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Abstract

This paper presents evidence for a conjecture concerning the structure of the set of
braid types of periodic orbits of Smale’s horseshoe map, partially ordered by Boyland’s
forcing order. The braid types are partitioned into totally ordered subsets, which are
defined by parsing the symbolic code of a periodic orbit into two segments, the prefix
and the decoration: the set of braid types of orbits with each given decoration is totally
ordered, the order being given by the unimodal order on symbol sequences. The conjec-
ture is supported by computer experiment, by proofs of special cases, and by intuitive
argument in terms of pruning theory.

1 Introduction

This paper presents strong evidence for a conjecture concerning the order in which periodic
orbits can appear in the creation of Smale’s horseshoe [Sma67]. Since any C1+ε surface
diffeomorphism with positive topological entropy has horseshoes in some iterate [Kat80], an
understanding of the mechanism of horseshoe creation provides insight into the mechanism
of transitions to positive entropy for general surface diffeomorphisms. As such, this problem
has received a good deal of attention over the last 20 years.

The conjecture is stated in terms of Boyland’s forcing order [Boy84] on the set of braid
types of periodic orbits of the horseshoe (see Section 2.1). Loosely stated, the periodic orbit
P forces the periodic orbit Q if an orbit of the same type as Q must be present in the
dynamics of any homeomorphism which has an orbit of the same type as P .

The conjecture is based on a parsing of the symbolic code of each horseshoe periodic
orbit into two segments, the prefix and the decoration (see Section 3.1). Writing Dw for the
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family of all periodic orbits with a given decoration w, the main claims of the conjecture
are:

a) Each family Dw is totally ordered by the forcing order, and this order coincides with the
unimodal order on symbol sequences.

b) All of the orbits in each given family Dw have the same topological train track type (see
Section 3.3).

c) The forcing order between different families Dw can be understood in terms of homoclinic
orbits associated to the families.

As will be discussed in more detail below, Thurston’s classification theorem for isotopy
classes of surface homeomorphisms [Thu88], used in conjunction with a train track algo-
rithm such as that of Bestvina and Handel [BH95], makes it theoretically possible — if
practically very time consuming — to decide whether and how two orbits are related by the
forcing order. Despite this attractive theoretical background, it has proved very difficult
to describe the global structure of the forcing order. The conjecture presented here makes
the calculation of the order nearly trivial within families: simply compare their symbol
sequences using the unimodal order. Moreover, it gives a global description of how the set
of horseshoe braid types is organized, information that could not be obtained by comparing
braids pairwise.

As the terminology suggests, this work has connections with braid theory. In Section 2.2
it is explained how the conjecture, if proved, would also provide an efficient partial solution
to the conjugacy problem for cyclic unimodal permutation braids.

Some well established background to the problem is presented in Section 2: braid types,
Boyland’s forcing order, Thurston’s classification theorem for surface homeomorphisms, and
the notion of the height of a periodic orbit of the horseshoe. Section 3 is more directly con-
cerned with the conjecture: it describes how symbolic codes are parsed into prefix and
decoration, summarizes some well known results arising from the symmetry of the horse-
shoe and its inverse, and introduces the notion of topological train track types. The main
conjecture is stated in Section 3.4. Section 4 is concerned with evidence for the conjecture:
proofs of special cases, computational evidence, and intuitive arguments.

2 Background

2.1 Braid types and the Thurston Classification

Braid types were introduced by Boyland [Boy84] as an algebraic specification of periodic
orbits of surface homeomorphisms: the braid type of a periodic orbit P of a surface hom-
eomorphism f : S → S is essentially the isotopy class of f relative to P . For the sake of
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simplicity, the definition given here is restricted to orientation-preserving homeomorphisms
of the disk, which is the case of interest in this paper. The definition makes sense for ar-
bitrary invariant sets, not just for periodic orbits: in Section 2.2 it is extended to certain
homoclinic orbits.

Definitions: Let D2 be the unit disk in the plane and let f : D2 → D2 and g : D2 → D2 be
orientation-preserving homeomorphisms having periodic orbits P and Q respectively. If P
(respectively Q) lies on ∂D2, then extend f (respectively g) as a homeomorphism over an
exterior collar ofD2 (and use the same notationD2 to denote the collared disk). Then (P, f)
and (Q, g) have the same braid type if there is an orientation-preserving homeomorphism
h : D2 → D2 with h(P ) = Q such that f and h−1 ◦ g ◦ h are isotopic relative to P . This
defines an equivalence relation on the set of all pairs (P, f): the equivalence class of (P, f)
is denoted bt(P, f), the braid type of the periodic orbit P of f .

The set of all braid types of periodic orbits of orientation-preserving homeomorphisms
of the disk is denoted BT. Clearly two periodic orbits with the same braid type must have
the same period: the set of all braid types of period n orbits of orientation-preserving hom-
eomorphisms of the disk is denoted BTn. Given an orientation-preserving homeomorphism
f : D2 → D2, write

bt(f) = {bt(P, f) : P is a periodic orbit of f}.

The term braid type is appropriate because the group of isotopy classes of orientation-
preserving homeomorphisms of the n-punctured disk is isomorphic to the n-braid group Bn

modulo its centre. This isomorphism induces a canonical bijection between BTn and the set
of conjugacy classes in Bn/Z(Bn), which provides a convenient way of representing braid
types.

One of the main endeavours in this area is to understand which braid types must nec-
essarily coexist with a given braid type: this is formalized by Boyland’s forcing order on
BT [Boy84].

Definition: The forcing order ≤ on BT is defined as follows: if β, γ ∈ BT, then γ ≤ β if and
only if for all homeomorphisms f : D2 → D2, β ∈ bt(f) =⇒ γ ∈ bt(f). If γ ≤ β, then one
says that β forces γ.

It is obvious that ≤ is reflexive and transitive; its antisymmetry was proved by Boy-
land [Boy94]:

Theorem 2.1 (Boyland) ≤ is a partial order on BT.
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The main tool for understanding the structure of this partially ordered set is Thurston’s
classification theorem for isotopy classes of surface homeomorphisms [Thu88]: this will be
stated here for orientation-preserving homeomorphisms of the punctured disk only.

Definitions: Let A be a finite subset of D2 \ ∂D2. A simple closed curve in D2 \ A is
essential if it bounds a disk containing more than one but fewer than all of the points of
A. An isotopy class α of orientation-preserving homeomorphisms of (D2, A) is reducible
if there exists an element f : (D2, A) → (D2, A) of α and a finite reducing collection of
pairwise disjoint and non-homotopic essential simple closed curves which are permuted by
f . A pseudo-Anosov homeomorphism φ : (D2, A) → (D2, A) is one for which there exists
a number λ > 1 and a pair (Fs, µs), (Fu, µu) of transverse measured foliations of D2 such
that φ(Fs, µs) = (Fs, λ

−1µs) and φ(Fu, µu) = (Fu, λµu). The foliations can have a finite
number of singular points where they each have p 6= 2 prongs, but 1-pronged singularities
can only occur at points of A and on ∂D2.

