it holds that xe(q/p) = xe(p/q) (the complex conjuga-
tion). As in the case of the Bers embedding, the rational boundary points of E
are {xe(p/q)}p/q∈Q̂−{±1/1}.

The Maskit embedding M In this paper, we deal with the Maskit embedding
via so-called the horocyclic coordinate, see Kra [Kr90]. The horocyclic coordinate
is defined as follows: For µ ∈ C, we define the representation ρmµ of π1 by

ρmµ (a) =

[

1 2
0 1

]

, ρmµ (b) =

[

−iµ −i
−i 0

]

.

Then the domain M is defined as the component of the interior of the set

{µ ∈ C | [ρmµ ] ∈ D}

which contains 4i. It is known that for each µ ∈ M, ρmµ (π1) is a terminal regular
b-group of type (1, 1) (cf. [Kr90]).

Denote by Ωm
µ , µ ∈M, the invariant component of ρmµ (π1). Then we can define

the biholomorphic mapping, called the horocyclic coordinate, of Teich(Σ) onto M
as in subsections above. This mapping is often referred as the Maskit embedding
of Teich(Σ) (cf. Kra [Kr88]).

For µ ∈ C, we find a unique point xm(p/q) ∈ ∂M\ {∞} for p/q ∈ Q satisfying
that ρmxm(p/q)(π1) is a maximal parabolic group whose parabolic transformations are

ρmxm(p/q)(w(p/q)), ρmxm(p/q)(w(1/0)), and ρmxm(p/q)([a,b]). Further, it is known that

µ ∈ ∂M corresponds to a geometrically finite group if and only if µ = xm(p/q) for
some p/q ∈ Q (see Keen-Series [KS93]). Therefore the boundary point is a rational
boundary point if and only if it equals to xm(p/q) for some p/q ∈ Q.
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Notation. To simplify the arguments, we put

QX = Q̂if X = BG,Q̂− {±1/1}if X = E, orQif X =M.

Let us denote by (X0,X ) and {ηx}x∈X0
the pair and the holomorphic family of

admissible representations corresponding to the one of the following three cases:

(B) X0 = Q−4(G(x0, y0)), X = BG(x0,y0), and ηx = ρbx.
(E) X0 = C∗, X = E, and ηx = ρex.
(M) X0 = C, X =M, and ηx = ρmx .

Denote by Gx, x ∈ X the image of π1 under ηx. For p/q ∈ QX , let x(p/q) be
the rational boundary point of X corresponding to the geometrically finite group
containing Xp/q,x := ηx(w(p/q)) as an accidental parabolic transformation, and
in the case of the Earle slice, with the additional condition that Imx(p/q) > 0 if

−1 < p/q < 1 and x(q/p) = x(p/q).

3. Complex length and End invariants

According to Minsky’s work [Min], every once punctured torus group is deter-
mined by its end invariants. In this subsection, after Minsky we recall the definition
of end invariants of once punctured torus groups and a relation between end invari-
ants of given group and complex length of loxodromic elements in the group, which
follows from Minsky’s investigation. Notice that the canonical generators (a,b) on
Σ defined in §2 determine the identification between the Teichmüller space of Σ
and the upper-half plane H via their periods.

Let η be a once punctured torus group. According to Bonahon and Thurston
(cf. [Bo86]), η induces an orientation preserving homeomorphism of Σ × (−1, 1)
onto the associated manifold H3/η(π1) and the orientation of Σ agrees with that
induced from Σ× {1}. Let us denote by e+ the end of H3/η(π1) corresponding to
Σ× {1} and by e− the other end.

The region of discontinuity of η(π1) is divided into two disjoint pieces Ω+ and Ω−
corresponding to e+ and e−, respectively. (One (or both) of them may be empty.)
There are three possibilities for each of these boundaries, corresponding to three
types of end invariants (let s denote either + or −):

• Ωs is a topological disk, and Ωs/η(π1) is a once punctured torus. η gives
the marking on Ωs/η(π1), and hence determines the point of Teich(Σ) and
νs(η) ∈ H.

• Ωs is an infinite union of disks and Ωs/η(π1) is a thrice punctured sphere,
obtained from the corresponding boundary of Σ×(0, 1) by deleting a simple

closed curve w(p/q) for some p/q ∈ Q̂. In this case, set νs(η) = p/q.
• Ωs is empty. In this case νs(η) ∈ R \ Q. This is defined as the limit of

rational numbers corresponding to simple closed curves exiting the end es.

We call the pair (ν−(η), ν+(η)) the end invariants of a once punctured torus group
η.

Fix p/q ∈ Q̂. Denote by λ(η) = λp/q(η) be the complex length of η(w(p/q))
satisfying that Reλ(η) ≥ 0 and −π < Imλ(η) ≤ π. This satisfies the equation

tr2η(a) = 4 cosh2(λ(η)/2).

By Minsky’s Pivot theorem Theorem 4.1 of [Min], we have the following:
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Proposition 3.1. There exist universal constants ε1, c1 > 0 so that if Reλ(η) < ε1
then

2πi

λ(η)
≈c1 T (ν+(η))− T (ν−(η)) + i,

where T ∈ PSL2(Z) with T (p/q) =∞.

Example 5. (F) Let η be a fuchsian punctured torus group. Then ν+(η) =
ν−(η) ∈ H.

(B) Let G be a quasifuchsian group of type (1, 1). Then ν+(ρ
b
ϕ) is the period

on Ωb
ϕ/ρ

b
ϕ(π1) corresponding to the homology basis ([a], [b]) on Σ by the

canonical homeomorphism induced from ρbϕ, and ν−(ρ
b
ϕ) ≡ ν0 for some

ν0 ∈ H.
(E) ν+(ρ

e
d) is the period on Ωe

d/ρ
e
d(π1) corresponding to the basis ([a], [b]) on

Σ. ν−(ρ
e
d) satisfies that ν+(ρed)ν−(ρ

e
d) = 1 since ρed(π1) admits an elliptic

involution z → −z which conjugates ρed(a) to ρ
e
d(b) (cf. [Ko]).

(M) ν+(ρ
m
µ ) the period on Ωm

µ /ρ
m
µ (π1) corresponding to the basis ([a], [b]) on Σ,

and ν−(ρ
m
µ ) ≡ 1/0 for all µ ∈M .

4. Trace functions and the geometry of parameter spaces

4.1. Localization of Holomorphic Families.

Proposition 4.1. All Bers slices, the Earle slice, and the Maskit slice are Jordan
domains in their ambient spaces. Moreover, Their canonical identifications with the
Teichmüller space are extended homeomorphically to the Thurston compactification.

Proof. See [Min] and [Ko]. ¤

This asserts local geometric properties near rational boundary points:

Corollary 6. Let q ∈ QX . Then x(q) admits a system of neighborhoods so that
each element U in this system satisfies the following:

(1) X ∩ U is connected and contractible, and U ∩ ∂X is a Jordan curve whose
two end points are contained in ∂U .

(2) U itself is connected and simply connected.
(3) Positive end invariant ν+(x) := ν+([ηx]) maps U ∩ X homeomorphically

into H̄ so that ν+(U ∩ X ) ⊂ H and ν+(U ∩ ∂X ) is an open interval in

R̂ = ∂H containing q.

4.2. Geometry of parameter spaces. This subsection treats the geometry of
the parameter space of holomorphic family of once punctured torus groups defined
as in previous subsection.

4.3. 2π/n-corners. We define the notion of 2π/n-corners and give some properties
of them.

Definition 6. (2π/n-corner) Let E be a proper subdomain in C and let e0 ∈ ∂E∩C.
We say that e0 is a 2π/n-corner of E (n ∈ N) if one of the following conditions is
satisfied (cf. Figure 5):

• If n = 1, there exists a disk D in C such that 0 ∈ ∂D and e0 + t2 ∈ E for
any t ∈ D.

• If n = 2, there exist two disjoint disk D1 and D2 such that D1∩D2 = {e0},
D1 ⊂ E, and D2 ∩ E = ∅.
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Figure 5. 2π/n-corners

• If n ≥ 3, there are four disks {Dj , D
′
j}j=1,2 such that Dj and D

′
j are tangent

at e0 (j = 1, 2), ∂D1 intersects ∂D2 at e0 in angle 2π/n, (D1∪D2)∩E = ∅,
and D′1 ∩D

′
2 ⊂ E.

A 2π-corner is also called an inward-pointing cusp of E.

A 2π/n-corner of E is a corner of opening 2π/n for E and is that of opening
2π(1 − 1/n) for the complementally domain Int({E) of E. The similar notion is
given in Pommerenke’s book [Po].

Remark 1. By definition, the notion of 2π/n-corners is a local property. Namely,
let E be a proper subdomain of C and e0 ∈ ∂E ∩C. Then e0 is a 2π/n-corner of E
if and only if e0 is that of E ∩ U for some neighborhood U of e0.

We note here two basic properties of 2π/n-corners. The first is used in the next
subsection and the second at §10.

Lemma 4.1. Let E be a proper subdomain in C and e0 ∈ ∂E ∩ C. Let U be a
neighborhood of e0 and λ a holomorphic function on U . Put n the order of zeros
of the function λ− λ(e0) at e0. Then λ(e0) is 2π/m-corner of λ(U0 ∩E) for some
small neighborhood U0 of e0 if and only if e0 is a 2π/(nm)-corner of E.

Proof. We can easy to see this from the local properties of holomorphic functions
(cf. Ahlfors [A]). ¤

Proposition 4.2. Let B be a unit disk in C. There is no quasiconformal mapping f
such that f(Ĉ−B) admits an inward-pointing cusp. In particular, no quasiconformal
mapping maps a 2π/n-corner (n ≥ 2) to an inward-pointing cusp.

Proof. Assume there is such quasiconformal mapping f . We may assume that
f(1) = 0 and the origin is the inward pointing cusp. Let ζ1, ζ2 ∈ ∂f(Ĉ−B) so that

|ζ1| = |ζ2|. Since f(Ĉ− B) is a quasidisk, These point satisfies |ζ1| < d|ζ1 − ζ2| for
some d > 0 by Ahlfors’s three points property (see Gehring [Ge]). On the other
hand, since the origin is an inward pointing cusp, |ζ1− ζ2| = O(|ζ1|

2). This contra-
dicts the previous inequality. The last claim is proved by using a quasiconformal
mapping which maps the sector of angle 2π/n to the sector of angle π. ¤

Corollary 7. No quasi-disk admits inward-pointing cusps.

4.4. Inward-pointing cusps versus (2, 3)-cusps. By definition, each (2, 3)-cusp
is an inward-pointing cusp. However, the converse does not hold.

Example 7. Define the simple curve by

R 3 x 7→ x+ ix3/2(1 + sin(1/x))if x ≥ 0− x− i|x|3/2(1 + cos(1/x))if x < 0.
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Then the origin is not a (2, 3)-cusp of the component of the compliment of the curve
containing the negative real axis but an inward pointing-cusp.

The following lemma is used in the proof of Proposition 4.3.

Lemma 4.2. Let E be a domain with the following property: There exist a neigh-
borhood U of zero and two positive numbers r1 > r2 so that

{ζ ∈ C | |ζ − r2| < r2} ⊂ E ∩ U ⊂ {ζ ∈ C | |ζ − r1| < r1}.

Let ξ = h(ζ) be an odd univalent function on U . Then the origin is a (2, 3)-cusp of
the domain E′ := {h(ζ)2 | ζ ∈ E ∩ U}.

Proof. By considering the case of E ∩U instead of that of E, we may assume that
E ⊂ U . By Lemma 4.1, the origin is an inward-pointing cusp of E ′. Hence there
exists a, r > 0 and θ ∈ R so that eθ · C+(a, r) ⊂ E′. Therefore, to complete this
lemma, after taking r so small if necessary we should find a positive number b with
a property that eθ · C−(b, r) ∩ E′ = ∅.

Especially, Since E′ contains a cardioid whose cuspidal point is the origin, we
may show the following weaker condition: there exist θ′ ∈ R and b > 0 so that
eθ

′

· C−(b, r) ∩ E′ = ∅. Indeed, if such θ′ exists, θ′ is automatically equal to θ
modulo 2π.

After the above remark, we may assume that h′(0) = 1. Since h is an odd
univalent function, we have

(1) h(−ζ) = −h(ζ) and |h(ζ)− ζ| = O(|ζ|3).

By definition, E ∩ (−E) = ∅ and E0 := E ∪ (−E) is contained in the union of two
circles {ζ||ζ±r1| < r1}. Therefore, the equations (1) imply that h(E)∩(−h(E)) = ∅,
h(E0) = h(E)∪ (−h(E)) and there exist r′1 > 0 and a neighborhood V of w = 0 so
that

h(E0) ∩ V ⊂ {ζ ∈ C ||ζ + r′1| < r′1} ∪ {ζ ∈ C ||ζ − r′1| < r′1}.

