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ABSTRACT. In this paper we extend M. Lyubich’s recent results on the global hyper-
bolicity of renormalization of quadratic-like germs to the space U” of C" unimodal
maps with quadratic critical point. We show that in U" the bounded-type limit sets of
the renormalization operator have an invariant hyperbolic structure provided r > 2+«
with « close to one. As an intermediate step between Lyubich’s results and ours, we
prove that the renormalization operator is hyperbolic in a Banach space of real an-
alytic maps. We construct the local stable manifolds and prove that they form a
continuous lamination whose leaves are C* codimension one Banach submanifolds of
U™, and whose holonomy is C**? for some 8 > 0. We also prove that the global stable
sets are C'' immersed (codimension one) submanifolds as well, provided > 3+« with
a close to one. As a corollary, we deduce that in generic one parameter families of C”
unimodal maps, the set of parameters corresponding to infinitely renormalizable maps
of bounded combinatorial type is a Cantor set with Hausdorff dimension less than one.
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1. INTRODUCTION

In 1978, M. Feigenbaum [10] and independently P. Coullet and C. Tresser [4] made a
startling discovery concerning certain rigidity properties in one-dimensional dynamics.
While analysing the transition between simple and “chaotic” dynamical behavior in
“typical” one-parameter families of unimodal maps — such as the quadratic family x —
Az(1 — x) — they recorded the parameter values A\, at which successive period-doubling
bifurcations ocurred in the family and found a remarkable universal scaling law, namely

>\n - )\n—l

— 4.669... .
)\n—l—l - An

They also found universal scalings within the geometry of the post-critical set of the
limiting map corresponding to the parameter Ao = lim A, (¢f. the work of E. Vul,
Ya. Sinai and K. Khanin [29]). In an attempt to explain these phenomena, they in-
troduced a certain non-linear operator acting on the space of unimodal maps — the
so-called period doubling operator. They conjectured that the period-doubling operator
has a unique fixed-point which is hyperbolic with a one-dimensional unstable direction.
They also conjectured that the universal constants they found in their experiments are
the eigenvalues of the derivative of the operator at the fixed point.

A few years later (1982) this conjecture was confirmed by O. Lanford [18] through
a computer assisted proof. Working in a cleverly defined Banach space of real analytic
maps and using rigorous numerical analysis on the computer, Lanford established at
once the existence and hyperbolicity of the fixed point of the period-doubling operator.
Subsequent work by M. Campanino and H. Epstein [2] (also Campanino et al. [3] and
Epstein [9]) established the existence (but neither uniqueness nor hyperbolicity) of the
fixed point without essential help from the computer.

It was soon realized by Lanford and others that the period-doubling operator was
just a restriction of another operator acting on the space of unimodal maps — the renor-
malization operator — whose dynamical behavior is much richer. The hopes were high
that the iterates of this operator would reveal the small scale geometric properties of the
critical orbits of many interesting one-dimensional systems. Hence, the initial conjecture
was generalized to the following.

Renormalization Conjecture. The limit set of the renormalization operator in the
space of maps of bounded combinatorial type is a hyperbolic Cantor set where the
operator acts as the full shift in a finite number of symbols.

(For a precise formulation of what is meant by bounded combinatorial type, see §2.2
below.)

In the path towards a proof of this conjecture, several new ideas were developed in the
last 20 years by a number of mathematicians, especially D. Sullivan, C. McMullen and
M. Lyubich. Among the deepest in Dynamical Systems, these ideas have the complex
dynamics of quadratic-like maps (in the sense of Douady and Hubbard [6]) as a common
thread. Sullivan proved in [28] that all limits of renormalization are quadratic-like maps
with a definite modulus. Then, constructing certain Teichmiiller spaces from quadratic-
like maps and using a substitute of Schwarz’s lemma in these spaces, Sullivan established
the existence of horseshoe-like limit sets for renormalization. Later, using a different



approach based on Mostow rigidity, McMullen [23] gave another proof of this result and
went further by showing that the convergence (in the C sense) towards the limit set is
exponential.

The final breakthrough came with the work of Lyubich [20]. He endowed the space
of germs of quadratic-like maps (modulo affine conjugacies) with a very subtle complex
structure, showing that the renormalization operator is complex-analytic with respect
to such structure. In Lyubich’s space, the stable sets of maps in the limit set of renor-
malization coincide with the very hybrid classes of such maps, and inherit a natural
structure making them (complex codimension one) analytic submanifolds. Combining
McMullen’s rigidity of towers with Schwarz’s lemma in Banach spaces, Lyubich proved
exponential contraction along such stable leaves. To obtain expansion in the transversal
directions to such leaves at points of the limit set, Lyubich argued by contradiction:
if expansion fails, then one can find a map in the limit set whose orbit under renor-
malization is slowly shadowed by another orbit (the small orbits theorem, page 323 of
[20]). This however contradicts another theorem of his, namely the combinatorial rigid-
ity theorem of [21]. Tt follows that the limit set is indeed hyperbolic in the space of
germs. Based on this result of Lyubich and using the real and complex bounds given
by Sullivan, we prove in Theorem 2.4 that the attractor (for bounded combinatorics) is
hyperbolic in a Banach space of real analytic maps.

In the present paper, we give the last step in the proof of the above renormalization
conjecture in the (much larger) space of C” smooth unimodal maps with r sufficiently
large. The very formulation of the conjecture in this setting requires some care, because
the renormalization operator is not differentiable in C”". For the correct formulation,
see Theorem 2.5 below. To prove the conjecture, we combine Theorem 2.4 with some
non-linear functional analysis inspired by the work of A. Davie [5]. In that work, Davie
constructs the stable manifold of the fixed point of the period doubling operator in the
space of C?*€ maps “by hand”, showing it to be a C'* codimension one submanifold of the
ambient space, even though the operator is not differentiable. To do this, he first extends
the hyperbolic splitting of the derivative at the fixed point from Lanford’s Banach space
of real-analytic maps to the larger space of C2*¢ maps (to which the derivative extends
as a bounded linear operator). This gives him an extended codimension one stable
subspace in C?1€ to work with, and he views the local stable set in C?*¢ as the graph of
a function over the extended stable subspace. In attempting to prove that such function
is C', he goes around the inherent loss of diferentiability of renormalization by first
noting that the local unstable manifold coming from Lanford’s theorem is still there
(and is still smooth in C?*€) and then showing that there is afterall a contraction in
C?*¢ towards that unstable manifold, whose elements are analytic maps. Thus, the loss
of differentiability is somehow compensated by the contraction towards the unstable
manifold. Davie’s crucial estimates show that the renormalization operator in C?T¢ is
sufficiently well-approximated by the extension of its derivative in Lanford’s space to a
bounded linear operator in C?*¢.

Our approach is based on the idea that whatever Davie can do with Lanford’s Banach
space relative to the fixed point, we can do with the Banach space obtained in Theorem
2.4 relative to the whole limit set. There is one fundamental difference, however. The
linear and non-linear estimates carried out by Davie rely on the special fact that the



period-doubling fixed point is convex. This allows him to prove his main theorems in
C?*¢ for all € > 0. By contrast, we cannot — and do not — rely on any such convexity
assumptions. We derive our estimates (in §5 and §8) directly from the geometric prop-
erties of the postcritical set of maps in the limit set (these properties — proved in §5.2
— are a consequence of the real a-priori bounds). As a result, our local stable manifold
theorem in C" requires r > 2 4+ a with « close to one.

We go beyond the conjecture in at least three respects. First, we show that the local
stable manifolds form a C° lamination whose holonomy is C'*# for some 8 > 0. In
particular, every smooth curve which is transversal to such lamination intersects it at
a set of constant Hausdorff dimension less than one. Second, we prove that the global
stable sets are C'! (immersed) codimension one submanifolds in C" provided r > 3 + «
with « close to one (we globalize the local stable manifolds via the implicit function
theorem, hence the further loss of one degree of differentiability). Third, we prove that
in an open and dense set of C* one-parameter families in U™ (for any k > 2), each family
intersects the global stable lamination transversally at a Cantor set of parameters and
the small-scale geometry of this intersection is the same for all nearby families. In
particular, its Hausdorff dimension is strictly smaller than one.

In the path towards these results, we have made an attempt to abstract out the
more general features of the renormalization operator in the form of a few properties or
“axioms” — the notion of a robust operator introduced in §6. We prove a general local
stable manifold theorem for robust operators in §6. It is our hope that this might be
useful in other renormalization problems. For example in the case of critical circle maps
(see [7] and [8]).

Acknowledgements. We wish to thank M. Lyubich and A. Avila for several useful
discussions and A. Douady for his elegant proof of Lemma 10.3 (§10). We also thank
FCUP, IMPA, IME-USP, KTH, SUNY Stony Brook for their hospitality and support

during the preparation of this paper.

2. PRELIMINARIES AND STATEMENTS OF RESULTS

In this section, we introduce the basic notions of the theory of renormalization of
unimodal maps. Then we state Sullivan’s theorem on the existence of topological limit
sets for the renormalization operator, the exponential convergence results of McMullen,
and Lyubich’s theorem showing the full hyperbolicity of such limit sets in the space of
germs of quadratic-like maps. Finally, we state our main results extending Lyubich’s
hyperbolicity theorem to the space of C" unimodal maps with r sufficiently large.

2.1. Quadratic unimodal maps. We describe here the spaces of C'" unimodal maps
that we will study. Let I = [—1,1] and for all » > 0 let C"(I) be the Banach space of
C" real-valued functions on I. Here r can be either a non-negative real number, say
r=k+awith k € Nand 0 < a < 1, in which case C"(I) is the space of C* functions
whose k-th derivative is a-Hélder, or else » = k + Lip, in which case C"(I) means the
space of C* functions whose k-th derivative is Lipschitz (so whenever we say that r is
not an integer, we include the Lipschitz cases). Define

A" ={ve C"(I) : v(z) = ¢(2?),6(0) = 0,6 € C"([0, 1))} .



Then A" is a closed linear subspace of C"(I) and therefore also a Banach space under
the C" norm. Define
Urcl+A"CcC"(I)

to be the set of all maps f : I — I of the form f(z) = 1 + ¢(2?), where ¢(0) = 0 and
¢'(y) # 0 for all y € [0,1]. Then U" is a Banach manifold; indeed it is an open subset
of the affine space 1 + A". The elements of U™ are called C" unimodal maps with a
quadratic critical point. Note that for all f € U” the tangent space T;U" is naturally
identified with A".

2.2. Renormalization operator. A map f € U" is said to be renormalizable if there
exist p = p(f) > 1 and A = A(f) = fP(0) such that fP|[—|A|,|A|] is unimodal and
maps [—|Al,|A]] into itself. In this case, taking the smallest possible value of p, the map
Rf :[-1,1] — [-1,1] given by

(21) Rf@) = 5 P0)

is called the first renormalization of f. We have Rf € U". The intervals f7([—|)], |\]]),
for 0 < j < p — 1, are pairwise disjoint and the way they deploy themselves inside
[—1, 1] determines a unimodal permutation 6 of {0,1,...,p—1}. The set of all unimodal
permutations is denoted P. The set of f € U” that are renormalizable with the same
unimodal permutation 0 € P is a connected subset of U" denoted Uj. Hence we have
an operator

(2.2) R:|JUp - U,
ocpP
the so-called renormalization operator.
Now let us fix a finite subset © C P. Given an infinite sequence of unimodal permu-
tations 6y, 601,...,0,,... € ©, write

Upor s = Upg NRTUp N---NR"UG M=o
and define

,DT@ == U 79"07917...7%’... .
(00,01, ,0n, - )EON
The maps in Dg are infinitely renormalizable maps with (bounded) combinatorics be-
longing to ©. Note that R(Dg) C Dy, in fact

(2.3) R(Ugy g1, 0) S Uy 0 0 -

2.3. The limit sets of renormalization. In [28], Sullivan established the existence
of horseshoe-like invariant sets for the renormalization operator, showing that they all
consist of real analytic maps of a special kind, namely, restrictions to [—1, 1] of quadratic-
like maps in the sense of Douady-Hubbard. We remind the reader that a quadratic-like
map f:V — W is a holomorphic map with the property that V' and W are topological
disks with V' compactly contained in W, and f is a proper degree two branched covering
map with a continuous extension to the boundary of V. The conformal modulus of f is
the modulus of the annulus W \ V.



We are interested only in quadratic-like maps that commute with complex conjuga-
tion, for which V is symmetric about the real axis. Consider the real Banach space space
Ho (V') of holomorphic functions which commute with complex conjugation and are con-
tinuous up to the boundary of V, with the C° norm. Let Ay C Ho(V) be the closed
linear subspace of functions of the form ¢ = ¢ o ¢, where q(z) = 2% and ¢ : ¢(V) — C is
holomorphic with ¢(0) = 0. Also, let Uy be the set of functions of the form f =1+ ¢,
where ¢ = ¢ oq € Ay and ¢ is univalent on some neighborhood of [—1,1] contained
in V, such that the restriction of f to [—1, 1] is unimodal. Then Uy is an open subset
of the affine space 1 + Ay, which is linearly isomorphic to Ay via the translation by 1,
and we shall regard Uy as an open subset of Ay itself via this identification. For each
a > 0, let us denote by {2, the set of points in the complex plane whose distance from
the interval [—1, 1] is smaller than a. We may now state Sullivan’s theorem as follows.

Theorem 2.1. Let © C P be a non-empty finite set. Then there exist a > 0 a compact
subset K = Kg C Aq, NDg and p > 0 with the following properties.

(1) Each f € K has a quadratic-like extension with conformal modulus bounded from
below by .

(2) We have R(K) C K, and the restriction of R to K is a homeomorphism which is
topologically conjugate to the two-sided shift o : ©% — ©%: in other words, there
exists a homeomorphism H : K — ©% such that the diagram

K —2 . K

a e
@Z - @Z
commautes.
(3) Forall g € Dg, withr > 2, there exists f € K such that [|[R"(g) — R"(f)||cory —

0 asn— 0.

For a detailed exposition of this theorem, see Chapter VI of [26].

Later, in [23], C. McMullen established the exponential convergence of renormaliza-
tion for bounded combinatorics (using rigidity of towers). His theorem forms the basis
for the contracting part of Lyubich’s hyperbolicity theorem in [20].

Theorem 2.2. If f and g are infinitely renormalizable quadratic-like maps with the
same bounded combinatorial type in © C P, and with conformal moduli greater than or
equal to b, we have

|R"f = R"gllcory < CA"
for alln >0 where C = C(p,©) >0 and 0 < A = \(O) < 1.

The above result was extended by Lyubich to all combinatorics. In particular it
follows, in the case of bounded combinatorics, that the exponent A and the constant
C in Theorem 2 do not depend on ©. The conclusion of the above theorem can also
be improved in bounded combinatorics: the exponential convergence holds in the C”
topology if the maps are in U" (see [24] and [25]).



In [20], Lyubich considered the space of quadratic-like germs modulo affine conjugacies
in which the limit set K is naturally embedded. This space is a manifold modeled
on a complex topological vector space (arising as a direct limit of Banach spaces of
holomorphic maps). In this setting, Lyubich established in [8] the full hyperbolicity of
the renormalization operator. With the help of Sullivan real and complex bounds and
Lyubich’s theorem we prove the hyperbolicity of some iterate of the renormalization
operator acting on a space Agq, for some a > 0 (see Theorem 2.4 in §2.5). Then
we extend Davie’s analysis for the Feigenbaum fixed point to the context of bounded
combinatorics to conclude that the hyperbolic picture also holds true in the much larger
space U" (see Theorem 2.5 in §2.5).

2.4. Hyperbolic basic sets. We need to introduce the well-known concept of hyper-
bolic basic set for non-linear operators acting on Banach spaces. Let us consider a
Banach space A, and an open subset O C A.

Definition 2.1. Let T : O — A be a smooth non-linear operator. A hyperbolic basic set
of T is a compact subset K C O with the following properties.

(i) K is T-invariant and T'|K is a topologically transitive homeomorphism
whose periodic points are dense.

(i1) If y € O and all T-iterates of y are defined, then T™(y) converges to
K.

(iii) There exist a continuous, DT -invariant splitting A = E3 @ EY, for
z € K, and uniform constants C' > 0 and 0 < 6 < 1 such that

[DT™ () v]| < CO™[|v]|
for allv € ES, as well as
(2.4) [DT™ (z) o] = CO™" v

for allv e EY.
(iv) The dimension of EY is finite and constant.

The following notions are also standard. Let A(z,¢) be the ball in A with center x
and radius e. The local stable manifold W2 (x) of T at x consists of all points y € A(z,¢)
such that for all n > 0, we have T"(y) € A(T™(x),e) and

IT"(y) — T™(z)|| — 0 when n — oo .

The local unstable manifold W2 (x) of T' at = consists of all points y € A(x, ) such that
setting yo =y, for all n > 1 there exist y, € A(T~"(z), ) such that y,—1 = T(y,) and

IT7"(z) — yn|| — 0 when n — oo .
Finally the global stable set of T at x is defined as
Wéiz)={ye O : |T"(y) — T"(z)|| — 0 when n — oo} .

The question arises as to whether these sets have smooth manifold structures. We have
the following general result.

Theorem 2.3. IfK is a hyperbolic basic set of a C' operator T : O — A then



(i) the local stable (resp. unstable) set at v € K is a C' Banach subman-
ifold of A which is tangent to ES (resp. EY) at x.
(it) If y € W*(x) then

177 () = T ()| < CO"[lx =yl -

Moreover, T(WX(x)) D WX*(T'(x)), the restriction of T to W (x) is one-
to-one and for all y € W (x) we have

|77 (2) = T~ (y)|| < CO"||z — ]| -
(iii) If y € A(z,¢€) is such that T'(y) € A(T*(z),€) fori <n then
dist (T"(y), WH(T™(x))) < CO", as well as dist (y, We(x)) < CO" .

(iv) The family of local stable manifolds (and also the family of local un-
stable manifolds) form a C° lamination: the tangent spaces to the leaves
vary continuously.

We do not prove this theorem here since we will not use it, but instead make the
following comments. Using the arguments of Hirsch-Pugh in [14], we can prove that the
local unstable set is a smooth manifold. The local stable set is also a smooth manifold,
but a different proof is needed: one can use the ideas of Irwin in [16]. See also Theorem
2.1 in page 375 of [27]. In both cases the smoothness can be improved to C* if the
operator T is C*.

For invertible operators the global stable set is also a smooth submanifold. By con-
trast, in the non-invertible situation, there is no a-priori reason why the global stable
set should have a smooth manifold structure. In fact, this is probably false in general.
However, we will prove in §9 that this is the case for the renormalization operator acting
on U, provided r > 3 4+ a and a > 0 is close to one.

2.5. Hyperbolicity of renormalization. In the present paper we prove two main the-
orems. The first main theorem shows that there exists a real Banach space of analytic
maps, containing the topological limit set K of renormalization, on which the renormal-
ization operator acts as a real-analytic operator and has K as a hyperbolic basic set.
More precisely, we have the following result.

Theorem 2.4. (Hyperbolicity in a real Banach space) There exist a > 0, an open set
O C A =Aq, containing K = Keg and a positive integer N with the following property.
There exists a real analytic operator T : QO — A having K as a hyperbolic basic set with
co-dimension one stable manifolds at each point, such that T(f)|[-1,1] = RN (f|[-1,1])
for all f € O.

The proof of this theorem, presented in §3 (see Theorem 3.9), combines Lyubich’s
hyperbolicity results with Sullivan’s real and complex bounds.

The second main theorem establishes the “hyperbolicity” of renormalization in U".
As we have mentioned before, the renormalization operator is not smooth in U", so the
definition of hyperbolicity of an invariant set does not even make sense. However, the
hyperbolic picture holds in this situation. More precisely, we have the following theorem.



Theorem 2.5. (Hyperbolic Picture in U") If r > 2 + «, where a > 0 is close to one,
then statements (i), (ii), (iii) and (iv) of Theorem 2.3 hold true for the renormalization
operator acting on U". Furthermore,

(i) the local unstable manifolds are real analytic curves;

(ii) the local stable manifolds are of class C', and together they form a
continuous lamination whose holonomy is C1*8 for some 5> 0;

(ii) if r > 3+ then the global stable sets are also C! immersed subman-

ifolds.

The main difficulty behind the proof of this theorem is the fact the operator T' is not
Fréchet differentiable in C”. However, as we shall see in §8.2, it is a C'! mapping from its
domain in U” into U® if s < r—1 (even for s = r— 1 if r is an integer). Hence its tangent
map defines a continuous map L: K x A" — K x A® by L(g,v) = (T(g), DT (g)(v)) =
(T'(g),Lg(v)). The bounded linear mappings Ly: A" — A® extend to bounded linear
operators Ly: At — A! for all 0 < ¢ < r. Although L, is not the derivative of T at g
in C”, it is nevertheless a sufficiently good linear approximation to 7" near g (see the
properties of Definition 6.1, checked in §8).

