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Abstract. In this work we continue the exploration of affine and hyperbolic lamina-
tions associated with rational maps, which were introduced in [LM97]. Our main goal is
to construct natural geometric measures on these laminations: transverse conformal mea-
sures on the affine laminations and harmonic measures on the hyperbolic laminations.
The exponent δ of the transverse conformal measure does not exceed 2, and is related to
the eigenvalue of the harmonic measure by the formula λ = δ(δ−2). In the course of the
construction we introduce a number of geometric objects on the laminations: the basic
cohomology class of an affine lamination (an obstruction to flatness), leafwise and trans-
verse conformal streams, the backward and forward Poincaré series and the associated
critical exponents. We discuss their relations to the Busemann and the Anosov–Sinai
cocycles, the curvature form, currents and transverse invariant measures, λ-harmonic
functions, Patterson–Sullivan and Margulis measures, etc. We also prove that the dy-
namical laminations in question are never flat except for several explicit special cases
(rational functions with parabolic Thurston orbifold).
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0. Introduction

The field of holomorphic dynamics consists of at least three closely related branches:

• Iteration theory of rational endomorphisms of the Riemann sphere;
• The theory of Kleinian groups;
• The theory of holomorphic foliations.

The construction of Lyubich and Minsky [LM97] brings these three branches together: its
input is a rational endomorphism, and the output is a hyperbolic lamination analogous
to the hyperbolic manifold of a Kleinian group (or rather to the unit tangent bundle of
that manifold).

The modern theory of Kleinian groups is intimately related with the 3-dimensional hy-
perbolic geometry which provides many deep insights and powerful tools in both ways
(see Mostow [Mo68], Thurston [Th91], Minsky [Mi99], etc.). This relation is based on
Poincaré’s observation that a Kleinian group G can be extended to a discrete group of
isometries of the hyperbolic space H3. The quotientM = H3/G is a 3-dimensional hyper-
bolic manifold (or rather orbifold) whose topology and geometry reflect the combinatorial
and geometric properties of G.

Sullivan’s dictionary between the first two branches of holomorphic dynamics (see [S85])
made it natural to wonder whether there exists an analogous object associated with a
rational endomorphism f : C → C of degree d > 1. Such an object, a hyperbolic 3-
dimensional (orbifold) lamination Mf , was constructed in [LM97]. The hyperbolization
(a functorial passage from dimension 2 to dimension 3) in this construction is based on
an idea different from that of the “Poincaré hyperbolization” and consisting in the ob-
servation that a natural one-dimensional fiber bundle over an arbitrary affine Riemann
surface (whose fibers consist of all conformal metrics on the tangent space to a given point)
carries a canonical hyperbolic metric. Thus, one produces first an affine Riemann sur-
face lamination Af whose leaves are isomorphic to C, then a hyperbolic 3-lamination Hf

by applying to Af the hyperbolization functor, and then finally one obtains the quotient
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hyperbolic lamination Mf by factorizing Hf with respect to the action of the automor-

phism f̂ : Hf ←↩ (which is a natural lift of f).

Any Riemannian manifold is endowed with the associated volume. It is not the case
for a (leafwise) Riemannian lamination: leafwise volumes can be organized into a global
measure only in the presence of a holonomy invariant transverse measure. To handle this
problem, L. Garnett [Ga83] introduced the notion of a harmonic measure on a Riemannian
foliation, which can play the role of the Riemannian volume on a manifold. She showed
that for foliations of compact manifolds such a measure always exists. Actually, the results
of Garnett can be placed into a more general context of the theory of Markov chains.
In these terms Garnett’s harmonic measures are interpreted as stationary measures of
the leafwise Brownian motion, and their existence follows from existence of a stationary
measure for an arbitrary Markov chain with a compact state space and weak∗ continuous
transition probabilities.

However, the lamination Mf associated with a rational map is usually non-compact
and it is a priori not clear whether there exists a harmonic measure on this lamination.
Our goal is to construct such a measure ω assuming that the lamination Mf is locally
compact. [More precisely, the measure which we construct is not harmonic but rather
λ-harmonic, i.e., is a λ-eigenmeasure of the leafwise Laplacian.] The measure ω is in
fact a very special λ-harmonic measure satisfying the property that its Radon-Nikodym
cocycle is equal to exp[δcrβ], where β is the Busemann cocycle on Mf , and δcr is the
critical exponent of an appropriately defined Poincaré series . The eigenvalue λ and the
critical exponent are related by the formula λ = δcr(δcr − 2) coinciding with the familiar
relation between the bottom eigenvalue of the Laplacian and the critical exponent in the
theory of Kleinian groups (see [Pa76], [S87]).

The harmonic measure ω is constructed by integrating the leafwise hyperbolic volume
with respect to a special transverse measure. The latter comes as a natural lift of an
f̂ -invariant parallel transverse conformal stream on the affine lamination Af . We define it
as a family of transverse measures parameterized by leafwise conformal metrics and which
are transformed in a natural geometric way under the map f̂ and under the holonomies
on Af . The former is controlled by the leafwise differential of f , while the latter are
controlled by the basic cocycle βσ on Af .

This cocycle is a very interesting object on its own right. To define it, one should make
a choice of a leafwise conformal Riemannian metric on Af , i.e., of a section σ : Af → Hf

of the bundleHf → Af . A change of the metric leads to replacing βσ with a cohomologous
cocycle. Thus we obtain a well-defined basic class b ∈ H1(Af ). This class vanishes if
and only if Af is Euclidean. We prove that it happens if and only if f is a very special
function with “parabolic Thurston orbifold” (such a function is equal, up to a Möbius
conjugacy, to z 7→ zd, a Chebyshev polynomial, or a Lattès example).

Remark. The first example of a non-Euclidean affine foliation was given by E. Ghys
[Gh97] (see also [Gh99] and §5.6). This phenomenon is quite different from the situation
with compact 2-dimensional hyperbolic laminations, which can always be uniformized
(see Verjovsky [Ve87] and Candel [Ca93]). On the other hand, our result suggests that a
“generic” affine lamination is not Euclidean.



4 VADIM A. KAIMANOVICH AND MIKHAIL LYUBICH

Let us now outline the structure of the paper. We start §1 with a discussion of geometric
structures on conformal manifolds: connection between affine and hyperbolic structures,
Busemann and basic cocycles, and their relation to the curvature form. Then we carry
over this discussion to the level of laminations. It leads us to the hyperbolization functor
and to the basic cohomology class of an affine lamination.

In §2 we discuss measure-theoretic structures on laminations: measures, currents, con-
formal streams (leafwise and transverse), the Brownian motion and the interplay between
them. In particular, we note that paring a transverse and a leafwise streams of the same
dimension δ on an affine lamination A gives us a global “conformal Gibbs measure” on A.
This measure can be further lifted to an invariant, with respect to the “vertical flow”,
measure on the corresponding hyperbolic lamination H analogous to the Margulis mea-
sure for the geodesic flows (compare Sullivan [S79], Kaimanovich [Ka90], Bedford–Fisher–
Urbansky [BFU]).

In our situation the Margulis measure is usually singular on the leaves (in particular,
this is always the case when δ < 2). In order to produce a leafwise absolutely continuous
measure, we first lift the transverse δ-stream of A to the hyperbolic lamination H. This
yields a transverse measure on the latter whose Jacobian under the holonomy (≡ the
Radon–Nikodym cocycle) is equal to exp[δβ], where β is the Busemann cocycle on H.
The result of the integration of this measure with respect to the leafwise hyperbolic
volume is a λ-harmonic measure on H with λ = δ(δ − 2).

We begin the next section, §3, with a discussion of laminations Af and Hf associated
with rational maps. First, we recap the construction of [LM97] of these laminations, and
prove some useful properties of them. Then we construct a special leafwise Riemannian
metric on Af which is locally uniformly contracted by the backward iterates of f . This
property allows us to express the basic cocycle by a dynamical formula as the “distortion”
of the metric along infinite backward orbits. This relates the geometric basic cocycle to
the dynamical cocycle considered by Anosov–Sinai [AS67], Ledrappier [Le81] and others.

An important feature of the lamination Af is that it is endowed with a special class of
transversals (we call them dual fibers), which makes it similar to a product lamination.
By using the dual fibration we introduce the dual basic cocycle which measures the dis-
tortion of the Riemannian metric along the forward orbits. We finish §3 with the above
mentioned theorem characterizing the rational maps f for which the affine lamination Af

is Euclidean.

We begin §4 with a discussion of the balanced measure κ for f constructed in [Br65],
[Ly93], and its lift κ̂ to Af . The conditional measures of κ̂ give rise to a transverse holo-

nomy invariant measure m on Af (compare [Su97]). Under the action of f̂ this measure

transforms as f̂m = d ·m. We prove (§4.2), using the results of [Br65], [Ly93], that the
leaves of Af are asymptotically equidistributed with respect to this measure (compare
with the results of Bedford–Smillie [BS91] and Fornaess–Siboni [FS92] for polynomial au-
tomorphisms of C2). The transverse invariant measure m will play an auxiliary role of
the “counting measure” on the transversals.

Then we pass to the main constructions of the paper. In §4.3 we introduce the back-
ward Poincaré series and the associated critical exponent δcr for Af . By comparing the
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Poincaré series at exponent 2 with the leafwise area on Af (using the equidistribution of

leaves), we prove that δcr ≤ 2. Then (§4.4) we construct an f̂ -invariant parallel trans-
verse δcr-conformal stream µ on Af . To this end we generalize the Patterson method to
the lamination context by replacing points with transversals and replacing the counting
measure on the group orbits with the transverse invariant measure. Finally, we lift µ to
an f̂ -invariant λ-harmonic measure ω = ωµ on the 3-dimensional hyperbolic lamination
Hf , and then push it down onto the quotientMf = Hf/f̂ .

This construction can be also realized directly in terms of “global” measures on the
hyperbolic lamination Hf . Namely, the balanced transverse measure m gives rise to a
measure θ onHf whose Radon–Nikodym cocycle (with respect to the leafwise Riemannian

volume) is identically one, but f̂ θ = d · θ. The Patterson construction applied to the

measure θ allows us to obtain a measure ω on Hf which is f̂ -invariant, but on the contrary
its Radon–Nikodym cocycle is exp[δβ], where β is the leafwise Busemann cocycle on Hf

(there are no measures on Hf which would simultaneously have a trivial Radon–Nikodym

cocycle and be f̂ -invariant).
In §4.5 we introduce the forward Poincaré exponent of Af and the corresponding

leafwise conformal stream. One way to construct such a stream is to lift the Sullivan
conformal measure on the Julia set J(f) [S83] to the lamination Af , but we can also go
the other way round and construct intrinsically the desired objects on the laminations.
In the convex co-compact case (when f has only non-recurrent critical points on the
Julia set and does not have parabolic points) the backward and the forward critical
exponents coincide, and the product of the transverse and leafwise streams yields an
invariant “conformal Gibbs measure” on Af . By pushing this measure down to the Julia
set J(f) we obtain, in a new way, the conformal Gibbs measure on J(f), which was
first constructed by Denker and Urbansky [DU91b], [U94]. The point of our approach is
that upstairs (on the lamination) the critical points disappear and the dynamics become
hyperbolic (at some expense though, as orbifold singular points appear on the leaves).

Note that our method of construction of conformal Gibbs measures by paring the
transverse and leafwise conformal streams can also be used in the general context of
the Gibbs theory (in the absence of conformal structure) for constructing measures with
prescribed Radon–Nikodym derivatives. In this way we can construct the classical SRB
measures on hyperbolic attractors (see §2.1.3), as well as on strong unstable foliations
of partially hyperbolic systems. Since our method based on the Patterson averaging
procedure does not need Markov partitions and requires only “soft hyperbolicity”, it can
potentially be applied in a broad range of situations.

At the end of §4 we give a list of problems motivated by our results which continues
the list given in [LM97].

In order to illustrate the tight link of our results and methods to the setting of Kleinian
groups, we include an Appendix (§5) with a description of laminations associated with

Kleinian groups. We first observe that there is a natural C-fibration Å ∼= C × C \ diag
over C. Then for a Kleinian group G the unit tangent bundle M̊G ≡ UM over the
associated quotient 3-manifold M = H3/G (i.e., the phase space of the geodesic flow on
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M) is obtained by applying the hyperbolization functor to Å and then factorizing it by
the action of G.

By restricting the transversal C of Å to the limit set Λ(G), we obtain a G-invariant

affine lamination AG = C × Λ(G) \ diag. Let MG ⊂ M̊G be the hyperbolization of
AG modulo the group action. The Patterson–Sullivan measure on the limit set Λ(G)
gives rise both to a leafwise and a transverse conformal streams on AG. The latter
then determines a λ-harmonic measure onMG, where λ is the bottom eigenvalue of the
Laplacian on M . This measure is precisely analogous to the λ-harmonic measure ω we
have constructed onMf . The product of the leafwise and transverse conformal streams
is a geodesic current. We show equivalence of this and several other constructions of the
geodesic current determined by the Patterson–Sullivan measure. We also give a new direct
construction of the associated invariant measure of the geodesic flow as a local product
of conformal measures on strongly stable and strongly unstable horospheres.

Correspondences between various objects associated with affine laminations determined
by Kleinian groups and rational maps are listed in §5.5.

Finally, in §5.6 we prove (generalizing an earlier result of Ghys [Gh97]) that some affine
foliations associated with Kleinian groups are non-Euclidean and establish a link between
their parallel transverse conformal streams and invariant measures of the horosphere fo-
liation on the homology cover of a compact hyperbolic manifold constructed by Babillot
and Ledrappier [BL98].

The main results of this paper were presented at the Texas Geometry and Topology
Conference in Rice (November 1997), at the AMS meeting in Davis (April 1998, [KL98]),
at the Meeting on Complex Analysis in Dynamical Systems in Rio-de Janeiro (September
1998), and at many other meetings since then.
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0.1. The list of notations. The end of a proof is denoted by the symbol 2. Occasionally we
split proofs into separate assertions or steps, in which case the end of the proof of each of them
is denoted by the symbol 4. We also use the symbol 4 to denote the end of a definition.

• N = {0, 1, 2, . . . } — set of natural numbers,
Z — set of integers,
R — set of reals,
C — complex plane,
C = C ∪ {∞} — Riemann sphere,
ς — spherical metric on C,
spher — spherical area form on C,
C∗ = C \ {0} — punctured complex plane,
D(z, r) = {ζ ∈ C : |z − ζ| < r}, Dr ≡ Dr(0), D ≡ D1,
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U b V — U is compactly contained in V , i.e., there exists a compact set K such that
U ⊂ K ⊂ V ,

〈f,m〉 — integral of function f with respect to measure m.

§1.1.1 H3 — hyperbolic 3-space,
∂H3 — sphere at infinity (visibility sphere),
q ∈ ∂H3 — point at infinity,
(H3, q) — pointed at infinity hyperbolic space,
dist — hyperbolic metric on H3,
βq — Busemann cocycle on (H3, q),

ω↑q — vertical form,

v↑q — vertical vector field,
ξq = {ξ

τ
q }τ∈R — vertical flow,

Horq(h) — horosphere centered at q ∈ ∂H3 and passing through h ∈ H3,
Hor(H3, q) — space of horospheres centered at q,
Hor(H3) — space of all horospheres in H3,
Υ∞ ∈ ∂H

3 — center of a horosphere Υ ∈ Hor(H3),
Pq = ∂H3 \ {q} — punctured visibility sphere,
ξq(h) — vertical geodesic passing through h,
pq : H

3 7→ Pq — the map assigning to h the limit point of the geodesic ξq(h).

§1.1.2 H3 = {(x, y, t) : (x, y) ∼= z ∈ R2 ∼= C, t = es ∈ R+} — the upper half-space model,
vol — hyperbolic volume form,
vol — hyperbolic volume measure,
∆H — hyperbolic Laplace–Beltrami operator,
E2 ∼= C — Euclidean plane,
eucl — Euclidean area form,
` — Lebesgue measure,
∆E — Euclidean Laplacian,

§1.1.3 ξM — vertical flow on a pointed at infinity hyperbolic orbifold M ,

v↑M — vertical vector field,

ω↑M — vertical form,

B = B(M) = [ω↑M ] ∈ H
1(M) — Busemann class of M .

§1.1.4 p : HM →M — scaling bundle over a conformal orbifold M ,
εh — conformal Euclidean metric on TphM ,
ξ — scaling flow on HM ,
β(h1, h2) = log

εh1

εh2

— Busemann cocycle on fibers of p,

`z, z ∈M — Lebesgue measures on fibers of p,
λ̃ — lift of a measure λ from M to HM ,
ω̃ — lift of a differential form ω from M to HM ,
ρσ — Riemannian metric on M associated with a section σ :M → HM ,
hσ = σ ◦ p(h) — intersection of σ with the fiber of p passing through h ∈ HM ,
bσ(h) = β(hσ, h) — relative hyperbolic height of h with respect to section σ.

§1.1.5 H — hyperbolization functor

§1.1.6 sσ — relative hyperbolic height of a section σ : A→ HA with respect to a (local) parallel
section,

ω↑σ = dsσ — basic 1-form,
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b = b(A) = [ω↑σ] ∈ H
1(A) — basic class of A,

βσ(z1, z2) = β
(
σ(z1), σ(z2)

)
— basic cocycle on A.

§1.1.7 areaσ — area form determined by a section σ : A→ HA,
areaσ — Riemannian area measure determined by σ,
Kσ — Gauss curvature of the metric ρσ,
Ωσ — curvature form of the metric ρσ,
dc = I−1 ◦ d ◦ I = 1

i (∂ − ∂) — “twisted differential” on a Riemann surface,
ϕ. σ — image of a section σ : A1 → HA1 under an isomorphism ϕ : A1 → A2.
‖Dϕ(z)‖σ1,σ2

— norm of the differential Dϕ with respect to metrics ρσ1
, ρσ2

.

§1.2.1 ψ : B → B × T, B ∼= Dn — coordinate chart,
B ∼= B × T — flow box,
Bt = ψ−1(B × {t}) ⊂ B , t ∈ T — local leaves (≡ plaques),
Tx = ψ−1({x} × T ) ⊂ B , x ∈ B — transversals,
HB — holonomy on B,
ψij = ψi ◦ ψ

−1
j — transition maps between coordinate charts,

T(L) — set of all transversals of a lamination,
L(x) = LL(x) — leaf of L passing through a point x,
graphL = {(x1, x2) : L(x1) = L(x2)} — graph of L.

§1.2.2 UL — unit tangent lamination over a Riemannian lamination.

§1.2.3 HL — scaling bundle lamination over a conformal lamination.

§1.3.1 TL, T ∗L — tangent and cotangent bundles of a lamination,
Ωp(L) — space of leafwise p-forms,
H∗dR(L)

∼= H∗(L) — leafwise de Rham cohomology,
[ω] ∈ Hp(L) — cohomology class of a closed leafwise p-form.

§1.3.2 H — pointed at infinity hyperbolic 3-lamination
B = [ω↑] ∈ H1(H) — Busemann class of H,
A — affine lamination,
b = [ω↑σ] ∈ H

1(A) — basic class of A.

§1.3.3 e = 1
2π [Ωρ] ∈ H

2(L) — Euler class of a Riemann surface lamination L.

§2.1.1 JacF (x) = d(F−1β)
dα (x) — Radon–Nikodym Jacobian of F : (X,α)→ (Y, β),

∆µ — modulus of a quasi-invariant transverse measure µ,
λ ?µ — “product” of a leafwise measure λ and a transverse measure µ.

§2.1.2 θ|B — restriction of a measure θ onto a flow box B ∼= B × T ,
θB — projection of θ|B onto T ,
θtB, t ∈ T — conditional measures of θ|B,
∆θ,λ — Radon–Nikodym cocycle (the modulus) of θ with respect to a leafwise measure
λ,

dΘ(x, y) = dθ(x) dλL(x)(y) — “counting measure” on graphL,
Σ : (x, y) 7→ (y, x) — flip transformation on graphL.

§2.1.3 Wu — unstable foliation,
Jacu f — Jacobian of f with respect to the leafwise Riemannian volume on Wu,
∆AS — Anosov–Sinai cocycle.

§2.1.4 V(L) — space of leafwise volume forms,
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V0(L) ⊂ V(L) — subspace of volume forms with compact support,
ω — leafwise volume form,
λω — leafwise measure determined by ω,
ω ?µ ≡ λω ? µ — global measure determined by ω and a transverse measure µ,
C(L) =

[
V0(L)

]∗
— space of currents,

〈ω, c〉 — pairing of a form ω ∈ V0(L) and a current c ∈ C(L),
[D] — integration current over a leafwise domain D,
[µ] — Ruelle–Sullivan current of a transverse measure µ.

§2.2.1 λ̃ — lift of a leafwise measure λ from conformal lamination L to its scaling bundle HL,
θ̃ — lift of a global measure θ from L to HL,
µ̃ — lift of a transverse measure µ from L to HL.

§2.2.2 η = {ηρ} — conformal stream on a conformal manifold M ,
vol = {volρ} — volume stream,

` δρ — δ-Hausdorff measure of a metric ρ,
HD(X) — Hausdorff dimension of a set X,
η = exp[−δbρ]η̃ρ — measure on HM .

§2.2.3 λ = {λρ} — leafwise conformal stream on conformal lamination L,

λ = exp[−δbρ]λ̃ρ — leafwise measure on HL,
µ = {µρ} — transverse conformal stream on L,
υ = λ ?µ— “product” of leafwise and transverse conformal streams of the same dimen-
sion.

§2.2.4 µ — parallel transverse conformal stream µ on affine lamination A,
µ = exp[δbρ] · µ̃ρ — transverse measure on HA,
υ̃ = λ ?µ — ξ-invariant measure on HA.

§2.3.1 p(t, x, y) — heat kernel on a Riemannian manifold,
πtx — transition probabilities of the Brownian motion,
P t = et∆ — Markov semigroup of the Brownian motion,
Qt = (P t)∗ — dual semigroup.

§2.3.3 ωµ = vol ? µ — δ(δ − 2)-harmonic measure on HA.

§2.3.4 η — conformal stream on C ∼= ∂H3,
Φη — δ(δ − 2)-harmonic function on H3,
Φλ — leafwise δ(δ − 2)-harmonic function on HA.

§2.4 M =MG = HA/G — quotient hyperbolic lamination,
ωµM — δ(δ − 2)-harmonic measure onM,

ΦλM — δ(δ − 2)-harmonic function onM,

υ̃M = λ ?µ/G — ξ-invariant measure onM.

§3.1.1 f — rational endomorphism of C,
d — degree of f ,
invariant set — X : fX ⊂ X,
completely invariant set — X : f−1X = X,
pre-periodic point — preimage of a periodic point under some iterate of f ,
critical point of f — c ∈ C : Df(c) = 0,
C = C(f) — set of critical points,

Cl =
⋃l
n=1 f

nC ⊂ C , l > 0 — l-postcritical set,
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C∞ — postcritical set,
ẑ = {. . . , z−1, z0} — backward trajectory,
N = Nf = {ẑ} — space of backward trajectories,

f̂ : {. . . , z−1, z0} 7→ {. . . , z−1, z0, fz0} — natural extension of f ,
π : ẑ = {. . . , z−2, z−1, z0} 7→ z0,

πn(ẑ) = π ◦ f̂n(ẑ) = zn,
R — regular part of N ,
Hϑ : π

−1(z)→ π−1(ζ) — holonomy in R along a path ϑ with endpoints z, ζ ∈ C,
L0 ⊂ R — the special leaf,
An ⊂ R — union of all parabolic leaves excluding L0.

§3.1.2 U — space of all non-constant meromorphic functions on C,
Aff — group of complex affine maps A : C → C,
K =

⋂
n≥0 f

n(U) — global attractor of f ,

K̂ — natural extension of K,
A = K̂/C∗ — universal orbifold affine lamination,
ψ : (L(ẑ), ẑ)→ (C, 0) — affine chart on leaf L(ẑ),
ϕ−n = π−n ◦ ψ

−1 — sequence of meromorphic functions representing a point ẑ ∈ An,
ι : An → A,
Al = ιAn ⊂ A,
A = cl(Al) ⊂ A — (orbifold) affine lamination associated with f ,
℘ : A → Al ∼= An,
π ∼= π ◦ ℘ : A → C, {ϕ−n} 7→ ϕ0(0) .

§3.1.3 J = J(f) — Julia set of f ,

Ĵ = π−1N J ⊂ N — natural extension of the Julia set,

J n = Ĵ∩An — affine part of the natural extension supplied with the turbulent topology,
J l = ι(J n) ⊂ Al — affine part of the natural extension supplied with the laminar
topology,

J = cl(J l) = π−1J ⊂ A — Julia set in the affine lamination A.

§3.1.4 T (z) ≡ T z = π−1z ⊂ A, z ∈ A, z = π(z) ∈ C — fibers of the dual fibration of A,
T (z) ≡ Tz = T z ∩ A

l — fibers of the dual fibration of Al,

T
n
(z) ≡ T

n
ζ = f̂nT ζ ⊂ T (z), n ∈ N, ζ = z−n — rank n cylinders in T (z),

T n(z) ≡ T nζ — rank n cylinders in T (z).

§3.1.5 VB — dual holonomy on a standard flow box B,
Om(ẑ, V ), m ∈ N — standard univalent flow boxes,
O(ẑ, V ) ≡ O0(ẑ, V ).

§3.1.6 H = HA — orbifold pointed at infinity H3-lamination associated with f ,
M = H/f̂ — quotient hyperbolic lamination.

§3.1.7 germ — uniform structure associated with the germ topology.

§3.2.1 zn = f̂nz — f̂ -orbit of z ∈ A.

§3.2.2 A′ — subset of A consisting of leaves which do not correspond to repelling periodic
points of f ,

H′ — corresponding subset of H,
M′ = H′/f̂ .

§3.3.1 ϕ : C → C — meromorphic function,



MEASURES ON LAMINATIONS 11

I(ϕ,X) =
∫
X ‖Dϕ‖ eucl — spherical area of ϕ(X) taken with multiplicity,

I(ϕ, z, r) ≡ I
(
ϕ,D(z, r)

)
,

R(ϕ, z) — the radius determined from I(ϕ, z,R) = 1,
I(ϕ, r) ≡ I(ϕ, 0, r),
R(ϕ) ≡ R(ϕ, 0) .

§3.3.4 distn(ϕ,ψ) = sup|z|≤n ς(ϕ(z), ψ(z)),

dist(ϕ,ψ) =
∑∞
n=1

1
2n distn(ϕ,ψ) — metric on the space of meromorphic functions,

U0 = {ϕ ∈ U : R(ϕ) = 1} — space of normalized meromorphic functions.

§3.4.2 ‖DV ‖ρ — norm of the derivative of the dual holonomy.

§3.4.3 αρ — dual basic cocycle.

§3.5 Of — Thurston orbifold.

§4.1.1 κ — balanced measure on the Julia set J(f) ⊂ C.

κ̂ — balanced measure on Ĵ (the natural extension of κ),
κ ≡ ι(κ̂) — balanced measure on J l ⊂ J .

§4.1.2 mz, z ∈ J \ C∞ — uniform measure on π−1(z),
m = {mτ} — transverse balanced measure.

§4.1.3 θ = vol ? m̃ — global balanced measure.

§4.2.1 ηn∆,z — normalized counting measure on f̂n∆ ∩ T z,
κ̃L — pullback of the balanced measure to a leaf L,
κ̃ = {κ̃L} — associated leafwise measures on A,
S — spaces of test functions and test forms on A.

§4.3.1 µδ,n = f̂n(‖Df̂n‖−δσ m),

ΞT (δ) =
∑
n∈N ‖µ

δ,n
T ‖ — backward Poincaré series,

δcr(T ) — critical exponent of the series ΞT (δ),
δcr — critical exponent of the map f .

§4.3.3 areaσ = areaσ ?m — global measure on A.

§4.3.4 H−σ =
{
h ∈ H : bσ(h) < 0

}
— part of the hyperbolic lamination H under the graph of

σ,
volσ = ãreaσ = ãreaσ ? m̃ — lift of the measure areaσ to H,
volεσ = exp[εbσ] · ãreaσ,
volεσ = exp[εbσ] · volσ = volεσ ? m̃,
`ε = {`εz}, z ∈ A — measures on vertical geodesics p−1(z) with densities exp[εbσ],
D(z) = Dσ(z) ⊂ LA(z) — leafwise disk with radius 1 with respect to Euclidean struc-
ture σz,

I(z) = {h ∈ p−1(z) : −1 < bσ(h) < 0},
W (z) =

⋃
ζ∈D(z) Iζ ⊂ LH(z).

§4.4.1 µ — f̂ -invariant parallel transverse conformal stream of dimension δcr on A,
ω = ωµ — f̂ -invariant λ-harmonic measure with λ = δcr(δcr − 2) corresponding to µ.

§4.5.1 λ — f̂ -invariant parallel transverse conformal stream on A,
η ≡ ης — continuous conformal measure on the Julia set of f ,
η̃ — lift of η to a leafwise Radon measure on A,
υ — f -invariant measure on J(f) equivalent to a δ-conformal measure η,
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υ̂ — lift of υ to the natural extension.

§4.5.2 λγ,n = f̂−n(‖Df̂−n‖γρ · κ̃),
ΘD(γ) =

∑
n∈N λ

γ,n(D) — forward Poincaré series,
γcr(D) — critical exponent of ΘD,
γcr — forward critical exponent.

§4.5.3 υ = λ ?µ,

υ̃ = λ ?µ = λ̃ ? µ — lift of υ to H = HA,
υ̃M — image of υ̃ on the quotient laminationM = H/f̂ .

§4.5.4 C — convex core of the lamination H.

§5.1.1 Å — tautological C-foliation of ∂H3 × ∂H3 \ diag,

H̊ = HÅ — tautological pointed at infinity hyperbolic foliation of H3 × ∂H3.

§5.1.2 p : UH3 → H3 — unit tangent bundle over H3,
γ = {γτ}τ∈R — geodesic flow on UH3,
γ(v) — geodesic determined by a tangent vector v ∈ UH3,
γ±∞(v) ∈ ∂H3 — endpoints of γ(v),
Hor(v) = Horγ∞(v)

(
p(v)

)
— horosphere centered at γ∞(v) and passing through p(v).

§5.1.3 Ws — weakly stable foliation of the geodesic flow.
Wss — strongly stable foliation of the geodesic flow.

§5.2.1 G — Kleinian group,
Λ = Λ(G) ⊂ ∂H3 — limit set of G,
AG — affine lamination of ∂H3 × Λ,
HG = HAG ⊂ UH3 — hyperbolization of AG,
M = H3/G — quotient hyperbolic manifold,
MG = HG/G ⊂ UM — quotient hyperbolic lamination.

§5.2.2 Λ0 = Λ0(G) — set of fixed points of all hyperbolic elements of G,
H′G = H

3 ×
(
Λ \ Λ0

)
— union of leaves from HG parameterized by points from Λ \ Λ0,

M′
G = H

′
G/G.

§5.3.1 ςh — visual metric on ∂H3 centered at h ∈ H3.

§5.3.2 lh(q−, q+) = βq−(h, o) + βq+(h, o) — “cut length”,
εh,q — Euclidean metric on Pq induced by the hyperbolic metric on Horq(h).

§5.4.1 ν — Patterson–Sullivan stream of a Kleinian group G,
λ(ν) — G-invariant leafwise conformal stream on AG,
µ(ν) — G-invariant parallel transverse conformal stream on AG.

§5.4.2 υ — geodesic current,
υ̃ — invariant measure of the geodesic flow on UH3,
υ̃M — invariant measure of the geodesic flow on M = H3/G,
υ(ν) = λ(ν) ? µ(ν).

§5.4.3 |q− − q+| — the Euclidean chordal distance between points from the unit sphere,

dυ[1](q−, q+) = dνo(q−) dνo(q+)/|q− − q+|
2δ,

dυ[2](q−, q+) = exp
[
δlh(q−, q+)

]
· dνh(q−) dνh(q+),

εv — induced Euclidean metric on the horosphere Hor(v),
νss — leafwise measure on Wss assigned by the stream ν to the leafwise metrics εv,
νsu — analogous measure on Wsu,



MEASURES ON LAMINATIONS 13

νh,q+ — the measure on ∂H3 assigned by the stream ν to the metric εh,q+ ,
υq−,q+ = νv ⊗ ν−v,

dυ[3](q−, q+) = dυq−,q+(q−, q+),
R(q1, q2, q3, q4) — cross ratio of points q1, q2, q3, q4 ∈ ∂H

3.

§5.4.5 dων(h, q) = d vol(h)dνh(q) — G-invariant δ(δ − 2)-harmonic measure on HG,
Φν(h, q) = ‖νh‖ — G-invariant leafwise δ(δ − 2)-harmonic function,

§5.6.1 H — compact hyperbolic manifold with H1(H,R) 6= {0},
G = π1(H) — fundamental group,
Hom(G,R) ∼= H1(H,R) — group of additive characters of G,
χ ∈ Hom(G,R) — character of G,

T gχv = g ◦ γχ(g)(v) — twisted action of G on UH3 determined by χ.

§5.6.2 l(g) = min{dist(h, gh) : h ∈ H3} — length of the closed geodesic representing the
conjugacy class of g ∈ G,

‖χ‖ = supg∈G χ(g)/l(g) — stable norm on Hom(G,R).

§5.6.3 Bχ =W
ss/Tχ — affine foliation of the quotient manifold UH3/Tχ

§5.6.4 Σ(s) =
∑
g∈G exp

[
−s dist(o, go)− χ(g)

]
,

δ(χ) — critical exponent of the Poincaré series Σ(s).

1. Affine and hyperbolic laminations

1.1. Affine plane and hyperbolic space.

1.1.1. Pointed at infinity hyperbolic spaces. Let H3 be the 3-dimensional hyperbolic space.
The sphere at infinity ∂H3 is the boundary of the visibility compactification of H3: an
escaping to infinity sequence of points hn ∈ H

3 converges in this compactification iff the
directing vectors of the geodesic rays [o, hn] issued from a certain (≡ any) reference point
o ∈ H3 converge.

This and all other facts formulated in this section can be easily checked in terms of the
upper half-space model of H3 described in §1.1.2.