Hence h(E0) ∩ V does not intersect a union of two cones C ′ = {ζ||ζ ± r′1| >
r′1, |ζ| < r′2} some small r′2 > 0. We can see from the Euclidean geometry that the
set {ζ2|ζ ∈ C ′} contains (−1) · C−(b, (r′2)

2) for suitable b > 0. This implies that
E ∩ (−1) · C−(b, r) = ∅ for some r > 0. ¤

4.5. Cusps in Parameter space. The following is the main result of this section.

Proposition 4.3. Let q ∈ QX . If x(q) is a zero of the function tr2ηx(w(q))− 4 of
order n, then x(q) is a 2π/n-corner of X . Furthermore, the derivative of the trace
function at x(q) does not vanish if and only if x(q) is a (2, 3)-cusp of X .

Remark 2. This proposition gives a refinement of the main result of the author’s
previous paper [M1]. The idea of the proof of this proposition is essentially same as
that of the result in [M1].

Proof of Proposition 4.3 Let Π(t) = x(q) + t2 and Let X̃ be a lift of X via the
covering mapping Π. To prove the first part of this proposition, it suffices to show
from Lemma 4.1 that the origin t = 0 is a π/n-corner of X̃ .

Let λq denote the complex length of ηΠ(t)(w(q)) for t ∈ X̃ . By definition,

(2) tr2ηΠ(t)(w(q))− 4 = 4 sinh2
λq(t)

2
.
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Put X̃0 = Π−1(X0) ⊂ C. We now have two branched covering spaces Π : X̃0 → X0

and sinh2(−) : C → C. Note that these two Π and sinh2(−) are branched of
order 2 at x(q) and the origin respectively. Therefore, taking the lift of the map
X0 3 x 7→ tr2ηx−4 ∈ C, we may assume that λq is holomorphic on a neighborhood

V of the origin t = 0 and satisfies that Reλq > 0 in X̃ and λq(0) = 0. Since
the holomorphic mapping λq is a lift of two covering spaces as above, the mapping

commutes with their covering transformations t 7→ −t of Π and z → −z of sinh2(−).
This means that λq is an odd function on V . By assumption, x(q) is a zero of the
left hand side of (2) of order n. Therefore the origin is a zero of λq of order n.
Shrinking V if necessary, we may suppose that the origin is the unique zero of λq

in V and

(3) |Reλq(t)| < ε1, |Imλq(t)| < π, t ∈ V,

where ε1 is the positive constant arising in Proposition 3.1 (Minsky’s pivot theorem).
We may also assume V to be invariant under the covering transformation of Π :
X̃0 → X0 and such that U := Π(V ) becomes a neighborhood of x(q) satisfying the
conditions (1), (2), and (3) in Corollary 6.

Put ν±(x) = ν±([ηx]) for x ∈ X . Then by (3), we can apply Proposition 3.1 for

ends invariants of ηΠ(t) for all t ∈ X̃ ∩ V , and hence we obtain

(4)
2πi

λq(t)
≈c1 T (ν+(Π(t)))− T (ν−(Π(t))) + i, t ∈ X̃ ∩ V,

where T ∈ PSL2(Z) with T (q) =∞.
In the cases of a Bers slice and the Maskit slice, the negative end invariant is a

suitable fixed point in H. In the Earle slice case X = E , the negative end invariant
of [ηx(q)] is q−1. Since ν+(x)ν−(x) = 1 for x ∈ E and ν+ is the Riemann mapping
of E , ν− is continuous on the closure of E . Hence, shrinking V again if necessary,
we may suppose that

|ReT (ν−(x))− T (q
−1)| < 1 and 0 < ImT (ν−(x)) < 1, x ∈ U ∩ E .

Let I0 be an interval in R corresponding to the curve ν+(U)∩X via ν+. Then on
Θ ∈ I0, the mapping Θ 7→ x(Θ) ∈ U is well defined and satisfies that ν+(x(Θ)) = Θ.

Take a lift x̃(−) from I to ∂X̃ ∩ V so that Π ◦ x̃(Θ) = x(Θ). Then by (4) and from
the observation on the negative end invariant, there exist a positive constant c2 and
ν0 ∈ H so that

2πi

λq((x̃(Θ))
≈c2 T (Θ)− ν0 + i, Θ ∈ I0.

This implies that

(5) {λ ∈ C | |λ− r1| < r1} ⊂ λq(X̃ ∩ V ) ⊂ {λ ∈ C | |λ− r2| < r2}

for suitable r1, r2 > 0. Thus λ = 0 is a π-corner of a domain λq(V ∩ X̃ ) and hence,

the origin t = 0 is π/n-corner of X̃ by Corollary 6.
Next we show the rest of this proposition. If x(q) is (2, 3)-cusp of X , the de-

rivative of the trace function at x(q) does not vanish by above observation. The
converse follows from (5) and Lemma 4.2 ¤
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5. The Pleating rays

Details of the contents of this subsection can be found in Epstein-Marden [EpMa],
Keen-Series [KS93], Komori-Series [KoS], and McMullen [Mc98]. Notice that for
any point x ∈ X , a Kleinian group Gx admits a distinguished invariant component
Ωx. This is of one of the three kinds; Ωb

ϕ, Ω
e
d, or Ω

m
µ .

Let p/q ∈ QX . The p/q-pleating ray PXp/q is the set of points x ∈ X so that

the boundary component of the convex core of H3/Gx facing Ωx/Gx is bent along
the closed geodesic corresponding to Xp/q,x. In all cases, the p/q-pleating ray is
the embedded real analytic curve on X landing at x(p/q) on which Xp/q,x is a
hyperbolic transformation.

Remark 3. This paper treats the pleating rays only in the rational case, that is,
the rays corresponding to rational laminations.

Proposition 5.1. The translation length of Xp/q,x on PXp/q gives a real analytic

diffeomorphism from PXp/q onto its image. Further, from the inside of PXp/q, x tends

to x(p/q) if and only if the translation length tends to zero.

Here, for a hyperbolic transformation W , the translation length of W is the pos-
itive real number l satisfying that tr2W = 4 cosh2(l/2). To prove this proposition,
it suffices to show that the derivative of trace function tr2Xp/q,x does not vanish on

PXp/q. Indeed, in the cases X = BG or E , this can be proved by combining the Local

Pleating Theorem (cf. §12) and the fact that pleating rays are embedded arcs. See
Theorem 5.1 of [KoS] and Theorem 7.4 of [Mc98]. The case of X =M had already
been proved directly in Lemma 5.5 of [KS93].

6. Geometry of F -peripheral disks

In this and the next sections, we treat general once punctured torus groups with
distinguished invariant component.

This section deals with basic properties of some F -peripheral subgroups and
peripheral disks. Many results of this section seem to be well-known from L.Keen
and C.Series’ beautiful works. For the convenience of readers, we give a brief proof
of them here. Let η be a once punctured torus group with distinguished invariant
component Ω. To simplify the argument, we assume that G := η(π1) is not a
fuchsian group throughout this section.

6.1. The expanding mapping. Denote by Cη the convex hull of the limit set of
G and by ∂Cη the component of ∂Cη facing Ω. Then ∂Cη is simply connected and
has a hyperbolic structure inherited from H3. Therefore, there exist a hyperbolic
structure on Σ and an isometry from the universal covering of Σ to ∂Cη. By the
expanding mapping3, we here mean this isometry. The expanding mapping induces
an isomorphism between π1 to G compatible with η.

6.2. F -peripheral, Peripheral subgroups and disks.

Definition 8. (F -peripheral subgroup) Let G be a Kleinian group. A fuchsian
subgroup H of G is called F -peripheral if the convex hull of the limit set of H is
contained in the boundary of convex hull of the limit set of G. Let Ω be a component

3This is not familiar notation.However the author is no good idea to define the name of this

mapping.
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of G. If the convex hull of Λ(H) is contained in the boundary of convex hull of Λ(G)
facing Ω, the subgroup H is also said to be F -peripheral with respect to Ω.

Lemma 6.1. Let η, G, Ω, and ∂Cη as in previous subsection. Let p/q ∈ Q̂.
Suppose ∂Cη is bent along the geodesic corresponding to η(w(p/q)). Let X ∈ G be
an element conjugate to η(w(p/q)) in G and V ∈ G so that G = 〈X,V 〉. Then a
subgroup H = 〈X,V XV −1〉 is F -peripheral with respect to Ω

To show Lemma 6.1, we shall prove the following proposition.

Proposition 6.1. Let H be as in Lemma 6.1. Then, there exists a unique disk
∆(H) so that ∆(H) ⊂ Ω and Λ(H) = ∆(H) ∩ Λ(G).

Proof. According to Proposition A.1. of [KS93], H is a fuchsian group with invari-

ant circle C so that the quotient space of a component of Ĉ − C by H is a once
punctured cylinder whose boundary curves correspond to X and V XV −1. Espe-
cially, Λ(H) ⊂ C. Since H is represented by a conjugate of the fundamental group
of Σ−w(p/q) and the axis of η(w(p/q)) is a bending line, by passing through the
expanding mapping of ∂Cη, we can see that H stabilizes some flat piece N0 of ∂Cη.

This implies that Λ(H) ⊂ N0∩ Ĉ. Since Λ(H) contains at least 3 points, the hyper-
bolic plane in H3 containing N0 coincides with that whose contour is C. Since ∂Cη
is a component of the boundary of the convex set Cη, there exists a unique compo-

nent ∆(H) of Ĉ− C so that the hyperbolic plane whose boundary is C becomes a
support plane which separates ∆(H) and Cη. Because ∂Cη faces Ω, the disk ∆(H)
is contained in Ω.

Next, we shall show that Λ(H) = ∆(H) ∩ Λ(G). Immediately, Λ(H) ⊂ ∆(H) ∩
Λ(G). Let H ′ = 〈X,V −1XV 〉. Then, H ′ is also an F -peripheral subgroup contain-
ing X and satisfies ∆(H ′) 6= ∆(H). Indeed, assume that ∆(H ′) = ∆(H). Since
V H ′V −1 = H, V (∆(H)) = V (∆(H ′)) = ∆(H). Thus G = 〈H,V 〉 stabilizes a disk
∆(H). This is a contradiction because that means G is fuchsian.

Let σ be the component of ∂∆(H) − Λ(H) which joins the fixed points of X.
Since both ∂∆(H) and ∂∆(H ′) contain the fixed points of X, ∂∆(H) ∩ ∂∆(H ′)
consists of the fixed points of X. Then we have σ ⊂ ∆(H ′) ⊂ Ω because ∂∆(H)−σ
contains a limit point ofH. By the same reason, the component σ′ of ∂∆(H)−Λ(H)
connecting the fixed points of V XV −1 is included in Ω.

By applying Theorem A.1 of [KS93] again, we have ∂∆(H)−Λ(H) = ∪h∈Hh(σ)∪
h(σ′). Thus we conclude the assertion. ¤

Proof of Lemma 6.1 Since the disk ∆(H) is contained in the invariant component
Ω, The hemisphere circled by ∆(H) intersects the convex hull of Λ(G) at most at
∂Cη. Since ∆(H)∩Λ(G) = Λ(H), the convex hull of Λ(H) is contained in ∂Cη. ¤

Almost all F -peripheral subgroup which is treated in this paper forms as in
Lemma 6.1. For sake of simplicity of notation, we define

Definition 9. (Peripheral subgroup, disk) Let G be a once punctured torus group
with invariant component. Assume that a component of the boundary of convex core
of the manifold H3/G is bent along the simple closed geodesic. The subgroup H of G
is called a peripheral subgroup if there exist a primitive hyperbolic element X in G
and V ∈ G such that the axis of X corresponds to a bending locus, G = 〈X,V 〉, and
H = 〈X,V −1XV 〉. The disk ∆(H) as in Proposition 6.1 is called the peripheral
disk of H.
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Proposition 6.2. (1) Let H be a peripheral subgroup of G. Let A be a Möbius
transformation. Then AHA−1 is a peripheral subgroup of AGA−1 with a
peripheral disk A(∆(H)).

(2) The stabilizer subgroup of a peripheral disk is its peripheral subgroup.
(3) Let X be an element in G conjugate to η(w(p/q)). Then there are exactly

two peripheral subgroups containing X: H1 = 〈X,V −1XV 〉 and H2 =
〈X,V XV −1〉, where V ∈ G satisfies G = 〈X,V 〉.

Proof. (1) By definition.
(2) This follows from L.Keen and C.Series’ argument in Lemma 3.4 of [KS94].
(3) ¿From the proof of Proposition 6.1, ∆(H1) 6= ∆(H2). So ∂∆(H1)∩∂∆(H2)

consists of the fixed points of X. Let H be an F -peripheral subgroup containing
X. Then ∂∆(H) passes through the fixed points of X. Since Λ(H) ⊂ ∂∆(H) and
∆(H) ⊂ Ω, ∆(H) must coincide one of {∆(Hi)}i=1,2. By applying (2), H agrees
with one of those peripheral subgroups. ¤

Proposition 6.3. Let H be a peripheral subgroup of G. Let W ∈ G. Then the set
of fixed points Fix(W ) ofW satisfies either Fix(W ) ⊂ Λ(H) or Fix(W )∩∆(H) = ∅.
Furthermore, Fix(W ) ⊂ Λ(H) if and only if W ∈ H

To prove this proposition, we use the following theorem of Susskind (Theorem 2
of [Suss]).