The second main theorem has the following important corollary for one-parameter
families of maps.

Corollary 2.6. Let r > 3+ « as in Theorem 2.5, and let 2 < k < r be an integer.
There exists an open dense set of C* one-parameter families of maps in UT all of whose
elements intersect the global stable lamination transversally. In each such family, the
set of parameters where the intersections occur is a Cantor set which is locally C115
diffeomorphic to the corresponding Cantor set of the quadratic family. In particular, its
Hausdorff dimension is a universal number strictly between zero and one.

For a more precise statement, see Theorem 10.1 in §10. It is worth emphasizing
that when a generic family (in the sense of the above corollary) intersects the stable
lamination at a point, then any neighborhood of this point in parameter space contains
a renormalization window that is mapped under a suitable power of the renormalization
operator onto a full transversal family.

3. HYPERBOLICITY IN A BANACH SPACE OF REAL ANALYTIC MAPS.

In this section we give a proof of Theorem 2.4. Using the real and complex bounds
given by Sullivan in [28], we prove in §3.1 that there is an iterate of the renormalization
operator which extends as a real analytic map 7' to an open set Qq, of the Banach
space Aq, consisting of real analytic maps whose domain is a a-neighborhood of the
interval [—1, 1], for a suitable a > 0. The maps g € K have unique extensions belonging
to Oq,. In §3.2, using lemmas 4.16 and 4.17 in Lyubich’s paper [20], we show that the
hybrid conjugacy classes of the maps g € K form a continuous lamination of codimension
one real analytic manifolds. Then in §3.4 we construct a skew-product renormalization
operator that satisfies properties (W1) to (W4) in page 395 of [20] in the real analytic
case (restated in §3.5). By theorems 8.2 and 8.8 in [20] the skew-product renormalization
operator will have fiberwise stable and unstable leaves (as defined in §3.3). The local
stable leaf at g € K is a relatively open set of the hybrid conjugacy class of g. Then

10



using the skew-product renormalization operator, we prove in §3.5 that K is a basic set
for the real analytic renormalization operator 1" : Oq, — Aq,.

3.1. Real analyticity of the renormalization operator. Using Sullivan’s real and
complex bounds in [28], we will show that there exists a > 0 such that some iterate
T : Oq, — Agq, of the renormalization operator is a (well-defined) real analytic operator
with a compact derivative.

For each f € K, let Zy C [—1,1] be the postcritical set of f (the Cantor attractor of
f). For each k > 0, we can write

RFf(z) = At o f7% o Ay(x)
where py = p(f,k) = [1:20 p(R'f), e = A(f. k) = [1:2) Agiy and Ag(z) = A(f, k)(2) =

Ak - z. Consider the renormalization intervals Aoy = Ao x(f) = [—| |, [A]] € [-1,1],
and define A; = A;x(f) = fi{(Aog) for i = 0,1,...,pr — 1. The collection Cy =
{Aok,.-.,Ap,—1} consists of pairwise disjoint intervals at level k. Moreover, | J{A :
A€ Cii1} CU{A: A e Cy} forall k>0 and we have
oo pr—1
Ir=() | A
k=0 i=0

Definition 3.1. The set Iy has geometry bounded by 0 < 7 < 1 with respect to (Cg)ren
if the following conditions are met for k > 1.

(’i) If Aj,lc+1 C Ai,k then T < ’Aj,kJrl’ / |Az,k| <l-—7.

(it) If I is a connected component of N; ;\J; Ajg+1 then T < [I]/|Azy] <

1—7.

By Sullivan’s real bounds (see [28] and Section VI.2 in page 453 of [26]), there exists
a > 0, such that for every g € K the set Z, has geometry bounded by o with respect to

(Ck)ken-
The following result is a consequence of Sullivan’s complex bounds (see [28] and

Section VL5 in page 483 of [26]).

Theorem 3.1. There exist 4 > 0, Ng > 0 and a neighborhood V' of the dynamics with
the following properties. Fvery g € K extends to a holomorphic map g : V — C and for
every N > Ny there exists a symmetric neighborhood Oy N of the interval Ao n(g) such
that

(i) the diameter of the set g'(Oyn) C V is comparable to the length
|Ai N (g)| of the interval A; n(g) for every 0 <i < p = p(N,g);

(it) the map g* : Og N — g*(Og,n) is a quadratic-like map with conformal
modulus greater than p > 0.

Applying Theorem 3.1 (ii) to g € K, we see that RV (g) has a quadratic-like extension
to

(3.1) Ug7N = A;1(097N)

and such extension has conformal modulus greater than p > 0.
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Recall that the filled-in Julia set K¢ of a quadratic-like map f : U — U’ is the set
{z:ffze€Un=0,1,...}, and its boundary is the Julia set J; of f. Since all maps in
K have conformal modulus greater than or equal to p > 0, we deduce from Proposition
4.8 in page 83 of McMullen’s book [23] that there exists b > 0 such that for every g € K
we have

(3.2) Qb(’CRN(g)) CUgn -

Here the notation Q. (K) means the set of all points whose distance from K is less than
£/2 times the diameter of K.

For each neighborhood U of [—1,1] in C, symmetric about the real axis, we con-
sider the real Banach space Ay of holomorphic functions defined earlier. We de-
note by Ay(g,d) the open ball of radius é around g. By (3.2), the inclusion map
ig,N Ay, v — Aq, is a well-defined compact linear operator.

Lemma 3.2. Let p >0 and Ny > 0 be as in Theorem 3.1 and b as in (3.2). For every
0 < o < b there exist N > Ny and 69 > 0 such that

(i) for every g € K, the operator Ty n : Aq,(g,00) — Ay, \ is well-defined

if we set

Tg7N(f) = Affl OprAf : Ug,N — C ,

where p=p(f,N) =p(9,N), Ay = A(f,N), and Ty n(f) is a quadratic-

like map with conformal modulus greater than p/2;

(ii) the operator T : Oq, — Aq, given by T' = ig N o Ty N is real analytic

with a compact derivative, where

Oq, = |J Aa,(g.00) -
gekK

Proof. By Sullivan’s real bounds, there exist C1 > 1 and 0 < v; < 5 < 1 such that for
all g € K, all k € Nand all 0 < j < p(k,g) — 1, we have C]'vF < |Ajx(g)| < C1v% .
Thus, by property (i) in Theorem 3.1, for every a > 0 there is N > 0 so large that
the open sets ¢/(O,4 n) have diameter smaller than /3 for all 0 < j < p(N, g). Recall
that Oy n = Ag(Uy,n)). By a continuity argument, there is 6, > 0 such that for every
f € Aq,(g,0,), the restriction f|[—1,1] is N-times renormalizable, f7(Af(Ug n)) C Q42
for every 0 < j < p = p(IV, f), and moreover fP : Ap(Ugn) — fP(Ar(Ugn)) is a
quadratic-like map with conformal modulus greater than /2. By compactness of K in
Aq,,, there is a finite set {g; : i = 1,...,[} such that
l
K c | Aq,(9i:04,/2) -
i=1

Set 89 = min;—y . ;{d4/2}. Then, for every g € K there exists i = i(g) such that
Aq, (9,90) C Aq, (9i,04,). Hence T, n(f) is well-defined, and it is a quadratic-like map
with conformal modulus greater than p/2, for every f € Aq,_ (g,dp) which proves (i).

Note that the real Banach space Agq, is naturally embedded in the complex Banach
space Aq, c of maps f : €, — C which are holomorphic and continuous up to the
boundary and that T y extends to an operator T ;C,N in an open set of Ag, ¢, given

by the same expression. Applying the Cauchy integral formula, we see that T;C’N is
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complex-analytic, and so T y is real analytic. Since by Montel’s theorem the inclusion
ig,N is a compact linear operator, we deduce that T' : QOq, — Agq, is a real-analytic
operator with a compact derivative, which proves (ii). O

3.2. Real analytic hybrid conjugacy classes. We will introduce later (in §3.4) a
skew-product renormalization operator. The fiberwise local stable manifolds of such
skew-product — which will be used to determine the stable manifolds of the real-analytic
operator T : Qq, — Ag,, for some suitable a > 0 — turn out to be openly contained
in the hybrid conjugacy classes of the maps in the limit set K. Here we analyze the
manifold structure of hybrid classes in more detail.

A homeomorphism h : U — V, where U and V are contained in C or C, is quasi-
conformal if it has locally square integrable distributional derivatives Oh, Oh, and there
exists € < 1 with the property that |5h / 8h‘ < € almost everywhere. The Beltrami dif-
ferential ju, of h is given by pj, = 0h/Oh. A quasiconformal map h is K quasiconformal
if K > (1+ | [alloo)/ (1 — [lnl|oo).

Two quadratic-like maps f and g are hybrid conjugate if there is a quasiconformal
conjugacy h between f and g with the property that dh(z) = 0 for almost every z € K.
Let us denote by H(f) the hybrid conjugacy class of f.

By a slight abuse of notation, we will denote by K N Ay (g,d) the set of maps f €
Ay (g,6) with the property that f|[—1, 1] belongs to K.

In the proof of the following theorem, we will need to work with the complexification
of Ay. Let Ay c be the complex Banach space of all holomorphic maps f : V — C with
a continuous extension to the boundary of V. Let Ay c(f,d) be the open ball in Ay ¢
centered in f and with radius § > 0. Let C : Ay c — Ay,c be the conjugation operator
given by C(f) = co foc¢, where ¢(z) = Z € C. We note that f € Ay if and only if
f € Avc and C(f) = f.

Theorem 3.3. For every g € K, there exists a symmetric neighborhood Vg of the reals
such that g has a quadratic-like extension to V, (which we also denote by g), V contains
a definite neighborhood of Ky and for every neighborhood V- C V symmetric with respect

to R and with the property that g|V is a quadratic-like map, there is 64y > 0 such that
for all f e KNAy(g,94v),

Hv(f) = H(f) N Av(g,dqv)

are codimension one real analytic leaves varying continuously with f.

Proof. By lemmas 4.16 and 4.17 in page 354 of Lyubich’s paper [20], we obtain that
for all f € KN Ayc(g,6g,v), Hyc(f) = H(f) N Ayc(g,dqy) are codimension one
complex analytic leaves varying continuously with f. If f € Ay (g,d,,17) then the hybrid
conjugacy class of f in Ay, c(g,d4,v) is invariant under the conjugation operator C.
Hence, the tangent space TyHyc(f) at f to its hybrid conjugacy class is invariant
under the conjugation operator C, and there is a one dimensional transversal £y to
T¢Hy,c(f) which is also invariant under the conjugation operator C. Locally Hy.c(f)
is a graph of G : Z C TyHy,c(f) — Ey with the property that if ~ = v 4+ G(v) then
C(h) = C(v)+G(C(v)). Thus, locally Hy (f) is also the graph of G|ZNAy (g, 64,v), and
so it is a codimension one real analytic leaf. Since the complex analytic leaves Hy c(f)
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vary continuously with f, we deduce that the the real analytic leaves Hy (f) also vary
continuously with f. O

3.3. Hyperbolic skew-products. Before going further, we pause for a moment to
introduce the elementary concept of hyperbolic skew product in an abstract setting.
Let K be a compact metric space and assume that K is totally disconnected. Let F be
a finite collection of (real) Banach spaces, say F = {A1,As, ..., Ax}, and assume we
have a locally constant map ¢ : K — F. We write A, = p(z) € F, for all z € K. Let
E = Ugex{z} x A;. We endow E with a topology as follows. If K; = ¢~ !(A;), then
K; is an open and closed set in K, for each ¢ = 1,2,..., N. Note that E is the disjoint
union of K; x A;, i = 1,2,..., N. Hence endow each factor K; x A; with the product
topology and then FE with the union topology. It is clear that E is metrizable also. The
natural projection £ — K is open and continuous. We shall assume that there exists a
continuous injection K; — A; for each ¢, and will accordingly identify each x € K; with
its image in Aj;.

Now suppose T : K — K is a homeomorphism (in the case we are interested, T is
transitive), and also that for each x € K we have a real-analytic map S, : Az (x,d) —
Ar(a), where Ay (z,0) = {v +v € Ay @ [[v]la, < d}. We define a skew-product operator
S : E(0) — E over T, where

EQ) ={(z,y) :x € K,y € As, [ly — [la, <3},
by S(z,y) = (T(x), S2(y))-
Definition 3.2. We say that S is fiberwise hyperbolic if there exists a continuous spliting
Ay = ES @ EY with dim E¥ = 1 which is invariant in the sense that DS, (E%) C Et
and DS, (EY) C By, satisfying for all v* € EF and all v* € E} the inequalities

|D (Sn-1(zyo...S) (az)vsHATn(x) < CO"||v¥|| 4,

1D (Spn-1y 0 - 82) (@[], = CTHO7 ",

where C > 0 and 0 < 0 < 1 are uniform constants on g.

Definition 3.3. The fiberwise local stable manifold W5 (z) of S at = consists of all points
y € Ay(x, B) such that for all n > 1, we have Spn-1(z) 0 ... 0 S:(f) € Apn) (T (), B)
and

()] Apnisy S con

HSTnfl(x) c...0 Sx(y) — STnfl(r) o...0 Sx
where C' > 0 and 0 < 0 < 1 are uniform constants on x € K. The fiberwise local unstable
manifold W§(x) of S at x consists of all points y € Ay(x, 3) such that setting yo =y
and xo = x, for all n > 1 there exist yn,Tn € Ap-n(y) such that yn—1 = Sp-n(y)(Yn),

Tp—1 =T (x,) and ||z, — ynHATfn(z) < Co".

3.4. Skew-product renormalization operator. Our goal in this section is to build a
skew-product renormalization operator that will play a central role in the proof that K
is a basic set for T': Oq, — Aq,, for a suitable a > 0. Our skew-product is constructed
so as to satisfy properties (W1) to (W4) in page 395 of [20] in the real analytic case —
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restated in §3.5 — and therefore will have fiberwise stable and unstable manifolds, as we
will explain in that section.

By Theorem 3.1, we know that for every 0 < o < b, K injects continuously into Agq, .
Hence for f,g € K we define distk(f,g) = [|f — gllaq, - We also denote by K(g,e) the
ball of radius € centered at g in this metric. The metric is compatible with the natural
topology of K, independently of which a we take.

Lemma 3.4. The filled-in Julia set Ky varies continuously in the Hausdorff metric with
respect to g € K.

Proof. We need to show that for every € > 0 there exists 6 > 0 such that if distx (f, g) < §
then (a) Iy C Q.(Ky) and (b) Ky C Q.(ICy). To prove (a), cover K, by finitely many
disks D(zi(g),¢/2), i = 1,2,...,m, where each z;(g) is an expanding periodic point of
g. For f sufficiently close to g, the corresponding periodic points z;(f) € D(zi(g),&/2).
Hence each z € K4 is at distance at most € from some z;(f), which proves (a).

To prove (b), let U = Ug-no(g) n, C C be the symmetric neighborhood of [-1,1] given
by Lemma 3.2. Since the operator Tp-ny (g y, 18 continuous, every f € K sufficiently
close to g in Ag_ is quadratic-like on U (f = Tr-no(g) n, (T7X(f)) : U — C ) and is
also close to g in Ay. Let n > 0 be so large that W = ¢7"(U) C Q.(K,). Since f
is close to g and W C U is symmetric f : W — f(W) is quadratic-like also, whence
Ky W C Q. (Kg) and so (b) is proved. O

Lemma 3.5. Let g € K and let V C C be a symmetric neighborhood of [—1, 1] which
is compactly contained in y)5(KCy), where b is given by (3.2). Then for all € > 0
sufficiently small KN Ay (g,¢) is an open subset of K.

Proof. Take 0 < a < b sufficiently small such that €2, is compactly contained in V. By
Theorem 3.1 and (3.2), every f € K is well-defined on Q,(KC¢). Since by Lemma 3.4
the map f +— Ky is continuous in the Hausdorff metric, there exists g > 0 such that
if f € K is such that distg(f,g) < eo then Q,5(Ky) C Q(Ky). Since V. C Qp5(Ky),
it follows that f is well-defined on V', that is f € Ay. Hence there is a well-defined
injection K(g,e0) — Ay. Such injection is continuous. Indeed, for f € K(g,¢q), the C°
norm of f in /5(Ky) is uniformly bounded, while || f||a,, varies continuously with f.
Since Q, CV CV C /2(Kg), we deduce from Hadamard’s three circles theorem (see
Lemma 11.5 in page 415 of [20]) that ||f| 4, varies continuously with f also. Therefore
the map K(g,e0) — Ay is continuous as asserted. Now let f € KN Ay(g,g0). Since
the inclusion Ay — Aq, has Lipschitz constant one, we have that f € K(g,ep). Hence
there exists 1 > 0 such that K(f,e;) C KN Ay(g,e0), which shows that this last set is
open in K. This completes the proof. O

Lemma 3.6. Let b > 0 be as defined in (3.2) and 69 > 0 as in Lemma 3.2. There exist
v>0,0<0d < do, afinite set V of symmetric neighborhoods of [—1,1] and a locally
constant map K> g — V, € V with the following properties

(i) Vg is compactly contained in Qyo(KCy);

(ii) every f € Avy,(g,6) is a quadratic-like map with conformal modulus

larger than v;
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(iii) if f € KN Ay,(g,0) then H(f) N Avy,(g,0) is a codimension one real
analytic submanifold varying continuously with f.

Proof. For every g € K, let U, C C be a symmetric neighborood of [—1,1] where g is
quadratic-like, and take n, > 0 so large that V) = g7"9(Uy) C Qy/3(Ky) and V] C Vg,
where VQ is as given in Theorem 3.3.

Let o, > 0 be so small that each f € AVJ (9,64) is quadratic-like in Vg’ with conformal
modulus greater than v, > 0 and also so that Theorem 3.3 holds true (for V, and dg).
By Lemma 3.4, making J, smaller if necessary, we see that V) = g7"s(Uy) C Q4/5(Ky)
for all f € KN Ay, (g,d).

By Lemma 3.5, each set KN Ay, (9,04/2) is open in K. Since K is compact, there
exists a finite set {g; : ¢ = 1,...,l} such that

l
K c | Avy, (9i64:/2) -
i=1
Thus we can set

V= {Vg'l 1i= 1,...,l}, 0= 'Pllinl{(sgi/Q} and v = lrllinl{ugi} .

Therefore, since K is totally disconnected, there exists a locally constant map K 3 g —
V4 € V so that properties (i), (ii) and (iii) are satisfied. O

We are now in a position to define the skew-product renormalization operator. This is
accomplished in our next lemma. Let us define first its range and domain, respectively,
as follows

E = {(g,f):geKandeAVg}
E@©) = {(g./)eE: fecAhylgd} .

Note that by Lemma 3.6 (i), the inclusion k, : Ay, — Agq, is a well-defined compact
linear operator. By (3.2) and Lemma 3.6 (i) we also have

Van(g) € Q2(Kaw(g) € U(Kpn(g) C Ugw -

Therefore the inclusion jy, n @ Ay, v — AVRN(Q) is also a well-defined compact linear
operator.

We may fix once and for all a > 0 so small that Q, C V, for every g € K (this is
possible because V in Lemma 3.6 is a finite set).

Lemma 3.7. Let 6 > 0 and Vy € V be as in Lemma 3.6. Let N = N(a) > 0, Ty N and
T :0q, — Aq, be as in Lemma 3.2.

(i) For every g € K, the operator Ty : Aq,(g9,0) — AVRN@)
Ty = jg.n o Ty N 1s real analytic with a compact deriwative. A
(ii) The skew-product renormalization operator S : E(§) — E given by
5(g,f) = (T(9), S4(f)), where So(f) = Ty o ko(f) : Ay, — Avy,, is

well-defined. Furthermore,
(33) kT(g) o Sg(f) =To kg .

given by
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Proof. The proof is similar to the proof of Lemma 3.2 (ii). O

3.5. Hyperbolicity of the renormalization operator. The purpose of this section
is to show that K is a hyperbolic basic set for the operator T': Oq, — Agq,. This will
follow from the fact (Lemma 3.8 below) that the skew-product renormalization operator
has fiberwise real analytic stable manifolds and fiberwise one dimensional real analytic
unstable manifolds.

We start by noting that our skew-product operator satisfies the conditions W1-W4
in page 395 of Lyubich [20] in the real analytic case. Namely, we have

W1. The conformal modulus of each g € K is larger than an uniform constant p > 0.
W2. There exists n > 0 such that if distx (f, g) < 7 for some f,g € K, then Ay, = Ay, .
W3. There exists 6 > 0 such that Sg(Av,(g,6)) € Ay, -
W4. The vertical fibers Z, (consisting of those normalized symmetric quadratic-like
germs whose external class is the same as that of g) sit locally in Ay, for each
g ek
Condition W1 is satisfied because of the complex bounds (Theorem 3.1). Condition
W2 follows from Lemma 3.6. Condition W3 holds by the construction of S, in Lemma
3.7. Condition W4 is a consequence of Lemma 3.6 (iii).
Now we have the following result.

