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Abstract

We describe the order on the ratios that define the generic universal

smooth period doubling Cantor set. We prove that this set of ratios

forms itself a Cantor set, a Conjecture formulated by Coullet and Tresser

in 1977. We also show that the two period doubling renormalization

operators, acting on the codimension one space of period doubling maps,

form an iterated function system whose limit set contains a Cantor set.

1 Definitions and Statement of results

A unimodal map with critical exponent α > 1 is an interval map that can be
written in the form f = ψ ◦ qt ◦ φ, where ψ and φ are orientation preserving C3

diffeomorphisms of [0, 1], and qt : [0, 1] → [0, 1] with t ∈ (0, 1
2 ] is the standard

folding map (with critical exponent α > 1) defined by

qt(x) = 1−
|x− t|α

|1− t|α
,

that “folds” the interval at its unique critical point t. The space of orientation
preserving diffeomorphisms of the interval [0, 1] with fixed smoothness is denoted
by Diffk([0, 1]). The space of unimodal maps with fixed critical exponent α > 1
and fixed smoothness can be represented by

U = Diffk([0, 1])× (0,
1

2
]×Diffk([0, 1]).

It carries what we call Ck-distances dk, k ≤ 3, which combines the two Ck

distances on each of the two diffeomorphisms ψ and φ with the distance between
the parameters t of the folding parts. Notice that in general, the critical point
of f is cf = φ−1(t) 6= t. Let pf be the unique fixed point of f ∈ W . A map on
the interval is renormalizable if it exchanges some number N1 of subintervals.
Then the return map on one of these subintervals can again be renormalizable,
exchanging this time N2 intervals. If the process continues forever, one says
the map is infinitely renormalizable. For precise definitions and an account of
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the theory, see for instance [dMvS]. Except otherwise specified when we say
renormalizable, we mean renormalizable in the sense of period doubling, i.e.,
the map exchanges two intervals. Thus, for an infinitely renormalizable map,
N1 = N2 = · · · = 2.

Fix a critical exponent α > 1. We consider the set W of maps f : [0, 1] →
[0, 1] with f(cf ) = 1 and f(1) = 0 that are infinitely renormalizable. The critical
point defines two invariant intervals

Uf = [f2(cf ), f
4(cf )] and Vf = [f3(cf ), f(cf )] .

To these two intervals correspond two renormalization operators R0 : W → W

and R1 :W →W defined by:

R0f = [f2|Vf ] , and R1f = [f2|Uf ] ,

where [·] means affine rescaling to obtain a unimodal map on [0, 1] that sends
its critical point to 1 and 1 to 0.

Observe, that both operators preserve W and that R1 is the critical point
period doubling renormalization operator which has been most studied in the
literature (see in particular [La], [Ly], [Mc], [S2], [dMvS] and references therein
for the case when α is an even integer, and [E1],[E2] and [Ma2] for arbitrary
α > 1).

Let Tn be the set of all words of length n over the alphabet {0, 1}. We
denote by T the set of all infinite words of the form w1∞ over the alphabet
{0, 1}, and by T the set of all infinite words over the alphabet {0, 1}, equipped
with the usual metric. Notice that each Tn naturally embeds into T . For any
word τ ∈ T , we will write τ{n} ∈ Tn for the initial segment of length n of τ . We
are going to consider the iterated function system generated by R0 and R1. To
this end, we define:

Rτ{n}
= Rτ(1) ◦ · · · ◦Rτ(n) :W →W ,

and we will prove:

Theorem 1.1. For any fixed point f0 of R0, there is a Hölder-continuous map
h : T →W such that for any τ ∈ T

lim
n→∞

Rτ{n}
f0 = h(τ).

Moreover, the convergence of the sequence {Rτ{n}
f0} is exponential in the C2-

metric.

A similar statement holds for any fixed point f1 of R1.

Remark 1.2. For any α > 1, the existence of a fixed point f1 of R1 is proven
in [E1],[E2] and [Ma2]. We show here (see Corollary 2.4) that the existence of
a fixed point f1 for R1 is equivalent to the existence of a fixed point f0 for R0.
The uniqueness of f1 in the case when α is an even integer was proven in [S2].
In the sequel we will fix f0 and f1 to be fixed points of respectively R0 and R1.
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Remark 1.3. The set h(T ) of limits limn→∞Rτ{n}
f0 is denoted by A ⊂ W .

Here the notation A represents the fact that we believe, but do not prove, that
the set A is indeed the attractor of the iterated function system generated by R0

and R1, and in particular does not depend on the initial point, chosen here to
be f0.

The next two Theorems depend on convexity conditions on f0 and R1(f0).

Convexity Conditions 1.4. We assume that:

• C1 f0|[(f0)
3(cf0), 1) is strictly convex ,

• C2 R1(f0)|[(R1(f0))
3(cR1(f0)), 1] is strictly convex .