Theorem. (Susskind) Let G be a Kleinian group containing no rank 2 parabolic
subgroups. Let H1 and H2 be a geometrically finite subgroup of G. Then Λ(H1 ∩
H2) = Λ(H1) ∩ Λ(H2).

Proof of Proposition 6.3. Assume that 〈W 〉 ∩ H = ∅. Since G contains no rank
2 parabolic subgroup and H and 〈W 〉 are geometrically finite subgroups of G, we
have

Λ(H) ∩ Fix(W ) = Λ(H) ∩ Λ(〈W 〉) = Λ(H ∩ 〈W 〉) = ∅.

This proves first statement.
Now, assume that Fix(W ) ⊂ Λ(H) (⊂ ∂∆(H)). By (2) of Proposition 6.2, we

have only to show W (∆(H)) = ∆(H).
If W is parabolic, one of disks {W (∆(H)),∆(H)} is contained the other. Since

a part of Λ(H) lies on their disks, both of disks must coincide. Hence W ∈ H.
Assume W is loxodromic. If W 2(∆(H)) = ∆(H) but W (∆(H)) 6= ∆(H), then

W (∆(H)) ∩∆(H) = ∅ and ∂W (∆(H)) = ∂∆(H). Since ∆(H) is contained in the
invariant component Ω, Λ(G) ⊂ ∂∆(H). This means G is Fuchsian and contradicts
to our assumption. Finally, suppose that that W (∆(H)), W 2(∆(H)) 6= ∆(H).

In this case, we can see that ∪n∈ZWn(∆(H)) = Ĉ − Fix(W ). This implies that
Λ(G) ⊂ Fix(W ) because ∆(H) ⊂ Ω. Since G is non-elementary, this case can not
occur. ¤

Remark 4. The author learned Susskind’s result from Professor Caroline Series.
He would like to thank for her accurate advice.

Proposition 6.4. Let H1 and H2 be peripheral subgroups of G with respect to the
distinguished invariant component Ω. If there is an element X ∈ G so that X is
conjugate to η(w(p/q)) and ∂∆(H1) ∩ ∂∆(H2) = Fix(X), then H1 ∩H2 = 〈X〉.
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Proof. Clearly H1 6= H2 because ∆(H1) 6= ∆(H2). Since Fix(X) ⊂ ∂∆(Hi) (i =
1, 2) and Fix(X) ⊂ Λ(G), Fix(X) ⊂ Λ(H). Hence X is contained in Hi (i = 1, 2)
from Proposition 6.3. Since each Hi corresponds to the fundamental group of
Σ−w(p/q) and X is conjugate to η(w(p/q)), H1 ∩H2 must agree with 〈X〉. ¤

6.3. Intersections among peripheral disks. Let η, X, and V be as above.
¿From observations in the previous subsection, the axes of X and V −1XV both lie
on ∂Cη and they bound a piece of hyperbolic plane P . The bending angle is the
angle in the interval [0, π) between P and V (P ), measured so that it is zero when
P and V (P ) are coplanar and is near π when P and V (P ) are almost parallel,
corresponding to the case in which X is nearly parabolic.

Proposition 6.5. Let η be a once punctured torus group with distinguished in-
variant component Ω. Then for any ε2 with 0 < ε2 < π, there exists a constant
κ0 = κ0(ε2) > 0 which satisfies the following: Let p/q ∈ Q̂. Suppose that

(1) the component ∂Cη of the boundary of the convex hull of the limit set of
G := η(π1) facing Ω is bent along the axis of η(w(p/q)),

(2) its bending angle is more than ε2, and
(3) the translation length of η(w(p/q)) is less than κ0.

Let H be a peripheral subgroup of G and W ∈ G−H. Then W (∆(H))∩∆(H) 6= ∅
if and only if ∂W (∆(H)) ∩ ∂∆(H) consists of the fixed points of an element of G
conjugate to η(w(p/q)).

It is easy to see the “if”-part of this proposition. To show the “only if” part, we
begin with the following lemma.

Lemma 6.2. Under the hypothesis of Proposition 6.5, for any ε2 with 0 < ε2 < π,
there exists a constant κ0 = κ0(ε2) > 0 satisfying the following: Let H and H ′

be peripheral subgroups of G with the property that H ∩ H ′ = 〈X〉 where X is
conjugate to η(w(p/q)). Suppose that the bending angle θ′ is more than ε0. Then,
if the translation length l of η(w(p/q)) is less than κ0, ∆(H) ∩∆(H ′) is contained
in a pre-image of the standard collar of the geodesic in Ω/G which is homotopic to
w(p/q).

Proof. By taking conjugation if necessary, we may suppose that X(ζ) = elζ for
some l > 0 and ∆(H) ∩∆(H ′) is the sector {ζ ∈ C | | arg ζ| < (π − θ′)/2}. Then,
we can see that the invariant component Ω contains the sector

∆(H) ∪∆(H ′) = {ζ ∈ C | | arg ζ| < (π + θ′)/2}.

Hence by the straight-forward calculation, we have that

dΩ(ζ,X(ζ)) ≤ d∆(H)∪∆(H′)(ζ,X(ζ)) ≤
2l

(π + θ′) cos{π(π − θ′)/2(π + θ′)}
. l.

for all ζ ∈ ∆(H) ∩∆(H ′), where the implicit constant in the inequality is depend
only on ε2. Therefore there exists a constant κ0 = κ0(ε2) > 0 so that if l < κ0,
the distance dΩ(ζ,X(ζ)) is less than the Margulis constant. This implies that the
intersection ∆(H) ∩∆(H ′) is contained in a pre-image of the standard collar with
respect to w(p/q) in Ω/G. ¤

Proof of proposition 6.5. Let κ0 be as in previous lemma. Assume that the trans-
lation length of η(w(p/q)) is less than κ0. Let W ∈ G − H. We suppose that
W (∆(H)) ∩ ∆(H) 6= ∅. Notice that W (∆(H)) is the peripheral disk of H ′ =
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WHW−1 and W (∆(H)) 6= ∆(H) by (2) of Proposition 6.2. We take X,X ′ ∈ G
with the properties that both are conjugate to η(w(p/q)) and ∂∆(H)∩∆(H ′) (resp.
∂∆(H ′) ∩∆(H)) is contained in a free side of H (resp. H ′) whose end points con-
sists of Fix(X) (resp. Fix(X ′)). Take peripheral subgroups H1 and H ′1 so that
H ∩H1 = 〈X〉 and H ′ ∩H ′1 = 〈X ′〉. Then both ∆(H)∩∆(H1) and ∆(H ′)∩∆(H ′1)
contains ∆(H) ∩∆(H ′), and hence both sets do intersect. Since each of both sets
is contained in a pre-image of the standard collar with respect to w(p/q) in Ω/G
by the previous lemma, applying Keen-Halpern’s collar lemma (cf. e.g Buser [Bu]),
we have 〈X〉 = 〈X ′〉. This concludes the assertion. ¤

Proposition 6.6. Under the conditions in Proposition 6.5, if W ∈ G−H satisfies
Wm(∆(H)) ∩∆(H) 6= ∅, then |m| ≤ 1.

Proof. By Propositions 6.4 and 6.5, there exists X ∈ G conjugate to η(w(p/q))
such that H ∩WmHW−m = 〈X〉. Then note that W−mXWm ∈ H, and Λ(H) ∩
Wm(Λ(H)) is the axis of X. Let φ be an expanding mapping from H2 to ∂Cη,
the boundary of convex full of Λ(G) facing Ω. Put F = φ−1Gφ and let FH =
φ−1Hφ, γ1 = φ−1Xφ, γW = φ−1Wφ, and γ2 = γ−mW γ1γ

m
W . Then these satisfy that

FH ∩ γmWFHγ
−m
W = 〈γ1〉 and γ2 ∈ FH .

Let us assume first that γW is hyperbolic. Let PH be the convex hull of Λ(FH)
in H2. Since the axes Ax(γ1) and Ax(γ2) of γ1 and γ2 correspond to the geodesic
homotopic to w(p/q), each of both axes is a component of the boundary of PH .

Here, we claim that the axis of γW intersects both the axes Ax(γ1) and Ax(γ2).
Since φ(PH) = Λ(H) and Λ(H) ∩ Wm(Λ(H)) is the axis of X, PH ∩ γmW (PH)
(resp.PH ∩ γ

−m
W (PH)) is the axis Ax(γ1) (resp. Ax(γ2)). Hence the fixed points of

γW lies on the free sides with respect to γ1 and γ2. This concludes the claim.
Let us prove this proposition. Assume that m > 1. Denote by xi the intersection

point of axes of γW and γi (i = 1, 2). Since γmW (Ax(γ1)) = Ax(γ2), γ
m
W (x1) = x2.

Since PH is convex, the part of the axis of γW between x1 and x2 is contained
in the interior of PH . Thus γW (x1) is contained in the interior of PH and hence
γW (PH)∩PH contains an open set. This means that the convex hulls of Λ(H) and
Λ(WHW−1) are contained in same totally geodesic hemisphere, hence W ∈ H by
(2) of Proposition 6.2. This contradicts to the assumption that W ∈ G−H.

If m < −1, we may consider W−1 instead of W in the argument above.
Finally we shall show that γW is not parabolic by contradiction. Assume that

γW is parabolic. Since W /∈ H and H ∩WmHW−m = 〈X〉, by the argument as
above, we γmW (PH) and PH intersect at the axis of γ1. Here, by taking conjugation,
we may assume γW is a translation. Then by the sublemma below, the axis of γ1
is vertical line, hence this contradicts to the discreteness of FH . ¤

Sublemma. Let D be a closed hyperbolically convex domain in H2 with non-empty
interior. Let T (ζ) = ζ + 1 be a translation. If T (D) ∩ D is a complete geodesic
(that is, a geodesic having infinite length in both directions), it is a vertical line.

Proof. Since l := T (D) ∩ D is complete, l divides the plane H2 into 2-parts, say
E1 and E2. Since T (D) ∩D = l, both D and T (D) have l as a component of their
boundaries. Indeed, if some ζ ∈ l lie on the interior Int(D) of D, there exists a
small ball D′ in D with center ζ. By assumption, we have that D′∩T (D) ⊂ l∩D′.
Hence, by the convexity of T (D) and l ⊂ T (D), a geodesic connecting ζ ∈ l and a
point of T (D) must lie on l∩D′ near ζ. This means that T (D) = l, this contradicts
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to the assumption that D has non-empty interior. Thus, we may assume that
Int(D) ⊂ E1 and T (Int(D)) ⊂ E2.

Assume that l is not vertical line. Let a, b ∈ R be end points of l. Assume first
that |a− b| > 1. Then T (l)∩ l 6= ∅. In this case, it is easy to see that T (D)∩D has
interior point, and this is contradiction. hence |a− b| ≤ 1. By definition of Ei, we
can see that D lies on the bottom of l. In this case, D and T (D) can not intersect
at l, this contradicts to the assumption. ¤

At the end of this section, we shall give the following proposition which is used
in §10 to prove Theorem 13 stated in §7.4.

Proposition 6.7. (Radius of peripheral disks) Let η be a once punctured torus
group with distinguished invariant component Ω. Assume that η satisfies the con-
ditions (1), (2), and (3) in Proposition 6.5 for some ε2 and κ0 > 0. Assume
further, by conjugation, that there exists a loxodromic element W ∈ G which forms
W (ζ) = eλ ζ with Reλ > 0 and does not belong to any peripheral subgroup of G.
Then for any r > 0, there exists δ0 depend only on Reλ and r such that the radius
of a peripheral disk which intersects a disk {|ζ| < r} is less than δ0.

To prove this proposition, we begin with the following two observations.

Lemma 6.3. There exists a universal constant a0 > 0 satisfying the following: For
a real number b in [−1, 1], there are integers a and c with 2 ≤ a ≤ a0 such that
|ab− c| < 1/3.

Proof. For c/a ∈ Q, we consider the following neighborhood

Nc/a = {b ∈ R | |b− (c/a)| < 1/(6a)}.

Then the collection {Nc/a}c/a∈Q forms a covering of R. Indeed, it is clear that all
rational number is contained in the union of the covering. By using the best ap-
proximations for irrational numbers (see e.g. Hardy-Wright [HW]), for an irrational
number b, we can find c/a ∈ Q, such that a ≥ 6 and |b − (c/a)| < 1/a2 ≤ 1/(6a).
This means that b ∈ Nc/a for some c/a ∈ Q.