Lemma 3.8. The skew-product renormalization operator S : E(0) — E defined in
Lemma 3.7 is fiberwise hyperbolic. Moreover

(i) The local stable set W5 (g) of S at g is a co-dimension one submanifold
of Ay, which is relatively open in H(g) NAv,(g,0), and W§(g) is tangent
to B at g.

(i) The local unstable set Wi'(g) C Ay, of S at g is a one-dimensional
real analytic manifold and {g} x W§'(g) varying continuously with g € A
m B

Proof. Since the operator S satisfies Lyubich’s conditions W1-W4 stated above, part (i)
follows from Theorem 8.2 in page 392 of [20] and Theorem 3.3, and part (ii) follows from
Theorem 8.8 in page 398 of Lyubich’s paper [20]. O

Theorem 3.9. Let T': QOq, — Aq, be the real analytic operator defined in Lemma 3.7.
Then there is a continuous, DT -invariant splitting Aq, = Ej @E;‘, for g € K, such
that if v" € Ey and v® € Ej then

(3-4) IDT™(g)v" g, = CTH07"[|v°llag,

(3.5) IDT™(9)v"|l,, < CO"[v°]|ag, -
where C' > 1 and 0 < 0 < 1 are uniform constants on g.

Proof. Since for every g € K the map k,; : Ay, — Ag, is linear and injective, it follows
from Lemma 3.8 (i) that Z = k,(Wj'(g)) is a real analytic one dimensional manifold
varying continuously with g. Let w, be the unitary vector tangent to Wj'(g) at g. Then
vg = kg(wy) is a vector tangent to Zg at g and also varies continuously with g. Since kg

and kg are linear maps we see from (3.3) that if A, is such that DS, (g)wy = Agwr(g)
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then DT (g)vg = Agvr(g)- Thus a natural candidate for £ is the one dimensional linear
subspace generated by v,. In particular, (3.4) is satisfied.

Let us find the natural candidate for Ej. We have that DTy(g)vy = wr(g) and by
hypothesis wy(,) is transversal to the tangent space of W§(T'(g)). Thus, by the implicit
function theorem Z; = Tg_l(VV(;S (T'g)) is a codimension one manifold transversal to Z'.
Taking Ej equal to the tangent space of Z, we obtain that E; @ Ej = Ag,. By (3.3),
we have that a neighborhood of T'(g) intersected with Z;i(g) is contained in 7'(Zy') and
a neighborhood of T'(g) intersected with T'(Z]) is contained in Z7g)» which implies
that the spliting £ €D E is invariant under DT. ;From assertion (i) in Lemma 3.8,
we obtain that EJ varies continuously with g and so the spliting EJ @E;‘ also varies
continuously with g.

Finally, let M > 0 be such that ||DT,(g)||a,, < M and note that [|kg|la,, <1 for all
g € K. For all v* € Ej with unit norm, let u® = DT,(g)v* € Ay, . By Lemma 3.8 (i),
we have

IDT™(9)0°|lag, = lkrn(g) © DSpn-1(0)(T"}(g)) © - . 0 DSr(g)(T(9))* | g,
< IDSpu-1(g) (T H(g)) © - 0 DSr(g) (T(9))u" |y,
< COMNL
which shows that (3.5) is satisfied. This completes the proof. O

With the above results, we have therefore established Theorem 2.4, to the effect that
a suitable power of the renormalization operator is indeed hyperbolic in a suitable (real)
Banach space of real analytic mappings. From now on, we shall concentrate on the
problem of extending such hyperbolicity to larger ambient spaces of smooth mappings.
Our journey will take us far into the wilderness of non-linear functional analysis.

4. EXTENDING INVARIANT SPLITTINGS

In this section we prove a certain result from functional analysis (Theorem 4.1 below)
that is absolutely crucial for the stable manifold theorem that we shall prove later. This
result deals with the notion of compatibility presented below and is a strong generaliza-
tion of a key idea of Davie in [5]. In §5, we shall use the results presented here to show
that the invariant splitting for the renormalization operator 7" in Aq, of §3 extends to
an invariant splitting for the action of T" in the larger spaces A" of C" maps.

4.1. Compatibility. We are interested in the answer to the following question. Given a
smooth operator T : O — A having a hyperbolic basic set K, and given a larger ambient
space B 2O A to which T extends continuously (but not necessarily smoothly), under
which conditions does K have a hyperbolic structure in B? To give a precise meaning
to this question (and then answer it!) we introduce the following notion.

We have a natural continuous map L : K — £L(A, A) given by

Koz — L,:A— A
L,(v) =DT(x)v .
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We will also assume that for every x € K, EY is a one-dimensional subspace and that we
can chose a unit vector u, € E} varying continuously with x so that L, (u;) = d; - up(y)
with d, > 0. In the case of the renormalization operator there is a natural choice for
the vectors u,: choose the unit vector pointing in the direction of increasing topological
entropy.

For every z € K, we denote DT™(z) = Lpn-1(yy 0 -+ 0 Ly by L% and Orn—1(g) Oz
by 55«”). By hyperbolicity of K, there exist Cy > 0 and A > 1 such that for every z € K
and every n > 1 we have

(4.1) 5 > CoA™ .

We recall that X'(r) denotes the open ball in the Banach space X' centered at the
origin and with radius r > 0.

Definition 4.1. Let 8 < p < A where 0 is the contraction exponent of the hyperbolic
basic set K of the operator T' and X is as in (4.1). The pair (B,C) is p-compatible with
(T, K) if the following conditions are satisfied.

A1. The inclusions A — B — C are compact operators.
A2. There exists M > 0 such that each linear operator L, = DT(g)
extends to a linear operator L, : C — C with

Lyl < M
C
L,(B) C¢ B
L), < Mlels

A3. L:K — L(B,C) given by Ly, = Ly|B is continuous.
A4. There erxists A > 1 such that B(A) N A is C-dense in B(1).
A5. There exist K > 1 and a positive integer m such that

£ @), < max { 52 s ol Kl

Remark 4.1. Note that neither the map L : K x C — K x C given by ﬁ(x,v) =
(T'(z), Ly (v)) nor its restriction from K x B to K x B are necessarily continuous.

Example 4.1. As we know from Theorem 2.4, K is a hyperbolic basic set of the renor-
malization operator T = RN : O — A. In §5 (see Theorem 5.1), we will show that
the pair (A", A) is p-compatible for r sufficiently close to 2 and 1-compatible for r > 2
non-integer.

Let 7% : A — E¥ and 73 : A — E? be the canonical projections. We define P, =
W%(x) oL, and @, = 7@,(1) o L, which have the property that L, = P, + Q, and
that Pr)Qz = Q) Px = 0. We also define the linear functional o, : A — R by
Py(v) = 6,0.(v)ur(,). We note that the map o : K — L£(A,R) which associates to each
x the linear functional o, is continuous.
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Theorem 4.1. If (B,C) is p-compatible with (T,K) then each stable functional o, ex-
tends to a unique linear functional 6, € B* satisfying

LI () = 606, (v)ugn(y) 5

for some C! > 0 and 0 < 6 < p. Furthermore, the map 6 : K — L(B,R) which associates
to each x the linear functional 6, is continuous.

(4.2) < C'6"||v)|s

Proof. Let m and M be as given in Definition 4.1. Since by property A4 the C-closure
of B(1) is compact, and since A N B(A) is C-dense in B(1) we can find a finite set

®={v;:1<s<N}CANBA)
such that for all w € B(1) there exists 1 < s < N such that

m
Jw—wvslle < 1K
Now let v € B(1), and let vy € ® be such that
m
lv —wolle < 9

Since ||[v — v||p < 1+ A, applying the inequality of property A5 to v — vg yields

Egcm)(v _ UO)HB < max {m”v - UOHB; KHU — UOHC}

< p"/2.
Therefore L™ (v) = L (vo) + (p™/2)wy for some wy € B(1). Repeating the argument
with w; replacing v and proceeding inductively in this fashion, we get after k steps

km

7 (km (k—j)m 1%
LEm)( Z L;ng; )(v])+2—kwk

for some wy, € B(1) and v; € ®. Now recall that

k—j7)m m ((k m

Ly (wg) = PRI (0) + QN (v))
k m

= O o (o) (U i (0 + QY (v5)

Hence we can write

T (km m 1
Lg(gk )(1)) :(55!C ) 2_5(]m)0ij(x)(vj) Upkm (1)

km
((k m p
F 3 (2 e +

The first summation in parentheses converges to a limit because ‘&(cj m)‘ > CN™ > pim

(4.3)

Mk

7=0

and {O’ij(x) (vj)} is bounded, as the v; run through finitely many values and “O'Ti(m) H <
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M for all i. We therefore define

1y m

(4.4) o) = i D o5 Gy o) (1)
J=0 z

It will be clear in a moment that this extension of o, is independent of the choices of ap-

proximants v; performed above, linear, continuous, and the unique extension satisfying

(4.2). We know that

] <o

for all j < k. Thus the second summation plus the last term in (4.3) add up to a vector
with B-norm bounded by

This gives

LEF™ (v) — 5<km>&x(v)um(z)

xT

(4.5) (

. < C//(k+1)ﬁkpkm,

where 3 = max{1/2,0/p} < 1. Choosing 0 < 0 < p so that (k + 1)8* < C’”’(%)k/m for
all k, writing n = km + r, using that by property A2 for all z € K and for all v € B
|L.(v)||s < M|v||s, and the above estimates we obtain the desired inequality (4.2).
Let us verify that 6,(v) is the unique value satisfying (4.2). In particular, it does not
depend on the choices of approximants v; taken in (4.4). To do this we represent by
ok(v) a value satisfying (4.4), for instance obtained in (4.4) by taking another choice of
approximants in (4.4), and we observe that ¢ (v) satisfies (4.5). Therefore we have

‘ N

G2 (V) Upkm (5) — 0 (V) Uphm (g

B
—1 R
o () g — (90 L) (0)

x xT

IN

B

IA

20'9%" (5;’fm>)_1

Letting k& — oo in this inequality we deduce that 6,(v) = oi(v). A similar argument
shows that &, is linear. Using inequality (4.5) with £ = 1, we obtain that ||6,|5 is
bounded, and so &, is continuous. Il

Corollary 4.2. Let (B,C) be p-compatible with (T, A). Let the linear functional 6, € B*
be the extension of the stable functional o, satisfying inequality 4.2 for all x € K. Then,
there exists a continuous splitting B = E3 € E¥ with the following properties:

(i) E;‘ is the inclusion in B of the unstable linear space EY C A (see
condition (iii) of Definition 2.1);

(ii) E5 = Ker(6,);

(iii) the splitting is invariant by Ly;
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(iv) there exist a constant C' > 0 such that

for oll x € K, for all v € EA;‘, and for all m € N (where X > 1 is the
same as in (4.1));
(v) there exist constants C >0 and 0 < 6 < p < X\ such that

for all x € K, for all v € Ej,, and for all m € N. In particular, if p <1
then 6 < 1. R R

(vi) Let @5 : B — E2 and 7% : B — EY be the natural projections such
that

xT

Ly )|, = exelis

x

L @), < 08”1z

~S ~S __ 4S8 ~U AU AU ~S AU AU ~S __
My OMy =Ty, Ty Oy =T, and T, 0M, =7, 07, =0.

Let us define the operators Q : B — B and Py : B— B by Q" = L™ o#?
and by P" = Ly7%. Then, there exists C > 1 such that

~

< oo™

x

B
|7y = e
B
for all x € K and for all m € N.
Proof. First, we observe that for all x € K and for all v € B, we can write v = (v —
62(v)ug) + 62 (v)uy, where v — 64 (v)u, € Ker(6;) and 64(v)u, € E}. Since 64(uz) =

1 # 0, we obtain that B = E3 @ E.
By inequality 4.2, there exists C' > 0 such that

(4:6) |E )|, < comolls

for all x € K, for all v € Ker(6;), and for all m € N; if v € B\ Ker(6,) then there exists
C, > 0 such that

fieo], = e

Therefore, L,(Ker(4;)) C Ker(6;). Since L(EY) = Ey , implies that L(EY) = EY

the splitting is invariant by L.

By inequality (4.6), we obtain that property (iv) and the first inequality in property
(vi) are satisfied. Since K is compact and the map K — R™ which associates ||u|/g to
each x is continuous, there is C' > 1 such that

(4.7) CHvlla < llvlls < Cllv]la

for all z € K and for all v € E¥. Thus, property (v) and the second inequality in
property (vi) follow from property (iii) in Definition 2.1 and (4.7). O
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5. EXTENDING THE INVARIANT SPLITTING FOR RENORMALIZATION

Our aim in this section is to show that the invariant splitting for the operator T' given
by Theorem 2.4, which is an iterate of the renormalization operator, can be extended
to an invariant splitting of the same operator acting in the space of C” unimodal maps.
Given the abstract results of the previous section, namely Theorem 4.1 and Corollary 4.2,
all we have to do is find the appropriate compatible spaces and the corresponding com-
patibility constants. More precisely, we shall prove the following theorem.

Theorem 5.1. Let T' and K be as above, let 6 be the contracting exponent of T|K (as
in Theorem 3.9) and let X be as in (4.1).

(i) For all o > 0 the pair of spaces (A% A®) is 1-compatible with (T, K).

(ii) For all 1 < p < X there exists o > 0 sufficiently small such that

(A2=2 A% is p-compatible with (T, K).

The path towards the proof of this theorem (presented in §5.3) leads us to perform
what amounts to a spectral analysis of the formal derivative of the renormalization
operator, which in turn call for certain estimates on the geometry of the post-critical set
of each map in the limit set of renormalization. We have the following explicit formula
for the derivative Ly = DT(f) of T at f € K.

p—1
DT(f)v = %Zij(fpj()‘fx))U(fpj1()\f35))
j=0

p—1
+A1f [@(Tf) () = Tf(@)] > D (P (0)o(f777710))

§=0
where as before A\ = fP(0) for some positive integer p = p(f, N). We observe that the
operator Ly extends naturally to each of the spaces A7 for v > 0.

Properties A1, A2 and A3 of Definition 4.1 are easily verified in our setting. Property
A4 follows from a general result of Holder spaces that can be proved via smoothing
operators. Hence, the heart of the matter is verifying property A5. This is where the
geometric scaling properties of the invariant Cantor set of a map in K become important
— see §5.2. We follow Davie’s observation that Lgcm) is a special sort of operator — what
we call an L-operator — which is amenable to analysis. The verification of the fifth
property (with (B,C) = (A7, A%)) — presented in §5.3 — consists in controlling the norm
of a certain positive linear operator LSZZ) : AY — A associated to Lgpm) (see Lemma 5.3).
Using the bounded distortion properties of f € K and the geometry of the invariant set
of f, we show that the exponential growth rate of the C° norm of LE{:) is bounded by
some ;< A if v = 2 — a with a > 0 small enough and is bounded by some p < 1 if
v =24 «a with a > 0.

5.1. Holder norms and L-operators. First we define what we mean by an L-operator,
and to each such operator L we associate another operator L., acting on continuous
functions. Then, we use local Holder estimates to control the norm of compositions
Ly, 0---0Lyo Ly of L-operators L; by the norm of (Ly, o---0Lyo Ly),.
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Definition 5.1. An L-operator is a bounded linear operator L : CV(I) — C7(I) that
can be written in the form

Lo(z) = ) ¢i(x)v(vi(x)),
i=1

where ¢; € CM(I) and 1p; € C2(I) are maps such that ;(I) C I fori=1,...,n, and
where v1 > 0 and y2 > 1 are such that 0 < v < 1, 2.

Example 5.1. For all f € K and all i > 0, the formal derivative Ly = DT (T"(f)) is
an L-operator.

An L-operator L as above yields a positive, bounded linear operator L. : Cco (1) —
C%(I) defined by

Lyv(z) = Y (@)1 Dyi(a) " o(yi(z)) -
=1

A straightforward computation yields the following result.
Lemma 5.2. If Ly, Ly : C7(I) — CV(I) are L-operators, then (L1 o La)y = L0 Lo .

We remind the reader that a function ¢ : I — [ is a-Hélder continuous, for a fixed
0 < a < 1, if there is ¢ > 0 such that |p(x) — ¢(y)| < cla — y|* for all z,y € I. Let
C(I) be the Banach space of all a-Hélder continuous real functions on I, with norm

lolla = maX{H(pHO, sup M} ‘

T#yY |1: - y|a

Let C*+(I) be the Banach space of all real functions on I for which the k-th derivative
is a-Holder continuous, with norm
lelli+a = max{llelo, [D*¢lla}-

Lemma 5.3. Let L; : CV(I) — C7(I) be a sequence of L-operators, and assume that
there exist constants i > 0 and C' > 0 such that for all n we have

(5.1) |(Lno---o0LyoLi),l,<Cu™.

Then for all p > pu and all € > 0 there exist m > 0 and K > 0 such that for allv € CV(I)
we have

| Lo+~ Ly o Liw)ll, < max {ep™ o], Klollo} -

To prove the above proposition, we will use local Holder estimates for L-operators
given in our next lemma. For each n > 0 and each ¢ € C*(I), we consider an associated
semi-norm

lp(x) — o(y)|
Iellan = sup  —————2==

0<|z—y|<n |x_y|a
The corresponding semi-norm of ¢ € C*+(I) for k > 0'is [|@|lkran = 19 las-

Lemma 5.4. Let L : C7(I) — C7(I) be an L-operator as defined above.
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(i) For every e > 0, there exists n > 0 such that
L[l < (e + ([ L4y llcony) vl
(it) For every e >0 and 0 < { < 7, there is n > 0 such that
[Lvllen < ellolly-
Proof. See Lemmas 1 and 2 in [5]. O

Proof of Lemma 5.3. Choosing m such that Cu™ < ep™ /8, we have
ep™

8

By Lemma 5.4, given &’ = £p™ /8, there exists n > 0 such that

M = ||Lmyo-oLil, <

ep™
|Lyo---o0 L1(U)H%n < (5/ + M) [v]ly < THUHV :

Taking K = 8k!||Ly, o --- o Ly|lo/n", writing v = k + «, where k is an integer and
0 < a < 1, and using interpolation of norms (see Lemma 4 in [5]), we deduce that

2k

!
oo 4max{||Lm O:-- OLl(U)H%U’n_'Y ”Lmo OLI(U)HO}

A

[Lm oo Ly(v)]

< max{ep™||v|y, K|lv|lo} . O

5.2. Bounded geometry. Our aim in this section is to prove two crucial propositions
concerning the geometry of the invariant Cantor set of an infinitely renormalizable map
in the limit set of renormalization. They are important not only in the proof of Theorem
5.1, but also in the proof (presented in §8) that the renormalization operator is robust
(in the sense of §6).

We recall our notation. For each f € K, let Z; C I be the closure of the postcritical
set of f (the Cantor attractor of f). For each k > 0, we can write

REF(r) = 5 7+ ()
k

where pp = Hf:_ol p(R'f) and )\, = Hf:_ol A(R'f). Recall that the renormalization

intervals Ay = [—|\gl, [Mel] € [=1,1], and A; = f*(Aoy) for i =0,1,...,p; — 1. The
collection Cy, = {Agk,...,Ap, 1k} consists of pairwise disjoint intervals. Moreover,
U{A: A e Ciyr} CU{A: A € Cy}for all £ > 0 and we have
oo pr—1
zf:[j LJAM.
k=0 i=0

In our first proposition, f is a normalized, symmetric quadratic unimodal map, infin-
itely renormalizable, sufficiently smooth (say C?) for Sullivan’s real bounds to be true
for f. But there are no restrictions on the combinatorics. We shall use the general
fact, due to Guckenheimer [12], that among those renormalization intervals at the k-th
level the one that contains the critical point of f (namely, Agy) is the largest (up to
multiplication by a constant). This can be seen as follows. First suppose that f is also
S-unimodal. If n > 0 is such that f™(z) belongs to the interval with endpoints —x, z
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but f7(x) does not, for all 1 < j < n, then |Df"(x)| > 1 — this uses the fact that f has
negative Schwarzian. From this it follows that if J C [—1, 1] is an interval that does not
contain the critical point, whose iterates f7(J) are pairwise disjoint for 0 < j < n, such
that f"(J) lies in the convex-hull of J union its symmetric while the previous iterates
f3(J), 1 <j < mn, do not, then |f*(J)| > |J|. Hence, if f is renormalizable, symmetric
and S-unimodal then at each renormalization level the interval that contains the critical
point is the largest. If we drop the negative Schwarzian hypothesis, the same is true up
to a multiplicative constant. This is because every sufficiently deep renormalization of
f already has negative Schwarzian derivative.