The idea is that if an isotopy class α is reducible, then one can cut along the reducing
curves and study the action of α on the simpler pieces into which the punctured disk
is divided. Thurston’s classification theorem provides a canonical representative of each
irreducible isotopy class.

Theorem 2.2 (Thurston) Let α be an irreducible isotopy class of orientation-preserving
homeomorphisms of (D2, A). Then exactly one of the following occurs:

a) α contains a finite order homeomorphism φ (i.e. φn = id for some n > 0: this implies
that φ is conjugate to a rigid rotation of D2).

b) α contains a pseudo-Anosov homeomorphism φ.

Moreover, if α is a reducible isotopy class, then it does not contain a pseudo-Anosov hom-
eomorphism.

The irreducible isotopy class α is said to be finite order or pseudo-Anosov according
as it contains a finite order or pseudo-Anosov homeomorphism. The detailed properties
of pseudo-Anosov homeomorphisms will not be used here: the important property from a
dynamical point of view is that they have minimal dynamics within their isotopy class. In
particular [FLP79, Hal91],

Theorem 2.3 Let φ be a pseudo-Anosov homeomorphism of (D2, A) and let f : (D2, A)→
(D2, A) be isotopic to φ. Then

a) h(φ) ≤ h(f).

b) bt(φ) ⊆ bt(f).
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Here h(f) denotes the topological entropy of f [AKM65]. Property b) is the one which
is useful in understanding the structure of (BT,≤). Since the Thurston classification is
invariant under conjugation, each braid type β can be classified as reducible, finite order, or
pseudo-Anosov, according to the isotopy class of f : (D2, P )→ (D2, P ), where bt(P, f) = β.
A finite order braid type β can be realised by a rigid rotation, and hence only forces
itself and the braid type of a fixed point. If β is a pseudo-Anosov braid type, then let
φβ : (D

2, A)→ (D2, A) be a representative pseudo-Anosov homeomorphism. Then

Corollary 2.4 Let β ∈ BT be pseudo-Anosov. Then

{γ ∈ BT: γ ≤ β} = bt(φβ).

Several algorithms (e.g. [BH95, BGN93, BGN95, FM93, Los93, dCH01] have been pre-
sented which, given as input an isotopy class of orientation-preserving homeomorphisms of
(D2, A), determine whether it is reducible, finite order, or pseudo-Anosov, and provide a
set of reducing curves or an explicit construction of a pseudo-Anosov homeomorphism in
the isotopy class in the reducible and pseudo-Anosov cases respectively. In principle, these
make it possible to calculate whether or not γ ≤ β for any β, γ ∈ BT. If β is pseudo-Anosov,
the output of the algorithm is an invariant train track (see Section 3.3) which enables one
to enumerate all of the periodic orbits of φβ of the appropriate period, and test each in turn
to determine whether or not its braid type is γ. In practice this takes a very long time:
the tests involve solving the conjugacy problem in the braid group. Moreover, the ability
to carry out such local calculations does not provide any insight into the global structure
of (BT,≤).

2.2 The height of a periodic orbit of the horseshoe

It is assumed that the reader is familiar with Smale’s horseshoe map [Sma67], with the
standard procedure for introducing symbolic dynamics on its non-wandering set, and with
the unimodal order on the resulting symbol space. This material can be found in many
standard texts on dynamical systems (e.g. [Dev89]). In this paper symbolic dynamics in
Σ2 = {0, 1}

Z will be used on a standard model F : D2 → D2 of the horseshoe as depicted in
Figure 1: the symbol F will always denote the horseshoe map, and k : Λ→ Σ2 will denote
the homeomorphism which conjugates the shift map σ : Σ2 → Σ2 to F |Λ : Λ→ Λ, where Λ
is the set of points whose (past and future) orbits lie entirely in the square S. If x ∈ Λ,
then k(x) ∈ Σ2 is called the itinerary of x. The definitions and results summarized in this
section can be found in [Hal94a].

A period n orbit P of F will be described by its code cP ∈ {0, 1}
n, which is given by the

first n symbols of the itinerary of its rightmost point p: thus

k(p) = cP · cP
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Figure 1: Symbolic dynamics for the horseshoe

(here and throughout, an overbar denotes infinite repetition, and a · appears before the
zeroth symbol of an element of Σ2). For example, the period 5 periodic orbit which contains
the point with itinerary 01001 has code 10010. Put another way, the word cP ∈ {0, 1}

n

is the code of a period n orbit of the horseshoe if and only if the semi-infinite sequence
cP is strictly greater than σi(cP ) in the unimodal order for 1 ≤ i < n. This paper is also
concerned with homoclinic orbits H to the fixed point with code 0: such an orbit will be
described by its core cH , which is the non-zero segment in the itineraries of its points (so,
for example, the homoclinic orbit which contains the point with itinerary 011 · 0010 has
core 11001). In the remainder of the paper, ‘homoclinic’ will always mean homoclinic to
this fixed point. The braid type bt(P, F ) of a periodic orbit P of the horseshoe will be
denoted bt(P ); and the notation P ≥ Q will be used as an abbreviation for bt(P ) ≥ bt(Q).
Similarly it is possible to define the homoclinic braid type hbt(H) of a homoclinic orbit of
the horseshoe: two homoclinic orbits H and H ′ of homeomorphisms f and g have the same
homoclinic braid type if there is an orientation-preserving homeomorphism h : D2 → D2

with h(H) = H ′ such that f is isotopic to h−1 ◦ g ◦ h relative to H. The notation H ≥ H ′

means that every homeomorphism of the disk which has a homoclinic orbit of homoclinic
braid type hbt(H) also has one of homoclinic braid type hbt(H ′). Let HS = bt(F ) denote
the set of braid types of periodic orbits of the horseshoe, and HHS the set of homoclinic braid
types of the horseshoe. The aim of this paper is to describe the structure of the partially
ordered set (HS,≤): this gives information about the way in which periodic orbits are
created in parameterized families of homeomorphisms leading to the creation of a horseshoe.
According to Conjecture 1, this problem reduces to that of understanding the relation ≤
on HHS: the set of non-finite order elements of HS can be partitioned into totally ordered
families on which the order is well understood; and there is a bijection between HHS and
the set of families, such that the ordering of braid types in two different families can be
easily determined provided it is known how the corresponding homoclinic braid types are
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related by ≤. Note that if HS∗ = HS ∪HHS, then ≤ extends in a natural way to a relation
on HS∗. A consequence of Conjecture 1 is that this extended relation is also a partial order.