Since the interval [−1, 1] is compact, we can find a finite subcollection {Nci/ai}i
which covers the interval. Put a0 = 2 ×maxi{ai}. Then for b ∈ [−1, 1], b satisfies
the inequality in the assertion for a = 2ai and c = 2ci with b ∈ Nci/ai . ¤

Lemma 6.4. Let ∆ = {|ζ−ζ0} < δ} be a disk in C. Assume that ∆∩{|ζ| < r} 6= ∅
for some r > 0. Then for a complex number λ with Reλ > 0 and |Imλ| < π/3,
there exists δ′0 depend only on r and Reλ such that δ ≥ δ′0 implies eλ ·∆ ∩∆ 6= ∅.

Proof. The constant δ′0 defined directly to be

δ′0 :=
r(1 + eReλ + e2Reλ)1/2

1 + eReλ − (1 + eReλ + e2Reλ)1/2

satisfies the assertion. Indeed if δ ≥ δ′0, we have (1 + eReλ)δ ≥ (1 + eReλ +
e2Reλ)1/2(r + δ). By definition, the center and the radius of eλ · ∆ are eλ ζ0 and
eReλδ, respectively. Moreover |ζ0| < r+ δ since ∆∩ {|ζ| < r} 6= ∅. By assumption,
|Imλ| < π/3, and hence

|eλ ζ0 − ζ0| ≤ ((1 + eReλ + e2Reλ)1/2|ζ0|

< ((1 + eReλ + e2Reλ)1/2(r + δ)

≤ (1 + eReλ)δ,
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which means that eλ ·∆ ∩∆ 6= ∅. ¤

Proof of Proposition 6.7. Let a0 be a universal constant given in Lemma 6.3. Then
the constant

δ0 = δ0(Reλ, r) = max
2≤a≤a0

{

r(1 + eaReλ + e2aReλ)1/2

1 + eaReλ − (1 + eaReλ + e2aReλ)1/2

}

is desired one.
Indeed, let ∆ be a peripheral disk which intersects a disk {|ζ| < r}. Since we

consider the expansion W (ζ) = eλ ζ, we may suppose that |Imλ| ≤ π. Hence, by
Lemma 6.3, there exist integers a and c such that 2 ≤ a ≤ a0 and that |a (Imλ/π)−
c| < 1/3. Since a ≥ 2, W a(∆) can not intersect ∆ by Proposition 6.6. Hence by
Lemma 6.4, the radius of ∆ is less than δ0. ¤

7. Derivative is of linear order

In this section, we will state three theorems, Theorems 10, 12, and 13. The first
theorem implies our main theorem here, Theorem 2. The next two theorems are
used to show the first one.

7.1. Statement of Theorem “Derivative is of linear order”. Let us continue
to use the notation defined in previous sections. Let p/q ∈ QX . Denote by λp/q(x)
the complex length of Xp/q,x, that is, λp/q satisfies the equation

tr2Xp/q,x = 4 cosh2(λp/q(x)/2).

We take λp/q being holomorphic on X and satisfying that Reλp/q(x) > 0 on X and

λp/q(x) ∈ R for a point x ∈ PXp/q.

In this and the following sections we fix a rational number q ∈ QX . Notice that
for p/q ∈ QX − {q}, λp/q can be extended holomorphically on a neighborhood of
x(q) because Xp/q,x is either loxodromic or hyperbolic at x(q). Denote by `(x) the

restriction of λq to PX
q
. By Proposition 5.1, `(x) is a real analytic diffeomorphism

of PX
q

onto its image.

The following theorem occupies an important position of the proof of Theorem
2 (Rational boundary points are simple zeros):

Theorem 10. (Derivative is of linear order) Suppose that X =M or BG for some
quasifuchsian group G of type (1, 1). Then for p/q ∈ QX − {q},

∣

∣

∣

∣

d

dl
(λp/q ◦ `

−1)(l)

∣

∣

∣

∣

. l, as l→ 0,

where the implicit constant depends only on the translation length of Xp/q,x(q).

The proof of Theorem 10 is given after stating Theorems 12 and 13 by assuming
these two theorems in §7.4. Their two theorems are proved in §8. To state the two
theorems, we begin with the following formula.
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7.2. Parker and Series’ Bending Formula. The contents of this section is due
to Parker-Series [PS].

Let η be a once punctured torus group with distinguished invariant component
∆. Assume that ∂Cη is bent along the geodesic corresponding to w(p/q) for some
p/q. Put X = η(w(p/q)) and G = η(π1). Take V ∈ G so that G = 〈X,V 〉.

Let us recall the definition of the complex shear. Let ξ be the oriented common
perpendicular from AxX to AxV −1XV . Then the complex shear is defined to be
±d where d is the complex distance from ξ to V (ξ). The sign is determined by
the condition Im (±d) ∈ [0, π]. We do not give here the concrete definition of the
complex length, but we should know the following property of the complex length
that its imaginary part coincides with the bending angle.

Denote by λ(W ) the complex length of W for a loxodromic element W . Then
the relation between the complex shear and λ(X) and λ(V ) is given as follows:

Theorem 11. (Bending formula) Denote by τ the complex shear. Then

cosh2(τ/2) = cosh2(λ(V )/2) tanh2(λ(X)/2).

7.3. Quasiconformal Deformation. Relation between Length and Bend-
ing angle. For x ∈ PX

q
, define θ(x) ∈ R so that π − θ(x) is the bending angle,

and put `(x) = λq(x) as in previous section.

Lemma 7.1. θ(x) . `(x) as x→ x(q).

Proof. Fix p′/q′ ∈ QX so that π1 = 〈w(q),w(p′/q′)〉. Let τ(x) be the complex
shear defined for X = Xq,x and V = Xp′/q′,x. Then the Bending formula gives that

sin2(θ(x)/2) = cos2(Im τ(x)/2) ≤ | cosh2(τ(x)/2)|

= | cosh2(λp′/q′(x)/2)| · | tanh
2(`(x)/2)|

= 4−1|tr2Xp′/q′,x| tanh
2(`(x)/2).

Since the trace function tr2Xp′/q′,x is holomorphic at x = x(q) and sin θ ³ θ and
tanh l ³ l as θ, l→ 0 hold, the assertion is established. ¤

Remark 5. By the proof of Lemma 7.1, we can take the implicit constant in the
inequality to be dependent only on the absolute value of tr2Xp′/q′,x at x(q).

Quasiconformal deformations. We define a quasiconformal deformation of the
group on a pleating ray. This is the central tool for proving Theorem 10 (Derivative
is of linear order).

Set ` and θ be as in the previous sections. Let x ∈ PX
q
. Let H1 and H2 be the

peripheral subgroups containing Xq,x. Since Hi acts on ∆(Hi), we can consider
the axis σi of Xq,x in ∆(Hi) as in 2-dimensional hyperbolic geometry. Each σi is
a circular arc orthogonal to ∂∆(Hi) at the fixed points of Xq,x, and σ1 and σ2
bound the sector F contained in ∆(H1) ∪∆(H2). this F is uniquely determined,
see Figure 6.

Set F[B] = B−1(F ) for [B] ∈ 〈Xq,x〉\Gx. (Notice that F is invariant under
the action of Xq,x.) Then, for [B1], [B2] ∈ 〈Xq,x〉\Gx, on has F[B1] ∩ F[B2] = ∅ if
[B1] 6= [B2].

Fix a Möbius transformation A sending the fixed points of Xq,x to {0,∞}. Then
A(F ) becomes a sector with center at origin whose central angle is π − θ(x). Set
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Figure 6. The set F

τ̂(ζ) = A(ζ)A′(ζ)/A(ζ)A′(ζ) on F and τ̂(ζ) = 0 otherwise. Define the Beltrami
differential τx, x ∈ P

X
q

by

τx(ζ) =
1

`(x)

∑

[B]∈〈Xq,x〉\Gx

τ̂(B(ζ))
∂B

∂ζ
(ζ)

(

∂B

∂ζ
(ζ)

)−1

.

The differential τx is compatible with Gx, that is, τx ◦ g · ḡ′ = τc · g′ for all g ∈ Gx.
Furthermore, ‖τx‖∞ = 1/`(x) and the support of τx is ∪[B]∈〈Xq,x〉\GxF[B].

For t ∈ C with |t| < `(x), let wt be a solution on Ĉ of the Beltrami equation
∂wt = tτx∂w

t. Then we can define a holomorphic mapping Φx from a disk {|t| <
`(x)} to X such that Φx(0) = x and GΦx(t) is conjugate to wtGx(w

t)−1.

7.4. Proof of Theorem “Derivative is of linear order”.

Theorem 12. Define τx as in previous section. Then, there exists l1 > 0 so that

|d λq[τx]| > 1/2 for 0 < l(x) < l1.

Theorem 13. (Remaining curves are not so deformed) Let τx be the Beltrami
differential defined as above. Then for p/q ∈ QX − {q},

|d λp/q[τx]| . `(x) as x→ x(q).

Furthermore, the implicit constant is depend only on the translation length of
Xp/q,x(q).

Theorems 12 and 13 are proved in §8 and 10 respectively. For the rest of this
subsection, we shall show that these two imply Theorem 10.

Indeed, take l > 0 sufficiently small and let x ∈ PX
q

with `(x) = l. Let Φx be
the holomorphic mapping of the disk {|t| < `(x)} to X defined as in §7.3. ¿From
Theorem 12, we may suppose that Φx and λq ◦ Φx are both conformal at t = 0.
Since the restriction of λq on PX

q
agrees with `(x) and Φx(0) = x, we obtain

∣

∣

∣

∣

d

dl
(λp/q ◦ `

−1)(l)

∣

∣

∣

∣

=

∣

∣

∣

∣

d

dt
(λp/q ◦ Φx)

∣

∣

∣

∣

t=0

∣

∣

∣

∣

·

∣

∣

∣

∣

d

dl
(Φ−1x ◦ `−1)

∣

∣

∣

∣

l

∣

∣

∣

∣

= |d λp/q[τx]| · |d λq[τx]|
−1 . l.

The implicit constant is dependent only on the translation length of Xp/q,x(q) by
Theorem 12 and the later part of Theorem 13. ¤



26 HIDEKI MIYACHI

Figure 7. D1 and D2

8. Differential on Pinched curve under qc-deformation

8.1. Gardiner’s formula. First we recall the differential formula for the complex
length of loxodromic elements under quasiconformal deformations.

Let g(ζ) = eλζ with Reλ > 0. Let ν be a Beltrami differential on C compatible

with g. We denote by f t a solution on Ĉ of the equation ∂f t = tν∂f t for |t| <
1/‖ν‖∞. Define the holomorphic function λ(t) on {|t| < 1/‖ν‖} by tr2f tg(f t)−1 =
4 cosh2(λ(t)/2) and λ(0) = λ.

Proposition (F.Gardiner [Ga]) Under the notation above,

dλ

dt

∣

∣

∣

∣

t=0

=
1

π

∫

{1<|ζ|<eReλ}

ν(ζ)
dudv

ζ2
, ζ = u+ iv.

Gardiner proved this formula for fuchsian groups. However, his proof can be
applied to the cases of general Kleinian groups.

8.2. Proof of Theorem 12. By Lemma 7.1 there exists l0 > 0 so that for x ∈ PX
q

with `(x) < l0, the inequality θ(x) < π/2 holds. Take such x ∈ PX
q
. We conjugate

Gx by a Möbius transformation sending the fixed points of Xq,x to {0,∞}. To
avoid confusion, we use the same symbols to represent Gx, Xq,x, etc. Here, we may

suppose that Xq,x(ζ) = e`(x)ζ.
Let H1 and H2 be the peripheral subgroups of Gx containing Xq,x. We may

assume that ∆(H1) = H and that the intersection ∆(H1) ∩∆(H2) is contained in
the left half-plane. Since tr2Xq,Φx(t) = tr2 wtXq,x(w

t)−1 and λq ◦ Φx(0) = `(x), it
follows from Gardiner’s formula that

(6) d λq[τx] =
d

dt
(λq ◦ Φx)

∣

∣

∣

∣

t=0

=
1

π

∫

Ax

τx(ζ)
dudv

ζ2
,

where ζ = u + iv and Ax = {ζ ∈ C | 1 < |ζ| < e`(x)}. By definition, F =
{π/2 < arg ζ < 3π/2 − θ(x)} and τx = ζ/ `(x)ζ̄ on F . Let D1 = F ∩ Ax and
D2 = (Supp(τx) ∩ Ax) \D1, see Figure 7. We denote by Jk, k = 1, 2 the integral
over Dk. Then the integral in (6) is equal to J1 + J2. A simple calculation shows
that J1 = (π − θ(x))/π.