Proposition 5.5. For each o > 0 there exist constants Cy and 0 < p < 1 such that

(5.2) Z L

|Az+1 k‘

|2+
< Copt

Proof. Let £(A; 1) be the level of A;, i.e., the largest integer j such that A; ; C Ag; \
Ao j+1. Let d; i, be the distance from A, j, to zero (the critical point). Using that A; j has
space around itself we see that for all i # 0 and all z € A; ;, we have d; , < |z| < Kd;,
where K > 1 is a constant that depends only on the real bounds. Hence K1 < |z|/|y| <
K whenever x,y € A; ;. These facts are implicitly used in the estimates below.

Now, we have |A;g|/|Ait1%| = 1/|f'(zix)| for some z;, € A;k. Since the critical
point is quadratic, we have | f/(x; )| > Ci|z; | Therefore, for all 0 < j < k—1 we have

|Ai, 2 — |Az,
Y oaiosot ¥ s Z /

A
6D 1)=j Bt (D p)=j

d .
S Cg/ —x S 04 ]ng .
Ao,5\Ao0,j+1 || |Aoj+1]

With these estimates, and using the fact proved above that |Ag x| > Cs|A; | for all
0 <i<pg—1, we see that

”’f Ay 42+ kZ [0,
< Cymax|A;|* ) log —— 0
A Z | A0,j+1]
1 Cy
o] < 7 a/2 )

% [Bgs] = a 100N
This proves (5.2) because |A j| decays exponentially with k£ with uniform rate depending
only on the real bounds. O

In addition to Proposition 5.5 — valid for maps with arbitrary combinatorial type —
we shall need also an estimate that seems specific of maps with bounded combinatorial
type, namely Proposition 5.8 below. First, a couple of lemmas.

For each f € K, let dy be the infimum of all positive numbers s such that

pr—1
Z Ak = 0as k— oo .
=0
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It is possible to prove, using some thermodynamic formalism, that d; agrees with the
Hausdorff dimension of Zy, but we will not need this fact. Let 0 < D < 1 be the
supremum of dy as f ranges through K.

Lemma 5.6. For each s > D there exist Cs > 0 and 0 < ns < 1 such that for all f € K

we have
pp—1
> 1A < Canl
j=0
Proof. Apply bounded geometry and the compactness of K. O

Next, let us define
Sik(fis) = Z A kl®
(A k)=]
for j=0,1,...,k—1,all £ >0, and all f € K.

Lemma 5.7. For each s > D we have S;i(f;s) < CS)\;Tnf_j, where Cy > 0 and
0 < ns < 1 are the constants of Lemma 5.6.

Proof. Using renormalization, we see that S; . (f;s) = AjSox—j (R7(f);s). ;From Lemma
5.6, we know that

Sok—i (R (f);8) < Can ™ .
The result follows. U

Proposition 5.8. For each pn > 1 there exist 0 < a < 1 — D close to zero and C > 0
such that

pr—1 2—a
Z A;,

|AZ+1 k| N

Proof. We have

pr—1 27—« pr—1 k—1
A’L A’l «
Z' L Z|' A <o NS - a)

‘Az-l—l k| =0

If 1 — @ > D then, applying Lemma 5.7 with s = 1 — o, we get

R A
Z ) <OCl QZ)\ ank]<cl)\k
z—l—lk’ =0

where C’ > 0 depends on « and A\, = max{A(f)"®: f € K}. But if « is small enough
we will have A\, < u, and this completes the proof. O

Remark 5.1. By a continuity argument and the real bounds, we can prove that proposi-
tions 5.5 and 5.8, stated for maps f € K, remain true for maps f € U? sufficiently close
to f in the C? topology. More precisely, for each k > 0 there exists €, > 0 such that for

all f € K and all f € U? with Hf— f‘ . < €, the map f 18 k-times renormalizable,

(1) ~
and the statements of both propositions hold for f. This will be used in §8.4.
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5.3. Spectral estimates. In this section we prove Theorem 5.1.

Fixing f € K and considering the Banach space A given by Theorem 2.4, we recall
that the Fréchet derivative Ly = DT(f) : A — A is given by formula (5.1). It is clear
from that formula that L; extends to a bounded linear operator L I AY — A® and
moreover L, #(A®) C A® for all s > 0 (because f is analytic).

We want to verify the compatibility properties of Definition 4.1 for the spaces B = A*®
and C = A when s is close to (but different from) 2. Properties A1, A2 and A3 are
clearly satisfied. In order to check property A4, all we need is the following property of
Holder spaces (see [15]).

Lemma 5.9. There exists A > 1 such that A N A%(A) is CO-dense in AS(1).

Proof. Let Si, t > 0 be a family of smoothing operators. Given v € A®(1),we have by
Theorem A.10 in [15] that ||Sw|lcs < C and also ||[v — Si(v)||co < Ct®, where C' > 1
is a uniform constant. Take an integer k > s. Since S;(v) is C*¥ and A is dense in
C* (by the Stone-Weierstrass theorem), for all small 0 < ¢ < C there is w; € A such
that ||wy — Se(v)||or < €. Thus [Jwi|lcs < ||Se(v)|lcs + € < 2C on one hand, while
||lwe — v||co < €+ Ct* on the other hand. For ¢ small enough, this gives ||w; — v||co < 2¢
with w; € A*(2C).

Hence all that remains is to check that property AJ5 is satisfied. By Lemma 5.3, this
will be the case provided we can control the C° norms of I:SZZ) We shall prove this now,
with the help of Propositions 5.5 and 5.8.

Recall that for each m > 1 the operator f/gcm) is an L-operator and its associated
(m)

sS ’

positive, bounded linear operator L 7 AY — A0 is given by

pr—1
B0 = & > 1D I QeI )Pl 75 )

where k = mN. Now we have the following fact coming from bounded geometry
| Aok
|Apk—j,k| ’

for all 0 < j < py — 1. Since |Df(Apz)| < CAi for some constant C' > 0 independent of
k and uniform in f € K, and [Ag | = 2\, we have

(5:4) [DF (77 ()| =

D ()| < Ol ol | D2 (F ()]

Again, by bounded geometry, for all 0 < j < p — 2

. A, i
DI ()| = Ptk
| A1kl
and so
) JANS
(5_5) ’Dfpk_]—l()\kx)‘ < C‘Ao,k’mijm .
1,k
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Using (5.4) and (5.5) in (5.4), we see that

Pr—2
||i(m)|’ < Q A i Ii: )28 |Ap—j—1k]°
ST A\ A " lAp ikl AL

But |Ag x| = 2Ax and since the critical point of f is quadratic, |A1 x| < |Agx? < A2.
Therefore, we arrive at

pr—1

|Ap 1k|
5.6 L < hd
(5.6) 1L il Z Ay ]

The proof of part (i) of Theorem 5.1 now follows from Proposition 5.5, while the proof
of part (ii) is a consequence of Proposition 5.8. This ends the proof of Theorem 5.1.

6. THE LOCAL STABLE MANIFOLD THEOREM

In this section we isolate those features of the renormalization operator that are
essential for the promotion of “hyperbolicity” from the Banach space A of Theorem
2.4 to the space U". This leads us to the definition of a robust operator (see §6.1).
Such definition is necessarily rather technical, since it has to account for the fact that
the renormalization operator is not Fréchet differentiable in U". In particular a robust
operator acts simultaneously on four different Banach spaces (corresponding in the case
of renormalization to the space A given by Theorem 2.4, U, U* and U, where r > 1+s
and s is close to 2), and satisfies several properties. The major goal of this section is to
prove a local stable manifold theorem for robust operators.

6.1. Robust operators. Before moving on to a precise definition of a robust operator,
we give the following informal description. A robust operator acts continuously on four
Banach spaces A C B C C C D, and in the smaller space A it acts smoothly and
has a hyperbolic basic set K. The pair of spaces (B,C) is 1-compatible with (7, K),
and in particular the invariant hyperbolic splitting for K in A extends to an invariant
hyperbolic splitting for K in B. Viewed as a map from B into C, a robust operator is
C'. As an operator in C, it also satisfies a uniform Gateaux differentiability condition
in C for directions in B. Finally, as an operator in B, it is reasonably well-approximated
by the extension of its derivative at a point of K in A to a bounded linear operator in
B. 1t will take us considerable effort (see §8) to verify that the renormalization operator
indeed satisfies all these conditions.

Let T : O — A be a C? operator having a compact hyperbolic basic set K. By
standard invariant manifold theory (see [14]), we know that for all g € K the local
unstable manifold W%(g) of T at g exists and is C?. In particular, we can find a C?
parametrization

s ug(t) € W(g) € A
varying continuously with g such that u, = ufq(O) is a unit vector. We define a C?

function ¢t — Sg (t) by
T(ug(t)) = ur(g)(dy(t)) -
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This function also varies continuously with g and 59 (t) = 04t + O(t?) for some &, > 0.
Recall that by hyperbolicity of K, there exist Cy > 0 and A > 1 such that for every
g € K and every m > 1 we have

(61) (5Tm—1(g) s (59 > Co\™ .

Definition 6.1. Let A C B C C C D be Banach spaces, where each inclusion is a
compact linear operator. For X = A, B,C,D, let Oy be an open subset of X, such
that O4 C O C O¢ C Op. Let K C O4 be a hyperbolic basic set of a C? operator
T:04 — A. We say that T is robust with respect to (B,C,D) if it has a continuous
extension to an operator T : Op — D that satisfies the following conditions.

B1. We have T(OpNX) C X for X = B,C.

B2. The pair (B,D) is 1-compatible with T, while the pair (C,D) is pc-

compatible with T' for some pc < A (where X is as in (6.1)).

B3. For each m > 0, let Ol(gm) ={f€0p:Tf) € Op, Yi <m}. Then

T . (’)ém) — C is C and its derivative is uniformly continuous in some

neighbourhood of K. Furthermore, for all f € AN Og‘) the linear map
DT™(f):B—C
extends to a continuous linear operator L., : D — D that satisfies
L, (X)C X, for X =B,C.
B4. Furthermore, for every m there ewists Cyp, 1 > 1 with the property

that for each g € K there is an open set V4 C Op containing g such that
for all f € V4 we have

IDT™(f)ug — DT™(g)ugllc < Crmallf =9l -

B5. There exist Chy > 1 and p > 1 with the property that for each g € K
there is an open set V, C Op containing g such that for all f1, fo € V,
we have

IT(f1) = T(f2) = DT(f2)(f1 — fo)lle < Cillfr = fallf -
B6. For all m > 0, there exists Ci, 2 > 0, and there exists vy, > 0 such
that for all g € K and for all f € B with ||f — g||p < vm we have
[ DT™(f) — DT™(g)llc < Cm2A™ .

Moreover, there exists mg > 0 such that for all m > mg we have Cp, 2 <
Cy/8 (where Cy and X\ are as in (6.1)).

B7. For all m > 0, there exists Cp, 3 > 0 such that for all g € K, for all
feAwith||f —glla < vm and for all v € B with ||v||g < vm, we have

[T (f +v) =T™(f) = DT™(g)vlls < Cmsllvlls -
Moreover, there exists mg > 0 such that for all m > mg we have Cp, 3 <
1/4.

Example 6.1. As one might expect, the main example of a robust operator is provided
by renormalization. We know from Theorem 2.4 that the renormalization operator T’ =
RN : QO — A is hyperbolic over K. We also know that T extends continuously to a map
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from an open set of UY into UY C 1+ AY =2 A7 for all v > 0. We will show in §8 that T
is robust with respect to the spaces A=A, B=A", C = A® and D = A° whenever s < 2
is close to 2 and r > s+ 1 is not an integer.

6.2. Stable manifolds for robust operators. We can now formulate a general local
stable manifold theorem for robust operators.

Theorem 6.1. Let T : O4 — A be a C¥ with k > 2 (or real analytic) hyperbolic
operator over K C O 4, and robust with respect to (B,C,D). Then conditions (i), (ii),
(iii) and (iv) of Theorem 2.8 hold true for the operator T' acting on B. The local unstable
manifolds are C* with k > 2 (or real analytic) curves, and the local stable manifolds are
of class C' and form a C° lamination.

The proof of this theorem will occupy the rest of §6. In the end, the theorem will
follow by putting together Corollary 4.2, Proposition 6.13 and Theorem 6.15.

6.3. Uniform bounds. Before proceeding we prove the following simple bounds that
we will use quite often.

Lemma 6.2. There exist ug > 0 and 1 < X < M such that for all g € K and allt € R
with [t| < po, ug(t) and 64(t) are well-defined and

(i) M < Spur(gy -+ 8y < M™ and ’Sg(t)‘ < MJt|;

(1)) M~ <|luglls < M and M~ < [luglle < M;

(iii) M7HE| < |lug(t) — glle < MIt] and M7t < lug(t) — gllz < Mlt];

(iv) M~ < |logllys < M and M~ < ||ogll, < M;

(v) |og (ug(t) — g)| > 3t].
Proof. By Definition 2.1 and (6.1), there exist 1 < A < M; such that for all ¢ € K
and all n > 1 we have M '\" < Ogn-1(g) =0y < M7 and also lgg(t)‘ < M;|t| for all
|t| < w1 (where p; > 0 is a uniform constant). For X equal to B and C, we have that
g — uy as a map K — A is continuous and does not vanish. Hence, by compactness
of K there is My > 1 such that M, ' < |luyllx < M. Since o4(u,) = 1 and by
property B2 in Definition 6.1, the functional o, extends continuously to X and there
is M3 > 1 such that M;' < [log]l, < Ms. In addition, since t — uy(t) as a map
R — X is C'! and varies continuously with g € K, there is My > 0 and g > 0 such that
lug(t) — ug(s)||x < My|t — s| for all g € K and all |¢t| < po. Finally, since

d

—ug(t) =u, #0
A PP

there exists M5 > 0 and pz > 0 such that |t — s| < Ms||lugy(t) — ug(s)||x for all g € K
and all [t| < ps. O

6.4. Contraction towards the unstable manifolds. The one-dimensional unstable
manifolds of T in A are embedded in B, and remain invariant. The first important
estimate given by the following lemma shows that in B the operator T' contracts towards
such manifolds. Therefore, if T" is to have unstable manifolds in B, these have to coincide
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with unstable manifolds in A. In what follows, we fix g € K and for simplicity of notation
we write

0i = OTi(g), Ui = UTi(g), Wi = Uri(g), O H 07i(g)s 0" = Opm=i(g) ©+++ 0 Ori(g) -

Set pp > 0 as in Lemma 6.2.

Lemma 6.3. For every m > 0 there exist 0 < 1, < po and By, > 0 such that for
every g € K and every v € B with |[v||g < nm and t € R with [t| < 9, we have

S (t + o0(v)) < o, up(t) +v € O(m) and
T (uo(t) + ) =t (35 (¢ + 00()) |, < Bullols -

Furthermore, there is my > mg such that for all m > my we have B, < 1/2.

Proof. We prove the second inequality only. The first is proven in the same way.
By property B7 in Definition 6.1, there is mg > 0 such that for all m > mg, all v
with ||v]|g < Vm, and all t € R with [¢t| < v, we have

(62) T (o) +v) — T™ (wolt)) — DT™ (g)vl] < ol -

By property B2 in definition 6.1, (B, D) is 1-compatible with (7', K). Hence, by Corollary
4.2, there exists mq > mg such that for all m > my we have

(6.3 IDT™ (g0 — 5§ ou(v)umlls < glolls

Putting (6.2) and (6.3) together we get

(6.4) T o) + ) — T™ (o (1)) — oo}t < = ol -

Now, we know that T (ug(t)) = (65 (t)) and ¢ — u, o 65*(t) is C2. Hence,

U © 65"t + 00(0) = © 57 (1) = 6500 (v)un | < e ((00(0))? + [tloo(v)

(6.5) < c(llvlls+ ) lv]5 -

Therefore, choosing 7, < vy, so small that Con,, < 1/16 and putting 6.4 and 6.5
together, we see that if |¢t| < n,, and ||v||g < 9y, then

m m 1
|77 (o(8) 4+ ) =t 0 Bt + 00 ()| | < 5015
as desired. ]

Lemma 6.4. Let m; > 0 be as in Lemma 6.5. For all m > mq there exist small
constants 0 < g9 < €1 < g9 such that the following holds for every € < e5. For every
g € K and every v € B with ||v||g < €, the recursive scheme given by fo = g+ v, tog =0,
vg = v and

ferr = T™(fr)

teor = gt V™ (th + Ok (k)
(6.6) Vb1 = fr1 — U nym (ht1)
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is well-defined for all k = 0,... ko — 1 where ko = ko(g, fo) = min{j : |t;| > e1}. For
all k < kg we have

w7>Hﬂm@+vww%Amm <27 |olls and || (g +v) =T (g)|| | < 20/Mo .

where Mo = M™2 + By + ...+ B,,, M is as in Lemma 6.2 and By, ..., B, are as in
Lemma 6.53. Furthermore,
(i) g1 < ’tk0| < €0y
(i1) HT’“Om(g +v) — T’“Om(g)HB > g9.
(iii) |ogm (T*™ (g +v) = TH™(g))| > €a;
(iv) ||T"" (g +v) = TF"+i(g)|| 3 < Mo |[|[T*F™ (g + v) — T*™(g)
is less than o) for all k < kg and all i =0,...,m

HB (which

Proof. For every g € K, let V-(g) be the open ball in B of radius e centered at 0. Let us
fix m > m; and choose g9 < min{pg, 71, ...,nm} such that all the properties B1 to B7

of Definition 6.1 are satisfied in (J,cx Veo(9) C Ogn), where pg is as in Lemma 6.2 and
M, ..,Nm are as in Lemma 6.3. Since m > mq, we have that B,, < 1/2 where B, is as
in Lemma 6.3. Let us take M > 1 as in Lemma 6.2. We choose 0 < g9 < &1 < eg < i
such that

e1 < eo/ BMoM™*?) |
(6.8) g9 < e1/(2+2M) .

Now we work by induction on k. Let us assume that fj, tx, and vg have been defined so
that (6.7) holds. Hence || fi — ka(g)HB <ep < p,and so fi € Ol(gm) and fr+1 =T™(fx)
is well-defined. Since |t| < &1 and 2M™ ey < g9 < p, by lemma 6.2 and 6.2, and by
(6.6) and (6.8), we have that ¢;, is well-defined and

thaal =[S b+ rrm (o)) < M (] + o (1))
(6.9) < M™ (51 n M%) < oM™t < g .

Thus, by Lemma 6.2, ugi1)m(ter1) and vey1 = frr1 — YUggnym(trr1) are also well-
defined. By Lemma 6.3 and by (6.6), we get
lorsills = (| T™(fr) = vrnym(tes) || 5
= HTm(’Uk + Uk (tk)) = Ues1)m (&ﬁrl)m(tk + Ukm(’vk))) H

27" [lollg < 2% luollg -

B

IN

(6.10)

Now, let us estimate ka+1 T (k+1)m H . (From (6.6) and (6.10), we get

g
(6.11) | Ferr = wirrym (i) || 5 < lowsalls < o

;From Lemma 6.2 and by (6.9), we obtain

(6.12) “U(k+1)m(tk+1) _ T(k+1)m(g)HB < M |tpp| < 2M™ 2,
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Thus, by (6.8), (6.11) and (6.12) we have

ka+1 - T(k+1)m(g)HB < ka+1 - “(k+1)m(tk‘+1)”B
+ Hu(k—i-l)m(tk+1) - T(k+l)m(9)HB
< % +2M™ ey

< BM™2% < go/My .

This completes the induction.

Now, we must prove (i), (ii), (iii) and (iv). Property (i) follows from (6.9). Let us
prove (ii). By property (i) and Lemma 6.2, Hukom(tko) —Tkom(g)HB > M~'e;. By
(6.10), we get ||vg, ||z < &/2*. Thus, by (6.8), we obtain

HTkOm(g +v) — Tkom(g)H = Hukom(tko) + Vo — Tkom(g)H

B B
k
> |fetom (i) = 759 = kol
-1 €
> M 61—270
> g9 .

£1/2. By Lemma 6.2 and (6.10), we have |oxm(vk,)| < Me/2K0. Thus, by (6.8),we get

Let us prove (iii). By property (i) and Lemma 6.2, we have ’Ukom(ukom(tko - Tkomg))‘ >

[k (T (g 4+ 0) = T"g) | = | lowgm(tkam (tro))| = 0k (01, |

1 £9
= g My
> g9 .

Finally, let us prove (iv). Fix 0 < k < ko and 0 < i < m. Setting wy = T*™(f) —T*™(g)
we have by (6.7) that ||wk|lg < €0/Mo < m; where n; is as in Lemma 6.3. Hence
TF™(g) +wy € (’)g) and by Lemma 6.3 we have

| 7@ (9) + ) = i (85 ()| < Billuonls
On the other hand, by Lemma 6.2, we have
|t (85 (i) = T (g)|| < M7+ -
Therefore,
ITH () = T () s < | THTH™(9) + wn) = i (S (@om (w0)) ) |
g (St (@rm (w)) = T (g) |
< (Bi+ M™?)|wg|lp < €0 ,

which ends the proof. O

B

34



6.5. Local stable sets. Let us now consider the local stable set W2(g) of T' at g in
B which consists of all points f € B(g,e) such that for all n > 0, we have T"(f) €
B(I™(g),e) and
1T (f) —T"(9)|lzg — 0 when n — oo .