Definition 1.1. A hyperbolic space H3 with a distinguished boundary point q ∈ ∂H3 is
called pointed at infinity . 4

Definition 1.2 ([Ka90]). Let (H3, q) be a pointed at infinity hyperbolic space. The choice
of the point q ∈ ∂H3 determines the Busemann cocycle βq on H

3 ×H3 by the formula

βq(h1, h2) = lim
h

[
dist(h1, h)− dist(h2, h)

]
, (1.3)

where h ∈ H3 converges to q in the visibility topology. 4

In other words, βq(h1, h2) can be considered as a “regularization” of the formal expres-
sion dist(h1, q)− dist(h2, q). The Busemann cocycle obviously satisfies the cocycle chain
rule:

βq(h1, h3) = βq(h1, h2) + βq(h2, h3) ∀hi ∈ H
3 . (1.4)

Remark 1.5. Sometimes the Busemann cocycle is defined with the opposite sign, e.g., see
[Ka00a].
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Definition 1.6. The vertical 1-form

ω↑q = dβq(h1, ·)

is the differential of the Busemann cocycle βq with respect to the second argument (due
to the chain rule (1.4) it is independent of the choice of the first argument h1), so that

βq(h1, h2) =
∫

ϑ
ω↑q , (1.7)

for any smooth path ϑ with endpoints h1, h2. The vertical vector field v
↑
q is dual to the form

ω↑q with respect to the hyperbolic metric and consists of unit length vectors “pointing” at

the point q in the sense that the integral curves of the field v↑q are the vertical geodesics
which converge to the point q at +∞ in the visibility topology. The vertical flow

ξq = {ξ
τ
q }τ∈R

on H3 is the motion with unit hyperbolic speed along the vertical geodesics to the point
q (i.e., it is isomorphic to the restriction of the geodesic flow onto the field v↑q ). 4

Definition 1.8. The horosphere centered at q and passing through a point h ∈ H3 is the
level set of the Busemann cocycle:

Horq(h) =
{
h′ ∈ H3 : βq(h, h

′) = 0
}
. (1.9)

We denote the space of horospheres centered at q by Hor(H3, q), and the space of all
horospheres in H3 by

Hor(H3) =
⋃

q∈∂H3

Hor(H3, q) .

The center of a horosphere Υ ∈ Hor(H3) is denoted Υ∞ ∈ ∂H
3. 4

For a fixed point q ∈ ∂H3 the horospheres centered at q are obviously tangent to the
plane distribution determined by the form ω↑q and orthogonal to the vertical vector field

v↑q (this is why we shall often refer to them as horizontal). They foliate the hyperbolic

space, and the vertical flow ξq acts transitively on Hor(H3, q). More precisely,

βq(h1, h2) = s ⇐⇒ ξsq Horq(h1) = Horq(h2) .

Therefore, the Busemann cocycle βq(h1, h2) is the signed distance between the horospheres
Horq(h1) and Horq(h2), where the sign is chosen according to the direction of the vertical
flow: it is positive if h2 is “closer” to q than h1 (see Fig. 1). Any isometry between pointed
at infinity hyperbolic spaces (i.e., such that the point at infinity is mapped to the point
at infinity) obviously preserves the Busemann cocycle and conjugates the vertical flows.

Denote by

Pq = ∂H3 \ {q} (1.10)

the punctured visibility sphere. For a point h ∈ H3 let ξq(h) be the vertical geodesic
passing through h, and let pq(h) ∈ Pq be its limit point at −∞ (the limit point at +∞
being q). Then the map

pq : H
3 7→ Pq (1.11)
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h1

h2
q

Figure 1

is a (trivial) fiber bundle over Pq whose fiber p−1q (z) at a point z ∈ Pq is the vertical
geodesic joining the points z and q. The horospheres (1.9) are sections of pq (see Fig. 2).

h

pq(h) = z

Pq

Horq(h)

ξq(h)

q

Figure 2

Below we shall usually omit the subscript q when the point at infinity q is fixed.

1.1.2. The upper half-space model. By using the term “vertical” in Definition 1.6 we were
implicitly referring to the upper half-space model of the hyperbolic space which we shall
now briefly recall. The state space of this model is

H3 ∼= R2 × R+ =
{
(x, y, t) : x, y ∈ R, t > 0

}
. (1.12)

We identify R2 with the complex plane C by putting

z = x+ iy ,

and alongside with the Euclidean length t also use the hyperbolic length parameterization
of R+

s = log t .

The hyperbolic metric on H3 is in this model

|dz|2 + dt2

t2
=
|dz|2

e2s
+ ds2 (1.13)

with
|dz|2 = dz ⊗ dz = dx2 + dy2
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being the standard metric on the Euclidean plane E2 ∼= C. The hyperbolic volume form
vol and the hyperbolic measure vol on H3 are

vol =
eucl∧dt

t3
=

eucl∧ds

e2s
, d vol =

d` dt

t3
=
d` ds

e2s
, (1.14)

where

eucl = dx ∧ dy , d` = dxdy ,

are, respectively, the Euclidean area form and the Lebesgue measure on E2. The Laplace–
Beltrami operator of the hyperbolic metric (1.13) is

∆H = t2
(
∂2

∂x2
+

∂2

∂y2
+
∂2

∂t2

)
− t

∂

∂t
= t2∆E + t2

∂2

∂t2
− t

∂

∂t

= e2s
(
∂2

∂x2
+

∂2

∂y2

)
+

∂2

∂s2
− 2

∂

∂s
= e2s∆E + e2s

∂2

∂s2
− 2

∂

∂s
,

(1.15)

where

∆E =
∂2

∂x2
+

∂2

∂y2

is the Laplacian of the Euclidean metric on E2.

The geodesics in H3 are either Euclidean circles orthogonal to the boundary plane or
vertical lines. Therefore, the visibility sphere in this model is the union of the distinguished
point at infinity q =∞ and the boundary plane

P =
{
(z, t) : z ∈ C, t = 0

}
∼= ∂H3 \ {q} .

The Busemann cocycle with respect to the point q = ∞ is the logarithm of the ratio of
the “Euclidean heights” of points h2 and h1, or the difference between their “hyperbolic
heights” (so that β(h1, h2) is positive if h2 is “higher” than h1):

β(h1, h2) = log
t(h2)

t(h1)
= s(h2)− s(h1) . (1.16)

Thus, the horosphere Hor(h) is the horizontal coordinate plane passing through h. The
vertical flow ξ acts as

ξτ (z, t) = (z, eτ t) , or, ξτ (z, s) = (z, s+ τ) .

The geodesic ξ(h) passing through a point h is, indeed, a vertical line, and the projection
p (1.11) is just the coordinate projection h 7→ z(h) (see Fig. 3). The vertical vector field
and the vertical 1-form are, respectively,

v↑ =
∂

∂s
= t

∂

∂t
, ω↑ = ds =

dt

t
.
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h

pq(h) = z

P ∼= C

Horq(h)

ξq(h)

q =∞

Figure 3

1.1.3. Non-simply connected hyperbolic manifolds and orbifolds. In what follows all man-
ifolds will be assumed oriented. Recall that a hyperbolic 3-manifold is a 3-dimensional
manifold endowed with a complete Riemannian metric of constant negative curvature −1
(this metric is called hyperbolic). A Kleinian group is a discrete subgroup of the group of
orientation preserving isometries Iso0(H

3). Any hyperbolic 3-manifold is locally isomet-
ric to H3, and it can be presented as the quotient M ∼= H3/Γ of H3 by a freely acting
Kleinian group Γ. Conversely, any such group determines a hyperbolic 3-manifold.

Using the vertical flow one can extend the notion of a pointed space to the non-simply
connected case.

Definition 1.17. A hyperbolic 3-manifoldM is pointed at infinity if it is endowed with a
unit speed vertical flow ξM whose orbits are asymptotic (as time goes to +∞) geodesics.4

Such a manifold is obtained by factorizing a pointed at infinity hyperbolic space (H3, q)
by a discrete freely acting group Γ of hyperbolic motions which fixes q (the description
of such groups is well-known, see Proposition 1.22 below). Then Γ preserves the vertical
vector field v↑ and the vertical form ω↑, so that they descend from H3 to the vertical
vector field v↑M and the closed vertical form ω↑M on the quotient manifold M = H3/Γ.
Therefore, the horosphere foliation also descends from H3 to M .

Remark 1.18. Equivalently, a pointed at infinity hyperbolic 3-manifold can be defined as a
(G,H3)-manifold, where G = Par0(H

3, q) is the group of orientation preserving isometries
of H3 which fix the point at infinity q.

Definition 1.19 ([Th91], [Sc83]). An n-dimensional orbifold is a topological space M
covered with a family U of neighborhoods Ui such that:

(i) The family U is closed under finite intersections;

(ii) For each Ui there exists a homeomorphism ψi : Ui → Ũi/Gi, where Ũi/Gi is the

quotient of a domain Ũi ⊂ Rn by an action of a finite groupGi of homeomorphisms;
(ii) If Ui ⊂ Uj, then the group Gi embeds into Gj, and there is an equivariant embed-

ding ψij : Ũi → Ũj.
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The spaceM is called the underlying space of the orbifold. The domains Ũi endowed with
the maps

φi : Ũi → Ũi/Gi

ψ−1

i−→ Ui

are orbifold local charts . The orbifold singular set S ⊂ M is the union of sets φi(S̃i),

where S̃i ⊂ Ũi is the set of points whose stabilizers in the group Gi are non-trivial. 4

Therefore, an orbifold is locally homeomorphic to quotients of Rn by actions of finite
groups. The orbit space X/G of a properly discontinuous action of a group G on a
manifold X has a natural orbifold structure. However, not every orbifold can be globally
obtained in this way.

Definition 1.20. By using local charts one can rig orbifolds with various geometric
structures (smooth, conformal, hyperbolic, etc.) and tensor fields. They have to be

defined on the sets Ũi and be invariant with respect to the groups Gi and the transition
maps φij. In this way one can also talk about morphisms of rigged orbifolds. 4

In particular, a 3-dimensional hyperbolic orbifoldM is pointed at infinity if it is endowed
with a vector field v↑M (called vertical) whose integral curves are asymptotic geodesics.

Denote be ω↑M the dual vertical 1-form. The singular set of such an orbifold is clearly
invariant under the corresponding vertical flow.

Definition 1.21. The cohomology class

B = B(M) = [ω↑M ] ∈ H1(M)

of the 1-form ω↑M is called the Busemann class of a pointed at infinity 3-dimensional
hyperbolic orbifold M . 4

Any three-dimensional hyperbolic orbifold is isometric to the quotient orbifold H3/Γ
for a certain Kleinian group Γ [Th91, Proposition 5.4.3] (note that singular points of such
orbifolds are organized into “axes” of elliptic rotations). On the other hand, any Kleinian
group is a finite extension of a freely acting subgroup, and we have

Proposition 1.22. Let M be a pointed at infinity 3-dimensional hyperbolic orbifold.

(a) The orbifold M is isomorphic to H3/Γ, where Γ is an elementary Kleinian group
which preserves the point at infinity q. The group Γ is a finite cyclic extension of
a freely acting normal subgroup Γ0, so that M ∼= M̃/Z, where M̃ = H3/Γ0 and
Z = Γ/Γ0.

(b) The group Γ0 belongs to one of the following two types:
(i) Γ0 is a cyclic group generated by a hyperbolic element which fixes q;
(ii) Γ0 is a discrete parabolic group, i.e., it preserves the horospheres centered at

q and acts on each horosphere as a discrete group of Euclidean motions. In
this case Γ0 is isomorphic to one of the groups Z0 ∼= {e},Z1,Z2.

(c) If Γ0 6= {e}, then the manifold M̃ is a solid 3-torus in case (i), and either a rank 1
cusp (product of the bi-infinite cylinder C/Z ∼= C∗ by R) or a rank 2 cusp (product
of the 2-torus T2 = C/Z2 by R) in case (ii). In case (i) the orbits of the vertical
flow converge to the meridian geodesic of the torus; in case (ii) they escape through
the cusp.
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The underlying space of the orbifold M is a solid 3-torus in case (i), and either
an orbifold cusp C × R of rank 1, or an orbifold cusp C × R of rank 2 in case
(ii). In case (i) the (unique) closed geodesic in M is singular; in case (ii) there
are several singular geodesics escaping through the cusp.

(d) The Busemann class B(M) vanishes iff the group Γ0 belongs to type (ii). In this
case Γ0 (as well as its finite extension Γ) preserves the horospheres in H3 centered
at the point q (≡ the level sets of the Busemann cocycle), so that the Busemann
cocycle β descends from H3 onto the orbifold M and gives the Busemann cocycle
βM on M which is related to the vertical form ω↑M by formula (1.7).

Remark 1.23. According to (d) above, if the group Γ0 belongs to type (i) from Proposi-

tion 1.22, then B 6= 0, i.e., the vertical form ω↑M is not exact. However, even in this case
locally one can still consider the Busemann cocycle βM as a function of pairs of points
defined by formula (1.7).

1.1.4. Conformal orbifolds. Two Riemannian metrics ρ, ρ′ on the same orbifold are called
conformally equivalent if ρ′ = ϕρ, where ϕ is a positive scalar multiplier.

Definition 1.24. A conformal orbifold is a connected orbifold M endowed with a class
of all pairwise conformally equivalent Riemannian metrics. Metrics from this class (and
also corresponding Euclidean metrics on the tangent spaces TzM, z ∈ M) are called
conformal . 4

Definition 1.25. Let M be a conformal orbifold. The elements of the scaling bundle

p : HM →M (1.26)

over M are conformal spheres in the tangent spaces TzM, z ∈ M . Any sphere h ∈ HM
can be considered as the unit sphere of the associated conformal Euclidean metric εh
on TphM . Below we shall often identify h and εh, and consider HM as the bundle of
conformal Euclidean metrics on tangent spaces TzM, z ∈M . 4

In other words, HM is the result of first removing zero tangent vectors from the tangent
bundle TM and then factorizing with respect to rotations (which are well-defined due to
the presence of a conformal structure). The fibers of HM are isomorphic to R. By

ξ(h) = p−1 ◦ p(h)

we denote the fiber of p passing through a point h ∈ HM . The scaling flow {ξτ}τ∈R acts
on HM by conformal rescalings:

εξτh = e−τεh , (1.27)

and its orbits are the fibers of p. For any two points h1, h2 ∈ HM from the same fiber put

β(h1, h2) = log
εh1

εh2

, (1.28)

i.e.,
β(h1, h2) = τ ⇐⇒ ξτh1 = h2 .

Therefore, the fibers of HM are endowed with the metric

d(h1, h2) =
∣∣∣β(h1, h2)

∣∣∣ , ph1 = ph2 . (1.29)
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By ω↑ denote the differential of the function (1.28) with respect to the second coordinate
(cf. Definition 1.6).

Remark 1.30. We reproduce the notations introduced in §1.1.1 above; the reason for this
will become clear in §1.1.5.

Definition 1.31. In view of formula (1.29), the fibers p−1(z) ∼= R, z ∈ M of the bundle
p : HM → M carry canonical Lebesgue measures `z. Using these measures one can lift
measures from M to HM . Namely, given a measure λ on M , its lift is the measure on
HM which is obtained by integrating the measures `z against λ:

dλ̃(z, s) = dλ(z) d`z(s) .

In the same way, denote by
ω̃ = ω ∧ ω↑

the lift of a differential form ω from M to HM . 4

By Definition 1.25 points h ∈ HM correspond to Euclidean conformal metrics εh on
TphM , so that sections σ : M → HM of the fiber bundle p are in one-to-one correspon-
dence with conformal Riemannian metrics ρσ on M . Note that by assigning to the metric
ρσ the associated Riemannian volume form the bundle p can be identified with the bundle
of positive volume forms on M .

Remark 1.32. Although we call the metric ρσ Riemannian, usually we only assume con-
tinuity of σ unless otherwise specified.

By (1.28), for any two sections σ, σ′

ρσ′

ρσ
(z) =

εσ′(z)
εσ(z)

= exp
[
β
(
σ′(z), σ(z)

)]
. (1.33)

We shall use the notations

hσ = σ ◦ p(h) , h ∈ HM

for the natural projection of a point h to the section σ (i.e, the intersection of the fiber
passing through h with σ), and

bσ(h) = β(hσ, h) (1.34)

for the relative hyperbolic height of h with respect to the section σ (see Fig. 4). Clearly,
for another section σ′

bσ′(h)− bσ(h) = β(hσ′ , hσ) = log
ρσ′

ρσ
(ph) . (1.35)

1.1.5. Hyperbolization of affine surfaces. An oriented 2-dimensional conformal manifold
is called a Riemann surface. Equivalently, a Riemann surface is a 1-dimensional complex
manifold. By endowing a Riemann surface S with an atlas of coordinate charts with
transition maps from a given pseudo-group C (contained in the pseudo-group of all holo-
morphic maps) one can define finer geometric structures on S (stiffen S in the terminology
of [Th91]).

Definition 1.36. We shall say that S is
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(i) an affine Riemann surface, if C is the group of all complex affine maps z 7→
az + b, a, b ∈ C, a 6= 0;

(ii) a Euclidean surface, if C is the group of all maps z 7→ az + b, a, b ∈ C, |a| = 1 (so
that the transitions are Euclidean motions);

(ii) a translation surface, if C is the group of all maps z 7→ z + b, b ∈ C.
4

If S is an affine surface, then its tangent and cotangent bundles (and hence all tensor
bundles) are endowed with a natural flat connection. Being parallel with respect to this
connection means to have constant coefficients in any affine coordinate chart (the reader
is referred to [Ca88] and [Go] for general notions from the theory of affine manifolds). So,
one can talk about parallel vector fields, forms, Riemannian metrics, etc. on S. In these
terms a Euclidean surface is an affine surface endowed with a parallel conformal metric,
and a translation surface is an affine surface endowed with a non-zero parallel vector field
(such a field obviously determines a parallel conformal metric: the vectors from the field
have unit length in this metric).

An affine Riemann surface structure is the same as a complex affine structure, or,
in “real terms”, a projective Euclidean (≡ similarity) structure. In other words, affine
Riemann surfaces are (G,E2)-manifolds, where G is the group of all similarities of the
Euclidean plane E2 (i.e., compositions of rotations, translations and expansions or con-
tractions by a scalar factor). In particular, an affine plane is R2 ∼= C endowed with the
class of all rescalings of a given Euclidean structure.

All these notions obviously carry over to Riemann orbifold surfaces (cf. Definition 1.20).

In what follows by a surface we shall mean an orbifold surface endowed
with a complex (conformal) structure. An “affine surface” will always
mean a complete complex (≡ Riemann) orbifold affine surface.

Remark 1.37. A two-dimensional affine orbifold with underlying space C is isomorphic
either to C/Zd, where the cyclic group Zd acts on C by rotations, or to C/Ẑ, where Ẑ is
the infinite dihedral group (i.e., the Z2-extension of Z) generated by a translation and a
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central symmetry. The branched covering map which determines the orbifold is z 7→ zd

in the first case and z 7→ cos z in the second case.

Proposition 1.38. The punctured visibility sphere P = ∂H3 \{q} of a pointed at infinity
hyperbolic space (H3, q) is endowed with a natural structure of an affine plane.

Proof. The projection p (1.11) allows one to identify any horosphere Hor(h) (1.9) with
the punctured visibility sphere P . Denote by εh the hyperbolic metric on P obtained by
restricting the hyperbolic metric onto Hor(h) and then projecting it onto P . By formula
(1.13)

dε2h =
|dz|2

t2
=
|dz|2

e2s
(1.39)

in the upper half-plane model, so that (P , εh) is a Euclidean plane. Further, by (1.16)
the structures εh for different h are all proportional, and

εh1

εh2

= exp
[
β(h1, h2)

]
. (1.40)

2

Conversely, let us show that any affine surface gives rise to a pointed at infinity hyper-
bolic 3-orbifold.

Proposition 1.41. If A is an affine surface, then the fiber bundle HA is given a natural
structure of a pointed at infinity hyperbolic 3-orbifold. In particular, if A is an affine
plane, then HA is a pointed at infinity hyperbolic space.

Proof. The fibers of the bundle p : HA → A are endowed with a natural metric (1.29),
and the points of HA are themselves metrics on tangent spaces TzA. In order to combine
them and produce a metric on HA we need the affine connection over A.

Since the affine connection is flat, any metric εh, h ∈ HA, can be transported parallelly
to give a family of metrics on tangent spaces TzA for all z from a certain neighbourhood
of ph, which gives the parallel foliation of HA. In other words, any metric εh extends
from the tangent space TphA to a Euclidean metric (also denoted εh) on a neighbourhood
of ph. The parallel foliation together with the fibration p provide us with natural parallel
local coordinates (z, s) on HA, where z is the “horizontal” complex coordinate, and s is
the “vertical” real coordinate.

Combining the local parallel metric εh with the metric (1.29) on the fibers gives a
Riemannian metric on HA, which in terms of local coordinates (z, s) takes precisely the
form (1.13). Therefore, the constructed metric on HA is hyperbolic, the fibers ξ(h) are
the asymptotic geodesics of this metric, and the parallel foliation of HA becomes the
horosphere foliation in the sense of §1.1.3. The scaling flow on HA coincides with the
vertical flow. The Busemann cocycle on HA is (locally) given by formula (1.28) which
precisely coincides with (1.40). Note that in (1.28) we no longer require that points h1
and h2 lie on the same fiber, which is possible due to the presence of the flat affine
connection. 2

It is clear that any isomorphism ϕ : A1 → A2 between two affine surfaces extends
to an isometry between the corresponding pointed at infinity hyperbolic orbifolds HAi
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conjugating the vertical flows, and, conversely, any isometry between pointed at infinity
hyperbolic spaces (H3i , qi) induces an isomorphism between the corresponding boundary
affine planes Pi. As a rule, we shall use the same notations both for an affine map A1 → A2
and for the associated isometry HA1 → HA2, which should not lead to a confusion.

Definition 1.42. We call the correspondence A 7→ HA between affine orbifold surfaces
and pointed at infinity hyperbolic orbifolds the hyperbolization functor . 4

If the surface A is complete (as a (G,X)-orbifold, see [Th91, Chapter 3] for a definition
and discussion), then HA is also complete (also as a (G,X)-orbifold). However, the
structure group of HA has compact stabilizers, so that completeness of HA as a (G,X)-
orbifold is equivalent to its completeness as a metric space [Th91, Proposition 3.4.15], and
we have

Proposition 1.43. The hyperbolization functor applied to a complete affine surface gives
rise to a pointed at infinity hyperbolic orbifold of type (ii) from Proposition 1.22, and,
conversely, any such orbifold can be obtained in this way.

Remark 1.44. The simplest examples of non-complete affine surfaces are provided by the
plane R2 (and its quotients by Z and Z2) with the affine structure determined by the
Euclidean metric eϕ(dx2 + dy2), where ϕ is a linear function.

Remark 1.45. We have considered the hyperbolization for affine surfaces only. However,
the hyperbolization construction from Proposition 1.41 verbatim carries over to higher
dimensional manifolds (orbifolds) endowed with a projective Euclidean (≡ similarity)
structure.

1.1.6. The basic class. Let A be an affine surface, and σ : A → HA be a section of the
fiber bundle p : HA→ A. Fix a (local) parallel section σ0 : A→ HA, denote by

sσ(z) = βσ0

(
σ(z)

)
= β

(
σ0(z), σ(z)

)
(1.46)

the relative hyperbolic height of σ with respect to σ0 (cf. (1.34)), and put

ω↑σ = dsσ . (1.47)

Clearly, ω↑σ does not depend on the choice of σ0, and the forms ω↑σ corresponding to
different sections σ are all pairwise cohomologous.

Definition 1.48. We shall call ω↑σ the basic 1-form on an affine surface A associated with
the section σ. The cohomology class

b = b(A) = [ω↑σ] ∈ H
1(A)

will be called the basic class of A. 4

One can easily check

Proposition 1.49. The following properties are equivalent:

(i) The basic class b(A) of an affine surface A vanishes;
(ii) The Busemann class B(HA) of the hyperbolization HA vanishes;
(ii) The fiber bundle p : HA→ A admits a parallel section;
(iv) The affine structure on A can be refined to a Euclidean structure.
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Corollary 1.50. As it follows from Proposition 1.22 and Proposition 1.43, the basic
class vanishes for any complete affine surface (although this is not necessarily so for non-
complete surfaces, cf. Remark 1.44).

Remark 1.51. We emphasize that the triviality of the basic class of individual leaves of a
lamination does not imply the triviality of the basic class of the whole lamination. The
corresponding examples are given below in §3.5 and §5.

Definition 1.52. If the class b vanishes, i.e., if all the basic 1-forms ω↑σ are exact, we
denote by βσ the cocycle on A determined by the form ω↑σ by formula (1.7) and call it the
basic cocycle on A induced by the section σ. In other words,

βσ(z1, z2) = β
(
σ(z1), σ(z2)

)
, (1.53)

where β is the Busemann cocycle on HA (which in this case is well-defined by Proposi-
tion 1.49). 4

The basic cocycle on A is connected with the Busemann cocycle on HA with the formula

β(h1, h2) = βσ(ph1, ph2) + bσ(h2)− bσ(h1) , (1.54)

where bσ is the relative hyperbolic height (1.34) with respect to the section σ.

Remark 1.55. Even if b 6= 0, Definition 1.52 and formulas (1.53), (1.54) still make sense
locally (cf. Remark 1.23).

1.1.7. Conformal metrics on affine surfaces. Recall (see §1.1.4) that sections σ of the
fiber bundle p : HA → A are in one-to-one correspondence with conformal Riemannian
metrics ρσ on A. A parallel section σ corresponds to a parallel metric ρσ, i.e., it refines the
affine structure on A to a Euclidean structure (cf. Definition 1.36). Denote by areaσ and
areaσ the Riemannian area form and the Riemannian measure, respectively, associated
with a section σ. Conversely, any conformal metric (resp., any positive area form, or
any absolutely continuous measure with continuous density) determines a section σ of the
fiber bundle p.

As it follows from (1.33), in terms of the height function sσ (1.46) with respect to a
(local) parallel section σ0

dρ2σ =
|dz|2

e2sσ
, areaσ =

eucl

e2sσ
, d areaσ =

d`

e2sσ
, (1.56)

where in the right-hand sides are the Euclidean metric dρ2σ0
= |dz|2, its area form and the

corresponding area Lebesgue measure, respectively.

Remark 1.57. Since for an affine surface there is a one-to-one correspondence between
conformal metrics and the associated area forms, the Busemann cocycle can be considered
as a particular case of the “volume cocycle” defined for an arbitrary affine manifold (e.g.,
see [Go]).

Formulas (1.14), (1.16), (1.34) and (1.56) imply the following relation between the lift of
the form areaσ (resp., of the measure areaσ) to HA (see Definition 1.31) and the hyperbolic
volume form vol (resp., the hyperbolic measure vol) on the hyperbolic orbifold HA.
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Proposition 1.58. Let A be an affine surface, and let σ : A → HA be a section of the
fiber bundle p : A→ HA. Then

ãreaσ
vol

=
d ãreaσ
d vol

= exp[2bσ] ,

where bσ is the relative hyperbolic height (1.34) with respect to the section σ.

The Gauss curvature of the metric ρσ (1.56) is

Kσ = e2sσ ∆Esσ ,

and the curvature form is

Ωσ = Kσ · areaσ = ∆Esσ · eucl , (1.59)

where eucl and ∆E are the area form and the Laplacian of the Euclidean parallel metric
ρσ0

, respectively (for example, see the computation in [GH78, §0.5]).
In order to connect the curvature form Ωσ with the basic 1-form ω↑σ (1.47) let us recall

that any Riemann surface S alongside with the usual differential d is endowed with the
“twisted differential”

dc = I−1 ◦ d ◦ I =
1

i
(∂ − ∂) , (1.60)

where I is the almost complex structure on S, and ∂, ∂ are the holomorphic and the
antiholomorphic differentials, respectively, (e.g., see [We58, §II.2]).

Both operators d, dc are real, and

2∂ = d+ idc , 2∂ = d− idc ,

2i∂∂ = −2i∂∂ = ddc = −dcd .
(1.61)

In terms of a local coordinate z = x+ iy

dcϕ =
∂ϕ

∂x
dy −

∂ϕ

∂y
dx , ddcϕ = ∆Eϕ · eucl .

Applying the latter formula to the height function sσ (1.46) and taking into account
formulas (1.47) and (1.59) we obtain

Proposition 1.62. Let A be an affine surface, and let σ : A → HA be a section of the
fiber bundle p : A→ HA. Then the curvature form Ωσ of the metric ρσ is connected with
the basic 1-form ω↑σ by the formula

Ωσ = −dcω↑σ . (1.63)

Finally, let ϕ : A1 → A2 be an isomorphism between two affine surfaces Ai. Let
us extend ϕ to an isometry HA1 → HA2. Then ϕ maps sections of the fiber bundle
p1 : HA1 → A1 to sections of the fiber bundle p2 : HA2 → A2 by the formula

σ 7→ ϕ. σ , (ϕ. σ)
(
ϕ(z)

)
= ϕ

(
σ(z)

)
. (1.64)

Let σi be sections of the fibre bundles pi : Ai → HAi. Denote the norm of the differential
Dϕ at a point z ∈ A1 measured with respect to the Riemannian metrics ρσ1

, ρσ2
by

‖Dϕ(z)‖σ1,σ2
=

ρσ2

ρϕ. σ1

(
ϕ(z)

)
=
ρϕ−1. σ2

ρσ1

(z) .
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Proposition 1.65. Let ϕ : A1 → A2 be an isomorphism between two complete affine
surfaces, and let σi be sections of the fibre bundles pi : Ai → HAi. Then for any two
points z, ζ ∈ A1

log
‖Dϕ(z)‖σ1,σ2

‖Dϕ(ζ)‖σ1,σ2

= βσ2

(
ϕ(z), ϕ(ζ)

)
− βσ1

(z, ζ) , (1.66)

where βσi is the basic cocycle on the surface Ai induced by the section σi.

Proof. By formula (1.33)

log ‖Dϕ(z)‖σ1,σ2
= β2

(
σ2(ϕ(z)), ϕ. σ1(ϕ(z))

)

= β1
(
ϕ−1. σ2(z), σ1(z)

)
,

(1.67)

where βi is the Busemann cocycle on HAi. Therefore, since ϕ preserves the Busemann
cocycle,

log
‖Dϕ(z)‖σ1,σ2

‖Dϕ(ζ)‖σ1,σ2

= β2
(
σ2(ϕ(z)), ϕ. σ1(ϕ(z))

)
− β2

(
σ2(ϕ(ζ)), ϕ. σ1(ϕ(ζ))

)

= β2
(
σ2(ϕ(z)), σ2(ϕ(ζ))

)
− β2

(
ϕ. σ1(ϕ(z)), ϕ. σ1(ϕ(ζ))

)

= βσ2

(
ϕ(z)), ϕ(ζ)

)
− βϕ. σ1

(
ϕ(z), ϕ(ζ)

)

= βσ2

(
ϕ(z)), ϕ(ζ)

)
− βσ1

(z, ζ) .

2

1.2. The notion of lamination.

1.2.1. General laminations.

Definition 1.68. A topological space B is given a structure of dimension n product
lamination if it is endowed with a homeomorphism

ψ : B → B × T ,

where B ∼= Dn is the open unit ball in Rn, and T is another topological space. The sets

Bt = ψ−1(B × {t}) ⊂ B , t ∈ T

are called leaves , and the sets

Tx = ψ−1({x} × T ) ⊂ B , x ∈ B

are transversals . The arising “sliding” homeomorphisms HB between the transversals Tx1

and Tx2
with x1, x2 ∈ B are called holonomies (see Fig. 5). 4

Definition 1.69. A dimension n lamination L of a topological space X (called the total
space of L) is determined by a family of local product laminations ψi : Bi → Bi×Ti, such
that the sets Bi (called flow boxes) form an open covering of X , and the transition maps

ψij = ψi ◦ ψ
−1
j : ψj(Bi ∩ Bj)→ ψi(Bi ∩ Bj)

between the coordinate charts ψi are homeomorphisms taking local leaves to local leaves.
The latter requirement on the transition maps implies that the local leaves (sometimes
also called plaques) piece together to form global leaves , which are n-manifolds immersed
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Figure 5

injectively in X . Denote by T(L) the set of all transversals of L. The holonomies on
all flow boxes taken together generate the holonomy pseudogroup acting on the disjoint
union of all transversals T ∈ T(L). 4

The notion of lamination is a natural generalization of that of foliation, which corre-
sponds to the case when X is a manifold and Ti are open unit balls of the complementary
dimension dimX − n.

In what follows we shall always assume that the total space X is separable
and metrizable. In order to simplify the notations we shall often denote
the total space X and the lamination L by the same letter L, which should
not lead to a confusion.

Remark 1.70. Although the above definition of a lamination refers to open flow boxes
only, below we shall also often use closed flow boxes and their (closed) transversals.

Definition 1.71. Denote the global leaf of the lamination L passing through a point
x ∈ X by L(x) = LL(x). The equivalence relation

graphL = {(x1, x2) : L(x1) = L(x2)} ⊂ X × X (1.72)

is called the graph of the lamination L. 4

1.2.2. Geometric structures on laminations. As usual, one can restrict the class of tran-
sition maps to preserve finer structures on local leaves. For example, one can endow the
lamination L with a (leafwise) smooth, Riemannian or conformal structure. The latter
means that there is an atlas of local charts ψ : B → B × T which are supplied with
transversely continuous leafwise Riemannian metrics, such that the transition maps are
conformal and transversely continuous.

Definition 1.73. For n = 2, if D2 ⊂ R2 ∼= C is given the standard complex structure, and
ψij are leafwise conformal maps, L is called a Riemann surface lamination; then the global
leaves have the structure of Riemann surfaces. Further restricting the class of leafwise
transition maps (see Definition 1.36) one gets affine laminations, Euclidean laminations
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and translation laminations. Their leaves are affine, Euclidean and translation surfaces,
respectively. If the leaves of an affine lamination are isomorphic to the standard affine
plane C, we also call it a C-lamination. 4

Definition 1.74. For n = 3, if the local leaves are given a Riemannian metric of constant
negative curvature −1, and ψij are local isometries, then we call L a 3-dimensional hyper-
bolic lamination, or a hyperbolic 3-lamination. In the case when all leaves of a hyperbolic
3-lamination are simply connected (i.e., isometric to H3), we call it a H3-lamination. If
we continuously assign to each leaf L ∼= H3 of a H3-lamination a point q = q(L) ∈ ∂L on
the sphere at infinity of L, we say that L is a pointed at infinity H3-lamination. 4

To make the last definition more rigorous one has to pass from the H3-lamination L to
its unit tangent lamination UL. The leaves of the latter are S2-bundles over the leaves of
the original lamination. Continuous sections of UL are unit vector fields on L (tangent
to the leaves). By definition, a pointed lamination is endowed with a unit vector field
on L whose integral curves on every leaf form a family of asymptotic geodesics (with
respect to the leaf hyperbolic metric). This vector field and the associated flow on a
pointed lamination will be naturally called vertical . Then the distribution orthogonal
to the vertical flow is integrable and gives leafwise horosphere foliations. In the same
way one also defines a general pointed at infinity hyperbolic 3-lamination — its leaves are
pointed at infinity hyperbolic 3-manifolds, cf. §1.1.3.