Remark 1.5. In section 4 we will show that C1 actually holds true in the case
when successive R1 renormalizations of a convex function converge to f1: this
is known to be the case when α is an even integer. Furthermore, as we will
explain, one can check that both C1 and C2 hold true in the most important
case of generic (quadratic) critical points, α = 2.

Recall that a Cantor set is a perfect and totally disconnected compact metric
space.

Theorem 1.6. If the Convexity Conditions C1 and C2 hold true, then the limit
set A of orbits of f0 under the interated function system defined by R0 and R1

is a Cantor set.

For completeness and to fix notations and definitions, we include some basic
discussion of the scaling function, whose origin is rather diffuse: first conjectures
about a form of it appeared in [CT], the name and a form of it come from [F],
while what was arguably the first theorem about it was in a never circulated work
by Feigenbaum and Sullivan cited in [S1]. The literature on scaling functions
is extensive and discusses scaling functions beyond the context of dynamics. In
particular, in [KSV] a relation with the thermodynamic formalism appeared.

Let Λ be the invariant Cantor set of f0. In the sequel we will remind the
dynamical construction of covers of Λ by finitely many intervals. These covers,
called cycles, form a refining nest of covers of this Cantor set. The scaling
function contains the infinitesimal geometrical information on how these covers
refine. It will be shown that the Cantor set Λ is, from a geometrical point of
view, very different from the well known middle third Cantor set, in which each
refinement is done everywhere in the same manner. In particular, it will be
shown in Theorem 1.8 that in the Cantor set Λ there are no two places where
the refinement is done in the same manner.

Although, the Cantor set Λ is the invariant set of a non expanding map, it is
also the invariant Cantor set of an expanding interval map, the so-called presen-
tation function [R], [S1], a great remark that Rand attributes to Misiurewicz.
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As we next recall, this directly follows from f0 being a renormalization fixed
point that is expanding to the right of pf0 .

Let U = Uf0 and V = Vf0 = [1 − v, 1]. Observe, that the affine (scaling)
map s : [0, 1] → [0, 1] defined by s : x 7→ v · (x − 1) + 1 is a homeomorphism
from Λ to Λ ∩ V . This is a direct consequence of the fact that s conjugates
f0 = R0(f0) = s−1 ◦ f2

0 ◦ s to f2
0 . Also the restriction,

f0|V : Λ ∩ V → Λ ∩ U,

is a homeomorphism so that the the map g : [0, 1]→ U defined by g = (f0|V )◦s
is a homeomorphism from Λ to Λ∩U . Let F : [0, 1]→ [0, 1] be the multivalued
function defined by the two branches

F0 = s : [0, 1]→ [0, 1] and F1 = g : [0, 1]→ [0, 1] .

The branch F0 = s is affine, contracting, and orientation preserving while the
branch F1 = g is orientation reversing. Furthermore, the absolute value of the
derivative of F1 strictly increases as a consequence of the Convexity Condition
C1, so that F1 is also contracting (as pf0 is an expanding fixed point). It follows
that the invariant set of the iterated function system F = {F0, F1} is Λ, the
invariant Cantor set of f0.

The cover {U, V } of Λ we call the cycle of the first generation. The two
intervals of this cycle are permuted by the map f0. The Cantor set Λ is the
intersection of a decreasing sequence of covers we call respectively the cycles
of generation n: the cycle of generation n is the cover of Λ consisting of 2n

intervals which are permuted by f0. The intervals that form the nth cycle can
be described as follows.

The construction of the cycles is using the iterated function system generated
by F0 and F1. We will use a different notation for the words describing sequences
of compositions of these maps that will be different from the one we used in the
definition of the iterated function system generated by R0 and R1. Namely, we
write Σn for the set of words w = w(1)w(2) . . . w(n) of length |w| = n over the
alphabet {0, 1}, and Σ for the set of infinite sequences over the alphabet {0, 1}
with the usual metric. Let

Iw = Fw(n) ◦ · · · ◦ Fw(1)([0, 1]).

The nth cycle consists of the intervals Iw with w a word of length n.

Lemma 1.7. The way f0 permutes these intervals is described by addition mod
2n on the words indexing the intervals. In particular, if c is the critical point of
f0 then c ∈ I1n and f0(c) ∈ I0n . Moreover, f(I1n) = I0n and

f0 : Iw → Iw+1,

is a diffeomorphism for each word not equal to 1n, n ≥ 1.
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Proof. Let w be a word of length n− 1. Then

Iw1 = F1(Iw) = f0 ◦ s(Iw) = f0(Iw0),

which proves that f0 permutes the intervals as stated.

The orientation of an interval Iw is defined to be the number

o(w) = (−1)#(w),

where #(w) is the number of 1’s in w. The shift of a word w = w(1)w(2) . . . w(n)
is defined as

σ(w) = w(2)w(3) . . . w(n).

