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Abstract. In this paper we extend M. Lyubich’s recent results on the global hyper-
bolicity of renormalization of quadratic-like germs to the space Ur of Cr unimodal
maps with quadratic critical point. We show that in Ur the bounded-type limit sets of
the renormalization operator have an invariant hyperbolic structure provided r ≥ 2+α
with α close to one. As an intermediate step between Lyubich’s results and ours, we
prove that the renormalization operator is hyperbolic in a Banach space of real an-
alytic maps. We construct the local stable manifolds and prove that they form a
continuous lamination whose leaves are C1 codimension one Banach submanifolds of
Ur, and whose holonomy is C1+β for some β > 0. We also prove that the global stable
sets are C1 immersed (codimension one) submanifolds as well, provided r ≥ 3+α with
α close to one. As a corollary, we deduce that in generic one parameter families of Cr

unimodal maps, the set of parameters corresponding to infinitely renormalizable maps
of bounded combinatorial type is a Cantor set with Hausdorff dimension less than one.
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1. Introduction

In 1978, M. Feigenbaum [10] and independently P. Coullet and C. Tresser [4] made a
startling discovery concerning certain rigidity properties in one-dimensional dynamics.
While analysing the transition between simple and “chaotic” dynamical behavior in
“typical” one-parameter families of unimodal maps – such as the quadratic family x 7→
λx(1− x) – they recorded the parameter values λn at which successive period-doubling
bifurcations ocurred in the family and found a remarkable universal scaling law, namely

λn − λn−1
λn+1 − λn

→ 4.669 . . . .

They also found universal scalings within the geometry of the post-critical set of the
limiting map corresponding to the parameter λ∞ = limλn (cf. the work of E. Vul,
Ya. Sinai and K. Khanin [29]). In an attempt to explain these phenomena, they in-
troduced a certain non-linear operator acting on the space of unimodal maps – the
so-called period doubling operator. They conjectured that the period-doubling operator
has a unique fixed-point which is hyperbolic with a one-dimensional unstable direction.
They also conjectured that the universal constants they found in their experiments are
the eigenvalues of the derivative of the operator at the fixed point.

A few years later (1982) this conjecture was confirmed by O. Lanford [18] through
a computer assisted proof. Working in a cleverly defined Banach space of real analytic
maps and using rigorous numerical analysis on the computer, Lanford established at
once the existence and hyperbolicity of the fixed point of the period-doubling operator.
Subsequent work by M. Campanino and H. Epstein [2] (also Campanino et al. [3] and
Epstein [9]) established the existence (but neither uniqueness nor hyperbolicity) of the
fixed point without essential help from the computer.

It was soon realized by Lanford and others that the period-doubling operator was
just a restriction of another operator acting on the space of unimodal maps – the renor-
malization operator – whose dynamical behavior is much richer. The hopes were high
that the iterates of this operator would reveal the small scale geometric properties of the
critical orbits of many interesting one-dimensional systems. Hence, the initial conjecture
was generalized to the following.

Renormalization Conjecture. The limit set of the renormalization operator in the

space of maps of bounded combinatorial type is a hyperbolic Cantor set where the

operator acts as the full shift in a finite number of symbols.

(For a precise formulation of what is meant by bounded combinatorial type, see §2.2
below.)

In the path towards a proof of this conjecture, several new ideas were developed in the
last 20 years by a number of mathematicians, especially D. Sullivan, C. McMullen and
M. Lyubich. Among the deepest in Dynamical Systems, these ideas have the complex
dynamics of quadratic-like maps (in the sense of Douady and Hubbard [6]) as a common
thread. Sullivan proved in [28] that all limits of renormalization are quadratic-like maps
with a definite modulus. Then, constructing certain Teichmüller spaces from quadratic-
like maps and using a substitute of Schwarz’s lemma in these spaces, Sullivan established
the existence of horseshoe-like limit sets for renormalization. Later, using a different
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approach based on Mostow rigidity, McMullen [23] gave another proof of this result and
went further by showing that the convergence (in the C0 sense) towards the limit set is
exponential.

The final breakthrough came with the work of Lyubich [20]. He endowed the space
of germs of quadratic-like maps (modulo affine conjugacies) with a very subtle complex
structure, showing that the renormalization operator is complex-analytic with respect
to such structure. In Lyubich’s space, the stable sets of maps in the limit set of renor-
malization coincide with the very hybrid classes of such maps, and inherit a natural
structure making them (complex codimension one) analytic submanifolds. Combining
McMullen’s rigidity of towers with Schwarz’s lemma in Banach spaces, Lyubich proved
exponential contraction along such stable leaves. To obtain expansion in the transversal
directions to such leaves at points of the limit set, Lyubich argued by contradiction:
if expansion fails, then one can find a map in the limit set whose orbit under renor-
malization is slowly shadowed by another orbit (the small orbits theorem, page 323 of
[20]). This however contradicts another theorem of his, namely the combinatorial rigid-
ity theorem of [21]. It follows that the limit set is indeed hyperbolic in the space of
germs. Based on this result of Lyubich and using the real and complex bounds given
by Sullivan, we prove in Theorem 2.4 that the attractor (for bounded combinatorics) is
hyperbolic in a Banach space of real analytic maps.

In the present paper, we give the last step in the proof of the above renormalization
conjecture in the (much larger) space of Cr smooth unimodal maps with r sufficiently
large. The very formulation of the conjecture in this setting requires some care, because
the renormalization operator is not differentiable in Cr. For the correct formulation,
see Theorem 2.5 below. To prove the conjecture, we combine Theorem 2.4 with some
non-linear functional analysis inspired by the work of A. Davie [5]. In that work, Davie
constructs the stable manifold of the fixed point of the period doubling operator in the
space of C2+ε maps “by hand”, showing it to be a C1 codimension one submanifold of the
ambient space, even though the operator is not differentiable. To do this, he first extends
the hyperbolic splitting of the derivative at the fixed point from Lanford’s Banach space
of real-analytic maps to the larger space of C2+ε maps (to which the derivative extends
as a bounded linear operator). This gives him an extended codimension one stable
subspace in C2+ε to work with, and he views the local stable set in C2+ε as the graph of
a function over the extended stable subspace. In attempting to prove that such function
is C1, he goes around the inherent loss of diferentiability of renormalization by first
noting that the local unstable manifold coming from Lanford’s theorem is still there
(and is still smooth in C2+ε) and then showing that there is afterall a contraction in
C2+ε towards that unstable manifold, whose elements are analytic maps. Thus, the loss
of differentiability is somehow compensated by the contraction towards the unstable
manifold. Davie’s crucial estimates show that the renormalization operator in C2+ε is
sufficiently well-approximated by the extension of its derivative in Lanford’s space to a
bounded linear operator in C2+ε.

Our approach is based on the idea that whatever Davie can do with Lanford’s Banach
space relative to the fixed point, we can do with the Banach space obtained in Theorem
2.4 relative to the whole limit set. There is one fundamental difference, however. The
linear and non-linear estimates carried out by Davie rely on the special fact that the
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period-doubling fixed point is convex. This allows him to prove his main theorems in
C2+ε for all ε > 0. By contrast, we cannot – and do not – rely on any such convexity
assumptions. We derive our estimates (in §5 and §8) directly from the geometric prop-
erties of the postcritical set of maps in the limit set (these properties – proved in §5.2
– are a consequence of the real a-priori bounds). As a result, our local stable manifold
theorem in Cr requires r ≥ 2 + α with α close to one.

We go beyond the conjecture in at least three respects. First, we show that the local
stable manifolds form a C0 lamination whose holonomy is C1+β for some β > 0. In
particular, every smooth curve which is transversal to such lamination intersects it at
a set of constant Hausdorff dimension less than one. Second, we prove that the global
stable sets are C1 (immersed) codimension one submanifolds in Cr provided r ≥ 3 + α
with α close to one (we globalize the local stable manifolds via the implicit function
theorem, hence the further loss of one degree of differentiability). Third, we prove that
in an open and dense set of Ck one-parameter families in Ur (for any k ≥ 2), each family
intersects the global stable lamination transversally at a Cantor set of parameters and
the small-scale geometry of this intersection is the same for all nearby families. In
particular, its Hausdorff dimension is strictly smaller than one.

In the path towards these results, we have made an attempt to abstract out the
more general features of the renormalization operator in the form of a few properties or
“axioms” – the notion of a robust operator introduced in §6. We prove a general local
stable manifold theorem for robust operators in §6. It is our hope that this might be
useful in other renormalization problems. For example in the case of critical circle maps
(see [7] and [8]).

Acknowledgements. We wish to thank M. Lyubich and A. Avila for several useful
discussions and A. Douady for his elegant proof of Lemma 10.3 (§10). We also thank
FCUP, IMPA, IME-USP, KTH, SUNY Stony Brook for their hospitality and support
during the preparation of this paper.

2. Preliminaries and statements of results

In this section, we introduce the basic notions of the theory of renormalization of
unimodal maps. Then we state Sullivan’s theorem on the existence of topological limit
sets for the renormalization operator, the exponential convergence results of McMullen,
and Lyubich’s theorem showing the full hyperbolicity of such limit sets in the space of
germs of quadratic-like maps. Finally, we state our main results extending Lyubich’s
hyperbolicity theorem to the space of Cr unimodal maps with r sufficiently large.

2.1. Quadratic unimodal maps. We describe here the spaces of Cr unimodal maps
that we will study. Let I = [−1, 1] and for all r ≥ 0 let Cr(I) be the Banach space of
Cr real-valued functions on I. Here r can be either a non-negative real number, say
r = k + α with k ∈ N and 0 ≤ α < 1, in which case Cr(I) is the space of Ck functions
whose k-th derivative is α-Hölder, or else r = k + Lip, in which case Cr(I) means the
space of Ck functions whose k-th derivative is Lipschitz (so whenever we say that r is
not an integer, we include the Lipschitz cases). Define

Ar = {v ∈ Cr(I) : v(x) = φ(x2), φ(0) = 0, φ ∈ Cr([0, 1])} .
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Then Ar is a closed linear subspace of Cr(I) and therefore also a Banach space under
the Cr norm. Define

Ur ⊂ 1 + Ar ⊂ Cr(I)

to be the set of all maps f : I → I of the form f(x) = 1 + φ(x2), where φ(0) = 0 and
φ′(y) 6= 0 for all y ∈ [0, 1]. Then Ur is a Banach manifold; indeed it is an open subset
of the affine space 1 + Ar. The elements of Ur are called Cr unimodal maps with a
quadratic critical point. Note that for all f ∈ Ur the tangent space TfUr is naturally
identified with Ar.

2.2. Renormalization operator. A map f ∈ Ur is said to be renormalizable if there
exist p = p(f) > 1 and λ = λ(f) = f p(0) such that fp|[−|λ|, |λ|] is unimodal and
maps [−|λ|, |λ|] into itself. In this case, taking the smallest possible value of p, the map
Rf : [−1, 1]→ [−1, 1] given by

(2.1) Rf(x) =
1

λ
fp(λx)

is called the first renormalization of f . We have Rf ∈ Ur. The intervals f j([−|λ|, |λ|]),
for 0 ≤ j ≤ p − 1, are pairwise disjoint and the way they deploy themselves inside
[−1, 1] determines a unimodal permutation θ of {0, 1, . . . , p−1}. The set of all unimodal
permutations is denoted P. The set of f ∈ Ur that are renormalizable with the same
unimodal permutation θ ∈ P is a connected subset of Ur denoted Ur

θ. Hence we have
an operator

(2.2) R :
⋃

θ∈P

Ur
θ → Ur ,

the so-called renormalization operator.
Now let us fix a finite subset Θ ⊆ P. Given an infinite sequence of unimodal permu-

tations θ0, θ1, . . . , θn, . . . ∈ Θ, write

Ur
θ0,θ1,··· ,θn,··· = Ur

θ0 ∩R
−1Ur

θ1 ∩ · · · ∩R
−nUr

θn ∩ · · · ,

and define

DrΘ =
⋃

(θ0,θ1,··· ,θn,··· )∈ΘN

Ur
θ0,θ1,··· ,θn,··· .

The maps in DrΘ are infinitely renormalizable maps with (bounded) combinatorics be-
longing to Θ. Note that R(DrΘ) ⊆ D

r
Θ, in fact

(2.3) R(Ur
θ0,θ1,··· ,θn,···) ⊆ Ur

θ1,θ2,··· ,θn+1,··· .

2.3. The limit sets of renormalization. In [28], Sullivan established the existence
of horseshoe-like invariant sets for the renormalization operator, showing that they all
consist of real analytic maps of a special kind, namely, restrictions to [−1, 1] of quadratic-
like maps in the sense of Douady-Hubbard. We remind the reader that a quadratic-like
map f : V →W is a holomorphic map with the property that V and W are topological
disks with V compactly contained inW , and f is a proper degree two branched covering
map with a continuous extension to the boundary of V . The conformal modulus of f is
the modulus of the annulus W \ V .
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We are interested only in quadratic-like maps that commute with complex conjuga-
tion, for which V is symmetric about the real axis. Consider the real Banach space space
H0(V ) of holomorphic functions which commute with complex conjugation and are con-
tinuous up to the boundary of V , with the C0 norm. Let AV ⊂ H0(V ) be the closed
linear subspace of functions of the form ϕ = φ ◦ q, where q(z) = z2 and φ : q(V )→ C is
holomorphic with φ(0) = 0. Also, let UV be the set of functions of the form f = 1 + ϕ,
where ϕ = φ ◦ q ∈ AV and φ is univalent on some neighborhood of [−1, 1] contained
in V , such that the restriction of f to [−1, 1] is unimodal. Then UV is an open subset
of the affine space 1 + AV , which is linearly isomorphic to AV via the translation by 1,
and we shall regard UV as an open subset of AV itself via this identification. For each
a > 0, let us denote by Ωa the set of points in the complex plane whose distance from
the interval [−1, 1] is smaller than a. We may now state Sullivan’s theorem as follows.

Theorem 2.1. Let Θ ⊆ P be a non-empty finite set. Then there exist a > 0 a compact
subset K = KΘ ⊆ AΩa ∩ D

ω
Θ and µ > 0 with the following properties.

(1) Each f ∈ K has a quadratic-like extension with conformal modulus bounded from
below by µ.

(2) We have R(K) ⊆ K, and the restriction of R to K is a homeomorphism which is
topologically conjugate to the two-sided shift σ : ΘZ → ΘZ: in other words, there
exists a homeomorphism H : K → ΘZ such that the diagram

K R
−−−−→ K

H





y





yH

ΘZ −−−−→
σ

ΘZ

commutes.
(3) For all g ∈ DrΘ, with r ≥ 2, there exists f ∈ K such that ||Rn(g)−Rn(f)||C0(I) →

0 as n→∞.

For a detailed exposition of this theorem, see Chapter VI of [26].
Later, in [23], C. McMullen established the exponential convergence of renormaliza-

tion for bounded combinatorics (using rigidity of towers). His theorem forms the basis
for the contracting part of Lyubich’s hyperbolicity theorem in [20].

Theorem 2.2. If f and g are infinitely renormalizable quadratic-like maps with the
same bounded combinatorial type in Θ ⊂ P , and with conformal moduli greater than or
equal to µ, we have

‖Rnf −Rng‖C0(I) ≤ Cλn

for all n ≥ 0 where C = C(µ,Θ) > 0 and 0 < λ = λ(Θ) < 1.

The above result was extended by Lyubich to all combinatorics. In particular it
follows, in the case of bounded combinatorics, that the exponent λ and the constant
C in Theorem 2 do not depend on Θ. The conclusion of the above theorem can also
be improved in bounded combinatorics: the exponential convergence holds in the Cr

topology if the maps are in Ur (see [24] and [25]).

7



In [20], Lyubich considered the space of quadratic-like germs modulo affine conjugacies
in which the limit set K is naturally embedded. This space is a manifold modeled
on a complex topological vector space (arising as a direct limit of Banach spaces of
holomorphic maps). In this setting, Lyubich established in [8] the full hyperbolicity of
the renormalization operator. With the help of Sullivan real and complex bounds and
Lyubich’s theorem we prove the hyperbolicity of some iterate of the renormalization
operator acting on a space AΩa for some a > 0 (see Theorem 2.4 in §2.5). Then
we extend Davie’s analysis for the Feigenbaum fixed point to the context of bounded
combinatorics to conclude that the hyperbolic picture also holds true in the much larger
space Ur (see Theorem 2.5 in §2.5).

2.4. Hyperbolic basic sets. We need to introduce the well-known concept of hyper-
bolic basic set for non-linear operators acting on Banach spaces. Let us consider a
Banach space A, and an open subset O ⊆ A.

Definition 2.1. Let T : O → A be a smooth non-linear operator. A hyperbolic basic set
of T is a compact subset K ⊂ O with the following properties.

(i) K is T -invariant and T |K is a topologically transitive homeomorphism
whose periodic points are dense.
(ii) If y ∈ O and all T -iterates of y are defined, then T n(y) converges to
K.
(iii) There exist a continuous, DT -invariant splitting A = Es

x

⊕

Eux , for
x ∈ K, and uniform constants C > 0 and 0 < θ < 1 such that

‖DTm(x) v‖ ≤ Cθm‖v‖

for all v ∈ Es
x, as well as

(2.4) ‖DTm(x) v‖ ≥ Cθ−m‖v‖

for all v ∈ Eu
x .

(iv) The dimension of Eu
x is finite and constant.

The following notions are also standard. Let A(x, ε) be the ball in A with center x
and radius ε. The local stable manifold W s

ε (x) of T at x consists of all points y ∈ A(x, ε)
such that for all n > 0, we have T n(y) ∈ A(T n(x), ε) and

‖Tn(y)− Tn(x)‖ → 0 when n→∞ .

The local unstable manifold W u
ε (x) of T at x consists of all points y ∈ A(x, ε) such that

setting y0 = y, for all n ≥ 1 there exist yn ∈ A(T
−n(x), ε) such that yn−1 = T (yn) and

‖T−n(x)− yn‖ → 0 when n→∞ .

Finally the global stable set of T at x is defined as

W s(x) = {y ∈ O : ‖T n(y)− Tn(x)‖ → 0 when n→∞} .

The question arises as to whether these sets have smooth manifold structures. We have
the following general result.

Theorem 2.3. If K is a hyperbolic basic set of a C1 operator T : O → A then
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(i) the local stable (resp. unstable) set at x ∈ K is a C1 Banach subman-
ifold of A which is tangent to Es

x (resp. Eu
x) at x.

(ii) If y ∈W s(x) then

‖Tn(x)− T n(y)‖ ≤ Cθn‖x− y‖ .

Moreover, T (W u
ε (x)) ⊇W u

ε (T (x)), the restriction of T to W u
ε (x) is one-

to-one and for all y ∈W u
ε (x) we have

∥

∥T−n(x)− T−n(y)
∥

∥ ≤ Cθn‖x− y‖ .

(iii) If y ∈ A(x, ε) is such that T i(y) ∈ A(T i(x), ε) for i ≤ n then

dist (T n(y),W u
ε (T

n(x))) ≤ Cθn, as well as dist (y,W s
ε (x)) ≤ Cθn .

(iv) The family of local stable manifolds (and also the family of local un-
stable manifolds) form a C0 lamination: the tangent spaces to the leaves
vary continuously.

We do not prove this theorem here since we will not use it, but instead make the
following comments. Using the arguments of Hirsch-Pugh in [14], we can prove that the
local unstable set is a smooth manifold. The local stable set is also a smooth manifold,
but a different proof is needed: one can use the ideas of Irwin in [16]. See also Theorem
2.1 in page 375 of [27]. In both cases the smoothness can be improved to Ck if the
operator T is Ck.

For invertible operators the global stable set is also a smooth submanifold. By con-
trast, in the non-invertible situation, there is no a-priori reason why the global stable
set should have a smooth manifold structure. In fact, this is probably false in general.
However, we will prove in §9 that this is the case for the renormalization operator acting
on Ur, provided r ≥ 3 + α and α > 0 is close to one.

2.5. Hyperbolicity of renormalization. In the present paper we prove two main the-
orems. The first main theorem shows that there exists a real Banach space of analytic
maps, containing the topological limit set K of renormalization, on which the renormal-
ization operator acts as a real-analytic operator and has K as a hyperbolic basic set.
More precisely, we have the following result.

Theorem 2.4. (Hyperbolicity in a real Banach space) There exist a > 0, an open set
O ⊂ A = AΩa containing K = KΘ and a positive integer N with the following property.
There exists a real analytic operator T : O → A having K as a hyperbolic basic set with
co-dimension one stable manifolds at each point, such that T (f)|[−1, 1] = RN (f |[−1, 1])
for all f ∈ O.

The proof of this theorem, presented in §3 (see Theorem 3.9), combines Lyubich’s
hyperbolicity results with Sullivan’s real and complex bounds.

The second main theorem establishes the “hyperbolicity” of renormalization in Ur.
As we have mentioned before, the renormalization operator is not smooth in Ur, so the
definition of hyperbolicity of an invariant set does not even make sense. However, the
hyperbolic picture holds in this situation. More precisely, we have the following theorem.
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Theorem 2.5. (Hyperbolic Picture in Ur) If r ≥ 2 + α, where α > 0 is close to one,
then statements (i), (ii), (iii) and (iv) of Theorem 2.3 hold true for the renormalization
operator acting on Ur. Furthermore,

(i) the local unstable manifolds are real analytic curves;
(ii) the local stable manifolds are of class C1, and together they form a
continuous lamination whose holonomy is C1+β for some β > 0;
(iii) if r ≥ 3+α then the global stable sets are also C1 immersed subman-
ifolds.

The main difficulty behind the proof of this theorem is the fact the operator T is not
Fréchet differentiable in Cr. However, as we shall see in §8.2, it is a C1 mapping from its
domain in Ur into Us if s < r−1 (even for s = r−1 if r is an integer). Hence its tangent
map defines a continuous map L : K × Ar → K × As by L(g, v) = (T (g), DT (g)(v)) =
(T (g), Lg(v)). The bounded linear mappings Lg : Ar → As extend to bounded linear
operators Lg : At → At for all 0 ≤ t ≤ r. Although Lg is not the derivative of T at g
in Cr, it is nevertheless a sufficiently good linear approximation to T near g (see the
properties of Definition 6.1, checked in §8).

The second main theorem has the following important corollary for one-parameter
families of maps.

Corollary 2.6. Let r ≥ 3 + α as in Theorem 2.5, and let 2 ≤ k ≤ r be an integer.
There exists an open dense set of Ck one-parameter families of maps in Ur all of whose
elements intersect the global stable lamination transversally. In each such family, the
set of parameters where the intersections occur is a Cantor set which is locally C1+β

diffeomorphic to the corresponding Cantor set of the quadratic family. In particular, its
Hausdorff dimension is a universal number strictly between zero and one.

For a more precise statement, see Theorem 10.1 in §10. It is worth emphasizing
that when a generic family (in the sense of the above corollary) intersects the stable
lamination at a point, then any neighborhood of this point in parameter space contains
a renormalization window that is mapped under a suitable power of the renormalization
operator onto a full transversal family.

3. Hyperbolicity in a Banach space of real analytic maps.

In this section we give a proof of Theorem 2.4. Using the real and complex bounds
given by Sullivan in [28], we prove in §3.1 that there is an iterate of the renormalization
operator which extends as a real analytic map T to an open set OΩa of the Banach
space AΩa consisting of real analytic maps whose domain is a a-neighborhood of the
interval [−1, 1], for a suitable a > 0. The maps g ∈ K have unique extensions belonging
to OΩa . In §3.2, using lemmas 4.16 and 4.17 in Lyubich’s paper [20], we show that the
hybrid conjugacy classes of the maps g ∈ K form a continuous lamination of codimension
one real analytic manifolds. Then in §3.4 we construct a skew-product renormalization
operator that satisfies properties (W1) to (W4) in page 395 of [20] in the real analytic
case (restated in §3.5). By theorems 8.2 and 8.8 in [20] the skew-product renormalization
operator will have fiberwise stable and unstable leaves (as defined in §3.3). The local
stable leaf at g ∈ K is a relatively open set of the hybrid conjugacy class of g. Then
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using the skew-product renormalization operator, we prove in §3.5 that K is a basic set
for the real analytic renormalization operator T : OΩa → AΩa .

3.1. Real analyticity of the renormalization operator. Using Sullivan’s real and
complex bounds in [28], we will show that there exists a > 0 such that some iterate
T : OΩa → AΩa of the renormalization operator is a (well-defined) real analytic operator
with a compact derivative.

For each f ∈ K, let If ⊆ [−1, 1] be the postcritical set of f (the Cantor attractor of
f). For each k ≥ 0, we can write

Rkf(x) = Λ−1k ◦ fpk ◦ Λk(x)

where pk = p(f, k) =
∏k−1
i=0 p(R

if), λk = λ(f, k) =
∏k−1
i=0 λRif and Λk(x) = Λ(f, k)(x) =

λk · x. Consider the renormalization intervals ∆0,k = ∆0,k(f) = [−|λk|, |λk|] ⊂ [−1, 1],
and define ∆i,k = ∆i,k(f) = f i(∆0,k) for i = 0, 1, . . . , pk − 1. The collection Ck =
{∆0,k, . . . ,∆pk−1,k} consists of pairwise disjoint intervals at level k. Moreover,

⋃

{∆ :
∆ ∈ Ck+1} ⊆

⋃

{∆ : ∆ ∈ Ck} for all k ≥ 0 and we have

If =
∞
⋂

k=0

pk−1
⋃

i=0

∆i,k .

Definition 3.1. The set If has geometry bounded by 0 < τ < 1 with respect to (Ck)k∈N
if the following conditions are met for k ≥ 1.

(i) If ∆j,k+1 ⊂ ∆i,k then τ < |∆j,k+1| / |∆i,k| < 1− τ .
(ii) If I is a connected component of ∆i,k\

⋃

j ∆j,k+1 then τ < |I| / |∆i,k| <
1− τ .

By Sullivan’s real bounds (see [28] and Section VI.2 in page 453 of [26]), there exists
α > 0, such that for every g ∈ K the set Ig has geometry bounded by α with respect to
(Ck)k∈N.

The following result is a consequence of Sullivan’s complex bounds (see [28] and
Section VI.5 in page 483 of [26]).

Theorem 3.1. There exist µ > 0, N0 > 0 and a neighborhood V of the dynamics with
the following properties. Every g ∈ K extends to a holomorphic map g : V → C and for
every N ≥ N0 there exists a symmetric neighborhood Og,N of the interval ∆0,N (g) such
that

(i) the diameter of the set gi(Og,N ) ⊂ V is comparable to the length
|∆i,N (g)| of the interval ∆i,N (g) for every 0 ≤ i ≤ p = p(N, g);
(ii) the map gp : Og,N → gp(Og,N ) is a quadratic-like map with conformal
modulus greater than µ > 0.

Applying Theorem 3.1 (ii) to g ∈ K, we see that RN (g) has a quadratic-like extension
to

(3.1) Ug,N = Λ−1g (Og,N )

and such extension has conformal modulus greater than µ > 0.
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Recall that the filled-in Julia set Kf of a quadratic-like map f : U → U ′ is the set
{z : fnz ∈ U, n = 0, 1, . . .}, and its boundary is the Julia set Jf of f . Since all maps in
K have conformal modulus greater than or equal to µ > 0, we deduce from Proposition
4.8 in page 83 of McMullen’s book [23] that there exists b > 0 such that for every g ∈ K
we have

(3.2) Ωb(KRN (g)) ⊂ Ug,N .

Here the notation Ωε(K) means the set of all points whose distance from K is less than
ε/2 times the diameter of K.

For each neighborhood U of [−1, 1] in C, symmetric about the real axis, we con-
sider the real Banach space AU of holomorphic functions defined earlier. We de-
note by AU (g, δ) the open ball of radius δ around g. By (3.2), the inclusion map
ig,N : AUg,N → AΩα is a well-defined compact linear operator.

Lemma 3.2. Let µ > 0 and N0 > 0 be as in Theorem 3.1 and b as in (3.2). For every
0 < α < b there exist N > N0 and δ0 > 0 such that

(i) for every g ∈ K, the operator Tg,N : AΩα(g, δ0)→ AUg,N is well-defined
if we set

Tg,N (f) = Λf
−1 ◦ fp ◦ Λf : Ug,N → C ,

where p = p(f,N) = p(g,N), Λf = Λ(f,N), and Tg,N (f) is a quadratic-
like map with conformal modulus greater than µ/2;
(ii) the operator T : OΩα → AΩα given by T = ig,N ◦ Tg,N is real analytic
with a compact derivative, where

OΩα =
⋃

g∈K

AΩα(g, δ0) .

Proof. By Sullivan’s real bounds, there exist C1 > 1 and 0 < ν1 < ν2 < 1 such that for
all g ∈ K, all k ∈ N and all 0 ≤ j ≤ p(k, g) − 1, we have C−11 νk1 < |∆j,k(g)| < C1ν

k
2 .

Thus, by property (i) in Theorem 3.1, for every α > 0 there is N > 0 so large that
the open sets gj(Og,N ) have diameter smaller than α/3 for all 0 ≤ j ≤ p(N, g). Recall
that Og,N = Λg(Ug,N )). By a continuity argument, there is δg > 0 such that for every
f ∈ AΩα(g, δg), the restriction f |[−1, 1] is N -times renormalizable, f j(Λf (Ug,N )) ⊂ Ωα/2
for every 0 ≤ j ≤ p = p(N, f), and moreover f p : Λf (Ug,N ) → fp(Λf (Ug,N )) is a
quadratic-like map with conformal modulus greater than µ/2. By compactness of K in
AΩα , there is a finite set {gi : i = 1, . . . , l} such that

K ⊂
l
⋃

i=1

AΩα(gi, δgi/2) .

Set δ0 = mini=1,...,l{δgi/2}. Then, for every g ∈ K there exists i = i(g) such that
AΩα(g, δ0) ⊂ AΩα(gi, δgi). Hence Tg,N (f) is well-defined, and it is a quadratic-like map
with conformal modulus greater than µ/2, for every f ∈ AΩα(g, δ0) which proves (i).