Definition 1.75. By analogy with the notion of orbifold, we can define an orbifold lam-
ination (see [LM97]). The space X of such a lamination contains a subset of singular
points . Any singular point x ∈ X has a neighbourhood O (an orbifold box ) which is the

quotient Õ/G of a certain local product lamination Õ (a covering box ) by a finite group
G of homeomorphisms fixing x. The group G is required to preserve the leaf structure of
the local lamination, not its individual leaves. A leaf of an orbifold lamination is singular
(i.e., is a true orbifold) if it passes through a singular point. As before, if all boxes carry
an additional leafwise structure preserved by transition maps, and on covering boxes this
structure is invariant with respect to the action of the corresponding finite groups G, then
we say that the orbifold lamination is endowed with this additional structure. Thus, we
can talk about orbifold affine (Euclidean, hyperbolic, etc.) laminations. 4

In what follows by a lamination we shall always mean an orbifold lami-
nation.

1.2.3. The hyperbolization functor.

Definition 1.76. Let us call a map between two laminations laminar if it carries leaves
to leaves. Given any of the above additional leafwise structures (affine, Euclidean, hy-
perbolic, etc.), we can define the category of (orbifold) laminations endowed with this
structure. A morphism in this category is a continuous laminar map from the space of
one lamination to the space of the other lamination respecting the corresponding leafwise
structures. For instance, an affine map between laminations is a continuous laminar map
which is affine on the leaves. 4
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If G is a properly discontinuous group of automorphisms of an (orbifold) lamination
L, then the quotientM = L/G also is an orbifold lamination and inherits the geometric
structure of L. For example, if H is a pointed at infinity hyperbolic lamination, then the
quotientM = H/G inherits the structure of a pointed at infinity hyperbolic lamination
(however, even if H is an H3-lamination,M is not, generally speaking, an H3-lamination:
if G has invariant leaves in H, then the corresponding leaves ofM are quotients of H3).

The hyperbolization functor H introduced in Definition 1.42 extends to a covariant func-
tor (also denoted H) from the category of (orbifold) affine 2-laminations to the category
of (orbifold, pointed at infinity) hyperbolic 3-laminations.

Definition 1.77. Given a conformal lamination L denote by HL the scaling bundle lam-
ination over L whose leaves are the scaling bundles over the leaves of L (see Defini-
tion 1.25). For an affine 2-lamination A the 3-lamination HA = H is hyperbolic. Its
leaves LH = HLA are pointed at infinity hyperbolic 3-orbifolds corresponding to the
leaves LA of A (which are affine surfaces). More precisely, the space of H is the set of all
pairs h = (z, ε), where z is a point of the lamination A, and ε is a local parallel Euclidean
structure on a neighbourhood of the point z on its leaf LA(z). Denote by q(h) ≡ q(z)
the distinguished point on the ideal boundary of the leaf LH(h) ≡ LH(z) of H passing
through a point h with ph = z. 4

Without further notice we shall use below for various leafwise objects
associated with affine 2-laminations (resp., pointed at infinity hyperbolic
3-laminations) the notations introduced in §1.1 for a single affine surface
(resp., pointed at infinity hyperbolic orbifold). Sometimes we shall add
the subscript L indicating dependence on the leaf L.

In particular, the leafwise projections pL (1.11) form a fiber bundle

p : H → A , h = (z, ε) 7→ z (1.78)

whose fibers p−1(z) are vertical geodesics on the pointed at infinity hyperbolic leaves; the

leafwise vertical flows ξL and the leafwise vertical vector fields v↑L are organized into global
continuous vertical flow ξ and vertical vector field v↑ on the lamination H, respectively,
etc.

Lemma 1.79. For any affine lamination A there exists a continuous section σ : A → H
of the fiber bundle p : H = HA → A.

Proof. (cf. [MS74, Lemma 5.9]). Select a countable open covering Ui of A such that the
bundle p : H → A is trivial over Ui. Let p−1Ui ≡ Hi

∼= Ui × R be its trivialization, and
σi : Ui → Hi be a local continuous section. Take a partition of unity ψi : Ui → R on
A, and set σ =

∑
ψiσi. Since the fibers of p bear an affine structure (determined by the

hyperbolic length parameterization), these convex combinations make sense and define
a global continuous section of the bundle. Note that in fact this proof shows that the
section σ can be chosen smooth. 2

Below all sections are assumed to be continuous.
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Remark 1.80. The functor H on the category of laminations is not invertible. The affine
2-lamination corresponding to a pointed at infinity hyperbolic 3-lamination H is well-
defined if and only if the vertical flow is proper, i.e., the set

{t : ξtK ∩K 6= ∅}

is bounded in R for any compact K ⊂ H. It is equivalent to saying that the quotient of
H by the vertical flow is Hausdorff (cf. Proposition 1.43 and Remark 3.14).

Any affine map ϕ : A1 → A2 between affine laminations extends to a map

ϕH : H1 = HA1 → HA2 = H2

between the associated hyperbolic 3-laminations which acts as a local isometry between
the leaves LH1

(h) and LH2
(ϕHh) (in the sequel we shall use the same notation ϕ for both

the affine and the hyperbolic maps). If Ai are in fact C-laminations, then ϕH is a global
leafwise isometry. Obviously, ϕH also conjugates the vertical flows on H1 and H2.

Remark 1.81. It may well happen that an automorphism group of an affine lamination A
is not properly discontinuous, whereas it becomes properly discontinuous on the hyper-
bolization HA, cf. Remark 3.14 below.

1.3. Cohomology of an affine lamination.

1.3.1. Leafwise cohomology.

Definition 1.82. Given a C∞-lamination L, we can naturally define its leafwise tangent
and cotangent bundles , TL and T ∗L, and the associated tensor bundles. Unless otherwise
specified, all sections of these bundles are assumed to be smooth leafwise and continuous
transversely. A section ω of the bundle

∧p T ∗L is called a (leafwise) p-form on L. By
Ωp(L) we denote the linear space of all p-forms on L. The leafwise de Rham complex

Ω0(L)
d
−→ Ω1(L)

d
−→ . . .

d
−→ Ωn(L)

d
−→ . . .

determined by the leafwise differential d gives rise to the leafwise de Rham cohomology
H∗
dR(L)

∼= H∗(L) (it is also often called tangential). By [ω] ∈ Hp(L) we denote the
cohomology class of a closed leafwise p-form ω. 4

Remark 1.83. Of course, triviality of the cohomology of individual leaves does not imply
triviality of the leafwise cohomology of the whole lamination.

Remark 1.84. The cohomology introduced in Definition 1.82 can be called transversely
continuous (we are using transverse continuity stipulated in the definition of a lamina-
tion and require all the considered objects to be transversely continuous). For foliated
manifolds (in the presence of a smooth transverse structure) one usually deals with the
transversely smooth cohomology. On the other hand, replacing transverse continuity with
just measurability with respect to the Borel structure one gets the transversely Borel co-
homology. In the presence of a quasi-invariant transverse measure type (see below §2) one
may neglect sets of measure 0, which leads to the transversely measurable cohomology.
See [MS88, Chapter 3] for more details.
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1.3.2. The basic class.

Definition 1.85. LetH be a pointed at infinity hyperbolic 3-lamination. The cohomology
class B(H) = [ω↑] ∈ H1(H) of the leafwise vertical 1-forms is called the Busemann class
of H.

Let now A be an affine lamination. We shall continue using the notations introduced
in §1.1.6 for the leafwise objects associated with the leafwise sections σL determined by
a continuous global section σ : A → H = HA.

Definition 1.86. The cohomology class b ∈ H1(A) of the basic 1-forms ω↑σ (1.47) is
called the basic class of the affine lamination A. 4

In complete analogy with Proposition 1.49 we have

Proposition 1.87. The following properties are equivalent:

(i) The basic class b(A) of an affine lamination A vanishes;
(ii) The Busemann class B(HA) of the hyperbolization HA vanishes;
(iii) The fiber bundle p : HA → A admits a leafwise parallel section;
(iv) The leafwise affine structure on A can be refined to a leafwise Euclidean structure.

Therefore, the basic class b is the cohomological obstruction to the existence of a Eu-
clidean structure on an affine lamination.

Remark 1.88. We remind that the triviality of the basic class of individual leaves of A
does not imply the triviality of the basic class of the whole lamination. See §3.5 and §5
for examples.

1.3.3. Relation to the Euler class. The operators dcL (1.60) on the leaves L of a Riemann
surface lamination L piece together a global operator dc acting on leafwise forms and
satisfying formulas (1.61), where d is the leafwise differential. Therefore, we have

Proposition 1.89. For a Riemann surface lamination L the operator dc determines a
homomorphism

dc : H1(L)→ H2(L) . (1.90)

Definition 1.91. The Euler class e ∈ H2(L) of a Riemann surface lamination L is

e =
1

2π
[Ωρ] ,

where [Ωρ] is the cohomology class of the leafwise curvature forms Ωρ of leafwise conformal
metrics ρ. 4

Formula (1.63) then implies

Proposition 1.92. The basic class b ∈ H1(A) and the Euler class e ∈ H2(A) of an affine
lamination A are related by the formula

e = −
1

2π
dcb . (1.93)
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Remark 1.94. If the leaves of an affine laminationA are complete affine surfaces, then, as it
follows from Proposition 1.87, the basic class b ∈ H1(A) is the cohomological obstruction
to the existence of a transversely continuous family of complete leafwise flat metrics,
whereas the Euler class e ∈ H2(A) is the cohomological obstruction to the existence of a
transversely continuous family of flat metrics which are not necessarily leafwise complete.
It would be interesting to find out under what general conditions on A the classes b and
e must be zero or non-zero simultaneously.

2. Measures and currents on laminations

2.1. Measures on general laminations. First we recall some notions from the gen-
eral measure theory of equivalence relations and foliated spaces [FM77], [MS88] adapted
to our situation. There are two ways of dealing with measures on laminations. One is
based on separating variables and consists in considering leafwise (tangential) and trans-
verse measures. The other approach deals with measures on the whole laminated space.
Integration of a transverse measure against a leafwise measure gives a global measure.
Conversely, the transverse and the leafwise measures can be, roughly speaking, recovered
from a global measure as its conditional measures. We shall use both languages switching
from one to the other at our convenience.

2.1.1. Leafwise, transverse and global measures.

Definition 2.1. Given a measure type preserving invertible transformation F from a
source measure space (X,α) to a target measure space (Y, β), we shall use the term
“Radon–Nikodym Jacobian” (or, simply “Jacobian”) for the Radon–Nikodym derivative

JacF (x) =
d(F−1β)

dα
(x) =

dβ

d(Fα)
(Fx) ,

so that for any measurable subset A ⊂ X

β(FA) =
∫

A
JacF (x) dα(x) . (2.2)

If F is not invertible, but the preimage F−1(y) is finite for β-a.e. y ∈ Y , then we define
the Jacobian as

JacF (x) =
d(F−1β)

dα
(x) =

1

card[F−1(F (x))]
·

dβ

d(Fα)
(Fx) ,

where F−1β is the integral of the uniform probability measures on the sets F−1(y) with
respect to β, so that formula (2.2) still holds for any measurable A ⊂ X such that the
restriction of F onto A is one-to-one. 4

In order to indicate dependence on the source measure α and the target measure β we
shall sometimes add the corresponding subscripts (or just one subscript if the source and
the target spaces coincide). Clearly,

Jacϕα,ψβ F (x) =
ψ(F (x))

ϕ(x)
Jacα,β F (x) (2.3)
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for positive densities ϕ, ψ on the spaces X and Y , respectively. The Radon–Nikodym
Jacobian coincides with the usual Jacobian in the case when X and Y are Riemannian
manifolds with Riemannian volumes α and β, respectively, and F is smooth.

Definition 2.4 ([MS88]). Let ∆ : graphL → R+ be a measurable multiplicative cocycle
of a lamination L (see §1.3.1). A family µ = {µT} of Radon (≡ locally finite) measures
on transversals T of the lamination L is quasi-invariant with modulus ∆ if for any two
transversals T, T ′ connected by a holonomy H : T → T ′ the Jacobian of this holonomy
with respect to the measure µ is

JacµH(t) = ∆(t,H(t)) , t ∈ T . (2.5)

We call such a family µ a transverse measure with modulus ∆ = ∆µ. In particular, for
the trivial cocycle ∆ ≡ 1 we have the usual definition of a holonomy invariant measure
(e.g., see [Pl75]). 4

Remark 2.6. If the lamination L is minimal, then any quasi-invariant measure µ has full
support, i.e., suppµT = T for any closed transversal T .

In view of formula (2.3), multiplying a transverse measure µ by a positive density
ϕ : L → R+ gives a new transverse measure µ′ = ϕµ with cohomologous modulus

∆µ′(x, y) =
ϕ(y)

ϕ(x)
∆µ(x, y) . (2.7)

Definition 2.8. A leafwise measure λ = {λL} on L is a family of Borel measures on
leaves of L which is transversely measurable. The latter means that for any flow box
B ∼= B × T the restrictions λt of the leafwise measure onto the local leaves Bt depend on
the parameter t ∈ T measurably in the weak topology: for any function f ∈ C(B) the
map t 7→ 〈f, λt〉 is Borel. 4

An absolutely continuous leafwise measure can be constructed for any (metrizable)
leafwise smooth lamination by using a partition of the unity (cf. Lemma 1.79). Note that
the individual leafwise measures λL are usually infinite.

Definition 2.9. A leafwise measure λ and a transverse measure µ with modulus ∆µ

determine a global measure λ ?µ on the (total space of the) lamination L in the following
way. Given a flow box B ∼= B × T take a transversal T = Tx0

, x0 ∈ B and put

d(λ ?µ)(x, t) = ∆µ

(
(x0, t), (x, t)

)
dλt(x) dµT (t) , (2.10)

where λt is the leafwise measure on the local leaf Bt. One can easily check that for a
given flow box B the measure λ ?µ does not depend on the choice of x0, and any two
intersecting flow boxes determine the same measure on their intersection, so that λ ?µ is
a well-defined measure on L. 4

Both the leafwise measure λ and the transverse measure µ may be multiplied by a
density ϕ : L → R, cf. (2.7). Clearly,

(ϕλ) ? µ = λ ?(ϕµ) = ϕ(λ ?µ) . (2.11)
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2.1.2. Conditional measures and the Radon–Nikodym cocycle. We shall now look at the
inverse procedure: to what extent the measures λ and µ can be recovered from the global
measure λ ?µ.

Definition 2.12. Let θ be a measure on the lamination L. Take a flow box B ∼= B × T
with θ(B) < ∞. Then the restriction θ|B of θ to B can be uniquely (up to subsets of
measure 0) decomposed as

dθ|B(x, t) = dθB(t) dθ
t
B(x) ,

where θB is the projection of θ|B onto T , and the measures θtB, t ∈ T (called the conditional
measures of θ|B) are probability measures on the local leaves Bt (see [Ro49], [CFS82]). In
other words, if f is an integrable function on B, then the integrals of f with respect to
the measures θtB depend on t measurably, and

〈f, θ|B〉 =
∫ 〈

f(·, t), θtB
〉
dθB(t) .

The latter formula can be looked at as a generalization of the Fubini theorem. 4

Definition 2.13. A global measure θ on L is absolutely continuous with respect to a
leafwise measure λ if for any flow box B ∼= B×T with θ(B) <∞ almost every conditional
measure θtB is equivalent to the restriction λt of the corresponding leafwise measure onto
the local leaf Bt. 4

Remark 2.14. Clearly, Definition 2.13 only depends on the type of the measure θ and the
leafwise measures λ. If the leafwise measures λ on a leafwise smooth lamination belong
to the smooth leafwise measure type, then we shall usually omit the reference to λ and
talk just about absolutely continuous measures on L.

Due to the absence of a natural normalization, the conditional measures on global
leaves are defined only projectively. Indeed, if we take two intersecting flow boxes B,B ′,
then on their intersection the conditional measures θtB′ are proportional to the conditional
measures θtB with leafwise constant densities. Hence almost all global leaves L of the
lamination bear “conditional measures” θL well-defined up to a multiplicative constant
(note that these measures may only be finite for “dissipative leaves”, i.e., those which are
ergodic components of graphL). It leads to the following definition:

Definition 2.15. If a measure θ on a lamination L is absolutely continuous with respect
to a leafwise measure λ, then the measurable multiplicative cocycle

∆θ,λ : graphL → R+ , ∆θ,λ(x, y) =
dθL/dλL(y)

dθL/dλL(x)

is well-defined. The cocycle ∆θ,λ is called the Radon–Nikodym cocycle (or, the modulus)
of the measure θ with respect to the leafwise measure λ. 4

We shall now explain why we use the term “Radon–Nikodym cocycle”. Given a measure
θ on L and a leafwise measure λ = {λL}, define the measure Θ on graphL ⊂ L × L by
putting

dΘ(x, y) = dθ(x) dλL(x)(y) . (2.16)

Then, by considering flow boxes, one arrives at
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Proposition 2.17. A measure θ on a lamination L is absolutely continuous with respect
to a leafwise measure λ iff the associated measure Θ (2.16) is quasi-invariant with respect
to the “flip transformation”

Σ : (x, y) 7→ (y, x)

on graphL. Then the Radon–Nikodym cocycle ∆θ,λ coincides with the Jacobian of the
transformation Σ with respect to the measure Θ:

∆θ,λ(x, y) = JacΘΣ(x, y) .

Clearly, for any density ϕ

∆θ,ϕλ(x, y) =
ϕ(x)

ϕ(y)
∆θ,λ(x, y) ,

∆ϕθ,λ(x, y) =
ϕ(y)

ϕ(x)
∆θ,λ(x, y) ,

(2.18)

so that the (multiplicative) cohomology class of the Radon–Nikodym cocycle (we call it
the Radon–Nikodym cohomology class) remains the same when the measures θ or λ are
replaced with equivalent ones.

Remark 2.19. Proposition 2.17 is a straightforward generalization of an analogous result
for countable equivalence relations proved in [FM77]. The measure Θ (2.16) is an analogue
of the (right) counting measure on an equivalence relation: in our setup we need the
leafwise measures λ instead of the leafwise counting measures used in [FM77].

Taking stock of previous definitions we now obtain

Proposition 2.20. If µ is a transverse measure with modulus ∆µ, and λ is a leafwise
measure on a lamination L, then the measure λ ?µ is absolutely continuous with respect
to λ, and

∆λ ?µ,λ = ∆µ .

Conversely, if a measure θ on L is absolutely continuous with respect to λ, then the formula

dθB
dµT

(t) =
∫

∆θ,λ

(
T (t), x

)
dλt(x) ,

defines a transverse measure µ with the modulus ∆µ = ∆θ,λ, and θ = λ ?µ. Here B ∼=
B×T is a flow box, T = Tx0

, x0 ∈ B its transversal, and λt denotes the restriction of the
leafwise measure λL(T (t)) onto the local leaf Bt.

Remark 2.21. The modulus ∆ of a transverse measure µ is a function on graphL, i.e., it
is cohomologically leafwise trivial. However, the modulus is only defined “mod 0”, i.e.,
up to subsets of L of zero measure, so that it would be more rigorous to talk about the
modulus as about a class of cocycles which differ mod 0. It may well happen that this
class contains a cocycle (necessarily unique) which is locally continuous in the following
sense: there exists a transversely continuous leafwise 1-form ω such that for µ-a.e. leaf L
the restriction ωL of ω onto L is cohomologically trivial, and log∆(x, y) =

∫
ϑ ωL for any

smooth leafwise path ϑ joining any two points x, y ∈ L.
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2.1.3. SRB measures and affine structures. As an important illustration to the above dis-
cussion let us consider a hyperbolic attractor A of a C2-diffeomorphism f of a Riemann-
ian manifold M (for example, see [Yo89] for the background on hyperbolic dynamics and
smooth ergodic theory needed for understanding this section). Let Wu be the unstable
foliation of f . As usual, the leaf of Wu passing through a point z is denoted by Wu(z).
Let Jacu f(z) denote the Jacobian of f : Wu(z) → Wu(fz) with respect to the leafwise
Riemannian volume λu on the unstable leaves. Given a point z, put zk = fkz.

Definition 2.22. The locally continuous cocycle ∆AS : graphWu → R+ defined as

∆AS(z, ζ) =
∞∏

k=1

Jacu f(z−k)

Jacu f(ζ−k)
(2.23)

is called the Anosov–Sinai cocycle of the diffeomorphism f . 4

This cocycle was first introduced by Anosov and Sinai in [AS67, p.151] in the context of
Y-diffeomorphisms. Note that the leafwise projective measure ∆ASλ

u is invariant under
f . It turns out that this measure can be realized as the conditional measure for a certain
global invariant measure called Sinai–Ruelle–Bowen or briefly SRB :

Theorem 2.24 ([Si72], [BR75]). Any hyperbolic attractor carries a unique invariant mea-
sure m which is absolutely continuous on the unstable foliation. The Radon–Nikodym
cocycle of this measure with respect to the leafwise Riemannian volume coincides with the
Anosov–Sinai cocycle ∆AS.

Remark 2.25. The above discussion can be translated into the geometric language of
connections (compare §1.3.2, §3.2.1). Consider the line bundle p : VWu → M of
positive leafwise volume elements of the foliation Wu (if the leaves carry an additional
conformal structure, then VWu coincides with the scaling bundle HWu). The fibers of
VWu are endowed with the “hyperbolic metric” d(v, w) = | log(w/v)| (1.29). Sections of
p are leafwise measures with positive densities (or, rather, positive leafwise volume forms
if the leaves are oriented), cf. the discussion in §1.1.4. One can say that p is the “positive
part” of the leafwise determinant bundle of Wu.

Flat connections of p are leafwise projective measures. In the same way as in §1.1.6,
the flat connection determined by a section σ : x 7→ vx gives rise to the “basic cocycle”
of p

βσ(x, y) = log
Tx,y(vx)

vy
,

where Tx,y is the parallel translation from p−1(x) to p−1(y) (it is well-defined since the
leaves of Wu are simply connected). Turning on the dynamics, we can express βσ by
means of the dynamical formula (2.23) (compare with Theorem 3.22) below) and obtain
an invariant flat connection of p. Theorem 2.24 tells us that this connection is associated
with a global invariant measure of f .

Remark 2.26. A similar discussion can be carried out for the strongly unstable foliation
of a partially hyperbolic system as well.

In the case when the unstable foliation is one-dimensional, the above discussion admits
a nice geometric refinement. Namely, a measure dµ = ρdx on R with a positive continuous
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density ρ determines a Euclidean structure on R (compatible with its smooth structure)
by means of the “local chart”

ψ(x) =
∫ x

0
ρ(t) dt,

and vice versa (cf. §1.1.5). Hence, a projective measure of that kind determines an affine
structure on R, and vice versa. Thus, if the unstable foliation Wu is one-dimensional,
then the leafwise projective measure ∆ASλ

u determines an invariant affine structure on
this foliation. In fact, it is a unique invariant affine structure on Wu compatible with its
smooth structure.

In particular, this construction applies to the geodesic flow on a surface of non-constant
negative curvature. In this situation the arising flow invariant affine structure on the
leaves of the strongly unstable foliation (i.e., on punctured spheres at infinity) determines
a hyperbolic metric on the leaves of the stable foliation (which are copies of the universal
covering surface), i.e., uniformizes the universal covering surface, cf. §4.6 below.

Let us now consider a one-dimensional C2-map f : I → I with an absolutely continuous
invariant measure m with positive characteristic exponent. Let

f̂ : (Î , m̂)→ (Î , m̂)

be its natural extension. As above, lift a Riemannian metric from I to the leaves of
the Pesin unstable “foliation” of m̂ and denote by λu the leafwise Riemannian measures.
Then

Jac f(x̂) = |f ′(x)| , x = π(x̂) .

Proposition 2.27 (Ledrappier [Le81, Proposition 3.6] ). The Radon–Nikodym cocycle
of the measure m̂ on the Pesin unstable foliation with respect to the leafwise Riemannian
measure λu is given by the explicit formula

∆m̂(x̂, ŷ) =
∞∏

k=1

|f ′(x−k)|

|f ′(y−k)|
. (2.28)

In other words, this formula gives the densities of the conditional measures of m̂ with
respect to the Riemannian measure λu on the unstable leaves.

Again, the leafwise projective measure ∆m̂λ determines an invariant affine structure
on the (measurable) unstable foliation. In the case when f : S1 → S1 is an expanding
circle endomorphism we obtain an affine structure on the one-dimensional solenoid (the
natural extension of f). This affine structure was used by Sullivan in the one-dimensional
Renormalization Theory [MS93], [S92].

2.1.4. Leafwise forms and currents. The notion of leafwise measures can be also intro-
duced in terms of leafwise forms (see §1.3.1). Denote by V(L) = Ωn(L) the space of
leafwise volume forms of L (here n is the leafwise dimension of L), and let V0(L) be
the subspace of volume forms with compact support. In the 2-dimensional case (n = 2),
volume forms will be also called area forms . Locally, a volume n-form can be presented
as

ω = ω(x, t) dx1 ∧ · · · ∧ dxn ,

where (x, t) = (x1, . . . , xn, t) are the local coordinates on a flow box B ∼= B × T , and the
function (x, t) 7→ ω(x, t) is continuous in both variables. We emphasize that unlike in the
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usual definition, ω is only required to be continuous (and not necessarily smooth) in the
leafwise direction. If the lamination is orientable (in particular, if L is a 2-dimensional
lamination endowed with a leafwise complex structure), then it makes sense to talk about
positive volume forms, i.e., those for which the function ω is strictly positive. Then,
obviously, there is a one-to-one correspondence

λω ←→ ωλ (2.29)

between leafwise measures with positive continuous densities λ ≡ λω and positive volume
n-forms ω ≡ ωλ, and an arbitrary volume form can be uniquely decomposed into a
difference of two non-negative volume form (its positive and negative parts). A particular
case is when the lamination is orientable and endowed with a transversely continuous
leafwise Riemannian structure, in which situation the leafwise Riemannian structure gives
rise to the corresponding positive leafwise Riemannian volume forms, and the associated
leafwise measures are just the leafwise Riemannian volumes. In view of the identification
(2.29) we shall use the notation

ω ?µ ≡ λω ? µ (2.30)

for the global measure (2.10) on X determined by a leafwise volume form ω and a trans-
verse measure µ.

Denote by C(L) the dual to the space V0(L). Elements of C(L) are called currents. [Note
that currents are usually meant to be functionals on the space of C∞ forms, whereas our
space V0(L) consists of C

0 forms.] The result of applying a current c to a form ω will be
denoted by 〈ω, c〉. The space of currents is endowed with the topology of weak convergence
on compact sets:

cn → c ⇐⇒ 〈ω, cn〉 → 〈ω, c〉 ∀ω ∈ V0(L) . (2.31)

Given a domain D on a leaf of the lamination L denote by [D] the integration current
over D:

〈ω, [D]〉 =
∫

D
ω .

Definition 2.32. For any given transverse measure µ the pairing ? (2.30) determines a
continuous functional on the space V0(L) (i.e., a current) by the formula

〈ω, [µ]〉 = ω ?µ(X ) .

The current [µ] is called the Ruelle–Sullivan current associated with the transverse mea-
sure µ [MS88]. 4

Proposition 2.33 ([MS88]). The Ruelle–Sullivan current [µ] is closed if and only if the
transverse measure µ is invariant.

2.2. Measures and streams on affine and hyperbolic laminations. Let us consider
the special case of a conformal lamination L (in particular, of an affine lamination) and the
associated scaling bundle lamination H = HL (recall that the scaling bundle lamination
over an affine lamination is a hyperbolic lamination). We shall look at the relations
between the measures on L and H which follow from the fact that H is fibered over L
and the fibers are endowed with canonical Lebesgue measures.
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2.2.1. Lifted measures.

Definition 2.34. Recall (see §1.1.4) that given a conformal manifoldM one can associate

with any measure λ on M its lift λ̃ to the scaling bundle HM obtained by integrating the
Lebesgue measures `z on fibers p−1(z), z ∈M against the measure λ. Given a conformal
lamination L, one can apply this construction both to leafwise and to global measures on
L. The lift of a leafwise measure λ = {λL} is a leafwise measure λ̃ = {λ̃L} on H, and the

lift of a global measure θ is a global measure θ̃ on H. 4

We shall now define the lift of transverse measures from L to H. Recall that the points
z of L can be identified with the fibers p−1(z) on the leaves of H. Therefore, for any
transversal TH of H the image TL = pTH is a transversal of L. On the other hand, in
order to pass from a transversal TL of L to a transversal TH of H we have to take care
of the additional dimension of the leaves of H and to specify the location of the points
of TH on the fibers p−1(z), z ∈ TL. In particular, given a section σ : L → H, the image
σ(TL) is a transversal of H.

Let now µ be a quasi-invariant transverse measure of the lamination L with modulus
∆µ. For any transversal T ∈ T(H) define the measure µ̃T on T as

µ̃T (X) = µpT (pX) , X ⊂ T . (2.35)

One can easily check

Proposition 2.36. The measures µ̃T , T ∈ T(H) determine a quasi-invariant transverse
measure µ̃ with the modulus

∆µ̃(h1,h2) = ∆µ(ph1, ph2) , (2.37)

in particular, the measure µ̃ is invariant with respect to all holonomies consisting in
moving along the leafwise fibers of the bundle p.

Definition 2.38. The transverse measure µ̃ (2.35) of the lamination H is called the lift
of the transverse measure µ of the lamination L. 4

Definition 2.9 then implies

Proposition 2.39. Let λ and µ be a leafwise and a quasi-invariant transverse measure
of a conformal lamination, respectively. Then

λ̃ ? µ = λ̃ ? µ̃ .

2.2.2. Conformal streams.

Definition 2.40. A conformal stream of dimension δ on a conformal manifold M is a
correspondence η : ρ → ηρ which assigns to any conformal metric ρ a (non-zero) Radon
measure ηρ on M in such a way that all the measures ηρ are pairwise equivalent with the
Radon–Nikodym derivatives

dηρ′

dηρ
=

(
ρ′

ρ

)δ
. (2.41)

In other words, dηρ ⊗ dρ
−δ is a conformally covariant tensor (cf. the discussion of tensor

fields of non-integer degree in [Fu86, Section 1.2.2]). We will also say that the dependence
of the measure ηρ on the metric ρ ∈ C is δ-covariant . 4
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Remark 2.42. Clearly, any conformal isomorphism between two conformal manifolds M
and M ′ allows one to transfer conformal streams from M to M ′.

The simplest example is provided by the volume stream vol , which consists in assigning
to a metric ρ the Riemannian volume vol ρ, and its dimension coincides with the dimension
of M . [We slightly abuse the notations, since depending on the context vol may denote
both the Riemannian volume vol = vol ρ associated with a fixed Riemannian metric ρ and
the volume stream vol = {vol ρ}, which should not lead to a confusion.] More generally,
let ` δρ denote the Hausdorff measure onM in dimension δ ∈ (0, dimM ] corresponding to a

conformal metric ρ. Take some closed subset X ⊂M such that ` δρ |X is a non-zero Radon
measure on X (thus, HD(X) = δ, where HD stands for the Hausdorff dimension). Then
the correspondence ρ 7→ ` δρ |X is a conformal stream on M of dimension δ (supported on
X). Somewhat loosely, it will be called the Hausdorff stream on X.

Remark 2.43. A more traditional term would be conformal measure or conformal density ,
see Sullivan [S79].

Theorem 2.44. There is a one-to-one correspondence between conformal streams η of
given dimension δ on a conformal manifold M and measures η on the scaling bundle HM
such that

ξτη = exp[δτ ] · η , τ ∈ R , (2.45)

where ξ is the scaling flow on HM .

Proof. Take the conformal metric ρ = ρσ corresponding to a section σ : M → HM , and
put

η = exp[−δbρ] · η̃ρ , (2.46)

where η̃ρ is the lift of the measure ηρ to HM (Definition 1.31), and bρ is the relative
hyperbolic height (1.34) with respect to the section σ. Then, as it follows from (1.35), the
measure η is the same for all conformal measures ρ and depends on the conformal stream
η only. Since the measure η̃ρ in (2.46) is invariant with respect to the scaling flow, the
measure η satisfies the relation (2.45).

Conversely, if a measure η on HM satisfies (2.45), then it decomposes into an integral
of measures on the fibers of p also satisfying the same scaling condition. Therefore, the
latter measures must be equivalent to the Lebesgue measure with the density proportional
to the exponential function τ 7→ exp[−δτ ], and formula (2.46) then allows one to recover
the conformal stream from the measure η. 2

A conformal stream can be always obtained just by assigning a certain measure η0 to
a fixed metric ρ0 and then putting

ηρ =

(
ρ

ρ0

)δ
η0 ,

which is not very interesting. However, the point of this notion is in looking for conformal
streams with additional invariance properties (cf. §4.4 and §5.4 below).
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Definition 2.47. If F is a diffeomorphism of M preserving its conformal structure, then
F acts on δ-dimensional conformal streams by the formula

(Fη)ρ = F (ηF−1ρ) . (2.48)

A conformal stream η is called F -invariant if Fη = η, in other words, if the correspondence
ρ 7→ ηρ is equivariant with respect to the action of F on the spaces of metrics and of
measures. 4

Clearly, the action (2.48) on conformal streams onM is conjugate to the action of F on
associated measures on HM . In particular, a conformal stream η on M is F -invariant iff
the corresponding measure η on HM is F -invariant. A straightforward check also yields

Proposition 2.49. A conformal stream η is F -invariant iff

Jacηρ F = ‖DF‖δρ

for any (≡ some) conformal metric ρ.

Important examples of non-trivial conformal streams on the Riemann sphere C are
provided by the results of Patterson and Sullivan asserting that any Kleinian group or
rational map admits an invariant conformal stream of some dimension δ ∈ (0, 2] supported
on its limit (resp., Julia) set X (see §5.4, [S83], [DU91a]). Note that the Hausdorff stream
on X is invariant whenever it exists (i.e., when 0 < ` δρ (X) < ∞ for δ = HD(X)). So,
the Patterson–Sullivan stream on X can be viewed as a dynamical replacement of the
Hausdorff stream on X, in the case when the latter does not exist.