Observe, that
Iw ⊂ Iσ(w).

In particular, the nth cycle has two intervals in each interval of the (n − 1)th

cycle:
I0w, I1w ⊂ Iw.

The scaling function qn : w 7→ (0, 1) assigns to each word w of length n the
ratio

qn(w) =
|Iw|

|Iσ(w)|
.

The a priori bounds on the possible values of qn, as presented for example in
[Ma1] imply

|Iw| ≤ ρ|w|

for some fixed ρ < 1. From this and the smoothness of f0 it follows that the
sequence qn converges to a Hölder function q : Σ = {0, 1}N → (0, 1). This
function q is what we call the scaling function, in minor departure from some
previous authors.

The next theorem describes properties of the scaling function. To formulate
this Theorem we need an order on Σ: with w standing for the maximal word
such that w1 = ww1 and w2 = ww2, we say that w1 is strictly smaller than w2

(or w1 ≺ w2)if and only if

(−1)#(w) · w1(1) < (−1)#(w) · w2(1).

Theorem 1.8. If the Convexity Conditions hold true then q is strictly mono-
tone.

Furthermore, under the same hypothesis, there exists constants C > 0 and
r < 1 such that if w1 ≺ w2 and w1(k) = w2(k) whenever k ≤ n then

q(w2) ≥ q(w1) + Crn
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Remark 1.9. If the Convexity Conditions C1 and C2 hold true, the proof of
the last Theorem confirms the 1977 Conjecture in [CT] that the limit set of the
ratios qn(w) defining the period doubling Cantor set is a itself a Cantor set.

In particular, we thus have the following

Theorem 1.10. In the case of quadratic critical point, α = 2, we have the
following.

• The Convexity Conditions holds true.

• The universal period doubling scaling function q is strictly monotone and
the range forms a Cantor set.

• The limit set A of orbits of f0 under the interated function system defined
by R0 and R1 is a Cantor set.

Acknowledgements 1. H.Epstein and O.E. Lanford discovered a relation be-
tween the fixed points of R0 and R1. Roughly speaking this relation states that
if f(x) = h(x2) represents the fixed point of R1 then g(x) = (h(x))2 represents
the fixed point of R0. This result was not published. However, it was the main
inspiration for section 2. In particular, Lemma 2.4 contains this result.

A part of the work has been done when M.M. and C.T. were participating
in the conference dedicated to Jacob Palis 60th birthday in IMPA. Both authors
acknowledge the hospitality of IMPA. M.M. and C.T. are partially supported
by NSF, and G.B. acknowledges the hospitality of the Mathematical Sciences
department of the T.J. Watson Research Center.

2 Decompositions and Convergence

The notion of decomposition, introduced in [Ma2], is a tool to describe the
combinatorial aspects of universality. In this section, after some background on
decompositions, we prove the convergence properties stated in Theorem 2.1.

The set Tn is ordered by the embedding into the natural numbers defined
by

τ(1)τ(2) . . . τ(n) 7→
n∑

i=1

τ(i) · 2n−i.

Consider also the embedding jn : Tn → Tn+1 defined by

jn : τ 7→ τ1.

This embedding preserves the order. Observe that T inherites an order from
the orders on the sets Tn, which extends to the order on T such that τ 1 ≤ τ2

iff τ1
{n} ≤ τ2

{n} for all n ≥ 1. The elements of T are called decomposition times.
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For the order<, the successor in Tn of 1n ∈ Tn is 0n ∈ Tn and the predecessor
in Tn of 0n ∈ Tn is 1n. The successor of τ ∈ T in Tn is denoted by τn+ and the
predecessor is denoted by τn−.

The nonlinearity of an orientation preserving diffeomorphism φ ∈ Diff2([0, 1])
is

ηφ = D lnDφ ∈ C0([0, 1]).

A decomposed unimodal map is a map

f̃ : T → Diff3([0, 1]) ∪ (0,
1

2
]

with the following properties

• f̃(1∞), the folding part of f̃ represents an element qt of the standard
folding family, so we have f̃(1∞) = t ∈ (0, 1

2 ],

• f̃(τ) ∈ Diff3([0, 1]) for τ 6= 1∞, (the diffeomorphic parts of f̃).

• ∑

τ∈T\{1∞}

|ηf̃(τ)|0 <∞.

• ∑

τ∈T\{1∞}

|Dηf̃(τ)|0 <∞.

The set U of decomposed unimodal maps carries the metric d defined by

d(f̃ , g̃) =
∑

τ∈T\{1∞}

|ηf̃(τ) − ηg̃(τ)|1 + |f̃(1∞)− g̃(1∞)| .