Let us consider the integral J2. We take ϑ(x) > 0 to be defined by tanϑ(x) =
1/ sinh(`(x)/2). Keen-Halpern’s Collar lemma asserts that the sector Y1 = {π/2−
ϑ(x) < arg ζ ≤ π/2} is disjoint from lifts of boundary geodesics of ∆(H1)/H1 with
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exception of the axis of Xq,x in ∆(H1), the positive imaginary axis. This implies
that Y1 ∩D2 = ∅. One shows in the same way that the sector Y2 = {3π/2− θ(x) ≤
arg ζ < 3π/2−θ(x)+ϑ(x)} is disjoint from D2. Hence D2 is contained in the sector
C \ (Y1 ∪F ∪Y2) and the annulus Ax. This implies |J2| < (π− 2ϑ(x)+ θ(x))/π (cf.
Figure 7). Thus we have

|d λq[τx]| ≥ |J1| − |J2| > 2(ϑ(x)− θ(x))/π → 1 as x→ x(q).

by the definition of ϑ(x) and Lemma 7.1.

9. Differential on Remaining curves under qc-deformation

Let p/q ∈ QX − {q}. In this section, we conjugate Gx, x ∈ P
X
q

so that the
fixed points of Xp/q,x map to {0,∞}. As in the proof of Theorem 12, we continue
to use by the same words to represent Gx and Xp/q,x, etc. Here, we suppose

Xp/q,x(ζ) = eλp/q(x)ζ.

9.1. Proof of Theorem 13 (Remaining curves are not so deformed). Take
l2 > 0 so that θ(x) < π/4 and Reλp/q(x) < 2Reλp/q(x(q)) if `(x) < l2. We may
suppose in addition that l2 is less than the κ0 > 0 defined in Proposition 6.5 for
ε2 = 3π/4. We now fix such x.

Let [B] ∈ 〈Xq,x〉\Gx. We suppose that B−1Xq,xB(ζ) = (aBζ + bB)/(cBζ + dB)
with aBdB − bBcB = 1. Then it follows from θ(x) < π/2 that F[B] is contained in
a disk with center (aB − dB)/2cB and of radius sinh(`(x)/2)/|cB |. This implies

Area(F[B]) ≤ π sinh2(`(x)/2)/|cB |
2 . `(x)2|cB |

−2,

where Area(−) means the 2-dimensional Lebesgue measure.
Recall that the support of τx is the disjoint union of the sets {F[B]}, [B] ∈

〈Xq,x〉\Gx (cf. §7.3). Applying Gardiner’s formula again, we have

|d λp/q[τx]| =

∣

∣

∣

∣

d

dt
λp/q ◦ Φx

∣

∣

∣

∣

t=0

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

π

∫

{1<|ζ|<e
Reλp/q(x)}

τx(ζ)
dudv

ζ2

∣

∣

∣

∣

∣

≤
1

π

∫

{|ζ|≤2Reλp/q(x(q))}

|τx(ζ)|dudv

≤
1

π`(x)

∑′

[B]
Area(F[B]) . `(x)

∑′

[B]
|cB |

−2,

where
∑′

[B] means the summation over all [B] ∈ 〈Xq,x〉\Gx with F[B] ∩ {|ζ| ≤

2Reλp/q(x(q))} 6= ∅. Thus, Theorem 13 follows from Proposition 9.1 which is
proved below.

Proposition 9.1. With notation as above, we have
∑′

[B]
|cB |

−2 = O(1)

as `(x) → 0, where the right-hand side is dependent only on the translation length
of Xp/q,x(q).
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Figure 8. The domain C[B]

Proof. In this proof, we use the symbols defined in the above proof of Theorem 13
frequently.

Let [B] be an element in 〈Xq,x〉\Gx with F[B] ∩ {|ζ| ≤ 2Reλp/q(x(q))} 6= ∅.
Fix a peripheral subgroup H of Gx containing B−1Xq,xB. Let σ be the axis of
B−1Xq,xB in ∆(H) considered as the 2-dimensional hyperbolic disk. Let {ζk}k=1,2

be the fixed point of B−1Xq,xB. We denote by NH the Nielsen region of H in
∆(H). Then

σ′ := {z ∈ NH | sinh(d∆(H)(z, σ)) sinh(`(x)/2) = 1}

is a circular arc in ∆(H) whose end points are {ζk}k=1,2, where d∆(H) means
hyperbolic distance on ∆(H). Therefore, as in Figure 8, the curve consisting of
σ′ and the line segment joining ζ1 and ζ2 bounds a domain C[B] in ∆(H). Keen-
Halpern’s collar lemma asserts that the sets C[B] are pairwise disjoint for [B] ∈
〈Xq,x〉\Gx.

Let us define a continuous function ϑ(x) on PX
q
∪ {x(q)} by the equation

tanϑ(x) = 1/ sinh(`(x)/2), ϑ(x(q)) = π/2.

Denote by θ1(x) (< π/2) the outer angle between the line through two points ζ1
and ζ2 and the circle ∂∆(H) at ζ1 (cf. the left picture of Figure 8). By definition,
θ1(x) < θ(x) and hence there exists l3 > 0 such that θ1(x) < ϑ(x) whenever
`(x) < l3. Notice that |ζ1 − ζ2| = 2 sinh(`(x)/2)/|cB | and the angle between σ′ and
σ at ζ1 is equal to ϑ(x). Hence the angle between σ′ and the line segment between
ζ1 and ζ2 at ζ1 is equal to π/2 + ϑ(x)− θ1(x). Therefore, we obtain that

Area(C[B]) =
sinh2(`(x)/2)

2|cB |2

{

π + 2(ϑ(x)− θ1(x))

cos2(ϑ(x)− θ1(x))
+ 2 tan(ϑ(x)− θ1(x))

}

& |cB |
−2

{

`(x)

cos(ϑ(x)− θ1(x))

}2

,(7)

whenever `(x) < l3, since ϑ(x) − θ1(x) > 0. Indeed, let ζ3 be the center of the
circle containing σ′. Then the set C[B] is divided into two part (cf. the right picture
of Figure 8): the sector enclosed by σ′ and two segments between ζ3 and ζi for
i = 1, 2, and the triangle with vertices ζ1, ζ2, and ζ3. The first part in the bracket
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of the inequality above corresponds to the area of the sector, the second is the area
of the triangle.

A simple calculation shows

`(x)−1 cos(ϑ(x)− θ1(x)) = `(x)−1(cosϑ(x) cos θ1(x) + sinϑ(x) sin θ1(x))

< `(x)−1 cosϑ(x) + `(x)−1 sin θ(x)

. `(x)−1 tanh(`(x)/2) + `(x)−1 sin `(x) = O(1).

by Lemma 7.1. Together with (7) we can find l4 > 0, which are independent of the
choice of the classes [B] ∈ 〈Xq,x〉\Gx, such that if `(x) < l4,

|cB |
−2 . Area(C[B]).

By applying Proposition 6.7 (Radius of peripheral disks), the assumption F[B] ∩
{|ζ| ≤ 2Reλp/q(x(q))} 6= ∅ implies that ∆(H) is contained in the disk of radius
2Reλp/q(x(q))+δ0 with center 0, where δ0 depends only on Reλp/q(x(q)). Therefore
we conclude that

∑′

[B]
|cB |

−2 .
∑′

[B]
Area(C[B]) ≤ Area({|ζ| ≤ 2Reλp/q(x(q)) + δ0})

= π(2Reλp/q(x(q)) + δ0)
2

as `(x) → 0, and the last constant depends only on Reλp/q(x(q)) that is, the
translation length of Xp/q,x(q). ¤

10. Non-vanishing theorem for Derivative of trace functions

10.1. Non-vanishing theorem. We shall prove Theorem 2:

Theorem 2 (Rational boundary points are simple zeros) For all q ∈ QX ,
it holds that

d

dx
tr2Xq,x

∣

∣

∣

∣

x=x(q)

6= 0.

In particular, for all q ∈ QX , x(q) is a simple zero of the holomorphic function
tr2Xq,x.

Remark 6. In the case of X =M, this theorem gives an affirmative answer of a
conjecture of D.J.Wright [W].

10.2. Key Lemma. We show the following:

Lemma 10.1. Suppose that X =M or BG for some quasifuchsian group G of type
(1, 1). Fix q ∈ QX . For p/q ∈ QX ,

we have
∣

∣

∣

∣

∣

d

dx
tr2Xp/q,x

∣

∣

∣

∣

x=x(q)

∣

∣

∣

∣

∣

.

∣

∣

∣

∣

∣

d

dx
tr2Xq,x

∣

∣

∣

∣

x=x(q)

∣

∣

∣

∣

∣

,

where the implicit constant of the inequality is dependent only on the translation
length of Xp/q,x(q). Hence, if the derivative of tr2Xp/q,x at x(q) does not vanish for

some p/q, then that of tr2Xq,x at x(q) is also not zero.

Proof. Let p/q ∈ QX as in the assumption. If Xp/q,x(q) is parabolic, X is the Maskit
slice and Xp/q,x is parabolic for all x ∈ X unless p/q = q. Therefore the derivative

of tr2Xp/q,x at x = x(q) vanish, and hence the inequality above holds.
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Assume that Xp/q,x(q) is loxodromic. We may assume that p/q 6= q. By virtue
of Theorem 10 (Derivative is of linear order), we have

(8)

∣

∣

∣

∣

d

dl
(λp/q ◦ `

−1)(l)

∣

∣

∣

∣

. l as l→ 0.

Let x ∈ PX
q

with appropriately small `(x). Integrating (8) from l = 0 to `(x), we
obtain

|λp/q(x)− λp/q(x(q))| . `(x)2,

Since Xq,x(q) is parabolic, the trace function of Xq,x satisfies

|tr2Xq,x − 4| ³ `(x)2

for x ∈ PX
q

near x(q). Hence we have

(9) |λp/q(x)− λp/q(x(q))| . |tr
2Xq,x − 4|

for x ∈ PX
q

with `(x) → 0. Since tr2Xp/q,x = 4 cosh2(λp/q(x)/2), dividing the
inequality (9) by |x−x(q)| and letting x→ x(q) imply the inequality in the assertion.
By Theorem 10, we can see that the implicit constant of the inequality is dependent
only on the translation length of Xp/q,x(q). ¤

10.3. Proof of Theorem 2. We shall show Theorem 2 in all slices.

(a) the case X =M.

In this case, X = M, X0 = C, x(q) = xm(q), and ηx = ρmx . We shall show the
following:

Lemma 10.2. There exists a universal constant CM > 0 such that
∣

∣

∣

∣

∣

d

dµ
tr2ρmµ (w(q))

∣

∣

∣

∣

µ=xm(q)

∣

∣

∣

∣

∣

≥ CM .

for all q ∈ Q.

Proof. A simple calculation shows that tr2ρmµ (w(n/1)) = −(µ− 2n)2, and hence

d

dµ
tr2ρmµ (w(n/1)) = −2(µ− 2n).

Let us consider annular domains

An := {Reµ− 2n| < 3, |Imµ− 2| < 3} − {Reµ− 2n| < 1/3, |Imµ− 2| < 1/3}

for all n ∈ Z. By definition, for µ ∈ An, the translation length of tr2ρmµ (w(n/1)) lies

in between 2 sinh−1(1/6) and 2 sinh−1(3/2), and the absolute value of the derivative
of this trace function is greater than 2/3. Furthermore, a collection {An}n covers
the strip {−1 < Imµ < 5} and hence this collection covers the boundary ∂M.
Indeed, according to Proposition 2.6 of Keen-Series [KS93] (see also Kra [Kr90]),
the boundary ∂M is contained in the strip {0 < Imµ < 2}. Hence, by Lemma 10.1,
the absolute value of the derivative of tr2ρmµ (w(q)) at x = xm(q) is greater than a
universal constant, say CM > 0. ¤

(b) the case X = E.

In this case, X = E , X0 = C∗, x(q) = xe(q), and ηx = ρex. First, we show
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Proposition 10.1. Let p/q, p′/q′ ∈ Q̂ with p/q 6= p′/q′. Define a holomorphic
function on representation space R by

Ψ([η]) = (tr2η(w(p/q)), tr2η(w(p′/q′))).

Denote by [ρ0] the representation with the condition that its image ρ0(π1) is a
maximal parabolic group with parabolic transformations ρ0(w(p/q)), ρ0(w(p′/q′)),
and ρ0([a,b]). Then Ψ has maximal rank at [ρ0].

Proof. Since ρ0 is irreducible, [ρ0] is a regular point of R. We may assume that
ν+([ρ0]) = p/q and ν−([ρ0]) = p′/q′.

Take ς1 be an isomorphism of π1 so that ς1(a) = w(p′/q′). Define x1 ∈ Q by
w(x1) is conjugate to ς−11 (w(p/q)). By the injectivity of end invariants, [ρmxm(x1)

◦

ς−11 ] = [ρ0] (see also [KMsS]).
Let ς2 be an isomorphism of π1 so that ς2(a) = w(p/q), and let x2 ∈ Q such that

w(x2) is conjugate to ς−12 (w(p′/q′)). Put I(z) = z̄. Then it holds that

[Iρm
xm(x2)

◦ ς−12 I] := [π1 3 a′ 7→ I ◦ ρm
xm(x2)

(ς−12 (a′)) ◦ I] = [ρ0].