Note that the real Banach space AΩα is naturally embedded in the complex Banach
space AΩα,C of maps f : Ωα → C which are holomorphic and continuous up to the

boundary and that Tg,N extends to an operator TC
g,N in an open set of AΩα,C, given

by the same expression. Applying the Cauchy integral formula, we see that T C
g,N is
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complex-analytic, and so Tg,N is real analytic. Since by Montel’s theorem the inclusion
ig,N is a compact linear operator, we deduce that T : OΩα → AΩα is a real-analytic
operator with a compact derivative, which proves (ii). ¤

3.2. Real analytic hybrid conjugacy classes. We will introduce later (in §3.4) a
skew-product renormalization operator. The fiberwise local stable manifolds of such
skew-product – which will be used to determine the stable manifolds of the real-analytic
operator T : OΩa → AΩa , for some suitable a > 0 – turn out to be openly contained
in the hybrid conjugacy classes of the maps in the limit set K. Here we analyze the
manifold structure of hybrid classes in more detail.

A homeomorphism h : U → V , where U and V are contained in C or C, is quasi-
conformal if it has locally square integrable distributional derivatives ∂h, ∂h, and there
exists ε < 1 with the property that

∣

∣∂h/∂h
∣

∣ ≤ ε almost everywhere. The Beltrami dif-

ferential µh of h is given by µh = ∂h/∂h. A quasiconformal map h is K quasiconformal
if K ≥ (1 + ||µh||∞)/(1− ||µh||∞).

Two quadratic-like maps f and g are hybrid conjugate if there is a quasiconformal
conjugacy h between f and g with the property that ∂h(z) = 0 for almost every z ∈ Kf .
Let us denote by H(f) the hybrid conjugacy class of f .

By a slight abuse of notation, we will denote by K ∩ AV (g, δ) the set of maps f ∈
AV (g, δ) with the property that f |[−1, 1] belongs to K.

In the proof of the following theorem, we will need to work with the complexification
of AV . Let AV,C be the complex Banach space of all holomorphic maps f : V → C with
a continuous extension to the boundary of V . Let AV,C(f, δ) be the open ball in AV,C
centered in f and with radius δ > 0. Let C : AV,C → AV,C be the conjugation operator
given by C(f) = c ◦ f ◦ c, where c(z) = z ∈ C. We note that f ∈ AV if and only if
f ∈ AV,C and C(f) = f .

Theorem 3.3. For every g ∈ K, there exists a symmetric neighborhood V̂g of the reals

such that g has a quadratic-like extension to V̂g (which we also denote by g), V̂g contains

a definite neighborhood of Kg and for every neighborhood V ⊂ V̂g symmetric with respect
to R and with the property that g|V is a quadratic-like map, there is δg,V > 0 such that
for all f ∈ K ∩ AV (g, δg,V ),

HV (f) = H(f) ∩ AV (g, δg,V )

are codimension one real analytic leaves varying continuously with f .

Proof. By lemmas 4.16 and 4.17 in page 354 of Lyubich’s paper [20], we obtain that
for all f ∈ K ∩ AV,C(g, δg,V ), HV,C(f) = H(f) ∩ AV,C(g, δg,V ) are codimension one
complex analytic leaves varying continuously with f . If f ∈ AV (g, δg,V ) then the hybrid
conjugacy class of f in AV,C(g, δg,V ) is invariant under the conjugation operator C.
Hence, the tangent space TfHV,C(f) at f to its hybrid conjugacy class is invariant
under the conjugation operator C, and there is a one dimensional transversal Ef to
TfHV,C(f) which is also invariant under the conjugation operator C. Locally HV,C(f)
is a graph of G : Z ⊂ TfHV,C(f) → Ef with the property that if h = v + G(v) then
C(h) = C(v)+G(C(v)). Thus, locally HV (f) is also the graph of G|Z ∩AV (g, δg,V ), and
so it is a codimension one real analytic leaf. Since the complex analytic leaves HV,C(f)
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vary continuously with f , we deduce that the the real analytic leaves HV (f) also vary
continuously with f . ¤

3.3. Hyperbolic skew-products. Before going further, we pause for a moment to
introduce the elementary concept of hyperbolic skew product in an abstract setting.
Let K be a compact metric space and assume that K is totally disconnected. Let F be
a finite collection of (real) Banach spaces, say F = {A1,A2, . . . ,AN}, and assume we
have a locally constant map ϕ : K → F . We write Ax = ϕ(x) ∈ F , for all x ∈ K. Let
E = ∪x∈K{x} × Ax. We endow E with a topology as follows. If Ki = ϕ−1(Ai), then
Ki is an open and closed set in K, for each i = 1, 2, . . . , N . Note that E is the disjoint
union of Ki × Ai, i = 1, 2, . . . , N . Hence endow each factor Ki × Ai with the product
topology and then E with the union topology. It is clear that E is metrizable also. The
natural projection E → K is open and continuous. We shall assume that there exists a
continuous injection Ki → Ai for each i, and will accordingly identify each x ∈ Ki with
its image in Ai.

Now suppose T : K → K is a homeomorphism (in the case we are interested, T is
transitive), and also that for each x ∈ K we have a real-analytic map Sx : Ax(x, δ) →
AT (x), where Ax(x, δ) = {x+ v ∈ Ax : ‖v‖Ax < δ}. We define a skew-product operator
S : E(δ)→ E over T , where

E(δ) = {(x, y) : x ∈ K, y ∈ Ax, ‖y − x‖Ax < δ} ,

by S(x, y) = (T (x), Sx(y)).

Definition 3.2. We say that S is fiberwise hyperbolic if there exists a continuous spliting
Ax = Es

x

⊕

Eux with dim Eu
x = 1 which is invariant in the sense that DSx(E

s
x) ⊆ Es

T (x)

and DSx(E
u
x) ⊆ Eu

T (x), satisfying for all vs ∈ Es
x and all vu ∈ Eu

x the inequalities
∥

∥D
(

STn−1(x) ◦ . . . Sx
)

(x)vs
∥

∥

ATn(x)
≤ Cθn‖vs‖Ax

∥

∥D
(

STn−1(x) ◦ . . . Sx
)

(x)vu
∥

∥

ATn(x)
≥ C−1θ−n‖vu‖Ax ,

where C > 0 and 0 < θ < 1 are uniform constants on g.

Definition 3.3. The fiberwise local stable manifoldW s
β(x) of S at x consists of all points

y ∈ Ax(x, β) such that for all n ≥ 1, we have STn−1(x) ◦ . . . ◦ Sx(f) ∈ ATn(x)(T
n(x), β)

and
∥

∥STn−1(x) ◦ . . . ◦ Sx(y)− STn−1(x) ◦ . . . ◦ Sx(x)
∥

∥

ATn(x)
≤ Cθn

where C > 0 and 0 < θ < 1 are uniform constants on x ∈ K. The fiberwise local unstable
manifold W u

β (x) of S at x consists of all points y ∈ Ax(x, β) such that setting y0 = y

and x0 = x, for all n ≥ 1 there exist yn, xn ∈ AT−n(x) such that yn−1 = ST−n(x)(yn),
xn−1 = T (xn) and ‖xn − yn‖AT−n(x)

≤ Cθn.

3.4. Skew-product renormalization operator. Our goal in this section is to build a
skew-product renormalization operator that will play a central role in the proof that K
is a basic set for T : OΩa → AΩa , for a suitable a > 0. Our skew-product is constructed
so as to satisfy properties (W1) to (W4) in page 395 of [20] in the real analytic case –
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restated in §3.5 – and therefore will have fiberwise stable and unstable manifolds, as we
will explain in that section.

By Theorem 3.1, we know that for every 0 < α < b, K injects continuously into AΩα .
Hence for f, g ∈ K we define distK(f, g) = ‖f − g‖AΩα . We also denote by K(g, ε) the
ball of radius ε centered at g in this metric. The metric is compatible with the natural
topology of K, independently of which α we take.

Lemma 3.4. The filled-in Julia set Kg varies continuously in the Hausdorff metric with
respect to g ∈ K.

Proof. We need to show that for every ε > 0 there exists δ > 0 such that if distK(f, g) < δ
then (a) Kg ⊂ Ωε(Kf ) and (b) Kf ⊂ Ωε(Kg). To prove (a), cover Kg by finitely many
disks D(zi(g), ε/2), i = 1, 2, . . . ,m, where each zi(g) is an expanding periodic point of
g. For f sufficiently close to g, the corresponding periodic points zi(f) ∈ D(zi(g), ε/2).
Hence each z ∈ Kg is at distance at most ε from some zi(f), which proves (a).

To prove (b), let U = UR−N0 (g),N0 ⊂ C be the symmetric neighborhood of [−1, 1] given
by Lemma 3.2. Since the operator TR−N0 (g),N0 is continuous, every f ∈ K sufficiently

close to g in AΩε is quadratic-like on U (f = TR−N0 (g),N0(T
−1(f)) : U → C ) and is

also close to g in AU . Let n > 0 be so large that W = g−n(U) ⊂ Ωε(Kg). Since f
is close to g and W ⊆ U is symmetric f : W → f(W ) is quadratic-like also, whence
Kf ⊂W ⊂ Ωε(Kg) and so (b) is proved. ¤

Lemma 3.5. Let g ∈ K and let V ⊂ C be a symmetric neighborhood of [−1, 1] which
is compactly contained in Ωb/2(Kg), where b is given by (3.2). Then for all ε > 0
sufficiently small K ∩ AV (g, ε) is an open subset of K.

Proof. Take 0 < α < b sufficiently small such that Ωα is compactly contained in V . By
Theorem 3.1 and (3.2), every f ∈ K is well-defined on Ωb(Kf ). Since by Lemma 3.4
the map f 7→ Kf is continuous in the Hausdorff metric, there exists ε0 > 0 such that

if f ∈ K is such that distK(f, g) < ε0 then Ωb/2(Kg) ⊂ Ωb(Kf ). Since V ⊂ Ωb/2(Kg),
it follows that f is well-defined on V , that is f ∈ AV . Hence there is a well-defined
injection K(g, ε0)→ AV . Such injection is continuous. Indeed, for f ∈ K(g, ε0), the C

0

norm of f in Ωb/2(Kg) is uniformly bounded, while ‖f‖AΩα varies continuously with f .

Since Ωα ⊂ V ⊂ V ⊂ Ωb/2(Kg), we deduce from Hadamard’s three circles theorem (see
Lemma 11.5 in page 415 of [20]) that ‖f‖AV

varies continuously with f also. Therefore
the map K(g, ε0) → AV is continuous as asserted. Now let f ∈ K ∩ AV (g, ε0). Since
the inclusion AV → AΩα has Lipschitz constant one, we have that f ∈ K(g, ε0). Hence
there exists ε1 > 0 such that K(f, ε1) ⊆ K ∩ AV (g, ε0), which shows that this last set is
open in K. This completes the proof. ¤

Lemma 3.6. Let b > 0 be as defined in (3.2) and δ0 > 0 as in Lemma 3.2. There exist
ν > 0, 0 < δ < δ0, a finite set V of symmetric neighborhoods of [−1, 1] and a locally
constant map K 3 g 7→ Vg ∈ V with the following properties

(i) Vg is compactly contained in Ωb/2(Kg);
(ii) every f ∈ AVg(g, δ) is a quadratic-like map with conformal modulus
larger than ν;
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(iii) if f ∈ K ∩ AVg(g, δ) then H(f) ∩ AVg(g, δ) is a codimension one real
analytic submanifold varying continuously with f .

Proof. For every g ∈ K, let Ug ⊂ C be a symmetric neighborood of [−1, 1] where g is

quadratic-like, and take ng > 0 so large that V ′g = g−ng(Ug) ⊂ Ωb/3(Kg) and V ′g ⊆ V̂g,

where V̂g is as given in Theorem 3.3.
Let δg > 0 be so small that each f ∈ AV ′g (g, δg) is quadratic-like in V ′g with conformal

modulus greater than νg > 0 and also so that Theorem 3.3 holds true (for V ′g and δg).

By Lemma 3.4, making δg smaller if necessary, we see that V ′g = g−ng(Ug) ⊂ Ωb/2(Kf )
for all f ∈ K ∩ AV ′g (g, δg).

By Lemma 3.5, each set K ∩ AV ′g (g, δg/2) is open in K. Since K is compact, there

exists a finite set {gi : i = 1, . . . , l} such that

K ⊂
l
⋃

i=1

AV ′gi
(gi, δgi/2) .

Thus we can set

V =
{

V ′gi : i = 1, . . . , l
}

, δ = min
i=1,...,l

{δgi/2} and ν = min
i=1,...,l

{νgi} .

Therefore, since K is totally disconnected, there exists a locally constant map K 3 g 7→
Vg ∈ V so that properties (i), (ii) and (iii) are satisfied. ¤

We are now in a position to define the skew-product renormalization operator. This is
accomplished in our next lemma. Let us define first its range and domain, respectively,
as follows

E =
{

(g, f) : g ∈ K and f ∈ AVg

}

E(δ) =
{

(g, f) ∈ E : f ∈ AVg(g, δ)
}

.

Note that by Lemma 3.6 (i), the inclusion kg : AVg → AΩa is a well-defined compact
linear operator. By (3.2) and Lemma 3.6 (i) we also have

VRN (g) ⊂ Ωb/2(KRN (g)) ⊂ Ωb(KRN (g)) ⊂ Ug,N .

Therefore the inclusion jg,N : AUg,N → AV
RN (g)

is also a well-defined compact linear

operator.
We may fix once and for all a > 0 so small that Ωa ⊂ Vg for every g ∈ K (this is

possible because V in Lemma 3.6 is a finite set).

Lemma 3.7. Let δ > 0 and Vg ∈ V be as in Lemma 3.6. Let N = N(a) > 0, Tg,N and
T : OΩa → AΩa be as in Lemma 3.2.

(i) For every g ∈ K, the operator Tg : AΩa(g, δ) → AV
RN (g)

given by

Tg = jg,N ◦ Tg,N is real analytic with a compact derivative.
(ii) The skew-product renormalization operator S : E(δ) → E given by
S(g, f) = (T (g), Sg(f)), where Sg(f) = Tg ◦ kg(f) : AVg → AVT (g) , is
well-defined. Furthermore,

(3.3) kT (g) ◦ Sg(f) = T ◦ kg .
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Proof. The proof is similar to the proof of Lemma 3.2 (ii). ¤

3.5. Hyperbolicity of the renormalization operator. The purpose of this section
is to show that K is a hyperbolic basic set for the operator T : OΩa → AΩa . This will
follow from the fact (Lemma 3.8 below) that the skew-product renormalization operator
has fiberwise real analytic stable manifolds and fiberwise one dimensional real analytic
unstable manifolds.

We start by noting that our skew-product operator satisfies the conditions W1-W4
in page 395 of Lyubich [20] in the real analytic case. Namely, we have

W1. The conformal modulus of each g ∈ K is larger than an uniform constant µ > 0.
W2. There exists η > 0 such that if distK(f, g) < η for some f, g ∈ K, then AVf = AVg .
W3. There exists δ > 0 such that Sg(AVg(g, δ)) ⊆ AVT (g) .

W4. The vertical fibers Zg (consisting of those normalized symmetric quadratic-like
germs whose external class is the same as that of g) sit locally in AVg for each
g ∈ K.

Condition W1 is satisfied because of the complex bounds (Theorem 3.1). Condition
W2 follows from Lemma 3.6. Condition W3 holds by the construction of Sg in Lemma
3.7. Condition W4 is a consequence of Lemma 3.6 (iii).

Now we have the following result.

Lemma 3.8. The skew-product renormalization operator S : E(δ) → E defined in
Lemma 3.7 is fiberwise hyperbolic. Moreover

(i) The local stable set W s
δ (g) of S at g is a co-dimension one submanifold

of AVg which is relatively open in H(g)∩AVg(g, δ), and W
s
δ (g) is tangent

to Es
g at g.

(ii) The local unstable set W u
δ (g) ⊂ AVg of S at g is a one-dimensional

real analytic manifold and {g}×W u
δ (g) varying continuously with g ∈ A

in E.

Proof. Since the operator S satisfies Lyubich’s conditions W1-W4 stated above, part (i)
follows from Theorem 8.2 in page 392 of [20] and Theorem 3.3, and part (ii) follows from
Theorem 8.8 in page 398 of Lyubich’s paper [20]. ¤

Theorem 3.9. Let T : OΩa → AΩa be the real analytic operator defined in Lemma 3.7.
Then there is a continuous, DT -invariant splitting AΩa = Es

g

⊕

Eug , for g ∈ K, such
that if vu ∈ Eu

g and vs ∈ Es
g then

‖DTn(g)vu‖AΩa
≥ C−1θ−n‖vs‖AΩa(3.4)

‖DTn(g)vs‖AΩa
≤ Cθn‖vs‖AΩa ,(3.5)

where C > 1 and 0 < θ < 1 are uniform constants on g.

Proof. Since for every g ∈ K the map kg : AVg → AΩa is linear and injective, it follows
from Lemma 3.8 (ii) that Zug = kg(W

u
δ (g)) is a real analytic one dimensional manifold

varying continuously with g. Let wg be the unitary vector tangent to W u
δ (g) at g. Then

vg = kg(wg) is a vector tangent to Zug at g and also varies continuously with g. Since kg
and kT (g) are linear maps we see from (3.3) that if λg is such that DSg(g)wg = λgwT (g)
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then DT (g)vg = λgvT (g). Thus a natural candidate for Eu
g is the one dimensional linear

subspace generated by vg. In particular, (3.4) is satisfied.
Let us find the natural candidate for Es

g . We have that DTg(g)vg = wT (g) and by
hypothesis wT (g) is transversal to the tangent space of W s

δ (T (g)). Thus, by the implicit

function theorem Zsg = T−1g (W s
δ (Tg)) is a codimension one manifold transversal to Zug .

Taking Es
g equal to the tangent space of Zsg , we obtain that Es

g

⊕

Eug = AΩa . By (3.3),
we have that a neighborhood of T (g) intersected with ZuT (g) is contained in T (Zug ) and

a neighborhood of T (g) intersected with T (Zsg) is contained in ZsT (g), which implies

that the spliting Es
g

⊕

Eug is invariant under DT . ¿From assertion (i) in Lemma 3.8,
we obtain that Es

g varies continuously with g and so the spliting Es
g

⊕

Eug also varies
continuously with g.

Finally, let M > 0 be such that ‖DTg(g)‖AΩa ≤M and note that ‖kg‖AΩa ≤ 1 for all
g ∈ K. For all vs ∈ Es

g with unit norm, let us = DTg(g)v
s ∈ AVT (g) . By Lemma 3.8 (i),

we have

‖DTn(g)vs‖AΩa = ‖kTn(g) ◦DSTn−1(g)(T
n−1(g)) ◦ . . . ◦DST (g)(T (g))u

s‖AΩa

≤ ‖DSTn−1(g)(T
n−1(g)) ◦ . . . ◦DST (g)(T (g))u

s‖AVTn(g)

≤ CMλn−1 ,

which shows that (3.5) is satisfied. This completes the proof. ¤

With the above results, we have therefore established Theorem 2.4, to the effect that
a suitable power of the renormalization operator is indeed hyperbolic in a suitable (real)
Banach space of real analytic mappings. From now on, we shall concentrate on the
problem of extending such hyperbolicity to larger ambient spaces of smooth mappings.
Our journey will take us far into the wilderness of non-linear functional analysis.

4. Extending invariant splittings

In this section we prove a certain result from functional analysis (Theorem 4.1 below)
that is absolutely crucial for the stable manifold theorem that we shall prove later. This
result deals with the notion of compatibility presented below and is a strong generaliza-
tion of a key idea of Davie in [5]. In §5, we shall use the results presented here to show
that the invariant splitting for the renormalization operator T in AΩa of §3 extends to
an invariant splitting for the action of T in the larger spaces Ar of Cr maps.

4.1. Compatibility. We are interested in the answer to the following question. Given a
smooth operator T : O → A having a hyperbolic basic set K, and given a larger ambient
space B ⊇ A to which T extends continuously (but not necessarily smoothly), under
which conditions does K have a hyperbolic structure in B? To give a precise meaning
to this question (and then answer it!) we introduce the following notion.

We have a natural continuous map L : K → L(A,A) given by

K 3 x 7→ Lx : A → A

Lx(v) = DT (x) v .
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We will also assume that for every x ∈ K, Eu
x is a one-dimensional subspace and that we

can chose a unit vector ux ∈ E
u
x varying continuously with x so that Lx(ux) = δx ·uT (x)

with δx > 0. In the case of the renormalization operator there is a natural choice for
the vectors ux: choose the unit vector pointing in the direction of increasing topological
entropy.

For every x ∈ K, we denote DT n(x) = LTn−1(x) ◦ · · · ◦ Lx by L
(n)
x and δTn−1(x) · · · δx

by δ
(n)
x . By hyperbolicity of K, there exist C0 > 0 and λ > 1 such that for every x ∈ K

and every n ≥ 1 we have

(4.1) δ(n)x > C0λ
n .

We recall that X (r) denotes the open ball in the Banach space X centered at the
origin and with radius r > 0.

Definition 4.1. Let θ < ρ < λ where θ is the contraction exponent of the hyperbolic
basic set K of the operator T and λ is as in (4.1). The pair (B, C) is ρ-compatible with
(T,K) if the following conditions are satisfied.

A1. The inclusions A → B → C are compact operators.
A2. There exists M > 0 such that each linear operator Lx = DT (g)

extends to a linear operator L̂x : C → C with
∥

∥

∥
L̂x

∥

∥

∥

C
< M

L̂x(B) ⊂ B
∥

∥

∥
L̂x(v)

∥

∥

∥

B
< M‖v‖B

A3. L̃ : K → L(B, C) given by L̃x = L̂x|B is continuous.
A4. There exists ∆ > 1 such that B(∆) ∩ A is C-dense in B(1).
A5. There exist K > 1 and a positive integer m such that

∥

∥

∥
L̂(m)x (v)

∥

∥

∥

B
≤ max

{

ρm

2(1 + ∆)
‖v‖B,K‖v‖C

}

.

Remark 4.1. Note that neither the map L̂ : K × C → K × C given by L̂(x, v) =

(T (x), L̂x(v)) nor its restriction from K× B to K× B are necessarily continuous.

Example 4.1. As we know from Theorem 2.4, K is a hyperbolic basic set of the renor-
malization operator T = RN : O → A. In §5 (see Theorem 5.1), we will show that
the pair (Ar,A0) is ρ-compatible for r sufficiently close to 2 and 1-compatible for r > 2
non-integer.

Let πux : A → Eu
x and πsx : A → Es

x be the canonical projections. We define Px =
πuT (x) ◦ Lx and Qx = πsT (x) ◦ Lx which have the property that Lx = Px + Qx and

that PT (x)Qx = QT (x)Px = 0. We also define the linear functional σx : A → R by
Px(v) = δxσx(v)uT (x). We note that the map σ : K → L(A,R) which associates to each
x the linear functional σx is continuous.
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Theorem 4.1. If (B, C) is ρ-compatible with (T,K) then each stable functional σx ex-
tends to a unique linear functional σ̂x ∈ B

∗ satisfying

(4.2)
∥

∥

∥
L̂(n)x (v)− δ(n)x σ̂x(v)uTn(x)

∥

∥

∥

B
≤ C ′θ̂n‖v‖B

for some C ′ > 0 and 0 < θ̂ < ρ. Furthermore, the map σ̂ : K → L(B,R) which associates
to each x the linear functional σ̂x is continuous.

Proof. Let m and M be as given in Definition 4.1. Since by property A4 the C-closure
of B(1) is compact, and since A ∩ B(∆) is C-dense in B(1) we can find a finite set

Φ = {vs : 1 ≤ s ≤ N} ⊆ A ∩ B(∆)

such that for all w ∈ B(1) there exists 1 ≤ s ≤ N such that

‖w − vs‖C <
ρm

4K
.

Now let v ∈ B(1), and let v0 ∈ Φ be such that

‖v − v0‖C <
ρm

2K
.

Since ‖v − v0‖B < 1 + ∆, applying the inequality of property A5 to v − v0 yields
∥

∥

∥L̂(m)x (v − v0)
∥

∥

∥

B
≤ max

{

ρm

2(1 + ∆)
‖v − v0‖B,K‖v − v0‖C

}

< ρm/2 .

Therefore L̂
(m)
x (v) = L̂

(m)
x (v0)+ (ρm/2)w1 for some w1 ∈ B(1). Repeating the argument

with w1 replacing v and proceeding inductively in this fashion, we get after k steps

L̂(km)x (v) =
k−1
∑

j=0

ρjm

2j
L
((k−j)m)

T jm(x)
(vj) +

ρkm

2k
wk

for some wk ∈ B(1) and vj ∈ Φ. Now recall that

L
((k−j)m)

T jm(x)
(vj) = P

((k−j)m)

T jm(x)
(vj) +Q

((k−j)m)

T jm(x)
(vj)

= δ
((k−j)m)

T jm(x)
σT jm(x)(vj)uT km(x) +Q

((k−j)m)

T jm(x)
(vj) .

Hence we can write

L̂(km)x (v) = δ(km)x





k−1
∑

j=0

1

2j
ρjm

δ
(jm)
x

σT jm(x)(vj)



 uT km(x)

+
k−1
∑

j=0

(

ρm

2

)j

Q
((k−j)m)

T jm(x)
(vj) +

ρkm

2k
wk

(4.3)

The first summation in parentheses converges to a limit because
∣

∣

∣δ
(jm)
x

∣

∣

∣ ≥ Cλjm > ρjm

and
{

σT jm(x)(vj)
}

is bounded, as the vj run through finitely many values and
∥

∥σT i(x)

∥

∥ ≤
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M for all i. We therefore define

(4.4) σ̂x(v) = lim
k→∞

k−1
∑

j=0

1

2j
ρjm

δ
(jm)
x

σT jm(x)(vj) .

It will be clear in a moment that this extension of σx is independent of the choices of ap-
proximants vj performed above, linear, continuous, and the unique extension satisfying
(4.2). We know that

∥

∥

∥Q
((k−j)m)

T jm(x)

∥

∥

∥

A
≤ Cθm(k−j)

for all j < k. Thus the second summation plus the last term in (4.3) add up to a vector
with B-norm bounded by

C ′





k−1
∑

j=0

1

2j

(

θ

ρ

)m(k−j)

+
1

2k



 ρkm .

This gives

(4.5)
∥

∥

∥L̂(km)x (v)− δ(km)x σ̂x(v)uT km(x)

∥

∥

∥

B
≤ C ′′(k + 1)βkρkm ,

where β = max{1/2, θ/ρ} < 1. Choosing 0 < θ̂ < ρ so that (k + 1)βk < C ′′′( θ̂ρ)
k/m for

all k, writing n = km + r, using that by property A2 for all x ∈ K and for all v ∈ B
‖L̂x(v)‖B < M‖v‖B, and the above estimates we obtain the desired inequality (4.2).
Let us verify that σ̂x(v) is the unique value satisfying (4.2). In particular, it does not
depend on the choices of approximants vj taken in (4.4). To do this we represent by
σ∗x(v) a value satisfying (4.4), for instance obtained in (4.4) by taking another choice of
approximants in (4.4), and we observe that σ∗x(v) satisfies (4.5). Therefore we have
∥

∥

∥σ̂x(v)uT km(x) − σ
∗
x(v)uT km(x)

∥

∥

∥

B

≤

∥

∥

∥

∥

σ̂x(v)ukm −
(

δ(km)x

)−1
L̂(km)x (v)

∥

∥

∥

∥

B

+

∥

∥

∥

∥

(

δ(km)x

)−1
L̂(km)x (v)− σ∗x(v)uT km(x)

∥

∥

∥

∥

B

≤ 2C ′θ̂km
(

δ(km)x

)−1
.

Letting k → ∞ in this inequality we deduce that σ̂x(v) = σ∗x(v). A similar argument
shows that σ̂x is linear. Using inequality (4.5) with k = 1, we obtain that ‖σ̂x‖B is
bounded, and so σ̂x is continuous. ¤

Corollary 4.2. Let (B, C) be ρ-compatible with (T,A). Let the linear functional σ̂x ∈ B
∗

be the extension of the stable functional σx satisfying inequality 4.2 for all x ∈ K. Then,
there exists a continuous splitting B = Êsx

⊕

Êux with the following properties:

(i) Êux is the inclusion in B of the unstable linear space Eu
x ⊂ A (see

condition (iii) of Definition 2.1);

(ii) Êsx = Ker(σ̂x);

(iii) the splitting is invariant by L̂x;
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(iv) there exist a constant C > 0 such that
∥

∥

∥L̂mx (v)
∥

∥

∥

B
≥ Cλm‖v‖B

for all x ∈ K, for all v ∈ Êux , and for all m ∈ N (where λ > 1 is the
same as in (4.1));

(v) there exist constants C > 0 and 0 < θ̂ < ρ < λ such that
∥

∥

∥
L̂mx (v)

∥

∥

∥

B
≤ Cθ̂m‖v‖B

for all x ∈ K, for all v ∈ Êsx, and for all m ∈ N. In particular, if ρ ≤ 1

then θ̂ < 1.
(vi) Let π̂sx : B → Êsx and π̂ux : B → Êux be the natural projections such
that

π̂sx ◦ π̂
s
x = π̂sx, π̂

u
x ◦ π̂

u
x = π̂ux and π̂sx ◦ π̂

u
x = π̂ux ◦ π̂

s
x = 0 .

Let us define the operators Q̂x : B → B and P̂x : B → B by Q̂mx = L̂mx ◦ π̂
s
x

and by P̂mx = L̂◦xπ̂
u
x . Then, there exists C > 1 such that

∥

∥

∥
Q̂mx

∥

∥

∥

B
≤ Cθ̂m

∥

∥

∥P̂m
∥

∥

∥

B
≥ C−1λm

for all x ∈ K and for all m ∈ N.

Proof. First, we observe that for all x ∈ K and for all v ∈ B, we can write v = (v −

σ̂x(v)ux) + σ̂x(v)ux, where v − σ̂x(v)ux ∈ Ker(σ̂x) and σ̂x(v)ux ∈ Ê
u
x . Since σ̂x(ux) =

1 6= 0, we obtain that B = Êsx
⊕

Êux .
By inequality 4.2, there exists C > 0 such that

(4.6)
∥

∥

∥
L̂(m)x (v)

∥

∥

∥

B
≤ Cθ̂m‖v‖B

for all x ∈ K, for all v ∈ Ker(σ̂x), and for all m ∈ N; if v ∈ B \Ker(σ̂x) then there exists
Cv > 0 such that

∥

∥

∥L̂(m)x (v)
∥

∥

∥

B
≥ Cvλ

m .