2.2.3. Leafwise and transverse conformal streams.

Definition 2.50. A leafwise conformal stream λ of dimension δ ≥ 0 on a conformal
lamination L is a family of δ-conformal streams λL (see Definition 2.40) on the leaves of
L which is locally continuous in the transverse direction. 4

Leafwise application of Theorem 2.44 then immediately yields

Theorem 2.51. Given a conformal lamination L, there is a one-to-one correspondence
between leafwise conformal streams λ of given dimension δ on L and transversely contin-
uous leafwise measures

λ = exp[−δbρ]λ̃ρ (2.52)

on the lamination HL such that

ξτλ = exp[δτ ] · λ , τ ∈ R , (2.53)

where ξ is the leafwise scaling flow on HL.

Alongside with the leafwise conformal streams one can also introduce a dual transverse
notion.

Definition 2.54. A transverse conformal stream of dimension δ ≥ 0 on a conformal
lamination L is a family of quasi-invariant transverse measures µρ associated with leafwise
conformal metrics ρ and such that

dµρ′

dµρ
=

(
ρ′

ρ

)−δ
. (2.55)
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4

Remark 2.56. Note that the sign of the exponent in the right-hand side of formula (2.55)
is opposite to the sign in formula (2.41) for leafwise conformal streams. This definition
has the following motivation. Let θ be a global measure on L which is leafwise smooth,
and let vol = {vol ρ} be the leafwise volume stream. Then disintegrating the measure
θ with respect to the leafwise measure vol ρ associated with a leafwise conformal metric
ρ provides us with a transverse measure µρ (see Proposition 2.20). As it follows from
formula (2.11), then

dµρ′

dµρ
=

(
d volρ′

d volρ

)−1
=

(
ρ′

ρ

)−d
,

where d is the leafwise dimension of L, so that µ is a transverse conformal stream of
dimension d.

The next result immediately follows from Definition 2.50 and Definition 2.54.

Theorem 2.57. If λ and µ are a leafwise and a transverse conformal streams of the same
dimension of a lamination L, then the global measure on L

υ = λ ?µ = λρ ? µρ

is independent of the choice of a leafwise metric ρ.

Let now A be an affine lamination. Recall that leafwise conformal metrics ρ = ρσ on A
are in one-to-one correspondence with the sections σ of the fiber bundle p : H = HA → A,
and we shall sometimes indicate dependence of conformal measures on sections σ rather
than on the associated metrics ρσ. In terms of the Busemann cocycle β on HA the
definitions of leafwise and transverse conformal streams take, respectively, the form

dλσ′

dλσ
=

(
ρσ′

ρσ

)δ
= exp

[
−δβ(σ, σ′)

]
,

dµσ′

dµσ
=

(
ρσ′

ρσ

)−δ
= exp

[
δβ(σ, σ′)

]
.

(2.58)

Note that by the definition of an affine lamination A its leaves are endowed with projective
Euclidean metrics, so that a leafwise conformal stream determines a leafwise projective
measure on A.

2.2.4. Parallel transverse conformal streams. For transverse conformal streams there is
yet another notion of invariance which is based on the existence of a flat leafwise con-
nection and ensuing possibility to make parallel transport of conformal metrics along the
leaves:

Definition 2.59. A transverse conformal stream on an affine lamination A is called
parallel if it assigns to any (local) parallel leafwise conformal metric ρ a (local) holonomy
invariant transverse measure µρ. 4

Remark 2.60. This notion makes sense for leafwise conformal streams as well, but the
only parallel leafwise conformal stream is the area stream.
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Formula (2.58) readily implies

Proposition 2.61. A transverse conformal stream µ of dimension δ on an affine lami-
nation A is parallel iff for any (≡ some) leafwise conformal metric ρ the Radon–Nikodym
derivative of the associated transverse measure µρ is

∆µρ = exp[δβρ] , (2.62)

where βρ = βσ is the basic cocycle determined by the section σ : HA → A associated with
the metric ρ = ρσ.

Theorem 2.63. Let A be an affine lamination and let H = HA be its hyperbolization.
Then there exists a natural bijective correspondence between

(i) Parallel transverse conformal streams µ on A of dimension δ ≥ 0;
(ii) Transverse measures µ of the lamination H with modulus exp[δβ];
(iii) Absolutely continuous measures ωµ on the lamination H with the Radon–Nikodym

cocycle exp[δβ] with respect to the leafwise hyperbolic volume vol .

Proof. We begin with a parallel transverse conformal stream µ of dimension δ. Fix a
leafwise conformal metric ρ = ρσ corresponding to a section σ : A → H and put

µ = exp[δbρ] · µ̃ρ , (2.64)

where µ̃ρ is the transverse measure of H obtained by lifting the measure µρ (see Defini-
tion 2.38), and bρ is the relative hyperbolic height (1.34) with respect to the section σ.
For another metric ρ′ and the associated section σ′

dµ̃ρ′

dµ̃ρ
=
dµρ′

dµρ
◦ p = exp

[
δβ(σ, σ′)

]
◦ p = exp

[
δ(bρ′ − bρ)

]
,

so that the measure µ is independent of the choice of the metric ρ. As it follows from
(2.7) and (1.34), the modulus of the measure µ is

∆µ(h1,h2) = exp
[
δbρ(h2)− δbρ(h1)

]
·∆µ̃ρ

(h1,h2)

= exp
[
δβ(h1,h2)− δβρ(ph1, ph2)

]
·∆µρ(ph1, ph2)

= exp
[
δβ(h1,h2)

]
.

Now the measure

ωµ = vol ? µ , (2.65)

where vol is the leafwise hyperbolic volume, provides the sought for global measure on H
satisfying property (iii).

Conversely, disintegration of a global measure on H with property (iii) gives us a
transverse measure µ of H with property (ii). The restriction of µ onto the transversals
of H determined by a metric ρ gives a transverse measure µρ of A. One can easily verify
that the family {µρ} is then a parallel transverse conformal stream of dimension δ. 2

Remark 2.66. Since the modulus of the transverse measure µ on H is exp[δβ], under the
action of the vertical flow it transforms as

ξτµ = exp[−δτ ] · µ , τ ∈ R . (2.67)
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On the other hand, the leafwise hyperbolic volume transforms as ξτ vol = exp[2τ ] · vol .
Therefore, the measure ωµ (2.65) transforms under ξ as

ξτωµ = exp
[
τ(2− δ)

]
· ωµ , ∀ τ ∈ R .

Theorem 2.68. Let λ and µ be, respectively, a leafwise and a parallel transverse confor-
mal streams of the same dimension on an affine lamination A, and υ = λ ?µ be their
product. Then

λ ?µ = υ̃ ,

and the measure υ̃ on H is invariant with respect to the vertical flow ξ.

Proof. As it follows from formulas (2.52) and (2.64), for any leafwise metric ρ

λ ? µ = λ̃ρ ? µ̃ρ ,

whereas by Proposition 2.39 and Theorem 2.57

λ̃ρ ? µ̃ρ = λ̃ρ ? µρ = λ̃ ? µ .

The ξ-invariance then follows from the definition of the lift λ̃ ? µ (it can be also directly
verified by using formulas (2.53) and (2.67)). 2

2.3. Conformal streams, harmonic measures and harmonic functions.

2.3.1. Brownian motion on Riemannian manifolds. We begin with briefly recalling some
basic notions from the theory of Brownian motion on Riemannian manifolds (e.g., see
[Gr99]).

LetM be a complete connected Riemannian manifold with the Riemannian volume vol
and the Laplace–Beltrami operator ∆. Denote by

p(t, x, y) , t ∈ R+, x, y ∈M (2.69)

the fundamental solution of the heat equation, and by

dπtx(y) = p(t, x, y) d vol(y) (2.70)

the corresponding transition measures. If M has uniformly bounded sectional curvatures,
then it is stochastically complete, i.e., all the measures πtx are probability ones. Denote
by

P tf(x) = 〈πtx, f〉 (2.71)

the transition operators determined by the measures πtx. Then

P t = et∆ , t > 0 , (2.72)

so that these operators constitute a semigroup. They determine a time homogeneous
Markov process on M with continuous sample paths called the Brownian motion. As it
follows from formula (2.72), a function f on M is λ-harmonic in the usual sense (i.e.,
∆f = λf) iff

P tf = etλf for all (≡ some) t > 0 . (2.73)
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The dual operators Qt = (P t)∗ act on the space of locally finite measures on M by the
formula

Qtθ =
∫
πtx dθ(x) . (2.74)

A measure ω on M is called λ-stationary if

Qtω = etλω for all (≡ some) t > 0 . (2.75)

Since the transition densities (2.69) are symmetric with respect to the coordinates x and
y, the operators P t are self-adjoint in the space L2(M, vol). Therefore, a measure ω is
λ-stationary iff it is absolutely continuous with respect to the Riemannian volume vol ,
and its density dω/d vol is a λ-harmonic function.

Remark 2.76. Formulas (2.73) and (2.75) show that λ-harmonic functions and λ-statio-
nary measures are the same for the Brownian motion as a continuous time process and
for its time discretization, which is a discrete time Markov chain on M with transition
probabilities π1x, x ∈ M . It is easier to deal with the discretization of the Brownian
motion as there we do not have to care about various problems connected with the time
continuity.

2.3.2. λ-harmonic measures of the Brownian motion on laminations. Let now L be a
(leafwise) Riemannian lamination (see §1.2.2 for a definition) with stochastically complete
leaves. Then the leafwise Brownian motions piece together a Markov process called the
Brownian motion on the lamination L. Its transition probabilities are still given by
formula (2.70), but now it has to be considered leafwise, i.e., the transition density p = pL
and the measure vol = volL in the right-hand side of (2.70) are the leafwise ones on the leaf
L = L(x) of the point x. Note that the transition probabilities of the leafwise Brownian
motion are concentrated on single leaves of L, so that they are not absolutely continuous
with respect to any measure on L (unless L consists of a countable number of leaves).
We shall use the same notations P t (resp., Qt) for the global transition operators (2.71)
on L (resp., their duals (2.74)).

Lemma 2.77. Let θ be an absolutely continuous Radon measure on a Riemannian lami-
nation L. Denote by ∆θ,vol(x, y), (x, y) ∈ graphL its Radon–Nikodym cocycle with respect
to the leafwise Riemannian volume vol . Then for any given t > 0

dQtθ

dθ
(x) =

∫
∆θ,vol(x, y)dπ

t
x(y) for θ-a.e. x ∈ L . (2.78)

More precisely, the measure Qtθ is σ-finite iff the right-hand side of (2.78) is a.e. finite, in
which case the measures Qtθ and θ are equivalent, and the corresponding Radon–Nikodym
derivative is given by formula (2.78).

Proof. Let us consider the measure

dΠt(x, y) = dθ(x) dπtx(y) (2.79)

on graphL. In probabilistic terms the measure Πt is the joint distribution of the positions
of the Brownian motion on L at times 0 and t provided the initial distribution is θ (we
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remind however that θ is not necessarily finite). The projections ι1,2(Π
t) of Πt onto the

first and the second coordinates are, respectively

ι1(Π
t) = θ , ι2(Π

t) = Qtθ .

By the definition (2.79), ι1(Π
t) = θ, and the conditional measures of Πt with respect

to the projection ι1 are πtx. Since ι2(Π
t) = ι1(Π̌

t), where Π̌t = Σ(Πt) is the “flip” of the
measure Πt (cf. Proposition 2.17), we obtain that the measure

Qtθ = ι2(Π
t) = ι1(Π̌

t)

is σ-finite iff the integrals

∫ dΠ̌t

dΠt
(x, y) dπtx(y) (2.80)

are θ-a.e. finite, in which case (2.80) is the Radon–Nikodym derivative

dι1(Π̌
t)

dι1(Πt)
(x) =

dQtθ

dθ
(x) .

In order to find the Radon–Nikodym derivative dΠ̌t/dΠt let us also consider the “count-
ing measure”

dΘ(x, y) = dθ(x) d volL(x)(y)

on graphL associated with θ (cf. (2.16) and Proposition 2.17). Since the leafwise transition
measures πtx are equivalent to the leafwise Riemannian volume, the measures Θ and Πt

are equivalent, and by (2.70)

dΠt

dΘ
(x, y) =

dπtx
d volL(x)

(y) = p(t, x, y) . (2.81)

Then by Proposition 2.17 and formula (2.81)

dΠ̌t

dΠt
(x, y) =

dΠ̌t/dΘ̌(x, y)

dΠt/dΘ(x, y)
·
dΘ̌

dΘ
(x, y)

=
p(t, y, x)

p(t, x, y)
·∆θ,vol(x, y) = ∆θ,vol(x, y) .

(2.82)

Substituting (2.82) into (2.80) yields the claim. 2

Theorem 2.83. Let ω be a Radon measure on a Riemannian lamination L. Then the
following conditions are equivalent:

(i) Qtω = eλtω for any t > 0;
(ii) Qtω = eλtω for some t > 0;
(iii) The measure ω is absolutely continuous (see Definition 2.13), and its Radon–

Nikodym cocycle ∆ω,vol(x, y), (x, y) ∈ graphL with respect to the leafwise Rie-
mannian volume vol is a leafwise λ-harmonic function of the second argument.

Proof. (i) =⇒ (ii). Trivial.
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(ii) =⇒ (iii). Since the transition probabilities πtx are equivalent to the leafwise Rie-
mannian volumes, the measure ω = e−λtQtω is absolutely continuous (see Definition 2.13).
Then by formula (2.78) ∫

∆ω,vol(x, y)dπ
t
x(y) = eλt ,

for ω-a.e. x ∈ L, which means that the functions ∆ω,vol(x, ·) are a.e. λ-harmonic.
(iii) =⇒ (i). Follows immediately from formula (2.78). 2

Definition 2.84. A measure ω on a Riemannian lamination L is called λ-harmonic if it
satisfies the conditions of Theorem 2.83. 4

Remark 2.85. The 0-harmonic measures in the sense of Definition 2.84 are precisely the
“harmonic measures” introduced by Lucy Garnett who was the first to consider the Brow-
nian motion on foliations and proved Theorem 2.83 for compact Riemannian foliations
and λ = 0 [Ga83]. Our proof is completely different and is based on an argument from
[Ka98]. Note that Garnett’s choice of the term “harmonic” is explained by the fact that
by Theorem 2.83 these measures have harmonic leafwise densities. The terminology of
Garnett is by now well established, and we shall follow it. However, from the point of
view of the general theory of Markov processes it would be more natural to call these
measures stationary (cf. the above discussion of the Brownian motion on manifolds).

2.3.3. Transverse conformal streams and λ-harmonic measures.

Theorem 2.86. Let A be an affine lamination and H = HA its hyperbolization. Then
any parallel transverse conformal stream µ on A of dimension δ ≥ 0 determines a
λ-harmonic measure ωµ on H with λ = δ(δ − 2).

Proof. By Theorem 2.63 there is a bijective correspondence between parallel transverse
conformal streams µ on A of dimension δ and absolutely continuous measures ωµ (2.65)
on H with the Radon–Nikodym cocycle exp[δβ] with respect to the leafwise hyperbolic
volume vol . Now, the functions exp[δβ(x, ·)] on a pointed at infinity hyperbolic 3-space
are λ-harmonic with λ = δ(δ−2) (one can easily check it in the upper half-space model of
H3 by using the explicit formulas (1.15) for the hyperbolic Laplacian), so that the claim
follows from Theorem 2.83. 2

2.3.4. Leafwise conformal streams and λ-harmonic functions. We shall briefly recall the
well-known construction which allows one to associate a λ-harmonic function Φη on H3

with λ = δ(δ − 2) to a conformal stream η of dimension δ on the sphere at infinity ∂H3

(see [S79]). When applied to a leafwise conformal stream on an affine lamination it gives
a leafwise λ-harmonic function.

Any point h ∈ H3 determines the visual metric ςh on ∂H3 obtained by the geodesic
projection of the spherical metric on the unit tangent sphere at h onto ∂H3, see §5.3.1.

Proposition 2.87. Let η be a conformal stream on the affine plane P = Pq ∼= ∂H3 \ {q}
associated with a pointed at infinity hyperbolic space (H3, q). If for any (≡ certain) point
h ∈ H the total mass of the measure ηh ≡ ηςh determined by the stream η and the metric
ςh is finite, then the function

Φη(h) = ηh(∂H
3)

on H3 is λ-harmonic with λ = δ(δ − 2).
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Proof. Take a reference point o ∈ H3. Then by the definition of a conformal stream

dηh
dηo

(z) =
(
ςh
ςo
(z)
)δ

, ∀ z ∈ P ,

so that

Φη(h) =
∫

P

(
ςh
ςo
(z)
)δ

dηo(z) .

whereas by Proposition 5.32

log
ςh
ςo
(z) = βz(o, h) ,

and the assertion follows from the λ-harmonicity of exp[δβ(o, h)] in h (cf. the proof of
Theorem 2.86). 2

The leafwise application of Proposition 2.87 now gives

Theorem 2.88. Let A be a C-lamination, H = HA be its hyperbolization, and λ be a
leafwise conformal stream on A. If for any point h ∈ H the total mass of the measure λh
on the leaf L(ph) of the lamination A determined by the stream λ and the visual metric
ςh is finite, then

Φλ(h) = λh(L(ph))

is a leafwise λ-harmonic function on H with λ = δ(δ − 2).

Remark 2.89. In terms of the Euclidean metrics εh on the leaves ofA (see Proposition 1.38)
the function Φλ takes the form

Φλ(h) =
∫

P

(
ςh
εh

(z)
)δ

d`h(z) ,

where `h is the Lebesgue area measure determined by the Euclidean metric εh; see §5.3
for a geometric interpretation of the ratio of the metrics ςh and εh.

2.4. Measures and streams on quotient laminations. As we have already men-
tioned in §2.2.2, the notion of a conformal stream is not very interesting without addi-
tional symmetry assumptions. If F is an automorphism of a lamination L, then it acts
both on leafwise and transverse conformal streams by formula (2.48), and similarly to
Proposition 2.49 we have

Proposition 2.90. A leafwise (resp., transverse) conformal stream λ (resp., µ) on a
conformal lamination L is F -invariant iff, respectively,

Jacλρ F = ‖DF‖δρ ,

Jacµρ F = ‖DF‖−δρ

for any (≡ some) conformal metric ρ.

Let now A be an affine lamination. All the constructions in §2.2 and §2.3 are invariant
with respect to the group of automorphisms of A. More precisely,

Theorem 2.91. Let G be a group of automorphisms of an affine lamination A, and let
λ and µ be, respectively, a G-invariant leafwise conformal stream of dimension δλ and a
G-invariant parallel transverse conformal stream of dimension δµ. Then
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(i) The leafwise measure λ, the transverse measure µ, the δµ(δµ−2)-harmonic measure
ωµ = vol ? µ̃, and the δλ(δλ − 2)-harmonic function Φλ on the hyperbolization
H = HA are all G-invariant;

(ii) If δλ = δµ, then the global measure υ = λ ?µ on A and the associated ξ-invariant
global measure λ ?µ = υ̃ on H are also G-invariant;

(iii) If the group G acts properly discontinuously on the hyperbolization H (but not
necessarily on the lamination A itself !), then the δµ(δµ − 2)-harmonic measure
ωµ = vol ? µ̃ and the δλ(δλ − 2)-harmonic function Φλ on H descend, respectively,
to a δµ(δµ − 2)-harmonic measure ωµM and a δλ(δλ − 2)-harmonic function Φλ

M

on the quotient lamination M = MG = H/G. Moreover, if δλ = δµ, then the
measure υ̃ descends to a ξ-invariant global measure υ̃M onM.

3. Laminations associated with rational maps

3.1. Construction of the affine lamination. We will proceed with briefly recalling
the construction of laminations (affine and hyperbolic) associated with a rational endo-
morphism f of the Riemann sphere C [LM97]. Below we shall always deal with the same
f and often omit it from our notations.

3.1.1. The leaf space. Let N = Nf be the space of backward trajectories

ẑ = {. . . , z−1, z0}

of f , where fz−n = z−n+1, and denote by f̂ : N → N the natural extension of f obtained
from the coordinate-wise action of f on N , i.e.,

f̂ ẑ = {. . . , fz−2, fz−1, fz0} = {. . . , z−1, z0, fz0} .

The space N is compact in the product topology (below we shall refer to this topology

as turbulent), and f̂ is a homeomorphism of N . The projection

π : ẑ = {. . . , z−2, z−1, z0} 7→ z0 (3.1)

from N onto C semi-conjugates f̂ to f . For n ∈ Z let

πn(ẑ) = π ◦ f̂n(ẑ) = zn .

A point ẑ = {. . . , z−1, z0} ∈ N is called regular if starting from a certain integer
N = N(ẑ) there exist neighbourhoods U−n, n ≥ N , of z−n in C such that f maps
univalently U−n onto U−n+1. The regular part R ⊂ N consists of all such points. The
path connected component of R containing a point ẑ ∈ N will be called the leaf of ẑ
and denoted L(ẑ). The projections π−n, n ≥ N , determine a conformal (≡ Riemann

surface) structure on L(ẑ), and the map f̂ acts conformally between the leaves. However,
in general the conformal structure on the leaf L(ẑ) does not depend continuously on ẑ
(in the turbulent topology of N ), so that the arising leaf structure does not make R a
Riemann surface lamination. In the absence of this continuity we call R just a leaf space.

A backward orbit ζ̂ = {ζ−n}n∈N is called critical if it passes through the critical set

C(f), in which case π(ζ̂) = ζ0 belongs to the postcritical set C∞(f) (see the list of
definitions in §0.1). The restriction of the projection π onto a single leaf L(ẑ) branches at
critical backward orbits. Given a path ϑ ⊂ C\C∞ with endpoints z, ζ ∈ C, any backward
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trajectory ẑ = {. . . , z−1, z0 = z} can be analytically continued along this path (a lift of ϑ

to N ). We say that the resulting trajectory ζ̂ = {. . . , ζ−1, ζ0 = ζ} is obtained from ẑ by
the holonomy along ϑ. Thus, we have the holonomy transformation

Hϑ : π−1(z)→ π−1(ζ). (3.2)

Obviously, it is continuous. Note also that if a lift of ϑ is regular , i.e., if it is contained in
R, then it is contained in a single leaf L(ẑ).

It is proven in [LM97] that any leaf of R is either a Herman ring, or is conformally
equivalent to either the hyperbolic plane H2 or the parabolic plane C. In the latter two
cases the leaves are called hyperbolic and parabolic, respectively. Any parabolic leaf has a
unique affine structure compatible with its conformal structure.

In the case when f is a Chebyshev polynomial or a Lattès rational map, there is a
special invariant parabolic leaf, L0 ≡ L(α̂), corresponding to the postcritical fixed point
α. This leaf is isolated in the lamination which we are constructing (see [LM97, §5.4]).
For this reason, it is convenient to remove it from the space. Let An be the subset of R
consisting of all parabolic leaves, except for the special leaf L0. The set A

n is f̂ -invariant,
and f̂ acts affinely between the parabolic leaves. Once again, the leafwise affine structures
do not have to be transversely continuous in the topology of N .

3.1.2. The laminar topology. Let us consider the “universal” space U of all non-constant
meromorphic functions on C with the metrizable topology of uniform convergence on
compact sets (cf. below §3.3.4). The space U is foliated into the orbits of the right action
ϕ 7→ ϕ ◦A of the group Aff of complex affine maps A : C→ C. The map f acts on U on
the left as ϕ 7→ f ◦ ϕ. Let

K =
⋂

n≥0

fn(U)

be the “global attractor” of f in U , and

K̂ =
{
ϕ̂ = {ϕ−n}n≥0 : ϕ−n ∈ U , ϕ−n+1 = f ◦ ϕ−n

}

be its “natural extension” (the inverse limit of the system . . .
f
−→ K

f
−→ K). The set K̂

is still naturally a leaf space with leaves being the orbits of the right action of the affine
group. Then factorizing K̂ with respect to the right action of the multiplicative group
C∗ ⊂ Aff gives the universal orbifold affine lamination A associated with the map f .
We shall call the topology on A laminar (recall that it is determined by the uniform
convergence of meromorphic functions on compact sets; therefore it is perhaps not always
locally compact, cf. the discussion in §3.1.7). The natural lift of f to K̂ is an affine

automorphism which will be also denoted by f̂ .

There is a laminar embedding of An into A which is equivariant with respect to the
action of f̂ . Indeed, if

ψ : (L(ẑ), ẑ)→ (C, 0) (3.3)

is an affine chart on the leaf L(ẑ) of a point ẑ ∈ An, then the sequence of meromorphic
functions

ϕ−n = π−n ◦ ψ
−1 : (C, 0)→ (C, z−n) , n ≥ 0 , (3.4)
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is an element of K. Any other affine chart (3.3) has the form

ψ′ = λψ , λ ∈ C∗ ,

which means that ẑ determines a well-defined sequence in A. Thus, we have an embedding

ι : An → A . (3.5)

Put
Al = ιAn ⊂ A .

We emphasize that although An and Al are identified via the embedding ι as sets, their
topologies are, generally speaking, different (the laminar topology is a priori finer than
the turbulent one, i.e., it has more open sets), which is why we use the superscripts n
and l referring to the turbulent topology coming from the natural extension N and to the
laminar one coming from the universal affine lamination A, respectively.

One can write down an explicit formula for the normalized meromorphic function
ϕ = ϕ0 (3.4) representing a point ẑ = {z−n}n∈N ∈ A

n. Let the number R−n be de-
termined by the condition that the disk D(z−n, R−n) is mapped by fn onto a domain of
spherical area 1 (counted with multiplicity). For a point z ∈ C, let

ρ−n : (C, 0)→ (C, z−n)

denote a rotation of the Riemann sphere moving 0 to z−n. The map ρ−n is defined up to
pre-composition with rotations u 7→ e2πiθu.

Lemma 3.6. There exists the limit

ϕ(u) = lim
n→∞

fn(ρ−n(R−nu)) , (3.7)

where the convergence is uniform on compact sets after selecting an appropriate sequence
of rotations ρ−n (so that ϕ is naturally well-defined up to pre-composition with rotations
u 7→ e2πiθu).

Proof. This is a version of [LM97, Lemma 4.7], which differs in the normalization of ϕ
and the way of writing the formula. The proof is the same. 2

Lemma 3.8. The inclusion ι : An → A is Borel.

Proof. Since the expression under the limit (3.7) is a meromorphic function depending
continuously on ẑ, the dependence of ϕ on ẑ is Borel. Now, the inclusion ι : An → A is
given by the map

ẑ 7→ {ϕ−n}n∈N,

where ϕ−n represents f̂−nẑ. As every component of this map is Borel, the map is Borel
as well. 2

Finally, by taking the closure of An in the laminar topology of A we make leafwise
affine structures continuous and obtain an (orbifold) affine lamination A. The restriction

of the f̂ -action from A onto A provides us with an affine automorphism on A, which
continuously extends the f̂ -action on Al (and will still be denoted as f̂). We shall denote
points in A by z, reserving the notation ẑ for the points of the natural extension N .
Denote by LA(z) the leaf of the affine lamination passing through a point z ∈ A.
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Alongside with the embedding ι : An → A (3.5) there is also a natural projection

℘ : A → Al ∼= An

equivariant with respect to the f̂ -action. The composition

π ◦ ℘ : A → C

extends the projection π : Al → C (3.1) and is also denoted by π. [When it can lead
to confusion, we will specify the notation as πN or πA.] In terms of the sequences of
meromorphic functions ϕ̂ it takes the form

π : ϕ̂ = {ϕ−n} 7→ ϕ0(0) .

3.1.3. The Julia sets. The Julia set J = J(f) ⊂ C can be lifted via the projection π to all
the spaces N ,An,Al and A under consideration. Accordingly, we will use the following
notations:

• Ĵ = π−1N J ⊂ N , for the natural extension of J ;

• J n = Ĵ ∩ An, for its affine part supplied with the turbulent topology;
• J l = ι(J n) ⊂ Al, for its affine part supplied with the laminar topology;
• and finally: J = cl(J l) = π−1A J ⊂ A.

All these Julia sets are closed in the corresponding spaces. If we wish to emphasize the
dependence on f , we will write Ĵf , J

n
f , etc.

3.1.4. The dual fibration. For a point z ∈ A with π(z) = z ∈ C let

T (z) ≡ T z = π−1z ⊂ A

be the fiber of the projection A → C passing through z. In the case when z ∈ Al, we
will also consider the corresponding fiber in Al:

T (z) ≡ Tz = T z ∩ A
l.

Clearly, T z is the closure of Tz in the laminar topology. We will call these fibers dual (to
the corresponding laminations). The associated partitions of A and Al into the dual fibers
will be referred to as the dual fibrations . Note that we are slightly abusing terminology
here: these fibrations are not locally trivial over C.

The dual fibration is clearly forward invariant:

f̂Tz ⊂ Tfz ∀ z ∈ C .

For n ∈ N, ζ = z−n, we let

T n(z) ≡ T nζ = f̂nTζ ⊂ T (z), (3.9)

and similarly for T
n
(z) ≡ T

n
ζ , see Fig. 6. Below we shall often refer to the sets T

n
(z) or

T n(z) as the rank n cylinders in T (z) (resp., in T (z)).
For a given z ∈ Al the cylinders T n(z) are closed and open in the fiber T (z), and form

a basis of its turbulent topology. If n is fixed, then they form a finite partition of T (z),
and these cylinder partitions increase as n grows (i.e., the next partition is a refinement
of the previous one). If π(z) is not postcritical, then T (z) consists of precisely dn rank n
cylinders. Analogous statements are valid for the fibers T (z) as well.
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C

π

A

ζ = z−n z

f̂n

T ζ T z = T (z)

T
n

ζ = T
n
(z) z

Figure 6

The cylinder partitions of a fiber T (z), z ∈ Al separate its points, and Lemma 3.8
yields:

Corollary 3.10. Given a point z ∈ Al, any Borel measure on the fiber T (z) is uniquely
determined by its values on the cylinders T n(ζ), ζ ∈ T (z).

3.1.5. Flow boxes. The presence of the dual fibration is a very important feature of the
affine lamination A which allows one to define a special class of flow boxes adapted to the
dual fibration.

The base of affine (orbifold) flow boxes of A described in [LM97] has an additional
property that their transversals belong to vertical fibers and that the orbifold group
commutes with the projection π. Such flow boxes will be called product flow boxes. A
product flow box B admits a family of dual holonomies VB which map one local leaf
to another by sliding along vertical fibers. These dual holonomies commute with the
dynamics. Note that the dual holonomies match on the intersection of any two product
flow boxes, so that in the sequel we can omit the subscript B in the notation of the dual
holonomy.

The base of flow boxes of the lamination Al can be selected even in a more special way
[LM97, §7.5]. For these boxes ψ : B → B × T, B ⊂ Al, the local leaves Bt

∼= B properly
cover some topological disc D ⊂ C with degree b ≥ 1 and branching over at most one
point ξ ∈ D. Then for each fiber Tz, z ∈ V \ {ξ} the intersection Tz ∩ B is a union of
b disjoint transversals Tζi , i = 1, . . . , b, where ζi ∈ B are the preimages of z under the
covering map B → D. We will call such local charts and the associated transversals Tζ
standard . In the case when b = 1 the flow box B will be called univalent.

If ẑ = {z−n}n∈N ∈ A
l is not a branched point on its leaf L(ẑ), then the laminar topology

at ẑ has a basis consisting of univalent flow boxes of the following type: for a neighborhood
U 3 z0 admitting a univalent pullback {U−n}n∈N along the backward orbit {z−n} and a
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number m ∈ N let

Om(ẑ, U) =
{
ζ̂ ∈ Al : ζ−m ∈ U−m, and

U admits a univalent pullback along ζ̂
}
.

(3.11)

We put O(ẑ, U) ≡ O0(ẑ, U).

Remark 3.12. We have considered two different notions of holonomy on Al: the holonomy
Hϑ along a path ϑ ⊂ C \ C∞ (see (3.2)), and the laminar holonomy (coming from the
laminar structure of Al). These two notions are easily seen to match. Indeed, consider a
standard flow box B over D ⊂ C with branching degree b, and take a path ϑ ⊂ D \ C∞
with endpoints z, ζ. Then the holonomy Hϑ along this path maps Tz ∩ B onto Tζ ∩ B in
such a way that each of b transversals composing Tz∩B is mapped onto some transversal of
Tζ ∩B, so that the path holonomy induces the laminar holonomy on standard flow boxes.
Conversely, the laminar holonomy between two standard transversals in a standard flow
box is always induced by the map Hϑ for an appropriately chosen ϑ.

3.1.6. The hyperbolic lamination. Applying the hyperbolization functor H described in
§1.2.3 to the C-lamination A we obtain an (orbifold pointed at infinity) H3-lamination

H = HA. The extension of the action of f̂ to H will be also denoted f̂ (it acts by

isometries between the leaves of H). The action of f̂ on H is properly discontinuous
[LM97, Proposition 6.2]. Hence the quotient

M =Mf = H/f̂ (3.13)

is Hausdorff and inherits the structure of an (orbifold pointed at infinity) hyperbolic

lamination. Countably many leaves ofM (the cyclic quotients of the f̂ -periodic leaves of
H) are either (orbifold) solid tori, or (orbifold) cusps (see §1.1.3). All the other leaves of
M are isomorphic to the hyperbolic space H3.

The vertical flow ξ and the horosphere foliation on H descend to a quotient flow (also
denoted by ξ) and the associated horosphere foliation on M. Note that the action of ξ

on H is in a sense dual to the dynamical action of f̂ (see [LM97, §6] and the discussion
in §5 below).

Remark 3.14. As in the case of Kleinian groups, the proper discontinuity is the point of
introducing the 3-dimensional extension, which allows one to take the quotient and to
construct a nice geometric object. As it follows from Proposition 4.6 below, the f̂ -action
is never properly discontinuous on the 2-dimensional affine lamination A. However, this
action is totally discontinuous on the Fatou set F = A \ J , so that one can quotient it.
It adds a 2-dimensional boundary to “geometrically finite ends” ofM (cf. §5).

3.1.7. The germ topology.

Definition 3.15. The rational function f (and the corresponding laminations A,H) is
tame if the laminations A and H are locally compact, and wild otherwise. 4

Interesting tame examples are given by Feigenbaum maps or, more generally, by maps
with minimal postcritical set: in this case A = An. Another class of tame examples are
maps with non-recurrent critical points on the Julia set (“geometrically finite maps”).
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However, we do not know whether the laminations A and H are always tame. This
is the reason why, along with the turbulent and the laminar topologies on A, we will
also consider an intermediate germ topology . We shall first define it on the space U of
meromorphic functions.

Definition 3.16. A sequence of functions fn ∈ U converges to a function f ∈ U in the
germ topology if there exists a neighborhood D 3 0 such that ϕn converges to ϕ uniformly
on D. 4

Therefore, the completion of the space of meromorphic functions in this topology is
the space of germs of analytic functions at 0. Although the germ topology is not metriz-
able, it is compatible with the natural complete uniform structure (coming from the
linear structure on the space of meromorphic functions), and we shall use the notation
germ(ϕn, ψn)→ 0 for convergence with respect to this uniform structure.