The two summability conditions for decomposed unimodal maps allow to
define what we call compositions associated to decomposed unimodal maps.
Namely, if one considers a finite set Tn of decomposition times, the composition
associated to f̃ and Tn is defined as

O(f̃ , n) = f̃(1n−10) ◦ · · · ◦ f̃(0n−11) ◦ f̃(0n) ◦ qf̃(1n) ,

otherwise speaking, the folding part followed by the diffeomorphic parts in the
order of the decomposition times (so that the end result of the composition is
a unimodal map). In [Ma2] it is shown that this composition, when defined for
decomposed unimodal maps over the sets Tn, extends to a composition operator

O : U → U ,

where U is equipped with the C2 metric, which is a Lipschitz map. This com-
position operator is based on a choice. Namely, the composition starts with the
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folding part qf̃(1n). We could as well start at any decomposition time τ ∈ TN ,
N ≥ 1 and consider for each n ≥ N the compositions defined by

O(τ, f̃ , n) = f̃(τn−)◦· · ·◦ f̃(0n−11)◦ f̃(0n)◦qf̃(1n)◦ f̃(1
n−10)◦· · ·◦ f̃(τn+)◦ f̃(τ) .

The same proof which was used in [Ma2] to construct O(f̃) shows the pointwise
convergence of the sequence O(τ, f̃ , n) as n→∞, thus defining a map

O : T × U → U .

Observe that O(1∞, f̃) is the operator studied in [Ma2].
This construction can be generalized even more. Fix f̃ ∈ U and choose

τ2 > τ1 in TN . For each n ≥ N define the diffeomorphism

Oτ2
τ1
(f̃ , n) = f̃(τn−2 ) ◦ · · · ◦ f̃(τn+) ◦ f̃(τ) ◦ · · · ◦ f̃(τn+

1 ) ◦ f̃(τ1).

It follows from [Ma2] that these maps converge, and we set

Oτ2
τ1
(f̃) = lim

n→∞
Oτ2
τ1
(f̃ , n).

Moreover, there is a constant Kf̃ such that

|Oτ2
τ1
(f̃)− id|2 ≤ Kf̃ ·

∑

{τ∈T |τ2>τ≥τ1}

|ηf̃(τ)|0.

Lemma 2.1. The operator O extends continuously to an operator

O : T × U → U .

In particular, for each f̃ ∈ U there exists a constant Kf̃ > 0 such that for any

pair τ2, τ1 ∈ T with τ2 ≥ τ1,

d2(O(τ2, f̃), O(τ1, f̃)) ≤ Kf̃ ·
∑

{τ∈T |τ2>τ≥τ1}

|ηf̃(τ)|0.

Moreover for each τ3 > τ2 > τ1 ∈ T and f̃ ∈ U

Oτ3
τ1
(f̃) = Oτ3

τ2
(f̃) ◦Oτ2

τ1
(f̃).

Proof. Fix f̃ ∈ U and choose τ2 > τ1 in TN . Let h = Oτ2
τ1
(f̃). The construction

of h implies directly
h ◦O(τ1, f̃) = O(τ2, f̃) ◦ h.

This construction can be done for every pair of τ ′1, τ
′
2 ∈ [τ2, τ1]∩T . Hence, there

is a constant which only depends on f̃ such that

d2(O(τ ′2, f̃), O(τ ′1, f̃)) ≤ Const ·
∑

{τ∈T |τ2>τ≥τ1}

|ηf̃(τ)|0.

From this we get the continuous extension of O to T ×U , together with the esti-
mate stated in the Lemma. The composition rule clearly holds for the operators
Oτ2
τ1
(f̃ , n) and hence for the continuous extension of O.
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We will also write Oτ (·) for O(τ, ·). Let U0 be the set of renormalizable
unimodal maps and U0 = (O1∞)−1(U0). A renormalization operatorR : U0 → U

is constructed in [Ma2] such that

O1∞ ◦R = R1 ◦O1∞ .

A decomposed unimodal map f̃ ∈ U0 is said to be n times renormalizable iff
f = O(f̃) ∈ U is n times renormalizable: we then set f = φ ◦ qt with t ∈ (0, 1

2 ].
This means there are pairwise disjoint intervals If,nτ , τ ∈ Tn, forming the nth

cycle of f , such that

• t ∈ If,n1n ,

• f : If,nτ → I
f,n

τn+ is a diffeomorpishm, whenever τ 6= 1n,

• f : If,n1n → I
f,n
0n is onto.

Let g : I → J be an endormorphism which has either one or non critical
point. Then [g] : [0, 1] → [0, 1] is a either a unimodal map or an orientation
preserving diffeomorphism obtained by affine scaling of domain and image of g.