Therefore, L̂x(Ker(σ̂x)) ⊂ Ker(σ̂x). Since L(Eu
x) = Eu

T (x) implies that L̂(Êux) = ÊuT (x),

the splitting is invariant by L̂x.
By inequality (4.6), we obtain that property (iv) and the first inequality in property

(vi) are satisfied. Since K is compact and the map K → R+ which associates ‖ux‖B to
each x is continuous, there is C > 1 such that

(4.7) C−1‖v‖A < ‖v‖B < C‖v‖A

for all x ∈ K and for all v ∈ Eu
x . Thus, property (v) and the second inequality in

property (vi) follow from property (iii) in Definition 2.1 and (4.7). ¤
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5. Extending the invariant splitting for renormalization

Our aim in this section is to show that the invariant splitting for the operator T given
by Theorem 2.4, which is an iterate of the renormalization operator, can be extended
to an invariant splitting of the same operator acting in the space of Cr unimodal maps.
Given the abstract results of the previous section, namely Theorem 4.1 and Corollary 4.2,
all we have to do is find the appropriate compatible spaces and the corresponding com-
patibility constants. More precisely, we shall prove the following theorem.

Theorem 5.1. Let T and K be as above, let θ be the contracting exponent of T |K (as
in Theorem 3.9) and let λ be as in (4.1).

(i) For all α > 0 the pair of spaces (A2+α,A0) is 1-compatible with (T,K).
(ii) For all 1 < ρ < λ there exists α > 0 sufficiently small such that
(A2−α,A0) is ρ-compatible with (T,K).

The path towards the proof of this theorem (presented in §5.3) leads us to perform
what amounts to a spectral analysis of the formal derivative of the renormalization
operator, which in turn call for certain estimates on the geometry of the post-critical set
of each map in the limit set of renormalization. We have the following explicit formula
for the derivative Lf = DT (f) of T at f ∈ K.

DT (f)v =
1

λf

p−1
∑

j=0

Df j(fp−j(λfx))v(f
p−j−1(λfx))

+
1

λf
[x(Tf)′(x)− Tf(x)]

p−1
∑

j=0

Df j(fp−j(0))v(fp−j−1(0)) ,

where as before λf = fp(0) for some positive integer p = p(f,N). We observe that the
operator Lf extends naturally to each of the spaces Aγ for γ ≥ 0.

PropertiesA1,A2 andA3 of Definition 4.1 are easily verified in our setting. Property
A4 follows from a general result of Hölder spaces that can be proved via smoothing
operators. Hence, the heart of the matter is verifying property A5. This is where the
geometric scaling properties of the invariant Cantor set of a map in K become important

– see §5.2. We follow Davie’s observation that L
(m)
f is a special sort of operator – what

we call an L-operator – which is amenable to analysis. The verification of the fifth
property (with (B, C) = (Aγ ,A0)) – presented in §5.3 – consists in controlling the norm

of a certain positive linear operator L
(m)
f,γ : A0 → A0 associated to L

(m)
f (see Lemma 5.3).

Using the bounded distortion properties of f ∈ K and the geometry of the invariant set

of f , we show that the exponential growth rate of the C0 norm of L
(m)
f,γ is bounded by

some µ < λ if γ = 2 − α with α > 0 small enough and is bounded by some µ < 1 if
γ = 2 + α with α > 0.

5.1. Hölder norms and L-operators. First we define what we mean by an L-operator,
and to each such operator L we associate another operator Lγ , acting on continuous
functions. Then, we use local Hölder estimates to control the norm of compositions
Lm ◦ · · · ◦ L2 ◦ L1 of L-operators Li by the norm of (Lm ◦ · · · ◦ L2 ◦ L1)γ .

23



Definition 5.1. An L-operator is a bounded linear operator L : Cγ(I) → Cγ(I) that
can be written in the form

Lv(x) =

n
∑

i=1

φi(x)v(ψi(x)),

where φi ∈ C
γ1(I) and ψi ∈ C

γ2(I) are maps such that ψi(I) ⊂ I for i = 1, . . . , n, and
where γ1 > 0 and γ2 ≥ 1 are such that 0 < γ < γ1, γ2.

Example 5.1. For all f ∈ K and all i ≥ 0, the formal derivative Lf = DT (T i(f)) is
an L-operator.

An L-operator L as above yields a positive, bounded linear operator Lγ : C0(I) →
C0(I) defined by

Lγv(x) =
n
∑

i=1

|φi(x)‖Dψi(x)|
γv(ψi(x)) .

A straightforward computation yields the following result.

Lemma 5.2. If L1, L2 : C
γ(I)→ Cγ(I) are L-operators, then (L1 ◦ L2)γ = L1,γ ◦ L2,γ.

We remind the reader that a function ϕ : I → I is α-Hölder continuous, for a fixed
0 < α < 1, if there is c > 0 such that |ϕ(x) − ϕ(y)| ≤ c|x − y|α for all x, y ∈ I. Let
Cα(I) be the Banach space of all α-Hölder continuous real functions on I, with norm

‖ϕ‖α = max

{

‖ϕ‖0 , sup
x6=y

|ϕ(x)− ϕ(y)|

|x− y|α

}

.

Let Ck+α(I) be the Banach space of all real functions on I for which the k-th derivative
is α-Hölder continuous, with norm

‖ϕ‖k+α = max{‖ϕ‖0, ‖D
kϕ‖α}.

Lemma 5.3. Let Li : C
γ(I) → Cγ(I) be a sequence of L-operators, and assume that

there exist constants µ > 0 and C > 0 such that for all n we have

(5.1) ‖(Ln ◦ · · · ◦ L2 ◦ L1)γ‖0 ≤ Cµn .

Then for all ρ > µ and all ε > 0 there exist m > 0 and K > 0 such that for all v ∈ Cγ(I)
we have

‖Lm ◦ · · · ◦ L2 ◦ L1(v)‖γ ≤ max {ερm‖v‖γ ,K‖v‖0} .

To prove the above proposition, we will use local Hölder estimates for L-operators
given in our next lemma. For each η > 0 and each ϕ ∈ Cα(I), we consider an associated
semi-norm

‖ϕ‖α,η = sup
0<|x−y|<η

|ϕ(x)− ϕ(y)|

|x− y|α
.

The corresponding semi-norm of ϕ ∈ Ck+α(I) for k > 0 is ‖ϕ‖k+α,η = ‖ϕ
(k)‖α,η.

Lemma 5.4. Let L : Cγ(I)→ Cγ(I) be an L-operator as defined above.
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(i) For every ε > 0, there exists η > 0 such that

‖Lv‖γ,η ≤ (ε+ ‖Lγ‖C0(I))‖v‖γ .

(ii) For every ε > 0 and 0 < ξ < γ, there is η > 0 such that

‖Lv‖ξ,η ≤ ε‖v‖γ .

Proof. See Lemmas 1 and 2 in [5]. ¤

Proof of Lemma 5.3. Choosing m such that Cµm < ερm/8, we have

M = ‖Lm,γ ◦ · · · ◦ L1,γ‖0 <
ερm

8
.

By Lemma 5.4, given ε′ = ερm/8, there exists η > 0 such that

‖Lm ◦ · · · ◦ L1(v)‖γ,η ≤
(

ε′ +M
)

‖v‖γ ≤
ερm

4
‖v‖γ .

Taking K = 8k!‖Lm ◦ · · · ◦ L1‖0/η
γ , writing γ = k + α, where k is an integer and

0 < α < 1, and using interpolation of norms (see Lemma 4 in [5]), we deduce that

‖Lm ◦ · · · ◦ L1(v)‖γ ≤ 4max

{

‖Lm ◦ · · · ◦ L1(v)‖γ,η ,
2k!

ηγ
‖Lm ◦ · · · ◦ L1(v)‖0

}

≤ max {ερm‖v‖γ ,K‖v‖0} . ¤

5.2. Bounded geometry. Our aim in this section is to prove two crucial propositions
concerning the geometry of the invariant Cantor set of an infinitely renormalizable map
in the limit set of renormalization. They are important not only in the proof of Theorem
5.1, but also in the proof (presented in §8) that the renormalization operator is robust
(in the sense of §6).

We recall our notation. For each f ∈ K, let If ⊆ I be the closure of the postcritical
set of f (the Cantor attractor of f). For each k ≥ 0, we can write

Rkf(x) =
1

λk
· fpk(λkx)

where pk =
∏k−1
i=0 p(R

if) and λk =
∏k−1
i=0 λ(R

if). Recall that the renormalization
intervals ∆0,k = [−|λk|, |λk|] ⊂ [−1, 1], and ∆i,k = f i(∆0,k) for i = 0, 1, . . . , pk − 1. The
collection Ck = {∆0,k, . . . ,∆pk−1,k} consists of pairwise disjoint intervals. Moreover,
⋃

{∆ : ∆ ∈ Ck+1} ⊆
⋃

{∆ : ∆ ∈ Ck} for all k ≥ 0 and we have

If =
∞
⋂

k=0

pk−1
⋃

i=0

∆i,k .

In our first proposition, f is a normalized, symmetric quadratic unimodal map, infin-
itely renormalizable, sufficiently smooth (say C2) for Sullivan’s real bounds to be true
for f . But there are no restrictions on the combinatorics. We shall use the general
fact, due to Guckenheimer [12], that among those renormalization intervals at the k-th
level the one that contains the critical point of f (namely, ∆0,k) is the largest (up to
multiplication by a constant). This can be seen as follows. First suppose that f is also
S-unimodal. If n > 0 is such that fn(x) belongs to the interval with endpoints −x, x
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but f j(x) does not, for all 1 ≤ j < n, then |Dfn(x)| > 1 – this uses the fact that f has
negative Schwarzian. From this it follows that if J ⊂ [−1, 1] is an interval that does not
contain the critical point, whose iterates f j(J) are pairwise disjoint for 0 ≤ j ≤ n, such
that fn(J) lies in the convex-hull of J union its symmetric while the previous iterates
f j(J), 1 ≤ j < n, do not, then |fn(J)| > |J |. Hence, if f is renormalizable, symmetric
and S-unimodal then at each renormalization level the interval that contains the critical
point is the largest. If we drop the negative Schwarzian hypothesis, the same is true up
to a multiplicative constant. This is because every sufficiently deep renormalization of
f already has negative Schwarzian derivative.

Proposition 5.5. For each α > 0 there exist constants C0 and 0 < µ < 1 such that

(5.2)

pk−1
∑

i=0

|∆i,k|
2+α

|∆i+1,k|
≤ C0µ

k .

Proof. Let `(∆i,k) be the level of ∆i,k, i.e., the largest integer j such that ∆i,k ⊆ ∆0,j \
∆0,j+1. Let di,k be the distance from ∆i,k to zero (the critical point). Using that ∆i,k has
space around itself we see that for all i 6= 0 and all x ∈ ∆i,k we have di,k ≤ |x| ≤ Kdi,k,
where K > 1 is a constant that depends only on the real bounds. Hence K−1 ≤ |x|/|y| ≤
K whenever x, y ∈ ∆i,k. These facts are implicitly used in the estimates below.

Now, we have |∆i,k|/|∆i+1,k| = 1/|f ′(xi,k)| for some xi,k ∈ ∆i,k. Since the critical
point is quadratic, we have |f ′(xi,k)| ≥ C1|xi,k|. Therefore, for all 0 ≤ j ≤ k− 1 we have

∑

`(∆i,k)=j

|∆i,k|
2

|∆i+1,k|
≤ C−11

∑

`(∆i,k)=j

|∆i,k|

|xi,k|
≤ C2

∑

`(∆i,k)=j

∫

∆i,k

dx

|x|

≤ C3

∫

∆0,j\∆0,j+1

dx

|x|
≤ C4 log

|∆0,j |

|∆0,j+1|
.

With these estimates, and using the fact proved above that |∆0,k| ≥ C5|∆i,k| for all
0 ≤ i ≤ pk − 1, we see that

pk−1
∑

i=0

|∆i,k|
2+α

|∆i+1,k|
≤ C4max |∆i,k|

α
k−1
∑

j=0

log
|∆0,j |

|∆0,j+1|

≤ C6|∆0,k|
α log

1

|∆0,k|
≤
C7
α
|∆0,k|

α/2 .

This proves (5.2) because |∆0,k| decays exponentially with k with uniform rate depending
only on the real bounds. ¤

In addition to Proposition 5.5 – valid for maps with arbitrary combinatorial type –
we shall need also an estimate that seems specific of maps with bounded combinatorial
type, namely Proposition 5.8 below. First, a couple of lemmas.

For each f ∈ K, let df be the infimum of all positive numbers s such that

pk−1
∑

j=0

|∆j,k|
s → 0 as k →∞ .
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It is possible to prove, using some thermodynamic formalism, that df agrees with the
Hausdorff dimension of If , but we will not need this fact. Let 0 < D < 1 be the
supremum of df as f ranges through K.

Lemma 5.6. For each s > D there exist Cs > 0 and 0 < ηs < 1 such that for all f ∈ K
we have

pk−1
∑

j=0

|∆j,k|
s < Csη

k
s .

Proof. Apply bounded geometry and the compactness of K. ¤

Next, let us define

Sj,k(f ; s) =
∑

`(∆i,k)=j

|∆i,k|
s ,

for j = 0, 1, . . . , k − 1, all k ≥ 0, and all f ∈ K.

Lemma 5.7. For each s > D we have Sj,k(f ; s) ≤ Csλ
s
jη
k−j
s , where Cs > 0 and

0 < ηs < 1 are the constants of Lemma 5.6.

Proof. Using renormalization, we see that Sj,k(f ; s) = λsjS0,k−j(R
j(f); s). ¿From Lemma

5.6, we know that
S0,k−j(R

j(f); s) ≤ Csη
k−j
s .

The result follows. ¤

Proposition 5.8. For each µ > 1 there exist 0 < α < 1 −D close to zero and C > 0
such that

(5.3)

pk−1
∑

i=0

|∆i,k|
2−α

|∆i+1,k|
≤ Cµk .

Proof. We have

pk−1
∑

i=0

|∆i,k|
2−α

|∆i+1,k|
=

pk−1
∑

i=0

|∆i,k|

|∆i+1,k|
|∆i,k|

1−α ≤ C
k−1
∑

j=0

λ−1j Sj,k(f ; 1− α) .

If 1− α > D then, applying Lemma 5.7 with s = 1− α, we get

pk−1
∑

i=0

|∆i,k|
2−α

|∆i+1,k|
≤ CC1−α

k−1
∑

j=0

λ−αj ηk−j1−α ≤ C ′λk∗ ,

where C ′ > 0 depends on α and λ∗ = max{λ(f)−α : f ∈ K}. But if α is small enough
we will have λ∗ < µ, and this completes the proof. ¤

Remark 5.1. By a continuity argument and the real bounds, we can prove that proposi-
tions 5.5 and 5.8, stated for maps f ∈ K, remain true for maps f̃ ∈ U 2 sufficiently close
to f in the C2 topology. More precisely, for each k > 0 there exists εk > 0 such that for

all f ∈ K and all f̃ ∈ U2 with
∥

∥

∥
f̃ − f

∥

∥

∥

C2(I)
< εk, the map f̃ is k-times renormalizable,

and the statements of both propositions hold for f̃ . This will be used in §8.4.
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5.3. Spectral estimates. In this section we prove Theorem 5.1.
Fixing f ∈ K and considering the Banach space A given by Theorem 2.4, we recall

that the Fréchet derivative Lf = DT (f) : A → A is given by formula (5.1). It is clear

from that formula that Lf extends to a bounded linear operator L̂f : A0 → A0, and
moreover L̂f (As) ⊆ As for all s ≥ 0 (because f is analytic).

We want to verify the compatibility properties of Definition 4.1 for the spaces B = As

and C = A0 when s is close to (but different from) 2. Properties A1, A2 and A3 are
clearly satisfied. In order to check property A4, all we need is the following property of
Hölder spaces (see [15]).

Lemma 5.9. There exists ∆ > 1 such that A ∩ As(∆) is C0-dense in As(1).

Proof. Let St, t > 0 be a family of smoothing operators. Given v ∈ As(1),we have by
Theorem A.10 in [15] that ‖Stv‖Cs ≤ C and also ‖v − St(v)‖C0 ≤ Cts, where C ≥ 1
is a uniform constant. Take an integer k > s. Since St(v) is Ck and A is dense in
Ck (by the Stone-Weierstrass theorem), for all small 0 < ε < C there is wt ∈ A such
that ‖wt − St(v)‖Ck < ε. Thus ‖wt‖Cs < ‖St(v)‖Cs + ε < 2C on one hand, while
‖wt− v‖C0 < ε+Cts on the other hand. For t small enough, this gives ‖wt− v‖C0 < 2ε
with wt ∈ As(2C). ¤

Hence all that remains is to check that property A5 is satisfied. By Lemma 5.3, this

will be the case provided we can control the C0 norms of L̂
(m)
f,s . We shall prove this now,

with the help of Propositions 5.5 and 5.8.

Recall that for each m ≥ 1 the operator L̂
(m)
f is an L-operator and its associated

positive, bounded linear operator L̂
(m)
f,s : A0 → A0 is given by

L̂
(m)
f,s (v) =

1

λk

pk−1
∑

j=0

|Df j(fpk−j(λkx))||λkDf
pk−j−1(λkx)|

sv(fpk−j−1(λkx)) ,

where k = mN . Now we have the following fact coming from bounded geometry

(5.4) |Df j(fpk−j(λkx))| ³
|∆0,k|

|∆pk−j,k|
,

for all 0 ≤ j ≤ pk − 1. Since |Df(λkx)| ≤ Cλk for some constant C > 0 independent of
k and uniform in f ∈ K, and |∆0,k| = 2λk we have

|Dfpk−j−1(λkx)| ≤ C|∆0,k||Df
pk−j−2(f(λkx))| .

Again, by bounded geometry, for all 0 ≤ j ≤ pk − 2

|Dfpk−j−2(f(λkx))| ³
|∆pk−j−1,k|

|∆1,k|
,

and so

(5.5) |Dfpk−j−1(λkx)| ≤ C|∆0,k|
|∆pk−j−1,k|

|∆1,k|
.
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Using (5.4) and (5.5) in (5.4), we see that

‖L̂
(m)
f,s ‖ ≤

C

λk





λsk|∆0,k|

|∆1,k|
+

pk−2
∑

j=0

λ2sk
|∆0,k|

|∆pk−j,k|

|∆pk−j−1,k|
s

|∆1,k|s



 .

But |∆0,k| = 2λk and since the critical point of f is quadratic, |∆1,k| ³ |∆0,k|
2 ³ λ2k.

Therefore, we arrive at

(5.6) ‖L̂
(m)
f,s ‖ ≤ C1

pk−1
∑

j=0

|∆pk−j−1,k|
s

|∆pk−j,k|
.

The proof of part (i) of Theorem 5.1 now follows from Proposition 5.5, while the proof
of part (ii) is a consequence of Proposition 5.8. This ends the proof of Theorem 5.1.

6. The local stable manifold theorem

In this section we isolate those features of the renormalization operator that are
essential for the promotion of “hyperbolicity” from the Banach space A of Theorem
2.4 to the space Ur. This leads us to the definition of a robust operator (see §6.1).
Such definition is necessarily rather technical, since it has to account for the fact that
the renormalization operator is not Fréchet differentiable in Ur. In particular a robust
operator acts simultaneously on four different Banach spaces (corresponding in the case
of renormalization to the space A given by Theorem 2.4, Ur, Us and U0, where r > 1+s
and s is close to 2), and satisfies several properties. The major goal of this section is to
prove a local stable manifold theorem for robust operators.

6.1. Robust operators. Before moving on to a precise definition of a robust operator,
we give the following informal description. A robust operator acts continuously on four
Banach spaces A ⊂ B ⊂ C ⊂ D, and in the smaller space A it acts smoothly and
has a hyperbolic basic set K. The pair of spaces (B, C) is 1-compatible with (T,K),
and in particular the invariant hyperbolic splitting for K in A extends to an invariant
hyperbolic splitting for K in B. Viewed as a map from B into C, a robust operator is
C1. As an operator in C, it also satisfies a uniform Gateaux differentiability condition
in C for directions in B. Finally, as an operator in B, it is reasonably well-approximated
by the extension of its derivative at a point of K in A to a bounded linear operator in
B. It will take us considerable effort (see §8) to verify that the renormalization operator
indeed satisfies all these conditions.

Let T : O → A be a C2 operator having a compact hyperbolic basic set K. By
standard invariant manifold theory (see [14]), we know that for all g ∈ K the local
unstable manifold W u(g) of T at g exists and is C2. In particular, we can find a C2

parametrization

t 7→ ug(t) ∈W
u(g) ⊆ A

varying continuously with g such that ug = u′g(0) is a unit vector. We define a C2

function t 7→ δ̂g(t) by

T (ug(t)) = uT (g)(δ̂g(t)) .
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This function also varies continuously with g and δ̂g(t) = δgt + O(t2) for some δg > 0.
Recall that by hyperbolicity of K, there exist C0 > 0 and λ > 1 such that for every
g ∈ K and every m ≥ 1 we have

(6.1) δTm−1(g) · · · δg > C0λ
m .

Definition 6.1. Let A ⊆ B ⊆ C ⊆ D be Banach spaces, where each inclusion is a
compact linear operator. For X = A,B, C,D, let OX be an open subset of X , such
that OA ⊆ OB ⊆ OC ⊆ OD. Let K ⊂ OA be a hyperbolic basic set of a C2 operator
T : OA → A. We say that T is robust with respect to (B, C,D) if it has a continuous
extension to an operator T : OD → D that satisfies the following conditions.

B1. We have T (OD ∩ X ) ⊂ X for X = B, C.
B2. The pair (B,D) is 1-compatible with T , while the pair (C,D) is ρC-
compatible with T for some ρC < λ (where λ is as in (6.1)).

B3. For each m > 0, let O
(m)
B = {f ∈ OB : T i(f) ∈ OB, ∀i < m}. Then

Tm : O
(m)
B → C is C1 and its derivative is uniformly continuous in some

neighbourhood of K. Furthermore, for all f ∈ A ∩O
(n)
B the linear map

DTm(f) : B → C

extends to a continuous linear operator Lm : D → D that satisfies
Lm(X ) ⊆ X , for X = B, C.
B4. Furthermore, for every m there exists Cm,1 > 1 with the property
that for each g ∈ K there is an open set Vg ⊆ OB containing g such that
for all f ∈ Vg we have

‖DTm(f)ug −DT
m(g)ug‖C ≤ Cm,1‖f − g‖B .

B5. There exist C1 > 1 and ρ > 1 with the property that for each g ∈ K
there is an open set Vg ⊆ OB containing g such that for all f1, f2 ∈ Vg
we have

‖T (f1)− T (f2)−DT (f2)(f1 − f2)‖C ≤ C1‖f1 − f2‖
ρ
C .

B6. For all m > 0, there exists Cm,2 > 0, and there exists νm > 0 such
that for all g ∈ K and for all f ∈ B with ‖f − g‖B < νm we have

‖DTm(f)−DTm(g)‖C ≤ Cm,2λ
m .

Moreover, there exists m0 > 0 such that for all m > m0 we have Cm,2 <
C0/8 (where C0 and λ are as in (6.1)).
B7. For all m > 0, there exists Cm,3 > 0 such that for all g ∈ K, for all
f ∈ A with ‖f − g‖A < νm and for all v ∈ B with ‖v‖B < νm, we have

‖Tm(f + v)− Tm(f)−DTm(g)v‖B ≤ Cm,3‖v‖B .

Moreover, there exists m0 > 0 such that for all m > m0 we have Cm,3 <
1/4.

Example 6.1. As one might expect, the main example of a robust operator is provided
by renormalization. We know from Theorem 2.4 that the renormalization operator T =
RN : O → A is hyperbolic over K. We also know that T extends continuously to a map
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from an open set of Uγ into Uγ ⊂ 1+Aγ ∼= Aγ for all γ ≥ 0. We will show in §8 that T
is robust with respect to the spaces A = A, B = Ar, C = As and D = A0 whenever s < 2
is close to 2 and r > s+ 1 is not an integer.

6.2. Stable manifolds for robust operators. We can now formulate a general local
stable manifold theorem for robust operators.

Theorem 6.1. Let T : OA → A be a Ck with k ≥ 2 (or real analytic) hyperbolic
operator over K ⊂ OA, and robust with respect to (B, C,D). Then conditions (i), (ii),
(iii) and (iv) of Theorem 2.3 hold true for the operator T acting on B. The local unstable
manifolds are Ck with k ≥ 2 (or real analytic) curves, and the local stable manifolds are
of class C1 and form a C0 lamination.

The proof of this theorem will occupy the rest of §6. In the end, the theorem will
follow by putting together Corollary 4.2, Proposition 6.13 and Theorem 6.15.

6.3. Uniform bounds. Before proceeding we prove the following simple bounds that
we will use quite often.

Lemma 6.2. There exist µ0 > 0 and 1 < λ < M such that for all g ∈ K and all t ∈ R
with |t| < µ0, ug(t) and δ̂g(t) are well-defined and

(i) M−1λn < δTn−1(g) · · · δg < Mn and
∣

∣

∣
δ̂g(t)

∣

∣

∣
< M |t|;

(ii) M−1 < ‖ug‖B < M and M−1 < ‖ug‖C < M ;
(iii) M−1|t| < ‖ug(t)− g‖C < M |t| and M−1|t| < ‖ug(t)− g‖B < M |t|;
(iv) M−1 < ‖σg‖B < M and M−1 < ‖σg‖C < M ;

(v) |σg (ug(t)− g)| >
1
2 |t|.

Proof. By Definition 2.1 and (6.1), there exist 1 < λ < M1 such that for all g ∈ K

and all n ≥ 1 we have M−1
1 λn < δTn−1(g) · · · δg < Mn

1 and also
∣

∣

∣
δ̂g(t)

∣

∣

∣
< M1|t| for all

|t| ≤ µ1 (where µ1 > 0 is a uniform constant). For X equal to B and C, we have that
g 7→ ug as a map K → X is continuous and does not vanish. Hence, by compactness

of K there is M2 > 1 such that M−1
2 < ‖ug‖X < M2. Since σg(ug) = 1 and by

property B2 in Definition 6.1, the functional σg extends continuously to X and there

is M3 > 1 such that M−1
3 < ‖σg‖X < M3. In addition, since t → ug(t) as a map

R → X is C1 and varies continuously with g ∈ K, there is M4 > 0 and µ2 > 0 such that
‖ug(t)− ug(s)‖X ≤M4|t− s| for all g ∈ K and all |t| < µ2. Finally, since

d

dt
ug(t)

∣

∣

∣

∣

t=0

= ug 6= 0

there exists M5 > 0 and µ3 > 0 such that |t − s| ≤ M5‖ug(t) − ug(s)‖X for all g ∈ K
and all |t| < µ3. ¤

6.4. Contraction towards the unstable manifolds. The one-dimensional unstable
manifolds of T in A are embedded in B, and remain invariant. The first important
estimate given by the following lemma shows that in B the operator T contracts towards
such manifolds. Therefore, if T is to have unstable manifolds in B, these have to coincide
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with unstable manifolds in A. In what follows, we fix g ∈ K and for simplicity of notation
we write

σi = σT i(g), ui = uT i(g), ui = uT i(g), δ
m
i =

m−1
∏

j=i

δT j(g), δ̂
m
i = δ̂Tm−1(g) ◦ · · · ◦ δ̂T i(g) .

Set µ0 > 0 as in Lemma 6.2.

Lemma 6.3. For every m > 0 there exist 0 < ηm < µ0 and Bm > 0 such that for
every g ∈ K and every v ∈ B with ‖v‖B < ηm and t ∈ R with |t| < ηm, we have

δ̂m0 (t+ σ0(v)) < µ0, u0(t) + v ∈ O
(m)
B and

∥

∥

∥Tm(u0(t) + v)− um
(

δ̂m0 (t+ σ0(v))
)∥

∥

∥

B
< Bm‖v‖B .

Furthermore, there is m1 > m0 such that for all m > m1 we have Bm < 1/2.

Proof. We prove the second inequality only. The first is proven in the same way.
By property B7 in Definition 6.1, there is m0 > 0 such that for all m > m0, all v

with ‖v‖B < νm, and all t ∈ R with |t| < νm we have

(6.2) ‖Tm(u0(t) + v)− Tm(u0(t))−DT
m(g)v‖B ≤

1

4
‖v‖B .

By propertyB2 in definition 6.1, (B,D) is 1-compatible with (T,K). Hence, by Corollary
4.2, there exists m1 > m0 such that for all m > m1 we have

(6.3) ‖DTm(g)v − δm0 σ0(v)um‖B ≤
1

8
‖v‖B .

Putting (6.2) and (6.3) together we get

(6.4) ‖Tm(u0(t) + v)− Tm(u0(t))− δ
m
0 σ0(v)um‖B ≤

3

8
‖v‖B .

Now, we know that Tm(u0(t)) = um(δ̂
m
0 (t)) and t→ um ◦ δ̂

m
0 (t) is C2. Hence,

∥

∥

∥
um ◦ δ̂

m
0 (t+ σ0(v))− um ◦ δ̂

m
0 (t)− δm0 σ0(v)um

∥

∥

∥

B
≤ c1

(

(σ0(v))
2 + |t|σ0(v)

)

≤ c2 (‖v‖B + |t|) ‖v‖B .(6.5)

Therefore, choosing ηm < νm so small that C2ηm < 1/16 and putting 6.4 and 6.5
together, we see that if |t| < ηm and ‖v‖B < ηm then

∥

∥

∥
Tm(u0(t) + v)− um ◦ δ̂

m
0 (t+ σ0(v))

∥

∥

∥

B
≤

1

2
‖v‖B

as desired. ¤

Lemma 6.4. Let m1 > 0 be as in Lemma 6.3. For all m > m1 there exist small
constants 0 < ε2 < ε1 < ε0 such that the following holds for every ε < ε2. For every
g ∈ K and every v ∈ B with ‖v‖B < ε, the recursive scheme given by f0 = g+ v, t0 = 0,
v0 = v and

fk+1 = Tm(fk)

tk+1 = δ̂
(k+1)m
km (tk + σkm(vk))

vk+1 = fk+1 − u(k+1)m(tk+1)(6.6)
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is well-defined for all k = 0, . . . , k0 − 1 where k0 = k0(g, f0) = min{j : |tj | ≥ ε1}. For
all k ≤ k0 we have

(6.7)
∥

∥

∥
T km(g + v)− ukm(tk)

∥

∥

∥

B
< 2−k‖v‖B and

∥

∥

∥
T km(g + v)− T km(g)

∥

∥

∥

B
< ε0/M0 ,

where M0 = Mm+2 + B1 + . . .+ Bm, M is as in Lemma 6.2 and B1, . . . , Bm are as in
Lemma 6.3. Furthermore,

(i) ε1 ≤ |tk0 | < ε0;
(ii)

∥

∥T k0m(g + v)− T k0m(g)
∥

∥

B
> ε2.