It is well known that two periodic orbits P and Q of the horseshoe whose codes cP and
cQ differ only in their final symbol have the same braid type. Thus, for example, the two
orbits with codes 10010 and 10011 have the same braid type; the code of either one of these
orbits is often written cP = 10010

1 to reflect the fact that the distinction between the two is
unimportant in so far as (HS,≤) is concerned. However, this is not the only way in which
two horseshoe orbits can have the same braid type: the conjecture also gives necessary and
sufficient conditions (which may or may not be verifiable in practice) for two periodic orbits
to have the same braid type. In another language, this provides an efficient partial solution
to the conjugacy problem for cyclic unimodal permutation braids.

The remainder of this section is devoted to describing the height q(P ) of a horseshoe
periodic orbit P of period greater than 1. The height is a invariant of braid type with
values in (0, 1/2]∩Q which plays a central rôle in the conjecture. The description is rather
complicated at first sight: a program for computing heights of horseshoe orbits can be found
at [Hal], and motivation for the definition is given in [Hal94a].

Algorithm
Let P be a horseshoe periodic orbit which is not a fixed point, with code c = cP . If the
semi-infinite sequence c does not contain the word 010, then change the final symbol of c
from 1 to 0. Now write

c = 10κ11µ10κ21µ2 . . . ,

where each κi ≥ 0, each µi is either 1 or 2, and µi = 1 only if κi+1 > 0 (thus κi and µi are
uniquely determined by c). For each r ≥ 1, define

Ir(c) =

(
r

2r +
∑r

i=1 κi
,

r

(2r − 1) +
∑r

i=1 κi

]
,

and let s ≥ 1 be the least integer such that either µs = 1 or
⋂s+1
i=1 Ii(c) = ∅. Write⋂s

i=1 Ii(c) = (x, y]. Then

q(P ) =

{
x if µs = 2 and w < z for all w ∈ Is+1(c) and z ∈

⋂s
i=1 Ii(c)

y if µs = 1, or µs = 2 and w > z for all w ∈ Is+1(c) and z ∈
⋂s
i=1 Ii(c).

Notice that some µi is equal to 1 (since c contains the word 010), and hence the algorithm
terminates.

Example: Let P be the period 17 orbit with code 10011011001011010. Then κ1 = 2,
µ1 = 2, κ2 = 1, µ2 = 2, κ3 = 2, and µ3 = 1. Thus I1 = (1/4, 1/3], I2 = (2/7, 2/6], and
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I3 = (3/11, 3/10]. Since µ3 = 1, the algorithm terminates with
⋂3
i=1 Ii = (2/7, 3/10], and

hence q(P ) = 3/10.

The following theorem is a summary of the relevant results from [Hal94a]. Given q =
m/n ∈ (0, 1/2] in lowest terms, define cq ∈ {0, 1}

n+1 by

cq = 10κ1120κ212 . . . 120κm1,

where

κi =

{
bn/mc − 1 if i = 1
bin/mc − b(i− 1)n/mc − 2 if 2 ≤ i ≤ m

(here bxc denotes the greatest integer which does not exceed x). The words cq are palin-
dromic: that is, κi = κm+1−i for all i.

Theorem 2.5 Let P and Q be periodic orbits of the horseshoe.

a) If P and Q have the same braid type, then q(P ) = q(Q).

b) If P ≥ Q, then q(P ) ≤ q(Q).

c) Let q(P ) = m/n in lowest terms. Then P has period n if and only if it has finite
order braid type: in this case, F is isotopic rel. P to a rigid rotation through 2πm/n.
Otherwise, the period of P is at least n+ 2, and cP starts with the word cm/n.

In fact, q(P ) has a dynamical interpretation: it is the left hand endpoint of the rotation
interval of P . The definition of the height can be extended to all sequences which contain
the word 010: this extension will be used in the statement of Lemma 3.1.

Definitions: Let C denote the subset of {0, 1}N consisting of sequences which contain the
word 010. The height q(c) of an element c ∈ C is defined by q(c) = 1/2 if c does not begin
c = 10 . . ., and by the above algorithm otherwise.

The function q : C → (0, 1/2] ∩Q is order-reversing with respect to the unimodal order
on Σ2 and the usual order on Q.

3 The conjecture

3.1 Prefix and Decoration

Let P be a periodic orbit of the horseshoe. If P is a fixed point, then clearly it forces
only the fixed point braid type. If P is not a fixed point, then it has a well-defined height
q(P ) = m/n ∈ (0, 1/2], written in lowest terms. If P has period n then, by Theorem 2.5 c),
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it has finite order braid type with rotation number m/n. In fact, Holmes and Williams
showed [HW85] that for each m/n ∈ (0, 1/2), there is exactly one pair of periodic orbits
with this finite order braid type αm/n: one has code given by the first n symbols of cm/n,
and the other has the same code with the final 1 changed to a 0. There is just one periodic
orbit of braid type α1/2, namely the period 2 orbit with code 10.

These orbits will be ignored in the remainder of the paper: it is obvious what they force,
and it is known which other orbits force them (P ≥ αq if and only if q is in the rotation
interval of P by a theorem of Boyland [Boy92], and an algorithm for computing rotation
intervals of horseshoe orbits is given in [Hal94a]).

The code of any other periodic orbit P can be written in the form

cP = cq(P )v

for some word v of length at least 1, by Theorem 2.5 c).

Definitions: Let P be a period N orbit of the horseshoe which is not of finite order braid
type, with height q = q(P ) = m/n. The prefix of P is the word cq. The decoration of P is
defined to be ? if N = n+ 2, and to be the element w of {0, 1}N−n−3 such that

cP = cq
0

1w
0

1

if N ≥ n + 3. The notation P = Pw
q means that P is a periodic orbit of height q and

decoration w. The choice of 0 or 1 for the final symbol of cP is almost always unimportant,
but the choice of the symbol before the decoration can be significant. Where it is, the
periodic orbits with codes cq0w

0

1 and cq1w
0

1 will be denoted Pw
q (0) and Pw

q (1) respectively.

Example: Let P be the period 17 orbit with code cP = 10011011001011010. Then q(P ) =
3/10 as shown in the previous example. Hence P has prefix 10011011001 = c3/10 and
decoration 1101. Thus P = P 11013/10 . Where the distinction is important, P could be denoted

P 11013/10 (0).