Lemma 2.2. Let f̃ ∈ U n times renormalizable and O(f̃) = f = φ ◦ qt ∈ U0

with t ∈ (0, 1
2 ]. For n ≥ 1 and τ ∈ Tn ⊂ T

•

Oτn+

τ (Rnf̃) = [f |If,nτ ],

•

Oτn+0∞

τ (Rnf̃) = [qt|I
f,n
τ ],

•

Oτn+

τn+0∞(Rnf̃) = [φ|qt(I
f,n
τ )].

The reader is revered to [Ma2] for the precise definition of the renormaliza-
tion operator R : U0 → U , from which the Lemma immediately follows. This
lemma indeed captures all the properties of the renormalization operator R that
we will need.

Proposition 2.3. For every τ ∈ Tn ⊂ T

Oτ ◦R
n = Rτ ◦O1∞ ,

and

Oτ0∞ ◦Rn = Rτ ◦O0∞ .
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Proof. Let f̃ ∈ U be n ≥ 1 times renormalizable and O(f̃) = O1∞(f̃) = f =
φ ◦ qt ∈ U0 with t ∈ (0, 1

2 ]. As in the proof of Lemma 3.1 we show that for every
n ≥ 1 and τ ∈ Tn ⊂ T

Rτ (f) = [f2n

|If,nτ ].

Let τ1 = τ , τk = τn+
k−1, for k = 2, 3, . . . , 2n. The composition rule for the

operators Oτ2
τ1

and Lemma 2.2 implies

Oτ ◦R
n(f̃) = Oτ1

τ2n
(Rnf̃) ◦ · · · ◦Oτ3

τ2
(Rnf̃) ◦Oτ2

τ1
(Rnf̃)

= [f |If,nτ2n
] ◦ · · · ◦ [f |If,nτ2

] ◦ [f |If,nτ1
]

= [f2n

|If,nτ1
]

= Rτ1(f)

= Rτ ◦O1∞(f̃).

The second equation is proved similarly.

Lemma 2.4. The operators R0 and R1 have fixed points. Furthermore, for any
even integer α, both operators R0 and R1 have a unique fixed point.

Proof. It was shown in [Ma2] that the operator R has a fixed point. The previous
proposition implies that a fixed point f̃ ∈ U0 of R produces fixed points of R0

and R1. Namely,
R1(O1∞(f̃)) = O1∞(f̃)

and
R0(O0∞(f̃)) = O0∞(f̃).

Claim 2.5. For each fixed point f ∈ U of R1 (or R0) there exists a unique fixed
point of R, say f̃ ∈ U such that O1∞(f̃) = f (or O0∞(f̃) = f).

Proof. Let f = φ ◦ qt ∈ U be a fixed point of R1 (the case of a fixed point for
R0 can be treated the similarly). Choose f̃ ∈ U such that

O1∞(f̃) = f.

For example, consider f̃ ∈ U defined by

• f̃(1∞) = qt ,

• f̃(01∞) = φ ,

• f̃(τ) = id for τ 6= 1∞, 01∞.

The definition of f̃ and the fact that O1∞ ◦R = R1 ◦O1∞ , implies

O1∞(Rnf̃) = f , n ≥ 1.

We will show
lim
n→∞

Rnf̃ = f̂ ∈ U,
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with

Rf̂ = f̂ and O1∞(f̂) = f.

Let n ≥ 1 and τ3 > τ2 > τ1 ∈ Tn+1 three consecutive decomposition times in
Tn+1 with τ3, τ1 ∈ Tn. Observe, that τ3 and τ1 are consecutive points in Tn.
From Lemma 2.2 we get

Oτ3
τ1
(Rn+1f̃) = Oτ3

τ2
(Rn+1f̃) ◦Oτ2

τ1
(Rn+1f̃)

= [f |If,n+1
τ2

] ◦ [f |If,n+1
τ1

]

= [f2|If,n+1
τ1

]

= [f |If,nτ1
],

where we used that f is a fixed point of R1. Again from Lemma 2.2 we get
[f |If,nτ1

] = Oτ3
τ1
(Rnf̃). Hence,

Oτ3
τ1
(Rn+1f̃) = Oτ3

τ1
(Rnf̃).

This should be interpreted as Rn+1f̃ being a refinement of Rnf̃ . In [AMM] it
has been shown that there is a constant K > 0 and ρ < 1 such that

∑

τ1∈Tn

|(Oτ3
τ2
(Rn+1f̃)− id)|2 ≤ K · ρn.

This implies that limn→∞Rnf̃ = f̂ ∈ U . In particular, this implies that f̂ is a
fixed point of R which projects by O1∞ to f . This concludes the existence part
of the Claim.

We can use Lemma 2.2 to identify f̃(τ), τ ∈ TN . Namely,

f̃(τ) = lim
n→∞

Rnf̃(τ)

= lim
n→∞

Oτn+0∞

τ (Rnf̃)

= lim
n→∞

[qt|I
f,n
τ ]

= [qt|I
f,N
τ ],

where we used that f is a fixed point of R1 to obtain the last equality. This
implies the uniqueness part of the Claim.