(iii)
∣

∣σk0m
(

T k0m(g + v)− T k0m(g)
)∣

∣ > ε2;

(iv)
∥

∥T km+i(g + v)− T km+i(g)
∥

∥

B
< M0

∥

∥T km(g + v)− T km(g)
∥

∥

B
(which

is less than ε0) for all k ≤ k0 and all i = 0, . . . ,m.

Proof. For every g ∈ K, let Vε(g) be the open ball in B of radius ε centered at 0. Let us
fix m > m1 and choose ε0 < min{µ0, η1, . . . , ηm} such that all the properties B1 to B7

of Definition 6.1 are satisfied in
⋃

g∈K Vε0(g) ⊂ O
(m)
B , where µ0 is as in Lemma 6.2 and

η1, . . . , ηm are as in Lemma 6.3. Since m > m1, we have that Bm < 1/2 where Bm is as
in Lemma 6.3. Let us take M > 1 as in Lemma 6.2. We choose 0 < ε2 < ε1 < ε0 < µ
such that

ε1 < ε0/
(

3M0M
m+2

)

,

ε2 < ε1/(2 + 2M) .(6.8)

Now we work by induction on k. Let us assume that fk, tk, and vk have been defined so

that (6.7) holds. Hence
∥

∥fk − T
mk(g)

∥

∥

B
≤ ε0 ≤ µ, and so fk ∈ O

(m)
B and fk+1 = Tm(fk)

is well-defined. Since |tk| ≤ ε1 and 2Mm+1ε1 ≤ ε0 ≤ µ, by lemma 6.2 and 6.2, and by
(6.6) and (6.8), we have that tk+1 is well-defined and

|tk+1| =
∣

∣

∣δ̂
(k+1)m
km (tk + σkm(vk))

∣

∣

∣ ≤Mm(|tk|+ |σkm(vk)|)

≤ Mm
(

ε1 +M
ε

2k

)

< 2Mm+1ε1 < ε0 .(6.9)

Thus, by Lemma 6.2, u(k+1)m(tk+1) and vk+1 = fk+1 − u(k+1)m(tk+1) are also well-
defined. By Lemma 6.3 and by (6.6), we get

‖vk+1‖B =
∥

∥Tm(fk)− u(k+1)m(tk+1)
∥

∥

B

=
∥

∥

∥Tm(vk + ukm(tk))− u(k+1)m

(

δ̂
(k+1)m
km (tk + σkm(vk))

)∥

∥

∥

B

≤ 2−1 ‖vk‖B ≤ 2k+1 ‖v0‖B .(6.10)

Now, let us estimate
∥

∥fk+1 − T
(k+1)m(g)

∥

∥

B
. ¿From (6.6) and (6.10), we get

(6.11)
∥

∥fk+1 − u(k+1)m(tk+1)
∥

∥

B
≤ ‖vk+1‖B ≤

ε

2k
.

¿From Lemma 6.2 and by (6.9), we obtain

(6.12)
∥

∥

∥
u(k+1)m(tk+1)− T

(k+1)m(g)
∥

∥

∥

B
≤M |tk+1| ≤ 2Mm+2ε1 .
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Thus, by (6.8), (6.11) and (6.12) we have
∥

∥

∥fk+1 − T
(k+1)m(g)

∥

∥

∥

B
≤

∥

∥fk+1 − u(k+1)m(tk+1)
∥

∥

B

+
∥

∥

∥
u(k+1)m(tk+1)− T

(k+1)m(g)
∥

∥

∥

B

≤
ε

2k
+ 2Mm+2ε1

≤ 3Mm+2ε1 < ε0/M0 .

This completes the induction.
Now, we must prove (i), (ii), (iii) and (iv). Property (i) follows from (6.9). Let us

prove (ii). By property (i) and Lemma 6.2,
∥

∥uk0m(tk0)− T
k0m(g)

∥

∥

B
≥ M−1ε1. By

(6.10), we get ‖vk0‖B ≤ ε/2k0 . Thus, by (6.8), we obtain
∥

∥

∥T k0m(g + v)− T k0m(g)
∥

∥

∥

B
=

∥

∥

∥uk0m(tk0) + vk0 − T
k0m(g)

∥

∥

∥

B

≥
∣

∣

∣

∥

∥

∥
uk0m(tk0)− T

k0m(g)
∥

∥

∥

B
− ‖vk0‖B

∣

∣

∣

≥ M−1ε1 −
ε

2k0
≥ ε2 .

Let us prove (iii). By property (i) and Lemma 6.2, we have
∣

∣σk0m(uk0m(tk0 − T
k0mg))

∣

∣ ≥

ε1/2. By Lemma 6.2 and (6.10), we have |σk0m(vk0)| ≤Mε/2k0 . Thus, by (6.8),we get
∣

∣

∣
σk0m

(

T k0m(g + v)− T k0mg
)∣

∣

∣
≥ | |σk0m(uk0m(tk0))| − |σk0m(vk0)| |

≥
1

2
ε1 −M

ε2
2k0

≥ ε2 .

Finally, let us prove (iv). Fix 0 ≤ k ≤ k0 and 0 ≤ i ≤ m. Setting wk = T km(f)−T km(g)
we have by (6.7) that ‖wk‖B < ε0/M0 < ηi where ηi is as in Lemma 6.3. Hence

T km(g) + wk ∈ O
(i)
B and by Lemma 6.3 we have

∥

∥

∥
T i(T km(g) + wk)− ukm+i

(

δ̂km+ikm (σkm(wk))
)∥

∥

∥

B
≤ Bi‖wk‖B .

On the other hand, by Lemma 6.2, we have
∥

∥

∥
ukm+i

(

δ̂km+ikm (σkm(wk))
)

− T km+i(g)
∥

∥

∥

B
≤Mm+2‖wk‖B .

Therefore,

‖T km+i(f)− T km+i(g)‖B ≤
∥

∥

∥
T i(T km(g) + wk)− ukm+i

(

δ̂km+ikm (σkm(wk))
)∥

∥

∥

B

+‖uj
(

δ̂km+ikm (σkm(wk))
)

− T km+i(g)‖B

≤ (Bi +Mm+2)‖wk‖B ≤ ε0 ,

which ends the proof. ¤
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6.5. Local stable sets. Let us now consider the local stable set W s
ε (g) of T at g in

B which consists of all points f ∈ B(g, ε) such that for all n > 0, we have T n(f) ∈
B(Tn(g), ε) and

‖Tn(f)− Tn(g)‖B → 0 when n→∞ .

Our aim in this section is to give a finite characterization of W s
ε (g) and prove that T

contracts in the B-norm exponentially along W s
ε (g). This is done in Lemma 6.5 below

(see also Remark 6.1).
¿From now on in this section, we let m1 and ε0 > ε1 > ε2 > ε be as in Lemma 6.4.

For all sufficiently small 0 < ε < ε2 and for all f ∈ Vε(g), we let k0 = k0(g, f) and tk =
tk(g, f) for k = 0, . . . , k0 be as in Lemma 6.4. We write Vε(g) = V −ε (g)∪ V 0ε (g)∪ V

+
ε (g)

where

V −ε (g) = {f ∈ Vε(g) : −ε0 < tk0(g, f) < −ε1} ,

V +ε (g) = {f ∈ Vε(g) : ε1 < tk0(g, f) < ε0} ,

V 0ε (g) = Vε(g) \
(

V −ε (g) ∪ V +ε (g)
)

.

Lemma 6.5. There exist an integer m and a positive constant C2 with the following
properties. For all ε > 0 sufficiently small and for all g ∈ K, the sets V −ε (g) and
V +ε (g) are open subsets of Vε(g) (and so V 0ε (g) is relatively closed in Vε(g)), and for all
f ∈ V 0ε (g)

(6.13)
∥

∥T j(f)− T j(g)
∥

∥

B
≤ εC22

−j/m .

Furthermore, the local stable set W s
ε (g) is a relatively open subset of V 0ε (g) and

(6.14) W s
ε (g) =

{

f ∈ V 0ε (g) :
∥

∥T j(f)− T j(g)
∥

∥

B
< ε, for all 0 ≤ j ≤ m logC2/ log 2

}

.

Proof. The first assertion is a consequence of the definitions of V −ε (g) and V +ε (g) and
Lemma 6.4. It follows from property (i) of Lemma 6.4 that

V 0ε (g) = {f ∈ Vε(g) : |tk(g, f)| < ε1, for all k ≥ 0} .

It also follows from property (ii) of Lemma 6.4 that if f ∈ Vε(g) and |tk0(g, f)| ≥ ε1
then

∥

∥T k0mf − T k0mg
∥

∥

B
> ε where k0 = k0(g, f). This shows that W

s
ε (g) ⊂ V 0ε (g), and

therefore (6.13) implies (6.14). Furthermore, W s
ε (g) is a relatively open subset of V 0ε (g).

It remains to show that if f ∈ V 0ε (g) then (6.13) holds. Set 1 < λ < M as in Lemma

6.2. Fixing β > 2, by Lemma 6.2, there ism large enough such that δ
(k+1)m
km ≥M−1λm >

β > 2 for every k ≥ 0. By Lemma 6.4, for all k ≥ 0, we know that tk = tk(g, f) and
vk = vk(g, f) are well-defined, and satisfy |tk| < ε1 and ‖vk‖B ≤ ε2−k. Furthermore,

tk+1 = δ̂
(k+1)m
km (tk + σkm(vk)). Since δ

(k+1)m
km is C2 and ‖σkm‖B < M (see Lemma 6.2),

there is c0 > 1 so that
∣

∣

∣
tk+1 − δ

(k+1)m
km tk

∣

∣

∣
≤

∣

∣

∣
δ̂
(k+1)m
km (tk + σkm(vk))− δ̂

(k+1)m
km (tk)

∣

∣

∣

+
∣

∣

∣δ̂
(k+1)m
km (tk)− δ

(k+1)m
km tk

∣

∣

∣

≤ c0
(

‖vk‖B + |tk|
2
)

≤ c0

(

ε2−k + |tk|
2
)

.
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Hence (6.15) gives us

|tk| ≤ εc0β
−12−k + β−1|tk+1|+ c0β

−1|tk|
2 .

Taking ε (in Lemma 6.4) so small that c0β
−1ε < 1/2, we get

(6.15) |tk| ≤ 2
(

|tk| − c0β
−1|tk|

2
)

≤ ε2c0β
−12−k + 2β−1|tk+1| ,

for all k ≥ 0. Since 2β−1 < 1, using induction in (6.15) and the fact that tk is bounded,
we get |tk| ≤ εc12

−k with c1 = 2c0β
−1/

(

1− 2β−1
)

for all k ≥ 0. Now this estimate
together with Lemma 6.2 gives us

‖ukm(tk)− T
km(g)‖B ≤M |tk| ≤ εc1M2−k .

Hence, using Lemma 6.4 again, we get
∥

∥

∥T km(f)− T km(g)
∥

∥

∥

B
≤ ‖vk‖B +

∥

∥

∥ukm(tk)− T
km(g)

∥

∥

∥

B

≤ ε2−k + εc1M2−k = εc22
−k .

Therefore, by (iv) in Lemma 6.4, for all i ∈ {1, . . . ,m− 1} we have
∥

∥

∥T km+i(f)− T km+i(g)
∥

∥

∥

B
≤M0

∥

∥

∥T km(f)− T km(g)
∥

∥

∥

B
≤ εc32

−k ,

which ends the proof. ¤

Remark 6.1. Note that since the constant C2 is uniform (independent of ε) in the above
Lemma, inequality (6.13) can be improved to

∥

∥T j(f)− T j(g)
∥

∥

B
≤ C ′2−j/m ‖f − g‖B ,

where C ′ = 2C2. Therefore, we have exponential contraction in B (along the local stable
sets) in the strong sense.

6.6. Tangent spaces. Our next goal is to show that V 0ε (g) is a C
1 manifold provided

ε is sufficiently small. The first step towards this goal is to find the natural candidate
for the tangent space at every point f ∈ V 0ε (g). This will be accomplished in Lemma
6.7 below. The proof will require the following elementary bootstrapping result.

Lemma 6.6. Let (an) be a sequence of real numbers such that, for some c0 > 0 and all
n ≥ 1,

(6.16) |an+1| ≤
1

4
|an|+

c0
2n

n−1
∑

j=1

|aj | .

Then |an| ≤ c12
−n for some c1 > 0 and all n ≥ 1.

Proof. We may assume that c0 ≥ 1. Let n0 > 0 be such that c0n0/2
n0 < 1/2, and set

b = max1≤j≤n0{|aj |}. Then we see by induction from (6.16) that |an| ≤ b for all n ≥ 1,
and so

|an+1| ≤
1

4
|an|+

nbc0
2n

≤
1

4
|an|+ bc0

(

3

4

)n

.
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By induction, this gives us |an| ≤ (2bc0)(
3
4)
n for all n ≥ 1. Therefore

∑∞
n=1 |an| ≤ 6bc0,

so using (6.16) once more, we deduce that

|an+1| ≤
1

4
|an|+

6bc20
2n

,

for all n ≥ 1. Again by induction, this gives us |an| ≤ (24bc20)2
−n for all n ≥ 1, which is

the desired result. ¤

Lemma 6.7. There exist an integer m, constants C3, C4 > 0 and ε > 0 small enough
with the following properties. For every g ∈ K and for every f ∈ V 0ε (g) there exists a
linear functional θf,g ∈ C

∗ with norm bounded from above by C3 and with the property
that

(6.17)
∥

∥

∥DT j(f)v − δ
j
0θf,g(v)uj

∥

∥

∥

C
≤ C4δ

j
02
−j/m‖v‖C ,

for all v ∈ C and all j ≥ 1. If g0, g1 ∈ K and f ∈ V 0ε (g1) ∩ V
0
ε (g2) then

θf,g1 |B = θf,g2 |B.

Furthermore, the map Ψ :
⋃

g∈K V
0
ε (g) → B∗ given by Ψ(f) = θf = θf,g|B (where g is

any point of K such that f ∈ V 0ε (g)) is well-defined and uniformly continuous.

Remark 6.2. Condition (6.17) entails that for every g ∈ K, B is the direct sum of the
one dimensional unstable subspace Eu

g with the kernel of θf , i.e. B = Eu
g

⊕

ker(θf ),
provided f is sufficiently close to g. To see this, note that we can write

v = θf (v)(θf (ug))
−1 +

(

v − θf (v)(θf (ug))
−1
)

.

Thus, from the continuity of f 7→ θf plus the fact that θg(ug) 6= 0 it follows that if f
is close to g then ug is transversal to ker(θf ). The hyperplane ker(θf ) is the natural
candidate to be the tangent space of V 0ε (f) at f since it corresponds to all vectors which

expand under DT j(f) by a factor less than δj0.

Proof. Let ε > 0 be small enough such that Lemma 6.5 is satisfied and εC2 < νm
(where νm is as in property B6 in Definition 6.1 and C2 is as in Lemma 6.5). Let

Rk = Rf,k =
(

δkm0
)−1

DTmk(f) and write fk = T km(f), and gk = T km(g) for all k ≥ 0.
Then we have

(6.18) Rk+1(v) =
(

δ
(k+1)m
km

)−1
DTm(fk)Rk(v) .

Let us take v ∈ C with ‖v‖C = 1. We can write Rk(v) = αkukm+wk, where αk ∈ R and
wk ∈ C are defined recursively by α0 = 0, w0 = v and

αk+1 = αk + σkm(wk)

wk+1 = αk

(

δ
(k+1)m
km

)−1
(DTm(fk)−DT

m(gk))ukm

+
(

δ
(k+1)m
km

)−1
(DTm(fk)−DT

m(gk))wk(6.19)

+
(

δ
(k+1)m
km

)−1
Q
(k+1)m−1
km (wk) .
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Now, by Lemma 6.5, we know that

(6.20) ‖fk − gk‖B ≤ εC22
−k .

Since, by property B4 of Definition 6.1, the map f → DTm(f)ukm is Lipschitz at f = gk
(as a map from B to C), we have that for all k large enough

(6.21) ‖DTm(fk)ukm −DT
m(gk)ukm‖C ≤ c1‖fk − gk‖B ≤ c22

−k .

By property B6 in Definition 6.1 and (6.20), for all m large enough we also have

(6.22) ‖DTm(fk)−DT
m(gk)‖C ≤

δ
(k+1)m
km

8
.

Since, by property B2 of Definition 6.1, (C,D) is ρ-compatible with (T,K), by Corollary
4.2, for all m large enough we have

(6.23)
∥

∥

∥
Q
(k+1)m−1
km

∥

∥

∥

C
≤
δ
(k+1)m
km

8
.

Using Lemma 6.2 and putting (6.21), (6.22) and (6.23) in (6.19) we get

‖wk+1‖C ≤
1

4
‖wk‖C + c32

−k|αk|

≤
1

4
‖wk‖C +

c3M

2k

k−1
∑

j=0

‖wj‖C .(6.24)

¿From (6.24) and Lemma 6.6, we deduce that ‖wk‖C < c42
−k. Thus, by (6.19) we obtain

|αk+1 − αk| ≤ c52
−k for all k ≥ 0. Therefore, θf,g(v) = limαk exists and

(6.25) ‖Rk(v)− θf,g(v)ukm‖C ≤ c62
−k ,

for all v ∈ C with ‖v‖C = 1. If v ∈ C and ‖v‖C 6= 1 then we define θf,g(v) =
‖v‖Cθf,g(v/‖v‖C). By (6.25) and by Lemma 6.2, for all v, w ∈ C we have

|θf,g(v) + θf,g(w)− θf,g(v + w)|

≤ M ‖θf,g(v)ukm + θf,g(w)ukm − θf,g(v + w)ukm‖C
≤ M ‖θf,g(v)ukm −Rk(v)‖C +M ‖θf,g(w)ukm −Rk(w)‖C

+M ‖θf,g(v + w)ukm −Rk(v + w)‖C

≤ c72
−k (‖v‖C + ‖w‖C) .

Hence, letting k go to infinity we deduce that θf,g is a linear functional in C∗. Again by
(6.25), ‖θf,g‖C is uniformly bounded and inequality (6.17) is satisfied for j = km. By
(6.25) and by property B4 in Definition 6.1, for j = km+ i with i ∈ {1, . . . ,m− 1}, we
get

‖Rj(v)− θf,g(v)uj‖C ≤

∥

∥

∥

∥

(

δkm+ikm

)−1
DT i(T kmf)(Rk(v)− θf,g(v)ukm)

∥

∥

∥

∥

C

+

∥

∥

∥

∥

(

δkm+ikm

)−1 (

DT i(T kmf)−DT i(T kmg)
)

θf,g(v)ukm

∥

∥

∥

∥

C

≤ c82
−k ‖v‖C ,(6.26)
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which proves (6.17). In particular, there is M0 > 0 such that

(6.27) ‖Rk,f (v)‖C ≤M0 ,

for all g ∈ K, all f ∈ V 0ε (g) and all v ∈ B with ‖v‖B = 1.
Let us prove that the map f 7→ θf,g|B is continuous from V 0ε (g) into B

∗ for every g ∈ K.
By property B2 of Definition 6.1, for every k ≥ 1 the functional σkm is continuous on C
and its norm is uniformly bounded. By property B3 in Definition 6.1, the map f 7→ Rk,f
is continuous from B into C. Hence, the mapping V 0ε (g)→ B∗ given by f 7→ σkm ◦Rk,f
is also continuous. By (6.26), we obtain

|σkm ◦Rk,f (v)− θf,g(v)| = |σkm (Rk(v)− θf,g(v)ukm)|

≤ c92
−k ‖v‖B .(6.28)

Therefore, the continuous maps f 7→ σkm ◦ Rk,f converge uniformly to f 7→ θf,g, which
implies that f → θf,g is also a continuous map from V 0ε (g) to B

∗.
Let us prove that θf,g|B for f ∈

⋃

g∈K V
0
ε (g) does not depend on g ∈ K. Let us take

f ∈
⋃

g∈K V
0
ε (g) and g0, g1 ∈ K such that f ∈ V 0ε (g0) and f ∈ V 0ε (g1). By Lemma 6.5,

for every k ≥ 1 we get
∥

∥

∥
T km(g1)− T

km(g0)
∥

∥

∥

B
≤

∥

∥

∥
T km(g1)− T

km(f)
∥

∥

∥

B
+
∥

∥

∥
T km(f)− T km(g0)

∥

∥

∥

B

≤ c10ε2
−k .

By property B2 of Definition 6.1, the map g 7→ σg from K into C∗ is uniformly contin-
uous. Hence, for every ε > 0 there is k0 > 0 large enough such that for all k > k0 and
all w ∈ C with ‖w‖C ≤M0 we have

(6.29)
∣

∣

∣σT km(g1)(w)− σT km(g0)(w)
∣

∣

∣ ≤ ε/2 .

By (6.27), (6.28) and (6.29) and taking k large enough, we get

|θf,g1(v)− θf,g0(v)| ≤
∣

∣

∣
θf,g1(v)− σT km(g1) ◦Rk,f (v)

∣

∣

∣

+
∣

∣

∣σT km(g1) ◦Rk,f (v)− σT km(g0) ◦Rk,f (v)
∣

∣

∣

+
∣

∣

∣
σT km(g0) ◦Rk,f (v)− θf,g0(v)

∣

∣

∣

≤ 2c92
−k + ε/2 ≤ ε

for all v ∈ B with ‖v‖B = 1. Thus, θf,g1(v) = θf,g0(v) and so the map Ψ is well-defined.
Let us prove that the map Ψ is uniformly continuous. For every α0 > 0, let us

choose k0 > 0 large enough such that 2c92
−k0 ≤ α0/3. Since the map g → σg is

uniformly continuous, there is α1 > 0 small enough such that for all g0, g1 ∈ K with
‖g1 − g0‖C < α1 and all w ∈ B with ‖w‖C ≤M0 we get

(6.30) |σg1(w)− σg0(w)| ≤ α0/3 .

Let us choose k1 > k0 large enough such that εC22
−k1 ≤ α1/3 where C2 > 0 is the

constant of Lemma 6.5. Since T : OB → C is a C1 operator, by property B3 of Definition
6.1, (and compactness of K), there is α2 > 0 small enough such that for all f0 ∈ V

0
ε (g0)
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and f1 ∈ V
0
ε (g1) with ‖f1 − f0‖B < α2 we obtain that ‖T k1m(f1)− T

k1m(f0)‖C ≤ α1/3.
Hence, by Lemma 6.5, we get
∥

∥

∥
T k1m(g1)− T

k1m(g0)
∥

∥

∥

C
≤

∥

∥

∥
T k1m(g1)− T

k1m(f1)
∥

∥

∥

C
+
∥

∥

∥
T k1m(f1)− T

k1m(f0)
∥

∥

∥

C

+
∥

∥

∥T k1m(f0)− T
k1m(g0)

∥

∥

∥

C

≤ 2εC22
−k1 + α1/3 ≤ α1 .(6.31)

By (6.30) and (6.31), we get

(6.32)
∣

∣

∣
σT k1m(g1)

◦Rk1,f1(v)− σT k1m(g0)
◦Rk1,f1(v)

∣

∣

∣
≤ α0/3 .

By property B3 of Definition 6.1, choose 0 < α3 < α2 small enough such that for all
f1 ∈

⋃

g∈K V
0
ε (g) with ‖f1 − f0‖B < α3 we have ‖Rk1,f1(v)−Rk1,f0(v)‖C ≤ α0/(3M),

where v ∈ B with ‖v‖B = 1 and M is as in Lemma 6.2. Hence,

(6.33)
∣

∣

∣
σT k1m(g0)

◦Rk1,f1(v)− σT k1m(g0)
◦Rk1,f0(v)

∣

∣

∣
≤ α0/3

By (6.28), (6.32) and (6.33), we obtain that

|θf1(v)− θf0(v)| ≤
∣

∣

∣θf1(v)− σT k1m(g1)
◦Rk1,f1(v)

∣

∣

∣

+
∣

∣

∣σT k1m(g1)
◦Rk1,f1(v)− σT k1m(g0)

◦Rk1,f1(v)
∣

∣

∣

+
∣

∣

∣
σT k1m(g0)

◦Rk1,f1(v)− σT k1m(g0)
◦Rk1,f0(v)

∣

∣

∣

+
∣

∣

∣
σT k1m(g0)

◦Rk1,f0(v)− θf0(v)
∣

∣

∣

≤ 2c92
−k1 + 2α0/3 ≤ α0 .

Therefore, the map Ψ is uniformly continuous. ¤

6.7. The main estimates. Besides aiming at proving that the local stable set is a C1

manifold, we want to show that the local hyperbolicity picture holds (in B) near K. In
other words we want to show that if the iterates T km(f1) of a point f1 ∈ Vε(g) remain
in Vε(T

km(g)) for a long time, that is for k = 0, 1, . . . , N with N large, then f1 has to be
very close to a point f0 on the stable set W s

ε (g) at the outset, and in the end TNm(f1)
has to be very close to the unstable manifold W u

ε (T
Nm(g)).

To prove these facts, we consider in this section (see Lemma 6.11) an intermediate
time l for which we can find a good quantitative estimate for the point on the unstable
manifold W u

ε (T
lm(g)) that best approximates T lm(f1). This estimate is provided by

the value of θf0(f1 − f0), and its most important consequence is obtained when f1 also
belongs to the local stable set W s

ε (g). In this case we prove an inequality of the form
|θf0(f1 − f0)| ≤ C‖f1−f0‖

1+τ
B (see Lemma 6.12). As we shall see in §6.8, this is precisely

what we need to show that the tangent space to the stable set at f0 varies continuously
with f0.

In this section we will fix m large enough and ε0 > ε1 > ε2 small enough such that
lemmas 6.4, 6.5 and 6.7 are satisfied for all ε < ε2 suficiently small.
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Lemma 6.8. There exist constants C5, C6, ε > 0 with the following property. For all
g ∈ K, all f0 ∈ V

0
ε (g), and all f1 ∈ Vε(g) such that ‖f1 − f0‖C ≤ C5 (δ

n
0 )
−1, we have

(6.34)
∥

∥

∥
T k(f1)− T

k(f0)−DT
k(f0) (f1 − f0)

∥

∥

∥

C
≤ C6 (δ

n
k )
−ρ ,

for all 0 ≤ k ≤ k̂0(g, f1), where

k̂0(g, f1) = min
{

j ∈ {0, . . . , n} : ‖T j(f1)− T
j(g)‖B ≥ ε0

}

and ρ > 1 is as in property B5 of Definition 6.1.

Proof. By lemmas 6.2 and 6.7, there are c0, c1 > 0 and λ > 1 such that

(6.35)
∥

∥

∥DT k−i
(

T if0
)

∥

∥

∥

C
≤ c0δ

k
i and δki > c1λ

k−i

for all 0 ≤ i < k. Define a sequence vi ∈ C as follows: v0 = T (f1)− T (f0) and

vi = T i(f1)− T
i(f0)−DT

(

T i−1(f0)
) (

T i−1(f1)− T
i−1(f0)

)

,

for all 0 < i ≤ k. Hence,

(6.36) T i(f1)− T
i(f0)−DT

i(f0) (f1 − f0) =
i
∑

j=1

DT i−j
(

T jf0
)

vj .

Applying property B5 of Definition 6.1, we get

‖vi+1‖C ≤ c2
∥

∥T i(f1)− T
i(f0)

∥

∥

ρ

C

≤ c2

∥

∥

∥

∥

∥

∥

DT i(f0) (f1 − f0) +
i
∑

j=1

DT i−j(T jf)vj

∥

∥

∥

∥

∥

∥

ρ

C

.(6.37)

Let us first choose C6 > 0 such that

(6.38) C1−ρ6 > c2

(

2c0c
1−ρ
1

(δi)ρ(1− λ1−ρ)

)ρ

,

for all 0 < i ≤ k, and then choose C5 > 0 such that

Cρ5 <
C6(δ0)

ρ

c2
,

C5 <
c1−ρ1 C6(δi)

1−ρ

1− λ1−ρ
.(6.39)

Let us prove inductively that ‖vi‖C ≤ C6 (δ
n
i )
−ρ. Using inequality (6.37) and (6.39), we

get

‖v0‖C ≤ c2 ‖f1 − f0‖
ρ
C =

c2C
ρ
5

(δ0)ρ
(δn1 )

−ρ ≤ C6(δ
n
1 )
−ρ .
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Using the inequalities (6.35), (6.37), (6.38) and (6.39), we get

‖vi+1‖C ≤ c2



C5c0δ
i
0 (δ

n
0 )
−1 +

i
∑

j=1

c0δ
i
jC6

(

δnj
)−ρ





ρ

≤ c2c
ρ
0





C5
δi

+
C6
(δi)

ρ

i
∑

j=1

(

δij
)1−ρ





ρ

(

δni+1
)−ρ

≤ c2c
ρ
0

(

C5
δi

+
c1−ρ1 C6

(δi)
ρ (1− λ1−ρ)

)ρ
(

δni+1
)−ρ

≤ C6
(

δni+1
)−ρ

,(6.40)

which ends the induction. Thus, using (6.35) and (6.40) in (6.36), we get

∥

∥

∥T k(f1)− T
k(f)−DT k(f) (f1 − f0)

∥

∥

∥

C
≤

k
∑

i=1

c0δ
k
i C6 (δ

n
i )
−ρ

≤ c0C6 (δ
n
k )
−ρ

k
∑

i=1

(

δki

)1−ρ
≤

c0c
1−ρ
1 C6

1− λ1−ρ
(δni )

−ρ .

This proves the Lemma. ¤

Lemma 6.9. Let C5, C6, ε > 0, ρ > 1 and k̂0(g, f1) be as in Lemma 6.8. There exist
C7, C8 > 0 such that for all g ∈ K, all f0 ∈ V 0ε (g) and all f1 ∈ Vε(g) such that

‖f1 − f0‖C ≤ C5 (δ
n
0 )
−1, we have

(6.41)
∥

∥

∥T k(f1)− T
k(g)− δk0θf0 (f1 − f0)uk

∥

∥

∥

C
≤ C6 (δ

n
k )
−ρ + εC72

−k/m + C82
−k/m (δnk )

−1 ,

for all k ≤ k̂0(g, f1).

Proof. By Lemma 6.7, we get

(6.42)
∥

∥

∥
DT k(f0) (f1 − f0)− δ

k
0θf0 (f1 − f0)uk

∥

∥

∥

C
≤ C42

−k/m (δnk )
−1 .