Hence every periodic orbit which is not of finite order braid type can be written P w
q ,

where q = q(P ) and w is the decoration of P . This means precisely that the orbit has one
of the four codes cq

0

1w
0

1, unless w = ?, in which case it has one of the two codes cq
0

1. It
is convenient to extend this notation to homoclinic orbits, writing Pw

0 for the homoclinic
orbits with core 10

1w
0

11 (and P ?
0 for the homoclinic orbits with core 10

11). This description
omits only those homoclinic orbits whose core has length 2 or less: these are precisely the
homoclinic orbits of translation homoclinic braid type, which force no other homoclinic or
periodic braid types. In the next subsection it is shown that the four homoclinic orbits
described by the symbol Pw

0 all have the same homoclinic braid type. Likewise, one of the
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claims of Conjecture 1 below is that all of the (four or fewer) periodic orbits described by
the symbol Pw

q have the same braid type.
Only certain heights q are compatible with each given decoration: since the code cP of

a period N orbit P corresponds to its rightmost point, it must be maximal: that is, σi(cP )
must be strictly less than cP in the unimodal order for all integers i with 1 ≤ i < N . The
set of heights compatible with a given decoration w is described by the following lemma.
The proof of this lemma is omitted: it is long and technical, depending on special properties
of the words cq. These properties lie at the heart of the significance of the separation into
prefix and decoration.

Lemma 3.1 let w be a decoration, and define qw ∈ (0, 1/2] ∩Q by q? = 1/2 and

qw = min
0≤i≤k+2

q
(
σi
(
10w0

))

if w ∈ {0, 1}k. Then each of the four codes cq
0

1w
0

1 (or each of the two codes cq
0

1 when w = ?) is
maximal of height q when 0 < q < qw, and none is maximal of height q when qw < q ≤ 1/2.

Example: When q = qw, some, none, or all of the codes cq
0

1w
0

1 may be maximal. For example,
let w = ?: then qw = 1/2. Since c1/2 = 101, the two codes concerned are 1011 (which
is maximal), and 1010 (which is not). Thus the periodic orbit P with code cP = 1011
is the only periodic orbit with height 1/2 and decoration ?. If w = 0 then qw = 1/4,
and c1/4 = 10001. Of the four codes 10001101, 10001001, 10001101 and 10001000, only
the last is not maximal. If w = 110 then qw = 1/3, and c1/3 = 1001. All of the four
codes 100111101, 100101101, 100111100 and 100101100 are maximal. On the other hand, if
w = 10011010 then qw = 1/3, but none of the four codes 10011100110101, 10010100110101,
10011100110100 and 10010100110100 is maximal.

The point of the phrase ‘of height q’ in the statement of this lemma is that cq
0

1w
0

1 may be
a maximal code for q > qw, but with a different height (and hence a different decoration).
For example, if w = ∅ then qw = 1/3. Let q = 2/5 > qw: then cq1

0

1 = 10110110

1 is maximal,
but has height 3/8, and is the code of a finite order orbit (and hence has no decoration).

A program for computing qw can be found at [Hal].
For each decoration w, let Dw denote the set of all periodic and homoclinic orbits of the

horseshoe with decoration w: thus

Dw = {Pw
q : 0 ≤ q <= qw},

where the symbol <= denotes that q = qw is possible for some decorations, but not for
others.
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Convention: In what follows, whenever the symbol Pw
q is used it is assumed that the height

q is compatible with the decoration w.

Summarizing the results of this section: the union of the sets Dw is precisely the set of
all periodic and homoclinic orbits of the horseshoe less the periodic orbits of finite order
braid type and the homoclinic orbits of translation homoclinic braid type. One of the main
claims of Conjecture 1 is that each Dw is totally ordered by the forcing order ≤.

3.2 Reversing horseshoe codes

Let P be a period N orbit of the horseshoe with code cP , and let ĉP denote the reverse of
the code cP . Let P̂ be the period N orbit containing the point of itinerary ĉP · ĉP . The
code c

P̂
is therefore a cyclic permutation of ĉP .

Example: Let P be the periodic orbit with code 1001011. Then P̂ is the periodic orbit
which contains the point with itinerary 1101001 · 1101001: thus it has code 1001110.

Let βP be the N -braid representing the period N orbit P which is obtained from the
natural suspension of the horseshoe (see [Hal94a] for more details): thus bt(P ) is represented
by the conjugacy class of βPZ(BN ) in BN/Z(BN ). Given β ∈ BN , let β̂ be the element of
BN obtained by writing β in terms of the standard Artin generators σi of BN , and then
reversing the order of these generators (this is a well defined operation, since the relations
between the Artin generators are symmetric under order reversal). It is a well-known

consequence of the symmetry of the horseshoe map F and its inverse that β
P̂
= β̂′P , where

β′P is the braid obtained by looking at the natural suspension of P from the right rather
than from the front of the horseshoe (and is thus conjugate to βP ). That is,

Lemma 3.2 If bt(P ) is represented by the braid βP , then bt(P̂ ) is represented by the braid

β̂P . In particular, if two horseshoe orbits P and Q have the same braid type, then P̂ and
Q̂ have the same braid type.

Because the braids β and β̂ close to the same knot, it is in general difficult to determine
whether or not they are conjugate. In particular, traditional dynamical invariants cannot
distinguish between them by the following lemma, which follows easily from the previous
one and the uniqueness of pseudo-Anosov representatives of pseudo-Anosov isotopy classes.

Lemma 3.3 Suppose that P is a horseshoe periodic orbit of pseudo-Anosov braid type, and
let φP be a pseudo-Anosov homeomorphism in the isotopy class of F : (D2, P ) → (D2, P ).
Then P̂ also has pseudo-Anosov braid type, and

φ
P̂
= h−1 ◦ φ−1P ◦ h

for some orientation-reversing homeomorphism h : (D2, P̂ )→ (D2, P ).
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The authors know of no horseshoe orbit P for which P and P̂ have distinct braid types,
nor of any proof that P and P̂ always have the same braid type (there are no counter-
examples up to period 9). They would be grateful to hear from anyone who can resolve this
problem. (In the language of braid theory, the question is whether or not there exist cyclic
unimodal permutation braids β which are not conjugate to β̂.) It is proved in [Hal94a] that
q(P ) = q(P̂ ) for all horseshoe orbits P : this fact will be used in Section 3.4.

The fact, mentioned earlier, that two periodic orbits P and Q whose codes differ only in
their final symbol have the same braid type follows from the observation that their natural
braid representatives βP and βQ are equal. The same observation shows that for any
decoration w 6= ?, the two homoclinic orbits with cores 11w0

11 have the same homoclinic
braid type, as do the two with cores 10w0

11. By the same reversal construction as for
periodic orbits, the fact that the orbits with cores 11ŵ0

11 have the same homoclinic braid
type means that the orbits with cores 10

1w11 have the same homoclinic braid type: hence
all four homoclinic orbits with cores 10

1w
0

11 have the same homoclinic braid type. That is,

Lemma 3.4 Let w be a decoration. If w 6= ? then the four homoclinic orbits represented by
Pw
0 all have the same homoclinic braid type. Likewise, the two homoclinic orbits represented
by P ?