It has been shown in [S2] that the operator R1 has a unique fixed point when
α is an even integer. Now the uniqueness part of the Lemma follows by using
the Claim.

Proof of Theorem 1.1 Let f0 be a fixed point of R0 and f̃0 ∈ U the unique
fixed of R with O0∞(f̃0) = f0. Let h : T →W be defined by

h(τ) = Oτ (f̃0).
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For any τ1, τ2 ∈ T let |τ2− τ1| be the maximal length for which initial segments
of the word τ1 and τ2 of that length agree. In [AMM] it has been shown that
there is a constant K > 0 and ρ < 1 such that

∑

τ2>τ>τ1

|ηf̃0(τ)|0 ≤ K · ρ|τ2−τ1|.

Recall that τ{n} is the word consisting of the first n symbols of a word τ ∈ T .
From Lemma 2.1 we get

d2(h(τ{n}0
∞), h(τ)) ≤ K · ρn.

Theorem 1.1 follows from Proposition 2.3. Namely,

Rτ{n}
f0 = Rτ{n}

◦O0∞ f̃0

= Oτ{n}0∞ ◦Rnf̃0

= Oτ{n}0∞ f̃0

= h(τ{n}0
∞)→ h(τ),

where the convergence is exponential.

3 The monotonicity of the scaling function

The monotonicity of the scaling function q, as formulated in Theorem 1.8 is
based on the following combinatorial Lemmas. First we will concentrate on
these Lemmas and proof Theorem 1.8. Secondly, Theorem 1.8 is used to prove
Theorem 1.6.

Although decomposition times and the words used to define the intervals Iw
are conceptually different, the following Lemma shows that they are strongly
related.

Lemma 3.1. For every word w of length n

Rw(f0) = [f2n

0 |Iw].

Proof. The proof is by induction in n. For n = 1 the Lemma restates the
definition of R0 and R1. Assume the Lemma holds for some n ≥ 1. Choose a
word w of length n and consider the two intervals I0w and I1w. These intervals
are contained in Iw and each contains a boundary point of Iw. Using the
induction hypothesis Rw(f0) = [f2n

0 |Iw] and the fact that f2n

0 |Iw permutes
I0w and I1w we get that R0w(f0) = R0(Rw(f0)) and R1w(f0) = R1(Rw(f0))

correspond to either of f2n+1

|I0w or f2n+1

|I1w.
It is left to identify which of the two intervals correspond to URw(f0) resp.

VRw(f0). The map f0 permutes the intervals Iw′ with |w′| = n + 1 according
to addition mod.2n on the words indexing the intervals, as described in Lemma
1.7. Observe,

1w = 0w + 2n · 1.
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This means that f2n

0 |I0w is monotone because 0w+k ·1, k < 2n never equals the
word 1n+1 and f0|I1n+1 is the only place where monotonicity of f0 fails. Hence,

R0w(f0) = R0([f
2n

0 |Iw]) = [(f2n

0 )2|I0w]

and
R1w(f0) = R1([f

2n

0 |Iw]) = [(f2n

0 )2|I1w].

In the sequel we will identify Rw(f0) with f
2n

0 |Iw.

Lemma 3.2. For every pair of words w and w0, the map

Rw0(f0) : Iw0w0 → Iw1w0 ,

is monotone and onto.

Proof. Let |w0| = n. The action of f0 on the intervals of length |w|+1+ |w0| is
described by addition mod.2n on the words indexing the intervals (see Lemma
1.7). In particular,

w1w0 = w0w0 + 2n · 1.

Hence
f2n

0 (Iw0w0) = Iw1w0 .

By construction we have
Iw1w0 , Iw0w0 ⊂ Iw0 .

Now the Lemma follows from Rw0(f0) = [f2n

0 |Iw0 ], which was obtained in the
previous Lemma.

Proposition 3.3. If the Convexity Condition holds then there exist constants
C > 0 and r ∈ (0, 1) with the following property. Let w be a word of with
|w| = n.

If o(w) = +1 then

• w0 < w1 and w00 < w01 < w11 < w10

• qn+1(w0) < qn+1(w1)

• qn+2(w00) < qn+2(w01) < qn+2(w11) < qn+2(w10)

• qn+2(w11) > qn+2(w01) + Crn

If o(w) = −1 then

• w1 < w0 and w10 < w11 < w01 < w00

• qn+1(w1) < qn+1(w0)

• qn+2(w10) < qn+2(w11) < qn+2(w01) < qn+2(w00)

13



• qn+2(w01) > qn+2(w11) + Crn

Proof. The construction of the intervals Iw imply immediately the following. If
o(w) = +1 then the interval Iw contains the right boundary point of Iσ(w). And
if o(w) = −1 then Iw contains the left boundary point of Iσ(w). Using this, the
convexity of F1 and the fact that F0 is affine we get

Claim 3.4.

o(w) · qn+1(w0) < o(w) · qn+1(w1),

for every word w with |w| = n.