By Lemma 6.5, we obtain that

(6.43)
∥

∥

∥
T k(f0)− T

k(g)
∥

∥

∥

C
≤ c0

∥

∥

∥
T k(f0)− T

k(g)
∥

∥

∥

B
≤ εc0C22

−k/m .

Combining (6.34), (6.42) and (6.43), we get (6.41). ¤

Definition 6.2. Given g ∈ K and p ≥ 1 we denote by l = l(g, p) the smallest integer
such that

(6.44)
(

δpmlm
)ρ
≤ 2l ,

where ρ > 1 is as in property B5 of Definition 6.1.

Lemma 6.10. (i) There exist 0 < µ0 < µ1 < 1 with the property that
µ0p ≤ l = l(g, p) ≤ µ1p for all g ∈ K and all p ≥ 1.
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(ii) There exists 0 < τ1 < 1 such that for all g ∈ K and all f0, f1 ∈ Vε(g),

if ‖f0− f1‖C ≥ C5

(

δ
(p+1)m
0

)−1
then

(

δpmlm
)−1

≤ C9‖f0− f1‖
τ1
C , where C9

depends only upon C5 > 0.

Proof. Let us prove part (i). Set 1 < λ < M as in Lemma 6.2. Then, by (6.44), we have

ρ logM−1 + (pm− lm)ρ log λ < ρ log δpmlm < l log 2 < lm log 2 .

Hence we get
(

1 +
log 2

ρ log λ

)

lm ≥
logM−1

log λ
+ pm >

pm

2
,

for all p such that pm > N0 = max{2m,
∣

∣2 logM−1/ log λ
∣

∣}. Thus, taking

µ′0 = 2−1
(

1 +
log 2

ρ log λ

)−1

> 0 ,

we get µ′0p ≤ l for all such values of p. By (6.44) and by Lemma 6.2 there exists a
uniform constant 0 < c0 ≤ 1 such that c02

l ≤
(

δpmlm
)ρ

and so

log c0 + l log 2 < ρ log δpmlm ≤ ρ(pm− lm) logM .

Letting α = log 2/ (ρ logM) > 0 and β = log c0/ (ρ logM) we get

lm
(

1 +
α

m

)

≤ pm− β ≤ pm
(

1 +
α

2m

)

for all p > −2β/α. Thus, taking

0 < µ′1 =
2m+ α

2(m+ α)
< 1

we obtain that lm ≤ µ′1pm for all such values of p. Since δg varies continuously with g
in the compact set K, we can extend the previous results to all p ≥ 0 for some µ0 ≤ µ′0
and µ1 ≥ µ′1.

Let us prove part (ii). Take 0 < τ1 = (1−µ1) logM/ log λ < 1. Then, by Lemma 6.2,
we have

(

δpmlm
)−1

≤ c0λ
−(p−l)m ≤ c0λ

−(1−µ1)pm

≤ c0M
−τ1pm ≤ c1ω

(

δ
(p+1)m
0

)−τ1

≤ c1‖f0 − f1‖
τ1
C .

¤

Lemma 6.11. There exist ε > 0 sufficiently small and C10 > 0 such that the following
holds for g ∈ K, f0 ∈ V

0
ε (g) and f1 ∈ Vε(g). If p is the largest integer such that

‖f1 − f0‖C ≤ C5 (δ
pm
0 )

−1

then l = l(g, p) ≤ k0 = k0(g, f1) and so tl = tl(g, f1) is well-defined (where l is as
in Lemma 6.10, k0 and tl are as in Lemma 6.4, and C5 > 0 is as in Lemma 6.9).
Furthermore,

(6.45)
∣

∣

∣tl − δ
lm
0 θf0(f1 − f0)

∣

∣

∣ ≤ C10
(

δpmlm
)−ρ

.
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where ρ > 1 is as in Lemma 6.9.

Proof. Let k̂0 = k̂0(g, f1) be as in Lemma 6.9. Let us prove that l ≤ k0. By (iv) in

Lemma 6.4, mk0 < k̂0. Hence it is enough to prove that min
{

lm, k̂0

}

≤ mk0. Let ε > 0

be small enough such that lemmas 6.8 and 6.9 are satisfied. Let us show that lm ≤ k̂0.
By inequality (6.41), for all k such that mk ≤ k̂0 we have
(6.46)
∣

∣

∣
σkm

(

T km(f1)− T
km(g)

)∣

∣

∣
≤ ‖σkm‖C

(

δkm0 |θf (f1 − f0)|+ c0
(

δpmkm
)−1

+ εc12
−k
)

.

By Lemma 6.2 and Remark 6.2, there is M1 > 1 such that M−1
1 ≤ ‖σkm‖C ≤ M1 and

M−1
1 ≤ ‖θf0‖C ≤ M1. Since by Lemma 6.2, we have

(

δpmkm
)−1

≤ Mλ−(p−k)m we deduce
that

(6.47) δkm0 |θf (f1 − f0) | ≤
(

δpmkm
)−1

‖θf‖C ≤MM1λ
−(p−k)pm .

By Lemma 6.10, there is 0 < µ1 < 1 such that for all p > 0 and all k ≤ l we have
p − k ≥ p − l ≥ (1 − µ1)p. Now, we make ε > 0 small enough (and so p large enough)
such that the following inequalities are satisfied

(c0 +M1)Mλ−(1−µ1)pm <
ε2

2‖σkm‖C
,

εc12
−k <

ε2
4‖σkm‖C

,

for all k such that km ≤ min{lm, k̂0}. Therefore, for all such k, combining (6.46) and
(6.47) we deduce that

(6.48) |σkm
(

T km(f1)− T
km(g)

)

| < ε2 .

Since f1 ∈ Vε(g) and (6.48) reverses the inequality (iii) in Lemma 6.4, we obtain that

min{lm, k̂0} ≤ mk0, and so l ≤ k0.
Now, let us prove (6.45). Since l ≤ k0, by (6.6) and (6.7) in Lemma 6.4, there is

tl = tl(g, f1) such that

(6.49) ‖T lm(f1)− ulm(tl)‖B ≤ ε2−l ≤ ε
(

δpmlm
)−ρ

.

Since lm < k̂0, by lemmas 6.9 and 6.10 we get

‖T lm(f1)− T
lm(g)− slulm‖C ≤ c2

(

δpmlm
)−ρ

,

where sl = δlm0 θf0(f1 − f0). Thus, using (6.49), we obtain that

‖ulm(tl)− T
lm(g)− slulm‖C ≤ c3

(

δpmlm
)−ρ

.

Since t→ ulm(t) is C
2 as a map R → C, we have

‖ulm(sl)− T
lm(g)− slulm‖C ≤ c4s

2
l

= c4

∣

∣

∣
δlm0 θf0(f1 − f0)

∣

∣

∣

2

≤ c5
(

δpmlm
)−2

.
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Therefore,

‖ulm(tl)− ulm(sl)‖C ≤ ‖ulm(tl)− T
lm(g)− slulm‖C + ‖ulm(sl)− T

lm(g)− slulm‖C

≤ c3
(

δpmlm
)−ρ

+ c5
(

δpmlm
)−2

≤ c6
(

δpmlm
)−ρ

,

because 1 < ρ < 2. Hence, applying Lemma 6.2, we get

|tl − sl| ≤M−1‖ulm(tl)− ulm(sl)‖C ≤ c7
(

δpmlm
)−ρ

.

¤

Lemma 6.12. There exist constants τ, ε, C > 0 with the following properties: for all
g ∈ K and all f0, f1 ∈ V

0
ε (g) we have

|θf0(f1 − f0)| ≤ C ‖f1 − f0‖
1+τ
B .

Proof. We shall in fact prove a stronger inequality, with the C-norm replacing the B-
norm. Let ε > 0 be so small that lemmas 6.8 to 6.11 are satisfied (ε > 0 will be made even

smaller in the course of the argument). Let p be such that C5δ
−(p+1)m
0 < ‖f0 − f1‖C ≤

C5δ
−pm
0 where C5 > 0 is as in Lemma 6.8. As in Lemma 6.4, set k0 = k0(g, f1),

tj = tj(g, f1) and vj = vj(g, f1) for all 0 ≤ j ≤ k0. Also, let l = l(g, p) be as in Lemma
6.10. By Lemma 6.11, we have l ≤ k0 and so tl is well-defined. Thus, applying lemmas
6.4, 6.5 and 6.10, we get

‖ulm(tl)− ulm(0)‖B ≤
∥

∥

∥
ulm(tl)− T

lm(f1)
∥

∥

∥

B
+
∥

∥

∥
T lm(f1)− T

lm(g)
∥

∥

∥

B

≤ εc02
−l ≤ εc0

(

δpmlm
)−ρ

.

Hence, by Lemma 6.2 we see that |tl| ≤ c1
(

δpmlm
)−ρ

. Let us write tj = αj

(

δpmjm

)−1
for

l ≤ j ≤ k0(g, f1). Recalling that δ
(j+1)m
jm > β > 2 for all j and using Lemma 6.10, we

have

(6.50)
(

δpmlm
)−1

≤ β−(1−µ1)p and
(

δpmlm
)−(ρ−1)/2

≤ β−τ2p

where τ2 = (1− µ1)(ρ− 1)/2. Hence, making ε > 0 smaller if necessary (and so p large
enough), we get

(6.51) αl < 4−1
(

δpmlm
)−(ρ−1)/2

< 4−1β−τ2p < ε1/2 .

By Lemma 6.4, we have ‖vj‖B ≤ ε2−j and tj+1 = δ̂
(j+1)m
jm (tj + σjm(vj)). Since t 7→

δ̂
(j+1)m
jm (t) is C2 as a map R → C, we deduce that

∣

∣

∣tj+1 − δ
(j+1)m
jm tj

∣

∣

∣ ≤ c2
(

|tj |
2 + ‖vj‖B

)

≤ c2
(

|tj |
2 + ε2−j

)

≤ c2

(

|tj |
2 + ε2−(j−l)

(

δpmlm
)−ρ
)

.
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Therefore, we get

(6.52) |αj+1 − αj | ≤ c2

(

α2jβ
−(p−j+1) + ε(2β)−(j−l)

(

δpmlm
)−(ρ−1)

)

.

Let us prove that k0(g, f1) > p. To do this, we need to show that |tj | < ε1 for all
j ≤ p. Let us prove by induction a slightly stonger statement, namely, that αj ≤

2−1
(

δpmlm
)−(ρ−1)/2

< ε1 for all j = l, . . . , p. This is certainly satisfied for j = l, as we
can see from (6.51). Suppose it is satisfied for αi for all i = l, . . . , j. Using (6.50) and
(6.52), and making ε > 0 even smaller (and thus p large enough), we get

|αj+1 − αl| ≤

j
∑

i=l

|αi+1 − αi|

≤
1

4

(

j
∑

i=l

(

c2β
−(p−i+1) + 4c2ε(2β)

−(i−l)
)

)

(

δpmlm
)−(ρ−1)

≤
1

4

(

c2β
−1

1− β−1
+

4c2ε

1− (2β)−1

)

β−τ2p
(

δpmlm
)−(ρ−1)/2

≤
1

4

(

δpmlm
)−(ρ−1)/2

.(6.53)

Since αl ≤ 4−1
(

δpmlm
)−(ρ−1)/2

, we deduce that αj+1 ≤ 2−1
(

δpmlm
)−(ρ−1)/2

< ε1 (in partic-
ular j + 1 ≤ k0(g, f1)) which ends the induction.

Now set sj = sj(g, f0, f1) = δjm0 θf0(f1 − f0) for all j. Let us estimate |tp − sp|. By
Lemma 6.11 and the above estimates on αj ’s, we have

(6.54) |tp − sp| ≤ |αp − αl|+ δpmlm |tl − sl| ≤ c3
(

δpmlm
)−(ρ−1)/2

.

On the other hand, from lemmas 6.4, 6.5 and 6.10, we also know that

‖upm(tp)− upm(0)‖B ≤ ‖upm(tp)− T
pm(f1)‖B + ‖T pm(f1)− T

pm(g)‖B

≤ εc42
−p

Hence, again by Lemma 6.2, we have |tp| ≤ εc52
−p. Since p ≥ l, we deduce from Lemma

6.10 that

(6.55) |tp| ≤ εc52
−l ≤ εc5

(

δpmlm
)−ρ

.

But Lemma 6.10, also tells us that there exists τ1 > 0 such that
(

δpmlm
)−1

≤ c6‖f0−f1‖
τ1
C .

Moreover, (δpm0 )
−1
≤ c7‖f0− f1‖C by hypothesis. Therefore, combining these facts with

(6.54) and (6.55), we get at last

|θf0(f1 − f0)| ≤ (δpm0 )
−1
|sp|

≤ (δpm0 )
−1

(|tp|+ |tp − sp|)

≤ (δpm0 )
−1
(

εc5
(

δpmlm
)−ρ

+ c3
(

δpmlm
)−(ρ−1)/2

)

≤ c8‖f0 − f1‖
1+τ1(ρ−1)/2
C ,

which finishes the proof. ¤
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6.8. The local stable sets are graphs. We shall prove now that the local stable set of
every g0 ∈ K in a sufficiently small neighborhood of g is the graph of a function defined
over Kerθg ∩ B (and taking values on the one-dimensional subspace Rug ⊂ B). The
idea is to show that every “vertical line” of the form f +Rug with f close to g cuts the
local stable set W s

ε (g0) exactly at one point. All other points in the same vertical line
escape exponentially fast away fromW s

ε (g0) under iteration by T and the time k0m each
such point f takes to escape is logarithmic on the reciprocal of its distance to W s

ε (g0).
Moreover, T k0m(f) will be exponentially close (in k0) to W

u
ε (T

k0m(g0)).

Proposition 6.13. There exist 0 < α0, α1, α2 < ε, 0 < µ0 < µ1 and M0 > 1 with the
following properties. If g0 ∈ K and g ∈ K is such that ‖g − g0‖B < α0, then for every
v ∈ Ker θg0 ∩ B with ‖v‖B < α1, there exists −α2/2 < τ(g, v) < α2/2 such that

(i) fτ(g,v) = g0 + v + τ(g, v)ug0 ∈W
s
ε (g) ⊂ V 0ε (g);

(ii) ft = g0 + v + tug0 ∈ V
+
ε (g) for all τ(g, v) < t < α2;

(iii) ft = g0 + v + tug0 ∈ V
−
ε (g) for all −α2 < t < τ(g, v);

(iv) −µ0 log(|t−τ(g, v)|) ≤ k0(g, ft) ≤ −µ1 log(|t−τ(g, v)|), where k0(g, φt)
is as in Lemma 6.4.

Proof. Let ε > 0 be sufficiently small such that lemmas 6.8 to 6.11 are satisfied and
0 < ε′ < ε such that Lemma 6.5 is satisfied. Let M > 0 be as in Lemma 6.2 and take
positive numbers α1 and α2 such that

(6.56) 0 < 8α1M < α2 and α1 + 2α2M < ε′/2 .

Take g ∈ K and f ∈ Vε(g0) with ‖f − g‖B < ε′/2. Let v ∈ Ker θg0 ∩ B with ‖v‖B < α1,
and t ∈ R with 2M‖v‖B < |t| < 2α2. By the second inequality in (6.56), we have
φt = f + v + tug0 ∈ Vε(g) and ‖φt − g‖B < ε′ for all |t| < 2α2. Now, we have the
following claim.

Claim. The family φt satisfies the following property

(6.57)

{

φt ∈ V
+
ε (g), if 2M‖v‖B < t < 2α2

φt ∈ V
−
ε (g), if − 2α2 < t < −2M‖v‖B .

To prove this claim, let C5 > 0 be as in Lemma 6.8 and let p be such that C5δ
(p+1)m
0 <

‖φt−f‖C ≤ C5δ
pm
0 . Set k0 = k0(g, φt), tj = tj(g, φt) and vj = vj(g, φt) for all 0 ≤ j ≤ k0

as in Lemma 6.4. Set sj = sj(g, f, φt) = δjm0 θf (φt − f). Set l = l(g, p) as in Lemma
6.10. Using Lemma 6.2 and Remark 6.2, there exist c0 > 1 and α0 > 0 sufficiently small
such that if ‖g − g0‖B < α0 then

(6.58) c−10 |t| ≤ |θf (φt − f)| ≤ c0|t| ,

(noting that ‖f − g‖B < ε′/2 and making ε′ > 0 smaller if necessary). Since tug0 =
φt − f + v and 2M‖v‖B < |t|, by Lemma 6.2 there is c1 > 1 such that

(6.59) c−11 (δpm0 )
−1
≤ |t| ≤ c1 (δ

pm
0 )

−1
.

Hence, by (6.58), we obtain that

c−12 (δpm0 )
−1
≤ |θf (φt − f)| ≤ c2 (δ

pm
0 )

−1
.
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Thus,

(6.60) c−13
(

δpmlm
)−1

≤ |sl| ≤ c3
(

δpmlm
)−1

.

Recall that δ
(j+1)m
jm > β > 2. By Lemma 6.10 we get

(

δpmlm
)−1

≤ β−(1−µ1)pm. Let us

suppose from now on that θf (φt − f) is positive and so sl > 0. Hence, by Lemma 6.11,
by (6.60) and making α1 and α2 smaller if necessary (and so p large enough), we obtain
that

tl ≥ sl − |tl − sl| ≥ sl

(

1− c4
(

δpmlm
)−(ρ−1)

)

≥ sl

(

1− c4β
−(ρ−1)(1−µ1)pm

)

> sl/2 > 0 .(6.61)

Thus, tl is positive and so it has the same sign as θf (φt − f). By induction on j =
l, . . . , k0(g0, φt) let us show that tj+1 ≥ tj and so that each tj is positive as well. By

Lemma 6.4, ‖vj‖B ≤ ε2−j and tj+1 = δ̂
(j+1)m
jm (tj + σjm(vj)). Since t 7→ δ̂

(j+1)m
jm (t) is C2

as a map R → C, we obtain that
∣

∣

∣tj+1 − δ
(j+1)m
jm tj

∣

∣

∣ ≤ c5
(

|tj |
2 + ‖vj‖B

)

. Thus,

tj+1 ≥ βtj − c5|tj |
2 − c6ε2

−j

≥ tj(β − c5|tj |)− c6ε2
−j .(6.62)

Let ε1 > 0 as given by Lemma 6.4 and recall that |tj | < ε1 and ε < ε1. Since β > 1 and
by taking ε1 > 0 sufficiently small, there is τ ′ > 0 with the property that β − c5|tj | >
β − c5ε1 > 1 + 2τ ′. By (6.60) and (6.61), we get

tj(β − c5|tj | − 1− τ ′) > tjτ
′ ≥ tlτ

′ > slτ
′/2 > c7

(

δpmlm
)−1

.(6.63)

By Lemma 6.10, we obtain that

(6.64) 2−j ≤ 2−l ≤
(

δpmlm
)−ρ

.

Putting together (6.62), (6.63) and (6.64), we deduce that

(6.65) tj+1 ≥ (1 + τ ′)tj + c7
(

δpmlm
)−1

− c6ε
(

δpmlm
)−ρ

.

Making α2 sufficiently small (and so p large enough) and recalling from Lemma 6.10

that l is a fraction of p, we obtain that c7
(

δpmlm
)−1

− c6ε
(

δpmlm
)−ρ

≥ 0. Thus, by (6.65),
we get

(6.66) tj+1 > (1 + τ ′)tj

which implies that tj+1 has the same sign as tj and that φt ∈ V
+
ε (g). If we suppose that

θf0(φt− f) is negative, the proof that tl is negative and that tj+1 < (1+ τ ′)tj follows in
the same way for all j = l, . . . , k0(g0, φt) and so φt ∈ V

−
ε (g). Therefore (6.57) is satisfied

and the claim is proved.
Let us now prove the assertions of the lemma. Take f = g0 and consider the family

φt = g0 + v + tug0 . Since 2M‖v‖B < 2Mα1 < α2/4, the claim tell us that
{

φt ∈ V
+
ε (g), if α2/4 ≤ t < 2α2

φt ∈ V
−
ε (g), if − α2 < t ≤ −α2/4 .
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Thus, by Lemma 6.5, there is at least one value −α2/4 < τ(g, v) < α2/4 such that
φτ(g,v) = g0 + v + τ(g, v)ug0 ∈ V

0
ε (g).

Next, take f = φτ(g,v), and define a new family ψt = φτ(g,v) + tug0 . Using the claim
again, this time to the family ψt (for which v = 0), we obtain that

{

ψt ∈ V
+
ε (g), if 0 < t < α2/2

ψt ∈ V
−
ε (g), if − α2/2 < t < 0 .

Therefore, τ(g, v) is the only value of t ∈ R between −2α2 and 2α2 such that φt ∈ V
0
ε (g).

Since ‖φτ(g,v) − g‖B < ε′ we deduce from Lemma 6.5 that φτ(g,v) ∈ W
s
ε (g). This proves

assertions (i), (ii) and (iii).
Let us now prove assertion (iv). Set k0 = k0(g, ψt). Using (6.66) and then (6.61), we

have

(6.67) |tk0 | ≥ (1 + τ ′)k0−l|tl| ≥ (1 + τ ′)k0−l|sl|/2 .

Combining (6.59) and (6.60), we see that

(6.68) |sl| ≥ c−13 δlm0 (δpm0 )
−1
≥ c8β

l|t| .

Taking τ ′′ = min{1 + τ ′, β} and putting (6.68) back into 6.67 we get

(6.69) |tk0 | ≥ c9(τ
′′)k0 |t| .

By Lemma 6.4, there are 0 < ε1 < ε0 such that ε1 ≤ |tk0 | ≤ ε0. Thus, by (6.69), there
is µ0 > 0 such that k0 ≥ −µ0 log(t). By Lemma 6.4, |tk0 | ≤ c9β

k0 |t| and so there is
µ1 ≥ µ0 such that k0 ≤ −µ1 log(t), which proves assertion (iv). ¤

6.9. Proof of the local stable manifold theorem. It will follow from Theorem 6.15
in this section that for every g ∈ K the local stable manifold at g is a C1 submanifold
varying continuously with g. In the proof of this theorem will use the following basic
fact of calculus.

Lemma 6.14. Let X,Y be Banach spaces, let x0 ∈ X and let ξ : BX(x0, ε) → Y be
a map whose image in Y falls within BY (ξ(x0), ε). Suppose we have a bounded linear
operator L : X → Y such that for all v ∈ X with ‖v‖X ≤ ε we have

(6.70) ‖ξ(x0 + v)− ξ(x0)− L(v)‖Y ≤ c0 (‖v‖X + ‖ξ(x0 + v)− ξ(x0)‖Y )
1+τ

where c0 > 0 and τ > 0. If c0(2ε)
τ < 1 then ξ is differentiable at x0 and Dξ(x0) = L.

Proof. Say ‖L(v)‖Y ≤ a‖v‖X for some a > 0. Noting that ‖v‖X+‖ξ(x0+v)−ξ(x0)‖Y <
2ε, we have from (6.70) that

‖ξ(x0 + v)− ξ(x0)‖Y ≤ (a+ c0(2ε)
τ ) ‖v‖X + c0(2ε)

τ‖ξ(x0 + v)− ξ(x0)‖Y

whence

‖ξ(x0 + v)− ξ(x0)‖Y ≤
a+ c0(2ε)

τ

1− c0(2ε)τ
‖v‖X = c1‖v‖X .

Putting this back into the right-hand side of (6.70) we get

‖ξ(x0 + v)− ξ(x0)− L(v)‖Y ≤ c2 (‖v‖X)
1+τ

and therefore Dξ(x0) exists and equals L. ¤
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For every g ∈ K and α1 > 0, let us consider the following sets

Eg,α1 = {v ∈ ker θg : ‖v‖B < α1} ,

Fg = {g + tug : t ∈ R} ,

Gg,α1 = {g + v + tug : v ∈ Eg,α1 and t ∈ R} .

Theorem 6.15. Set 0 < α0 < α1 < ε and τ(g, v) as in Proposition 6.13. For every
g0 ∈ K and every g ∈ K with ‖g − g0‖B < α0, the map ξg : Eg0,α1 → Fg0 given by
ξg(v) = g0 + τ(g, v)ug0 is well-defined and has the following properties:

(i) The graph of ξg is equal to W s
ε (g) ∩Gg0,α1;

(ii) ξg is C1 and varies continuously with g.

Proof. Set α1 < α2 < ε and 0 < µ0 < µ1 as in Proposition 6.13. By Proposition 6.13, the
map ξg : Eg0,α1 → Fg0 is well-defined and assertion (i) is satisfied. Let ξ̂g : Eg0,α1 → R
be given by ξ̂g(v) = τ(g, v) where τ(g, v) is given by (i) in Proposition 6.13. To prove

assertion (ii), it is enough to show that ξ̂g : Eg0,α1 → R is C1 and varies continuously
with g. Let v1, v2 ∈ Eg0,α1 and set

(6.71) f1 = g0 + v1 + ξ̂g(v1)ug0

and f2 = g0 + v2 + ξ̂g(v2)ug0 . By Lemma 6.12, we get
∣

∣

∣θf1(v2 − v1) + θf1(ug0)(ξ̂g(v2)− ξ̂g(v1))
∣

∣

∣ = |θf1(f2 − f1)|

≤ c0

(

‖v2 − v1‖B + |ξ̂g(v2)− ξ̂g(v1)|
)1+τ

By Lemma 6.7, and taking ε > 0 sufficiently small, we have that θf1(ug0) is uniformly

bounded away from 0. Therefore, by Lemma 6.14, we deduce that ξ̂g is differentiable at
every v1 with derivative given by

(6.72) Dξ̂g(v1) = −(θf1(ug0))
−1θf1 .

¿From Lemma 6.7, θf1 varies continuously with f1 and so Dξ̂g(v1) also varies continu-

ously in a neighborhood of v1. Hence, ξ̂g is a C1 map.

Let us check that ξ̂g varies continuously with g in the C1 sense; more precisely, that

the map K ∩ B(g0, α0) → C1(Eg0,α1 ,R) given by g 7→ ξ̂g is continuous. Taking into

account that Dξ̂g is given by (6.72) and that f1 is given by (6.71), and since by Lemma
6.7 the map f1 7→ θf1 is uniformly continuous (as a map into B∗), it suffices to prove

that g 7→ ξ̂g is continuous as a map into C0(Eg0,α1 ,R).

To do this, let v ∈ Eg0,α1 be such that g = g0 + v + ξ̂g(v)ug0 , take g1 ∈ K with

‖g1− g0‖B < α0 and let w ∈ Eg0,α1 be such that g1 = g0+w+ ξ̂g1(w)ug0 . Now, we have
the following claim.

Claim. There exist c1 > 0 and 0 < γ < 1 such that

(6.73) c−11 |ξ̂g1(w)− ξ̂g(w)|
1/γ ≤ |ξ̂g1(z)− ξ̂g(z)| ≤ c1|ξ̂g1(w)− ξ̂g(w)|

γ ,

for all z ∈ Eg0,α1 .
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Let us assume this claim for a moment. Its geometric meaning is that the dis-
tances between corresponding points of the graphs of ξ̂g and ξ̂g1 along the vertical fibers
({z} × Fg0) are uniform. We want to control such distances in terms of ‖g1 − g‖B. The

above claim tell us that it is enough to control |ξ̂g1(w)− ξ̂g(w)|. Hence, write

g − g1 = v − w +
(

ξ̂g(v)− ξ̂g1(w)
)

ug0

= v − w + (a+ b)ug0

where a = ξ̂g(w)− ξ̂g1(w) and b = ξ̂g(v)− ξ̂g(w). Since ξ̂g is C
1, we have |b| ≤ c2‖v−w‖B.

On the other hand, since B = Ker θg0
⊕

Rug0 is a splitting into closed subspaces, there
exists a constant c3 > 0 such that

max {‖v − w‖B, |a+ b|} ≤ c3‖g − g1‖B ,

but then

|a| ≤ ‖g − g1‖B + ‖v − w‖B + |b|

≤ (1 + c3 + c2c3)‖g − g1‖B .

Hence
∣

∣

∣
ξ̂g(w)− ξ̂g1(w)

∣

∣

∣
≤ c4‖g − g1‖B, and given the claim this proves that g 7→ ξ̂g is

indeed continuous.
Finally, let us prove the claim. For each z ∈ Eg0,α1 , let h = g0 + z + ξ̂g1(z)ug0 . Set

t′k = tk(g, g1), t′′k = tk(g, h),
u′k = uT km(g)(t

′
k), u′′k = uT km(g)(t

′′
k) ,

as given by Lemma 6.4, and set (also as in that lemma)

k′0 = k0(g, g1) = min{j : |t′j | ≥ ε1}

k′′0 = k0(g, h) = min{j : |t′′j | ≥ ε1} .(6.74)

Applying Lemma 6.4, we obtain, for all k ≤ min{k′0, k
′′
0}, the estimates

‖T km(g1)− u
′
k‖B ≤ 2−k‖g1 − g‖B

‖T km(h)− u′′k‖B ≤ 2−k‖h− g‖B .(6.75)

Since h ∈W s
ε (g1), we also have, by Lemma 6.5,

‖T km(h)− T km(g1)‖B ≤ εc52
−k .(6.76)

Combining (6.75) and (6.76), we get

‖u′k − u
′′
k‖B ≤ c62

−k .

Hence, by Lemma 6.2, we get

(6.77) |tk(g, g1)− tk(g, h)| ≤ c72
−k ,

for all k ≤ min{k′0, k
′′
0}. Using (6.66) together with (6.77), we deduce that there exists

a uniform constant c8 > 0 such that

(6.78) k′0 − c8 ≤ k′′0 ≤ k′0 + c8 .
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On the other hand, applying (iv) in Proposition 6.13, we also have

−µ0 log(|τ(g1, w)− τ(g, w)|) ≤ k′0 ≤ −µ1 log(|τ(g1, w)− τ(g, w)|)

−µ0 log(|τ(g1, z)− τ(g, z)|) ≤ k′′0 ≤ −µ1 log(|τ(g1, z)− τ(g, z)|) .(6.79)

Combining (6.78) and (6.79) and noting that

τ(g1, w) = ξ̂g1(w) , τ(g1, z) = ξ̂g1(z) , τ(g, w) = ξ̂g(w) and τ(g, z) = ξ̂g(z) ,

we get at last

c−19

∣

∣

∣
ξ̂g1(w)− ξ̂g(w)

∣

∣

∣

µ0/µ1
≤
∣

∣

∣
ξ̂g1(z)− ξ̂g(z)

∣

∣

∣
≤ c9

∣

∣

∣
ξ̂g1(w)− ξ̂g(w)

∣

∣

∣

µ1/µ0
.

for some c9 > 1, and this establishes the claim with γ = µ0/µ1 < 1 and c1 = c9. ¤

Remark 6.3. Note that by Proposition 6.13 there exists a uniform 0 < ε̃ < ε such that
W s
ε̃ (g) ⊂ Gg0,α1 for all g0 ∈ K with ‖g0 − g‖B < α0.