0 have the same homoclinic braid type.

According to Conjecture 1, all of the (four or fewer) periodic orbits represented by P w
q

also have the same braid type.

3.3 Topological train track types

Let P be a periodic orbit of the horseshoe of pseudo-Anosov braid type. A Bestvina-Handel
train track for P is a pair (G, g), where G is a connected finite graph without valence one
or two vertices embedded in D2 \ P and g : G→ G is a graph map such that

a) G has a peripheral subgraph P , consisting of a loop around each point of P , and g restricts
to a homeomorphism P → P . There is exactly one vertex of G on each component of P .

b) The subgraph T of G consisting of edges not in P is a tree. This implies that there exists
a retraction r : D2 \ P → G.

c) g : G→ G sends vertices to vertices and is homotopic to r ◦ F |G : G→ G.

d) g : G → G is efficient: that is, every iterate gn : G → G is locally injective away from
the vertices of G.

In [BH95], Bestvina and Handel give an algorithm for constructing such a train track for
any periodic orbit P of pseudo-Anosov braid type (the condition that each component of P
contains only one vertex of G can be ensured when P is a single periodic orbit by starting the
algorithm with a graph which satisfies this condition). The pseudo-Anosov homeomorphism
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φ in the isotopy class of F : (D2, P ) → (D2, P ) is semi-conjugate to g : G → G: indeed, a
Markov partition for φ can be constructed by thickening up the edges of G into Markov
boxes with non-negative widths and lengths given by the row and column eigenvectors
corresponding to the maximal eigenvalue of the transition matrix of g : G → G, providing
a construction of the invariant measured foliations of φ.

This paper is concerned with an equivalence relation on horseshoe periodic orbits of
pseudo-Anosov braid type which corresponds to their train tracks being ‘essentially the
same’. Since two periodic orbits of different periods have different numbers of loops in the
peripheral subgraphs of their train tracks, the first step is to restrict attention to the trees
obtained when the edges of the peripheral subgraph are removed.

Let P be a horseshoe periodic orbit of pseudo-Anosov braid type, and let (G, g) be a
Bestvina-Handel train track for P . The corresponding reduced train track for P is the pair
(T, t), where T is the tree embedded in D2 \ P whose edges are the non-peripheral edges
of G and which has no valence two vertices (i.e. any vertices of G which become valence
two vertices of T are deleted), and t : T → T is the tree map obtained from g : G → G by
restricting to T and deleting peripheral loops in image edge-paths. Note that t is locally
injective away from vertices of T and preimages of points where the peripheral loops of G
were attached. An initial edge of T is one whose counterpart in G has one end (its free end)
on the peripheral loop surrounding the leftmost point of P .

Let P and Q be two horseshoe periodic orbits of pseudo-Anosov braid type. Write PBQ
if P and Q have reduced train tracks (TP , tP ) and (TQ, tQ) respectively, each with only one
initial edge (denoted eP and eQ respectively), such that there is an orientation-preserving
homeomorphism ψ : (D2, P )→ (D2, Q) sending TP onto TQ, with

a) tQ(x) = ψ ◦ tP ◦ ψ
−1(x) for all x ∈ TQ \ eQ.

b) There is an embedding θ : eQ → eQ sending the non-free end of eQ to itself such that
tQ(x) = ψ ◦ tP ◦ ψ

−1 ◦ θ(x) for all x ∈ eQ.

Intuitively, the reduced train track of Q is the same as the reduced train track of P ,
except that the image of its initial edge has been shortened. It is therefore clear that if
P BQ then P ≥ Q. P and Q are said to have the same topological train track type if either
P BQ or QB P .

In particular, if P and Q have the same topological train track type then the invariant
foliations of the corresponding pseudo-Anosov homeomorphisms have the same number of
interior singularities with each number v > 2 of prongs, and the prongs are permuted in the
same way by the actions of the pseudo-Anosovs.

Note that Bestvina-Handel train tracks, and hence reduced train tracks, are not unique.
In particular (cf. the discussion in section 3.3 of [BH95]), the train track graph can have
vertices which don’t correspond to singularities of the measured foliations, or whose valence
is different from the number of prongs at the corresponding singularity. In this paper train
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tracks will always be chosen so that this is not the case: thus the invariant foliations of
a pseudo-Anosov homeomorphism ψ : (D2, P ) → (D2, P ) with reduced train track (T, t)
have a one-pronged singularity at each point of P ; an interior v-pronged singularity for
each vertex of T of valence v ≥ 3; and a boundary singularity at which the number of
prongs depends on the period of P . Such train tracks can always be found (see [FM93], for
example).

A convenient notation for describing a reduced train track (T, t) is to start at the free
end of the initial edge of T and move around T in the positive direction, numbering edges
sequentially as they are encountered and listing each edge in the order in which it is encoun-
tered; and then listing in turn the image edge paths. Thus, for example, for the topological
train track type corresponding to w = 1 in Table 1, T would be described by the list
1223445531, and t by (1223, 4, 553, 1, 2). A program which takes as input a decoration,
and returns the corresponding topological train track type in this format, can be found
at [Hal]. Note that, in constrast to standard Markov partition conventions, the image of
the initial edge need only intersect the interior of, rather than cover, the first edge in its
image edge-path. If P and Q have the same topological train track type (say P BQ), then
the descriptions of the trees TP and TQ are equal, while those of the tree maps tP and tQ
differ only in that the image edge path of the initial edge of Q is obtained from that of P
by deleting i ≥ 0 initial symbols.

3.4 Statement of the conjecture

Given two decorations w1 and w2, write w1 ∼ w2 if hbt(P
w1

0 ) = hbt(Pw2

0 ); and write w1 º w2
if hbt(Pw1

0 ) ≥ hbt(Pw2

0 ) (notice that hbt(Pw
0 ) is well-defined by Lemma 3.4). Recall that

Dw denotes the set of all periodic and homoclinic orbits which have decoration w and that
in the notation Pw

q it is assumed that the height q is compatible with the decoration w (i.e.
q <= qw).