Our aim in this section is to give a finite characterization of W7(g) and prove that T
contracts in the B-norm exponentially along W2 (g). This is done in Lemma 6.5 below
(see also Remark 6.1).

JFrom now on in this section, we let m; and g9 > €1 > €2 > ¢ be as in Lemma 6.4.
For all sufficiently small 0 < £ < g5 and for all f € V.(g), we let ko = ko(g, f) and t; =
tr(g, f) for k=0,... ko be as in Lemma 6.4. We write V.(g) = V.~ (9) UV (g) UV (9)

where

Vilg) = {feVelg): —e0 <trlg. f) < —e1}

VXH(g) = {feVelg):er <trlg f) <eo},

V2(g) = Velg)\ (Vo (9) UV (g) -
Lemma 6.5. There exist an integer m and a positive constant Co with the following
properties. For all € > 0 sufficiently small and for all g € K, the sets V. (g) and

V:r(g) are open subsets of Vo(g) (and so VX(g) is relatively closed in V-(g)), and for all
feV(g)

(6.13) |T7(f) = T (g)| g < eCa279/™ .
Furthermore, the local stable set W2(g) is a relatively open subset of VO(g) and
(6.14) Wi(g) ={f € V>(9) : || T7(f) j(g)HB<€, for all 0 < j < mlogCs/log2} .

Proof. The first assertion is a consequence of the definitions of V. (g) and V. (g) and
Lemma 6.4. It follows from property (i) of Lemma 6.4 that

V2(g) = {f € Ve(g) : lt(g, /)| < ex, for all k > 0} .
It also follows from property (ii) of Lemma 6.4 that if f € V.(g) and |tg, (g, f)| > &1
then ||T%o™ f — TkomgHB > ¢ where ko = ko(g, f). This shows that W2(g) € VX(g), and

therefore (6.13) implies (6.14). Furthermore, W2(g) is a relatively open subset of V?(g).
It remains to show that if f € V°(g) then (6.13) holds. Set 1 < A\ < M as in Lemma

6.2. Fixing 8 > 2, by Lemma 6.2, there is m large enough such that 5,5:]:;1)7” > M7 >
B > 2 for every k > 0. By Lemma 6.4, for all £ > 0, we know that t; = tx(g, f) and
vp = vi(g, f) are well-defined, and satisfy |tx] < €1 and ||v||g < £27*. Furthermore,

the1 = 6(k+1) (tx + okm(vg)). Since 5,i];jl)m is C? and ||okm||s < M (see Lemma 6.2),
there is ¢g > 1 so that

i = O < [T (e + o (04) = 3 (1))
‘5k+1 (t) — 6(k+1 t‘

co (Ivells + [tel?)

co <52_k+|tk|2) .

IN

IN
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Hence (6.15) gives us

Itr] < ecoB127F + B traa| + coB )
Taking ¢ (in Lemma 6.4) so small that co3 e < 1/2, we get
(6.15) el < 2 (|tk] — coB ' te]?) < e2c0B7'27F + 287 tyia]

for all k > 0. Since 23~! < 1, using induction in (6.15) and the fact that t; is bounded,
we get |tn] < ec127F with ¢; = 2co87!/ (1 — 2ﬂ_1) for all £ > 0. Now this estimate
together with Lemma 6.2 gives us

g (tr) — T*™(9) |5 < Mty| < eerM27F .

Hence, using Lemma 6.4 again, we get

|7 () = 9|

IN

loells + e () = T (3)

< 27k 4 501M2_k = 5022_k .

B

Therefore, by (iv) in Lemma 6.4, for all ¢ € {1,...,m — 1} we have
[remic = i) | < Mo [T ) - TE )| < s
which ends the proof. O

Remark 6.1. Note that since the constant Cq is uniform (independent of €) in the above
Lemma, inequality (6.13) can be improved to

|T9(f) = T9(g)|| s < C"279/™ || f = gl
where C' = 2C5. Therefore, we have exponential contraction in B (along the local stable
sets) in the strong sense.

6.6. Tangent spaces. Our next goal is to show that V°(g) is a C! manifold provided
¢ is sufficiently small. The first step towards this goal is to find the natural candidate
for the tangent space at every point f € VY(g). This will be accomplished in Lemma
6.7 below. The proof will require the following elementary bootstrapping result.

Lemma 6.6. Let (ay,) be a sequence of real numbers such that, for some co > 0 and all
n>1,

-1
1 Co &
(6.16) ans1] < Zlanl + 55 D oyl -
j=1

Then |an| < 127" for some ¢ > 0 and all n > 1.

Proof. We may assume that ¢y > 1. Let ng > 0 be such that cony/2™ < 1/2, and set
b = maxi<j<ny{|a;j|}. Then we see by induction from (6.16) that |a,| < b for all n > 1,
and so

1 nbcg
’an—l—l‘ < Z’an"i‘ on

< 1’ I+ 3\"
~ 4an Co 1 .
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By induction, this gives us |a,| < (2bcp)(2)" for all n > 1. Therefore > o, |a,| < 6bco,
so using (6.16) once more, we deduce that

< 1 6bc3
|ant1| < Z|an| + on
for all n > 1. Again by induction, this gives us |a,| < (24bc2)27" for all n > 1, which is
the desired result. O

Lemma 6.7. There exist an integer m, constants Cs3,Cy > 0 and € > 0 small enough
with the following properties. For every g € K and for every f € VO(g) there exists a
linear functional 0, € C* with norm bounded from above by C3 and with the property
that

(6.17) |PTi(Fy0 = 88055 01w, < Catf2 ™ e

forallveC and all j > 1. If go,91 €K and f € V2 (g1) NV (go) then
0f7gl‘B: 0f792|8'

Furthermore, the map ¥ : |,k VO(g) — B* given by V(f) = 05 = 074|B (where g is
any point of K such that f € VO(g)) is well-defined and uniformly continuous.

Remark 6.2. Condition (6.17) entails that for every g € K, B is the direct sum of the
one dimensional unstable subspace Ej with the kernel of 05, i.e. B = Ey Pker(fy),
provided f is sufficiently close to g. To see this, note that we can write

v=07(v)(0(ug) ™" + (v —0p(v) (O (ug) ™)
Thus, from the continuity of f — 0 plus the fact that 64(uy) # 0 it follows that if f
is close to g then uy is transversal to ker(0y). The hyperplane ker(0y) is the natural
candidate to be the tangent space of VO (f) at [ since it corresponds to all vectors which
expand under DT?(f) by a factor less than &}

Proof. Let € > 0 be small enough such that Lemma 6.5 is satisfied and eCs < vp,
(where vy, is as in property B6 in Definition 6.1 and C9 is as in Lemma 6.5). Let

Ry, =Ry = (5’5’”)71 DT™(f) and write f, = T*™(f), and g, = T""(g) for all k > 0.
Then we have

(6.18) Ri1(v) = (5,@’;?)’") T DT(f) Re(v) -

Let us take v € C with ||v]|¢c = 1. We can write Rx(v) = aplugm + wk, where i € R and
wy € C are defined recursively by ag = 0, wg = v and

Qi1 = g+ Opm(wy)
-1
Wgi1 = o (5£]Zj1)m) (DT™(fr) — DT™(gr))urm
(6.19) + (550m) T (DT () — DI™ (g8)

k m -1 k m—
+(000m) QY )
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Now, by Lemma 6.5, we know that
(6.20) 1 — gnllp < eCo27"

Since, by property B4 of Definition 6.1, the map f — DT™(f)ug, is Lipschitz at f = g
(as a map from B to C), we have that for all k£ large enough

(6.21) IDT™ (fi)km — DT™ (gr)tkmlle < c1llfi — grlls < 227" .

By property B6 in Definition 6.1 and (6.20), for all m large enough we also have
(k+1)m

(6.22) [DT™ (fr) = DT™ (gr)lle < km8

Since, by property B2 of Definition 6.1, (C, D) is p-compatible with (7', K), by Corollary
4.2, for all m large enough we have
(k+1)m—1 5(k+1)m
6.23 H m- H km
(6.23) QU] < Yo

Using Lemma 6.2 and putting (6.21), (6.22) and (6.23) in (6.19) we get

1 _
|wptille < ZHwkHC"‘CSQ ¥ ol

CgM
(6.24) < *HwszC + 5 Z [wjlle -

;From (6.24) and Lemma 6.6, we deduce that ||wy|c < c427*. Thus, by (6.19) we obtain
lag41 — ag| < c527F for all k > 0. Therefore, 0 ,(v) = lim oy, exists and
(6.25) 1Rk(0) = O7.g(v)ukmllc < 527",

for all v € C with [jvllc = 1. If v € C and |jv||c # 1 then we define ff,(v) =
llvllcOf,qg(v/l|v|lc). By (6.25) and by Lemma 6.2, for all v,w € C we have

107,9(v) + O g(w) — O (v + w)|
M |05, g(V)Ukm + Of (W) Uk — Of (v + W)U || -
(

<

< M|[0pg(0)agm — Bi(0)]lo + M [[05,4(w)agm — By (w)|
M [|05,6(v + w)ugm — Ry (v +w)ll

< 27 (|[vlle + lwlle) -

Hence, letting k go to infinity we deduce that ;4 is a linear functional in C*. Again by
(6.25), ||0¢4llc is uniformly bounded and inequality (6.17) is satisfied for j = km. By
(6.25) and by property B4 in Definition 6.1, for j = km + ¢ with ¢ € {1,...,m — 1}, we
get

mmw&mmms\%%ﬂ4mmmmmm—m@%m

C

H 5km+z DTZ(Tkmf) DTi(Tkmg)) 0f.q(v)0km

C
(6.26) < 2" ol
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which proves (6.17). In particular, there is My > 0 such that
(6.27) 1Br. s (W)l < Mo,

for all g € K, all f € V2(g) and all v € B with |v||z = 1.

Let us prove that the map f — 6;4|B is continuous from V?(g) into B* for every g € K.
By property B2 of Definition 6.1, for every k > 1 the functional o, is continuous on C
and its norm is uniformly bounded. By property B3 in Definition 6.1, the map f — Ry, s
is continuous from B into C. Hence, the mapping V(g) — B* given by f + opm 0 Ry, ¢
is also continuous. By (6.26), we obtain

’Uk:m (Rk(v) - 0f,g(v)ukm)’
2 ¥ vl -

|Okm © By, (v) = 0f,4(v)]

N

(6.28)

Therefore, the continuous maps f +— oy, 0 R s converge uniformly to f + 6y , which
implies that f — 6y, is also a continuous map from V(g) to B*.

Let us prove that 6y 4|B for f € Uyex V9(g) does not depend on g € K. Let us take
f € Uex V9(g) and go,g1 € K such that f € V2(go) and f € V?(g1). By Lemma 6.5,
for every k > 1 we get

HTkm(gl) - Tkm(go)HB

IN

|74 g0 =T )|+ [T = T )|
< 01052*’C .

By property B2 of Definition 6.1, the map g +— o4 from K into C* is uniformly contin-
uous. Hence, for every € > 0 there is kg > 0 large enough such that for all £ > k¢ and
all w € C with ||w||¢ < My we have

(6.29) ‘O’Tkm(gl)(w) - O'Tkm(go)(w)‘ <e/2.
By (6.27), (6.28) and (6.29) and taking k large enough, we get

0700 (0) = 010 (0)] < |07 (0) = iy © Ry (v)]
+ \JTW(QI) o Ry f(v) — 0pim gy © B, f(v)‘

+ ’UTkm(go) © Ry, p(v) = 01,9 (v)‘
< 20927+ e/2<c¢
for all v € B with |[v||g = 1. Thus, 84, (v) = 0f4,(v) and so the map ¥ is well-defined.
Let us prove that the map V¥ is uniformly continuous. For every ag > 0, let us
choose kg > 0 large enough such that 2cg27% < ag/3. Since the map g — o4 is

uniformly continuous, there is a; > 0 small enough such that for all gy, 91 € K with
lg1 — golle < a1 and all w € B with ||w|j¢c < Mo we get

(6.30) |06 (w) = age(w)] < a0/3 .

Let us choose k1 > kg large enough such that eCy27 k1 < a1/3 where Cy > 0 is the
constant of Lemma 6.5. Since T : Op — C is a C'! operator, by property B3 of Definition
6.1, (and compactness of K), there is ap > 0 small enough such that for all fo € V?(go)
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and f1; € VO(g1) with ||fi — folls < o we obtain that ||TF1™(f1) — TF™(fo)llec < a1/3.
Hence, by Lemma 6.5, we get

|7hm ) —TRmigo)||, < (|7 = TR |+ TR - TR,

+ HTklm(fo) - Tklm(go)Hc
(6.31) < 260927F 4y /3< .
By (6.30) and (6.31), we get

(6.32) ‘O'Tklm(gl) 0 Riy, 1y (v) — Opkym gg) © Ry, o (v)‘ < ap/3.

By property B3 of Definition 6.1, choose 0 < ag < as small enough such that for all

fi € Uger V2'9) with [Ify — follg < a3 we have ||Ry, 1, (v) = By gy (v)[lc < a0/(3M),
where v € B with ||v]|g =1 and M is as in Lemma 6.2. Hence,

(6.33) )aTklm(gO) o Ry 1, (0) = Oty © R fo (v)’ < ao/3
By (6.28), (6.32) and (6.33), we obtain that

07,0) = 05s(0)] < |05, (0) = Tirre(yy) © By ()
+ ‘O'Tklm(gl) O Rk;17f1 (U) — O'Tklm(go) o Rkl,fl (’U)‘
+ ’UTklm(go) °© Riy 1y (V) — Ophym gg) © Rkl,fo(v)‘

+ ‘O-Tklm(go) ° Ry, fo (v) — 00 (v)‘
< 2¢27M £ 200/3 < ap .

Therefore, the map V¥ is uniformly continuous. O

6.7. The main estimates. Besides aiming at proving that the local stable set is a C'!
manifold, we want to show that the local hyperbolicity picture holds (in B) near K. In
other words we want to show that if the iterates 75" (f;) of a point f; € V.(g) remain
in V.(T*™(g)) for a long time, that is for k = 0,1,..., N with N large, then f; has to be
very close to a point fp on the stable set W?(g) at the outset, and in the end TV™(f)
has to be very close to the unstable manifold W*(T"N™(g)).

To prove these facts, we consider in this section (see Lemma 6.11) an intermediate
time [ for which we can find a good quantitative estimate for the point on the unstable
manifold W*(T"™(g)) that best approximates T™(f;). This estimate is provided by
the value of 0y, (f1 — fo), and its most important consequence is obtained when f; also
belongs to the local stable set W7 (g). In this case we prove an inequality of the form
105, (f1 — fo)l < Cllfi—follg™™ (see Lemma 6.12). As we shall see in §6.8, this is precisely
what we need to show that the tangent space to the stable set at fy varies continuously
with f().

In this section we will fix m large enough and €y > €1 > €5 small enough such that
lemmas 6.4, 6.5 and 6.7 are satisfied for all ¢ < &5 suficiently small.
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Lemma 6.8. There exist constants Cs, Cg,e > 0 with the following property. For all
geK, all fo € VO(g), and all fi € Vo(g) such that | fi — folle < Cs (65) ™", we have

(6.34) |74 (52 = T*(f0) = DT*(f0) (1 = o), < Co (61) "
for all 0 < k < ko(g, f1), where
kolg, 1) = min {j € {0,....n}+ [TV (f1) = T"(9)l5 > 20}
and p > 1 is as in property B5 of Definition 6.1.
Proof. By lemmas 6.2 and 6.7, there are cg,c; > 0 and A > 1 such that
(6.35) | DT (1 fo) |, < codt amd 8F > er X+
for all 0 <i < k. Define a sequence v; € C as follows: vo = T(f1) — T'(fo) and
vi=T"(f1) = T'(fo) = DT (T} (fo)) (T (F1) = T (fo))
for all 0 < i < k. Hence,
(6.36) T'(f1) = T'(fo) — DT*(fo) (f1 — fo) = ZDTFj (T7 fo) vj .
j=1
Applying property B5 of Definition 6.1, we get

lvisille < e ||T°(f1) = T (fo) ||
P

(6.37)

IN

¢z |DT(fo) (f1r = fo) + > DT (T ),

j=1 C

Let us first choose Cg > 0 such that

1—p 20001_’) ’

(6.38) Cs " >c2 Gorl—ais) |
for all 0 < ¢ < k, and then choose C5 > 0 such that

Cs(00)”

ct < ()" )
C2
1-p 1—

¢, "Ce(di) 7"

(6.39) Cs B e

Let us prove inductively that ||v;||, < Cs (6]*) ”. Using inequality (6.37) and (6.39), we
get

CQC€
(60)”

[volle < e2[lf1 = folle = (01)" < Co(o7) ™" .
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Using the inequalities (6.35), (6.37), (6.38) and (6.39), we get

HUZ'+IHC S (&) C5Co(50 50 260(5106 (5” -

p

< e | + 7/) Z 51 ( z'n+1)_p

< oo (O + Clipcﬁ p( n)

>~ 2Co (51 (6z)p (1 — )\17/)) i+1
(6.40) < Co(00)",

which ends the induction. Thus, using (6.35) and (6.40) in (6.36), we get

K
|75 =7 = DT (= )|, = D eodtCs (7))
i=1
ny—p i k 1—p C()Cl CG ny—p
< Cs (0r) Z(@) < 7o, D)
i1

This proves the Lemma. O

Lemma 6.9. Let C5,Cg,e >0, p > 1 and l%o(g, f1) be as in Lemma 6.8. There exist
C7,Cs > 0 such that for all g € K, all fo € VX(g) and all f1 € V.(g) such that
11— folle < Cs(65) ™", we have

(6.41)

|7 () = T9) = 880, (1 = fo) ]|, < G (57) ™ + eCr2/m 4 aim ap)
for all k < ko(g, f1).
Proof. By Lemma 6.7, we get
642) | DT*(fo) (fi = fo) = 6§05 (1 — fo)ue |, < Caz™/m (5"
By Lemma 6.5, we obtain that
(6.43) HT’“(fo) - Tk(g)Hc < ¢ HTk(fg) - Tk(g)HB < ecoCo2 R/ .
Combining (6.34), (6.42) and (6.43), we get (6.41). O

Definition 6.2. Given g € K and p > 1 we denote by | = l(g,p) the smallest integer
such that

(6.44) (a7m)P <2t
where p > 1 is as in property B5 of Definition 6.1.

Lemma 6.10. (i) There exist 0 < po < p1 < 1 with the property that
wop <1 =1(g,p) < pp for all g € K and all p > 1.
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(ii) There exists 0 < 11 < 1 such that for all g € K and all fo, f1 € Vz(g),
i lfo—fille = G5 (57°™) ™ then ()™ < Cyllfo — A7 where Co
depends only upon Cs > 0.
Proof. Let us prove part (i). Set 1 < A < M as in Lemma 6.2. Then, by (6.44), we have
plog M~ + (pm — Im)plog A < plogsl™ < llog2 < Imlog?2 .

Hence we get

log 2 logM*1 pm
1 Im > ——— i
< +plog)\> = Tlogh +pm > 5

for all p such that pm > Ny = max{2m, |2log M ~!/log )\‘} Thus, taking

log2 \
Mg:2—1<1+ o8 > >0,

we get pop < [ for all such values of p. By (6.44) and by Lemma 6.2 there exists a
uniform constant 0 < ¢y < 1 such that ¢p2! < (5%;7: )p and so

log co + llog2 < plog 6" < p(pm — Im) log M .

Letting v = log 2/ (plog M) > 0 and 8 =logco/ (plog M) we get
lm(l—i—g) Spm—ﬁﬁpm(l—i—i)
m 2m

for all p > —283/a. Thus, taking

we obtain that lm < pfpm for all such values of p. Since d, varies continuously with g
in the compact set K, we can extend the previous results to all p > 0 for some g <
and 1 > pf.

Let us prove part (ii). Take 0 < 73 = (1 — p1)log M/log A < 1. Then, by Lemma 6.2,

we have
(52’07")—1 coA~P=Dm < o\ —(1—p)pm

IN

IN

coM™TP™ < clw (5(()p+1)m> -

cillfo— fulle -

IN

0

Lemma 6.11. There exist € > 0 sufficiently small and C19 > 0 such that the following
holds for g € K, fo € V2(g) and f1 € Vo(g). If p is the largest integer such that

If1 = folle < Cs (5™~

then I = l(g,p) < ko = ko(g, f1) and so t; = t;(g, f1) is well-defined (where | is as
in Lemma 6.10, ko and t; are as in Lemma 6.4, and C5 > 0 is as in Lemma 6.9).
Furthermore,

(6.45) tr— 06" 05, (f1 — fo)‘ < Co (0,) " -
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where p > 1 is as in Lemma 6.9.