Let us consider the holomorphic mappings ψ1 and ψ2 of a sufficiently small disk
{|t| < ε} to R defined by

ψ1(t) = [ρmxm(x1)+t ◦ ς
−1
1 ],

ψ2(t) = [Iρm
xm(x2)+t̄

◦ ς−12 I].

By definition, their satisfy that ψk(0) = [ρ0] for k = 1, 2 and

Ψ ◦ ψ1(t) = (4, tr2ρm(xm(x1)+t)(w(x1))),

Ψ ◦ ψ2(t) = (tr2ρm
xm(x2)+t̄

(w(x2)), 4) = (tr2ρmxm(x2)+t(w(x2)), 4),

Since tr2ρmµ (w(x2)) is a polynomial of real coefficients on µ-plane. Together with
Theorem 2 for X =M, we complete the proof of Proposition 10.1. ¤

Proof of Theorem 2 Define the mapping ψ from C to R by ψ(d) = [ρed]. Then

d

dc
tr2ψ(c)(ab−1)

∣

∣

∣

∣

c=xe(q)

=
d

dc
tr2ρec(ab

−1)

∣

∣

∣

∣

c=xe(q)

= 8xe(q)(4xe(q)2 + 2).

Since ρexe(q) is faithful and tr2ψ(xe(q))(ab−1) = (4xe(q)2 + 2)2, 4xe(q)2 + 2 6= 0.

At c = 0, the representation ρec is divergent. Hence it is impossible that xe(q) = 0.
Therefore, the mapping ψ has the maximal rank at d = xe(q). Define a function
by

Ψ([η]) = (tr2η(w(q)), tr2η(w(q−1))).

The condition q 6= ±1/1 implies q 6= q−1. Hence from Proposition 10.1 Ψ has the
maximal rank at [ρexe(q)]. Since tr2ρed(w(q)) = tr2ρed(w(q−1)) for d ∈ C∗, and

Ψ ◦ ψ(d) = (tr2ρed(w(q)), tr2ρed(w(q−1))),

we conclude the desired statement. ¤

(c) the case X = BG

In this case, there exists a quasifuchsian group G of type (1, 1) such that X = BG,
X0 = Q−4(G), x(q) = xb(q), and ηx = ρbx. To prove Theorem 2 in this case, we will
show
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Proposition 10.2. There exists a constant CG > 0 dependent only on the group
G such that

∣

∣

∣

∣

∣

d

dϕ
tr2ρbϕ(w(q))

∣

∣

∣

∣

ϕ=xb(q)

∣

∣

∣

∣

∣

≥ CG.

for all q ∈ Q̂.

We first state the following lemma.

Proposition 11.2. For any ϕ0 ∈ ∂BG, there exists p ∈ Q̂ such that ρbϕ0
(w(p))

is loxodromic and that the derivative of the trace function tr2ρbϕ(w(p)) at ϕ = ϕ0
does not vanish.

The proof of Proposition 11.2 needs some notation and definitions. So it may
induce some confusion to readers. Hence we postpone proving this theorem until
the next section. Let us prove Proposition 10.2 with assuming Proposition 11.2.

Proof of Proposition 10.2. For any ϕ ∈ ∂BG, we can find p = pϕ ∈ Q̂ with the
conditions in Proposition 11.2. Hence there exists a neighborhood U ′ϕ of ϕ such

that for ϕ′ ∈ U ′ϕ, ρ
b
ϕ′(w(p)) is loxodromic and the derivative of tr2ρbϕ(w(p)) at ϕ′

does not vanish. Let Uϕ be a neighborhood of ϕ whose closure is compact in U ′ϕ.
Then the collection {Uϕ}, ϕ ∈ ∂BG forms a covering of the compact set ∂BG, and
hence there exists a finite collection {Uϕi}i which covers ∂BG.

Let q ∈ Q̂. Take i so that xb(q) ∈ Uϕi . Then by Lemma 10.1, the absolute
value of the derivative of tr2ρbϕ(w(q)) at ϕ = xb(q) is greater than CG,i > 0, which

depends only on the translation length of ρbϕi(w(pϕi)) and the absolute value of the

derivative of tr2ρbϕ(w(pϕi)) on ϕ ∈ Uϕi ∩ ∂BG. Thus CG := mini{CG,i} is a desired
constant. ¤

11. Teichmüller modular group acting on Bers slices

In this section, we shall prove the quasiconformal extendability of Teichmüller
modular transformation acting on one dimensional Teichmüller space. We use fre-
quently the notion and symbols for Bers slices defined in §2.

Remark 7. L.Bers [B81a] had proved that every Teichmüller modular transforma-
tion acting on BG is extended continuously on its closure. 4

11.1. The improved λ-lemma. For more details, the reader is referred to [MSS],
[BR], [EKK], [SuTh], [Sg92], or [Sl].

Definition 14. (Labeled holomorphic motions ([Mc87])) A labeled holomorphic

motion of a set A (in Ĉ) over a complex manifold M with distinguished point

m ∈M is a map f :M ×A→ Ĉ such that:

(i) For any fixed a ∈ A, f(λ, a) is a holomorphic function of λ ∈M ;
(ii) For any fixed λ ∈M , f(λ, a) is an injective function of a ∈ A; and
(iii) f(m, a) = a for all a ∈ A.

Theorem 15. (The improved λ-lemma) Suppose that M is conformally equiva-
lent to the unit disk in C. Then every holomorphic motion f of a set A over
M with distinguished point m ∈ M can be extended as that of Ĉ over M with
the following property: For all λ ∈ M , f(λ, · ) is a quasiconformal mapping of

4Here we consider the one-dimensional case. Compare with [KeTh].
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the Riemann sphere onto itself with dilatation exp(dM (m,λ)), where dM is the
Kobayashi-hyperbolic distance on M with curvature −1.

11.2. Quasiconformal extension of Modular transformations. To give a
proof of Theorem 3 (Modular transformation has qc-extension), we fix notation
and definitions used in the proof.

Teichmüller modular group Let Mod(Σ) be the mapping class group of Σ. An
element [ω] ∈ Mod(Σ) induces the isomorphism [ω]∗ of Teich(Σ) by the equation

[ω]∗((f,R)) = (f ◦ ω−1, R).

[ω] ∈ Mod(Σ) determines the element [ω̄] ∈ Mod(Σ) by conjugating by the canonical
orientation reversing involution. This satisfies that

[ω̄]∗(y) = [ω]∗(ȳ) for all y ∈ Teich(Σ).

Two propositions We give two propositions to show the quasiconformal extend-
ability of Teichmüller modular transformation.

Definition 16. (Affine mapping Lx,z
y ) Let x, z ∈ Teich(Σ) and y ∈ Teich(Σ).

The affine mapping Lx,z
y of Q−4(z, y) to Q−4(x, y) is defined by the equation

Lx,z
y (ϕ) = ϕ ◦ (fz,xy )× (fz,xy )′

2
+ S(fz,xy ).

Henceforth, we fix two points x0 = (f0, R0) ∈ Teich(Σ) and y0 = (g0, S0) ∈
Teich(Σ) as in §2. Recall that for (x, y) ∈ Teich(Σ)× Teich(Σ), W x

y is a quasicon-

formal mapping on Ĉ such that W x
y fixes 0, 1, and ∞, and that a representation

π1 3 a′ 7→W x
y ◦ ηG(x0,y0)(a

′) ◦ (W x
y )
−1 ∈ PSL2(C)

is conjugate to ηG(x,y).

Proposition 11.1. The following three hold:

(1) Lx0,z
y0

◦ βzy0
= βx0

y0
for all z ∈ Teich(Σ).

(2) For [ω] ∈ Mod(Σ), there is a Möbius transformation P such that

G(x0, [ω̄]
−1
∗ (y0)) = PG([ω]∗(x0), y0)P

−1

as Kleinian groups (i.e. both sides coincide without marking) and

Ω−(x0, [ω̄]
−1
∗ (y0)) = P (Ω−([ω]∗(x0), y0)).

(3) Let P be as above. Define a linear mapping LP from Q−4(x0, [ω̄]
−1
∗ (y0)) to

Q−4([ω]∗(x0), y0) by LP (ϕ) = ϕ ◦ P (P ′)2. Then

β[ω]∗(x0)
y0

◦ [ω]∗(z) = LP ◦ β
x0

[ω̄]−1
∗ (y0)

(z), for z ∈ Teich(Σ).

Proof. The first equation follows from the well-known transform (cf. [Leh])

S(h1 ◦ h2) = S(h1) ◦ h2 · (h
′
2)

2 + S(h2).

The second and third are obtained by the normalization of of W x
y and by applying

the marking trick due to Bers [B81a] (cf. Ito [Ito2]) to see the diagonal action of
the modular group.

Indeed, denote by qw a quasiconformal mapping on Ĉ so that qw(Ω−(x0, y0)) =
Ω−(x0, y0) and qw corresponds to the lift of f0 ◦ ω

−1 ◦ f−10 on Ω+(x0, y0) and the
lift of g0 ◦ ω̄

−1 ◦ g−10 on Ω−(x0, y0). Then qωG(x0, y0)q
−1
ω = G(x0, y0) as Kleinian

groups.
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Denote by P the Möbius transformation sending three points 0, 1, and ∞ to
W x0

[ω̄]−1
∗ (y0)

(qω(0)), W
x0

[ω̄]−1
∗ (y0)

(qω(1)), and W x0

[ω̄]−1
∗ (y0)

(qω(∞)), respectively. Notice

that two quasiconformal mappings P−1 ◦W x0

[ω̄]−1
∗ (y0)

and W
[ω]∗(x0)
y0 ◦ q−1ω uniformize

two markings f0 : Σ → R0 and g0 ◦ ω : Σ → S0, and take same values on three
points {qω(0), qω(1), qω(∞)}. Hence we have

P−1 ◦W x0

[ω̄]−1
∗ (y0)

=W [ω]∗(x0)
y0

◦ q−1ω ,

on the limit set of G(x0, y0), because the value of a such quasiconformal mapping
on the limit set is determined by the corresponding markings. Thus we obtain that

G(x0, [ω̄]
−1
∗ (y0)) = PG([ω]∗(x0), y0)P

−1

as Kleinian groups and Ω−(x0, [ω̄]
−1
∗ (y0)) = P (Ω−([ω]∗(x0), y0)).

Suppose z ∈ Teich(Σ). Then by the same argument as above, there exists a

Möbius transformation Pz so that P−1z ◦ W z
[ω̄]−1

∗ (y0)
= W

[ω]∗(z)
y0 ◦ q−1ω . Thus we

conclude that

β[ω]∗(x0)
y0

◦ [ω]∗(z) = S
(

f [ω]∗(z),[ω]∗(x0)
y0

)

= S
(

W [ω]∗(z)
y0

◦ q−1ω ◦ (W [ω]∗(x0)
y0

◦ q−1ω )−1
)

= S
(

P−1z ◦W z
[ω̄]−1

∗ (y0)
◦ (P−1 ◦W x0

[ω̄]−1
∗ (y0)

)−1
)

= S
(

W z
[ω̄]−1

∗ (y0)
◦ (W x0

[ω̄]−1
∗ (y0)

)−1 ◦ P
)

= LP
(

S
(

fz,x0

[ω̄]−1
∗ (y0)

))

= LP ◦ β
x0

[ω̄]−1
∗ (y0)

(z).

¤

¿From the normalization of W x
y , the set

T ∗ := {(y, ϕ) | y ∈ Teich(Σ), ϕ ∈ Q(x0, y)}

is recognized as the cotangent space on Teich(Σ) (cf. Bers [B81b]). We should note
that, by virtue of a theorem of Hejhal ([Hej]), the mapping

Teich(Σ) 3 y 7→ (y, βx0
y (z)) ∈ T ∗

is holomorphic for all z ∈ Teich(Σ). Since the Teichmüller space is biholomorphic
to a bounded domain of C, the cotangent space T ∗ is holomorphically trivial by a
theorem of Grauert (cf. e.g. §9 (D) of Bers [B81b]).

Definition 17. (linear mapping `y) Define a linear mapping from Q−4(x0, y) to
C by a trivialization of T ∗:

T ∗ 3 (y, ϕ) 7→ (y, `y(ϕ)) ∈ Teich(Σ)× C

11.3. Quasiconformal extension. First we prove

Theorem 18. Any two Bers slices are quasiconformally equivalent. More precisely,
for any (x, y) ∈ Teich(Σ)× Teich(Σ), there exists a quasiconformal mapping hxy of
Q−4(x0, y0) to Q−4(x, y) such that

hxy ◦ β
x0
y0
(z) = βxy (z)

for all z ∈ Teich(Σ). Furthermore, the dilatation of hxy is exp{dTeich(Σ)(y, y0)}.
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Proof. Let z ∈ Teich(Σ). Put cz = `y0
◦ βx0

y0
(z) ∈ C and A = {cz | z ∈ Teich(Σ)} ∪

{∞}. Then we define the mapping H from Teich(Σ)×A to Ĉ by

H(y, c) = `y ◦ β
x0
y (z)if c = cz, z ∈ Teich(Σ),∞if c =∞.