The case with o(w) = −1 of the Proposition can be proved similarly as the
first case. We will only present the proof in the case o(w) = +1. The first
statement is merely the definition of the order on the symbol space. The second
follows directly from the Claim above. The Claim also implies

qn+2(w00) < qn+2(w01),

and
qn+2(w11) < qn+2(w10).

To study the middle inequality observe that

Iσ(w)01 ∪ Iσ(w)11 ⊂ I1.

First observe, o(w01) = −1 (and o(w11) = 1). In particular the negatively
oriented interval Iw01 contains the left boundary point of the interval Iσ(w)01.
Moreover,

Iσ(w)01 ⊂ I01 ⊂ [0, f4
0 (cf0)],

where 0 ∈ I1 is the left boundary point of I1.
By Lemma 3.2 we have

R1(f0) : Iσ(w)01 → Iσ(w)11.

The Convexity Condition states that the absolute value of the derivative of this
map decreases strictly on the interval [0, f 6

0 (cf0)]. Now using

Iw01 ⊂ Iσ(w)01 ⊂ [0, f6
0 (cf0)]

and that Iw01 ⊂ Iσ(w)01 contains the left boundary point of Iσ(w)01 we get

qn+2(w01) < qn+2(w11).

From the a priori bounds described in for example [Ma1] we know that there
are constants C > 0 and r ∈ (0, 1) such that

|Iw| ≥ C · r|w|

for all words w. This implies the final estimate of the Proposition.
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Let w be a word with |w| = k. Then define the interval

Jw = [qk+1(w0), qk+1(w1)].

Proof of Theorem 1.8: This Theorem is reformulated in

Claim 3.5. Let w be a word with |w| = k and |wh| = n. Then

qn(wh) ∈ Jw.

In particular,
Jwh ⊂ Jw.

Moreover, if w1 and w2 are distinct words of length k then J(w1) and J(w2)
are disjoint and the distance between them is larger than Crk.

Proof. The proof of the first part of the Claim is by induction in n. For n = 2
the statement follows from the Proposition 3.3. Assume the Claim holds for all
words wh with |wh| ≤ n.

Consider a word wh = wĥh1h2. with |wh| = n + 1 and |h1| = |h2| = 1.
Then the Proposition implies for every pair of symbol x, y

qn+1(wĥxy) ∈ [qn+1(wĥ10), qn+1(wĥ00)].

In particular,

qn+1(wh) ∈ [qn+1(wĥ10), qn+1(wĥ00)]

= [qn(wĥ1), qn(wĥ0)]

⊂ Jw,

The above equality follows from the fact that qn+1(wĥ10) = qn(wĥ1) because
the interval I

wĥ10 is obtained from I
wĥ1 by applying the affine branch F0. The

other boundary is treated similarly. The last inclusion follows from the induction
hypothesis.

The proof of the second part of the Claim is by induction in k = |w|. For
k = 1 the Claim considering the distance between J0 and J1 is a reformulation
of the previous Proposition. Assume, the Claim is proved up to some k ≥ 1.
Let w1 and w2 be two words of length k+1, say w1 = w̃1x and w2 = w̃2y with
|w̃1| = |w̃2| = k.

If w̃1 differs from w̃2 then the Claim follows because

Jw1 ⊂ Jw̃1 , Jw2 ⊂ Jw̃2

and the induction hypothesis. So we may assume that

w1 = w0, w2 = w1.

Apply Proposition 3.3 again to conclude that Jw1 and Jw2 are disjoint with the
appropriate distance.
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Proof of Theorem 1.6:

The proof of Theorem 1.6 relies on the relation between the two iterated
function systems generated by respectively {R0, R1} and {F0, F1} as formulated
in Lemma 3.1. Notice, the only difference between Σ and T is that they carry
different orders. This order does not play a role during the proof of Theorem
1.6. We will use the symbol w for words which are in Σ = T . In section 2 we
constructed the continuous map h : Σ→ A. Namely, for w ∈ Σ, let

h(w) = lim
n→∞

Rw{n}
(f0).

In particular, this map is onto. It is left to show that h is injective.
Observe, for every word w with |w| = n

R0w(f0) = R0(Rw(f0)).

In particular,

qn+1(0w) = |VRw(f0)|.