Proof. Let ko = ko(g, f1) be as in Lemma 6.9. Let us prove that | < kg. By (iv) in
Lemma 6.4, mky < i(?(). Hence it is enough to prove that min {lm, I;:o} < mkgy. Let e >0
be small enough such that lemmas 6.8 and 6.9 are satisfied. Let us show that im < ko.

By inequality (6.41), for all k such that mk < ko we have
(6.46)

o (T (1) = T(9) )| < llowmlc (387 101 (1 = o) +co () ™" +eer2™®)

By Lemma 6.2 and Remark 6.2, there is M; > 1 such that M < ||ogmllc < My and
Mt < ||fp,]lc < Mj. Since by Lemma 6.2, we have (5’,3%)71 < MA=(P=k)m we deduce
that

(6.47) 36710 (Fr = Jo) | < (6F7) " 107 lle < MM A==

By Lemma 6.10, there is 0 < p; < 1 such that for all p > 0 and all £ < [ we have
p—k>p—1>(1—p)p. Now, we make £ > 0 small enough (and so p large enough)
such that the following inequalities are satisfied

(co + Mp)MA~0=rpm __f2 ,
2)|okmlle
—k €2
ec12 < -
4|opmlle

for all k such that km < min{im, ];‘0}. Therefore, for all such k, combining (6.46) and
(6.47) we deduce that

(6.48) oim (T (1) = TF(g)) | < e

Since f1 € V.(g) and (6.48) reverses the inequality (iii) in Lemma 6.4, we obtain that
min{lm, 1;‘0} < mkg, and so [ < kg.

Now, let us prove (6.45). Since | < kg, by (6.6) and (6.7) in Lemma 6.4, there is
t; = ti(g, f1) such that

(6.49) IT"™ (f1) — wim (t1) |5 < €27 < e (5707
Since Im < l;‘o, by lemmas 6.9 and 6.10 we get

1T (f1) = T"™(9) = stwumlle < ca (5) ",
where s; = 60, (f1 — fo). Thus, using (6.49), we obtain that

i (t1) = T (9) = st e < es ()" -
Since t — uyy,(t) is C? as a map R — C, we have

luim (1) = T (9) = stwmlle < cas?
= ‘5(l)m'9fo(f1 — Jfo)

< e (37

:
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Therefore,

i (B) — wm(s))lle < Nwm(t) — T"(9) — sttmllc + lwm(s) — T (9) — situmllc
< g (o) s ()
< e ()"

because 1 < p < 2. Hence, applying Lemma 6.2, we get
Ity — s1] < M7 g (t) — wm (1)l < ez (8Em) "
O

Lemma 6.12. There exist constants 7,e,C > 0 with the following properties: for all
g €K and all fo, f1 € V2(g) we have

|‘9fo(f1 - f0)| < C||f1 - foH};T .

Proof. We shall in fact prove a stronger inequality, with the C-norm replacing the B-
norm. Let £ > 0 be so small that lemmas 6.8 to 6.11 are satisfied (¢ > 0 will be made even
smaller in the course of the argument). Let p be such that C’55a(p+1)m <|lfo— fille <
C50, "™ where C5 > 0 is as in Lemma 6.8. As in Lemma 6.4, set ko = ko(g, f1),
tj = tj(g, f1) and vj = v;(g, f1) for all 0 < j < kg. Also, let | = [(g,p) be as in Lemma
6.10. By Lemma 6.11, we have | < kg and so t; is well-defined. Thus, applying lemmas
6.4, 6.5 and 6.10, we get

IN

i (8) = w5 < [ (t0) = T ()|, + || (1) = T (9)|

560271 < ecy ((5lp::) e

B

IN

_ -1
Hence, by Lemma 6.2 we see that [t;] < ¢1 (677") 7", Let us write t; = o ((5%:) for

I <7 <ko(g, f1). Recalling that (53(-1:[1)”1 > (3 > 2 for all 7 and using Lemma 6.10, we
have

(6.50) (5%1)*1 < g~(=mP and (5%1)*(%1)/2 < g

where 79 = (1 — p1)(p — 1)/2. Hence, making € > 0 smaller if necessary (and so p large
enough), we get

(6.51) ap < 47 (o) TR cymlgmme < gy o

By Lemma 6.4, we have |[v;]g < €277 and ;41 = 5§ﬁ1)m(tj + 0jm(vj)). Since t —
3(-j+1)m(t) is C? as a map R — C, we deduce that

gm
=8| < (1L losle)
< e (|ty)* +e277)
< o (it +e2700 (7))
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Therefore, we get
(6:52) a1 — ] < 0 (038707 4 2(28)7U7D ()Y

Let us prove that ko(g, fi) > p. To do this, we need to show that [t;| < e; for all
J < p. Let us prove by induction a slightly stonger statement, namely, that a; <
21 (5%1)7(%1)/2 < e for all j =1,...,p. This is certainly satisfied for j = [, as we
can see from (6.51). Suppose it is satisfied for «; for all i = [,...,j. Using (6.50) and

(6.52), and making € > 0 even smaller (and thus p large enough), we get

j
i —arl <Y fei — o
i=l

1 d —(p—i —(i— m\—(p—1)
f;Z(z;@w<P+”+%ﬁ@m<lU>wﬁ)”
1 [ Bt dege _ my —(p—1)/2
< = 2D V4
- 4(1—5_1+1—(2ﬂ)_1>6 (5lm)
L (cpmy—(p=1)/2
(6.53) < 7 @) ? :

Since a; < 471 (5?;7)_(’)_1)/2, we deduce that a1 <271 (5?7;")_(’)_1)/2 < &1 (in partic-
ular j + 1 < ko(g, f1)) which ends the induction.

Now set s; = s;(g, fo, f1) = 605, (f1 — fo) for all j. Let us estimate |t, — sp|. By
Lemma 6.11 and the above estimates on «;’s, we have

m m\ —(p—1)/2
(6.54) tp — spl < oy — | + o 1ty = s1] < e (3F) 72
On the other hand, from lemmas 6.4, 6.5 and 6.10, we also know that
[ttpm (tp) = upm (Ol 5 < Nupm (tp) = TP (f)ll + 1T (f1) = TP (9)ll 5
< ecy27P

Hence, again by Lemma 6.2, we have |t,| < ec527P. Since p > [, we deduce from Lemma
6.10 that

(6.55) Ity <ecs27! <ecs (677) 1.

But Lemma 6.10, also tells us that there exists 71 > 0 such that (5?7:7)71 < ¢l fo—fill¢'-

Moreover, (56"”)71 < ¢7|lfo — fille by hypothesis. Therefore, combining these facts with
(6.54) and (6.55), we get at last

05, (fr = fo)l < (86™) " Iyl

< (56””)71 (Itp] + [tp — spl)
< @) (eos () s (af) D)
< esllfo— AllgIE,
which finishes the proof. O
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6.8. The local stable sets are graphs. We shall prove now that the local stable set of
every go € K in a sufficiently small neighborhood of ¢ is the graph of a function defined
over Kerfl; N B (and taking values on the one-dimensional subspace Ru, C B). The
idea is to show that every “vertical line” of the form f 4 Ru, with f close to g cuts the
local stable set W7 (go) exactly at one point. All other points in the same vertical line
escape exponentially fast away from W2 (go) under iteration by 7" and the time kom each
such point f takes to escape is logarithmic on the reciprocal of its distance to W2(go).
Moreover, T*0™( f) will be exponentially close (in kq) to WX (T ™ (gq)).

Proposition 6.13. There exist 0 < ag, a1, 0 < €, 0 < pg < p1 and My > 1 with the
following properties. If go € K and g € K is such that ||g — gol|s < o, then for every
v € Ker 8,4, N B with ||v||g < ou, there exists —an/2 < 7(g,v) < az/2 such that

(Z') fT(g,v) =go+v+ T(gav)ugo € Was(.g) - Vso(g);
(i) fe = go+v+tug, € VI (g) for all 7(g,v) < t < az;
(i) fr = go+v+tug, € V. (g) for all —aa <t < 7(g,v)

(iv) —polog(|t—7(g,v)|) < ko(g, ft) < —pa log([t—7(g,v)|), where ko(g, ¢)
is as in Lemma 6.4.

Proof. Let € > 0 be sufficiently small such that lemmas 6.8 to 6.11 are satisfied and
0 < € < € such that Lemma 6.5 is satisfied. Let M > 0 be as in Lemma 6.2 and take
positive numbers a1 and a9 such that

(6.56) 0 <8a1M < ag and g + 2a0M < €'/2 .

Take g € K and f € Vi(go) with ||f — gl|g < €'/2. Let v € Ker 6,4, N B with vz < aq,
and t € R with 2M||v||g < |t| < 2ag. By the second inequality in (6.56), we have
¢t = [ +v+tuy € Ve(g) and ||¢r — gl < €’ for all |t| < 2a2. Now, we have the
following claim.

Claim. The family ¢, satisfies the following property

(6.57) ¢ € VI (g), if 2M|v|p < t < 20
' ¢ € Voo (g), if —2a <t < —2M|Jv||s -

To prove this claim, let C5 > 0 be as in Lemma 6.8 and let p be such that C556p+1)m <

e — flle < Cs65™"- Set ko = ko(g, @), tj = tj(g. ) and v; = v;(g, ¢¢) for all 0 < j < ko
as in Lemma 6.4. Set s; = s;(g, f,¢¢) = 6" 0p(¢r — f). Set | = l(g,p) as in Lemma
6.10. Using Lemma 6.2 and Remark 6.2, there exist ¢y > 1 and o > 0 sufficiently small
such that if ||g — go||s < ap then

(6.58) ot < 105(dr — f)] < colt]

(noting that || f — gl < €’/2 and making & > 0 smaller if necessary). Since tug, =
¢t — [ +v and 2M||v||p < |t|, by Lemma 6.2 there is ¢; > 1 such that

(6.59) @M TS e (M
Hence, by (6.58), we obtain that
— my—1 my—1
(6™ < 10p(r — Nl <ea (g™
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Thus,
(6.60) 3! (6;’7?)_1 <lsi| <es3 (6;’77’?)_1 )

Recall that (55-%1)7” > 3 > 2. By Lemma 6.10 we get ((5{7:)71 < B~A=mpm - Let us
suppose from now on that 0¢(¢; — f) is positive and so s; > 0. Hence, by Lemma 6.11,
by (6.60) and making « and ag smaller if necessary (and so p large enough), we obtain
that

—(p—1
t > sl—|tl—sl|255(1—04(5f$) (p )>

> 5 (1 _ 645—(p—1)(1—u1)pm>

(6.61) > 5/2>0.

Thus, t; is positive and so it has the same sign as 67(¢; — f). By induction on j =
l,...,ko(go,¢:) let us show that ¢; 11 > t; and so that each ¢; is positive as well. By

Lemma 6.4, ||v;|g <277 and tj41 = 5](.3:1)"1(@ + 0jm(vj)). Since t — Sj(-ijl)m(t) is C?
as a map R — C, we obtain that |tj;; — 5](-{;1)7”75]" < ¢5 ([t1* + |lvjllg). Thus,
tj+1 Z ﬁtj — C5|tj‘2 — 6652_j
(662) > t]’(ﬁ - C5|tj|) - 6662_j .
Let €1 > 0 as given by Lemma 6.4 and recall that ]tj] < e1 and € < g1. Since @ > 1 and

by taking e; > 0 sufficiently small, there is 7/ > 0 with the property that 8 — cs|t;| >
B — cse1 > 1427, By (6.60) and (6.61), we get

(6.63) ti(B—csltjl —1—7") > ;7 >47" > 57/2> (55;”)_1 .
By Lemma 6.10, we obtain that

(6.64) 29 <2t < (op) "

Putting together (6.62), (6.63) and (6.64), we deduce that

(665) tjy1 > (1 + T/)tj + cy (5?;?)_1 — CgE (6lp77T) -

Making as sufficiently small (and so p large enough) and recalling from Lemma 6.10
that [ is a fraction of p, we obtain that c7 ((5%’1)71 — cge ((5fnT)7p > 0. Thus, by (6.65),
we get
(6.66) tiv1 > (1+ 1)t
which implies that ¢4 has the same sign as ¢; and that ¢; € V" (g). If we suppose that
61, (¢ — f) is negative, the proof that ¢; is negative and that ¢;1; < (1+7')t; follows in
the same way for all j =1,...,ko(go, ) and so ¢y € V.7 (g). Therefore (6.57) is satisfied
and the claim is proved.

Let us now prove the assertions of the lemma. Take f = gg and consider the family
¢r = go + v + tug,. Since 2M ||v||p < 2M a1 < ag/4, the claim tell us that

o€ VI(g), if ag/d <t <2
o €V(g), If —ae<t<—an/4.
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Thus, by Lemma 6.5, there is at least one value —ay/4 < 7(g,v) < ag/4 such that
¢T(g,v) =go+v+ T(ga U)ugo € ‘/;D(g)'

Next, take f = ¢;(4.), and define a new family o1 = ¢,(4,) + tug,. Using the claim
again, this time to the family ¢, (for which v = 0), we obtain that

thV;F(g), if0<t<a2/2
thVQ(g), if —042/2<t<0.

Therefore, 7(g, v) is the only value of t € R between —2ay and 2as such that ¢; € VX(g).
Since ||¢r(g0) — 9l < €' we deduce from Lemma 6.5 that ¢4,y € W2(g). This proves
assertions (i), (ii) and (iii).

Let us now prove assertion (iv). Set ko = ko(g, 1¢). Using (6.66) and then (6.61), we
have

(6.67) Iteo] > (1 + 7)oty > (1 + 7)o y)/2 .
Combining (6.59) and (6.60), we see that

(6.68) 51| > ez tobm (5™ 7 > et

Taking 7”7 = min{1 + 7/, 3} and putting (6.68) back into 6.67 we get
(6.69) [thol > co(7")F0t] .

By Lemma 6.4, there are 0 < €1 < g such that e; < |t,| < 9. Thus, by (6.69), there
is 1o > 0 such that kg > —pglog(t). By Lemma 6.4, |ty,| < coB*|t| and so there is
p1 > po such that kg < —puq log(t), which proves assertion (iv). O

6.9. Proof of the local stable manifold theorem. It will follow from Theorem 6.15
in this section that for every g € K the local stable manifold at g is a C'' submanifold
varying continuously with g. In the proof of this theorem will use the following basic
fact of calculus.

Lemma 6.14. Let X,Y be Banach spaces, let xyg € X and let £ : Bx(xg,e) — Y be
a map whose image in'Y falls within By ({(xo),€). Suppose we have a bounded linear
operator L : X — 'Y such that for all v € X with ||v||x < e we have

(6.70) 1€ (0 + ) = &(x0) = L(w)ly < co(lvllx + [1€(zo + v) = &zo)[[v)' ™7
where cg > 0 and 7 > 0. If co(2e)™ < 1 then & is differentiable at xo and DE(xg) = L.

Proof. Say ||L(v)|ly < a|v||x for some a > 0. Noting that ||v|| x +||{(xo+v)—E&(z0) ||y <
2e, we have from (6.70) that

1€(z0 4 v) — &(xo)lly < (a+ co(2e)7) [lvllx + co(2e)[|€(z0 + v) — &(wo)]y
whence (
a+ co(2e)”
_ < 2T O\
Je(eo+v) - glaoly < FTo
Putting this back into the right-hand side of (6.70) we get
1€ (o +v) = &(x0) — L(v)ly < ez (Jollx)"™"

and therefore D¢ () exists and equals L. O

[ollx = cillvllx -
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For every g € K and a; > 0, let us consider the following sets

Ega, = {vekerby:|vls <o},
F, = {g+tu,:teR},
Ggow = {g+v+tug:ve By, andt R} .

Theorem 6.15. Set 0 < oy < a1 < € and 7(g,v) as in Proposition 6.13. For every
go € K and every g € K with ||g — golls < o, the map & : Egy.0y — Fy, given by
&9(v) = go + 7(g,v)uy, is well-defined and has the following properties:

(i) The graph of &, is equal to WZ(g) N Ggp.a,;

(ii) &g is C* and varies continuously with g.

Proof. Set a1 < as < eand 0 < g < pp as in Proposition 6.13. By Proposition 6.13, the
map &, : Eg o, — Fy, is well-defined and assertion (i) is satisfied. Let fg : Egpon — R
be given by gg(v) = 7(g,v) where 7(g,v) is given by (i) in Proposition 6.13. To prove
assertion (ii), it is enough to show that ég : Egy.0y — R is C! and varies continuously
with g. Let vi,v2 € Ey, o, and set

(6.71) fi=go+v1+ ég(vl)ugo
and fo = go+vo + ég(vg)ugo. By Lemma 6.12, we get
07, (v2 = 1) + 07, (g0 ) (g (2) = g(01))| = 107, (f2 = 1)l

IN

" “ 1+71
co <H’U2 — w1l + |€g(v2) — 59(’01)!)

By Lemma 6.7, and taking € > 0 sufficiently small, we have that 6, (ug,) is uniformly

bounded away from 0. Therefore, by Lemma 6.14, we deduce that ; is differentiable at
every v with derivative given by

(6.72) Dég(vl) = _(9f1 (ugo))ilefl .

;From Lemma 6.7, 0, varies continuously with f; and so Dég(vl) also varies continu-
ously in a neighborhood of v;. Hence, ég is a C'' map.

Let us check that ég varies continuously with g in the C'' sense; more precisely, that
the map K N B(go, ) — C*(Egya1,R) given by g — fg is continuous. Taking into
account that ng is given by (6.72) and that f; is given by (6.71), and since by Lemma
6.7 the map f; — 6y, is uniformly continuous (as a map into B*), it suffices to prove
that g — ég is continuous as a map into CY(Ey, o, R).

To do this, let v € Eyyq, be such that g = go + v + &, (v)uy,, take g € K with

~

lg1 — g0llB < ap and let w € Ey, o, be such that g1 = go +w + &, (w)ugy,. Now, we have
the following claim.

Claim. There exist ¢; > 0 and 0 < v < 1 such that

(6.73) e g (w) = Eg(w)[V7 < [g, (2) = &o(2)] < e1lég, (w) = &),
for all z € Ey, ;-
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Let us assume this claim for a moment. Its geometric meaning is that the dis-
tances between corresponding points of the graphs of £, and &, along the vertical fibers
({z} x Fy,) are uniform. We want to control such distances in terms of ||g; — g||s. The

above claim tell us that it is enough to control |£gl (w) — ég (w)|. Hence, write

g-g = v—wt (€0) —éy(w)) uy,
= v—w+(a+b)uy,

where a = &,(w) —&,, (w) and b = &,(v) — &, (w). Since &, is C', we have |b] < calv—w]|5.
On the other hand, since B = Ker 6,, @ Ruy, is a splitting into closed subspaces, there
exists a constant c3 > 0 such that

max {|lv — wl|, [a + b} < e3llg — g1llB
but then

la| < [lg—g1llz+ [lv — w5+ (0]

< (IT+ez+cecs)llg—aills -

Hence ‘ég(w) - fgl (w)| < c4llg — g1]|B, and given the claim this proves that g — ég is
indeed continuous. X
Finally, let us prove the claim. For each z € Ey, ,, let h = go + 2 + &4, (2)ug,. Set

t;g:tk(gmgl)’ t/]g/:tk(gah)a
/ / " "
Uy = Upkm(g)(ty), Uy = Upkm(g) (tg) 5

as given by Lemma 6.4, and set (also as in that lemma)

ko = ko(g,g1) = min{j: [t}| > &1}
(6.74) ko = ko(g,h) =min{j: [t]| >e1} .

Applying Lemma 6.4, we obtain, for all ¥ < min{k(, k{ }, the estimates

1T (g1) —wills < 27"l — glls
(6.75) IT*™(h) = uills < 27F(lh —gl5 -

Since h € W2(g1), we also have, by Lemma 6.5,
(6.76) IT*™(h) — T"™(g1)||B < ec527" .
Combining (6.75) and (6.76), we get

luf, = uills < ce27" .
Hence, by Lemma 6.2, we get
(677) |tk(g7gl) - tk(gv h)| < C72_IC )

for all k¥ < min{k{, k{}. Using (6.66) together with (6.77), we deduce that there exists
a uniform constant cg > 0 such that

(6.78) kb —cs <kl <kl +cs .
0 0 0
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On the other hand, applying (iv) in Proposition 6.13, we also have

—polog(Im(g1,w) = 7(g,w)l) < ko < —plog(|7(g1,w) — 7(g,w)])
(6.79)  —polog(|r(g1,2) = 7(9,2)) < kg < —plog(|7(g1,2) — 7(9,2)]) -
Combining (6.78) and (6.79) and noting that

~

T(gl’w) = égl (w) ) T(glvz) = ég1 (Z) vT(ng) = ég(w) and T(gvz) = SQ(Z) )
we get at last

5" | () = &) < e ()~ &(2)] < 0o [ (w) — &)

for some c¢g > 1, and this establishes the claim with v = pg/pu1 < 1 and ¢1 = cg. O

Ho/pa B1/po

Remark 6.3. Note that by Proposition 6.13 there exists a uniform 0 < & < € such that
WZ(g) C Ggp,a, for all go € K with ||go — gl < ao.