We check here that H is a labeled holomorphic motion of A over Teich(Σ) with
distinguished point y0. Indeed, by definition, H(y0, cz) = `y0

◦ βx0
y0
(z) = cz. Fix

y ∈ Teich(Σ), Since βx0
y is injective and βx0

y (z) 6= ∞, for z ∈ Teich(Σ), H(y, c) is
also injective. ¿From a theorem of Hejhal,

H(y, cz) = `y ◦ β
x0
y (z)

is holomorphic for y ∈ Teich(Σ) and fixed z ∈ Teich(Σ). Finally, we note that
H(y,∞) ≡ ∞ is also holomorphic on y ∈ Teich(Σ).

Therefore, the improved λ-lemma tells us that H can be extend as a labeled
holomorphic motion Ĥ of Ĉ over Teich(Σ) with distinguished point y0. Now, we
define a quasiconformal mapping hxy of Q−4(x0, y0) to Q−4(x, y) by

hxy(ϕ) = L
x,x0
y ◦ (`y)

−1 ◦ Ĥ(y, `y0
(ϕ)).

Then hxy satisfies the equation in the statement of this theorem. Indeed,

hxy ◦ β
x0
y0
(z) = Lx,x0

y ◦ (`y)
−1 ◦ Ĥ(y, `y0

◦ βx0
y0
(z))

= Lx,x0
y ◦ (`y)

−1 ◦ Ĥ(y, cz)

= Lx,x0
y ◦ (`y)

−1 ◦ `y ◦ β
x0
y (z)

= Lx,x0
y ◦ βx0

y (z) = βxy (z).

By the improved lambda lemma, the dilatation of hxy is exp{dTeich(Σ)(y, y0)}, since
all Lx,x0

y , `y, and `y0
are affine mappings. ¤

Now, we restate and prove Theorem 3:

Theorem 3. For [ω] ∈ Mod(Σ), there is a K([ω], y0)-quasiconformal mapping hω
of Q−4(x0, y0) onto itself such that

hω ◦ β
x0
y0
(z) = βx0

y0
◦ [ω]∗(z), for z ∈ Teich(Σ),

where K([ω], y0) = exp{dTeich(Σ)(y0, [ω̄]∗(y0))}.

Proof. This is proved by the argument parallel to that of the proof of Theorem 18.
The later part of the proof is conclusion of the improved lambda lemma. Let us

prove the first part. Define a quasiconformal mapping hω by

hω(ϕ) = Lx0,[ω]∗(x0)
y0

◦ LP ◦
(

`[ω̄]−1
∗ (y0)

)−1

◦ Ĥ
(

[ω̄]−1∗ (y0), `y0
(ϕ)
)

for ϕ ∈ Q−4(x0, y0), where P and LP are taken and defined as in (3) of Proposition

11.1. Then hω satisfies the condition in the assertion. Indeed, since Ĥ([ω̄]−1∗ (y0), ·)

is K([ω], y0)-quasiconformal and all L
x0,[ω]∗(x0)
y0 , `[ω̄]−1

∗ (y0)
, LP , and `y0

are affine,

hω is also K([ω], y0)-quasiconformal. In addition, for z ∈ Teich(Σ),

hω ◦ β
x0
y0
(z) = Lx0,[ω]∗(x0)

y0
◦ LP ◦

(

`[ω̄]−1
∗ (y0)

)−1

◦H
(

[ω̄]−1∗ (y0), cz
)

= Lx0,[ω]∗(x0)
y0

◦ LP ◦ β
x0

[ω̄]−1
∗ (y0)

(z)

= Lx0,[ω]∗(x0)
y0

◦ β[ω]∗(x0)
y0

◦ [ω]∗(z) = βx0
y0
◦ [ω]∗(z). ¤
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Figure 9. Process of qc extension: The vertical direction means
the action on a slice via [ω]∗, which is (essentially) factorized into
two parts. One is the horizontal part represented by a qc map
arising by application of the lambda lemma (Theorem 18). The
other is a diagonal part, which is the linear map LP .

Remark 8. By definition, the constant K([ω], y0) coincides with the maximal di-
latation of the extremal quasiconformal self-mapping of S0 which is homotopic to
g0 ◦ ω̄ ◦ g

−1
0 . Equivalently, let ϕ0 be the point in its Bers slice corresponding to the

Fuchsian group. Then logK([ω], y0) equals the hyperbolic distance between ϕ0 and
its image under [ω]∗.

Since the boundary of Bers slices moves holomorphically on the base surfaces,
we have (cf. [Ast])

Corollary 8. The Hausdorff dimension of the complex boundary of Bers slices
varies continuously with the complex structures of the base surfaces.

11.4. Similarity at cusps. Recall that a point ζ in a measurable set Ω ⊂ C is
said to be a δ-measurable deep point, δ > 0 if

area(B(ζ, r)− Ω) = O(r2+δ).

where B(ζ, r) is a disk of center ζ with radius r.
A quasiconformal mapping φ of C is said to be C1+α-conformal at ζ ∈ C if φ′(ζ)

exists and
φ(ζ + t) = φ(ζ) + φ′(ζ)t+O(|t|1+α).

Notice that any C1+α-conformal mapping φ at ζ is also C1+α′ -conformal at ζ for
all 0 < α′ < α. Further, we note that for two quasiconformal mapping φ1 and φ2
on C, if φ1 (resp. φ2) is C

1+α1 (resp. C1+α2)-conformal at ζ ∈ C. (resp. at φ1(ζ)),
then φ2 ◦ φ1 is C1+α-conformal at ζ, where α = min{α1, α2}.

In [Mc96], McMullen showed the following result:

Theorem 19. (Theorem 2.25 of McMullen [Mc96]) Let E be a measurable set on
C, and x ∈ C a δ-measurable deep point. Then any quasiconformal mapping with
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vanishing Beltrami differential on E is C1+α-conformal at ζ, where α is dependent
only on δ and the maximal dilatation of given quasiconformal mapping.

We restate and prove a corollary of Theorem 3 in Introduction:

Corollary 4. (All rational boundary points are similar each other) There exists
α > 0 depend only on the base surface of given Bers slice such that every Te-
ichmüller modular transformation acting on given Bers slice is C1+α-conformal at
all rational boundary points.

Proof. Since every boundary point is a (2, 3)-cusp, a simple calculation shows that
any rational boundary point is 1/2-measurable deep point. Since every Teichmüller
modular transformation acts on a Bers slice holomorphically and the set of ratio-
nal boundary points are countable. Hence we obtain the C1+α-conformality by
Theorem 19.

Next we can choose α > 0 to be dependent only on the base surface. Let [ω1]∗
and [ω2]∗ be generators of the Teichmüller modular transformation acting on given
Bers slice. Suppose that [ωi]∗ is C

1+αi -conformal at each rational boundary points.
Since the deepness of each rational boundary point is a universal constant 1/2,
by Remark 8, the constant αi depends only on the dilatation of the Teichmüller
mapping acting on the base surface of given Bers slice representing [ωi]∗.

Let α be the supreme of min{α1, α2}/2. for all generators {[ω1]∗, [ω2]∗}. Then
α > 0 depends only on the base surface by definition, and has the property in the
assertion. ¤

By using the same argument, we have

Corollary. (All rational boundary point are similar) The quasiconformal map
between two Bers slices given in Theorem 18 is C1+α-conformal at all rational
boundary points for some α > 0.

11.5. Trace function on the boundary of a Bers slice. At the end of Section
11, we shall show the following proposition, which completes the proof of Theorem
2.

Proposition 11.2. Let G = G(x0, y0). For any ϕ0 ∈ ∂BG, there exists p ∈ Q̂
such that ρbϕ0

(w(p)) is loxodromic and that the derivative of the trace function

tr2ρbϕ(w(p)) at ϕ = ϕ0 does not vanish.

Two show this proposition, we recall the Jørgensen parameter of once punctured
torus groups: Let a, b, c ∈ C with c 6= 0 and a2 + b2 + c2 = abc. Then we construct
an admissible homomorphism (cf.§2) η(a,b,c) by

η(a,b,c)(a) :=

[

a− b/c a/c2

a a/c

]

, η(a,b,c)(b) :=

[

b− a/c −b/c2

−b b/c

]

.

Notice that

tr2η(a,b,c)(a) = a2, tr2η(a,b,c)(b) = b2, and tr2η(a,b,c)(ab) = c2.

We also note that a point (a, b, c) in the 2-dimensional affine variety V := {a2 +
b2 + c2 = abc} is a regular point if abc 6= 0. We first note the following well-known
lemma.

Lemma 11.1. For [η] ∈ D. there exists a regular point (a, b, c) ∈ V such that
[η] = [η(a,b,c)].
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Figure 10. Trace map is locally biholomorphic.

The proof of this result is due to T.Jørgensen [Jo]. We here sketch his way to
prove.

Proof. Let A and B be lifts η(a) and η(b) on SL2(C), respectively. Since ρ is
a discrete representation, we have trABA−1B−1 = −2 (cf.e.g. Theorem 5.37 of
Matsuzaki-Taniguchi [MT]). Hence a := trA, b := trB, and c := trAB satisfies
a2 + b2 + c2 − abc = 0, Furthermore, by assumption, abc 6= 0. This means that
(a, b, c) ∈ V and this point is a regular point.

We take a conjugation so that η([a,b])(z) = z + 2, and after this, we take a
conjugation again by the translation which takes the pole (AB)−1(∞) of AB to
zero. Then we can observe that [η] = [η(a,b,c)]. Here the pole of a matrix

(

a b
c d

)

is a/c. ¤

Hence we have the following proposition.

Proposition 11.3. Let ω be an orientation preserving homeomorphism on Σ. Then
the holomorphic mapping

V 3 (a, b, c) 7→ [η(a,b,c) ◦ (ω∗)
−1] ∈ R

admits a local inverse mapping at a point (a, b, c) which satisfies [η(a,b,c)] ∈ D.

Remark 9. By definition, a local inverse mapping forms

[η] 7→ (tr η ◦ ω∗(a), tr η ◦ ω∗(b), tr η ◦ ω∗(ab)) ∈ V

Proof. It is easy to see that the mapping

V 3 (a, b, c) 7→ [η(a,b,c)] ∈ R

is injective and holomorphic. By Lemma 11.1, a set D is contained in the image of
the mapping above. Since [η] ∈ D and its corresponding point in V are both regular
point of the ambient manifolds, the mapping above admits local inverse mapping
at a neighborhood of [η] (cf. Figure 10. The mappings here are represented by
broken lines). Since the mapping R 3 [η] 7→ [η ◦ (ω∗)

−1] ∈ R is a holomorphic
automorphism of R (cf.McMullen [Mc96]), we conclude the assertion. ¤
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Proof of Proposition 11.2. Recall that G = G(x0, y0). Let ϕ0 ∈ ∂BG. By defini-
tion, we can recognize ϕ0 as a point (y0, ϕ0) ∈ T

∗. By a theorem of Hejhal [Hej]
(see also [Mc98]), the holonomy mapping

T ∗ 3 (y, ϕ) 7→ [ρbϕ] ∈ R

is an analytic local homeomorphism. We now take a neighborhood U of (y0, ρ
b
ϕ0
) ∈

T ∗, at which the holonomy mapping is homeomorphic.
Let ω be an orientation preserving homeomorphism of Σ so that all ρbϕ ◦ ω∗(a),

ρbϕ ◦ ω∗(b), and ρ
b
ϕ ◦ ω∗(ab) are loxodromic at ϕ = ϕ0. Such ω does exist, because

ρbϕ0
can admit at most two accidental parabolic transformations.

By composing the local inverse mapping defined in Proposition 11.3 and the
homeomorphism defined by the inverse of the holonomy mapping (cf. Figure 10),
we conclude that the trace map

U 3 (y, ϕ) 7→ (tr ρbϕ ◦ ω∗(a), tr ρ
b
ϕ ◦ ω∗(b), tr ρ

b
ϕ ◦ ω∗(ab)) ∈ V

is well-defined and biholomorphic. This means that, on the differential of the trace
map along a fiber of T ∗ passing through (y0, ϕ0), one of their coordinates of the
right-hand side does not vanish. This implies the assertion. ¤

12. Extended Local Pleating Theorem

12.1. Pleating varieties, Local and Limit pleating theorem. This section
treats the definition of the pleating varieties in quasifuchsian groups after Keen
and Series [KS99], and gives the statement of the local pleating theorem.

Let F be fuchsian space in QF . A component of the boundary of convex core
of the manifold corresponding to [η] is said to be positive if it faces the boundary
surface corresponding to the distinguished invariant component of [η]. The other
component is called negative. Each component is a pleated surface in the sense of
Thurston. We denote by pl+([η]) (resp. pl−([η])) the bending lamination of the
positive (resp. negative) component.