Conjecture 1 Let w and w′ be decorations. Then

a) bt(Pw
q ) = bt(Pw′

q′ ) if and only if q = q′ and w ∼ w′.

b) If 0 < q < qw then P
w
q has pseudo-Anosov braid type.

c) All of the periodic orbits in {Pw
q : 0 < q < qw} have the same topological train track

type.

d) The family Dw is totally ordered by ≤, with P
w
q ≤ Pw

r if and only if q ≥ r.

e) If q < q′ and w º w′ then Pw
q ≥ Pw′

q′ .
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The five parts of this conjecture have each been stated in full without common hypothe-
ses because there are different types and amounts of evidence for the different statements,
and it is therefore desirable to be able to treat them separately. Notice in particular that
part e) implies part d), that part c) depends on part b), and that if part a) is false then the
statements of the other parts would have to be changed to reflect this.

Conjecture 1 could also be stated for periodic orbits only, leaving out the homoclinic
orbits Pw

0 . The reason for their inclusion is that they appear naturally when the problem is
considered in terms of pruning theory (Section 4.3), which was the original motivation for
the conjecture.

The conjecture addresses two problems: if P and Q are horseshoe periodic orbits, is
it true a) that bt(P ) = bt(Q), and b) that P ≤ Q? (Being able to answer b) in general
provides an answer to a), since bt(P ) = bt(Q) if and only if P ≤ Q and Q ≤ P .) It does
this by rephrasing them in terms of the same questions for homoclinic orbits, which are not
in general any easier to answer than the original question. Nevertheless, if the conjecture
can be proved it will add considerably to our understanding of the problem in two distinct
ways:

a) On the theoretical level, it provides a better understanding of the global structure of
(HS,≤): the partial order has been ‘factored’ into a total order (within families with
fixed decoration) and the partial order on decorations. Figure 2 provides a schematic
illustration: each periodic orbit of the horseshoe is parameterised by its height q and
decoration w. Each family of orbits with a given ∼-equivalence class of decorations is
represented by a vertical line: the orbits in such a family are created monotonically from
bottom to top as a horseshoe is created. The complication in (HS,≤) has been shuffled
away in this figure by imagining that ¹ is a total order (perhaps we have restricted to
those periodic orbits corresponding to a given chain of decorations) — it is assumed
that w1 º w2 whenever w1 is to the left of w2. Thus progress through a given family to
height q implies progress through all families to its right to at least height q, and hence
a partially formed horseshoe can be represented by an upward sloping line through the
families (as depicted in the figure).

b) On a practical level, showing that two periodic orbits Pw1

q and Pw2

q of relatively small
period have the same braid type implies that Pw1

q′ and Pw2

q′ have the same braid type
for all 0 < q, q′ <= qw1

= qw2
. For example, it can be shown directly (by constructing a

conjugacy between the corresponding braids) that the periodic orbits P 101/3 and P
01
1/3 with

codes 10011101 and 10011011 have the same braid type. It follows from the conjecture
that the orbits with codes cq

0

110
0

1 and cq
0

101
0

1 have the same braid type for all q with
0 < q ≤ q10 = 1/3.

Under the assumption that part c) of the conjecture is true, Table 1 shows the topolog-
ical train track types (including images) corresponding to decorations of lengths 3 or less.
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w

q

0

1/2

Figure 2: A schematic illustration of the conjecture

Decorations which are equivalent under ∼ are shown in the same row. The train tracks
have been drawn in such a way that the free endpoint of the initial edge and its preimage
are connected by a horizontal line.

The question, posed in Section 3.2, of whether there exists a horseshoe orbit P whose
braid type is distinct from that of P̂ is, under the assumption that part a) of the conjecture
is true, very closely related to the question of whether there exists a decoration w which
is not ∼-equivalent to its reverse ŵ. To see why this is so, note first that qw = qŵ for all
decorations w. For by Lemma 3.1, qw is the height of the periodic orbit containing the point
with itinerary 10w0, and as stated in Section 3.2, this is the same as the height of the orbit
containing the reverse itinerary 0ŵ01: applying Lemma 3.1 again, this is equal to qŵ. Now
let P = Pw

q be any horseshoe orbit with q < qw. Then P has code cq
0

1w
0

1, and so P̂ contains

the point with itinerary 0

1ŵ
0

1ĉq. Since cq is palindromic and q < qw = qŵ, P̂ has code cq
0

1ŵ
0

1,

i.e. P̂ = P ŵ
q . Hence P and P̂ have the same braid type if and only if w ∼ ŵ.

4 Evidence for the conjecture

The current evidence for the conjecture is of three types: proofs of some special cases,
computational evidence for low period orbits with short decorations, and an intuitive justi-
fication using pruning theory [dC99, dCH01].

4.1 Proofs of special cases

The simplest case, in which w = ?, was treated in [Hal94a], where it was shown that
parts a), b), c), and d) of the conjecture hold for this decoration. (Note that, since ? is not
equivalent to any other decoration, in this case part a) says that the pair of periodic orbits
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w qw Train track Image

? 1/2

∅ 1/3

0 1/4

1 1/2

00 1/5

01, 10 1/3

11 2/5

000 1/6

001, 100 1/4

110, 010, 011 1/3

101 1/2

111 1/2

Table 1: Topological train track types for short decorations
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P ?
q are the only horseshoe periodic orbits of their braid type for each q ∈ Q ∩ (0, 1/2).)

Using the techniques of this paper, it doesn’t seem hard to show that parts b), c), and d)
of the conjecture hold for any given decoration w, simply by calculating the appropriate
isotopy classes and showing that they leave invariant train tracks of the given type. For
example, parts b), c), and d) are proved in [Hal94b] for decorations of the form w = 12i−1,
where i ≥ 1 is an integer: it is also shown there that for each q < qw = 1/2, the four
orbits P 1

2i−1

q are the only horseshoe orbits of their braid type (the topological train track
types which arise are discussed later in this section). However, treating individual cases in
this way seems a rather pointless endeavour: the challenge in proving the conjecture is to
develop techniques which are applicable when no information about topological train track
type is available.

Part e) of the conjecture only makes sense when a family of decorations is considered
simultaneously. In [dCH] it will be shown that all five parts of the conjecture hold when
attention is restricted to the set {wq : q ∈ (0, 1/2) ∩ Q} of decorations, where wq is the
word obtained from cq by deleting the initial symbols 10 and the final symbols 01 (it satisfies
qwq = q). In this case, the forcing order can be simply expressed:

P
wq
r ≥ P

wq′

r′ if and only if [r, q] ⊇ [r′, q′].