Definition 3.17. A set of meromorphic functions is normal at 0 if it is normal on some
neighborhood D 3 0. 4

Obviously, the notions introduced in Definition 3.16 and Definition 3.17 carry over to
the space U/C∗ and further to A (see §3.1.2). The following Lemma makes precise the

intuitive view of the dual fibers as “stable submanifolds” of f̂ .

Lemma 3.18. Let X ,Y ⊂ A be two normal subsets. Take two points z, ζ ∈ Y on the
same fiber T z, z ∈ J . Assume that the leaves L(z) and L(ζ) have the same branching

over z, and let f̂nkz ∈ X . Then uniformly over Y

germ(f̂nkz, f̂nkζ)→ 0 .

Proof. (cf. the proof of [LM97, Proposition 8.6]). Let z and ζ be represented by sequences

{ϕ−n}n∈N and {ψ−n}n∈N of meromorphic functions, ϕ(0) = ψ(0). Since f̂nkz ∈ X , where
X is normal, there exists a disk D 3 0 and a sequence of scaling factors λk ∈ C∗ such
that the functions

Φk ≡ fnk ◦ ϕ0 ◦ λk
form a normal family on D. Since z ∈ J , the family of iterates f nk is not normal near z.
Hence λk → 0.

By the hypothesis ϕ0 and ψ0 have the same order of vanishing at 0, and, moreover, we
may assume that ϕ0 and ψ0 are normalized in such a way that the leading coefficients of
their Taylor expansions at 0 are equal. Then

ψ0 ◦ λk = ϕ0 ◦ λk ◦ hk ,

where hk are conformal maps converging to identity uniformly on any D′ b D. Applying
fnk we obtain

Ψk ≡ fnk ◦ ψ0 ◦ λk = Φk ◦ hk.

Since the family Φk is normal, the spherical distance between Φk(z) and Ψk(z)) tends
to 0 uniformly on D′, and this convergence is also uniform over a normal at 0 family of
functions ϕ0.

Take now any m ∈ N. Then

fnk ◦ ϕ−m = fnk−m ◦ ϕ0 ,
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and similarly for ψ. Since X is normal, for appropriate scaling factors λm,k the family of
functions

Φm,k = fnk−m ◦ ϕ0 ◦ λm,k

is normal on some disk Dm 3 0. Repeating the above argument we conclude that the
distance between Φm,k and Ψm,k goes to 0 as k → ∞ uniformly on any D′

m b Dm (and
uniformly over a normal at 0 family of functions ϕ−m). This proves the claim. 2

3.2. The Busemann and basic cocycles of a rational map.

3.2.1. Dynamical formula for the basic cocycle. For simplicity we shall use the notation

zn = f̂nz , n ∈ Z ,

for the f̂ -orbit of a point z ∈ A. Recall that f̂ denotes both the action on A and on its
extension H. Iterating (1.66) we obtain

Lemma 3.19. Let σ : A → H be a section of the fiber bundle p : H → A. Then for any
n > 0

βσ(z, ζ)− βσ(z−n, ζ−n) =
n∑

k=1

log
‖Df̂(z−k)‖σ

‖Df̂(ζ−k)‖σ

= log
‖Df̂n(z−n)‖σ

‖Df̂n(ζ−n)‖σ
= log

‖Df̂−n(ζ)‖σ

‖Df̂−n(z)‖σ
.

Definition 3.20. A section σ : A → H is called special (for the lack of a better term) if

(i) f̂−1 is locally uniformly contracting in the metric ρσ, i.e.,

‖Df̂−n(z)‖σ → 0 , n→∞ ,

and the convergence is locally uniform;
(ii) The cocycle βσ is uniformly continuous with respect to ρσ, i.e., for any ε > 0 there

exists a δ > 0 such that

ρσ(z, ζ) < δ =⇒ βσ(z, ζ) < ε ∀ (z, ζ) ∈ graphA .
4

Remark 3.21. For the needs of further applications condition (ii) above can be replaced
with the following stronger condition:

(ii′) The cocycle βσ is Lipschitz continuous with respect to ρσ, i.e., there is a constant
C > 0 such that

|βσ(z, ζ)| ≤ Cρσ(z, ζ) ∀ (z, ζ) ∈ graphA .

Note that by passing from the section σ to the rescaled section σ ′z = Cσz, we may always
assume that C = 1.

An example of a special section (actually, it will satisfy the stronger Lipschitz condition
(ii′)) will be constructed in §3.3 below.
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Theorem 3.22. If σ is a special section, then for any (z, ζ) ∈ graphA

βσ(z, ζ) =
∞∑

k=1

log
‖Df̂(z−k)‖σ

‖Df̂(ζ−k)‖σ
, (3.23)

and the convergence of the series is locally uniform.

Proof. Condition (i) of Definition 3.20 implies that

ρσ(z−n, ζ−n) −→n→∞ 0 ∀ (z, ζ) ∈ graphA .

Therefore,
∣∣∣βσ(z−n, ζ−n)

∣∣∣→ 0

by condition (ii), and Lemma 3.19 yields the claim. 2

Remark 3.24. The right-hand side of formula (3.23) measures the limit distortion of the

metric ρσ by f̂ along its backward trajectories.

Remark 3.25. Formula (3.23) is closely related to the Anosov–Sinai formula for the leaf-
wise density of an absolutely continuous invariant measure m on the unstable foliation
[AS67], [Le81]. This relation becomes explicit in the one-dimensional case when the above
densities determine an invariant affine structure on the unstable foliation. Then the basic
cocycle βσ can be identified with the Radon–Nikodym cocycle of m, see §2.1.3.

3.2.2. Non-triviality of the Busemann cocycle. Since the map f̂ acts as isometry between
pointed at infinity hyperbolic leaves of H, the leafwise Busemann cocycle β is f̂ -invariant.
Hence, it descends to a cocycle on the quotient M = H/f̂ (3.13), which will be also
denoted by β.

This cocycle is clearly non-trivial on the (countably many) leaves ofM associated with
repelling periodic orbits (solid tori; see §1.1.3 and §3.1.6). Let us remove these leaves
fromM and denote byM′ what is left (so that all the leaves ofM′ are pointed at infinity
hyperbolic 3-spaces). Correspondingly, denote by H′ ⊂ H the preimage ofM′ under the

factorization map H →M ∼= H/f̂ , and by A′ the associated subset of A.
The next result easily follows from the existence of special sections (Theorem 3.30).

Theorem 3.26. The Busemann cocycle onM′ is non-trivial in the Borel category.

Proof. (cf. the proof of Theorem 5.26). Triviality of the Busemann cocycle onM′ means

that there exists a Borel f̂ -invariant function ϕ on H′ such that

β(h1,h2) = ϕ(h2)− ϕ(h1) . (3.27)

In other words, ϕ determines a global f̂ -invariant “hyperbolic height” on H′. Take a
special section σ, and put

Φ(z) = ϕ
(
σ(z)

)
, z ∈ A′ .
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Then, as it follows from (1.67), (3.27) and f̂ -invariance of the function ϕ, for any z ∈ A′

log ‖Df̂−n(z)‖σ = β
(
σ(f̂−n(z)), f̂−n(σ(z))

)

= ϕ
(
f̂−n(σ(z))

)
− ϕ

(
σ(f̂−n(z))

)

= ϕ
(
σ(z)

)
− ϕ

(
σ(z−n)

)
= Φ(z)− Φ(z−n) .

Therefore, by Definition 3.20(i)

Φ(z)− Φ(z−n) −→
n→∞

−∞ ∀ z ∈ A′ , (3.28)

Now take any f̂ -invariant Borel probability measure θ concentrated on A′ (for instance,
the balanced measure κ, see §4.1.1). Then by the Poincaré Recurrence Theorem for θ-
a.e. z ∈ A′ there exists an infinite sequence {ni} such that Φ(z) − Φ(z−ni) ≥ 0, which
contradicts (3.28). 2

Corollary 3.29. There exists no Borel Euclidean structure onM′.

3.3. An example of a special section. We shall now give an example of a section σ for
which the conditions of Definition 3.20 are satisfied and the “dynamical formula” (3.23)
holds. The rest of §3.3 will be devoted to a proof of the following

Theorem 3.30. For any rational function f the fiber bundle p : H → A has a special
section.

3.3.1. Normalization of meromorphic functions. Recall (see §3.1.2) that any global affine
chart

ψ : (LA(z), z)→ (C, 0) (3.31)

on the leaf LA(z) determines the Euclidean structure ε(ψ) and a meromorphic function

ϕ = π ◦ ψ−1 : (C, 0)
ψ−1

−→ (LA(z), z)
π
−→ (C, z) , z = π(z) . (3.32)

Any other affine chart ψ′ (3.31) has the form

ψ′ = λψ , λ ∈ C∗ ,

and the corresponding Euclidean structure ε(ψ′) and the meromorphic function ϕ′ =
π ◦ ψ′−1 are

ε(ψ′) = |λ| ε(ψ) , ϕ′(w) = ϕ(w/λ) . (3.33)

Thus, choosing the value σ(z) of a section σ : A → H at the point z amounts to
“normalizing” the family of functions {ϕ(w/λ)}, λ ∈ C∗ (cf. Lemma 3.6).

Given a meromorphic function ϕ : C→ C and a subset X ⊂ C let

I(ϕ,X) =
∫

X
‖Dϕ‖ eucl

be the spherical area of the image ϕX counted with multiplicity, where the norm of the
differential Dϕ is taken with respect to the Euclidean metric on C and the spherical one
on C. If X = D(z, r) is the disk of radius r centered at a point z ∈ C, then we use the
notation

I(ϕ, z, r) ≡ I
(
ϕ,D(z, r)

)
.
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By R(ϕ, z) denote the radius uniquely determined by the relation

I
(
ϕ, z, R(ϕ, z)

)
= 1 .

If z = 0, we shall usually omit it from these notations. Also, when it is clear from the
context, we shall often omit the function ϕ.

Obviously, for the rescaled function ϕ′(w) = ϕ(w/λ), λ ∈ C∗

I(ϕ′, r) = I

(
ϕ,

r

|λ|

)
, R(ϕ′) = |λ|R(ϕ) . (3.34)

3.3.2. Construction of a special section. For any affine chart (3.31) and the corresponding
meromorphic function (3.32) define a Euclidean structure

σz =
ε(ψ)

R(ϕ)
(3.35)

on the leaf LA(z). By (3.33) and (3.34) it does not depend on the choice of ψ, which
provides us with a section σ : A → H. In other words, we take on LA(z) such an affine disk
D centered at z that the spherical area of π(D) (counted with multiplicity) equals to 1,
and then define σ(z) as the Euclidean structure on LA(z) for which the radius of D is 1.
Since the topologies on A and H are induced by uniform convergence of meromorphic
functions on compact sets, the section σ is continuous.

The cocycle βσ associated with the section σ (3.35) can be also calculated as follows.
Take an arbitrary affine chart

ψ : (LA, z, ζ)→ (C, z, ζ) ,

and let ϕ be the corresponding meromorphic function (3.32). Then

σz =
ε(ψ)

R(ϕ, z)
, σζ =

ε(ψ)

R(ϕ, ζ)
,

and

βσ(z, ζ) = log
σz
σζ

= log
R(ϕ, ζ)

R(ϕ, z)
.

3.3.3. Proof of Theorem 3.30. Now Theorem 3.30 would follow from

Lemma 3.36. The above constructed section σ (3.35) is special.

Proof. We shell check two conditions of Definition 3.20.
(i). Take an affine chart (3.31) and the corresponding meromorphic function (3.32).

For an integer n > 0 let

ψ−n = ψ ◦ f̂n : (LA(z−n), z−n)
f̂n
−→ (LA(z), z)

ψ
−→ (C, 0)

and

ϕ−n = π ◦ ψ−1−n = π−n ◦ ψ
−1 .

Then

f̂n
(
ε(ψ−n)

)
= ε(ψ) ,
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so that

‖Df̂−n(z)‖σ =
(f̂nσ)z
σz

=
R(ϕ)

R(ϕ−n)
.

Now, by the Shrinking Lemma (see [LM97, Appendix 2])

diamϕ−n(D) −→
n→∞

0

for any disk D ⊂ C, so that

I(ϕ−n, r)→ 0 ∀ r > 0 .

Therefore, R(ϕ−n)→∞.
Let D b D′ and a meromorphic function ϕ̃ (associated with a leaf of A) be uniformly

close to ϕ on D′. Then the functions ϕ̃−n have uniformly bounded degree of branching on
D′ (by the definition of the topology on A, see [LM97, §7.3]). By the Shrinking Lemma,
diam ϕ̃−n(D)→ 0 uniformly with respect to ϕ̃. This yields locally uniform contraction.

(ii). We will show that the cocycle βσ is Lipschitz continuous with respect to the metric
ρσ (see Remark 3.21). Take an affine chart

ψ : (LA, z, ζ)→ (C, z, ζ) ,

let ϕ = π ◦ ψ−1 and R(z) ≡ R(ϕ, z). Then by the definition of the functional R neither
of the disks B(z, R(z)) and B(ζ, R(ζ)) can be contained in the other one, so that

∣∣∣R(z)−R(ζ)
∣∣∣ ≤ |z − ζ| .

Dividing by R(z), we obtain ∣∣∣∣∣1−
σz
σζ

∣∣∣∣∣ ≤ |z − ζ|σz
,

where |z− ζ|σz
is the distance between the points z and ζ in the Euclidean structure σz.

Since σ is continuous, it implies that for any fixed z and any ε > 0

|βσ(z, ζ)| =

∣∣∣∣∣log
σz
σζ

∣∣∣∣∣ ≤ (1 + ε) ρσ(z, ζ) (3.37)

for all ζ sufficiently close to z.
If z and ζ are not close, join them with an almost geodesic curve ϑ of Riemannian

length at most (1 + ε) ρσ(z, ζ). Subdivide ϑ into small pieces by points zi = ϑ(ti) such
that (3.37) is satisfied for any two consecutive points. Since

∑
ρσ(zi, zi+1) ≤ length(ϑ) ≤ (1 + ε)ρσ(z, ζ),

(3.37) is satisfied for z, ζ as well, with the constant (1 + ε)2. As ε > 0 is arbitrary, the
section σ satisfies the Lipschitz condition with the constant C = 1. 2

Remark 3.38. Instead of the functional I(ϕ, z, r) (the spherical area of the image
ϕB(z, r) taken with multiplicity) used in the definition of the section (3.35) we might
just take the simple spherical area without worrying about the multiplicities. However,
we prefer to take multiplicities into account for several reasons: the arising functional I
is a natural characteristic of a meromorphic function which is used, for example, in the
Nevanlinna theory; the functional I has a better geometric interpretation as it comes from
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pulling back the spherical area to the leaves of A; finally, we need the functional I for
Lemma 4.42 and Lemma 4.46 below anyway.

Remark 3.39. It might be tempting to use the normalization ϕ′(z) = 1 instead of the
above one. It would work fine in the hyperbolic case. In general, however, it is not well-
defined at the critical points of ϕ and the corresponding section σ is not continuous. This
would have caused many technical troubles in what follows.

3.3.4. Metrization of A. The above normalization allows one to endow the lamination A
with a natural metrizable uniform structure. Let us go through the construction of A
from §3.1.2. We will use the same notation, dist, for various metrics which appear along
the way.

The space of meromorphic functions, being a topological vector space, possesses a
natural uniform structure. Let us endow it with some metric compatible with this uniform
structure. For instance, given two meromorphic functions φ and ψ, let

distn(ϕ, ψ) = sup
|z|≤n

ς(ϕ(z), ψ(z)) ,

where ς is the spherical metric on C, and let

dist(ϕ, ψ) =
∞∑

n=1

1

2n
distn(ϕ, ψ)

(note that the diameter of the metric dist is 1). This induces a metric on the space of
normalized non-constant meromorphic functions

U0 = {ϕ ∈ U : R(ϕ) = 1} .

Let us represent the group C∗ ⊂ Aff as the direct product R∗+ × S
1, where R∗+ is the

group of scalings and S1 is the group of rotations. The group R∗+ acts properly and free on
U , so that we have a principal R∗+-bundle U → U/R

∗
+. This bundle is, in fact, trivial, as

it has a global section associating to ϕmodR∗ the normalized representative ϕ(etz) ∈ U0.
Thus, U/R∗+ ≈ U0, and we can transfer the metric from U0 to U/R

∗
+.

The unit circle S1 ⊂ Aff acts (isometrically) on U 0, and the above metric descends
to the quotient U 0/S1 ≈ U/C∗ by taking the minimum-distance between two orbits.
It induces a metric on the global attractor K/C∗. It can be now lifted to the natural

extension K̂/C∗ as
∞∑

n=0

1

2n
dist(ϕ−nmodC∗, ψ−nmodC∗) .

Since A ⊂ K̂modC∗, we obtain a desired metric on A.

Remark 3.40. The reader can check that all the metrics obtained in such a way determine
the same uniform structure on A. Of course, this construction works for the space H as
well (just skip the step of factorization by S1).

3.4. Dual basic cocycle.
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3.4.1. Forward expansion. Let us consider the leafwise Riemannian metric ρ ≡ ρσ asso-
ciated with the special section σ constructed in §3.3. We shall show that the forward
iterates of f̂ expand ρ on the Julia set.

Lemma 3.41. The map f̂ : A → A is (locally uniformly) forward expanding on the Julia

set J with respect to the Riemannian metric ρ, i.e., ‖Df̂n(z)‖ρ →∞ as n→ +∞ locally
uniformly in z ∈ J .

Proof. By the classical expanding property of f on its Julia set J (for example, see [Ly86,
Theorem 1.15]), for any disk D(z, ε) with z ∈ J there exists a number N depending on ε
only such that the spherical area of fn D(z, ε) is greater than 1 for all n ≥ N .

Let ϕz : (C, 0)→ (C, z) be the normalized meromorphic function representing the point
z, where z = π(z). Obviously, there is a neighborhood U = U(z) ⊂ A such that the
family of functions ϕζ representing points ζ ∈ U form a normal family on D. Hence for
any r ∈ (0, 1) there exists ε = ε(r) > 0 such that ϕζ(Dr) ⊃ D(ζ, ε) for all ζ ∈ U (where
ζ = π(ζ)).

By the above expanding property, for ζ ∈ U ∩ J and n ≥ N , the spherical area
of π(f̂n ◦ ϕζ(Dr)) is greater than 1. Therefore, ‖Df̂n(ζ)‖ρ > 1/r, and the conclusion
follows. 2

3.4.2. Vertical distortion. We will now study how the dual holonomy V (see §3.1.5)
distorts the Riemannian metric ρ. The notation dist below stands for any metric on A
compatible with its uniform structure, see §3.3.4.

Lemma 3.42. Consider a product flow box B ∼= B × T and the dual holonomy
V : Bt → Bτ between two leaves of B. Then

log
‖Df̂n(z)‖ρ

‖Df̂n(V z)‖ρ
≤ C · dist(t, τ) ≤ C , z ∈ J ∩Bt , (3.43)

where C = C(B) depends on B only, and C(B)→ 0 as diamB → 0.

Proof. Consider the normalized meromorphic functions ϕ and ψ representing the points
z and ζ = V (z) respectively, where ϕ(0) = ψ(0) = z ≡ π(z). Then the point f̂nz is

represented by the normalized function f̂n ◦ ϕ ◦ λn, where λn = ‖Df̂n(z)‖−1ρ → 0 by
Lemma 3.41. Consider the disk Dn ⊂ L(z) of radius λn centered at z. Since λn → 0, the
disks Dn eventually belong to the local leaf of B containing z. By the Schwarz Lemma,
the dual holonomy is Lipschitz with respect to the leafwise Riemannian metric ρ on B.
Hence the sets ∆n = V (Dn) ⊂ L(ζ) are trapped between the round disks of radii Cλn and

C−1λn centered at ζ, where the constant C depends only on B. Hence I(f̂n◦ψ, Cλn) ≥ 1,

while I(f̂n ◦ ψ, C−1λn) ≤ 1. It follows that

C−1λ−1n ≤ ‖Df̂
n(ζ)‖ρ ≤ Cλ−1n . (3.44)

Moreover, the Lipschitz constant C of V goes to 0 as dist(t, τ) → 0, so that (3.44) is
equivalent to the desired estimate (3.43). 2

Let ‖DV ‖ρ stand for the norm of the derivative of the dual holonomy with respect to
the Riemannian metric ρ.



MEASURES ON LAMINATIONS 63

Lemma 3.45. Consider a product flow box B, and take two points z ∈ B ∩ J and
ζ = V (z) ∈ B ∩ J in the same dual fiber of B. Let Vn be the dual holonomy such that

Vn(f̂
nz) = f̂nζ. Then ‖DVn‖ρ → 0, uniformly over the choice of points z and ζ.

Proof. Consider the disk Dn
z ⊂ L(z) centered at z such that π(f̂nDn

z) has spherical area 1
counted with multiplicity and the analogous disk Dn

ζ for ζ. By the above expanding
property (see Lemma 3.41) the radius of Dn

z goes to 0 as n→∞. By the Koebe Distortion
Theorem, V (Dn

z) is a small oval with a small distortion. Hence it is trapped between the
two copies of the disk Dn

ζ scaled by the factors λn > 1 and λ−1n , respectively, where λn → 1
uniformly over the choice of points z and ζ under consideration.

Consider now the uniformization γnz : (C, 0) → (L(z), z) of the leaf L(z) such that
γnz (D) = Dn

z , and the analogous uniformization γnζ for ζ. Then the uniformizations

ψnz = f̂n ◦ γnz and ψnζ = f̂n ◦ γnζ of the leaves L(f̂nz) and L(f̂nζ) are normalized. Hence
‖DVn‖ρ = |ϕ′n(0)|, where ϕn is determined from the diagram: Vn ◦ ψ

n
z = ψnζ ◦ ϕn, which

is equivalent to: V ◦ γnz = γnζ ◦ ϕn.
It follows that ϕn(D) is trapped between the disks of radius λn and λ−1n centered at 0.

By the Schwarz Lemma, λ−1n ≤ |ϕ
′
n(0)| ≤ λn, and we are done. 2

3.4.3. Definition of the dual basic cocycle. We are now ready to introduce the forward
basic cocycle αρ associated with the metric ρ.

Theorem 3.46. Consider a product flow box B and take points z ∈ B ∩ J and ζ =
V (z) ∈ B ∩ J in the same dual fiber of B. Let zn = f̂nz, ζn = f̂nζ. Then

‖DV ‖ρ(z) =
∞∏

n=0

‖Df(zn)‖ρ
‖Df(ζn)‖ρ

(3.47)

is well-defined and continuous.

Proof. Consider the dual holonomies Vn from Lemma 3.45. Then f̂n ◦ V = Vn ◦ f̂
n and

hence

‖DV ‖ρ =
‖Df̂n(z)‖ρ

‖Df̂n(ζ)‖ρ
‖DVn‖ρ .

By Lemma 3.45, the expression in the right-hand side locally uniformly converges to the
infinite product in the right-hand side of (3.47), and the conclusion follows. 2

Thus, the expression (3.47) determines a locally continuous cocycle αρ(z, ζ) which will
be called the dual basic cocycle.

3.5. Euclidean laminations. An affine lamination is called Euclidean if its affine struc-
ture can be refined to a Euclidean one, which means that there exists a continuous family
of leafwise Euclidean structures consistent with the leafwise affine structures, see §1.3.2.
Etienne Ghys has shown that non-Euclidean affine laminations (even smooth foliations)
exist [Gh97] (in contrast with the negatively curved case [Ca93]; see also the discussions
in [Gh99] and in §5.6 below). We shall now prove that the dynamical affine lamination
A = Af is never Euclidean, except for very special cases.

Recall that a rational function f is called postcritically finite if the forward orbits of all
critical points are finite. To any postcritically finite map one can associate a Thurston
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orbifold Of with underlying space C and singularities at the postcritical points (see [Th],
[DH93]). Its Euler characteristic is non-positive: χ(Of ) ≤ 0. The orbifold Of is called
hyperbolic if χ(Of ) < 0 and parabolic otherwise. The parabolic case is very special: up
to a Möbius conjugacy, only power functions z 7→ zd, Chebyshev polynomials, and Lattès
rational maps have parabolic orbifolds.

By [LM97, Proposition 7.6], the lamination Af is minimal, i.e., all its leaves are dense.
[Note that this claim is true without any restrictions on f as we have already taken care
of the Chebyshev and Lattès cases by removing the isolated leaves from the corresponding
laminations, see §3.1.1.]

Theorem 3.48. The affine lamination A ≡ Af is Euclidean if and only if the function
f is postcritically finite and the Thurston orbifold O ≡ Of is parabolic.

Proof. Postcritically finite rational maps with parabolic orbifolds can be characterized by
the following property:

If f(z) = f(ζ), then the local degrees of f at z and ζ are the same, except
if one of these points is a postcritical fixed point.

In terms of the lamination A it means that if π(z) = π(ζ), then the leaves L(z) and L(ζ)
have the same degree of branching over C at the points z and ζ, respectively. [If one of
these points is an orbifold point, then one should count the degree of branching in the
corresponding orbifold local chart.] Moreover, by the definition of the Thurston orbifold
O this degree coincides with the weight of the point π(z) = π(ζ) in O.

On the other hand, if O is parabolic, then it carries a Euclidean orbifold structure. By
the previous remark on the equality of the degrees of branching and the orbifold weights,
one can lift this structure from O to the lamination A. This shows that A is Euclidean
once O is such.

Conversely, assume that A is Euclidean. Let ‖Df̂(z)‖ stand for the norm of f̂ : L(z)→
L(f̂z) measured with respect to the corresponding Euclidean structures. It is constant
in the leafwise direction and continuous in the transverse direction. By minimality, it is
constant on the whole lamination A:

‖Df̂(z)‖ ≡ λ . (3.49)

Since f̂ has a repelling periodic point, λ > 1.
Let us now show that the leafwise Euclidean structure is invariant with respect to the

dual holonomy V , i.e., that for any univalent standard flow box B ∼= B × T and any two
points z, ζ ∈ T , the dual holonomy V ≡ VB between the local leaves LB(z) and LB(ζ) is
isometric at z:

‖DV (z)‖ = 1. (3.50)

Assume first that z ∈ J is a repelling periodic point of period p. Then the sequence
ζk = f̂ pkζ converges to z by Lemma 3.18. By transverse continuity of the Euclidean
structure ‖DV k(z)‖ → 1, where V k is the dual holonomy between the leaves LB(z) and
LB(ζk). Since the dual holonomy commutes with the dynamics, (3.49) implies ‖DV (z)‖ =
‖DV k(z)‖. This yields (3.50).
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As repelling periodic points are dense in the Julia set by Proposition 4.6 below, we
conclude that relation (3.50) is valid for any non-branched z ∈ J .

It follows that any two points z ∈ J and ζ ∈ J in the same dual fiber have the same
degree of branching. Indeed, if the degree b of z were greater than the degree b′ of ζ, then
the dual holonomy V : L(z) → L(ζ) near z would behave as z 7→ zb/b

′

, and we would
have ‖DV (u)‖ → 0 as u→ z in contradiction with (3.50).

Thus, for any two points z ∈ J and ζ ∈ J in the same fiber, the dual holonomy
L(z)→ L(ζ) is locally well defined, univalent and isometric at z. We will show that the
same property holds for points z and ζ outside J as well.

First notice that it is enough to show that for any two points z ∈ J and ζ ∈ J from
the same fiber the dual holonomy V : L(z) → L(ζ) is locally isometric. Indeed, then V
is isometric at any point u ∈ L(z) to which it can be analytically continued. But then
it admits a conformal continuation to the whole leaf L(z) (for the same reason as above:
otherwise it would hit a branched or critical point where ‖DV (u)‖ would either blow up
or vanish).

Assume by contradiction that the dual holonomy is not locally isometric somewhere
on J . Since periodic points are dense in J (Proposition 4.6), it must happen near one

of them. Denote it by a. Passing, if necessary, to an iterate of f̂ , we may assume that
f̂(a) = a. Let L ≡ L(a).

Let us consider the level set

Z = {z ∈ L(a) : ‖DV (z)‖ = 1} .

Near a, it is a union of b real analytic curves Zi meeting at a at the angle π/b (where b
is the local degree of V ′(z) at a).

Moreover, J ∩ L ⊂ Z. Let us show that in fact J ∩ L ⊂ Zi for some i. To this end
take a point ζ 6= a ∈ J near a and such that f̂nζ ∈ T (a) for some n ∈ N. The leafwise

Julia set J ∩ L near ζ belongs to some local branch Zj of Z, hence J ∩ L near f̂nζ is

contained in f̂nZj. Passing from f̂nζ to a by the dual holonomy, we conclude that J ∩L
must belong to some analytic curve passing through a. Hence it must belong to some
local branch Zi.

Clearly, Zi must be invariant under f̂−1. But the map f̂ |L is linear. Hence Zi is

a straight interval and f̂ ′(a) is real. Iterating Zi forward, we conclude that J ∩ L is
globally contained in a straight line on the leaf L. Since this leaf is dense in A, the same
is true on any other leaf.

Therefore, the local dual holonomy V : L → L(ζ) near a carries the interval Zi to
another straight interval. Hence the restriction of V ′ onto Zi has a constant argument
(with respect to any Euclidean charts on the leaves). Since |V ′(z)| = 1 on Zi, we conclude
that V ′ ≡ const on Zi. By the uniqueness theorem, V is a local isometry, contradicting
our assumption.

Thus, the dual holonomies are global isometries on all leaves. It follows that all the
leaves of A have the same degree of branching over any point of C. As we have mentioned
above, it is the characteristic property of rational maps which are post-critically finite
with parabolic Thurston orbifold. In fact, since the dual holonomies are isometric, the
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Euclidean structure on A can be correctly pushed down to an orbifold Euclidean structure
on the orbifold O. 2

4. Measures on laminations associated with rational maps

4.1. The balanced measures.

4.1.1. The balanced measure on Julia sets.

Definition 4.1. Let f : C→ C be a rational map. A probability measure κ on the Julia
set J = J(f) of f is called balanced if it is f -invariant, and for κ-a.e. z ∈ J the conditional
measure of κ on the set f−1(z) is uniform. Equivalently, κ is balanced if

Jacκ f ≡ d ,

where d = deg f is the degree of f (see Definition 2.1). 4

Theorem 4.2 ([Br65], [Ly93]). Any rational map f has a unique balanced measure κ.
Moreover, suppκ = J, and the preimages of any point z ∈ J (excluding, possibly, two
exceptional points) are equidistributed with respect to κ:

lim
n→∞

1

dn
∑

ζ:fnζ=z

δζ = κ,

where the limit is taken with respect to the weak topology of the space of probability mea-
sures on C.

Being f -invariant, the balanced measure κ can be uniquely lifted to an f̂ -invariant
measure κ̂ on the natural extension Ĵ (e.g., see [CFS82]). The measure κ̂ is called the

natural extension of κ. Although in general Ĵ is not contained in An, the following weaker
statement still holds.

Lemma 4.3. The measure κ̂ is supported by the set J n ⊂ N .

Proof. The balanced measure has entropy log d [Ly93]. Hence it has a positive Lyapunov
exponent [Ru78], and we can apply the argument from [LM97, p. 37]. 2

Since the embedding ι : An → A is Borel (Lemma 3.8), the measure κ ≡ ι(κ̂) is a Borel
measure on J l = ι(J n). Recall that the closure of J l in the laminar topology is the Julia
set J = π−1A J of the affine lamination A.

Lemma 4.4. The support of the measure κ is the whole Julia set J .

Proof. Let X be the subset of J l obtained from J l by removing the set of branched or
asymptotically periodic orbits ẑ = {z−n}n∈N (the former means that one of the points z−n
is critical; the latter means that the backward orbit ẑ tends to a periodic cycle). They
occupy countably many leaves and dual fibers. Hence X is dense in J l, and in its turn
J l is dense in J , so that it is sufficient to show that

κ(V) = κ̂(V) > 0

for any Al-neighbourhood V of any point ẑ ∈ X.
By [Ly93, Proposition 4], for any ε > 0 there exists a number l = l(ε) with the following

property:
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More than (1− ε)dk of the inverse branches of f−k are univalent on Ω for
any topological disk Ω ⊂ C with Ω ∩ Cl = ∅ and any k ∈ N (recall that
Cl stands for the l-postcritical set of f , see the list of notations in §0.1).

Therefore, for any such Ω,

κ̂
(
O(ẑ,Ω)

)
≥ (1− ε)κ(Ω) , (4.5)

where O(ẑ,Ω) is the flow box defined in (3.11).
Since ẑ is not critical, univalent boxes {Om(ẑ, V )} form a local topological basis at ẑ.

Take such a box, and denote by . . . , V−1, V0 ≡ V the univalent pullbacks of V along the
backward orbit ẑ = {. . . , z−1, z0 ≡ z}. By the Shrinking Lemma (see [LM97, Appen-
dix 2]), diamV−n → 0. On the other hand, since ẑ is not asymptotically periodic, there
exists a δ > 0 such that

dist(z−n(k), Cl) > δ along a sequence n(k)→∞ ,

and therefore
V−n(k) ∩ Cl = ∅ for sufficiently big k .

Then by f̂ -invariance of κ̂ and by (4.5)

κ̂
(
On(k)(ẑ, V )

)
= κ̂

(
O(f̂−n(k)ẑ, V−n(k))

)
≥ (1− ε)κ(V−n(k)) > 0 .

But
Om(ẑ, V ) ⊃ On(k)(ẑ, V ) for n(k) ≥ m .

Hence κ̂
(
Om(ẑ, V )

)
> 0. 2

Proposition 4.6. The map f̂ is topologically transitive on the Julia set J , and repelling
periodic points are dense in J .

Proof. Take two unbranched orbits ẑ = {. . . , z−1, z0} and ζ̂ = {. . . , ζ−1, ζ0} in J
l such that

the first one is not asymptotically periodic, and two standard univalent neighbourhoods
Qm(ẑ, V ) and Qn(ζ̂ , U). Let {V−s}s∈N (resp., {U−t}t∈N) be the pullbacks of V (resp., U)

along ẑ (resp., ζ̂). We will show that there exists l ∈ N such that

f̂−lQm(ẑ, V ) ∩Qn(ζ̂ , U) 6= ∅ . (4.7)

Take a neighborhood Ũ b U of ζ0 and a number ε < κ(Ũ). By Theorem 4.2, eventually

more than εdk of fk-preimages of any point of J belong to Ũ . Take a big l ∈ N. We saw
in the proof of Lemma 4.3 that there is s ≥ m such that V−s ∩ Cl = ∅. If l is sufficiently
big, then by [Ly93, Proposition 4], there exists more than (1 − ε)dk fk-preimages of z−s
such that the corresponding inverse branches ϕk of f−k admit a single-valued extension
to V−s. Hence one of these preimages must belong to Ũ . Moreover, if k is sufficiently big,
then by the Shrinking Lemma ϕkV−s ⊂ U .