7. SMOOTH HOLONOMIES

In the previous section we proved that a robust operator T has C'! local stable man-
ifolds through each point of its hyperbolic basic set K, and that such manifolds form a
C° lamination (near each point of K). A natural question that may be asked at this
point is this: how smooth is the holonomy of this lamination? To answer this question
we shall assume that there exists a homeomorphism H : ©% — K of a finite-type shift
space onto K which conjugates the two-sided full shift o : ©% — K to our robust opera-
tor T restricted to K. Under this topological assumption, and an additional geometric
assumption concerning the unstable manifolds of points in the attractor —both of which
are satisfied by the renormalization operator— we shall prove below that the holonomies
of the local stable laminations are C'*? for some 6 > 0.

For g > 0 small enough and for every g € K let ¢ — uy(t) be a parametrization of
the local unstable manifold W2 (g). Set

Ky =KNW(g) and Ky = u, ' (Kg) .
Let
YO 10 = {(9;) € e’ 9;- =0, for allj < k} .

If HX ) NK,; # 0 then denote by A_ g, (g) the smallest interval in R such that
ug(A. 9,(9)) D H(X  p,) NK,y. Let Cg(g) be the set of all these intervals A g, (9).

Definition 7.1. Let K C O4 be a hyperbolic basic set of a C? operator T : Oy — A
which is topologically conjugated to a two-sided shift of finite type. The local unstable
manifolds W2 (g) have geometry bounded by o > 0 if for every g € K, K, has geometry
bounded by a > 0 with respect to the collection (Ck(g))k>0 (in the sense of §3).

Let F : [—uo, po] — Ve(g) be a C? curve transversal to the stable foliation. Let K
be the set of all values r € [—po, o] such that f,. = F(r) € UgOEWgt)(go) W (90). The

holonomy map ¢r : F(Kr) — W (g) associates to each f,. the point ¢r(f) such that
fr € W5 (¢r(f)). Inlocal coordinates, the holonomy map ¢ is given by ¢ : Kp — K,
where ¥p(t) = ug 0 ¢pp o F~1 and Kp, K, C R. The C? curve F : [—puo, o] — Ve(g) is
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an ordered transversal to the stable foliation if F' is transversal to the stable foliation,
¢r : F(Kp) — W (g) extends to F'([~uo, tto]) as an homeomorphism ¢ over its image
such that ¢p(F(Kr)) = ép(F(KFp)) NK.

We note that, by Remark 6.2 and by Theorem 6.15, there is €1 < g9 small enough
such that a C? transversal to WZ (g) in a point f is an ordered transversal to the stable
foliation in a small neighborhood of f.

Theorem 7.1. Let K C Oy4 be a hyperbolic basic set of a C? operator T : O 4 — A which
is robust with respect to (B,C,D). Suppose that there exits g > 0 such that the local
unstable manifolds W (g) of g € K have bounded geometry. There exists 0 < € < g
with the property that for every C? ordered transversal F : [—uq, uo] — Vz(g) to the
stable foliation in B, the holonomy ¢r : F(Kr) — WZ(g) has a C't9 diffeomorphic
extension to F([—uo, po)) for some 6 > 0.

Example 7.1. As we know from Theorem 2.4, the renormalization operator T = RY :
Op — A is hyperbolic over K. As we shall see in Theorem 8.1, T is robust with respect
to (A", A%, A%) whenever s < 2 is close to 2 and r > s+1 is not an integer. By Theorem
2.1, there is a two-sided full shift topologically conjugated to T|K. By lemmas 9.3 and
9.6 respectively in pages 403 and 405 of Lyubich’s paper [20], there is o > 0 such that the
local unstable manifolds W2 (g) have geometry bounded by o.. Hence the renormalization
operator T satisfies the hypotheses of Theorem 7.1.

In what follows the notation A = O(B) means that ,ule < A < p1 B and the notation
A= B(1£0(C)) means that B(1 — u2C) < A < B(1+ p2C) for some constants p11 > 1
and pg > 0.

The proof of Theorem 7.1 will be a consequence of the following lemmas.

Lemma 7.2. For every C? curve F : [—puo, po] — Vz(g) transversal to the stable foliation
and for all r,t € [—po, po] such that r < t, we have

1o = frllx = Ot =)
(7.1) 07, (fi = )l = O(t—=r]),

and for all s,r,t € [—po, o] such that s < r < t,
I fe — frllx t— |

o File ~ ot —sh)
107 (fe = Fi)lly  Jt—7 »
" 105 Go = Flle — Ts—nt U0

where X € {B,C, D}.

Proof. By Lemma 6.2, there are v1,1v5 > 0 such that for all » € Ky, ||u,||, > v1 and
04, (u,)| > vo. Since F is C?, we have

fo—fr = (t—r)u.£0(t -1
O, (fe= 1) = (t=7)0y, (u) £O(t —r*) ,
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and so (7.1) follows. Taking s < r < t, we get

e = frlle [l [t = r|(1 £ Ot = 7[))
1fs = frllx lar][x |s = 7[(L £ O(ls —rl))
|t — 7
1+ t— .
o)
Similarly, we obtain the second result in (7.2). O

In what follows, it will be more convenient to denote ¢ (f,) by Gyp(r)- We will also
work with a fixed 0 < € < gq for which Lemma 6.8 holds.

Lemma 7.3. Set | = l(gy,(r),p) as in Lemma 6.10. Let F : [—po, o] — Ve(g) be
a C? curve transversal to the stable foliation. For all p > 0 sufficiently large and all
s,rt € Kp such that

- r1=0 () o 1= 0 (a5
we have

|7 1)

= o™
HT“"(fs)—Tlm(fr)Hc = o)

HTlm(ft) "(fr) Hc = pmy —(p—1)
(73) Ty Tl ~ s (O (@)

Proof. By Lemma 6.2 and (7.1), we get

05,(F = )l = O (™)) 67, (f = F)l = 0 (6™ ) -
Thus, taking p sufficiently large and using lemmas 6.9 and 6.10 we deduce that
|7 =i, = [oiren - s £ 0 (05))
= o(@n )=o)
(7.4) = o(@n™)

S1m1larly, |7 (fs) = T (fr)]] =0 ((5521 )_1). This proves the first two inequalities
n (7.3). By (7.1) and (7.4), we obtain that
|ty — T, 10— 0 ()77

()
1T (F) =T )lle Jogmay, (£ — £ £ 0 (7))
6p

10, (ft — (1i0<(5 ) 1))
105, (s — fr (110(( my (e ))
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Therefore, by Lemma 7.2, we get

[T (fo) =T (F)]le [t —7] pmy —(p—1)
Tt =Tl ~ s (O (@)

and this proves the last inequality in (7.3). O

Lemma 7.4. Set | = l(ng(r),p) as in Lemma 6.10. Let F : [—po, o] — Ve(g) be a
C? curve transversal to the stable foliation. For every s € K and s' = 1 (s) € Ky, we

have
[T = T, < 0 (7)) -

Furthermore, for all p large enough and all s',7",t' € K, such that s = w;l(s’),r =
1/1;1(7"'),t = w;l(t') € Ky and

v =r| =0 (@)1 =r1=0 (g™

we have
HTlm(ft)_Tlm(fr)HC . HTlm(gt’)_Tlm(gr’)Hc pmy\ —(p—1)
)T le ~ Tt gl (0 (7))

Proof. By lemmas 6.5 and 6.10, we get

|78 = T (g0)

<G <o (o))

Thus, applying Lemma 7.3 to the transversal given by the local unstable manifold {g;}
we get

I T, 17 = T e e (120 (057 7))
[T =T e rim(gy) — 1im(g0e (10 ((577) D))
_ HTlm(gt') _Tlm(gr’) I pmy —(p—1)
- ||Tlm(gsl) _ Tlm(gr’)Hc <1 +0 ((6lm) )) :

Proof of Theorem 7.1. Let p > 0 be so large such that lemmas 7.3 and 7.4 are satisfied
and let ¢, s,7,t',s',r’ be as in Lemma 7.4. First, we have the following claim.

Claim.

t=rl =0 (@™ ") Is=rl=0 (@™ ™) .

Assuming this claim we finish the proof of Theorem 7.1 as follows. Set [ = [(g,/,p) asin
Lemma 6.10. By lemmas 6.10 and 7.2, there is 0 < 71 < 1 such that 6" < O (|t —'|™).
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Therefore, by lemmas 7.3 and 7.4 we obtain that

t—r T () - T"(f) oy —(p—1)
s= - gy = e (@)
- HTlm(gt/)—Tl (90 H my —(p—1)
- ||Tlm(8)_T’lm(grl)||;j <1i0((6lpm) g ))
_ = / (—1)m
(7.5) = r|<li(9(|t o/ |~(p=1 ))

Since K4 has bounded geometry and using Theorem 9.5 in page 549 of [26], the inequal-

ities (7.5) imply that the map 1 has a C'*? diffeomorphic extension to R for some
0<o<l

oo\ -1
Let us prove the claim. Let p be such that |t — 7| = O <(5gm) ) All that we have

to show is that
(7.6) lp—pl <O(1)

Set [ = f(grz,ﬁ) as in Lemma 6.10.
By lemmas 6.9 and 6.11, and by (7.1), for £ < min{/, [} we obtain that

—J6tm0,, (o — )| £ 0 (51 27Y)

+0 <<6§2) g 2’“> .

HT'””(gtf) — T (g,1) .

@ T - )|

ok 0, (fi — 1)

By Lemma 6.5, we get (for all & < min {l, Z})

@) |-, = e - e, 20 (27F) -

Let us consider separately the case (i) where p < p and the case (ii) where p > p.
Case (i). Here [ <[ and by Lemma 6.10 we get

(7.9) (7)< @t <o ()

By Lemma 7.3 applied to the transversal given by the local unstable manifold {g¢;}, we
have

(7.10) HTlm(gt/) — T (gy)

c=o(@n™)

jc +0(27) .

But 27! is much smaller than O ((5%1)_ ) Hence by (7.10) we get

c=o(@n™)

On the other hand, by (7.8), we have

HTlm Tlm (fr

= [T ey = T g1

(7.11) HT”” —T"(fy)
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Thus, by (7.7) and (7.9), we obtain that
005, (Fe = 1| = [T — T 2O ((5fg)_p> +0(27)

= o) =+o <(5£’;})_p> .
But 650y, (fe — fr)| = O ((5?77?)_1) is much larger than ((5757”) _p>. Hence,
’56m9fr(ft ‘ = ( (0im) )
Thus,
65,(F— f)l =0 ((GF™ ") -
Therefore, by Lemma 7.2, we get ||f; — fr|lo = O (((5gm)_1> which implies (7.6).
Case (ii). Here [ <1 and by Lemma 6.10, we obtain that

e () "= ) "o () )

By Lemma 7.3, we obtain that

(7.13) [T -1 =0 ((5?””) 1) .

Ilm

On the other hand, by (7.12) and (7.7), we get
m m im pm\ P
[0 -7 = 0 (sbron - saf) +o () ) -
. —p N -1
But (5;’7”) is much smaller than (51”::) . Hence, by (7.13), we get

(7.14) |7t =180 = 0 (|o5m0s. (f = 1)) -
By (7.8), we have
)7 = o+ 0 ()

But 271 < O ((5?;1) ) Hence by (7.13), we obtain that

o[-, (jren 6ol

o) o))

Thus, by (7.13) and (7.15) we obtain that
- A -1
lm(. N _ plm(,, _ pm )
HT (g¢) =T (gr )HC o <<5lm> )
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Thus, by (7.14) and (7.15) we deduce that
my —1
05, = F)l =0 (™™ -
Therefore, by Lemma 7.2, we get || f; — fr|lo = O ((56””)_1) which implies (7.6). O

8. THE RENORMALIZATION OPERATOR IS ROBUST

JFrom the very beginning, our main goal is to show that the renormalization oper-
ator is “hyperbolic” in U", provided r is sufficiently large. More precisely, we want to
establish Theorem 2.5 (part (ii) follows from Theorem 7.1 and part (iii) will be proved
in §9). We have already at our disposal an abstract theorem (Theorem 6.1) showing
that any robust operator is indeed “hyperbolic”. Hence, our work has been reduced
to showing that the renormalization operator 7', or any one of its powers, is robust.
We emphasize the important role played by the geometric estimates of §5.2 in the ver-
ification of properties B6 and B7 of a robust operator (Definition 6.1) for an iterate
of the renormalization operator (see §8.4). Properties B3, B4, and B5 are relatively
straightforward consequences of the properties of the composition operator studied in
§8.1 and are proved in §8.2 and §8.3 .

In this section, we shall prove the following result (see §8.5).

Theorem 8.1. Let T : O — A be the renormalization operator given by Theorem 2.4,
and let s < 2 be close to 2 and r > s+ 1 not an integer. Then T is a robust operator
with respect to (A", A%, A).

This establishes all the assertions of Theorem 2.5 except (iii), when r is not an integer.
To take care of the integer values of , we have the following result (proved in §8.6)

Theorem 8.2. If k > 3 is an integer then conditions (i), (i), (iii) and (iv) of Theorem
2.3 hold true for the renormalization operator acting on U¥. The local unstable manifolds
are real analytic curves. The local stable manifolds are of class C', and together they
form a continuous lamination whose holonomy is C'T# for some 8 > 0.

We shall present in the sequel complete proofs of all the estimates that are necessary
for establishing the above results, carefully checking all the properties of robustness
along the way.

In our estimates we will often concern ourselves with a power T of T. For each
m > 1, let O, C O be the (open) set of those f’s which are m/N times renormalizable.
Then T™ is well-defined in O,,, and we can write

T"(f) = — - ol |
A
where p = p(f,mN), A\ = fP(0), and Ay : z — Asx is the linear scaling. Note that p
(and hence Ay and Ay) depends on m, but if m is held fixed then p is a locally constant
function of f € 0,,. To keep track of the dependence of constants on m, we shall denote
by K those constants that may depend on m, and by ¢ those that are independent of
m.

Likewise, we define O], to be the (open) set in U” of those f’s which are mN times

renormalizable, so that T™ = R™ : QI — U" is well-defined.
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8.1. A closer look at composition. ;From a differentiable viewpoint, composition is
a notoriously ill-behaved operation. Such bad behavior is the source of most technical
difficulties arising in this work. Fortunately, some positive results lie at hand. For
example, it is well-known that if r is a positive integer then composition, viewed as an
operator from C” x C"~! into C"~!, is a C'! map (see [11]). We shall need not only this
result but also a less well-known generalization of it for Holder spaces: if r —1 > s >1
are real numbers then composition, as an operator from C” x C* into C*®, is a C'' map
(we can say a little bit more — see Proposition 8.8 below). For related results on the
smoothness of composition, see [19].

Before we can prove this fact, some auxiliary results are in order. In what follows,
our definition of C" norm of ¢ € C"([) is this: forr=k+awithkeNand0<a <1
we write

lellor = max{lielos I¢'llos - 9@ llo: 6@ 1o} -
For r = k + Lip we define ||¢||cr as above with & = 1. This norm is equivalent to
the one introduced earlier, and has the advantage that [|¢|cr = max{||¢||co, |¢ ||cr—1}
whenever » > 1. This allows us to prove certain estimates by induction on k, which will
be very useful later.

Lemma 8.3. Given 0 < a<1and0<e<1—aq, letw € CY(I), p,vb € CY(I,I) and
[l = pller < 1.
(i) If € > 0 then there exists K = K (|[¢]|c1) > 0 such that
[wop —wot|ga < Klwl|cate|le — e -
(i1) If € = 0 then there exist ¢ > 0 and K = K (||1||c1) > 0 such that
lwop—woilga < cllwllea[[¢lIEo
+K|lwllcalle = &[|¢n -

Proof. Let us start proving part (i) of this lemma. By the mean value theorem, we
obtain

(8.1) lwop —worloo < [wllgatello — ¥lIEs.

If [y — 2| < [lo = ¢lge then
lwop(y) —wop@)| < cllwlcarelellglle — vlgely — x|
lwod(y) —wop(z)] < cllwloa+e I N — Yllgaly — = .

If |y — x| > || — ¥||ce, by (8.1) then
[worh —wopllco < eaflwllgatelle = Yllcaly — [,

which ends the proof of part (i) of this lemma.
Let us prove part (ii) of this lemma. By the mean value theorem, we obtain

(8.2) [wo e —woilco < [lwlcelle — Plo-
Furthermore,
[wop(y) —wop()| < cllwlcell¢Eoly — 2|
[wo(y) —worp(z)] < cflwleell¥lEoly — 2|,
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and so

(8.3) [wop—wotlla < eslwlea(lle’ — ¢ llco + [1¥llco)®

which ends the proof of part (ii) of this lemma. O
We shall need also some estimates on polynomial operators coming from simple al-

gebraic considerations. For every polynomial P of degree d in n variables z1,xo,...,x,

over R, define v(P) as the sum of the absolute values of the coefficients of P. This is

a well-known valuation in the ring Rz, z2,. .., z,], but all that really matters to us is

that v(P + Q) < v(P) + v(Q) (sub-additivity), and that v(0;,P) < dv(P).

Lemma 8.4. Let P € Rxy,x2,...,2,] be a polynomial of degree d, and let ¢, P,
.oy ¢n € C°(I). Then, we have

1P(61: @2, ., dn)lcs < v(P)22IMY

where M = max{l, H¢1HCS7 H¢2||Csv ) ||¢n||cs} M07"€0U€7”, Zf ¢1>¢2a R wn € CS(I)
also satisfy ||illcs < M for all 1 <i <mn, then

||P(¢17¢27 .. 7¢n) - P(¢17w27 cee ,wn)”CS S dV(P)QSde_IZ ||¢Z - 1/%”03 .
=1

Proof. The first inequality is immediate from the definition of v(P). To prove the second,
note that P : (C*(I))" — C*(I) is a C! map (norm of the sum in the domain of P).
Using the mean value inequality and the first inequality, we see that

”P((z)17¢27 .. 7¢7L) - P(¢17¢27 s 7¢TL)||CS

< 2% sup max |9y, P(td1 + (1 — 1)1, -, i + (1= t)n) los Y Il — il s

0<t<1 % i=1
< (P2 IMTN Y g — dilles
i=1
which is the desired result. O

We can now use the estimate given in the above lemmas to prove the following general
proposition.
Let r,s > 1 be real numbers and for each w € C" (1), let

Oy : C3(1,I) — C*(1)
be the operator given by ©,,(¢) = w o ¢.

Proposition 8.5. Let r,s > 1 be real numbers both non-integer, and let w € C"(I),
C,O,’Qb € 05(17]) with H(p - ¢"C$ <L
(i) If r > s then there exists K = K (||¢|lcs) > 0 such that
[wo e —worlcs < Klwllerlle — e

where ¢ = min{l — {s},r — s} ({s} denotes the fractional part of s). In
particular, ©,, : C*(1,1) — C*(I) is e-Hélder continuous.
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(ii) If r = s there exists ¢ > 0 and K = K (||¢||cs) > 0 such that
lwo e —wodllor < cllwler ¥ llco + Klwllerlle = lle-

where a = {s} is the fractional part of s.

Part (ii) of the above proposition shows one of the main difficulties in this theory
which is the fact that for w € C*(I) the operator ©,, : C*(I,I) — C*(I) is not even C°.

Proof. Let us write s = k + «, with & an integer and 0 < o = {s} < 1, and let
A=wop—wo.

Since w, ¢, € C! and € < 1 — o, by Lemma 8.3 we obtain

[A]lca < Killwllerlle = lle -
By Faa-di-Bruno’s Formula (see [13], p.42), for all 1 <1 < k we can write

AY = Bi(¢) - B (¥)
where l
Big)=> wDog Py(¢,¢",....00 ),
j=1

each P, ; being a (universal, homogeneous) polynomial of degree j in [ — j variables
(with integer coefficients explicitly computable from [ and j, see [13], p.42). We only

need the expression of P, ; for j = [; it is easy to check that P ;(¢') = (¢’)l. Then, we
can decompose AV = C; + D;, where

C, = jzl;w(j) op- <Plg (‘P,, o SO(l_j)) ~ P, (1/}/7 W qu)(l_j)>)

D, = i(wmw_w(j)ow).pld <¢/7¢”,m7¢(lﬁ')>.

j=1
By Lemma 8.4 applied to each P, ;, we have
H-Plj (90/7 QO//) ) QD(Z_J)) - -Plj (1/}/7 ¢//) L) %Z)(l_j))
Therefore, for all 1 <1 < k we get
[Cillce < Ksllwlles[le —dlles -
Let us now rewrite D; = E; + F; where,

-1

B = Z (w(j) o —w) Ow) - Py <¢/7¢/’, . ,ﬂ,(l—j))

j=1
= (w(l) op— w® o 1/}) . (w')l .