The conjecture says nothing about the particular topological train track types corre-
sponding to particular decorations: however, studying Table 1 and its extensions to longer
decorations makes it very tempting to produce conjectures, the simpler of which seem rel-
atively easy to prove by brute force calculations of the action of the appropriate isotopy
classes on trial train tracks. Thus, for example, in [Hal94b] it is shown that if w = 12i−i for
some integer i ≥ 1, then the reduced train track has a single period 2 orbit of valence i+ 2
vertices (see w = 1 and w = 111 in Table 1). That is,

T = 12233 . . . (i+ 1)(i+ 1)(i+ 2)(i+ 3)(i+ 3)(i+ 4)(i+ 4) . . . (2i+ 3)(2i+ 3)(i+ 2)1,

and

t =
(
12233 . . . (i+ 1)(i+ 1)(i+ 2), (i+ 3), (i+ 4), . . . ,

(2i+ 2), (2i+ 3)(2i+ 3)(i+ 2), 1, 2, 3, . . . , (i+ 1)
)

Likewise in [dCH] it will be shown that if q = m/n ∈ (0, 1/2), and the length n − 3
decoration wq is obtained from cq by deleting the initial 10 and the final 01, then T has
a single fixed valence n vertex, and the action of t on non-initial edges of T is rotation by
m/n (see w = ∅, 0, 00, 11 and 000 in Table 1, corresponding to q = 1/3, 1/4, 1/5, 2/5 and
1/6 respectively).

Examining the topological train track types corresponding to w = 1, 10 and 100 also
leads to an obvious conjecture about the case w = 10n, which can be proved with a lot
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of work but not much difficulty. A more interesting conjecture, however, is that if P is a
period n horseshoe orbit with code cP , and if w is obtained from cP by deleting the final
symbol, then the corresponding topological train track type has a single period n orbit of
valence 3 vertices, and the braid type of this periodic orbit is that of P . This conjecture
remains unproved.

4.2 Computational evidence

The main tool which the authors have used for computational investigation of Conjecture 1
is an implementation by the first author of the Bestvina-Handel train track algorithm.
Using this, parts b), c), and d) of the conjecture have been checked directly for all periodic
orbits whose decoration is of length 8 or less, and whose height has denominator 10 or less.
Specifically, it was verified that for each such decoration w

a) All of the orbits Pw
q (0) and Pw

q (1) with q < qw have pseudo-Anosov braid type and the
same topological train track type.

b) The pseudo-Anosov representatives of the orbits Pw
q (0) and Pw

q (1) have the same topo-
logical entropy for each q < qw.

c) For each q1 < q2 < qw, the pseudo-Anosov representative of the orbit Pw
q1(0) has greater

topological entropy than that of the orbit Pw
q2(0).

This check involved calculating train tracks for 15566 periodic orbits. Naturally there is no
constraint other than time preventing the continuation of this search: the program used is
available on the web [Hal]. Part a) is much harder to check computationally however, since
determining whether or not two decorations w and w′ are equivalent is essentially the same
problem as the conjugacy problem in the braid group, and as such becomes impractical
for quite short decorations. The authors do not have any good computational approach to
part e) of the conjecture.

4.3 Pruning theory

Pruning is a mechanism for destroying dynamics of surface homeomorphisms in a controlled
manner. The following account avoids some technical details: a full description can be found
in [dC99, dCH01].

Let F : D2 → D2 be a homeomorphism (which here will always be the horseshoe). A
pruning region for F is an F -invariant open setR such that there exists an isotopy supported
inR which destroys the dynamics there: that is, if FR denotes the homeomorphism obtained
at the end of the isotopy, then every point of R is wandering under FR. Since the isotopy
is supported in R, FR is equal to F outside R.

19



i)

PSfrag replacements

1 ii)

PSfrag replacements

1

Figure 3: A pruning disk in the horseshoe

Example: Consider the disk shown in Figure 3 i), which is bounded by segments of the
stable and unstable manifolds of the fixed point of the horseshoe with code 1. Then R =⋃
n∈Z F

n(Int(D)) is a pruning region for F (see [dC99] for the construction of the isotopy
in this case).

As in this example, pruning regions are usually presented as saturations of open sets
under the dynamics. Such a generating open set is called a pruning front, and these will be
used to describe pruning regions in what follows.

Pruning fronts are themselves unions of pruning disks which are, roughly speaking,
open disks bounded by segments of the stable and unstable manifolds of (possibly different)
periodic points, as in the example above. The figures shown in the remainder of this
section all contain a square, which represents the non-wandering set of the horseshoe (after
collapsing gaps in the Cantor set). Pruning disks will be depicted with shaded boxes:
together they make up the pruning front, which in turn yields the pruning region under
saturation. The schematic representation of the pruning disk in the above example is shown
in Figure 3 ii).

A general pruning disk can be specified by the horizontal and vertical coordinates of its
edges. The simplest type of pruning disk is a vertical pruning disk, which extends all the
way from the bottom to the top of the square, and from some point up to the right of the
square. A vertical pruning disk can be specified by the horizontal coordinate of its left edge,
which will be referred to as its horizontal coordinate.

In [dCH01], the Bestvina-Handel algorithm is recast in the language of pruning to give
an alternative algorithmic proof of Thurston’s classification theorem for surface homeomor-
phisms. Given a periodic orbit P (or indeed any finite invariant set) of the horseshoe, this
algorithm yields a maximal pruning region R = R(P ) for F relative to P with the property
that, after collapsing wandering domains, FR is the Thurston representative in the isotopy
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class of F : (D2, P ) → (D2, P ). The pruning region is maximal relative to P in the sense
that no further dynamics can be destroyed by pruning without destroying the periodic orbit
P itself. The same algorithm appears to work for homoclinic orbits of the horseshoe: a proof
that this is the case might be obtained by combining the techniques of [dCH01] with those
of [Hul00].

Note that maximal pruning regions are not unique. The reason is that there are different
regions of the dynamics of the horseshoe which are conjugate to each other: in carrying out
the algorithm, one has to decide which of two conjugate regions should be destroyed. Differ-
ent choices lead to homeomorphisms FR1

and FR2
which, though conjugate, are described

by different pruning regions. This phenomenon will be illustrated in Example d) below.
This non-uniqueness is probably the main cause of difficulty in proving the conjectures in
this paper.

The following conjecture, if proved, would provide the main technical ingredient for
proving parts d) and e) of Conjecture 1. It uses the notation Ds

w to denote the family of
orbits {Pw

q (s) : 0 < q <= qw}, where s ∈ {0, 1}.

Conjecture 2 Let w and w′ be decorations with w º w′, and consider (any particular
choices of) the homoclinic orbits Pw

0 and P
w′

0 . Then there exist s, s
′ ∈ {0, 1} and maximal

pruning regions Rw and Rw′ for F relative to Pw
0 and P

w′

0 respectively, such that:

a) Rw′ is disjoint from Ds′

w′ and Rw is disjoint from both D
s
w and D

s′

w′ .

b) Let q < qw and q
′ < qw′ . Then a maximal pruning region for the periodic orbit Pw

q (s)

(respectively Pw′

q′ (s
′)) can be obtained by adding to Rw (respectively Rw′) the saturation

of the vertical pruning disk with horizontal coordinate cqsw
0

1 (respectively cq′s′w′
0

1).