Altogether, we conclude that there exists a sequence of points

uk = ϕk(z−s) ∈ U ∩ f
−kz−s, k ≥ k0,

such that the inverse branches ϕk admit an extension to V−s, and ϕkV−s ⊂ U . Consider
a point

ûk = {. . . , uk−1, u
k
0 ≡ uk} ∈ Qn(ζ̂ , U)
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such that uk−t ∈ U−t, t ∈ N. Obviously, f̂k+sûk ∈ Qm(ẑ, Ṽ ), and (4.7) follows.

Since standard univalent boxes form a basis of neighborhoods for a dense subset of
points in J (and since J is complete), (4.7) immediately implies topological transitivity

of f̂ on J .
Now take ζ̂ = ẑ, m = n and U b V , and let ŵ = {. . . , w−1, w0} be the corresponding

intersection point in (4.7). Let {. . . ,W−1,W0} be the pullbacks of V along ŵ, and let
ψk : V → W−k be the corresponding inverse branches of f−k. If l is sufficiently big then
by the Shrinking Lemma, ψlV b V . By the Schwarz Lemma, ψl has an attracting fixed
point a in V . Moreover, for this point, ψk(a) ∈ W−k = V−k for k = 0, 1, . . . , l. Hence
â ∈ Qm(ẑ, V ), where â is the periodic lift of a to Al.

Thus, any standard univalent box contains a repelling periodic point. Therefore, such
points are dense in A. 2

4.1.2. The transverse balanced measure.

Definition 4.8. A transverse measure m = {mT} of the lamination A is called a trans-
verse balanced measure if it satisfies the following properties:

(i) The family {mT} is holonomy invariant, i.e.,

∆m ≡ 1 ;

(ii) f̂mT = d ·m
f̂T

for any transversal T , i.e.,

Jacm f̂ ≡ d ;
4

In what follows, we shall use the simplified notation m(X) ≡ mT (X) for subsets of a
given transversal T .

Theorem 4.9. The lamination A has a transverse balanced measure m.

Proof. For any point z ∈ J \ C∞, the preimage f−1(z) consists of precisely d points.
Denote by mz the uniform measure on the set of backward orbits starting from z, i.e., for
any u ∈ f−nz, let

mz

{
ζ̂ ∈ π−1(z) : ζ−n = u

}
= 1/dn .

Recall that Tz stands for the affine part of π−1(z).

Claim. Let ϑ ⊂ C \ C∞ be a path joining some points z and ζ. Then the holonomy

Hϑ : π−1(z)→ π−1(ζ) (4.10)

transforms Tz to Tζ modulo a set of zero mz-measure.

For proving this assertion we will show that for mz-a.e. ẑ ∈ Tz, the lift of ϑ to N
starting at ẑ is contained in R. Then it will be actually contained in the leaf L(ẑ) and
the conclusion will follow.

Let is consider a simply connected neighborhood Vl ⊂ C \ Cl of the path ϑ. Let Xl be
the set of backward orbits ζ̂ ∈ π−1(z) such that Vl does not admit a univalent pullback
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along ζ̂. By [Ly93, Proposition 4], mz(Xl) ≤ Cd−l, with a constant C independent of l.
Hence

mz

(
∞⋂

l=0

Xl

)
= 0.

But if ẑ does not belong to the above intersection, then the lift of the path ϑ starting at
ẑ is contained in R. Therefore, this property holds for almost all ẑ ∈ Tz, and the claim is
proven. 4

We will now show that the uniform measures mz on the fibers π−1(z) of N , z ∈ C\C∞,
are actually supported on Tz ⊂ A

n and can be promoted to a balanced measure on A.
Take a path ϑ ⊂ C \ C∞ joining two points z and ζ. Since the holonomy (4.10) is a

bijection between the sets of cylinders of a given rank over z and ζ, and all these cylinders
have equal measures, we conclude that Hϑ(mz) = mζ . Together with the above assertion
this implies: If mz is supported on Tz for some point z ∈ C \C∞, then the same property
holds for any z ∈ C \ C∞.

But for κ-a.e. z ∈ J , the measure mz coincides with the conditional measures of κ̂.
Indeed, the balanced property of κ easily implies that the conditional measures of κ̂ are
equidistributed on the cylinders, which uniquely determines a Borel measure on π−1(z).
By Lemma 4.3, the balanced measure κ̂ is supported on An. Thus, mz is supported on
Tz for κ-a.e. z, and hence for all z ∈ C \ C∞.

Now, by Lemma 3.8, the measures mz can be transferred to a Borel measures on
the fibers Tz endowed with the laminar topology (which will still be denoted as mz).
Obviously the transferred measures will also be invariant under the holonomies Hϑ along
paths ϑ ⊂ C \ C∞.

Next, let us promote m to a transverse measure on Al. Take a standard flow box B in
Al over a disk D ⊂ C (see §3.1.5). The measure mz on Tz, z ∈ D \C∞, induces measures
on the transversals of B contained in Tz. Since the holonomy along a path ϑ ⊂ C \ C∞
permutes these transversals, we obtain a holonomy invariant measure defined on a dense
set of transversals of B. This measure can obviously be extended to a holonomy invariant
measure on B, and any two such extensions match on the intersection of the corresponding
boxes.

To complete the construction, we need to extend the measure to an arbitrary transversal
T in a flow box B of the lamination A. Cover B ∩Al with a union of standard flow boxes
Bi. The transverse measure m can be transferred to the pieces T ∩ Bi. By the holonomy
invariance, these assignments match on the intersections, and determine a measure on T .
By Lemma 4.3 this measure is concentrated on Al.

By the construction, this measure is holonomy invariant. It also satisfies property (ii)
of Definition 4.8 since this property is satisfied for the measures mz on fibers π−1(z) and
obviously carries through all the steps of the construction (i.e., restriction to a dense set
of vertical transversals, extension by holonomy invariance to all vertical transversals, and
further extension to arbitrary transversals by taking their slices). 2

Remark 4.11. The above discussion is closely related to the discussion in [Su97] of the
transverse invariant measure on N . See also [BLS93, §4] for a related discussion of the
holonomy invariant measures for Hénon maps.
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Remark 4.12. We do not know whether the measure m constructed in Theorem 4.9 is
the unique balanced measure on the lamination A. However, as it follows from [Su97], it
is the unique balanced measure concentrated on Al. Another closely related question is
whether properties (i) and (ii) in Definition 4.8 are equivalent.

4.1.3. The global balanced measure.

Definition 4.13. A measure θ on the lamination H is called a global balanced measure if
it is absolutely continuous with the Radon–Nikodym cocycle

∆θ,vol ≡ 1 , (4.14)

with respect to the leafwise hyperbolic volume vol , and

f̂ θ = d · θ . (4.15)

4

Proposition 4.16. There is an affine one-to-one correspondence between transverse bal-
anced measures of the lamination A (see Definition 4.8) and global balanced measures on
the lamination H.

Proof. Let m̃ be the lift of a transverse balanced measure m from A to H (see Defini-
tion 2.38). Then by Definition 4.8(i) and Proposition 2.36 the measure m̃ is holonomy
invariant, and by Definition 4.8(ii) it has the property that

f̂ m̃ = d · m̃ . (4.17)

Define the global measure θ on H as

θ = vol ? m̃ ,

where vol is the leafwise hyperbolic volume on H. Since the map f̂ preserves vol , Propo-
sition 2.20 and formula (4.17) imply that θ is a global balanced measure.

Conversely, the disintegration of a global balanced measure θ (see Proposition 2.20)
gives a holonomy invariant transverse measure m̃ on H satisfying (4.17), which further
projects to a transverse balanced measure on A. 2

4.2. Equidistribution of leaves.

4.2.1. Convergence of measures. We will show that the leaves of A are uniformly equidis-
tributed with respect to the transverse balanced measure m constructed in Theorem 4.9.
Let us consider a relatively compact domain ∆ on a leaf L of the affine lamination A and
a fiber T z, z ∈ C. For n ∈ N, let ηn∆,z denote the discrete probability measure on T z
which assigns equal masses to the intersection points of f̂n∆ with the fiber T z, i.e.,

ηn∆,z(A) =
card[f̂n∆ ∩ A]

card[f̂n∆ ∩ T z]
, A ⊂ T z .

Denote by κ̃ = κ̃L the infinite Radon measure on the leaf L with supp κ̃L = J ∩ L
obtained by pulling back the balanced measure κ via the projection π, i.e., κ̃ is obtained
by integrating (by the measure κ) the counting measures on the preimages of π:

κ̃(∆) =
∫

C
card[∆ ∩ T z] dκ(z) , ∆ ⊂ L .
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To define the weak topology on the space of measures, we will consider the following
space S of test functions . A function h : A → R belongs to S if its support is normal
and it is uniformly continuous with respect to the germ uniform structure (recall the
definitions from §3.1.7). Of course, functions of class S are continuous. Moreover, when
f is tame (i.e., A is locally compact), the class S consists of continuous functions with
compact support.

Let us say that a sequence of measures µn on T z weakly converges to a measure µ if

〈h, µn〉 → 〈h, µ〉

for any test function h ∈ S.

Theorem 4.18. Let ∆ be a domain on a leaf L ⊂ A with 0 < κ̃(∆) <∞ and κ̃(∂∆) = 0.
Then for any non-exceptional point z ∈ C the measures ηn∆,z weakly converge to mz as
n→∞.

Proof. Step 1. It is enough to verify this statement locally, taking for ∆ a small leafwise
neighbourhood of an arbitrary point u ∈ A. Since κ̃(∆) > 0, we may assume without
loss of generality that u ∈ J . Suppose first that

u ∈ J l ≡ J ∩Al ,

and include ∆ into a standard flow box B ∼= B × T , so that ∆ = ∆(u) ∼= B is the local
leaf of u, and T ⊂ T (u). Recall that the local leaves ∆(v) ∼= B, v ∈ T of B properly
cover a topological disk D ⊂ C with degree b ≥ 1 and a single branched point ξ ∈ D
(see §3.1.5). Then κ(D) > 0 and κ(∂D) = 0 by the definition of the measure κ̃. By
Lemma 4.4 κ(B) > 0, so that also m(T ) > 0.

Fix a point z ∈ A, and let

π(z) = z ≡ z0 , ℘(z) = {z−m}m∈N ∈ A
l ,

where π and ℘ are the projections of A onto C and Al, respectively, see §3.1.2. For

simplicity put Π = Π0 ≡ T (z), and denote by Πk ≡ T
k
(z) the transverse cylinders over

z (see (3.9)). 4

Step 2. In the course of the proof we will have to deal with all local leaves ∆(v), v ∈ T
rather than just with the single local leaf ∆ = ∆(u). Denote by

∆n(v) = f̂n∆(v) , ∆n = ∆n(u) = f̂n∆

the forward iterations of the local leaves of B and count the intersection points of ∆n(v)
with the cylinder Πk, k ≥ 0.

Let n ≥ k. If
ζ ∈ f̂−n

(
∆n(v) ∩ Πk

)
= ∆(v) ∩ f̂−nΠk ,

i.e.,

ζ ∈ ∆(v) , f̂nζ ∈ Πk , (4.19)

then

ζ ≡ π(ζ) ∈ D , fn−kζ = z−k . (4.20)

Conversely, any point ζ ∈ D satisfying (4.20) can be lifted to b points ζ satisfying (4.19).
[Strictly speaking, this is true only for the points ζ ∈ D \ {ξ}, whereas the point ξ
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lifts to the unique point v. However, the corresponding correction term in (4.21) below
is negligible for our subsequent calculations, so that without loss of generality we may
always assume ζ 6= ξ]. It follows that

card[∆n(v) ∩ Πk] = card[∆n ∩ Πk] = b · card[ζ ∈ D : fn−kζ = z−k] (4.21)

is independent of v ∈ T for n ≥ k (see Fig. 7 where for simplicity we assume b = 1).

Π = T (z)

v

u

ζ

ζ z

T

D

∆ = ∆(u)

∆(v)

∆n

∆n(v)
z

f̂n

Figure 7

On the other hand, since κ(∂D) = 0, by Theorem 4.2

card[ζ ∈ D : fn−kζ = z−k] ∼ κ(D) · dn−k .

Hence

card[∆n ∩ Πk] ∼ b ·κ(D) · dn−k

= κ̃(∆) · dn−k = κ̃(∆) · dn ·m(Πk) .
(4.22)

In particular,

card[∆n ∩ Π] ∼ κ̃(∆) · dn . (4.23)

Dividing (4.22) by (4.23), we obtain:

ηnv(Π
k) −→

n→∞
m(Πk) , (4.24)

where ηnv ≡ ηn∆(v),z. Moreover, by Theorem 4.2 this convergence is uniform over v ∈ T .4

Step 3. The family of probability measures ηnv , v ∈ T on Π determines for any n a
Markov transition kernel Pn from T to Π. Denote by

mn = (m|T )Pn =
∫

T
ηnv dm(v)

the measure on Π which is the image of the restriction of the measure m onto T under the
kernel Pn. It is easy to see that mn is proportional to the restriction m̃n of the measure
m onto f̂nB ∩ Π:

mn = γnm̃n , where γn =
dn

card[∆n ∩ Π]
, (4.25)
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and, as it follows from (4.23),

γn −→
n→∞

1

κ̃(∆)
<∞ . (4.26)

Indeed, B ∩ f̂−nΠ consists of card[∆n ∩ Π] disjoint transversals Ti of the flow box B, see
Fig. 8. Then

mn =
1

card[∆n ∩ Π]

∑

i

f̂n(m|Ti) .

On the other hand, by Definition 4.8 (ii),

f̂n(m|Ti) = dn ·m|
f̂n(Ti)

.

B

Ti

Π

f̂n

Figure 8

The kernels Pn can be considered as “transfer operators” from L1(Π,m) to L1(T,m):

Pnχ(v) = 〈χ, η
n
v〉 =

1

card[∆n ∩ Π]

∑

ζ∈∆n(v)∩Π

χ(ζ) .

By (4.25) for any non-negative χ ∈ L1(Π,m)

‖Pnχ‖ =
∫

T
〈χ, ηnv〉 dm(v) = 〈χ,mn〉 = γn〈χ, m̃n〉 ≤ γn〈χ,m〉 = γn‖χ‖ ,

so that (4.26) implies that the L1 → L1 norms of Pn are uniformly bounded. On the
other hand, if χ is a cylinder function, then by (4.24)

Pnχ→ 〈χ,m〉 (4.27)

uniformly and hence in L1. As cylinder functions are dense in L1, we conclude that (4.27)
holds for any χ ∈ L1(Π,m). 4

Step 4. By Lemma 3.18 for any test function χ ∈ S

|Pnχ(v)− Pnχ(u)| −→
n→∞

0 (4.28)

uniformly in v ∈ T , whereas, by (4.27),
∫
|Pnχ(v)− 〈χ,m〉| dm(v)→ 0 ,
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which implies that

〈χ, ηnu〉 = Pnχ(u)→ 〈χ,m〉 .

4

Step 5. Finally, if u ∈ J \ J l, then we can approximate ∆ by a local leaf ∆′ ⊂ Al in
some flow box around u. Then the claim follows from the fact that the local leaves ∆ and
∆′ are forward asymptotic and from uniformity of convergence in (4.24) and (4.28). 2

Remark 4.29. Theorem 4.18 can be also interpreted as saying that the transverse balanced
measure m is obtained from the sequence of leafwise Følner sets f̂n∆ (see [Pl75]).

4.2.2. Convergence of currents. Along with test functions, we can consider test forms on
A supported on a normal set and uniformly continuous with respect to the germ uniform
structure. We will use the same notation S for the class of test forms. Such a class
determines the associated weak topology on the space of currents, see (2.31). Below
in this Section by convergence of currents we shall always mean weak convergence with
respect to the class S.

Theorem 4.30. Let ∆ be a domain on a leaf L ⊂ A with 0 < κ̃(∆) <∞ and κ̃(∂∆) = 0.
Then

1

dn
[f̂n∆]→ κ̃(∆) [m] ,

where m is the transverse balanced measure on A constructed in Theorem 4.9.

Proof. Take a product flow box C ∼= K × C, where C is identified with a fixed local
leaf Ck0 , k0 ∈ K. We may assume that all transversals Kz, z ∈ C0 are contained in the
corresponding dual fibers T (z).

1

dn

∫

f̂n∆
h→ κ̃(∆)

∫

K
dm(k)

∫

Ck

h , (4.31)

where Ck is the local leaf passing through the point k ∈ K. Take an affine area form on
C0. By the transversals of C it carries over to a global leafwise form ω on local leaves of
C. Denote by h′ the density of h with respect to ω. Obviously, the function h′ belongs to
the function space S. In terms of the function h′

∫

f̂n∆
h =

∫

C
〈h′, λ∆,z〉ω(z) ,

where λ∆,z is the counting measure on the intersection f̂n∆ ∩Kz, and by Theorem 4.18

1

dn
λ∆,z → κ̃(∆) ·m|Kz

(4.32)

in the weak topology induced by the space of functions S. Integration of (4.32) by the
form ω yields the claim. 2

Remark 4.33. The reader should compare Theorem 4.30 with analogous results of
Bedford–Smillie [BS91, Theorem 3] and Fornaess–Sibony [FS92, Theorem 1.6] for poly-
nomial automorphisms of C2.

4.3. Critical exponent.
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4.3.1. Definition of the critical exponent. Recall thatm stands for the transverse balanced
measure on A constructed in Theorem 4.9. Let us consider the transverse measure µδ,n =
{µδ,nT } defined as

µδ,n = f̂n(‖Df̂n‖−δσ m) = ‖Df̂−n‖δσ · f̂
n(m) , (4.34)

where, as in §3.2, ‖Df̂‖σ denotes the norm of Df̂ measured with respect to the leafwise
Riemannian metric ρσ (§1.1.4) associated with the special section σ (3.35). This measure
assigns the mass

µδ,n(X) = µδ,nT (X) =
∫

f̂−nX
‖Df̂n(z)‖−δσ dm(z)

to a Borel subset X of a transversal T . In view of Definition 4.8(ii) formula (4.34) can be
also rewritten as

µδ,n = dn‖Df̂−n‖δσ ·m , (4.35)

so that in the definition of the measures µδ,n the “big” factor dn (arising from the ex-

panding action of f̂ on m) is “compensated” by the “small” factor ‖Df̂−n‖δσ (cf. Defini-
tion 3.20).

Definition 4.36. For a transversal T consider the “statistical sum”

ΞT (δ) =
∑

n∈N
‖µδ,nT ‖ ,

and denote by δcr(T ) the critical exponent of this statistical sum separating the convergent

and divergent cases. It is well-defined because by Definition 3.20 ‖Df̂−n(z)‖σ → 0 locally
uniformly. 4

Until the end of §4 we shall assume that f is tame, i.e., A and H are locally compact.
Then these laminations have many compact transversals.

Lemma 4.37. For any precompact transversal S and any other transversal T

ΞS(δ) ≤ C ΞT (δ) and δcr(S) ≤ δcr(T ) ,

where the constant C depends on S and T only.

Proof. Clearly, it is enough to prove the first inequality. If S is covered with a finite
number of transversals Si, then

ΞS(δ) ≤
∑

i

ΞSi(δ) .

As S is compact, it is therefore sufficient to check the inequality

ΞU(δ) ≤ C ΞT (δ)

for some neighborhood U ⊂ S of any point z ∈ S.
Since the lamination is minimal, a sufficiently small neighborhood U can be mapped by

a holonomy H onto some neighborhood V ⊂ T . Then by the Koebe Distortion Theorem
(e.g., see [LM97, p. 86])

‖Df̂−n(z)‖σ ³ ‖Df̂
−n(Hz)‖σ , z ∈ U .
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Therefore, since m is holonomy invariant,

ΞU(δ) ³ ΞV (δ) ≤ ΞT (δ) .

2

Corollary 4.38. For all precompact transversals T the value δcr(T ) is the same.

Definition 4.39. The common value δcr = δcr(T ) is called the critical exponent of the
map f . The map f (or the corresponding laminations A and H) is said to be of divergent
type if ΞT (δcr) = ∞ for any precompact transversal T (by Lemma 4.37 this property is
independent of the choice of the transversal). Otherwise the map and the corresponding
laminations are of convergent type. 4

Remark 4.40. The critical exponent can be also defined in terms of the global balanced
measure θ on the lamination (see §4.1.3) without an explicit use of transversals.

Theorem 4.41. δcr ≤ 2.

To prove this result, we will need a few lemmas.

4.3.2. An area estimate for meromorphic functions. Let ϕ : C → C be a meromorphic
function. We shall use the functional I and the function R : z 7→ R(ϕ, z) introduced in
§3.3.1.

Lemma 4.42. There exists an absolute constant C such that for any compact set X ⊂ C

with I(X) > 1
∫

X

eucl

R2
≤ C · I(U) ,

where

U = {z : dist(z,X) < diam(X)} ,

and eucl is the standard area form on C.

Proof. By the Besikovich Covering Lemma (see [Ma95]) it is possible to cover X with a
finite number of disks

Di = D
(
zi,

1
2
R(zi)

)
, zi ∈ X , 1 ≤ i ≤ K ,

such that the family of twice bigger disks

D×2i = D
(
zi, R(zi)

)

have intersection multiplicity at most N , with an absolute constant N . Since I(X) > 1,

R(zi) < diam(X) ,

and

D×2i ⊂ U .

Therefore,

K =
∑

I
(
D×2i

)
≤ N · I(U) . (4.43)
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On the other hand,
∫

X

eucl

R2
≤
∑

i

∫

Di

eucl

R2
=
∑

i

eucl(Di)

R(ζi)2
=
π

4

∑

i

R(zi)
2

R(ζi)2
, (4.44)

where ζi ∈ Di are selected by the Mean Value Theorem (the function R is continuous,
even 1-Lipschitz, see Lemma 3.36). Note that

D
(
ζi,

1
2
R(zi)

)
⊂ D×2i ,

so that
I
(
D
(
ζi,

1
2
R(zi)

))
≤ I

(
D×2i

)
= 1 ,

and therefore

R(ζi) ≥
1

2
R(zi)

by the definition of the function R. Incorporating this into (4.44), we conclude that
∫

X

eucl

R2
≤ πK ,

where K is the number of the disks Di. Combining the latter inequality with (4.43) yields
the claim. 2

4.3.3. Finiteness of the total area of the affine lamination. Recall that areaσ denotes the
leafwise area form of the metric ρσ (§1.1.4) associated with the special section σ (3.35),
see §1.1.7. Uniformizing a leaf L, we can transfer the metric and the corresponding area
form to C. Somewhat abusing notations, we will use the same letters for the transferred
objects. With this convention, if ϕ : C→ C is a meromorphic function associated with a
leaf L (see §3.1.2), then by (3.35)

ρσ =
1

R(ϕ, z)
|dz|, areaσ =

eucl

R(ϕ, z)2
.

In these terms Lemma 4.42 takes the form of the estimate

areaσ(X) ≤ C · I(U) . (4.45)

Combining the leafwise form areaσ and the transverse balanced measure m constructed
in Theorem 4.9 gives a global measure

areaσ = areaσ ?m

on A. Recall that by definition (2.30)

areaσ(B) =
∫

T
areaσ(Bt) dm(t)

for any flow box B ≈ B × T .

Lemma 4.46. areaσ(A) <∞.

Proof. Choose a Euclidean disk D in a leaf L in such a way that

(i) The 3 times bigger concentric disk D×3 is univalent (i.e, the projection π : L→ C

is univalent on D×3);
(ii) The disk D satisfies conditions of Theorem 4.30, i.e., κ̃(D) > 0.
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Then by (4.45)

areaσ(f̂
nD) ≤ C · I

(
f̂nD×3

)
.

By definition, I
(
f̂nD×3

)
is the spherical area of the projection π

(
f̂nD×3

)
counted with

multiplicity. Condition (i) implies that the multiplicity of the projection π restricted to

f̂nD×3 is bounded by dn. Therefore,

1

dn
areaσ(f̂

nD) ≤ 4πC = C ′ , ∀n ∈ N .

This formula can be rewritten as〈
areaσ,

1

dn
[f̂nD]

〉
≤ C ′ , ∀n ∈ N . (4.47)

where [f̂nD] is the integration current over f̂nD.

In view of condition (ii), Theorem 4.30 implies that 1
dn
[f̂nD] weakly converges to

κ̃(D)[m], where [m] is the Ruelle–Sullivan current determined by the transverse measure
m (see Definition 2.32). By a standard truncation argument it yields the inequality

areaσ(A) <
C ′

κ̃(D)
.

Indeed, let ω be a truncation of the form areaσ obtained by multiplying it by a bump
function supported on some compact subset of A. Then (4.47) and Theorem 4.30 imply
that

〈ω, [m]〉 ≤
C ′

κ̃(D)
.

But, since A is locally compact,

areaσ(A) = 〈areaσ, [m]〉 = sup
ω
〈ω, [m]〉 ,

where the supremum is taken over all truncations of areaσ. 2

4.3.4. Volume estimates. Recall the notation bσ(h) (1.34) for the relative hyperbolic

height of a point h ∈ H with respect to a section σ. As it follows from f̂ -invariance
of the basic cocycle,

b
f̂ . σ

(f̂h) = bσ(h) , (4.48)

where f̂ . σ denotes the result of the action of f̂ (1.64) on the section σ. Let

H−σ =
{
h ∈ H : bσ(h) < 0

}

be the part of the hyperbolic lamination under the graph of the section σ.
Denote by

volσ = ãreaσ = ãreaσ ? m̃

the lift of the measure areaσ to H (see Definition 2.34 and Proposition 2.39), where m̃ is
the lift of the transverse measure m (see Definition 2.38). For any real ε let

vol εσ = exp[εbσ] · volσ = volεσ ? m̃ ,

where
volεσ = exp[εbσ] · ãreaσ .
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In other words, if `ε = {`εz}, z ∈ A is the family of measures on the vertical geodesics
p−1(z) with densities exp[εbσ] with respect to the hyperbolic length ` = {`z}, then

vol εσ =
∫
`εz d areaσ(z) . (4.49)

Note that as it follows from Proposition 1.58, volεσ and vol εσ for ε = −2 are independent
of σ and coincide with the leafwise hyperbolic volume vol and with the global balanced
measure θ = vol ?m, respectively.

Lemma 4.50. vol εσ(H
−
σ ) <∞ for any ε > 0.

Proof. By formula (4.49)

vol εσ(H
−
σ ) =

∫ 0

−∞
eεt dt · areaσ(A) =

1

ε
areaσ(A) <∞ .

2

For z ∈ A, let D(z) = Dσ(z) ⊂ LA(z) stand for the disk which is centered at z and
has radius 1 with respect to the Euclidean structure σz, and let

I(z) = {h ∈ p−1(z) : −1 < bσ(h) < 0} ,

W (z) =
⋃

ζ∈D(z)

Iζ ⊂ LH(z) ,

see Fig. 9.

z ζ

D(z)
LA(z)

LH(z)

σ

I(ζ)

W (z)

Figure 9

Lemma 4.51. Locally uniformly on z ∈ A

volεσ
(
f̂−nW (z)

)
³ ‖Df̂−n(z)‖2+εσ .

Proof. First notice that by formula (1.67) for any point ζ ∈ D(z)

β
(
σ(ζ−n), f̂

−n ◦ σ(ζ)
)
= log ‖Df̂−n(ζ)‖σ

(as before we use the notation ζn = f̂nζ for the orbit of the point ζ). Therefore, formula

(4.48) shows that the interval f̂−nI(ζ) is the result of the translation (≡ action of the
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vertical flow ξ) of the interval I(ζ−n) by log ‖Df̂−n(ζ)‖σ (see Fig. 10, where we assume

that log ‖Df̂−n(ζ)‖σ < 0, in accordance with Definition 3.20).

ζ

f̂−n

σ
σ

f̂−n. σ

p−1(ζ)p−1(ζ−n)

ζ−n = f̂−n(ζ)
LA(ζ)LA(ζ−n)

I(ζ)I(ζ−n)

f̂−nI(ζ)

Figure 10

Therefore,

`ε
(
f̂−nI(z)

)
= ‖Df̂−n(z)‖εσ · `

ε
(
I(z)

)
. (4.52)

On the other hand,

areaσ
(
f̂−nD(z)

)
³ ‖Df̂−n(z)‖2σ

locally uniformly, because by Theorem 3.22 and Lemma 3.36 the ratio

‖Df̂−n(ζ)‖σ

‖Df̂−n(z)‖σ

is locally uniformly bounded and bounded away from 0 on z ∈ A, ζ ∈ D(z) and n ∈ N.

Integrating the function (4.52) by areaσ over f̂−nD(z) yields the claim. 2

We are now ready to prove the theorem.

4.3.5. Proof of Theorem 4.41. Given a precompact transversal T of the lamination A, let
us consider the flow box

B =
⋃

z∈T

W (z) ⊂ H .

Then by Lemma 4.51

vol εσ(f̂
−nB) =

∫

f̂−nT
volεσ

(
f̂−nW (zn)

)
dm(z) ³

∫

f̂−nT
‖Df̂−n(zn)‖

2+ε
σ dm(z)

=
∫

f̂−nT
‖Df̂n(z)‖−2−εσ dm(z) .

Summing up we obtain

ΞT (2 + ε) ³
∑

n∈N
vol εσ(f̂

−nB) .

But the latter sum is finite, since
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• The box B is wandering [LM97, Proposition 6.2];
• Its backward iterates eventually belong to H−σ by [LM97, Lemma 6.1];
• vol εσ(H

−
σ ) <∞ by Lemma 4.50.

2

4.4. Transverse conformal stream and λ-harmonic measure.

4.4.1. The formulations.

Theorem 4.53. The lamination A carries an f̂ -invariant parallel transverse conformal
stream µ of dimension δcr.

Applying Theorem 2.86, we immediately obtain

Theorem 4.54. The hyperbolic lamination H carries an f̂ -invariant λ-harmonic measure
ω with λ = δcr(δcr−2), which descends to a λ-harmonic measure on the quotient hyperbolic
laminationM.

4.4.2. Proof of Theorem 4.53. We shall use Proposition 2.90 and Theorem 2.61. Namely,
we shall fix a special section σ : A → H (see Lemma 3.36), and construct for this section
a transverse measure µσ satisfying conditions of the above Propositions with δ = δcr. In
other words, the Jacobian of f̂ with respect to µσ has to be

Jacµσ f̂ = ‖Df̂‖−δcrσ , (4.55)

and the modulus of µσ has to be

∆µσ = exp[δcrβσ] . (4.56)

Step 1. Let us first consider the transverse measures

µδ,n = f̂n
(
‖Df̂n‖−δσ m

)
= ‖Df̂−n‖δσ · f̂

n(m) = dn‖Df̂−n‖δσ ·m

defined in §4.3.1, and find their moduli and the Jacobian of the map f̂ with respect to
these measures. By holonomy invariance of the measure m and formula (2.7) the modulus
of µδ,n is

∆δ,n(z, ζ) =
‖Df̂−n(ζ)‖δσ
‖Df̂−n(z)‖δσ

. (4.57)

The Jacobian of the map f̂ with respect to the source measure µδ,n and the target measure
µδ,n+1 is

Jacδ,n f̂(z) =
df̂−1µδ,n+1

dµδ,n
(z) =

df̂n(‖Df̂n+1‖−δσ m)

df̂n(‖Df̂n‖−δσ m)
(z)

=
‖Df̂n+1‖−δσ (z−n)

‖Df̂n‖−δσ (z−n)
= ‖Df̂(z)‖−δσ .

(4.58)

4

Step 2. For δ > δcr, let us sum up the measures µδ,n:

µδ =
∞∑

n=0

µδ,n .
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By Definition 4.36 and Lemma 4.37, the measure µδ is locally finite, and

‖µδT‖ = ΞT (δ)

for any precompact transversal T . Fix now a compact transversal Q, and normalize the
measures µδ by letting

µδ =
µδ

ΞQ(δ)
,

so that

‖µδQ‖ = 1 .

Consider first the divergent case, i.e., assume that ΞQ(δcr) =∞. Take a weak limit point
µQ of the family {µδQ} as δ → δcr (instead of passing to a subsequence δk → δcr and

further taxing our notations we shall assume for simplicity that the family {µδQ} itself

is convergent). We claim that the family µδ then weakly converges on any precompact
transversal, and the resulting transverse measure satisfies conditions (4.55) and (4.56).4

Step 3. Formula (4.55) easily follows from (4.58). Indeed, take a precompact transversal
T . Then

µδ,n+1
f̂T

= f̂
(
‖Df̂‖−δσ · µ

δ,n
T

)
.

Summing over n and normalizing, we obtain that for any δ > δcr

µδ
f̂T
−

1

ΞQ(δ)
µδ,0
f̂T

= f̂
(
‖Df̂‖−δσ · µ

δ
T

)
.

Since by the divergence assumption the second term in the left-hand side is vanishing as
δ → δcr, the desired property follows. 4

Step 4. Let us now check formula (4.56). The crucial point of the proof is the uniform
convergence of the moduli ∆δ,n of the measures µδ,n (4.57) to the sought for cocycle
exp[δβσ], which follows from Theorem 3.22.

Let H : Q→ T be a holonomy map from Q onto another transversal T . Denote by

ϕδ,n(ζ) = ∆δ,n(H
−1ζ, ζ)

and

ϕ(ζ) = exp
[
δcrβσ(H

−1ζ, ζ)
]
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the functions on T determined by the moduli of the measures µδ,n and by the cocycle
exp[δcrβσ], respectively. Then for any δ > δcr

∥∥∥µδT − ϕ ·Hµ
δ
Q

∥∥∥ =
1

ΞQ(δ)

∥∥∥µδT − ϕ ·Hµ
δ
Q

∥∥∥ =
1

ΞQ(δ)

∥∥∥∥∥
∞∑

n=0

(
µδ,nT − ϕ ·Hµ

δ,n
Q

)∥∥∥∥∥

≤
1

ΞQ(δ)

∞∑

n=0

∥∥∥µδ,nT − ϕ ·Hµ
δ,n
Q

∥∥∥

=
1

ΞQ(δ)

∞∑

n=0

∥∥∥ϕδ,n ·Hµδ,nQ − ϕ ·Hµ
δ,n
Q

∥∥∥

≤
1

ΞQ(δ)

∞∑

n=0

‖ϕδ,n − ϕ‖∞ · ‖µ
δ,n
Q ‖

=

∑∞
n=0 ‖ϕδ,n − ϕ‖∞ · ‖µ

δ,n
Q ‖∑∞

n=0 ‖µ
δ,n
Q ‖

.