7. Smooth holonomies

In the previous section we proved that a robust operator T has C1 local stable man-
ifolds through each point of its hyperbolic basic set K, and that such manifolds form a
C0 lamination (near each point of K). A natural question that may be asked at this
point is this: how smooth is the holonomy of this lamination? To answer this question
we shall assume that there exists a homeomorphism H : ΘZ → K of a finite-type shift
space onto K which conjugates the two-sided full shift σ : ΘZ → K to our robust opera-
tor T restricted to K. Under this topological assumption, and an additional geometric
assumption concerning the unstable manifolds of points in the attractor –both of which
are satisfied by the renormalization operator– we shall prove below that the holonomies
of the local stable laminations are C1+θ for some θ > 0.

For ε0 > 0 small enough and for every g ∈ K let t → ug(t) be a parametrization of
the local unstable manifold W u

ε0(g). Set

Kg = K ∩W u
ε0(g) and Kg = u−1g (Kg) .

Let

Σ...,θk−1,θk =
{

(

θ′j
)

∈ ΘZ : θ′j = θj for allj ≤ k
}

.

If H(Σ...,θk) ∩ Kg 6= ∅ then denote by ∆...,θk(g) the smallest interval in R such that
ug(∆...,θk(g)) ⊃ H(Σ...,θk) ∩Kg. Let Ck(g) be the set of all these intervals ∆...,θk(g).

Definition 7.1. Let K ⊂ OA be a hyperbolic basic set of a C2 operator T : OA → A
which is topologically conjugated to a two-sided shift of finite type. The local unstable
manifolds W u

ε0(g) have geometry bounded by α > 0 if for every g ∈ K, Kg has geometry
bounded by α > 0 with respect to the collection (Ck(g))k≥0 (in the sense of §3).

Let F : [−µ0, µ0] → Vε(g) be a C2 curve transversal to the stable foliation. Let KF

be the set of all values r ∈ [−µ0, µ0] such that fr = F (r) ∈
⋃

g0∈Wu
ε0
(g0)

W s
ε0(g0). The

holonomy map φF : F (KF ) → W u
ε0(g) associates to each fr the point φF (f) such that

fr ∈W
s
ε0(φF (f)). In local coordinates, the holonomy map φF is given by ψF : KF → Kg

where ψF (t) = ug ◦ φF ◦ F
−1 and KF ,Kg ⊂ R. The C2 curve F : [−µ0, µ0] → Vε(g) is
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an ordered transversal to the stable foliation if F is transversal to the stable foliation,
φF : F (KF )→W u

ε0(g) extends to F ([−µ0, µ0]) as an homeomorphism φ̂F over its image

such that φF (F (KF )) = φ̂F (F (KF )) ∩K.
We note that, by Remark 6.2 and by Theorem 6.15, there is ε1 < ε0 small enough

such that a C2 transversal to W s
ε1(g) in a point f is an ordered transversal to the stable

foliation in a small neighborhood of f .

Theorem 7.1. Let K ⊂ OA be a hyperbolic basic set of a C2 operator T : OA → A which
is robust with respect to (B, C,D). Suppose that there exits ε0 > 0 such that the local
unstable manifolds W u

ε0(g) of g ∈ K have bounded geometry. There exists 0 < ε < ε0
with the property that for every C2 ordered transversal F : [−µ0, µ0] → Vε(g) to the
stable foliation in B, the holonomy φF : F (KF ) → W u

ε0(g) has a C1+θ diffeomorphic
extension to F ([−µ0, µ0]) for some θ > 0.

Example 7.1. As we know from Theorem 2.4, the renormalization operator T = RN :
OA → A is hyperbolic over K. As we shall see in Theorem 8.1, T is robust with respect
to (Ar,As,A0) whenever s < 2 is close to 2 and r > s+1 is not an integer. By Theorem
2.1, there is a two-sided full shift topologically conjugated to T |K. By lemmas 9.3 and
9.6 respectively in pages 403 and 405 of Lyubich’s paper [20], there is α > 0 such that the
local unstable manifolds W u

ε0(g) have geometry bounded by α. Hence the renormalization
operator T satisfies the hypotheses of Theorem 7.1.

In what follows the notationA = O(B) means that µ−11 B ≤ A ≤ µ1B and the notation
A = B(1±O(C)) means that B(1−µ2C) ≤ A ≤ B(1+µ2C) for some constants µ1 > 1
and µ2 > 0.

The proof of Theorem 7.1 will be a consequence of the following lemmas.

Lemma 7.2. For every C2 curve F : [−µ0, µ0]→ Vε(g) transversal to the stable foliation
and for all r, t ∈ [−µ0, µ0] such that r < t, we have

‖ft − fr‖X = O(|t− r|)

|θfr(ft − fr)| = O(|t− r|) ,(7.1)

and for all s, r, t ∈ [−µ0, µ0] such that s < r < t,

‖ft − fr‖X
‖fs − fr‖X

=
|t− r|

|s− r|
(1±O(|t− s|))

‖θfr(ft − fr)‖X
‖θfr(fs − fr)‖X

=
|t− r|

|s− r|
(1±O(|t− s|)) ,(7.2)

where X ∈ {B,C,D}.

Proof. By Lemma 6.2, there are ν1, ν2 > 0 such that for all r ∈ Kf , ‖ur‖X > ν1 and
|θfr(ur)| > ν2. Since F is C2, we have

ft − fr = (t− r)ur ±O(|t− r|2)

θfr (ft − fr) = (t− r)θfr (ur)±O(|t− r|2) ,
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and so (7.1) follows. Taking s < r < t, we get

‖ft − fr‖X
‖fs − fr‖X

=
‖ur‖X |t− r|(1±O(|t− r|))

‖ur‖X |s− r|(1±O(|s− r|))

=
|t− r|

|s− r|
(1±O(|t− s|)) .

Similarly, we obtain the second result in (7.2). ¤

In what follows, it will be more convenient to denote φF (fr) by gψF (r). We will also
work with a fixed 0 < ε < ε0 for which Lemma 6.8 holds.

Lemma 7.3. Set l = l(gψF (r), p) as in Lemma 6.10. Let F : [−µ0, µ0] → Vε(g) be

a C2 curve transversal to the stable foliation. For all p > 0 sufficiently large and all
s, r, t ∈ KF such that

|t− r| = O
(

(δpm0 )
−1
)

|s− r| = O
(

(δpm0 )
−1
)

we have
∥

∥

∥
T lm(ft)− T

lm(fr)
∥

∥

∥

C
= O

(

(

δpmlm
)−1
)

‖T lm(fs)− T
lm(fr)‖C = O

(

(

δpmlm
)−1
)

∥

∥T lm(ft)− T
lm(fr)

∥

∥

C

‖T lm(fs)− T lm(fr)‖C
=

|t− r|

|s− r|

(

1±O
(

(

δpmlm
)−(ρ−1)

))

.(7.3)

Proof. By Lemma 6.2 and (7.1), we get

|θfr(ft − fr)| = O
(

(δpm0 )
−1
)

|θfr(fs − fr)| = O
(

(δpm0 )
−1
)

.

Thus, taking p sufficiently large and using lemmas 6.9 and 6.10 we deduce that
∥

∥

∥
T lm(ft)− T

lm(fr)
∥

∥

∥

C
=

∣

∣

∣
δlm0 θfr(ft − fr)

∣

∣

∣
±O

(

(

δpmlm
)−ρ
)

= O
(

(

δpmlm
)−1
)

±O
(

(

δpmlm
)−ρ
)

= O
(

(

δpmlm
)−1
)

.(7.4)

Similarly,
∥

∥T lm(fs)− T
lm(fr)

∥

∥

C
= O

(

(

δpmlm
)−1
)

. This proves the first two inequalities

in (7.3). By (7.1) and (7.4), we obtain that

∥

∥T lm(ft)− T
lm(fr)

∥

∥

C

‖T lm(fs)− T lm(fr)‖C
=

∣

∣δlm0 θfr(ft − fr)
∣

∣±O
(

(

δpmlm
)−ρ
)

∣

∣δlm0 θfr(fs − fr)
∣

∣±O
(

(

δpmlm
)−ρ
)

=
|θfr(ft − fr)|

(

1±O
(

(

δpmlm
)−(ρ−1)

))

|θfr(fs − fr)|
(

1±O
(

(

δpmlm
)−(ρ−1)

)) .
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Therefore, by Lemma 7.2, we get
∥

∥T lm(ft)− T
lm(fr)

∥

∥

C

‖T lm(fs)− T lm(fr)‖C
=
|t− r|

|s− r|

(

1±O
(

(

δpmlm
)−(ρ−1)

))

,

and this proves the last inequality in (7.3). ¤

Lemma 7.4. Set l = l
(

gψF (r), p
)

as in Lemma 6.10. Let F : [−µ0, µ0] → Vε(g) be a

C2 curve transversal to the stable foliation. For every s ∈ KF and s′ = ψF (s) ∈ Kg, we
have

∥

∥

∥T lm(fs)− T
lm(gs′)

∥

∥

∥

C
≤ O

(

(

δpmlm
)−ρ
)

.

Furthermore, for all p large enough and all s′, r′, t′ ∈ Kg such that s = ψ−1F (s′), r =

ψ−1F (r′), t = ψ−1F (t′) ∈ Kf and

|t′ − r′| = O
(

(δpm0 )
−1
)

|s′ − r′| = O
(

(δpm0 )
−1
)

we have
∥

∥T lm(ft)− T
lm(fr)

∥

∥

C

‖T lm(fs)− T lm(fr)‖C
=

∥

∥T lm(gt′)− T
lm(gr′)

∥

∥

C

‖T lm(gs′)− T lm(gr′)‖C

(

1±O
(

(

δpmlm
)−(ρ−1)

))

.

Proof. By lemmas 6.5 and 6.10, we get
∥

∥

∥
T lm(fs)− T

lm(gs′)
∥

∥

∥

C
≤ C3ε2

−l ≤ O
(

(

δpmlm
)−ρ
)

.

Thus, applying Lemma 7.3 to the transversal given by the local unstable manifold {gt}
we get

∥

∥T lm(ft)− T
lm(fr)

∥

∥

C

‖T lm(fs)− T lm(fr)‖C
=

∥

∥T lm(gt′)− T
lm(gr′)

∥

∥

C

(

1±O
(

(

δpmlm
)−(ρ−1)

))

‖T lm(gs′)− T lm(gr′)‖C

(

1±O
(

(

δpmlm
)−(ρ−1)

))

=

∥

∥T lm(gt′)− T
lm(gr′)

∥

∥

C

‖T lm(gs′)− T lm(gr′)‖C

(

1±O
(

(

δpmlm
)−(ρ−1)

))

.

¤

Proof of Theorem 7.1. Let p > 0 be so large such that lemmas 7.3 and 7.4 are satisfied
and let t, s, r, t′, s′, r′ be as in Lemma 7.4. First, we have the following claim.

Claim.

|t− r| = O
(

(δpm0 )
−1
)

|s− r| = O
(

(δpm0 )
−1
)

.

Assuming this claim we finish the proof of Theorem 7.1 as follows. Set l = l(gr′ , p) as in
Lemma 6.10. By lemmas 6.10 and 7.2, there is 0 < τ1 < 1 such that δpmlm ≤ O (|t′ − r′|τ1).
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Therefore, by lemmas 7.3 and 7.4 we obtain that

|t− r|

|s− r|
=

∥

∥T lm(ft)− T
lm(fr)

∥

∥

C

‖T lm(fs)− T lm(fr)‖C

(

1±O
(

(

δpmlm
)−(ρ−1)

))

=

∥

∥T lm(gt′)− T
lm(gr′)

∥

∥

C

‖T lm(gs′)− T lm(gr′)‖C

(

1±O
(

(

δpmlm
)−(ρ−1)

))

=
|t′ − r′|

|s′ − r′|

(

1±O
(

|t′ − r′|−(ρ−1)τ1
))

(7.5)

Since Kg has bounded geometry and using Theorem 9.5 in page 549 of [26], the inequal-

ities (7.5) imply that the map ψF has a C1+θ diffeomorphic extension to R for some
0 < θ < 1.

Let us prove the claim. Let p̂ be such that |t− r| = O

(

(

δp̂m0

)−1
)

. All that we have

to show is that

(7.6) |p̂− p| ≤ O(1)

Set l̂ = l̂(gr′ , p̂) as in Lemma 6.10.

By lemmas 6.9 and 6.11, and by (7.1), for k ≤ min{l, l̂} we obtain that
∥

∥

∥T km(gt′)− T
km(gr′)

∥

∥

∥

C
=

∣

∣

∣δkm0 θgr(gt′ − gr′)
∣

∣

∣±O
(

(

δpmkm
)−ρ

+ 2−k
)

∥

∥

∥
T km(ft)− T

km(fr)
∥

∥

∥

C
=

∣

∣

∣
δkm0 θfr(ft − fr)

∣

∣

∣
±O

(

(

δp̂mkm

)−ρ
+ 2−k

)

.(7.7)

By Lemma 6.5, we get (for all k ≤ min
{

l, l̂
}

)

∥

∥

∥
T km(ft)− T

km(fr)
∥

∥

∥

C
=

∥

∥

∥
T km(gt′)− T

km(gr′)
∥

∥

∥

C
±O

(

2−k
)

.(7.8)

Let us consider separately the case (i) where p ≤ p̂ and the case (ii) where p ≥ p̂.

Case (i). Here l ≤ l̂ and by Lemma 6.10 we get

(7.9)
(

δp̂mlm

)−1
≤
(

δpmlm
)−1

2−l ≤ O
(

(

δpmlm
)−ρ
)

.

By Lemma 7.3 applied to the transversal given by the local unstable manifold {gt}, we
have

(7.10)
∥

∥

∥
T lm(gt′)− T

lm(gr′)
∥

∥

∥

C
= O

(

(

δpmlm
)−1
)

.

On the other hand, by (7.8), we have
∥

∥

∥T lm(ft)− T
lm(fr)

∥

∥

∥

C
=
∥

∥

∥T lm(gt′)− T
lm(gr′)

∥

∥

∥

C
±O

(

2−l
)

.

But 2−l is much smaller than O
(

(

δpmlm
)−1
)

. Hence by (7.10) we get

(7.11)
∥

∥

∥
T lm(ft)− T

lm(fr)
∥

∥

∥

C
= O

(

(

δpmlm
)−1
)

.
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Thus, by (7.7) and (7.9), we obtain that
∣

∣

∣
δlm0 θfr(ft − fr)

∣

∣

∣
=

∥

∥

∥
T lm(ft)− T

lm(fr)
∥

∥

∥

C
±O

(

(

δp̂mlm

)−ρ
)

±O
(

2−l
)

= O
(

(

δpmlm
)−1
)

±O

(

(

δp̂mlm

)−ρ
)

.

But
∣

∣δlm0 θfr(ft − fr)
∣

∣ = O
(

(

δpmlm
)−1
)

is much larger than

(

(

δp̂mlm

)−ρ
)

. Hence,

∣

∣

∣
δlm0 θfr(ft − fr)

∣

∣

∣
= O

(

(

δpmlm
)−1
)

.

Thus,

|θfr(ft − fr)| = O
(

(δpm0 )
−1
)

.

Therefore, by Lemma 7.2, we get ‖ft − fr‖C = O
(

(δpm0 )
−1
)

which implies (7.6).

Case (ii). Here l̂ ≤ l and by Lemma 6.10, we obtain that

(7.12)
(

δpm
l̂m

)−1
≤
(

δp̂m
l̂m

)−1
2−l̂ ≤ O

(

(

δp̂m
l̂m

)−ρ
)

.

By Lemma 7.3, we obtain that

(7.13)
∥

∥

∥
T l̂m(ft)− T

l̂m(fr)
∥

∥

∥

C
= O

(

(

δp̂m
l̂m

)−1
)

.

On the other hand, by (7.12) and (7.7), we get
∥

∥

∥
T l̂m(ft)− T

l̂m(fr)
∥

∥

∥

C
= O

(∣

∣

∣
δ l̂m0 θfr(ft − fr)

∣

∣

∣

)

+O

(

(

δp̂m
l̂m

)−ρ
)

.

But
(

δp̂m
l̂m

)−ρ
is much smaller than

(

δp̂m
l̂m

)−1
. Hence, by (7.13), we get

(7.14)
∥

∥

∥T l̂m(ft)− T
l̂m(fr)

∥

∥

∥

C
= O

(∣

∣

∣δ l̂m0 θfr(ft − fr)
∣

∣

∣

)

.

By (7.8), we have
∥

∥

∥T l̂m(ft)− T
l̂m(fr)

∥

∥

∥

C
=
∥

∥

∥T l̂m(gt′)− T
l̂m(gr′)

∥

∥

∥

C
+O

(

2−l̂
)

.

But 2−l̂ ≤ O

(

(

δp̂m
l̂m

)−ρ
)

. Hence by (7.13), we obtain that

(7.15)
∥

∥

∥
T l̂m(ft)− T

l̂m(fr)
∥

∥

∥

C
= O

(∥

∥

∥
T l̂m(gt′)− T

l̂m(gr′)
∥

∥

∥

C

)

.

By Lemma 7.2 and (7.7), we get
∥

∥

∥
T l̂m(gt′)− T

l̂m(gr′)
∥

∥

∥

C
= O

(

(

δpm
l̂m

)−1
)

+O

(

(

δp̂m
l̂m

)−ρ
)

.

Thus, by (7.13) and (7.15) we obtain that
∥

∥

∥
T l̂m(gt′)− T

l̂m(gr′)
∥

∥

∥

C
= O

(

(

δpm
l̂m

)−1
)

.

57



Thus, by (7.14) and (7.15) we deduce that

|θfr(ft − fr)| = O
(

(δpm0 )
−1
)

.

Therefore, by Lemma 7.2, we get ‖ft − fr‖C = O
(

(δpm0 )
−1
)

which implies (7.6). ¤

8. The renormalization operator is robust

¿From the very beginning, our main goal is to show that the renormalization oper-
ator is “hyperbolic” in Ur, provided r is sufficiently large. More precisely, we want to
establish Theorem 2.5 (part (ii) follows from Theorem 7.1 and part (iii) will be proved
in §9). We have already at our disposal an abstract theorem (Theorem 6.1) showing
that any robust operator is indeed “hyperbolic”. Hence, our work has been reduced
to showing that the renormalization operator T , or any one of its powers, is robust.
We emphasize the important role played by the geometric estimates of §5.2 in the ver-
ification of properties B6 and B7 of a robust operator (Definition 6.1) for an iterate
of the renormalization operator (see §8.4). Properties B3, B4, and B5 are relatively
straightforward consequences of the properties of the composition operator studied in
§8.1 and are proved in §8.2 and §8.3 .

In this section, we shall prove the following result (see §8.5).

Theorem 8.1. Let T : O → A be the renormalization operator given by Theorem 2.4,
and let s < 2 be close to 2 and r > s + 1 not an integer. Then T is a robust operator
with respect to (Ar,As,A0).

This establishes all the assertions of Theorem 2.5 except (iii), when r is not an integer.
To take care of the integer values of r, we have the following result (proved in §8.6)

Theorem 8.2. If k ≥ 3 is an integer then conditions (i), (ii), (iii) and (iv) of Theorem
2.3 hold true for the renormalization operator acting on Uk. The local unstable manifolds
are real analytic curves. The local stable manifolds are of class C1, and together they
form a continuous lamination whose holonomy is C1+β for some β > 0.

We shall present in the sequel complete proofs of all the estimates that are necessary
for establishing the above results, carefully checking all the properties of robustness
along the way.

In our estimates we will often concern ourselves with a power Tm of T . For each
m ≥ 1, let Om ⊆ O be the (open) set of those f ’s which are mN times renormalizable.
Then Tm is well-defined in Om and we can write

Tm(f) =
1

λf
· fp ◦ Λf ,

where p = p(f,mN), λf = fp(0), and Λf : x 7→ λfx is the linear scaling. Note that p
(and hence λf and Λf ) depends on m, but if m is held fixed then p is a locally constant
function of f ∈ Om. To keep track of the dependence of constants on m, we shall denote
by K those constants that may depend on m, and by c those that are independent of
m.

Likewise, we define Or
m to be the (open) set in Ur of those f ’s which are mN times

renormalizable, so that Tm = RmN : Or
m → Ur is well-defined.
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8.1. A closer look at composition. ¿From a differentiable viewpoint, composition is
a notoriously ill-behaved operation. Such bad behavior is the source of most technical
difficulties arising in this work. Fortunately, some positive results lie at hand. For
example, it is well-known that if r is a positive integer then composition, viewed as an
operator from Cr ×Cr−1 into Cr−1, is a C1 map (see [11]). We shall need not only this
result but also a less well-known generalization of it for Hölder spaces: if r − 1 > s ≥ 1
are real numbers then composition, as an operator from Cr × Cs into Cs, is a C1 map
(we can say a little bit more – see Proposition 8.8 below). For related results on the
smoothness of composition, see [19].

Before we can prove this fact, some auxiliary results are in order. In what follows,
our definition of Cr norm of ϕ ∈ Cr(I) is this: for r = k + α with k ∈ N and 0 ≤ α < 1
we write

‖ϕ‖Cr = max{‖ϕ‖0, ‖ϕ
′‖0, . . . , ‖ϕ

(k)‖0; ‖ϕ
(k)‖α} .

For r = k + Lip we define ‖ϕ‖Cr as above with α = 1. This norm is equivalent to
the one introduced earlier, and has the advantage that ‖ϕ‖Cr = max{‖ϕ‖C0 , ‖ϕ

′‖Cr−1}
whenever r ≥ 1. This allows us to prove certain estimates by induction on k, which will
be very useful later.

Lemma 8.3. Given 0 ≤ α < 1 and 0 ≤ ε ≤ 1−α, let w ∈ Cα+ε(I), ϕ,ψ ∈ C1(I, I) and
||ψ − ϕ||C1 ≤ 1.

(i) If ε > 0 then there exists K = K (‖ψ‖C1) > 0 such that

‖w ◦ ϕ− w ◦ ψ‖Cα ≤ K‖w‖Cα+ε‖ϕ− ψ‖εC1 .

(ii) If ε = 0 then there exist c > 0 and K = K (‖ψ‖C1) > 0 such that

‖w ◦ ϕ− w ◦ ψ‖Cα ≤ c‖w‖Cα‖ψ′‖αC0

+K‖w‖Cα‖ϕ− ψ‖αC1 .

Proof. Let us start proving part (i) of this lemma. By the mean value theorem, we
obtain

(8.1) ‖w ◦ ϕ− w ◦ ψ‖C0 ≤ ‖w‖Cα+ε‖ϕ− ψ‖α+ε
C0

.

If |y − x| ≤ ‖ϕ− ψ‖Cα then

|w ◦ ϕ(y)− w ◦ ϕ(x)| ≤ c0‖w‖Cα+ε‖ϕ‖α+ε
C1
‖ϕ− ψ‖εCα |y − x|α

|w ◦ ψ(y)− w ◦ ψ(x)| ≤ c1‖w‖Cα+ε‖ψ‖α+ε
C1
‖ϕ− ψ‖εCα |y − x|α .

If |y − x| > ‖ϕ− ψ‖Cα , by (8.1) then

‖w ◦ ψ − w ◦ ϕ‖C0 ≤ c2‖w‖Cα+ε‖ϕ− ψ‖εCα |y − x|α ,

which ends the proof of part (i) of this lemma.
Let us prove part (ii) of this lemma. By the mean value theorem, we obtain

(8.2) ‖w ◦ ϕ− w ◦ ψ‖C0 ≤ ‖w‖Cα‖ϕ− ψ‖αC0 .

Furthermore,

|w ◦ ϕ(y)− w ◦ ϕ(x)| ≤ c3‖w‖Cα‖ϕ′‖αC0 |y − x|
α

|w ◦ ψ(y)− w ◦ ψ(x)| ≤ c4‖w‖Cα‖ψ′‖αC0 |y − x|
α ,
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and so

(8.3) ‖w ◦ ϕ− w ◦ ψ‖α ≤ c5‖w‖Cα(‖ϕ′ − ψ′‖C0 + ‖ψ
′‖C0)

α

which ends the proof of part (ii) of this lemma. ¤

We shall need also some estimates on polynomial operators coming from simple al-
gebraic considerations. For every polynomial P of degree d in n variables x1, x2, . . . , xn
over R, define ν(P ) as the sum of the absolute values of the coefficients of P . This is
a well-known valuation in the ring R[x1, x2, . . . , xn], but all that really matters to us is
that ν(P +Q) ≤ ν(P ) + ν(Q) (sub-additivity), and that ν(∂xiP ) ≤ dν(P ).

Lemma 8.4. Let P ∈ R[x1, x2, . . . , xn] be a polynomial of degree d, and let φ1, φ2,
. . . , φn ∈ C

s(I). Then, we have

‖P (φ1, φ2, . . . , φn)‖Cs ≤ ν(P )2sdMd ,

where M = max{1, ‖φ1‖Cs , ‖φ2‖Cs , . . . , ‖φn‖Cs}. Moreover, if ψ1, ψ2, . . . , ψn ∈ Cs(I)
also satisfy ‖ψi‖Cs ≤M for all 1 ≤ i ≤ n, then

‖P (φ1, φ2, . . . , φn)− P (ψ1, ψ2, . . . , ψn)‖Cs ≤ dν(P )2sdMd−1
n
∑

i=1

‖φi − ψi‖Cs .

Proof. The first inequality is immediate from the definition of ν(P ). To prove the second,
note that P : (Cs(I))n → Cs(I) is a C1 map (norm of the sum in the domain of P ).
Using the mean value inequality and the first inequality, we see that

‖P (φ1, φ2, . . . , φn)− P (ψ1, ψ2, . . . , ψn)‖Cs

≤ 2s sup
0≤t≤1

max
i
‖∂xiP (tφ1 + (1− t)ψ1, . . . , tφn + (1− t)ψn)‖Cs

n
∑

i=1

‖φi − ψi‖Cs

≤ 2s(dν(P )2s(d−1)Md−1)
n
∑

i=1

‖φi − ψi‖Cs ,

which is the desired result. ¤

We can now use the estimate given in the above lemmas to prove the following general
proposition.

Let r, s ≥ 1 be real numbers and for each w ∈ Cr(I), let

Θw : Cs(I, I)→ Cs(I)

be the operator given by Θw(ϕ) = w ◦ ϕ.

Proposition 8.5. Let r, s > 1 be real numbers both non-integer, and let w ∈ Cr(I),
ϕ,ψ ∈ Cs(I, I) with ‖ϕ− ψ‖Cs ≤ 1.

(i) If r > s then there exists K = K (‖ϕ‖Cs) > 0 such that

‖w ◦ ϕ− w ◦ ψ‖Cs ≤ K‖w‖Cr‖ϕ− ψ‖εCs

where ε = min{1− {s}, r − s} ({s} denotes the fractional part of s). In
particular, Θw : Cs(I, I)→ Cs(I) is ε-Hölder continuous.
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(ii) If r = s there exists c > 0 and K = K (‖ϕ‖Cs) > 0 such that

‖w ◦ ϕ− w ◦ ψ‖Cr ≤ c‖w‖Cr‖ψ′‖rC0 +K‖w‖Cr‖ϕ− ψ‖αCr ,

where α = {s} is the fractional part of s.

Part (ii) of the above proposition shows one of the main difficulties in this theory
which is the fact that for w ∈ Cs(I) the operator Θw : Cs(I, I)→ Cs(I) is not even C0.

Proof. Let us write s = k + α, with k an integer and 0 < α = {s} < 1, and let

A = w ◦ ϕ− w ◦ ψ .

Since w,ϕ, ψ ∈ C1 and ε ≤ 1− α, by Lemma 8.3 we obtain

‖A‖Cα ≤ K1‖w‖C1‖ϕ− ψ‖
ε
C1 .

By Faa-di-Bruno’s Formula (see [13], p.42), for all 1 ≤ l ≤ k we can write

A(l) = Bl (ϕ)−Bl (ψ)

where

Bl(φ) =

l
∑

j=1

w(j) ◦ φ · Pl,j(φ
′, φ′′, . . . , φ(l−j)) ,

each Pl,j being a (universal, homogeneous) polynomial of degree j in l − j variables
(with integer coefficients explicitly computable from l and j, see [13], p.42). We only

need the expression of Pl,j for j = l; it is easy to check that Pl,l(φ
′) = (φ′)l . Then, we

can decompose A(l) = Cl +Dl, where

Cl =
l
∑

j=1

w(j) ◦ ϕ ·
(

Pl,j

(

ϕ′, ϕ′′, . . . , ϕ(l−j)
)

− Pl,j
(

ψ′, ψ′′, . . . , ψ(l−j)
))

Dl =

l
∑

j=1

(

w(j) ◦ ϕ− w(j) ◦ ψ
)

· Pl,j
(

ψ′, ψ′′, . . . , ψ(l−j)
)

.

By Lemma 8.4 applied to each Pl,j , we have
∥

∥

∥Pl,j

(

ϕ′, ϕ′′, . . . , ϕ(l−j)
)

− Pl,j
(

ψ′, ψ′′, . . . , ψ(l−j)
)∥

∥

∥

Cα
≤ K2‖ϕ− ψ‖Cs .

Therefore, for all 1 ≤ l ≤ k we get

‖Cl‖Cα ≤ K3‖w‖Cs‖ϕ− ψ‖Cs .

Let us now rewrite Dl = El + Fl where,

El =
l−1
∑

j=1

(

w(j) ◦ ϕ− w(j) ◦ ψ
)

· Pl,j
(

ψ′, ψ′′, . . . , ψ(l−j)
)

Fl =
(

w(l) ◦ ϕ− w(l) ◦ ψ
)

·
(

ψ′
)l
.

In bounding the first summation in El, we apply Lemma 8.3. Since w(j), ϕ, ψ is at least
C1 we get

∥

∥

∥
w(j) ◦ ϕ− w(j) ◦ ψ

∥

∥

∥

Cα
≤ K4

∥

∥

∥
w(j)

∥

∥

∥

C1
‖ϕ− ψ‖1−α

C1
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for all with 1 ≤ j ≤ l − 1. ¿From this and Lemma 8.4, for all 1 ≤ l ≤ k we obtain that

‖El‖Cα ≤ K5‖w‖Cs‖ϕ− ψ‖1−αCs .