Recall that for w ∈ Σ we denote the word consisting of the first n symbols
of w ∈ Σ by w{n}. Let w

1, w2 ∈ Σ be such that h(w1) = h(w2). Then

|q(0w1)− q(0w2)| = lim
n→∞

|qn+1(0w
1
{n})− qn+1(0w

2
{n})|

= lim
n→∞

||VR
w

1
{n}

(f0)| − |VR
w

2
{n}

(f0)||

≤ Const lim
n→∞

dist(Rw1
{n}

(f0), Rw2
{n}

(f0))

= Const · dist(h(w1), h(w2)) = 0.

The strict monotonicity of the scaling function, Theorem 1.8, implies w1 = w2.
We proved that h : Σ→ A is a homeomorphism.

4 The Convexity Condition

In this section the Convexity Condition will be studied.

Lemma 4.1. Let f : (−1, 1)→ (−1, 1) be C2. If

• f(0) = 0,

• Df(0) < −1,

• D2f(0) < 0

then

D2(f2)(0) < 0.

16



Proof. The chain rule applied to f 2 gives

D2(f2)(x) = D2f(f(x)) · (Df(x))2 +Df(f(x)) ·D2f(x).

Using the properties of f in x = 0 we get

D2(f2)(0) = D2f(0) ·Df(0) · [Df(0) + 1] < 0.

Lemma 4.2. Let C ⊂ W consisting of unimodal maps f ∈ W , with negative
Schwarzian derivative, see [dMvS], and the following property: f |[0, c] is convex,
where c is the critical point of f , and f |[c, 1] is strictly convex (The derivative
of f is decreasing over [0, 1] but strictly decreasing on [c, 1]). Then

R0(C) ⊂ C.

Proof. Let f ∈ C with critical point c ∈ [0, 1] and pf its fixed point. Let
Vf = P ∪ Q, where P,Q are the two intervals on which R0f is monotone.
Choose Q ⊂ Vf such that f(Q) ⊂ [0, c]. The convexity property of f implies
directly the strict convexity of R0(f)|Q.

The Schwarzian derivative of f is negative. This implies that pf is an
expanding fixed point, otherwise it would attract the critical point. Hence,
Df(pf ) < −1. The convexity condition of f allows us to apply the previous
Lemma:

D2R0(f)(pf ) < 0,

the derivative of f2 is decreasing in pf . Now, the Minimum Principle for maps
with negative Schwarzian derivative, [dMvS], implies that Df 2 is decreasing
monotonically to zero on the interval [pf , P ]: R0f ∈ C.

Lemma 4.3. The convexity condition C1 holds true for any even critical ex-
ponent α, the map f0|[pf0 , 1] is strictly convex.

Proof. Let qt ∈ W be a standard folding map. Clearly, qt ∈ C. From [S2] we
have

lim
n→∞

Rn
1 qt = f1.

Let f̂ be the unique fixed point of R (with O1∞(f̂) = f1). As in the proof of
Claim 2.5 we get for every f̃ ∈ U with O1∞(f̃) = qt that

lim
n→∞

Rnf̃ = f̂ .

Hence,

lim
n→∞

Rn
0 qt = lim

n→∞
O0∞Rnf̃

= O0∞(f̂)

= f0 ,
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where f0 is the fixed point of R0. This implies that the derivative of f0 is
decreasing because of the previous Lemma . The renormalization fixed point
f0 is real analytic. Hence, the set E ⊂ [0, 1] consisting of the flat points of f0,
points where D2f0 vanishes, is finite.

The map f0 is the fixed point of R0. Hence, s(E), the map s is the affine
scaling of the interval [0, 1] to Vf0 , is the set of flat points of R0f0(= f0). Let
Q ⊂ Vf0 be the maximal interval such that f0(Q) ⊂ [0, c]. Any non-flat point
x ∈ Q will be a non-flat point of R0f0, this follows from the convexity, maybe
not strict, of f0. Hence

s(E) ∩Q ⊂ E.

Assume, E ∩ [c, 1) 6= ∅ and let x ∈ E ∩ [c, 1) be the right most point. The fact
that f0 is a renormalization fixed point implies that s(c) is the left boundary
point of Q. In particular we get

x < s(x) ∈ s(E) ∩ s([c, 1]) ⊂ E ∩Q,

contradicting the fact that x was chosen to be the right most point in E ∩ [c, 1).
We proved that f0 does not have flat points in [pf0 , 1) ⊂ [c, 1).

Lemma 4.4. The convexity condition C2 holds true for α = 2.

Proof. In the case α = 2, an approximation of f1 can be found in [La]. It is of
the form g = h(x2), where h is a degree 40 polynomial. It follows from Lemma
2.4 that g′(x) = (h(x))2 is an approximation of the fixed point f0. A numerical
analysis shows the convexity condition C2. In particular,

D2R1(f0)(x) ≤ −1.0 ,

for x ∈ [(R1(f0))
3(cR1(f0)), 1].

The quadratic case, α = 2, as described in Theorem 1.10 follows from The-
orem 1.6, 1.8, and Lemma 4.3 and 4.4.
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