Here ‖ϕδ,n − ϕ‖∞ denotes the sup-norm of the difference (ϕδ,n − ϕ) over T , which by
Theorem 3.22 tends to 0 uniformly on δ near δcr as n→∞. Since for any n

‖µδ,nQ ‖ −→
δ→δcr

‖µδcr,nQ ‖ <∞ ,

and the series ΞQ(δcr) =
∑
n ‖µ

δcr,n
Q ‖ diverges, we obtain that
∥∥∥µδT − ϕ ·Hµ

δ
Q

∥∥∥ −→
δ→δcr

0 .

Therefore,

µδT −→
δ→δcr

µT = ϕ ·HµQ .

4

Step 5. In the convergence case we apply the Patterson regularization procedure. In
our setting it looks as follows. Instead of the measures µδ,n (4.34) we use the modified
measures

µ̊δ,n = f̂n
(
ϕ(‖Df̂n‖σ)‖Df̂

n‖−δσ m
)
,

where the function ϕ : R+ → R+ has the following properties:

• limt→∞ ϕ(t) =∞ ,
• limt→∞ ϕ(t)/t

ε = 0 ∀ ε > 0 ,
• limt→∞ ϕ(Ct)/ϕ(t) = 1 ∀C > 0 ,

• Ξ̊Q(δcr) ≡
∑
‖µ̊δcr,nT ‖ =∞ .

Then Ξ̊Q(δ) <∞ for any δ > δcr, and we may consider the normalized measures

µ̊δ =
1

Ξ̊Q(δ)

∞∑

n=0

µ̊δ,n .

Taking a weak limit point of the measures µ̊δ we can proceed in the same way as in the
divergent case. 4
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Remark 4.59. Although the measures µδ in the above construction are equivalent to the
balanced transverse measure m, obviously the limit conformal transverse measure µ does
not have to be equivalent to m. If the basic class b is non-trivial, then for any conformal
transverse measure and any balanced transverse measure the cohomology classes of their
moduli are different, and therefore these measures are necessarily singular. Therefore,
for all maps described by Theorem 3.48 conformal transverse and balanced transverse
measures are singular.

Remark 4.60. The harmonic measure ω can also be constructed directly in terms of global
measures on the hyperbolic lamination H. Namely, the balanced transverse measure m
gives rise to the global balanced measure θ on H whose Radon–Nikodym cocycle (with
respect to the leafwise hyperbolic volume) is trivial but which is not invariant under

the dynamics: f̂ θ = d · θ (see §4.1.3). Applying to this measure the Patterson method

we construct a measure ω on H with dual properties: it is f̂ -invariant but its Radon–
Nikodym cocycle is non-trivial, ∆ω = exp[δβ]. [There are no f̂ -invariant measures on H
with a trivial Radon–Nikodym cocycle.]

4.5. Leafwise conformal streams.

Theorem 4.61. The lamination A carries an f̂ -invariant leafwise conformal stream λ.

4.5.1. The lift of a conformal measure from the Julia set. One way of proving Theo-
rem 4.61 consists in considering a continuous δ-conformal measure η ≡ ης on the Julia set
of a rational function f [S83]. The measure η can be lifted via the projection π : A → C to
a leafwise Radon measure η̃ and then transferred in a δ-conformal way into a δ-conformal
leafwise stream λ. Namely, given a leafwise conformal metric ρ, let

λρ =
(
ρ

ς̃

)δ
η̃ , (4.62)

where ς̃ is the pullback of the spherical metric to the leaf L. [This metric has isolated
singularities but they do not matter since the measure η is assumed to be continuous.]

More functorially, we consider the f -invariant δ-conformal stream dηρ ⊗ dρ−δ on the

sphere C corresponding to η ≡ ης , and naturally lift it to the f̂ -invariant leafwise δ-
conformal stream λ (4.62) on A.

In the case when there exists an invariant “Gibbs measure” equivalent to the conformal
measure η, the lifting procedure can be also described as follows:

Proposition 4.63 (cf. Ledrappier [Le84] and Lemma 4.3). Let υ be an f -invariant
measure equivalent to a δ-conformal measure η on J(f), and let υ̂ be its lift to the natural

extension. Then its leafwise conditional measures determine an f̂ -invariant leafwise δ-
conformal stream on the lamination A.

4.5.2. An intrinsic construction of a leafwise conformal stream. We shall now give an
intrinsic proof of Theorem 4.61 which does not make use of the construction of an f -
invariant conformal stream on the Julia set J(f) [S83] or of Proposition 4.63 above. It

is dual to the construction of the f̂ -invariant parallel transverse conformal stream in
Theorem 4.53 from §4.4.
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First we shall define the forward critical exponent γcr of A dual to the (backward)
critical exponent δcr constructed in §4.3.1. Given a number γ ≥ 0, let us consider the
following leafwise measure:

λγ,n = f̂−n(‖Df̂−n‖γρ · κ̃) ,

where κ̃ is the leafwise lift of the balanced measure κ on J(f) (see §4.2.1), and the norm
is measured with respect to the Riemannian metric ρ = ρσ associated with the special
section σ from §3.3. If D is a Borel subset of a leaf L, then by definition

λγ,n(D) =
∫

f̂nD
‖Df̂−n(z)‖γρ dκ̃(z) .

Given a leafwise bounded domain D ⊂ L which meets the Julia set J , let us now
consider the following forward Poincaré series :

ΘD(γ) =
∑

n∈N
λγ,n(D) . (4.64)

Define γcr(D), the forward critical exponent, as the one which separates divergent and

convergent values of γ. It is well defined because of the expanding property of f̂ from
Lemma 3.41.

Lemma 4.65. The critical exponent γcr(D) is independent of the choice of D.

Proof. Lemma 3.42 implies that the critical exponent is preserved under the dual ho-
lonomy: γcr(D) = γcr(V (D)) for any leafwise domain D ⊂ Bt in a product flow box
B.

Furthermore, γcr(f̂
nD) = γcr(D), and γcr(D

′) ≤ γcr(D) if D′ ⊂ D. It follows that given
a saddle periodic point α̂ ∈ J (i.e., the lift of a repelling periodic point α ∈ J), γcr(D)
is the same for all leafwise domains D ⊂ L(α̂). Thus, this exponent can be attributed to
the point α̂ itself: γcr(α̂) ≡ γcr(D) for any domain D as above.

Let us show now that γcr(α̂) = γcr(β̂) for any two saddle points α̂ and β̂. Take a flow

box B containing α̂. Since the lamination A is minimal the leaf L(β̂) passes through this

flow box. Hence there is a domain ∆ ⊂ L(β̂) containing a local leaf D of B. Let V be the
dual holonomy moving D to the local leaf of α. Then

γcr(β) = γcr(∆) ≥ γcr(D) = γcr(V (D)) = γcr(α) ,

and the opposite inequality holds by symmetry. Denote the common critical exponent for
all saddle points by γcr.

Finally, take any bounded leafwise domain D on A intersecting the Julia set J . Chop
it into pieces Di contained in product flow boxes Bi. Then

γcr(D) = max
i
γcr(Di),

where the maximum is taken over the domainsDi meeting the Julia set J (since the others
do not contribute to the forward Poincaré series). Each of the corresponding flow boxes
Bi contains a saddle point α̂i (Proposition 4.6), and therefore γcr(Di) = γcr(αi) = γcr. 2

We can now apply the Patterson method to construct a leafwise conformal stream at
the critical exponent. Taking a (regularized if necessary) limit

∑
n∈N λ

γ,n as γ ↘ γcr from
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above, we obtain a leafwise measure λρ which is γcr-conformal under the dynamics and
the vertical holonomy:

df̂−1λρ
dλρ

= ‖Df̂‖δρ ,
dV −1λρ
dλρ

= exp[γcrαρ] ,

where αρ is the basic dual cocycle on A. Since the cocycle is locally continuous, so is the
measure. Hence it determines a γcr-conformal stream (this construction is exactly dual
to the construction of the transverse stream in §4.4, so that we omit the details).

4.5.3. Forward and backward critical exponents. It is important to know whether the
forward and backward critical exponents coincide. If so then we have a transverse δ-
conformal stream µ and a leafwise δ-conformal stream λ on A with the same exponent
δ = δcr = γcr. Integrating one against the other (see Theorem 2.57) we obtain an f̂ -
invariant global Radon measure υ = λ ?µ on A (perhaps infinite). This measure can be

viewed as the “Gibbs measure” of f̂ corresponding to the potential −δ log ‖Df̂‖ρ with
“zero pressure” (see, e.g., the survey [EL90, Ch. 3] for the concepts involved); “zero
pressure” means that δ is the critical exponent of the Poincaré series, which does not
depend on the choice of a conformal metric ρ.

Pushing υ down to the Riemann sphere C via the projection π : A → C, we obtain an
invariant measure υ on the Julia set J(f). This is the “Gibbs measure” of f corresponding
to the potential −δ log ‖Df‖ with “zero pressure”. Then the streams λ and µ can be
recovered from υ as its conditional measures (cf. Proposition 4.63 and Theorem 4.9,
respectively). This gives us a new way of constructing conformal and Gibbs measures.

The Gibbs measure υ = λ ?µ on J can be suspended to a measure υ̃ = λ ?µ = λ̃ ? µ
onM invariant under the vertical flow ξ (Theorem 2.68), which further descends to the

measure υ̃M on the quotientM = H/f̂ (Theorem 2.91). This measure is supported on
the “curtain” over the Julia set J , i.e., on the union of the vertical geodesics terminating
at J modulo the f̂ -action. One can view this measure as “weakly hyperbolic” with
horospheres serving for unstable leaves and standard transversals serving for the “local
stable leaves”. For rational functions satisfying Axiom A (i.e., such that critical points
are attracted to attracting cycles), the measure υ̃M was considered in [BFU]. In this case
the vertical flow ξ is hyperbolic and υ̃M is its unique measure of maximal entropy.

4.5.4. Convex cocompact case. Let us finally show that the forward and backward expo-
nents coincide in the convex co-compact case. Recall from [LM97, §8] that the convex
core C of the lamination H is defined as the leafwise convex core of the Julia set J .
It is invariant under f̂ , so that the quotient C/f̂ is well-defined. By definition, this is

the convex core of the hyperbolic laminationM = H/f̂ . A rational function f is called

convex co-compact if C/f̂ is compact. It is equivalent to compactness of the Julia set J
([LM97, Proposition 8.5]). Moreover, convex co-compact functions can be dynamically
characterized by the property that all critical points c ∈ J(f) are non-recurrent and there
are no parabolic points [LM97, Theorem 8.1].

Theorem 4.66. IfM is convex co-compact, then δcr = γcr.
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Proof. (sketch). Since the Julia set J is compact and the whole lamination A is locally
compact, J can be covered with finitely many precompact flow boxes Bi ∼= Bi × Ti. By
Lemma 4.37,

ΞS(δ) ³ ΞT (δ) (4.67)

for any two transversals S and T of these boxes (with the constants dependent only on δ).
Integrating (4.67) over the leafwise measures κ̃, we conclude that the backward Poincaré
series ΞT (δ) are all comparable with the series

∞∑

n=0

∫

f̂−nJ
‖Df̂n(z)‖−δρ dκ(z) =

∞∑

n=0

∫

J
‖Df̂n(z)‖−δρ dκ(z) .

Similarly, the forward Poincaré series ΘD(δ) (4.64) are comparable with the series
∞∑

n=0

∫

J
‖Df̂−n(z)‖δρdκ(z) .

But since the measure κ is f̂ -invariant, the last two series are equal. 2

4.6. Sullivan’s Riemann surface laminations. The above discussion (reduced by 1
in dimension) also applies to Sullivan’s Riemann surface lamination associated with a
C2 circle diffeomorphism f : T → T (see [LM97, §11], [MS93]). The natural extension

f̂ : N → N of such a diffeomorphism is a one-dimensional affine lamination (the unstable

lamination of f̂). It is endowed with the leafwise Riemannian metric ρ lifted from the
circle T.

Applying our constructions, we can endow N with f̂ -invariant 1-conformal transverse
and leafwise streams µ and λ. The product υ = λ ? µ of these streams is the invariant
Gibbs measure which is absolutely continuous on the unstable lamination. This measure
can also be constructed by lifting the absolutely continuous invariant measure υ of f (the
Gibbs measure corresponding to the potential − log |f ′|).

By means of the hyperbolization functor the affine lamination N extends to a (pointed
at infinity) hyperbolic two-dimensional lamination H2 whose leaves are hyperbolic planes
supplied with the hyperbolic action of f̂ . The Sullivan lamination M2 is obtained by
taking the quotient H2/f̂ .

According to Theorem 2.86, the transverse stream µ lifts to a harmonic measure ωµ on
H2 (with the eigenvalue λ = 0). The Radon–Nikodym cocycle of this measure is equal to

exp[β], where β is the Busemann cocycle on H2. This measure is f̂ -invariant and hence
descends to a harmonic measure ωµM onM2.

On the other hand, the quotient of the Gibbs measure υ is the measure υM of maximal
entropy of the vertical flow ξ onM2 (see §2.4). In fact, in this situation both constructions
lead to the same result: ωµM = υM.

The Riemann surface lamination M2 is similar in many respects to the unit tangent
bundle US of a compact Riemannian surface S of (variable) negative curvature (cf. the
Appendix §5). Uniformizing the leaves of the (weak) stable foliation, we turn US into
a two-dimensional hyperbolic foliation. The “universal covering” of this foliation is an
H2-fibration over the circle S1 with pointed at infinity fibers (≡ leaves). The hyperbolic
structure on the leaves induces the affine structure on the punctured circle at infinity.
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This endows S1 × S1 \ diag with the structure of a one-dimensional affine lamination.
Moreover, the fundamental group G = π1(S) naturally acts on this lamination by leafwise
affine transformations.

Remark 4.68. One can extend this discussion further to more general one-dimensional C2

maps, which are allowed to have critical points, cf. §2.1.3.

4.7. Problems. In [LM97, §10] there is a list of problems on the structure of the lam-
inations associated with rational maps. Below we will formulate a few more problems
motivated by the results of this paper.

1. Tameness. Our construction of conformal streams and harmonic measures works in
the case of tame (i.e., locally compact) laminations Af and Hf . There are many tame
laminations but there are wild laminations as well (e.g., when the regular leaf space Rf

has a hyperbolic leaf). Give a dynamical criterion of tameness. Are there transverse
conformal streams on wild Af and harmonic measures on wild Hf?

2. Uniqueness and ergodic theory. Study the problem of uniqueness of conformal
streams and harmonic measures on the laminations in question. Study ergodic properties
of the holonomy pseudo-group with respect to the conformal stream. Study ergodic
properties of the vertical flow and the horosphere foliation with respect to the harmonic
measure. Study when these flows and foliations are conservative/dissipative.

3. Critical exponents. Give conditions for coincidence of the forward and backward
critical exponents. Relate these critical exponents to the other critical exponents associ-
ated with f (see [S83], [DU91a]). Relate them to the Hausdorff dimension of the Julia set
and the set of conical limit points.

4. Finiteness Problem. Give a dynamical criterion of finiteness of the harmonic measure
on the convex core ofHf . Is it so in the “geometrically finite case” (when all critical points
on the Julia set are non-recurrent, parabolic cycles are allowed)? Is it so in the Collet-
Eckmann case?

5. Holonomy vs. dynamics. The definitions of balanced and conformal measures in-
clude the transformation rules under both holonomy and dynamics. Are they equivalent?

5. Appendix. Laminations associated with Kleinian groups

As we have already mentioned in the Introduction, the main incentive for the construc-
tion of the affine lamination associated with a rational map was an attempt to better
understand the existing parallelism between two branches of the conformal dynamics: the
Kleinian and the rational dynamics. In order to show how the theory of laminations en-
compasses both these fields we shall now describe the affine laminations associated with
Kleinian groups. We show that the well-known Patterson measures for Kleinian groups
admit a natural interpretation both as leafwise and transverse G-invariant conformal
streams for these laminations.

5.1. Foliations associated with the hyperbolic space.



MEASURES ON LAMINATIONS 89

5.1.1. Tautological foliations. The simplest building blocks of an affine lamination are the
standard affine planes. As we have seen in §1, such a plane arises as the punctured visi-
bility sphere Pq ∼= ∂H3 \{q} of a pointed at infinity hyperbolic space (H3, q). Conversely,
the hyperbolization functor H allows one to recover the space (H3, q) from Pq. Varying
the boundary points q ∈ ∂H3 we obtain a family of affine planes Pq, q ∈ ∂H

3.

Definition 5.1. The tautological C-foliation Å is the foliation of the space

∂2H3 = ∂H3 × ∂H3 \ diag =
⋃

q∈∂H3

Pq × {q} (5.2)

with leaves Pq. [In fact, it is a C-fibration over the Riemann sphere C.] Its hyperbolization

H̊ = HÅ is called the tautological pointed at infinity hyperbolic foliation. The total space
of H̊ is

H3 × ∂H3 =
⋃

q∈∂H3

H3 × {q}

and the leaves are pointed at infinity hyperbolic spaces (H3, q). The Busemann cocycle

on H̊ is

β
(
(h1, q), (h2, q)

)
= βq(h1, h2) . (5.3)

4

5.1.2. Parameterizations of the unit tangent bundle. Denote the unit tangent bundle of
the hyperbolic space by UH3 with the canonical projection

p : UH3 → H3 ,

and let γ = {γτ}τ∈R be the geodesic flow on UH3. The endpoints of the geodesic deter-
mined by a tangent vector v ∈ UH3 are denoted γ±∞(v) ∈ ∂H3. By

Hor(v) = Horγ∞(v)
(
p(v)

)
= {h ∈ H3 : βγ∞(v)

(
p(v)v, h

)
= 0}

we denote the horosphere centered at the point γ∞(v) and passing through the point p(v).
Clearly,

Hor(v1) = Hor(v2) ⇐⇒ Hor(γτv1) = Hor(γτv2) ∀ τ ∈ R ,

so that the formula

γτ Hor(v) = Hor(γτv) , τ ∈ R (5.4)

determines an action of the geodesic flow on the space Hor(H3).
There are two natural parameterizations of the space UH3 (see Fig. 11).

Proposition 5.5. The map

v 7→
(
p(v), γ∞(v)

)
(5.6)

from UH3 to the space H3 × ∂H3 is a diffeomorphism. For any (h, q+) ∈ H
3 × ∂H3 the

associated vector v ∈ UH3 is the directing vector of the geodesic ray issued from the point
h in the direction q+.
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p(v) = h

Hor(v) = Υ

vγ∞(v) = q+ = Υ∞

γ−∞(v) = q−

Figure 11

Proposition 5.7. The map

v 7→
(
γ−∞(v),Hor(v)

)
(5.8)

from UH3 to the space

∂H3 × Hor(H3) \ {(q,Υ) : q = Υ∞} =
⋃

Υ∈Hor(H3)

PΥ∞ × {Υ} (5.9)

is a diffeomorphism. For any q− ∈ ∂H3,Υ ∈ Hor(H3) with q− 6= Υ∞ the associated
vector v ∈ UH3 is the tangent vector to the geodesic joining q− with Υ∞ at the point of
its intersection with the horosphere Υ.

5.1.3. Weakly stable and strongly stable foliations. Recall the definitions of two natural
foliations associated with the geodesic flow on UH3:

Definition 5.10. Two vectors v1, v2 ∈ UH
3 belong to the same leaf of the weakly stable

foliation Ws of the geodesic flow if

lim sup
t→+∞

dist(γtv1, γ
tv2) <∞ , (5.11)

and to the same leaf of the strongly stable foliation W ss if

lim
t→+∞

dist(γtv1, γ
tv2) = 0 , (5.12)

where dist denotes the natural metric on UH3. 4

Condition (5.11) means that γ∞(v1) = γ∞(v2). Therefore,

Proposition 5.13. The identification (5.6) establishes an isomorphism between the foli-

ations H̊ and Ws and conjugates the vertical flow on H̊ with the geodesic flow.

Condition (5.12) means that Hor(v1) = Hor(v2) (this is why Wss is also often called
horosphere foliation). Consequently,

Proposition 5.14. Under the identification (5.8) the foliation W ss is isomorphic to the
foliation of the space (5.9) with the leaves PΥ∞ × {Υ}.

Corollary 5.15. The foliation Wss is a Euclidean foliation.
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Proof. Indeed, the leaves of Wss can be identified with horospheres in H3, so that they
are endowed with the natural Euclidean structures induced by the hyperbolic metric. 2

In terms of the coordinates (q−,Υ) (5.8) the geodesic flow on UH3 takes the form

γτ (q−,Υ) = (q−, γ
τΥ) , (5.16)

so that it acts by affine laminar automorphisms of W ss mapping concentric horospheres
one onto the other. The foliation Å is the result of factorization of W ss by the geodesic
flow (so that the space of Å has one dimension less than the space of Wss). This is the

reason why the leaves of Å carry just a natural affine structure (the “scale” having been
lost as a result of the action of the geodesic flow).

The total space of the hyperbolization HW ss is
⋃

Υ∈Hor(H3)

HPΥ∞ × {Υ} = H
3 × Hor(H3) . (5.17)

The Euclidean structure on a horosphere Υ ∈ Hor(H3) determined by a point h ∈ H3 is
the image of the induced hyperbolic metric on HorΥ∞(h) under the vertical flow

ξsq : HorΥ∞(h)→ Υ , s = βΥ∞(h,Υ) .

The Busemann cocycle on HWss is

β
(
(h1,Υ), (h2,Υ)

)
= βΥ∞(h1, h2) . (5.18)

Remark 5.19. Note the difference between the actions of the vertical and the geodesic
flows on HWss. The vertical flow acts leafwise by the formula

ξτ (h,Υ) =
(
ξτΥ∞h,Υ

)
,

whereas the action of the geodesic flow on UH3 (5.16) induces its action on HWss

γτ (h,Υ) =
(
h, γτΥ

)
(5.20)

by isometries between leaves.

5.2. Laminations associated with Kleinian groups.

5.2.1. Definitions and basic properties. The roles of two factors ∂H3 in the definition (5.2)

of the total space ∂2H3 of the foliation Å are quite different: the first one (the “leafwise
direction”) is indispensable if we want to have a C-lamination, whereas nothing prevents
us from replacing the second one (the “transverse direction”) with an arbitrary subset of
∂H3. Therefore, for any subset X ⊂ ∂H3 the space

AX =
⋃

q∈X

Pq × {q}

is endowed with a lamination structure (this is not a foliation unless X is a submanifold
of ∂H3).

Recall that the limit set Λ = Λ(G) ⊂ ∂H3 of a Kleinian group G is defined as the
closure (in the visibility compactification H3 ∪ ∂H3) of any given orbit Go, o ∈ H3 (the
result does not depend on the choice of o). The limit set is either finite (and consists of
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not more than 2 points) or uncountable. In the latter case the group G is called non-
elementary . The action of a non-elementary group on its limit set is minimal (e.g., see
[GH55, Chapter 13]).

Definition 5.21. Let G be a Kleinian group. The lamination AG = AΛ(G) is called the
affine lamination associated with the group G. The corresponding hyperbolic lamination
HG = HAG associated with the group G is the product lamination of the total space
H3 × Λ(G). 4

Since the limit set is G-invariant, the group G acts on AG by laminar affine maps
and on HG by laminar isometries. Moreover, the action of G on H3 (and, therefore, on
UH3 ∼= H3 × ∂H3) is properly discontinuous, so that it is also properly discontinuous on
HG
∼= H3 × Λ(G) ⊂ UH3. Denote byMG ⊂ UM the corresponding quotient hyperbolic

lamination (here M = H3/G is the quotient hyperbolic manifold associated with the
group G).

Remark 5.22. If the action of G on H3 is not free, thenMG is an orbifold lamination.

Remark 5.23. Although the quotient hyperbolic laminationMG always makes sense, the
quotient of the affine lamination AG by the action of the group G is not well-defined
for non-elementary groups G (precisely as in the case of the laminations associated with
rational maps, see Remark 3.14). Indeed, since the actions of G and of the vertical flow
on HG commute, if the quotient AG/G is well-defined, then necessarily MG = HG/G
coincides with the hyperbolization H(AG/G). However, the latter is impossible. For, since
G is non-elementary, there is a hyperbolic element g ∈ G (e.g., see [GH55, Chapter 13]).
It implies that the vertical flow onMG (≡ the geodesic flow on UH3/G) has a periodic
orbit covered by the axis of g, so that the condition formulated in Remark 1.80 can not
be satisfied.

In spite of a number of similarities, there are also some differences between the prop-
erties of the laminations AG,HG,MG associated with Kleinian groups and those of the
laminations Af ,Hf ,Mf associated with rational maps (see §3.1).

Remark 5.24. Clearly, if the group G is non-elementary, then the laminations AG and HG

are never minimal (unlike the laminations Af and Hf ).

Remark 5.25. Yet another difference is that the fiber bundle p : HG → AG always admits a
parallel section, i.e., the lamination AG is always Euclidean (unlike the affine laminations
Af , cf. §3.5). Indeed, the Busemann cocycle on HG is given by formula (5.3), where
q ∈ Λ and h1, h2 ∈ H

3, so that it can be trivialized, for example, by the function ϕ(q, h) =
βq(o, h), where o ∈ H

3 is a fixed reference point.

5.2.2. Non-triviality of the Busemann cocycle. If the group G is non-elementary, then the
Busemann cocycle of the laminationMG is non-trivial for an obvious reason: it is non-
trivial for the leaves in MG corresponding to fixed points of the hyperbolic elements in
G. Denote by Λ0 = Λ0(G) ⊂ Λ the set of all such fixed points. It is not hard to see (cf.
formula (5.27) below) that even if we discard the set Λ0 (i.e., remove fromMG all leaves
with non-trivial Busemann cocycle), then the Busemann cocycle of the lamination

M′
G = H′G/G , H′G = H3 ×

(
Λ(G) \ Λ0(G)

)
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is non-trivial in the continuous cohomology. We shall prove a stronger result (cf. Theo-
rem 3.26) :

Theorem 5.26. For any non-elementary Kleinian group G the Busemann cocycle of the
laminationM′

G is non-trivial in the Borel cohomology.

Proof. Triviality of the Busemann cocycle on M′
G is equivalent to existence of a G-

invariant Borel function ϕ on H′G trivializing the Busemann cocycle:

βq(h1, h2) = ϕ(h2, q)− ϕ(h1, q) . (5.27)

Our proof that this is impossible is based on the theory of random walks on the group G.
Fix for convenience a reference point o ∈ H3 (its choice is irrelevant for what fol-

lows) and take a probability measure µ on the group G such that the first moment∑
g∈G dist(o, go)µ(g) is finite and µ(g) > 0 for all g ∈ G. Denote by µ∞ the product

measure on the space G∞ of sequences g = (g1, g2, . . . ). Every g ∈ G∞ gives rise to
the (random) sequence hn = hn(g) = g1g2 . . . gno ∈ H

3 which µ∞-a.e. has the following
properties (see [Ka00b]):

(i) There exists a limit

h∞ = h∞(g) = lim
n→∞

hn ∈ ∂H
3 ,

and the image ν of the measure µ∞ under the map g 7→ h∞(g) is purely non-
atomic.

(ii) If U denotes the Bernoulli shift (g1, g2, . . . ) 7→ (g2, g3, . . . ) in the space (G∞, µ∞),
then

h∞(Ug) = g−11 h∞(g) .

(iii) There exists a number l = l(µ) > 0 (the same for a.e. g ∈ G∞) such that

1

n
dist(o, hn) −→

n→∞
l .

(iv) The distance between hn and the geodesic ray joining the points o ∈ H3 and
h∞ ∈ ∂H

3 is o(n).

Combination of (iii) and (iv) implies that µ∞-a.e.

1

n
βh∞(h0, hn)→ l . (5.28)

Assuming that (5.27) is satisfied, put

Φ(g) = ϕ(o, h∞(g)) .

As it follows from (i) above, ν(Λ0) = 0, so that the function Φ is µ∞-a.e. well-defined.
Then

βh∞(o, hn) = ϕ(hn, h∞)− ϕ(o, h∞) = ϕ(g1g2 . . . gno, h∞)− ϕ(o, h∞)

= ϕ(o, g−1n . . . g−12 g−11 h∞)− ϕ(o, h∞) = Φ(Ung)− Φ(g) .

Since U preserves the measure µ∞, (5.28) would be then impossible by the Poincaré
recurrence theorem, which gives the sought for contradiction. 2

Corollary 5.29. The laminationMG admits no Borel Euclidean structure.
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Corollary 5.30. There is no Borel G-equivariant map assigning to every point
q ∈ Λ(G) \ Λ0(G) a horosphere centered at q.

5.3. Metrics on the Riemann sphere.

5.3.1. Visual metrics.

Definition 5.31. The visual (spherical, angular) metric ςh, h ∈ H
3 on the sphere ∂H3

is the unique Riemannian metric invariant with respect to all isometries of H3 which fix
h and normalized to have curvature 1. The distance between two points q−, q+ ∈ ∂H

3 in
the metric ςh is just

ςh(q−, q+) = ∠h(q−, q+) ,

i.e., the angle between these points “as seen from the point h” (more rigorously, the angle
between the directing vectors of the geodesic rays joining h with q− and q+, see Fig. 12).4

Clearly, the assignment h 7→ ςh is equivariant with respect to the group Iso(H3) of
isometries of H3:

gςh = ςgh ∀h ∈ H3, g ∈ Iso(H3) .

The following is well-known (e.g., see [Ka00a]):

Proposition 5.32. All metrics ςh, h ∈ H
3 are pairwise conformally equivalent, and

ςh2

ςh1

(q) = exp
[
βq(h1, h2)

]
, ∀h1, h2 ∈ H

3, q ∈ ∂H3 .

5.3.2. Cut length. Given two points q− 6= q+ ∈ ∂H3 and a point h ∈ H3 denote by
lh(q−, q+) the length of the segment of the geodesic (q−, q+) cut out by the horospheres
passing through h and centered at the points q− and q+. We shall call lh(q−, q+) the cut
length. Clearly,

lh(q−, q+) = βq−(h, o) + βq+(h, o) (5.33)

for any point o lying on the geodesic (q−, q+) (see Fig. 12). Therefore,

q−

q+

h

lh(q−, q+)

∠h(q−, q+)

Figure 12

Proposition 5.34 ([Ka90]). For any h1, h2 ∈ H
3 and (q−, q+) ∈ ∂H

3

lh1
(q−, q+)− lh2

(q−, q+) = βq−(h1, h2) + βq−(h1, h2) .
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We shall now calculate the value of lh(q−, q+). Recall that εh,q denotes the Euclidean
metric on the punctured sphere Pq = ∂H3 \ {q} which is the image of the induced
hyperbolic metric on the horosphere Horq(h) (we add the subscript q to the notation from
(1.39) where the point q ∈ ∂H3 was assumed fixed). By pq is denoted the projection of
the hyperbolic spaceH3 onto the plane Pq, i.e., pqh is the endpoint on ∂H3 of the geodesic
passing through q and h ∈ H3 (see §1.1.1).

Proposition 5.35. For any h ∈ H3 and q− 6= q+ ∈ ∂H
3

lh(q−, q+) = log
[
1 +

[
εh,q+(q−, pq+h)

]2]
= −2 log sin

[
1

2
ςh(q−, q+)

]
.

Proof. Denote by (z, t) and (ζ, 0) the coordinates of the points h and q−, respectively in
the upper half-space model (q+ being the point at infinity). Then the geodesic joining q−
and q+ is just the vertical lime passing through the point (ζ, 0). The horosphere Horq+(h)
is the horizontal plane passing through the point h, and the horosphere Horq−(h) is a
Euclidean sphere passing through h and tangent to the boundary plane at the point q−
(see Fig. 13). One can easily see that the Euclidean radius r of this sphere satisfies the
relation

r2 = (r − t)2 + |z − ζ|2 ,

whence

2r =
t2 + |z − ζ|2

t
. (5.36)

The value of lh(q−, q+) is the ratio of Euclidean heights of the points of intersection of the
horospheres Horq±(h) with the geodesic (q−, q+), i.e.,

lh(q−, q+) = log
2r

t
= log

t2 + |z − ζ|2

t2
= log


1 +

(
|z − ζ|

t

)2


= log
[
1 +

[
εh,q+(q−, pq+h)

]2]
.

On the other hand, the angle α = ∠h(q−, q+) coincides with the angle between the radii
of the Euclidean sphere Horq−(h) joining its center with the points h and q− (see Fig. 13).
Therefore, by (5.36),

sinα/2 =

√
t2 + |z − ζ|2

2r
=

t√
t2 + |z − ζ|2

,

whence

lh(q−, q+) = −2 log sinα/2 = −2 log sin
[
1

2
ςh(q−, q+)

]
.

2
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q+ =∞

h = (z, t) h′

pq+h = (z, 0) q− = (ζ, 0)

r

Horq+(h)

Horq−(h)

Figure 13

5.3.3. Comparison of Euclidean and visual metrics.

Proposition 5.37. For any h ∈ H3 and q− 6= q+ ∈ ∂H
3

εh,q+
ςh

(q−) =
1

2
exp

[
lh(q−, q+)

]
. (5.38)

Proof. Clearly (see Fig. 13),

ςh(q−, pq+h) = ∠h(q−, pq+h) = π − ∠h(q−, q+) = π − ∠h(q−, q+) .

Therefore, by Proposition 5.35

1 +
[
εh,q+(q−, pq+h)

]2
=

1

cos2
[
1
2
ςh(q−, pq+h)

] .

Letting the point q− tend to pq+h we obtain

εh,q+
ςh

(pq+h) =
1

2

in perfect keeping with (5.38), because lh(pq+h, q+) = 0.
Now, for an arbitrary point q− ∈ Pq+ let h′ be the intersection of the geodesic (q−, q+)

with the horosphere Horq+(h), so that βq+(h, h
′) = 0 and βq−(h, h

′) = lh(q−, q+) (see
Fig. 13). Then εh′,q+ = εh,q+ , and by Proposition 5.32

εh,q+
ςh

(q−) =
εh′,q+
ςh

(q−) =
εh′,q+
ςh′

(q−) ·
ςh′

ςh
(q−)

=
1

2
exp

[
βq−(h, h

′)
]
=

1

2
exp

[
lh(q−, q+)

]
.