Our task has been reduced to bounding the Cα norm of Fl. Here, we will do separately
the proof of part (i) and part (ii) of this Proposition.

Let us prove part (i) first. Here, for all 1 ≤ l ≤ k we have that ϕ,ψ are at least C1

and that w(l) is at least Cα+ε, and so by Lemma 8.3 we get
∥

∥

∥
w(l) ◦ ϕ− w(l) ◦ ψ

∥

∥

∥

Cα+ε
≤ K6‖w‖Cl+α+ε‖ϕ− ψ‖εC1 .

Thus, for all 1 ≤ l ≤ k we obtain

‖Fl‖Cα ≤ K7‖w‖Cr‖ϕ− ψ‖εCs ,

which ends the proof of part (i).

Let us now prove part (ii). We know that w(l), ϕ, ψ ∈ C1 for all 1 ≤ l ≤ k− 1, and so
by Lemma 8.3 we have

∥

∥

∥w(l) ◦ ϕ− w(l) ◦ ψ
∥

∥

∥

Cα+ε
≤ K8‖w‖Cl+α+ε‖ϕ− ψ‖αC1 .

Thus, for all 1 ≤ l ≤ k − 1 we obtain

‖Fl‖Cα ≤ K9‖w‖Cr‖ϕ− ψ‖αCs .

Therefore, we just have to bound ‖Fk‖Cα . Here, w(k) is only Cα. From the inequalities
(8.2) and (8.3) in the proof of Lemma 8.3, we get

∥

∥

∥w(k) ◦ ϕ− w(k) ◦ ψ
∥

∥

∥

C0
≤ c1‖w‖Cr‖ϕ− ψ‖αC0

∥

∥

∥
w(k) ◦ ϕ− w(k) ◦ ψ

∥

∥

∥

α
≤ c2‖w‖Cr

(∥

∥ψ′
∥

∥

C0
+
∥

∥ϕ′ − ψ′
∥

∥

C0

)α
,

and so

‖Fk‖Cα ≤ c3‖ψ‖
k
C1+α‖w‖Cr‖ϕ− ψ‖αC0

+c4‖ψ‖
k
C1‖w‖Cr

(∥

∥ψ′
∥

∥

C0
+
∥

∥ϕ′ − ψ′
∥

∥

C0

)α
,

which ends the proof of part (ii). ¤

Lemma 8.6. Given 0 ≤ α < 1 and 0 < ε ≤ 1−α, let f ∈ C1+α+ε(I), g ∈ C1+α(I, I) and
v ∈ C1+α(I) with ‖v‖C1+α ≤ 1 and g+v ∈ C1+α(I, I). There exists K = K (‖g‖C1+α) >
0 such that

∥

∥f ◦ (g + v)− f ◦ g − f ′ ◦ g · v
∥

∥

Cα ≤ K‖f‖1+α+ε‖v‖
1+ε
C1

.

In particular, there exists K = K (‖g‖C1+α) > 0 such that

‖f ◦ (g + v)− f ◦ g‖Cα ≤ K‖f‖1+α+ε‖v‖C1 .

Proof. Let us define

ψ(x) = f(g(x) + v(x))− f(g(x))− f ′(g(x))v(x) .
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A simple computation shows that ψ(x)− ψ(y) = A+B + C, where

A = f(g(x) + v(x))− f(g(y) + v(y))

B = −f(g(x)) + f(g(y))

C = −f ′(g(x))v(x)) + f ′(g(y))v(y)) .

To estimate |ψ(x)− ψ(y)|, we consider two distinct cases.

Case 1: We have |x− y| < ‖v‖C1 .
Here, there exist ξx,y ∈ [g(x) + v(x), g(y) + v(y)] and ηx,y ∈ [g(x), g(y)] such that

A = f ′(ξx,y)(g(x)− g(y)) + f ′(ξx,y)(v(x)− v(y))

B = −f ′(ηx,y)(g(x)− g(y)).

Since |x− y| < ‖v‖C1 , we have |ξx,y − ηx,y| < c1‖v‖C1 , and so
∣

∣

(

f ′(ξx,y)− f
′(ηx,y)

)

(g(x)− g(y))
∣

∣ ≤ ‖f ′‖α+ε |ξx,y − ηx,y|
α+ε(8.4)

≤ c2 ‖g‖C1‖f‖C1+α+ε‖v‖
1+ε
C1

|x− y|α .(8.5)

Moreover,
∣

∣f ′(ξx,y)(v(x)− v(y))
∣

∣ ≤ ‖f ′‖C0 ‖v
′‖C0 |x− y|(8.6)

≤ ‖f‖C1 ‖v‖
2−α
C1

|x− y|α .

By inequalities (8.4) and (8.6), and since ε ≤ 1− α we get

(8.7) |A+B| ≤ c3 ‖f‖C1+α+ε (‖v‖C1)
1+ε |x− y|α.

Now, we bound C as follows

|C| ≤ |f ′(g(x))(v(x)− v(y))|+ |v(y)(f ′(g(x))− f ′(g(y)))|

≤ ‖f ′(g(x))‖C0 ‖v
′‖C0 |x− y|+ ‖v‖C0‖f

′‖α+ε‖g
′‖α+ε
C0
|x− y|α+ε

≤ c4 ‖f‖C1+α+ε‖v‖
1+ε
C1

|x− y|α .(8.8)

Therefore, by inequalities (8.7) and (8.8), we get

|ψ(x)− ψ(y)| ≤ c5‖f‖C1+α+ε‖v‖
1+ε
C1

|x− y|α .

Case 2: We have |x− y| ≥ ‖v‖C1 .
Here, there exists ξx ∈ [g(x), g(x) + v(x)] such that

ψ(x) =
(

f ′(ξx)− f
′(g(x))

)

v(x) .

Since |ξx − g(x)| ≤ |v(x)|, we have

|ψ(x)| ≤ c6 ‖f
′‖α+ε |v(x)|

1+α+ε

≤ c6‖f‖C1+α+ε‖v‖
1+α+ε
C1

.(8.9)

Since |x− y| ≥ ‖v‖C1 , we get

|ψ(x)− ψ(y)| ≤ |ψ(x)|+ |ψ(y)|

≤ 2 c6 ‖f‖C1+α+ε‖v‖
1+ε
C1
|x− y|α

which concludes the proof. Inequality (8.9) also shows that ‖ψ‖C0 ≤ c7‖f‖C1+α+ε‖v‖
1+ε
C1

.
¤
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Proposition 8.7. Let 2 ≤ s + 1 < r be real numbers, and let f ∈ Cr(I), g ∈ Cs(I, I).
There exists K = K (‖g‖Cs) > 0 such that, for all v ∈ Cs(I) with ‖v‖Cs ≤ 1 and
g + v ∈ Cs(I, I), we have

(8.10)
∥

∥f ◦ (g + v)− f ◦ g − f ′ ◦ g · v
∥

∥

Cs ≤ K‖f‖Cr‖v‖1+θCs ,

where θ = min{1−{s}, r− s− 1}. In particular, (a) the operator Θf : Cs(I, I)→ Cs(I)
is C1 and its derivative is given by DΘf (g)v = f ′ ◦ g · v, and (b) there exists K =
K (‖g‖Cs) > 0 such that for all v as above we have

(8.11) ‖f ◦ (g + v)− f ◦ g‖Cs ≤ K‖f‖Cr‖v‖Cs .

Proof. In this proof we use K1,K2, . . . to denote constants that depend only on ‖g‖Cs .
Consider the remainder term

F = f ◦ (g + v)− f ◦ g − f ′ ◦ g · v ,

as well as its derivative F ′ = A+B, where

A =
(

f ′ ◦ (g + v)− f ′ ◦ g − f ′′ ◦ g · v
)

· g′

B =
(

f ′ ◦ (g + v)− f ′ ◦ g
)

· v′ .

We want to show that
∥

∥F ′
∥

∥

Cs ≤ K1‖f‖Cr‖v‖1+θCs

The proof will be by induction on the integral part of s. Note however that the mean
value theorem already gives us ‖F‖C0 ≤ K2‖f

′′‖C0‖v‖
2
C0 independently of s.

First we deal with the base of induction, namely when 1 ≤ s < 2, say s = 1 + α. By
Lemma 8.6, we have

‖A‖Cα ≤ K3‖f
′‖C1+α+θ (‖v‖C1)

1+θ .

The same Lemma 8.6 yields

‖B‖Cα ≤ K4‖f
′‖C1+α+θ (‖v‖C1+α)

2 .

This establishes the base of induction.
Now suppose that our lemma holds for s > 1. We will prove from this that it holds

for s+ 1. To do this, it suffices to show that

(8.12)
∥

∥F ′
∥

∥

Cs ≤ K5‖f‖Cr‖v‖1+θ
Cs+1 .

The proof is more of the same. By the induction hypothesis applied to f ′, we have

(8.13) ‖A‖Cs ≤ K6‖f
′‖Cr−1 (‖v‖Cs)1+θ .

The same fact also gives

(8.14) ‖B‖Cs ≤ K7‖f
′‖Cr−1 (‖v‖C1+s)

2 .

Putting (8.13) and (8.14) together we get (8.12), and so the induction is complete. ¤

Proposition 8.8. Let 2 ≤ s + 1 < r be real numbers. The composition operator
Θ : Cr(I) × Cs(I, I) → Cs(I) given by Θ(f, g) is C1+θ and its derivative is given by
DΘ(f, g)(u, v) = u ◦ g + f ′ ◦ g · v. In particular, there exists K = K (‖f‖Cr , ‖g‖Cs) > 0
such that, for all ‖u‖Cr ≤ 1 and ‖v‖Cs ≤ 1 with g + v ∈ Cs(I, I), we have

(8.15) ‖Θ(f + u, g + v)−Θ(f, g)−DΘ(f, g)(u, v)‖Cs ≤ K(‖u‖Cr + ‖v‖Cs)1+θ ,
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where θ = min{1− {s}, r − s− 1}.

Proof. In this proof, we denote by K1,K2, . . . positive constants depending only on
‖g‖Cs . Let us take u ∈ Cr(I) and v ∈ Cs(I) such that ‖u‖Cr ≤ 1 and ‖v‖Cs ≤ 1,
respectively. We have

F = Θ(f + u, g + v)−Θ(f, g)− u ◦ g − f ′ ◦ g · v

= f ◦ (g + v)− f ◦ g − f ′ ◦ g · v + u ◦ (g + v)− u ◦ g .

Using Proposition 8.7, we see that
∥

∥f ◦ (g + v)− f ◦ g − f ′ ◦ g · v
∥

∥

Cs ≤ K1‖f‖Cr(‖v‖Cs)1+θ .

The same Proposition 8.7 with u replacing f yields

‖u ◦ (g + v)− u ◦ g‖Cs ≤ ‖u′ ◦ g · v‖Cs +K2‖u‖Cr(‖v‖Cs)1+θ

≤ K3‖u‖Cr‖v‖Cs .

Therefore we get

‖F‖Cs ≤ K1‖f‖Cr(‖v‖Cs)1+θ +K3‖u‖Cr‖v‖Cs ,

which proves that Θ is C1 and that (8.15) is satisfied. Now, we have that

DΘ(f + φ, g + ψ)(u, v)−DΘ(f, g)(u, v) = A+B + C

where

A = u ◦ (g + ψ)− u ◦ g

B =
(

f ′ ◦ (g + ψ)− f ′ ◦ g
)

· v

C = φ′ ◦ (g + ψ) · v .

By Proposition 8.5, we obtain that

‖A‖Cs ≤ K4‖u‖Cr−1‖ψ‖θCs

‖B‖Cs ≤ K5‖f‖Cr‖ψ‖θCs · ‖v‖Cs .

Letting k be the integer part of s and ϕ = g+ψ, and using Faa-di-Bruno’s Formula, we
have

(

φ′ ◦ ϕ
)(k)

=

k
∑

j=1

φ(j+1) ◦ ϕ · Pk,j(ϕ
′, ϕ′′, . . . , ϕ(k−j)) ,

each Pk,j being a (universal, homogeneous) polynomial of degree j in k − j variables.

Hence, using Lemma 8.4, we get that ‖C‖Cs = K6‖∆f‖Cr‖v‖Cs . Thus, Θ is a C1+θ

operator. ¤

Corollary 8.9. Let r, s > 0 be real numbers with r − 1 > s ≥ 1 and for each positive
integer m, let Qm : Cr(I, I)→ Cs(I, I) be the operator given by Qm(f) = fm.

(i) Let 0 ≤ t ≤ r and let U : Ct(I, I) → Cs(I, I) be a C1+θ operator for
some 0 < θ < 1. Then the operator Um : Cr(I, I) → Cs(I, I) given by

Um(f) = Qm ◦ U(f) is C1+θ
′

for some 0 < θ′ = θ′(θ, r, s) < 1.
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(ii) In particular, the operator Qm : Cr(I, I) → Cs(I, I) is C1+θ
′′

for
some 0 < θ′′ = θ′′(r, s) < 1 and there exists K = K (m, ‖f‖Cr) > 0 such
that

(8.16) ‖Qm(f + u)−Qm(f)−DQm(f)u‖Cs ≤ K‖u‖1+θ
′′

Cr .

Proof. First note that Um+1(f) = Θ(f, Um(f)). The operator U1 arises as the compo-
sition of the operator Cr(I, I) → Cr(I, I) × Cs(I, I) given by f 7→ (f, U(f)), which is
C1+θ because U is C1+θ (and Cr(I, I) embeds in Ct), with the composition operator

Θ : Cr(I, I) × Cs(I, I) → Cs(I, I), which is C1+θ
′′

for some 0 < θ′′ = θ′′(r, s) < 1 by
Proposition 8.8. The desired result for part (i) then follows by induction. Part (ii) is a
corollary of part (i), and by a computation (8.16) follows from (8.15). ¤

Proposition 8.10. Let r, s, t be real numbers with 2 ≤ s + 1 < r and t ≥ 0. Let
U : Ct(I, I)→ Cs(I, I) be a C1 operator. Then for each φ ∈ Cr(I) and each ψ ∈ Ct(I, I)
there exists a function σψ : R+ → R+ with σψ(h)/h→ 0 as h→ 0, varying continuously
with ψ, such that for all v ∈ Ct(I) with ψ + v ∈ Ct(I, I) we have

(8.17)
∥

∥φ ◦ U(ψ + v)− φ ◦ U(ψ)− φ′ ◦ U(ψ) ·DU(ψ)v
∥

∥

Cs ≤ σψ(‖v‖Ct) .

Proof. As before, we denote byK1,K2, . . . positive constants that depend only on ‖ψ‖Ct .
We have that

φ ◦ U(ψ + v)− φ ◦ U(ψ)− φ′ ◦ U(ψ) ·DU(ψ)v = A+B

where

A = φ ◦ U(ψ + v)− φ ◦ U(ψ)− φ′ ◦ U(ψ) · (U(ψ + v)− U(ψ))

B = φ′ ◦ U(ψ) · (U(ψ + v)− U(ψ)−DU(ψ)v) .

Since U is C1, there exists a continuous function νψ : R+ → R+ with νψ(h)/h → 0 as
h→ 0, varying continuously with ψ, such that

‖U(ψ + v)− U(ψ)−DU(ψ)v‖Cs ≤ νψ(‖v‖Ct) .

Hence, applying Proposition 8.7 with f = φ and g = U(ψ) and v replaced by U(ψ +
v)− U(ψ), we get

‖A‖Cs ≤ K2‖φ‖Cr (‖U(ψ + v)− U(ψ)‖Cs)1+θ

≤ K3‖φ‖Cr

(

‖DU(ψ)‖1+θ‖v‖1+θCt

)

,

and

‖B‖Cs ≤ K4‖φ‖Crνψ(‖v‖Ct) ,

where K3 = K3 (‖U(ψ)‖Cs , ‖DU(ψ)‖, νψ) and K4 = K2 (‖U(ψ)‖Cs). Therefore,

‖A+B‖Cs ≤ K3‖φ‖Cr‖v‖1+θCt +K4‖φ‖Crνψ(‖v‖Ct) .

This completes the proof. ¤
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Corollary 8.11. Let r, s, t be real numbers with r − 1 > s > 1 and 0 ≤ t ≤ r, and
let U : Ct(I, I) → Cs(I, I) be a C1 operator. For each positive integer n the operator
Vn : Cr(I, I) → Cs(I) given by Vn(f) = (fm)′ ◦ U(f) is differentiable at every g ∈
Cr+1(I, I) ⊆ Cr(I, I), and as map from Cr+1(I, I) into L(Cr(I), Cs(I)), the derivative
operator g 7→ DVn(g) is continuous.

Proof. First note that by the chain rule,

Vn(f) =
n−1
∏

j=0

f ′ ◦
(

f (j) ◦ U(f)
)

=
n−1
∏

j=0

f ′ ◦ Uj(f) .

This reduces the problem to the case n = 1. We claim that the linear operator

L(v) = v′ ◦ U(g) + g′′ ◦ U(g) ·DU(g)v

is the derivative of V1 at g ∈ Cr+1(I, I). Indeed, we have

V1(g + v)− V1(g)− L(v) = A+B ,

where

A = g′ ◦ U(g + v)− g′ ◦ U(g)− g′′ ◦ U(g) ·DU(g)v

B = v′ ◦ U(g + v)− v′ ◦ U(g) .

By Proposition 8.10 applied to φ = g′ and ψ = g, there exists K1 = K1(‖g‖Cr+1) such
that

‖A‖Cs ≤ K1σψ(‖v‖Cr) ,

where σψ : R+ → R+ is a continuous function varying continuously with ψ such that
σψ(h)/h → 0 as h → 0. On the other hand, by part (i) of Proposition 8.5 and since U
is C1, we have

‖B‖Cs ≤ K2‖v‖Cr‖U(g + v)− U(g)‖εCs

≤ K3 (‖v‖Cr)1+ε .

where 0 < ε = min{1 − {s}, r − s} < 1, K2 = K2(‖U(g)‖Cs) and K3 = K3(‖U(g)‖Cs ,
‖DU(g)‖, σψ(‖v‖Cr)). Combining these inequalities, we deduce that V1 is differentiable
at g and DV1(g) = L as claimed. It is clear from the expression defining it that L varies
continuously with g ∈ Cr+1(I, I). ¤

8.2. Checking properties B3 and B4. We now proceed to verify that the operator T
satisfies properties B3 and B4 of robustness. They will follow respectively from lemmas
8.13 and 8.14. First it is necessary to analyze the behavior of the linear scaling used in
such operators. Let us fix a positive integer p and for each f ∈ Cr(I, I) let Λf be the
linear map x 7→ λfx, where λf = fp(0).

Lemma 8.12. For r > 2, the maps Λ : Cr(I, I) → L(R,R) given by Λ(f) = Λf and

λ : Cr(I, I) → R given by λ(f) = λf are both C1+θ for some 0 < θ = θ(r, s) < 1. In
particular, there is K = K(p, ‖f‖Cr) > 0 such that for all v ∈ Cr(I) with ‖v‖Cr ≤ 1
and f + v ∈ Cr(I, I), we have

(8.18) ‖λ(f + v)− λ(f)−Dλ(f)‖Cr ≤ K‖v‖1+θCr ,

The above inequality also holds replacing λ by Λ.
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Proof. Choosing 1 < s < r−1, we see that λ = E ◦Qp where Qp : C
r(I, I)→ Cs(I, I) is

the operator Qp(f) = fp, which is C1+θ for some 0 < θ = θ(r, s) < 1, and E : Cs(I, I)→
R is the evaluation map E(g) = g(0), which is linear. Therefore, by Corollary 8.9, λ is
C1+θ and (8.18) follows from (8.16) and the linearity of E. The proof for Λ is entirely
analogous. ¤

We will also need to use the operators Un : Cr(I, I)→ Cs(I) given by Un(f) = fn◦Λf
for all n ≥ 0.

Property B3 for the operator T is a consequence of the following lemma.

Lemma 8.13. For 2 < s+1 < r and for each n ≥ 0, the operator Un : Cr(I, I)→ Cs(I)
is C1+θ for some 0 < θ = θ(r, s) < 1. In particular, Tm : Or

m → Us is also a C1+θ

operator.

Proof. This follows at once from Lemma 8.12 and Corollary 8.9 applied to U = Λ. ¤

The following lemma is all we need to verify property B4 for the operator T . In this
case g is a map in the limit set K of T , hence analytic, and v = ug is a tangent vector
to the unstable manifold of g, which is analytic as well.

Lemma 8.14. For 2 < s + 1 < r, the map Or
m → Us given by f 7→ DTm(f)v is

differentiable at f = g ∈ K. Furthermore, for every m ≥ 1 there exist Cm > 1 and
νm > 0 such that for each g ∈ K and f ∈ Or

m with ‖f − g‖Cr < νm and all v ∈ Ar with
‖v‖Cr = 1 we have

(8.19) ‖DTm(f)v −DTm(g)v‖Cs ≤ Cm‖f − g‖Cr .

Proof. Let E : Cs(I, I)→ R be the evaluation map E(g) = g(0), which is linear. Recall
that the derivative of Tm is given by the expression

DTm(f)v =
1

λf

p−1
∑

j=0

(f j)′ ◦ Up−j(f) · v ◦ Up−j−1(f)(8.20)

+
1

λf
[id · (Tmf)′ − Tmf ]

p−1
∑

j=0

E
(

(f j)′ ◦ Up−j(f)
)

· E (v ◦ Up−j−1(f)) ,

where λf = E ◦fp and id : R → R is the identity map. Each term of the first summation
in (8.20) is differentiable at f = g. To see this apply Lemma 8.13 and Corollary 8.11
to each of the operators f 7→ (f j)′ ◦ Up−j(f) as well as Proposition 8.7 to each of the
operators f 7→ v ◦ Up−j(f). On the other hand, each term of the second summation
in (8.20) equals the corresponding term in the first summation post-composed with the
evaluation map E (which is linear), and is therefore differentiable at f = g. The analysis
of the expression in square brackets in (8.20) is similar. By Lemma 8.12 and Corollary
8.11, the operator f 7→ Tm(f)′ = (fp)′ ◦ Λf is differentiable at f = g, and the operator
f 7→ Tm(f) = λf · f

p ◦ Λf is also differentiable at f = g by Lemma 8.12 and Corollary
8.9. ¿From this fact and compactness of K the inequality (8.19) follows. ¤
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8.3. Checking property B5. The fifth property is verified in Lemma 8.17 below. First
we will need to prove the following two lemmas about the operators Ui : C

t+1+ε(I, I)→
Ct(I) with t ≥ 1. Recall that Ui(f) = f i ◦ Λf .

Lemma 8.15. For every f ∈ Ct+1+ε(I, I) and all v ∈ Ct(I) with small norm and such
that f + v ∈ Ct(I, I), we have

‖Ui(f + v)− Ui(f)‖Ct ≤ K‖v‖Ct

for all 0 ≤ i ≤ p where K = K (p, ‖f‖Ct+1+ε).

Proof. Note that

Ui+1(f + v)− Ui+1(f) = f ◦ Ui(f + v)− f ◦ Ui(f) + v ◦ Ui(f + v)

By Proposition 8.7, there is K1 = K1 (p, ‖f‖Ct+1+ε) such that

‖Ui+1(f + v)− Ui+1(f)‖Ct ≤ K1‖Ui(f + v)− Ui(f)‖Ct + ‖v ◦ Ui(f + v)‖Ct .

The required estimate now follows by induction, because U0 is C1. ¤

Lemma 8.16. For every f,∈ Ct+1+ε(I, I) and all v ∈ Ct+1+ε(I) with small norm and
such that f + v ∈ Ct+1+ε(I, I), we have

‖Ui(f + v)− Ui(f)−DUi(f)v‖Ct ≤ K‖v‖1+θCt ,

for all 0 ≤ i ≤ p, for some 0 < θ = θ(t, ε) < 1 and K = K(p, ‖f‖Ct) > 0.

Proof. In this proof we denote by K1,K2, . . . the positive constants depending only onm
and ‖Ui(f)‖Ct . Again we use induction, the case i = 0 follows from the differentiability
of the scaling f → Λf and by inequality (8.18). We have

Ui+1(f + v)− Ui+1(f)−DUi+1(f)v = A+B + C

where

A = f ◦ Ui(f + v)− f ◦ Ui(f)− f
′ ◦ Ui(f) · (Ui(f + v)− Ui(f))

B = f ′ ◦ Ui(f) · (Ui(f + v)− Ui(f)−DUi(f)v)

C = v ◦ Ui(f + v)− v ◦ Ui(f) .

By Proposition 8.7, we have

‖A‖Ct ≤ K1‖Ui(f + v)− Ui(f)‖
1+ε
Ct .

By Lemma 8.15, we get
‖A‖Ct−1 ≤ K2‖v‖

1+ε
Ct .

On the other hand, since v is Ct+1+ε/2, we know again from Proposition 8.7 that

‖C‖Ct ≤ K3‖v‖Ct+1+ε/2‖Ui(f + v)− Ui(f)‖Ct ≤ K4‖v‖Cr+1+ε/2‖v‖Ct .

Since v has bounded Ct+1+ε norm, by an interpolation of norms, we have ‖v‖Ct+1+ε/2 ≤

K5‖v‖
θ1
Ct for some θ1 > 0. Therefore, taking θ = min{ε, θ1} we get

‖C‖Ct ≤ K6‖v‖
1+θ
Ct .

This allows the induction as desired. ¤

Property B5 for the operator T is a direct consequence of the following lemma.
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Lemma 8.17. For every f,∈ Cs+1+ε(I, I) and all v ∈ Cs+1+ε(I) with small norm such
that f + v ∈ Cs+1+ε(I, I), we have

‖T (f + v)− T (f)−DT (f)(v)‖Cs ≤ K‖v‖1+τCs ,

for some 0 < τ = τ(s, ε) < 1 and K(p, ‖f‖Cs) > 0.

Proof. In this proof we denote by K1,K2, . . . the positive constants depending only on
m and ‖Ui(f)‖Cs . Start observing that since T (f) = λ−1f · Up(f), we have

T (f + v)− T (f)−DT (f)v = A+B + C

where

A = λ−1f · (Up(f + v)− Up(f)−DUp(f)v)

B =
(

λ−1f+v − λ
−1
f −Dλ−1f (v)

)

· Up(f + v)

C = Dλ−1f (v) · (Up(f + v)− Up(f)) .

Applying Lemma 8.16 with t = s we get

‖A‖Cs = K1‖v‖
1+θ1
Cs ,

for some 0 < θ1 = θ1(s, ε) < 1. By Lemma 8.12 there is 0 < θ2 = {s} < 1 such that

‖B‖Cs ≤ K2‖v‖
1+θ2
Cs .

By Lemma 8.15, we have ‖Up(f + v)− Up(f)‖Cs ≤ K3‖v‖Cs and so

‖C‖Cs ≤ K4‖v‖
2
Cs .

Therefore, it is enough to take τ = min{θ1, θ2}. ¤

8.4. Checking properties B6 and B7. We now move on to the task of proving that
the operator T = RN of Theorem 2.4 satisfies properties B6 and B7 in the definition
of robustness. Unlike the previous ones, the verification of these (last) two properties
depends upon the geometry of the post-critical sets of maps near the limit set K of T .
The estimates performed here are the most delicate, and involve the results of §5.2.

Recall that Tm is well-defined on an open set Om in the Banach space A = AΩa (see
§3), which contains K. We shall denote the renormalization intervals ∆0,mN , ∆1,mN ,
. . ., ∆p,mN simply by ∆i = ∆i,mN (this shortened notation should cause no harm, since
N is fixed since Theorem 2.4 and m will be fixed in the particular estimates involving
these intervals).

We can write the derivative of Tm in the following form

DTm(f)v = A(f)

p−1
∑

j=0

Bj(f) · Cj(f) +A(f) ·D(f)

p−1
∑

j=0

E ◦Bj(f) · E ◦ Cj(f)

70



where

A(f) = (λf )
−1 ,

Bj(f) =
(

f j
)′
◦ Up−j(f) ,

Cj(f) = v ◦ Up−j−1(f) ,

D(f) = id · (fp)′ ◦ U0(f)− λf · Up(f) .

To carry out our estimates for Tm, we shall use the operators Ui : f 7→ f i ◦Λf (i ≥ 0).
Note that U0(f) = Λf , hence U0 is C1 in whichever space Cr(I, I) we work in, because
the scaling f 7→ Λf is C1 by Lemma 8.12.

First we need some estimates for Ui. It is clear that ‖Ui(f)‖C0 ≤ 1 always, but more
is true.

Lemma 8.18. There exists C > 0 with the following property. For every m, there exists
an open neigbourhood Om ⊂ Om of K such that for all f ∈ Om, we have

‖Bj(f)‖C0 ≤ C
|∆0|

|∆p−j |
,

for all 0 ≤ j ≤ p− 1. Furthermore, ‖Ui(f)
′‖C0 ≤ C|∆i|, for all 0 ≤ i ≤ p.

Proof. Use bounded distortion and the real bounds. ¤

Lemma 8.19. For all f ∈ Om and all v ∈ Cr0(I) with small norm, we have

‖Ui(f + v)− Ui(f)‖Cr ≤ K‖v‖Cr

for all 0 ≤ i ≤ p, where K = K(m) > 0.

Proof. This lemma follows from Lemma 8.15. ¤

Next, we show an essential result to prove that the renormalization operator satisfies
properties B6 and B7. Here, we use again in a crucial way the geometric properties of
the postcritical set of f ∈ Om proved in §5.

Proposition 8.20. (i) For every t > 2 which is not an integer there exist 0 < µ < 1
and C > 0 with the following property. For every g ∈ K and for every m, there is an
η > 0 such that for all f ∈ Om with ‖f − g‖A < η and for all w ∈ At with ‖w‖Ct < η
we have

(8.21)

∥

∥

∥

∥

∥

∥

A(f)

p−1
∑

j=0

Bj(f) (Cj(f + w)− Cj(f))

∥

∥

∥

∥

∥

∥

Ct

≤ Cµm‖v‖Ct .

(ii) For every µ > 1 close to one, there is s < 2 close to two and C > 0 with the
following property: for every g ∈ K and for every m, there is an η > 0 such that for all
f ∈ Om with ‖f − g‖A < η and for all w ∈ At with ‖w‖Ct < η we have that inequality
(8.21) above is also satisfied.
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Proof. Below, the positive constants c1, c2, . . . depend only on t (and the real bounds),
while the positive constants K0,K1,K2, . . . may depend also on m.