These statements could be rephrased in terms of equivalent decorations. For example,
in a) above, instead of saying that it is possible to find Rw disjoint from Ds

w, it could be said
that given any maximal pruning region Rw for F relative to Pw

0 , there exists a decoration
v ∼ w and s ∈ {0, 1} such that Rw is disjoint from all orbits in the family Ds

v. The point is
that a maximal pruning relative to Pw

0 may destroy some orbits of the relevant braid types,
but cannot destroy all of them.

If Conjecture 2 holds, and it is true that Pw
q (0) and Pw

q (1) have the same braid type for
all q and w with q < qw (which would be implied by Conjecture 1 a)), then Conjecture 1 e)
follows (and hence so also does Conjecture 1 d)). For suppose q < q ′ and w º w′, and
let Rw, Rw′ , s, and s′ be as given by Conjecture 2. The fact that q < q′ implies that

cqsw
0

1 is greater than cq′s′w′
0

1 in the unimodal order, and hence that the vertical pruning

disk V with horizontal coordinate cqsw
0

1 contains no point in the periodic orbit Pw′

q′ (s
′). By

part a) of the conjecture Rw is also disjoint from Pw′

q′ (s
′), and hence by part b) there is a

maximal pruning region for Pw
q (s) which is disjoint from Pw′

q′ (s
′). Thus the pseudo-Anosov
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representative of the braid type of Pw
q (s) contains a periodic orbit of the braid type of

Pw′

q′ (s
′): that is, Pw

q ≥ Pw′

q′ .
The motivation for this conjecture is again computational: it seems very natural once

one has calculated maximal pruning regions for homoclinic and periodic orbits with many
different decorations. The following examples are illustrative of such computations.

Examples

a) Let w = ∅. Figure 4 i) depicts the homoclinic orbit P ∅0 (with core 1001), together with
a maximal pruning front F∅ (which generates R∅ under saturation). In Figure 4 ii), the
periodic orbits P ∅1/4 and P

∅
2/7 (with codes 1000100 and 1001100100) are shown (depicted

• and ◦ respectively), together with a maximal pruning front F ∅1/4 relative to P
∅
1/4, which

is precisely F∅ together with a vertical pruning disk with horizontal coordinate 1000100.
Since 2/7 > 1/4, the rightmost point of P ∅2/7 lies to the left of this vertical pruning disk,

and hence no point of P ∅2/7 falls into F∅1/4. It follows that P
∅
1/4 forces P ∅2/7.

i) ii)

Figure 4: Maximal pruning fronts for the decoration ∅

The fixed point of code 1 is also depicted (with¤) in Figure 4 i). The fact that F ∅ has this
fixed point on its boundary accounts for the topological train track type corresponding
to the decoration ∅ having a fixed valence 3 vertex (see Table 1).

b) A similar treatment of the decoration w = 110 yields Figure 5. In i) the homoclinic orbit
P 1100 with core 1011001 is depicted together with a maximal pruning front F 110. Note
that in this case the maximal pruning front consists of two pruning disks. The fixed
point of code 1 and the period 3 orbit of code 110 are also shown: the fact that they lie
on the boundary of F110 accounts for the topological train track type corresponding to
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the decoration 110 having four valence three vertices, one fixed and the others lying on
a period 3 orbit.

In Figure 5 ii), a maximal pruning front F1101/4 relative to the periodic orbit P 1101/4 with

code 1000101100 is shown: it is exactly F 110 together with a vertical pruning disk with
horizontal coordinate 1000101100.

i) ii)

Figure 5: Maximal pruning fronts for the decoration 110

c) This example illustrates part e) of Conjecture 1. Let w = 1. Figure 6 i) depicts the
homoclinic orbit P 10 (with core 10101, shown as •), together with a maximal pruning
front F1. The homoclinic orbit P ∅0 is also shown (◦): since it lies outside F1, it follows
that the decoration 1 forces the empty decoration, i.e. 1 Â ∅. In Figure 6 ii), the periodic
orbits P 11/4(1) and P

∅
2/7(0) (with codes 10001111 and 1001100100, respectively) are shown

(depicted • and ◦ respectively), together with a maximal pruning front F 11/4 relative

to P 11/4, which is precisely F1 together with a vertical pruning disk with horizontal

coordinate 10001111. Since 2/7 > 1/4, the orbit P ∅2/7 is disjoint from this vertical

pruning disk; and since 1 Â ∅, it was possible to choose F 1 to be disjoint from D0∅. Thus

P ∅2/7 is disjoint from F11/4, i.e. P
1
1/4 ≥ P ∅2/7.

d) The final example illustrates the non-uniqueness of maximal pruning fronts. Let w = 010.
As noted in Table 1, the three decorations 010, 110, and 011 are all equivalent, i.e.
010 ∼ 110 ∼ 011. The simplest maximal pruning front relative to the homoclinic orbit
H = P 0100 consists of two pruning disks, and is depicted in Figure 7. H itself is not
depicted in this figure: instead, the periodic orbit P 0101/5 (0) is shown. It can be seen that
this periodic orbit lies in the pruning region, and hence is destroyed during the pruning
isotopy. (In fact the same is true for all of the periodic orbits in D010.)
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i) ii)

Figure 6: Maximal pruning fronts for the decorations 1 and ∅

Figure 7: Maximal pruning front relative to P 0100
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There are two ways to resolve this problem. The first, following the original formulation
of Conjecture 2, is to find a different maximal pruning front which is disjoint from the
periodic orbits in D0010. Such a maximal pruning front exists, but it consists of infinitely
many pruning disks. The second, following the restatement of Conjecture 2, is to observe
that the maximal pruning front of Figure 7 avoids the orbits of the family D0110 (although
it meets those of D1110). Although this is a much simpler resolution in this particular
case, it does not appear to be a practical approach in general, since computation of the
equivalence relation ∼ on decorations seems to be quite intractable.

The non-uniqueness of maximal pruning regions, as shown in Example d), is a major
obstacle to proving the conjecture. On the one hand, there are some natural choices for a
maximal pruning region relative to Pw

0 as one follows the algorithm described in [dCH01].
However these natural pruning regions sometimes contain the family Dw. If, on the other
hand, one tries to obtain a maximal pruning region which avoids this family, the construction
may require infinitely many steps, and may indeed cease to be algorithmic. The alternative
approach, to find an equivalent family Dv which is untouched by the natural maximal
pruning region, would require a far deeper understanding of the relation ∼ than seems
possible at present.
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