Denote by ML and PML the space of measured laminations and projective
measured laminations on Σ, respectively. For ν1, ν2 ∈ML, we define

PL±ν1
= {[η] ∈ QF −F | pl±([η]) = ν1},

PLν2,ν1
= PL+

ν1
∩ PL−ν2

.

We call PL±ν1
the ν1-pleating varieties and PLν2,ν1

the ν1, ν2-pleating plane. The
connection between this notion and ours can be found from the following equation:
Let ν1 be a rational lamination whose support is homotopic to w(q). For X = BG
or E ,

PL+
ν1
∩ X = PX

q
.

In [KS99], L.Keen and C.Series proved the following theorem:

Theorem 20. (Non-singularity of pleating varieties) Let p/q, p′/q′ ∈ Q̂ with p/q 6=
p′/q′. Let ν1 and ν2 be rational measured laminations whose supports are homotopic
to w(p/q) and w(p′/q′) respectively. Then PLν1,ν2

and PLν2,ν1
are the components

of the pre-image of R>0 × R>0 under the mapping:

QF −F 3 [η] 7→ (tr2η(w(p/q)), tr2η(w(p′/q′))).
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Furthermore, this mapping is non-singular on PLν1,ν2
∪PLν2,ν1

and the boundary of
PLν1,ν2

∪PLν2,ν1
can be computed by solving tr2η(w(p/q)) = 4 and tr2η(w(p′/q′)) =

4 on this component.

Here we note that this theorem does not mention the non-singularity of their
trace functions at the boundary of these pleating varieties, which is the one of the
main theorems of this section.

To prove this theorem, they showed useful results, called the Local pleating the-
orem and the Limit pleating theorem (Theorems 5.1 and 8.1 of [KS99]), which for
convenience we explain below. For ν1 ∈ ML, We denote by λν1

([η]) the complex
length of the lamination ν1 of the quasifuchsian manifold associated with [η]. By
definition if ν1 = tγ where t > 0 and γ is a simple closed curve on Σ, this is just t
times the complex length defined from the trace function of the corresponding sim-
ple closed curve. In the case of irrational laminations, we define the length function
by limiting process (cf. [KS99]). The real part of the complex length is nothing
but the usual length of lamination ν1. The complex function λν1

takes positive real
values on PL+

ν1
∪ F ∪ PL−ν1

.

Theorem.(Local pleating theorem) Let ν1 ∈ ML. Every group [η0] in PL
+
ν1
∪

F ∪ PL−ν1
has a neighborhood U in QF such that for [η] ∈ U , λν1

([η]) ∈ R implies

[η] ∈ PL+
ν1
∪ F ∪ PL−ν1

.

Theorem.(Limit pleating theorem) Let ν1 and ν2 be mutually distinct rational
laminations. Let {[ηn]}n be a sequence on PLν1,ν2

. If Reλνi([ηn]) → ci ≥ 0 for
each i, then {[ηn]}n contains a subsequence with algebraic limit [η∞]. Further, [η∞]
is quasifuchsian if and only if ci > 0 for i = 1, 2.

12.2. Extended Local pleating theorem. We now consider how to extend the
local pleating theorem and non-singularity theorem of pleating varieties for the
geometrically finite boundary groups. By using notation given in the previous
section, we can restate Theorem 4 as follows: Recall that a geometrically finite
boundary group is said to be of type n (n = 1, 2) if it admits n distinct conjugacy
classes of accidental parabolic transformations.

Theorem 4(Extended local pleating theorem) Let [η0] be a geometrically finite
boundary group. Then there exists a neighborhood U of [η0] in R so that the one of
the following holds:

1. Suppose that [η0] is of type 1. Let p/q ∈ Q be such that w(p/q) corresponds
to the accidental parabolic of [η0]. Let ν1 be a measured lamination whose
support is homotopic to w(p/q). Then either U ∩ PL+

ν1
or U ∩ PL−ν1

is the
pre-image under the holomorphic mapping

U 3 [η] 7→ tr2η(w(p/q))

of R>4 = {t ∈ R|r > 4}. Furthermore, if U ∩PL+
ν1

is not empty, U ∩PL−ν1

is empty and vice versa.
2. Otherwise, let p/q, p′/q′ ∈ Q correspond to accidental parabolics of [η0].

Let ν1 and ν2 be measured laminations whose supports are homotopic to
w(p/q) and w(p′/q′) respectively. Then U ∩PLν1,ν2

is the pre-image of the
mapping

U 3 [η] 7→ (tr2η(w(p/q)), tr2η(w(p′/q′)))

of R>4 × R>4.
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Furthermore, in all cases, the preimages of these mappings are connected and con-
tractible.

Proof. We first prove the case of the type 2 geometrically finite boundary group.
¿From Proposition 10.1, the mapping

Ψ0([η]) = (tr2η(w(p/q)), tr2η(w(p′/q′)))

has maximal rank at [η0]. Hence there exists a neighborhood U of [η0] so that Ψ0

is biholomorphic on U , U does not intersect the fuchsian slice, and Ψ0(U) is a poly
disk with center (4, 4) and radius r0 > 0. Put N2 = {(t, s) ∈ R|4 < t, s < 4 + r0}.
By considering the shrinking deformation on the length of the bending lamination
on PLν1,ν2

, we can find a sequence in PLν1,ν2
which converges to [η0]. This means

that U ∩ PLν1,ν2
is not empty and contained in Ψ−10 (N2). By virtue of the local

and limit pleating theorem, U ∩ PLν1,ν2
is open and closed in Ψ−10 (P ). Thus

U ∩ PLν1,ν2
= {[η] ∈ U | 4 < tr2η(w(p/q)), tr2η(w(p′/q′)) < 4 + r0}.

Next we assume that [η0] is of type 1. Since representation space R has anti-
conformal involution which is induced from the complex conjugation ζ 7→ ζ̄ on the
phase space Ĉ and since the ends of each Kleinian manifold are switched by this
involution, we may suppose that the accidental parabolic of [η0] corresponds to the

positive end invariant of [η0] that is, ν+([η0]) ∈ Q̂ and ν−([η0]) ∈ H. Therefore
G0 := η0(π1) has the invariant component, which is no longer distinguished. Let
y0 = (g0, S0) ∈ Teich(Σ) be the conjugate of the point of Teich(Σ) corresponding
to ν−([η0]) ∈ H.

Here, we use the notation given in the previous section frequently. Notice that
T ∗ is recognized as the space of projective structures on Σ (see McMullen [Mc98]).
Since η0 is faithful and of type 1 boundary group, [η0] lies on the image of holonomy
map so that [η0] corresponds to the standard projective structure. Hence [η0] is on
the image by the holonomy map of the boundary of the Bers slice βx0

y0
(Teich(Σ)).

Since the holonomy map is local analytic homeomorphism by a theorem of Hejhal,
there exist a neighborhood U ′ of [η0] in R and a holomorphic mapping proj, which
is induced from the projection of the cotangent bundle to the Teichmüller space,
from U ′ to Teich(Σ) so that proj([η0]) = y0 and any [η] ∈ U ′ is induced from the
projective structure whose under complex structure associates with proj([η]).

We define the holomorphic mapping Ψ0 on U ′ by

(10) Ψ0 : U ′ 3 [η] 7→ (proj([η]), tr2η(w(p/q))) ∈ Teich(Σ)× C.

We claim that Ψ0 is biholomorphic on a neighborhood of [η0]: Let F0 be a fuchsian
group of type (1, 1) such that Λ(F0) = R and satisfies L/F0 = S0. We consider the
Bers slice whose center F0. As was said above, [ρbxb(p/q)] = [η0] and proj([ρbϕ]) = y0

on some neighborhood of xb(p/q) in Q−4(F0). By Theorem 2

(11)
d

dϕ
tr2ρbϕ(w(p/q))

∣

∣

∣

∣

ϕ=xb(p/q)

6= 0.

A quasiconformal deformation of η0 induces a holomorphic mapping s0 from a
neighborhood N0 of y0 in Teich(Σ) into U ′ so that s0(y0) = [η0], proj ◦ s0(y) = y
and

tr2s0(y)(w(p/q)) ≡ 4

on N0. Together with (11), Ψ0 has maximal rank at [η0].
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Shrink U0 so that on it Ψ0 is biholomorphic, with image a product of a simply
connected domain proj(U0) and a small disk with center 4 and radius r0, and so
that U0 ∩QF does not intersect the fuchsian slice. Then we will show that

U0 ∩ PL
+
ν1

= {[η] ∈ U0 | tr
2η(w(p/q)) ∈ R>4}.

On PL+
ν1
, the complex length of ν1 takes real values. So, the left hand side is

contained in the right. We show the opposite direction. Let N1 = {(y, t) ∈
Teich(Σ)×R | 0 < t < 4+r0}. Fix y ∈ proj(U0). Let Fy be a fuchsian group of type
(1, 1) so that Λ(Fy) = R and L/Fy = S where y = (g, S). We consider here the Bers
slice BFy with center Fy. By definition of the mapping s0, the p/q-pleating ray in

BFy lands at the rational boundary point xb(p/q) corresponding to the lamination

with support w(p/q) and [ρbxb(p/q)] = [s0(y)].

Let [η] ∈ Ψ−10 (N1) with proj([η]) = y. Let ϕ ∈ Q−4(Fy) so that [η] = [ρbϕ]. We
know that the p/q-pleating ray is a connected component of the set

{ϕ ∈ Q−4(Fy)− {0}|tr
2ρbϕ(w(p/q)) > 4}.

By Theorem 2, a set

{ϕ ∈ Q−4(Fy) | tr
2ρbϕ(w(p/q)) ∈ R}

is an real analytic curve near xb(p/q). Hence by taking r0 sufficiently small, for
ϕ ∈ Q−4(Fy), if [ρ

b
ϕ] ∈ Ψ−10 (N1), ϕ lies on the p/q-pleating ray in BFy . Since U0

does not intersect the fuchsian locus, applying Local pleating theorem and Limit
pleating theorem, we have that the set consisting of [η] ∈ Ψ−10 (N1) which is also
contained in PL+

ν1
is open and closed in Ψ−10 (N1). This means that [η] ∈ PL+

ν1

for [η] ∈ U0 with 4 < tr2η(w(p/q)) < 4 + r0. Thus, we may let U be the resulting
neighborhood of [η0]. ¤

Appendix A. Relation to complex dynamics

A similarity phenomenon, Corollary 4, on Bers slices gives columns in the dic-
tionary between rational maps and Kleinian groups. In particular, this corresponds
to the similarity of parabolic points of the Mandelbrot set M via tuning. The tun-
ing is a homeomorphism from the Mandelbrot set to its copy in itself defined by
Renormalization (cf.e.g. §5 of Lyubich [Lyu]).

We will not give the concrete definition of notion in complex dynamics, e.g.
tuning and a little Mandelbrot copy, and so forth. However we should know here
the following four properties:

(1) There are two kinds of Mandelbrot copies: primitive copies and satellite
copies (cf. e.g. nor []).

(2) If a Mandelbrot copy is primitive, the corresponding tuning is extended
quasiconformally to the whole complex plane. If a copy is satellite, the
tuning is quasiconformal at M − {1/4} (Theorem 5.5 of [Lyu]).

(3) Every parabolic point is a 1/2-deep point for the interior of the Mandelbrot
set (cf. e.g. Lemma 6.1 and 6.2 of [Mil]).

(4) A tuning is holomorphic on the interior of the Mandelbrot set (cf. Douady-
Hubbard [DH]).

Applying (2), (3), and (4) together with Theorem 19, we have
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Theorem 21. Let M be the Mandelbrot set and Mc a Mandelbrot copy. Then
the tuning from M to Mc is C1+α-conformal at every parabolic points except for
1/4 ∈ ∂M . If Mc is primitive, the tuning is also C1+α-conformal at 1/4.

Thus we obtain the following table:

Once puncture torus groups Quadratic polynomials

Bers slice BG Mandelbrot set M
Rational boundary point Parabolic point
Rational boundary points are 1/2-
deep points (Theorem 1)

Parabolic points are 1/2-deep
points.

Teichmüller modular transforma-
tion acting on a Bers slice

Tuning

Teichmüller modular transforma-
tion has qc-extension(Theorem 3)

Tuning has qc-extension (locally)
(M.Lyubich)

Teichmüller modular transforma-
tion is C1+α-conformal at rational
boundary points (Corollary 4)

Tuning is C1+α-conformal at par-
abolic points (Theorem 21)

About the 4-th column, we note that the root of a small Mandelbrot copy is an
inward-pointing cusp (cf.e.g. Lemma 6.2 of [Mil]), which also corresponds to our
main theorem, Theorem 1. Many people observed some similarity phenomena in
the theory of complex dynamics (cf. e.g. [Lei], [Lyu], [R1], and [R2]).
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