Let k and 0 < α < 1 be respectively the integer and the fractional part of t (when
t = k + Lip take α = 1). We start observing that for each j we have

‖Bj(f) (Cj(f + w)− Cj(f))‖Ct ≤ ‖Bj(f)‖C0‖Cj(f + w)− Cj(f)‖Ct

+K0‖Bj(f)‖Ct‖Cj(f + w)− Cj(f)‖Ck .(8.22)

Note that in the right-hand side of (8.22) only the second term carries a constantK0. By
Lemma 8.18, there is c1 > 0 such that for every integerm there is an open neighbourhood
Om of K with the property that for each f ∈ Om we have

(8.23) ‖Bj(f)‖C0 ≤ c1
|∆0|

|∆p−j |
.

In that neighborhood, we also have ‖Bj(f)‖Ct ≤ K1. By Proposition 8.5 and Lemma
8.19, taking 0 < ε < 1 such that α− ε > 0, we obtain

‖Cj(f + w)− Cj(f)‖Ck ≤ ‖Cj(f + w)− Cj(f)‖Ct−ε

≤ K2‖v‖Ct‖Up−j−1(f + w)− Up−j−1(f)‖
ε
Ct

≤ K3‖v‖Ct‖w‖εCt .(8.24)

On the other hand, putting together Proposition 8.5 with Lemma 8.18 and with Lemma
8.19, we get

‖Cj(f + w)− Cj(f)‖Ct ≤ c2‖Up−j−1(f)
′‖tC0‖v‖Ct

+K4‖Up−j−1(f + w)− Up−j−1(f)‖
α
Ct‖v‖Ct

≤ c3|∆p−j−1|
t‖v‖Ct +K5‖w‖

α
Ct‖v‖Ct .(8.25)

The first term on the last line of (8.25) looks a bit dangerous. What saves us here is the
geometric control on the post-critical set of f (hence on the intervals ∆i) that we have
at our disposal since §5.2. Substituting (8.23), (8.24) and (8.25) in (8.22) and adding
up the terms with j = 0, . . . , p− 1 we arrive at

∥

∥

∥

∥

∥

∥

A(f)

p−1
∑

j=0

Bj(f) (Cj(f + w)− Cj(f))

∥

∥

∥

∥

∥

∥

Ct

≤ c4







1

|∆0|

p−1
∑

j=0

|∆0| · |∆p−j−1|
t

|∆p−j |
+K5‖w‖

ε
Ct







‖v‖Ct ,
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But as we have seen in §5.2 :

(i) By Proposition 5.5 and Remark 5.1, if t > 2 there exist 0 < γ < 1 and
C > 0 with the following property. For every g ∈ K and every m > 0,
there exists an η > 0 such that for all f ∈ Om with ‖f − g‖A < η we
have

(8.26)

p−1
∑

j=0

|∆j |
t

|∆j+1|
≤ CγmN ,

(ii) By Propostion 5.8 and Remark 5.1, for every γ > 1 close to one, there
exists t < 2 close to two and C > 0 with the following property. For every
g ∈ K and every m >, there exists η > 0 such that for all f ∈ Om with
‖f − g‖A < η we have that the inequality (8.26) above is also satisfied.

These last estimates end the proof of this proposition, provided we take µ = γN and
η < µm/ε. ¤

We arrive at last to the main two results of this section.

Theorem 8.21. (i) If t > 2 is not an integer, there exist 0 < µ < 1 and C > 0 with the
following property. For every g ∈ K and for every m, there is an η > 0 such that for all
f ∈ Om with ‖f − g‖A < η and for all w ∈ At with ‖w‖Ct < η we have

(8.27) ‖DTm(f + w)v −DTm(f)v‖Ct ≤ Cµm‖v‖Ct .

(ii) For every µ > 1 close to one, there exist t < 2 close to 2 and C > 0 with the
following property. For every g ∈ K and every m > 0, there exists η > 0 such that for
all f ∈ Om with ‖f − g‖A < η and all w ∈ At with ‖w‖Ct < η, the inequality (8.27)
above is also satisfied.

Part (ii) of this theorem with t = s implies property B6 and part (i) is used later (for
t = r) to prove property B7.

Proof. In this proof the positive constants K1,K2, . . . depend only on r and Om and
also on m. Let E : Ct(I, I) → R be the evaluation map E(f) = f(0), which is linear,
and let Un : Cs(I, I)→ Cs(I) be as before. Let us write DTm(f +w)v−DTm(f)(v) =
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E1 + E2 + E3 + E4 + E5 + E6 + E7, where

E1 = (A(f + w)−A(f))

p−1
∑

j=0

Bj(f + w) · Cj(f + w)

E2 = A(f)

p−1
∑

j=0

(Bj(f + w)−Bj(f)) · Cj(f + w)

E3 = A(f)

p−1
∑

j=0

Bj(f) · (Cj(f + w)− Cj(f))

E4 = (A(f + w)−A(f)) ·D(f + w)

p−1
∑

j=0

E ◦Bj(f + w) · E ◦ Cj(f + w)

E5 = A(f) · (D(f + w)−D(f))

p−1
∑

j=0

E ◦Bj(f + w) · E ◦ Cj(f + w)

E6 = A(f) ·D(f)

p−1
∑

j=0

(E ◦Bj(f + w)− (E ◦Bj(f)) · E ◦ Cj(f + w)

E7 = A(f) ·D(f)

p−1
∑

j=0

E ◦Bj(f) · (E ◦ Cj(f + w)− E ◦ Cj(f)) .

By Lemma 8.12, we get

(8.28) |A(f + w)−A(f)| =
∣

∣λf+w
−1 − λf

−1
∣

∣

Ct ≤ K1‖w‖Ct .

Hence,

‖E1‖Ct ≤ K2‖w‖Ct‖v‖Ct and ‖E4‖Ct ≤ K3‖w‖Ct‖v‖Ct .

By Proposition 8.7 and Lemma 8.19, we obtain

‖Bj(f + w)−Bj(f)‖Ct ≤ K4‖Up−j(f + w)− Up−j(f)‖Ct

≤ K5‖w‖Ct .(8.29)

Since E is a bounded linear operator and from the last inequality, we obtain

‖E2‖Ct ≤ K6‖w‖Ct‖v‖Ct and ‖E6‖Ct ≤ K7‖w‖Ct‖v‖Ct .

Taking j = p in (8.29), we get

‖Bp(f + w)−Bp(f)‖Ct ≤ K8‖w‖Ct .

By Lemma 8.19 and by (8.28), we get

‖λf+w · Up(f + w)− λf · Up(f)‖Ct ≤ K9‖w‖Ct .

Combining the last two inequalities, we get ‖E5‖Ct ≤ K10‖w‖Ct‖v‖Ct .
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Let k and 0 < α < 1 be the integer and the fractional part of t, and let 0 < ε < 1 be
such that α− ε > 0. ¿From inequality (8.24), and since E is a bounded linear operator,
we get

|E (Cj(f + w))− E (Cj(f)) | ≤ K11‖w‖
ε
Ct‖v‖Ct .

Thus, ‖E7‖Ct ≤ K12‖w‖
ε
Ct‖v‖Ct . The only thing left to do is to bound ‖E3‖Ct , and

this follows at once from Proposition 8.20. ¤

Theorem 8.22. If r > 2 is not an integer, there exist 0 < µ < 1 and C > 0 with the
following property. For every g ∈ K and for every m, there is an η > 0 such that for all
f ∈ Om with ‖f − g‖A < η and for all v ∈ Ar with ‖v‖Cr < η we have

(8.30) ‖Tm(f + v)− Tm(f)−DTm(f)v‖Cr ≤ Cµm‖v‖Cr .

This theorem together with Theorem 8.21 (i) for t = r imply that the renormalization
operator satisfies property B7.

Proof. In this proof the constants θ, θ1, θ2, . . . are greater than zero and smaller than
one and just depend upon r. The positive constants c, c1, c2, . . . depend only on r and
Om, and the positive constants K,K1,K2, . . . depend also on m. Start observing that
since Tm(f) = λ−1f ·Up(f), we have T

m(f +v)−Tm(f)−DTm(f)v = A+B+C, where

A = λ−1f · (Up(f + v)− Up(f)−DUp(f)v)

B =
(

λ−1f+v − λ
−1
f −Dλ−1f (v)

)

· Up(f + v)

C = Dλ−1f (v) · (Up(f + v)− Up(f)) .

By Lemma 8.12, we have that f → λ−1f is C1 and that there is θ1 such that ‖B‖Cr ≤

K1‖v‖
1+θ1
Cr . Since ‖Up(f + v) − Up(f)‖Cr ≤ K2‖v‖Cr , we have also ‖C‖Cr ≤ K3‖v‖

2
Cr .

Hence inequality (8.30) will be established if we prove the following claim.

Claim. If r > 2 there exist 0 < µ < 1 and c1 > 0 with the following property: for every
g ∈ K and for every m, there is an η > 0 such that for all f ∈ Om with ‖f − g‖A < η
and for all v ∈ Ar with ‖v‖Cr < η we have

(8.31) ‖Up(f + v)− Up(f)−DUp(f)v‖Cr ≤ c1µ
m|λf |‖v‖Cr .

To prove this claim, we will proceed recursively. Let us write for i = 0, . . . , p,

Ri = Ui(f + v)− Ui(f)−DUi(f)v .

Note that Ri+1 = Ei + Fi + f ′ ◦ Ui(f) ·Ri, where

Ei = f ◦ Ui(f + v)− f ◦ Ui(f)− f
′ ◦ Ui(f) · (Ui(f + v)− Ui(f))

Fi = v ◦ Ui(f + v)− v ◦ Ui(f) .

Thus, working recursively from these expressions, we get

Rp = R0 ·Gp +

p−1
∑

i=0

(Ei ·Gp−i−1 + Fi ·Gp−i−1) ,
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where Gp−i−1 = (fp−i−1)′ ◦ Ui+1(f) and R0 = Λf+v − Λf −DΛf (v). Since f ∈ Om, by
Proposition 8.7 and Lemma 8.19, we get

‖Ei‖Cr ≤ K4‖Ui(f + v)− Ui(f)‖
1+θ2
Cr ≤ K5‖v‖

1+θ2
Cr

for θ2 = 1−{r}. Therefore,
∥

∥

∥

∑p−1
i=0 Ei ·Gp−i−1

∥

∥

∥

Cr
≤ K6‖v‖

1+θ2
Cr . By Lemma 8.12, there

is θ3 such that ‖R0‖Cr ≤ K7‖v‖
1+θ3
Cr . Hence, ‖R0 · Gp‖Cr ≤ K8‖v‖

1+θ3
Cr . Finally, by

Proposition 8.20, there exists θ4 > 0 such that
∥

∥

∥

∥

∥

p−1
∑

i=0

Fi ·Gp−i−1

∥

∥

∥

∥

∥

Cr

≤ K9‖v‖
1+θ4
Cr + c2µ

m|λf |‖v‖Cr .

This proves our original claim. ¤

8.5. Proof of Theorem 8.1. All the pieces of the puzzle may now be put together.
We know already that the spaces A = A, B = Ar, C = As and D = A0 satisfy property
B1. By Theorem 5.1, the pair (Aγ ,A0) is ργ-compatible with (T,K) and ργ < λ for
γ sufficiently close to 2 and is 1-compatible for γ > 2. Hence property B2 is satisfied
because s < 2 is close to 2 and r > 2. Since r > s+ 1, we know from Lemma 8.13 that
T satisfies property B3. It also satisfies property B4 by Lemma 8.14, and property B5

by Lemma 8.17. Finally, T satisfies property B6 by Theorem 8.21, and property B7 by
Theorem 8.22. Therefore the renormalization operator T is indeed robust with respect
to (Ar,As,A0).

8.6. Proof of Theorem 8.2. In order to prove Theorem 8.2, let us consider the Banach
space Ak−1+Lip. Note that the natural inclusion i : Ak → Ak−1+Lip is an isometric
embedding. Indeed, for all v ∈ Ak we have ‖v‖Ck = ‖v‖B, by the mean-value theorem.

Now the key observation is the following. The operator T : O → AΩa is robust with
respect to (B, C,D), where B = Ak−1+Lip, C = Ak−1−β with 0 < β < 1 and D = A0.
This is a special case of Theorem 8.1.

Applying Theorem 6.1 to B, we see that for every g ∈ K the local stable set W s,B
ε (g)

is a codimension one C1 Banach submanifold of B. In fact, there exists a C1 function
Φ : O0 → R, where O0 ⊆ B is an open set containing g, such that 0 ∈ R is a regular
value for Φ, with

Φ−1(0) = O0 ∩W
s,B
ε (g)

and such that DΦ(g)ug 6= 0. Let O1 = i−1(O0) ⊆ Ak. Then O1 is open and Φ ◦ i :
O1 → R is C1. Since ug ∈ Ak and D(Φ ◦ i)(g)ug = DΦ(g)ug 6= 0, it follows that 0 ∈ R
is a regular value for Φ ◦ i at g. Hence, by the implicit function theorem,

O1 ∩W
s,k
ε (g) = O1 ∩W

s,B
ε (g) = O1 ∩ (Φ ◦ i)−1(0) ,

is a C1, codimension one Banach submanifold of Ak.
Using Theorem 6.15 (iii), and once again noting that ug ∈ Ak, we deduce that these

local stable manifolds form a continuous lamination in Ak. Finally, if F is a C2 ordered
transversal (in the sense of §7) to the stable lamination in Uk, then i◦F is a C2 ordered
transversal to the stable lamination in B, and therefore by Theorem 7.1 the holonomy
in Uk is C1+θ for some θ > 0.
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This proves Theorem 8.2 and shows that parts (i), (ii) of Theorem 2.5 hold true for
r = k also, for all integers k ≥ 3.

9. The global stable manifolds of renormalization

In this section we construct the global stable manifolds of the renormalization operator
T in Ur, for all r sufficiently large, thereby finishing the proof of Theorem 2.5.

Let g be an element of the (bounded-type) invariant set K of T . Recall that the global
stable set W s,r(g) of g ∈ Ur is given by

W s,r(g) = {f ∈ Ur : ‖Tn(f)− Tn(g)‖Cr → 0 when n→∞} .

¿From Theorems 8.1 and 8.2, we know that the convergence is exponential, and the
exponential rate of convergence is independent of f and g, provided r ≥ 2 + α with
0 < α < 1 close to one.

Theorem 9.1. For every r ≥ 3+α with α < 1 sufficiently close to 1, and every g ∈ K,
the global stable set W s,r(g) is an immersed, codimension one C1 Banach submanifold
of Ur.

Remark 9.1. By [24] and [25], if the invariant set K of the renormalization operator
is of bounded type then for every r ≥ 2 and every g ∈ K we have that W s,r(g) coincides
with the set of all maps f ∈ Ur with the same combinatorial type of g.

Proof. We already know that the local stable sets are C1 submanifolds. The idea is
to pull-back such manifold structure by T using the implicit function theorem. More
precisely, by Theorem 2.5 (ii) (or equivalently, by Theorems 6.1, 8.1 and 8.2), there exist

ε, β > 0 so small that W s,r−1−β
ε (g) is a codimension one C1 Banach submanifold of Ur,

for all g ∈ K. We may assume that ε > 0 is so small that the vector ug is transversal to

the local stable set W s,r−1−β
ε (g) at each one of its points.

Now fix g ∈ K and let f ∈W s,r(g). There exists N = N(f) > 0 so large that

TN (f) ∈W s,r
ε (TN (g)) ⊂W s,r−1−β

ε (TN (g)) .

Since v = uTN (g) is transversal at T
N (f) to W s,r−1−β

ε (TN (g)), There exist a small open

set O0 ⊂ Ur−1−β containing TN (f) and a C1 function Φ : O0 → R such that Φ−1(0) =

W s,r−1−β
ε (TN (g)) ⊂ O0 for which 0 ∈ R is a regular value and DΦ(TN (f))v 6= 0. By

Lemma 8.13, TN is C1 as a map from Ur into Ur−1−β . Let O1 ⊂ Ur be an open set
containing f such that TN (O1) ⊂ O0. We want to show that 0 ∈ R is a regular value
for Φ ◦ TN : O1 → R. Defining Ft = TN (f) + tv (for |t| small), we get a C1 family {Ft}

of maps in Ur which is transversal to W s,r−1−β
ε (TN (g)) at F0 = TN (f). Now, we have

the following claim.

Claim. There exists a C1 family {ft} with ft ∈ Ur such that for all small t we have
TN (ft) = Ft.

Let us assume this claim for a moment. Setting

w =
d

dt

∣

∣

∣

∣

t=0

ft ,
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we obtain that

D(Φ ◦ TN )(f)w = DΦ(F0)v 6= 0 .

Therefore, Φ ◦ TN is a C1 local submersion at f . By the implicit function theorem
(Φ ◦ TN )−1(0) is a codimension one, C1 Banach submanifold of O1 (or Ur), as was to
be proved.

It remains to prove the claim. We first note that Ft = ht◦F0 where each ht ∈ C
r(I, I)

is a Cr diffeomorphisms of I = [−1, 1]. Since TN (f) = F0, there exist p > 0 and closed,
pairwise disjoint intervals 0 ∈ ∆0,∆1, . . . ,∆p−1 ⊆ I with f(∆i) ⊆ ∆i+1 for 0 ≤ i < p−1
and f(∆p−1) ⊆ ∆0, such that

F0 = TN (f) = Λ−1f ◦ fp ◦ Λf ,

where Λf : I → ∆0 is the map x→ fp(0)x. Let ht : ∆0 → ∆0 be the C
r diffeomorphism

given by ht = Λf ◦ht◦Λ
−1
f . Consider a Cr extension of ht to a diffeomorphism Ht : I → I

with the property that Ht|∆i is the identity for all i 6= 0. Then let ft ∈ Ur be the map
ft = Ht ◦ f . Note that f it (0) = f i(0) for all 0 ≤ i ≤ p, that ft is N -times renormalizable
(under T ) and that

TN (ft) = Λ−1f ◦ fpt ◦ Λf

= Λ−1f ◦ (Ht ◦ f) |∆p−1 ◦ (Ht ◦ f) |∆p−2 ◦ . . . ◦ (Ht ◦ f) |∆0 ◦ Λf

= Λ−1f ◦ ht ◦ f
p ◦ Λf

= Λ−1f ◦ Λf ◦ ht ◦
(

Λ−1f ◦ fp ◦ Λf
)

= ht ◦ F0

= Ft ,

which proves the claim. ¤

10. One-parameter families

Our main theorem (Theorem 2.5) has an important corollary (Corollary 2.6) for one-
parameter families of maps. We think of a one-parameter family of maps as a map
ψ : [0, 1]× I → I (where I = [−1, 1] is the phase space) such that ψt = ψ(t, ·) belongs to
Ur for all t ∈ [0, 1]. If ψ is a Ck map, then we say that ψ is a Ck family (of Cr unimodal
maps). We often identify the family ψ with the curve {ψt}0≤t≤1 of unimodal maps in

Ur. We shall denote by UFk the space of all Ck families with the Ck topology (UFk is
a subset of Ck([0, 1]× I)).

We say that two families are C1+ equivalent if there exist a diffeomorphism from one
into the other which sends each infinitely renormalizable map (with a fixed bounded
combinatorial type) to a map with the same combinatorics. We are now in a position
to state the result we have in mind.

Theorem 10.1. Let r ≥ 3 + α with α > 0 close to 1, and let 2 ≤ k ≤ r. There exists
an open and dense subset O ⊆ UFk of one-parameter Ck families of Cr unimodal maps
having the following properties:
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(i) Every family ψ ∈ O intersects the global stable lamination Ls of renor-
malization transversally.
(ii) For every ψ ∈ O, there exist 0 = t0 < t1 < . . . < tn = 1 such that for
each i = 0, 1, . . . , n − 1 the sub-arc {ψt : ti ≤ t ≤ ti+1} is C1+β diffeo-
morphic, via a holonomy-preserving diffeomorphism, to a corresponding
sub-arc in the quadratic family. Here β > 0 is given by Theorem 2.5.

Note that this theorem implies Corollary 2.6. The proof will require a few lemmas.
The first Lemma says that every Ck family can be approximated (in the Ck sense) by
a real analytic family.

Lemma 10.2. If ψ ∈ UFk, then for each ε > 0 there exists a real analytic family
f ∈ UFω such that ‖ψ − f‖Ck([0,1]×I) < ε.

Proof. Write each ψt ∈ Ur as ht ◦ q, where q(x) = x2 and ht is a diffeomorphism,
and consider the Ck map h : [0, 1] × I → I given by h(t, x) = ht(x), a C

k family of
Cr diffeomorphisms. To approximate h by a real analytic family of diffeomorphisms,

consider the convolution of h with the heat kernel k(t, x, ε) = e−(t
2+x2)/4ε for ε > 0

sufficiently small (see [1]). ¤

Given this “denseness” result, the idea will be to show that arbitrarily close to an f
as in Lemma 10.2 we can find a Ck family which is also transversal to the global stable
lamination Ls of renormalization, by some kind of perturbation argument, to eliminate
possible tangencies between {ft} and Ls.

We will reduce our problem to the following general result about laminations with
complex analytic leaves, whose elegant proof is due to Douady.

Lemma 10.3. Let L ⊆ C2 be a C0 lamination whose leaves are complex one-manifolds,
and let F : D → C be a holomorphic function whose graph is tangent of finite order at
(0, F (0)) to a leaf L0 ∈ L. Then the tangency is isolated: there exists a neighborhood of
(0, F (0)) in C2 on which every other intersection of the graph of F with the leaves of L
is a transversal intersection.

Proof. Using a suitable chart, we may assume that the leaf L0 is the horizontal plane
w = 0 in C2, and that the other leaves of L in that chart are the graphs of holomorphic
functions ϕµ : D → C (with ϕµ(0) = µ ∈ D, where D ⊆ C is some open disk around
zero, and ϕ0 ≡ 0).

Since L is a C0 lamination, ϕµ converges to 0 uniformly in D as µ tends to 0. Hence,
for |µ| small enough, we have ϕµ(D) ⊂ D. Moreover, ϕµ(z) 6= 0 for all z ∈ D (leaves
cannot intersect), so in fact ϕµ(D) ⊂ D∗.

Now, we have F (0) = F ′(0) = . . . = F (k−1)(0) = 0 6= F (k)(0), for some k ≥ 2.
Composing the chart with a bi-holomorphic map if necessary, we may therefore assume
that F (z) = zk.

Let us fix µ ∈ D \ {0} and suppose that z0 ∈ D is such that ϕµ(z0) = F (z0). We
assume that |z0| < 1/2 (taking |µ| small enough). To show that this intersection between
ϕµ and F is transversal, it suffices to show that ϕ′µ(z0) 6= F ′(z0). But, by Schwarz’s
Lemma, the derivative ϕ′µ(z0) measured with respect to the Poincaré metrics of domain
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D and range D∗ must be less than or equal to 1, that is to say

∥

∥ϕ′µ(z0)
∥

∥

P
=

∣

∣ϕ′µ(z0)
∣

∣

(

1− |z0|
2
)

|ϕµ(z0)| log
(

|ϕµ(z0)|
−1
) ≤ 1 .

Thus, we have
∣

∣ϕ′µ(z0)
∣

∣ ≤
4

3
k|z0|

k log
(

|z0|
−1
)

.

On the other hand,
∣

∣F ′(z0)
∣

∣ = k|z0|
k−1 .

This shows that
∣

∣ϕ′µ(z0)
∣

∣ / |F ′(z0)| converges to 0 as µ tends to 0, whence ϕ′µ(z0) 6= F ′(z0)
for all sufficiently small |µ|. Therefore (0, F (0)) is an isolated tangency as claimed. ¤

We may now state and prove the result on laminations with real analytic leaves which
is needed for the proof of Theorem 10.1.

Lemma 10.4. Let F ⊆ [a, b] × R be a C0 foliation whose leaves are the graphs of real
analytic functions ϕµ : [a, b] → R with, say, ϕµ(a) = µ ∈ [0, 1]. Let L ⊆ F be a sub-
lamination which is transversally totally disconnected (i.e. K0 = {µ ∈ [0, 1] : gr(ϕµ) ⊆
L} is a totally disconnected set). If F : [a, b]→ R is a real analytic function, then

(i) gr(F ) is tangent to F at only finitely many points;
(ii) for all ε > 0 and all k ≥ 0, there exists a real analytic G : [a, b]→ R
such that ‖F − G‖Ck < ε and all tangencies of gr(G) with F belong to
F \ L; in particular, gr(G) is transversal to L.

Proof. (i) Complexifying F (i.e. the leaves ϕµ) as well as F , we put ourselves in the
situation of Lemma 10.3. All tangencies are therefore isolated, and since [a, b] is compact,
there are only finitely many such, say at xi ∈ [a, b], i = 1, 2, . . . , n.
(ii) Let di be the order of tangency of F with F at (xi, F (xi)). Then for every real
analytic G sufficiently close to F in the Ck topology with k large (k ≥

∑n
i=1 di will do),

the number n(G) of tangencies of gr(G) with F – not counting multiplicies – is bounded
by
∑n

i=1 di. Hence we can find G0 : [a, b] → R real analytic with ‖F − G0‖Ck < ε/2
such that n(G0) is maximal. All tangencies of G0 with F must be first-order tangencies
(di = 1). Indeed, if, say, d1 > 1, then adding a suitable polynomial with small Ck norm
to G0, vanishing of very high order at x2, x3, . . . , xn(G0), we could unfold the tangency
at x1 to produce a new real analytic G with n(G) > n(G0). Now we may consider
Gt : [a, b] → R given by Gt(x) = G0(x) + t for |t| < ε/2. Since first-order tangencies
are persistent, each tangency (xi, G0(xi)) of G0 with F generates a continuous, non-
constant path (xi(t), Gt(xi(t))) ∈ gr(ϕµi(t)) of (first-order) tangencies of Gt with F .
Each function t 7→ µi(t), i = 1, 2, . . . , n(G0), is continuous and non-constant. Since K0

is totally disconnected, there exists t (with |t| < ε/2) such that µi(t) ∈ [0, 1] \ K0 for
all i. Therefore, all tangencies of Gt with F fall in F \ L, whence Gt is transversal to
L. ¤

Proof of Theorem 10.1. Both properties (i) and (ii) are easily seen to be open, hence we
concentrate in proving that they are dense. Let ε > 0.
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Take any family ψ ∈ UFk. By Lemma 10.2, there exists a real analytic family
f ∈ UFω whose Ck distance from ψ is less than ε/2. The corresponding curve {ft} in
Ur may fail to be transversal to the global stable lamination Ls, so let us show how to
perturb it locally to get a transversal family. Let t0 ∈ [0, 1] be such that ft0 ∈ L

s (and
{ft} is tangent to Ls at ft0). Since ft0 is infinitely renormalizable and real analytic,
there exists N > 0 such that RN (ft0) ∈ AΩa (where a > 0 is the constant in Theorem
2.4). Let J ⊆ [0, 1] be an interval containing t0 such that RN (ft) is well-defined and
belongs to AΩa for all t ∈ J . We restrict our attention to the sub-family {ft}t∈J from
now on.

First we embed {ft}t∈J in a two-parameter family in the following way. Note that
each ft belongs to AΩα for some (fixed) α > 0. As a map from (an open subset of) AΩα

into AΩa , R
N is a real analytic operator.

Claim. There exist analytic vectors v ∈ AΩα and w ∈ AΩa such that DRN (ft0)v = w
and w is transversal to Lsa = L

s ∩ AΩa at RN (ft0) ∈ L
s
a.

To see this, take any w0 ∈ AΩa transversal to the (co-dimension one) lamination Lsa at
RN (ft0). The same construction used in the proof of Theorem 9.1 yields a C∞ vector v0
at ft0 such that DRN (ft0)v0 = w0. Now approximate v0 by an analytic vector v ∈ AΩα

(in the Cm sense for m ≥ r). Then w = DRN (f0)v will still be transversal to Lsa.
Shrinking J if necessary, we may in fact assume that DRN (ft)v is transversal to Lsa for
all t ∈ J . Hence, let us consider the two-parameter family of maps ft,s ∈ AΩα given by
ft,s = ft + sv with t ∈ J and |s| ≤ δ with δ small. We have

W = {ft,s : t ∈ J, s ∈ [−δ, δ]} ∼= J × [−δ, δ] ⊆ R2 ,

and RN |W :W → AΩa is an injective, real analytic map. Recall now that in AΩa we have
a C0 foliation F with real analytic leaves (coming from hybrid classes, cf. §3) and that
Lsa ⊆ F is the sub-lamination corresponding to the stable leaves of renormalization,
which is transversally totally disconnected. Taking FW = R−N (F) ⊆ W and LsW =
R−N (Lsa) ⊆ W and noting that DRN (ft,s)v = w is transversal to Lsa for all t ∈ J ,
s ∈ [−δ, δ] (making δ smaller if necessary) we deduce that FW is a C0 foliation (in W )
by real analytic curves, and LsW ⊆ FW is a sub-lamination. Therefore we can apply
Lemma 10.4 to this situation (with F = FW and L = LsW ), obtaining a new analytic
curve {gt}t∈J with ‖ft − gt‖Ck < ε/2, transversal to LsW in W , and such that {RN (gt)}
is transversal to Lsa at RN (gt0). Since by Theorem 2.5 (ii) the holonomy of Lsa is C1+β

for some β > 0 (and the quadratic family is transversal to Lsa) we deduce that {gt}
satisfies properties (a) and (b) of the statement. This completes the proof. ¤

11. A short list of symbols

For the reader’s convenience, we present below a short list of symbols used in this
paper.

p: Period of renormalization.
λf : Scaling factor λf = fp(0).
Λf : Linear scaling Λf : x→ fp(0) · x.

R: Renormalization operator RNf = Λ−1f ◦ fp ◦ Λf .
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K: Bounded type limit set of R.
pk: Number of renormalization intervals at level k.
∆j,k(f): Renormalization intervals at level k (0 ≤≤ pk − 1).
If : Post-critical set of f .

AV : Real Banach space of continuous maps ϕ : V → C, holomorphic inside V
symmetric about real axis.

T = RN : O → AΩa: Real analytic operator for which K ⊂ O is a hyperbolic basic
set (a and N are fixed).

ug(t): Parametrization of the local unstable manifold W u
ε (g).

ug: Unit vector tangent to W u
ε (g) at g.

δg: Unique real number such that DT (g)ug = δguT (g).

δ
(n)
g : The product δgδT (g) . . . δTn−1(g).
Lf = DT (f): Derivative of T at f .
Ur: Unimodal maps, Cr, with quadratic critical point at 0.
Ar: Tangent space to unimodal maps contained in Ur.
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