2

5.4. Conformal streams and invariant measures of the geodesic flow.
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5.4.1. The Patterson–Sullivan stream.

Definition 5.39. A Patterson–Sullivan stream of a Kleinian group G is a G-invariant
conformal stream ν (of some dimension δ > 0) on the limit set Λ(G). 4

One can easily verify that a Patterson–Sullivan stream ν is determined just by its values
νh = νςh on the visual metrics. More precisely,

Proposition 5.40. A Patterson–Sullivan stream ν is uniquely determined by the fam-
ily {νh}, h ∈ H

3 of finite positive measures on Λ(G) (not necessarily probability ones!)
satisfying the following properties:

(i) The measures νh are all pairwise equivalent, and their Radon–Nikodym derivatives
are

dνh2

dνh1

(q) = exp
[
δβq(h1, h2)

]
∀h1, h2 ∈ H

3, q ∈ ∂H3 ;

(ii) The family {νh} is G-invariant, i.e.,

νgh = gνh ∀ g ∈ G, h ∈ H3 .

Remark 5.41. A finite measure νo on Λ(G) (where o ∈ H3 is a fixed reference point) is
sometimes called a Patterson–Sullivan measure (of dimension δ) if it is quasi-invariant
under the action of G, and its Radon–Nikodym derivatives are

dgνo
dνo

(q) = exp
[
δβq(o, go)

]
.

Clearly, such a measure uniquely extends to a family {νh} satisfying conditions (i) and
(ii) from Proposition 5.40, and therefore to a Patterson–Sullivan stream.

Remark 5.42. If Λ(G) = ∂H3, then the area stream on ∂H3 (which is obviously G-
invariant) is a Patterson–Sullivan stream of dimension δ = 2.

Definition 5.43 ([Pa76], [S79]). The critical exponent δG of a Kleinian group G separates
domains of divergence and convergence (with respect to the parameter s) of the Poincaré
series ∑

g∈G

exp
[
−s dist(o, go)

]
,

where o ∈ H3 is a chosen reference point. 4

Theorem 5.44 ([Pa76], [S79]). Let G be a non-elementary Kleinian group. Then δG ∈
(0, 2], the dimension δ of any Patterson–Sullivan stream of G satisfies the inequality δ ≥
δG, and there exists a Patterson–Sullivan stream of dimension δG.

Proposition 5.45. There is a natural one-to-one correspondence between Patterson–
Sullivan streams ν of a Kleinian group G and G-invariant leafwise conformal streams
λ = λ(ν) of the same dimension on the lamination AG concentrated on the leafwise limit
sets.

Proof. Obviously, any Patterson–Sullivan stream ν lifts to a G-invariant leafwise confor-
mal stream λ = λ(ν) on AG of the same dimension concentrated on the leafwise limit sets.
Conversely, a leafwise conformal stream λ on AG concentrated on leafwise limit sets is a
continuous map q 7→ λL(q) from Λ (which parameterizes the leaves of AG) to the space
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of conformal streams on Λ, and G-invariance of λ means that this map is equivariant.
Minimality of the action of G on Λ implies that λL(q) must be constant, i.e., λ determines
a single Patterson–Sullivan stream ν. 2

On the other hand, the hyperbolization HG = HAG is the product lamination of the
space H3×Λ. Therefore, the standard transversals of HG can be parameterized by points
h ∈ H3. By Proposition 5.40 the Patterson–Sullivan stream gives rise to a G-equivariant
assignment of measures on Λ to points h ∈ H3. Hence, it determines a transverse measure
on HG, and by property (i) from Proposition 5.40 the modulus of this measure is exp[δβ].
Conversely, any G-invariant transverse measure of HG with modulus exp[δβ] restricted to
standard transversals satisfies the conditions of Proposition 5.40, and therefore determines
a Patterson–Sullivan stream of dimension δ. Thus, Theorem 2.63 implies:

Proposition 5.46. There is a natural one-to-one correspondence between Patterson–
Sullivan streams ν of a Kleinian group G and G-invariant parallel transverse conformal
streams µ = µ(ν) of the same dimension on the lamination AG.

5.4.2. Geodesic currents and invariant measures of the geodesic flow. Recall that the total
space of the lamination HG is H3 × Λ(G) ⊂ H3 × ∂H3 ∼= UH3 and that the vertical flow
on HG is just the restriction of the geodesic flow. The measures on ∂2H3 which are
G-invariant are called geodesic currents of the quotient manifold M = H3/G (e.g., see
[Bo86]). The reason is that they naturally induce 1-currents on the geodesic foliation of
UM . In measure theoretic terms the lift υ̃ of any such measure υ to UH3 (obtained
by integrating the geodesic length against υ, cf. Definition 2.38) is invariant both with
respect to the action of G and the geodesic flow on UH3, i.e., determines an invariant
measure υ̃M of the geodesic flow on the quotient manifold M (e.g., see [F73]).

Proposition 5.45 and Proposition 5.46 in combination with Theorem 2.91 yield

Theorem 5.47. Let ν be a Patterson–Sullivan stream of a Kleinian group G. Let λ =
λ(ν) and µ = µ(ν) be the corresponding leafwise and transverse conformal streams on the
lamination AG. Then υ(ν) = λ ?µ is a geodesic current ofM concentrated on Λ×Λ\diag.

Corollary 5.48. A Patterson–Sullivan stream ν of a Kleinian group G determines an in-
variant measure υ̃M = υ̃M(ν) of the geodesic flow on the quotient lamination
MG ⊂ UM .

5.4.3. Other constructions of geodesic currents. A geodesic current associated with a Pat-
terson–Sullivan stream (≡ with a Patterson–Sullivan measure) was first constructed by
Sullivan [S79] as

dυ[1](q−, q+) =
dνo(q−) dνo(q+)

|q− − q+|2δ
, (5.49)

where the hyperbolic space H3 is realized in the Poincaré model as the Euclidean ball of
radius 1 centered at the point o, and |q− − q+| denotes the Euclidean chordal distance
between points q− and q+ from the unit sphere.

Kaimanovich [Ka90] considered the measure

dυ[2](q−, q+) = exp
[
δlh(q−, q+)

]
· dνh(q−) dνh(q+) . (5.50)
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By Proposition 5.34 it does not depend on the choice of h ∈ H3, in particular, it
is G-invariant, i.e., is a geodesic current. The advantage of the intrinsic approach of
Kaimanovich (as well as of the construction below) is that it works for an arbitrary neg-
atively curved manifold (not necessarily of constant curvature) as well and produces an
invariant measure of the geodesic flow called Margulis–Sullivan–Kaimanovich measure.
In the compact case it leads to the Margulis measure (≡ the maximal entropy invariant
measure of the geodesic flow).

We shall now describe a new functorial construction of an invariant measure of the
geodesic flow on the quotient manifold M = H3/G associated with a Patterson–Sullivan
stream. This construction is direct (one does not have to consider first the correspond-
ing geodesic current) and completely symmetric with respect to the stable and unstable
directions. It is based on the fact that the geodesic projection (1.11) is a conformal
isomorphism between the horosphere Hor(v) (endowed with the Euclidean metric εv in-
duced from H3) and the punctured sphere Pq = ∂H3 \ {q+} (see Fig. 11). Therefore,
the Patterson–Sullivan stream ν carries over from ∂H3 to the horosphere Hor(v) (see Re-
mark 2.42), where it assigns a Radon measure νv to the metric εv. Since the metric εv is
parallel, i.e., the same for all vectors from the strongly stable leaf W ss(v) of the vector v,
we obtain that the Patterson–Sullivan stream ν determines a leafwise measure νss on the
strongly stable foliationWss of UH3 (if ν is the area stream, then this is just the leafwise
Euclidean area). Denote by νsu the analogous leafwise measure on the strongly unstable
foliation Wsu, and let ` be the Lebesgue measure along the trajectories of the geodesic
flow. We claim that

d`× dνss × dνsu (5.51)

is an invariant measure of the geodesic flow on UH3, which is also G-invariant, i.e.,
descends to an invariant measure of the geodesic flow on the quotient manifold.

First note that such a “local” definition makes sense because all the measures involved
in (5.51) are obviously quasi-invariant with respect to the corresponding holonomies (see
below for an explicit form of the associated Radon–Nikodym derivatives). Since the
Euclidean leafwise metric on the strongly stable (resp., strongly unstable) foliation is
uniformly exponentially contracted (resp., expanded) by the geodesic flow (see §5.1.2),
the δ-covariance of the definition of the measure νss (resp., νsu) immediately implies that
it is also uniformly contracted (resp. expanded) by the flow:

d(γ−τνss)

dνss
= exp[−δτ ] ,

d(γ−τνsu)

dνsu
= exp[δτ ] , (5.52)

which is, in fact, the characteristic property of the measure (5.51). In turn, formulas
(5.52) immediately imply invariance of the measure (5.51) with respect to the geodesic
flow, whereas its G-invariance follows from G-invariance of the Patterson–Sullivan stream
ν and functoriality of the whole construction.

Remark 5.53. The original construction of Margulis from [Ma70] is also based on using
a uniformly contracting leafwise measure on the strongly stable foliation, although he
obtains this measure in a completely different way.

We shall now recast the previous construction in terms of geodesic streams. Denote by
νh,q+ the measure on ∂H3 assigned by the Patterson–Sullivan stream ν to the conformal
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Euclidean metric εh,q+ on ∂H3 induced from the stable horosphere Hor(v) (see §5.3.2).
In the same way the measure νh,q− is determined by the Euclidean metric on the unstable
horosphere Hor(−v) (as before, we use the notations from Fig. 11). Then, as it follows
from (5.52), the product measure υq−,q+ = νh,q+ ⊗ νh,q− is the same for any choice of
the point h on the geodesic (q−, q+). Now fix (q0−, q

0
+) ∈ Λ × Λ \ diag, and denote by

υ[3] the measure on Λ× Λ \ diag from the common measure class of the measures υq−,q+
determined by the relation

dυ[3]

dυq0−,q0+
(q−, q+) =

dυq−,q+
dυq0−,q0+

(q−, q+) . (5.54)

Clearly, υ[3] does not depend on the choice of (q0−, q
0
+). Moreover, by G-invariance of

the Patterson–Sullivan stream ν the map (q−, q+) 7→ υq−,q+ is G-equivariant, whence the

measure υ[3] is also G-invariant, i.e., a geodesic current.
Take a point h0 on the geodesic (q0−, q

0
+), then by Proposition 5.32, formula (5.33) and

Proposition 5.37 the density in the right-hand side of formula (5.54) takes the form

dυq−,q+
dυq0−,q0+

(q−, q+) =
dνh,q+
dνh0,q0

+

(q−) ·
dνh,q−
dνh0,q0−

(q+)

=
dνh,q+
dςh

(q−) ·
dςh0

dνh0,q0
+

(q−) ·
dςh
dςh0

(q−) ·
dνh,q−
dςh

(q+) ·
dςh0

dνh0,q0−

(q+) ·
dςh
dςh0

(q+)

= exp
[
δ
(
lh0(q−, q+)− lh0(q−, q

0
+)− lh0(q0−, q+)

)]

= exp
[
−δR(q0−, q−, q

0
+, q+)

]
,

where

R(q1, q2, q3, q4) = lim
[
dist(h1, h3) + dist(h2, h4)− dist(h1, h4)− dist(h2, h3)

]

denotes the cross ratio of the points q1, q2, q3, q4 ∈ ∂H
3 [Ot92] (in the definition of R the

points hi ∈ H
3 converge in the visibility compactification to the respective points qi).

5.4.4. Comparison of geodesic currents.

Theorem 5.55. For a given Patterson–Sullivan stream ν the geodesic current υ from
Theorem 5.47 and the geodesic currents υ[1] (5.49), υ[2] (5.50), υ[3] (5.54) are all the
same (up to a normalizing multiplier).

Proof. υ[1] vs. υ[2]. Since

|q− − q+| = 2 sin
[
1

2
∠o(q−, q+)

]
,

by Proposition 5.35

lo(q−, q+) = −2 log sin
[
1

2
∠o(q−, q+)

]
= −2 log

|q− − q+|

2
= 2 log 2− 2 log |q− − q+| ,

whence υ[2] = 22δυ[1]. 4
υ[2] vs. υ[3]. By formula (5.54) for any point h from the geodesic (q−, q+)

dυ[3](q−, q+) = dυq−,q+(q−, q+) = dνh,q+(q−) dνh,q−(q+) ,
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whence υ[3] = 2−2δυ[2] by Proposition 5.37. 4
υ vs. υ[2]. By Theorem 2.57 the measure λ ?µ = λσ ? µσ does not depend on the

choice of the section σ of the fiber bundle p : HG → AG. Therefore, we may fix such a
section σ and do all the computations just for this section. Fix a point o ∈ H3, and let
σ : AG → HG be the section determined by the condition that the leafwise metrics ρσ
are the visual metrics ςo. Then the leafwise measures λσ are just the measures νo: in the
coordinates (q−, q+) on AG

dλq+σ (q−) = dνo(q−)

(recall that AG = Λ × ∂H3 \ diag, so that q+ is the transverse coordinate, and q− is the
leafwise coordinate).

Let us now consider the transverse measure µσ. Due to the product structure of AG,
we can just look at the restrictions µq−σ of µσ onto the standard transversals Tq− =
{(q−, q+), q+ ∈ Λ \ {q−}}. By Theorem 2.63

dµq−σ (q+) = dνh(q+) = exp
[
δβq+(o, h)

]
dνo(q+) ,

where σ(q−, q+) = (h, q+) ∈ HG, so that the point h ∈ H
3 is determined by two conditions:

(i) It lies on the geodesic (q−, q+), because σ(q−, q+) has to belong to the fiber of the
bundle p over the point (q−, q+);

(ii) It belongs to the section σ, i.e.,

εh,q+
ςo

(q−) = 1 .

By Proposition 5.37
εo,q+
ςo

(q−) =
1

2
exp

[
lo(q−, q+)

]
,

on the other hand,
εo,q+
εh,q+

(q−) = exp
[
βq+(o, h)

]
,

whence

βq+(o, h) = lo(q−, q+)− log 2 ,

which means that υ = λσ ? µσ = 2−δυ[2]. 2

Remark 5.56. In the case when Λ = ∂H3 and ν is the area stream on ∂H3 all these
geodesic currents are proportional to the Liouville geodesic current (which corresponds
to the Liouville invariant measure of the geodesic flow).

5.4.5. The Patterson–Sullivan streams, harmonic measures and functions. By the general
results from §2.3 (Theorem 2.86 and Theorem 2.88, respectively) the parallel transverse
conformal stream µ(ν) and the leafwise conformal stream λ(ν) on AG determined by a
Patterson–Sullivan stream ν of dimension δ (Proposition 5.46 and Proposition 5.45, re-
spectively) give rise to a G-invariant λ-harmonic measure ων and to a G-invariant leafwise
λ-harmonic function Φν on the hyperbolic lamination HG = HAG (with λ = δ(δ − 2)).
In terms of the measures νh assigned by the stream ν to the visual metrics ςh they are
expressed as

dων(h, q) = d vol(h)dνh(q) , Φν(h, q) = ‖νh‖ .
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It is well-known (see [S79]), that if the group G is convex cocompact, then it has a
unique Patterson–Sullivan stream of dimension δG, and that Φµ descends to a unique
λ-harmonic function on the quotient manifold M = H3/G. By using the arguments from
[Ga83] (also see [Ka88]) one can prove

Theorem 5.57. If the Kleinian group G is convex cocompact, and ν is the unique
Patterson–Sullivan stream of dimension δG, then ω

ν is the unique G-invariant λ-harmonic
measure of the lamination HG which descends to a unique λ-harmonic measure of the quo-
tient laminationMG

∼= HG/G.

5.5. New lines in the dictionary. In order to summarize the above discussion, let
us list some correspondences between various objects associated with affine laminations
determined by Kleinian groups and rational maps (here, as always, λ = δ(δ − 2)).
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Kleinian groups Rational maps

Kleinian group G acting on C Rational map f acting on C

Limit set Λ = Λ(G) ⊂ C The Julia set J = J(f) ⊂ C

Affine C-fibration AG ∼= C× Λ \ diag over Λ
with the diagonal action of G

Affine lamination Af with the automorphism

f̂

Product structure on AG Dual fibration of Af

Hyperbolic lamination HG = HAG ∼= H
3 ×

Λ \ diag with the properly discontinuous di-
agonal action of G

Hyperbolic lamination Hf = HAf with the

properly discontinuous automorphism f̂

Hyperbolic laminationMG = HG/G Hyperbolic laminationMf = Hf/f̂

Non-triviality of the Busemann cocycle of
MG in the Borel cohomology (Theorem 5.26)

Non-triviality of the Busemann cocycle of
Mf in the Borel cohomology (Theorem 3.26)

Critical exponent δG Forward and backward critical exponents δcr
and γcr

G-invariant parallel transverse conformal
stream on AG corresponding to a Patterson–
Sullivan stream of dimension δG of the group
G (with Λ considered as the “past” of the
geodesic flow)

f̂ -invariant parallel transverse conformal
stream on Af of dimension δcr

G-invariant leafwise conformal stream on
AG corresponding to a Patterson–Sullivan
stream of dimension δG of the group G (with
Λ considered as the “future” of the geodesic
flow)

f̂ -invariant leafwise conformal stream on Af
of dimension γcr

Geodesic current (≡ a G-invariant Radon
measure) on Λ × Λ \ diag determined by a
Patterson–Sullivan stream

The global f̂ -invariant measure υ on Af ,
which is the product of the leafwise and
transverse conformal streams of the same
dimension

The invariant measure of the geodesic flow on
UH3/G determined by a Patterson–Sullivan
stream

The natural lift υ̃ of υ to an invariant mea-
sure of the vertical flow onMf

λ-harmonic measure onMG associated with
a Patterson–Sullivan stream of dimension δ
of the group G

λ-harmonic measure on Mf associated with

a f̂ -invariant parallel transverse conformal
stream of dimension δ on Af

λ-harmonic function on M = H3/G associ-
ated with a Patterson–Sullivan stream of di-
mension δ of the group G

Leafwise λ-harmonic function on Mf asso-

ciated with a f̂ -invariant leafwise conformal
stream of dimension δ on Af
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5.6. An example of a non-Euclidean affine foliation. The first example of an affine
foliationA which is not Euclidean (recall that by Proposition 1.87 it is equivalent to saying
that the basic class of A is non-zero) was given by Ghys [Gh97] (also see [Gh99]) on the
base of a construction of non-standard deformations of Fuchsian groups due to Goldman
[Go85] and Ghys [Gh87]. Here we shall recast this example making more explicit its
relation to the foliations associated with the geodesic flow on H3.

For an arbitrary Kleinian group G the Busemann cocycle on the hyperbolic foliation
MG is cohomologically non-trivial (Theorem 5.26); however,MG does not correspond to
any affine foliation (see Remark 5.23). Recall that AG can be considered as a quotient
of the strongly stable foliation Wss of the geodesic flow with respect to the action of the
flow. This factorization preserves the leafwise affine structure, but destroys the Euclidean
structure. The example exploits the same idea, but, in order to have a properly discontin-
uous action we replace the “whole” geodesic flow with a one-dimensional representation
(≡ character) of the group G.

5.6.1. Twisted action. Take a compact hyperbolic manifold H and put G = π1(H). The
actions of G and of the geodesic flow γ on UH3 commute (note that only the first of
these actions is isometric!). We shall now define a new “twisted” action of G on UH3 by
combining the original action of G with the geodesic flow.

From now on we shall assume that the first Betti number of G is positive,
i.e., the group Hom(G,R) ∼= H1(H,R) of additive real-valued characters
of G is non-trivial.

Remark 5.58. The groups Hom(G,R) and H1(H3/G,R) coincide for any Kleinian group
G without parabolic elements. Although there are cocompact Kleinian groups with trivial
space Hom(G,R), it is plausible (according to [VGS00, p. 98]) that if G is a lattice (in
particular, if G is cocompact), then it always has the so-called Millson property : there
exists a finite index subgroup G′ ⊂ G such that Hom(G′,R) is non-trivial. This property
has been proved for several classes of lattices.

Definition 5.59. The twisted action Tχ of the group G on UH3 determined by a character
χ ∈ Hom(G,R) is

T gχv = g ◦ γχ(g)(v) = γχ(g) ◦ g(v) , (5.60)

where in the right-hand side v 7→ gv is the standard action of G on UH3 (see Fig. 14).
We shall also use the same notation Tχ for the action of the group G on the space of
horospheres Hor(H3) defined by the formula

T gχΥ = γχ(g) ◦ g(Υ) = g ◦ γχ(g)(Υ) ,

where γ now stands for the action (5.4) of the geodesic flow on Hor(H3). Then in the
coordinates (q,Υ) (5.8) on UH3

T gχ(q,Υ) = (gq, T gχΥ) .

4
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v

gv

T gχv

Figure 14

5.6.2. Admissible characters.

Definition 5.61. A character χ ∈ Hom(G,R) is admissible if the action Tχ is free, proper
and totally discontinuous. 4

One can easily see that all characters sufficiently close to the identity in Hom(G,R)
are admissible. The following complete description is due to Salein [Sa97] (although he
deals with hyperbolic surfaces only, his proof based on a criterion of Benoist [Be96] almost
verbatim carries over to higher dimensions as well).

Definition 5.62. The stable norm on Hom(G,R) is

‖χ‖ = sup
g∈G

χ(g)

l(g)
,

where

l(g) = min{dist(h, gh) : h ∈ H3} , g ∈ G ,

denotes the length of the closed geodesic on H associated with the conjugacy class of g
in the group G. 4

Proposition 5.63. The action Tχ is admissible iff ‖χ‖ < 1.

Remark 5.64. As a motivation for this result note that if χ(g) = −l(g) for a certain
element g ∈ G, then T gχv = v for any vector v ∈ UH3 tangent to the axis of g.

5.6.3. Absence of Euclidean structures. The action Tχ preserves the foliation Wss and its
affine (but not Euclidean, unless χ = 0!) structure.

Definition 5.65. For an admissible character χ ∈ Hom(G,R) denote by Bχ the affine
foliation of the quotient manifold UH3/Tχ obtained by factorizing the strongly stable
foliation Wss by the action Tχ. 4

For χ = 0 the foliation B0 is just the strongly stable foliation of the geodesic flow on
UH3/G, so that it is endowed with a natural leafwise Euclidean structure.

Theorem 5.66. If χ 6= 0, then the affine foliation Bχ does not admit any Borel Euclidean
structure.
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Proof. By Proposition 1.87 we have to prove non-triviality of the basic class of Bχ. In
view of Proposition 1.87 it is equivalent to non-triviality of the Busemann cocycle of the
hyperbolization HBχ. Further, Bχ is defined as the quotient of the strongly stable foliation
Wss by the action Tχ (5.60), so that we have to prove that the Busemann cocycle (5.18)
on the hyperbolization HWss (see §5.1.3) is not cohomological to zero by means of a
certain Tχ-invariant function:

β
(
(h1,Υ), (h2,Υ)

)
= f(h2,Υ)− f(h1,Υ) ,

f
(
T gχ(h,Υ)

)
= f(h,Υ) ∀ g ∈ G, (h,Υ) ∈ HWss .

(5.67)

We shall prove it under the only assumption that χ 6= 0 (i.e., without requiring that the
character χ be necessarily admissible).

Indeed, if (5.67) were satisfied, then, as it follows from formula (5.18) for the Busemann
cocycle on HWss, the function f would be expressed as

f(h,Υ) = ϕ(Υ) + βΥ∞(Υ, h) , (5.68)

where ϕ is a function on the space of horospheres Hor(H3), and βΥ∞(Υ, h) denotes the
common value βΥ∞(h

′, h), h′ ∈ Υ.
On the other hand, as it follows from (5.20), the action Tχ on the hyperbolization HW ss

has the form

T gχ(h,Υ) = (gh, T gχΥ) . (5.69)

Therefore, using (5.68) and the fact that (γτΥ)∞ = Υ∞ for any τ ∈ R and Υ ∈ Hor(H3),
we obtain

f
(
T gχ(h,Υ)

)
= f(gh, T gχΥ) = ϕ(T gχΥ) + βgΥ∞(T

g
χΥ, gh)

= ϕ(T gχΥ) + βΥ∞(γ
χ(g)Υ, h)

= ϕ(T gχΥ) + βΥ∞(γ
χ(g)Υ,Υ) + βΥ∞(Υ, h)

= ϕ(T gχΥ)− χ(g) + βΥ∞(Υ, h) .

The latter formula compared with (5.68) implies that f is Tχ-invariant iff the function ϕ
on Hor(H3) satisfies the relation

ϕ(T gχΥ)− χ(g) = ϕ(Υ) ∀ g ∈ G, Υ ∈ Hor(H3) . (5.70)

In particular, the function ϕ has to be invariant with respect to the standard action of the
kernel G0 = kerχ of the homomorphism χ. On the other hand, the horosphere foliation
on the abelian cover H3/G0 of the compact manifold H = H3/G is ergodic with respect
to the smooth measure class, which is equivalent to ergodicity (again with respect to the
smooth measure class) of the action of G0 on the space Hor(H3), see [BL98], [Ka00a].
Therefore, the function ϕ must be a.e. constant, which is impossible for χ 6= 0 in view of
formula (5.70). 2

Remark 5.71. Ergodicity of the horosphere foliations was established in [Ka00a] for all
abelian covers of any such manifold H = H3/G that the geodesic flow on UH is ergodic
with respect to the Liouville measure (≡ the group G is of divergent type), so that the
cocompactness assumption in the formulation of Theorem 5.66 can be replaced with this
weaker condition.
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5.6.4. Transverse conformal streams. We shall now briefly describe parallel transverse
conformal streams for the foliations Bχ without going into details (to be given elsewhere).
As it follows from Theorem 2.63, they are in one-to-one correspondence with transverse
measures of the foliation HBχ with modulus exp[δβ]. Since HBχ is the quotient of the fo-
liation HWss (5.17) by the action Tχ (5.69), it means that there is a one-to-one correspon-
dence between parallel transverse conformal streams for the foliation Bχ and Tχ-invariant
transverse measures of HWss with modulus exp[δβ]. Since HWss ∼= H3 × Hor(H3) is a
product foliation, and taking into account formula (5.18) for the Busemann cocycle on
HWss we arrive at

Proposition 5.72. Let Bχ be one of the foliations described in §5.6.3. Then there is a
natural one-to-one correspondence between parallel transverse conformal streams on Bχ of
dimension δ and families of measures θh, h ∈ H

3 on Hor(H3) such that

log
dθh2

dθh1

(Υ) = δβΥ∞(h1, h2) ∀h1, h2 ∈ H
3, Υ ∈ Hor(H3) ,

T gχθh = θgh ∀h ∈ H3, g ∈ G .

(5.73)

It turns out that systems of measures satisfying condition (5.73) are intimately con-
nected with a family of invariant measures of the horocycle flow on the homology cover
of a compact hyperbolic surface constructed by Babillot and Ledrappier [BL98]. We shall
follow a more geometric description of these measures given in [Ba96] and adapt it to our
setup by passing from dimension 2 to dimension 3 (which does not change anything in
the considerations from [BL98] and [Ba96] modulo substituting “horosphere foliation” for
the “horocycle flow”).

Fix a character χ : G → R. Then there is a unique number δ = δ(χ) ≥ 2 for which
there exists a system (again unique) of finite measures νh = νχh , h ∈ H

3 on ∂H3 satisfying
the relations

log
dνh2

dνh1

(q) = δβq(h1, h2) ∀h1, h2 ∈ H
3, q ∈ ∂H3 ,

log
dgνh
dνgh

= χ(g) ∀h ∈ H3, g ∈ G .

The number δ is the critical exponent of convergence of the generalized Poincaré series

Σ(s) =
∑

g∈G

exp
[
−s dist(o, go)− χ(g)

]
, (5.74)

where o is a fixed reference point. The series (5.74) diverges for s = δ, and the measures
νh are the weak limits (as s↘ δ) of the measures

1

Σ(s)

∑

g∈G

exp
[
−s dist(h, go)− χ(g)

]
δgo .

Denote by ν̃h the lifts of the measures νh from ∂H3 to Hor(H3) obtained by integrating
the Lebesgue measures on the fibers of the projection Hor(H3) → ∂H3 with respect to
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the measures νh. Then, clearly,

log
dν̃h2

dν̃h1

(Υ) = δβΥ∞(h1, h2) ∀h1, h2 ∈ H
3, q ∈ ∂H3 ,

log
dgν̃h
dν̃gh

= χ(g) ∀h ∈ H3, g ∈ G ,

(5.75)

and the measures ν̃ are invariant with respect to the action of the geodesic flow γ on
Hor(H3). Thus,

T gχ ν̃h = gν̃h = exp
[
χ(g)

]
ν̃gh .

Now put

θh = ϕν̃h , ϕ(h,Υ) = exp
[
βΥ∞(h,Υ)

]
. (5.76)

Then by (5.75)

log
dθh2

dθh1

(Υ) = log
ϕ(h2,Υ)

ϕ(h1,Υ)
+ log

dν̃h2

dν̃h1

(Υ)

= βΥ∞(h2,Υ)− βΥ∞(h1,Υ) + δβΥ∞(h1, h2)

= (δ − 1)βΥ∞(h1, h2) ,

and

log
dT gχθh

dθgh
(T gχΥ) = log

ϕ(h,Υ)

ϕ(gh, T gχΥ)
+ log

dT gχ ν̃h

dν̃gh
(T gχΥ)

= βΥ∞(h,Υ)− βgΥ∞(gh, T
g
χΥ) + log

dgν̃h
dν̃gh

(T gχΥ)

= βΥ∞(h,Υ)− βΥ∞(h, γ
χ(g)Υ) + χ(g)

= βΥ∞(γ
χ(g)Υ,Υ) + χ(g) = 0 .

Therefore,

Proposition 5.77. For a given character χ : G→ R the family of measures θh, h ∈ H
3

on Hor(H3) (5.76) determines a parallel transverse conformal stream on the foliation Bχ
of dimension δ(χ)− 1, where δ(χ) is the critical exponent of the series (5.74).

Remark 5.78. In a similar way one can also describe leafwise conformal streams of the
foliations Bχ.

Remark 5.79. By using the methods from [BL98] (also see [ANSS]) one can prove that
the foliations Bχ are actually uniquely ergodic in the sense that for each χ 6= 0 there is a
unique number δ > 0 such that the space of parallel transverse conformal streams on Bχ of
dimension δ is non-empty, and there exists a unique (up to a constant multiplier) parallel
transverse conformal streams of this dimension δ. In other words, there is a unique δ for
which the hyperbolization HBχ has a transverse measure with modulus exp[δβ], and this
measure is unique (up to a multiplier). In particular, there are no transverse invariant
measures on HBχ.
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Remark 5.80. As it follows from the definition of the stable norm (Definition 5.62),

s dist(o, go) + χ(g) ≥ s dist(o, go)− ‖χ‖ l(g) ≥ s dist(o, go)− ‖χ‖ dist(o, go)

= (s− ‖χ‖) dist(o, go) ,

so that the critical exponent δ(χ) of the series (5.74) satisfies the inequality

δ(χ) ≤ δ(0) + ‖χ‖ = 2 + ‖χ‖ .

Therefore, the dimension δ(χ)−1 of the unique parallel transverse stream on Bχ is strictly
less than 2 for any non-zero admissible character χ.

Remark 5.81. Since the Laplacian in dimension 2 is conformal, the notion of a harmonic
measure (with eigenvalue 0) for laminations of leafwise dimension 2 only requires the
presence of a leafwise conformal structure (e.g., see [Gh99] for an intrinsic description of
a harmonic measure in these terms). It appears that the laminations Bχ have a unique
harmonic measure. We shall return to this subject elsewhere.
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négative. Rev. Mat. Iberoamericana 8 (1992), 441–456.
[Pa76] S. J. Patterson. The limit set of a Fuchsian group. Acta Math. 136 (1976), 241–273.
[Pl75] J. F. Plante. Foliations with measure preserving holonomy. Ann. of Math. 102 (1975), 327–361.
[Ro49] V.A. Rokhlin. Main notions in measure theory. Math. Sbornik 67 (1949), 107–150.
[Ru78] D. Ruelle. An inequality for the entropy of differentiable maps. Bol. Soc. Brasil. Mat. 9 (1978),

83–87.
[Sa97] F. Salein. Variétés anti-de Sitter de dimension 3 possédant un champ de Killing non trivial. C.

R. Acad. Sci. Paris, Sér. I 324 (1997), 525–530.
[Sc83] P. Scott. The geometries of 3-manifolds. Bull. London Math. Soc. 15 (1983), 401–487.
[S79] D. Sullivan. The density at infinity of a discrete group of hyperbolic motions. Publ. Math.

IHES 50 (1979), 419–450.
[S83] D. Sullivan. Conformal dynamical systems. Springer Lect. Notes in Math. 1007 (1983), 725–

752.
[S85] D. Sullivan. Quasiconformal homeomorphisms and dynamics, II: Structural stability implies

hyperbolicity for Kleinian groups. Acta Math. 155 (1985), 243 - 260.
[S87] D. Sullivan. Related aspects of positivity in Riemannian geometry. J. Diff. Geom. 25 (1987),

237–351.
[S92] D. Sullivan. Bounds, quadratic differentials, and renormalization conjectures. AMS Centennial

Publications 2: Mathematics into Twenty-first Century (1992).
[Si72] Ya. G. Sinai. Gibbs measures in ergodic theory. Russian Math. Surveys 27 (1972), 21–69.
[Sm81] J. Smillie. An obstruction to the existence of affine structures. Invent. Math. 64 (1981), 411–

415.
[Su97] M. Su. Measured solenoidal Riemann surfaces and holomorphic dynamics. J. Diff. Geom. 47

(1997), 170–195.
[Th91] W. Thurston. Three-Dimensional Geometry & Topology. Draft. University of Minnesota Ge-

ometry Center. 1991 (first 4 chapters published as Three-Dimensional Geometry and Topology,
vol. 1. Princeton Univ. Press, 1997).

[Th] W. Thurston. On the combinatorics of iterated rational maps. Preprint.
[VGS00] E. B. Vinberg, V. V. Gorbatsevich, O. V. Shvartsman. Discrete subgroups of Lie groups. In:

“Lie Groups and Lie Algebras II” (A. L. Onishchik, E. B. Vinberg eds.), Springer, Berlin, 2000,
1–124.

[Ve87] A. Verjovsky. A uniformization theorem for holomorphic foliations. Contemp. Math. 58 (1987),
233 - 253.

[U94] M. Urbansky. Rational functions with no recurrent critical points. Ergodic Theory Dynam.
Systems 14 (1994), 391–414.
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