In bounding the first summation in Ej, we apply Lemma 8.3. Since w0, p, 1) is at least
C! we get

|.. < Kelo—vlc- -

me 0op—who wHCa < K, me‘

P
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for all with 1 < j <[ —1. jFrom this and Lemma 8.4, for all 1 <[ < k we obtain that
IEllce < Kslwlloslle — 9llga* -

Our task has been reduced to bounding the C“ norm of F;. Here, we will do separately
the proof of part (i) and part (ii) of this Proposition.

Let us prove part (i) first. Here, for all 1 < < k we have that ¢, are at least C'!
and that w®) is at least C*T¢, and so by Lemma 8.3 we get

[0V o -wt oy . < Kelwlowasle - bl
Thus, for all 1 <[ < k we obtain

[Filloe < Krllwllerlle =l

which ends the proof of part (i).
Let us now prove part (ii). We know that w®, o, peClforalll <l<k—1,and so
by Lemma 8.3 we have

[0V op—uwou| < Kslwlomasle -l -
Thus, for all 1 <[ < k — 1 we obtain

[Ellce < Kollwllerlle —oles -

Therefore, we just have to bound || Fy||ce. Here, w® is only C®. From the inequalities
(8.2) and (8.3) in the proof of Lemma 8.3, we get

H“’(k) o —wh o w‘

o S alvlerlle - vl

[ op—w®ou] < e (1¥llen + ¢ = ¥'cn)”

and so
IFilles < eslpllénalwlierlle = pligo
Feallgllenlwlor (18 llco + e = ¥/l co)”
which ends the proof of part (ii). O

Lemma 8.6. Given0 < a <1and0 <e<l—a, let f € C1oT<(I), g € CH(I,I) and
v € C1(I) with |v||cita <1 and g+v € CYT(I,1). There exists K = K (||g|c1+a) >
0 such that

Ifelg+v)=Fog=1fog-v]ce < Klflrarclvllei” -
In particular, there exists K = K (||g]|ci+a) > 0 such that

1folg+v) = fogllea < K|[fllitatelvlior -
Proof. Let us define



A simple computation shows that ¢ (x) — 1 (y) = A+ B + C, where

A = flg(x) +v(@)) = flg9(y) +v(y))
B = —f(g(@)+ flg(y))
C = —flg(x)v()) + fgW)v(y)) -
To estimate |¢(x) — ¥ (y)|, we consider two distinct cases.
Case 1: We have |z — y| < [|v]| 1.
Here, there exist &, € [g(x) + v(x), g(y) + v(y)] and 7,4 € [g(x), g(y)] such that

A = f&y)g@) = g) + [ (Cay) (v(x) — v(y))
B = —f(y)9(x) - 9(y))-
Since |z — y| < ||v||cr, we have [€5 4 — 1zy| < c1]v]|cr, and so
84) |(f'(€a) = F (o)) (9(2) =g < [ late 1oy — Moyl
<

(8.5) c2 llgllerll fllersaselloll G o —y|* .

Moreover,

(8.6) | (&ay) (@) —v®)| < 1 o [[V]lco o =yl
< fller ollZ® o —yl*
By inequalities (8.4) and (8.6), and since ¢ < 1 — a we get

(8.7) |A+ B| < cs [|fllcreate (Jollor) )z — gl

Now, we bound C' as follows

Cl < [f(g(@)(v(x) — o)+ [o(W)(f (9(x) = F(9(y)]
1 (g(@llco 'l | =yl + [[vllcolf Natellg IS |2 — y1* T

<
< o | fllovrarllll g |z =yl .

(8.8)
Therefore, by inequalities (8.7) and (8.8), we get
[¥(@) = »@)| < esll fllorrare vl G |z —yl* .

Case 2: We have |z —y| > ||v]|c1.
Here, there exists &; € [g(x), g(x) 4+ v(z)] such that

() = (f'(&) — f'(g(@))) v(z) -
Since |£; — g(z)| < |v(z)|, we have

[W(@)] < co llf late lo(@)Fore
<

coll Flloreasellofl e .

(8.9)
Since |z —y| > [|v]|c1, we get

() = ¢ (y)l ()] + [ (y)]

<
< 2 [|fllorrarelvll gl —y|*

which concludes the proof. Inequality (8.9) also shows that ||¢]|co < 7| fllgr+a+e Hv||ch[€
O
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Proposition 8.7. Let 2 < s+ 1 < r be real numbers, and let f € C"(I), g € C5(1,1).
There ezists K = K (||g]lcs) > 0 such that, for all v € C*(I) with ||Jv|lcs < 1 and
g+veC(I,I), we have

(8.10) [folg+v)=fog—fog v|e < Klflerlolle ,

where § = min{1 — {s},r —s—1}. In particular, (a) the operator ©; : C*(I,1) — C*(I)
is C' and its derivative is given by DOs(g)v = f' o g- v, and (b) there exists K =
K (llgllcs) > 0 such that for all v as above we have

(8.11) [fo(g+v)=foglles < Kllfllerlvlics -

Proof. In this proof we use K1, Ks,... to denote constants that depend only on |[|g|cs.
Consider the remainder term

F=fo(g+v)—fog—flogwv,
as well as its derivative F/ = A + B, where
A = (flo(g+v)—flog—f"og-v) ¢
B = (f'o(g+v)—fog) v
We want to show that

1F']| e < Killfllcr vl &5

The proof will be by induction on the integral part of s. Note however that the mean
value theorem already gives us [|F||co < Ka|f”||col[v]|Z0 independently of s.

First we deal with the base of induction, namely when 1 < s < 2, say s =1+ «a. By
Lemma 8.6, we have

146
IAllca < K3l f llcrats (ollen)™
The same Lemma 8.6 yields
2
IBllca < Eallf'llcr+ate ([0llcr+a)

This establishes the base of induction.
Now suppose that our lemma holds for s > 1. We will prove from this that it holds
for s + 1. To do this, it suffices to show that

(8.12) 1F']| e < Ksllfller ol Gt

Cs+1
The proof is more of the same. By the induction hypothesis applied to f’, we have
1+6
(8.13) 1Allgs < Koll 'l ([olles)™
The same fact also gives
2
(8.14) 1Bllgs < Kzl lor1 (ol or+s)

Putting (8.13) and (8.14) together we get (8.12), and so the induction is complete. [

Proposition 8.8. Let 2 < s+ 1 < r be real numbers. The composition operator
O : C"(I)x C5(I,1) — C*(I) given by O(f,g) is C'FY and its derivative is given by
DO(f,g)(u,v) =uog+ f og-v. In particular, there exists K = K (||f|lcr, lgllcs) > 0
such that, for all ||u|lcr <1 and ||v||cs <1 with g +v € C*(I,1), we have

(8.15)  [|O(f +u, g +v) = O(f,9) = DO(f. g)(u,v)|lcs < K(||uller + [ollos) 7,
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where § = min{l — {s},r — s —1}.

Proof. In this proof, we denote by K1, Ks,... positive constants depending only on
llgllcs. Let us take w € C"(I) and v € C¥(I) such that |lu|lcr < 1 and |jv[cs < 1,
respectively. We have

F = O(f+ug+v)—0O(f.g) —uog—flog-v
= folg+v)—fog—flog-vtuo(g+v)—uog.
Using Proposition 8.7, we see that
[folg+v)—Ffog—fog-v|o < Kilfllor(lvllos) ™.
The same Proposition 8.7 with u replacing f yields

luo(g+v) —uogles < |luog-vllos + Kalluler(flo] )™

Ksllullerllvlios -

A

Therefore we get
IFllos < Kl fller(lvllos) ' + Kallullor [olles
which proves that © is C! and that (8.15) is satisfied. Now, we have that
DO(f + ¢,9 + ¥)(u,v) — DO(f,9)(u,v) = A+ B+C
where
A = uo(g+y)—uog
B = (folg+y)—flog) v
C = ¢o(g+y)v.
By Proposition 8.5, we obtain that
[Allcs
I1Bllcs

Eyllullgr1 [ [|Es
0
Ksll fllor1dlles - llvlles.

Letting k be the integer part of s and ¢ = g+ 1, and using Faa-di-Bruno’s Formula, we
have

<
<

k
(¢ 00) P =360V 0. Pj(e, ¢, ")
j=1
each Py ; being a (universal, homogeneous) polynomial of degree j in k — j variables.
Hence, using Lemma 8.4, we get that ||C|lcs = Kg||Af||cr||v|lcs. Thus, © is a C1F9
operator. Il

Corollary 8.9. Let r,s > 0 be real numbers with r — 1 > s > 1 and for each positive
integer m, let Qm, : C"(I,1) — C*(1,I) be the operator given by Qum(f) = f™.

(i) Let 0 <t <7 and let U : CY(I,I) — C*(I, 1) be a C'* operator for
some 0 < 0 < 1. Then the operator U, : C"(I,I) — C*(I,I) given by
Un(f) = Qm o U(f) is C** for some 0 < 6’ = 6'(0,r,5) < 1.
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(ii) In particular, the operator Q,, : C"(I, 1) — C*(I,I) is C't?" for
some 0 < 0" =0"(r,s) <1 and there exists K = K (m,||f||cr) > 0 such
that

(8.16) 1Qm (f + 1) = Qu(f) = DQu(f)ullcs < K|Jul| 57" .

Proof. First note that Uy, 41(f) = O(f, Un(f)). The operator U; arises as the compo-
sition of the operator C"(I,I) — C"(I,1) x C*(I,I) given by f — (f,U(f)), which is
C'™9 because U is C'*% (and C"(I,I) embeds in C?), with the composition operator
© : C"(I,I) x C*(I,I) — C*(I,I), which is C**?" for some 0 < 8" = 6"(r,s) < 1 by
Proposition 8.8. The desired result for part (i) then follows by induction. Part (ii) is a
corollary of part (i), and by a computation (8.16) follows from (8.15). O

Proposition 8.10. Let r,s,t be real numbers with 2 < s+ 1 < r and t > 0. Let
U:CHI,I)— C5(I,I) be a C* operator. Then for each ¢ € C™(I) and eachp € C*(I,1)
there exists a function oy : RY — R with oy (h)/h — 0 as h — 0, varying continuously
with 1, such that for all v € C*(I) with ¢ +v € C*(I,I) we have

(8.17) |60 U +v) = ¢oU(W) — ¢ o U(w) - DU ()|

Proof. As before, we denote by K7, K, ... positive constants that depend only on |1 .
We have that

cs < oy(llvlle) -

poUW +v) —¢oU) —¢' oU(s) - DU(Y)v=A+ B
where
A = ¢oU@W+v)—¢oU(p)—¢ oU®) (U +v)—U())
B = ¢oU®) - (U +v)-U)—DU®)v) .

Since U is C', there exists a continuous function vy, : RT — RT with v(h)/h — 0 as
h — 0, varying continuously with ¢, such that

U +0) =UW) = DUW)v[gs < vy([[vfler) -

Hence, applying Proposition 8.7 with f = ¢ and g = U(¢)) and v replaced by U (¢ +
v) = U(®), we get

Il < Kallgller (IU (@ +v) = U)o
< Kallgller (IDU@)IMol6t?)

and

IBlles < Kallgllervp(lvlice)
where K3 = K3 (|[U(¢)]|cs, || DU ()], vy) and Ky = Ko (||U(%)]|cs). Therefore,

1A+ Blles < Kslléllollollgt? + Kalléllorvy([vller) -

This completes the proof. O
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Corollary 8.11. Let r,s,t be real numbers with r —1 > s > 1 and 0 < t < r, and
let U : CY(I,I) — C*(I,I) be a C' operator. For each positive integer n the operator
Vo @ C"(I,I) — C5(I) given by Vo (f) = (f™) o U(f) is differentiable at every g €
C™(I,1) C C™(I,1), and as map from C" (I, 1) into L(C"(I),C5(I)), the derivative

operator g — DV, (g) is continuous.

Proof. First note that by the chain rule,
n—1 n—1
V) =TI 770 (59 0u(n) = [T £ o Us(h) -
§=0 §=0

This reduces the problem to the case n = 1. We claim that the linear operator
L(v)=v"0U(g) +¢" 0 U(g) - DU(g)v
is the derivative of V; at g € C"*1(I,I). Indeed, we have
Vilg+v)—Vi(g) - L(v) = A+ B,

where

A = goU(g+v)—goUlg) —g"oUlg) DU(g)v

B = v oU(g+v)—1v"0U(g) .
By Proposition 8.10 applied to ¢ = ¢’ and ¢ = g, there exists K1 = Ki(||g||cr+1) such

that
[Allcs < Kioy(|[vllcr) ,

where oy : RT — RT is a continuous function varying continuously with ) such that
oy(h)/h — 0 as h — 0. On the other hand, by part (i) of Proposition 8.5 and since U

is C1, we have

1Bl Kallvller [U(g +v) = U(g)lies

K3 (JJo]ler)'™e
where 0 < € = min{l — {s},r — s} < 1, Ko = Ks(||U(9)||cs) and K3 = K3(||U(g)||cs,
| DU(g)l|, 04 (||v][cr)). Combining these inequalities, we deduce that V; is differentiable

at g and DVi(g) = L as claimed. It is clear from the expression defining it that L varies
continuously with g € C"™ (I, ). O

<
<

8.2. Checking properties B3 and B4. We now proceed to verify that the operator T’
satisfies properties B3 and B4 of robustness. They will follow respectively from lemmas
8.13 and 8.14. First it is necessary to analyze the behavior of the linear scaling used in
such operators. Let us fix a positive integer p and for each f € C"(I,1) let Ay be the
linear map = +— Ayx, where Ay = fP(0).

Lemma 8.12. For r > 2, the maps A : C"(1,I) — L(R,R) given by A(f) = As and
A:C(I,I) — R given by A(f) = As are both C*0 for some 0 < 6 = 0(r,s) < 1. In
particular, there is K = K(p,||f|lcr) > 0 such that for all v € C"(I) with ||v||cr < 1
and f+v e C"(I,I), we have

(8.18) IS +0) = A(f) = DAS)ller < Kollgs
The above inequality also holds replacing \ by A.
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Proof. Choosing 1 < s < r—1, we see that A\ = EoQ, where Q, : C"(I,I) — C*(1,I) is
the operator Q,(f) = f?, which is C'*% for some 0 < § = 0(r,s) < 1,and E : C*(I,I) —
R is the evaluation map E(g) = g(0), which is linear. Therefore, by Corollary 8.9, A is
C' and (8.18) follows from (8.16) and the linearity of E. The proof for A is entirely
analogous. O

We will also need to use the operators U,, : C"(I,1) — C*(I) given by U, (f) = f" oAy
for all n > 0.
Property B3 for the operator T is a consequence of the following lemma.

Lemma 8.13. For2 < s+1 < r and for eachn > 0, the operator U, : C"(I,I) — C*(I)
is C'0 for some 0 < 0 = 0(r,s) < 1. In particular, T™ : Q! — U* is also a C'*?
operator.

Proof. This follows at once from Lemma 8.12 and Corollary 8.9 applied to U = A. O

The following lemma is all we need to verify property B4 for the operator 7. In this
case g is a map in the limit set K of 7', hence analytic, and v = u, is a tangent vector
to the unstable manifold of g, which is analytic as well.

Lemma 8.14. For 2 < s+ 1 < r, the map O], — U?® given by f — DT™(f)v is
differentiable at f = g € K. Furthermore, for every m > 1 there exist Cy, > 1 and
Vm > 0 such that for each g € K and f € O, with ||f — gllcr < vm and all v € A" with
|lvl|er =1 we have

(8.19) IDT™(f)v = DT™(g)vlcs < Cullf = gller -

Proof. Let E : C*(1,I) — R be the evaluation map E(g) = ¢(0), which is linear. Recall
that the derivative of 7™ is given by the expression

p—1

(8:20) DT™(f)v = %Zoﬂj)' 0 Upes (f) - 0.0 Upyr (F)
=0
p—1
+Aif[id (T pY =TS B (£ 0 Up () - E (00 Uy 1(f))
§=0

where Ay = Eo fP and id : R — R is the identity map. Each term of the first summation
in (8.20) is differentiable at f = g. To see this apply Lemma 8.13 and Corollary 8.11
to each of the operators f +— (f7) o U,—;(f) as well as Proposition 8.7 to each of the
operators f +— v o U,_;(f). On the other hand, each term of the second summation
in (8.20) equals the corresponding term in the first summation post-composed with the
evaluation map E (which is linear), and is therefore differentiable at f = g. The analysis
of the expression in square brackets in (8.20) is similar. By Lemma 8.12 and Corollary
8.11, the operator f — T™(f) = (f?)" o Ay is differentiable at f = g, and the operator
f—=T™(f) = As- fP oAy is also differentiable at f = g by Lemma 8.12 and Corollary
8.9. ;From this fact and compactness of K the inequality (8.19) follows. O
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8.3. Checking property B5. The fifth property is verified in Lemma 8.17 below. First
we will need to prove the following two lemmas about the operators U; : ctHite(r, 1) —
C*(I) with ¢ > 1. Recall that U;(f) = f" o Ay.

Lemma 8.15. For every f € C*T'*<(1,1) and all v € C*(I) with small norm and such
that f +v € CY(I,I), we have
1Ui(f +v) = Ui(f)ller < KJollce
for all 0 <i < p where K = K (p, || f| ct+1+¢)-
Proof. Note that
Uit1(f +v) = Ui (f) = f o Ui(f +v) = fo Ui(f) + vo Ui(f + v)
By Proposition 8.7, there is K1 = Kj (p, || f||ct+1+¢) such that
[Uis1(f +v) = Uipa(ller < KallUi(f +v) = Ui(f)llct + lv o Us(f + vl

The required estimate now follows by induction, because Uy is C. ]

Lemma 8.16. For every f,€ C*H1¢(I, 1) and all v € C*F1T¢(I) with small norm and
such that f +v € CTTY<(I, 1), we have

|U:(f +v) = Us(f) — DUi(f)vlloe < Kol 57
for all 0 <i <p, for some 0 <8 =0(t,e) <1 and K = K(p, | f|ct) > 0.

Proof. In this proof we denote by K1, Ko, ... the positive constants depending only on m
and [|U;(f)]|ct. Again we use induction, the case i = 0 follows from the differentiability
of the scaling f — Ay and by inequality (8.18). We have

Uit1(f +v) = Uisa(f) = DUt (flv=A+ B+ C
where
A = foUl(f+v)—folUlf)— foUdf) (Ui(f+v)—Uif))
B froUi(f) - (Ui(f +v) = Ui(f) — DU(f)v)
C = voUl(f+wv)—voUyf).
By Proposition 8.7, we have
[Allce < Ea|lUi(f +v) = Ui(H)l gt

By Lemma 8.15, we get
[All e < Kallollghe -

On the other hand, since v is C*F1+¢/2 we know again from Proposition 8.7 that
[Cllet < Ksl[vllgrrarer2|[Us(f +v) = Us(f)llcr < Kallvllgrirverzlv]lce -

Since v has bounded C**1*€ norm, by an interpolation of norms, we have [l cttrters <

K5HvH001t for some 6; > 0. Therefore, taking § = min{e, 01} we get
ICler < Kellvl|gH -
This allows the induction as desired. O

Property B5 for the operator T is a direct consequence of the following lemma.
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Lemma 8.17. For every f,€ CSTY(1,1) and all v € C*1F€(I) with small norm such
that f +v € C5H1F¢(I, 1), we have

IT(f +v) = T(f) = DT(H)(w)le- < Kol
for some 0 <1 =17(s,¢) <1 and K(p,||f|lcs) > 0.

Proof. In this proof we denote by K71, Ko, ... the positive constants depending only on
m and ||U;(f)||cs. Start observing that since T'(f) = )\]71 -Up(f), we have

T(f +v) —T(f) — DT(fly=A+ B + C

where
A = X (Up(f +0) = Up(f) = DU(f)v)
B = (AL, =27 = DATL©))  Up(f + )
C = DX'(v) - (Up(f +0) = Up(f)) -
Applying Lemma 8.16 with t = s we get
1Alles = Killollgt™
for some 0 < 0; = 0;(s,€) < 1. By Lemma 8.12 there is 0 < 3 = {s} < 1 such that
0
IBllcs < Kallvllgs™ -
By Lemma 8.15, we have ||U,(f + v) — Up(f)|lcs < K3||v||cs and so
IClles < Kallolles -
Therefore, it is enough to take 7 = min{6;,6}. O
8.4. Checking properties B6 and B7. We now move on to the task of proving that
the operator T = RN of Theorem 2.4 satisfies properties B6 and B7 in the definition
of robustness. Unlike the previous ones, the verification of these (last) two properties
depends upon the geometry of the post-critical sets of maps near the limit set K of 7T'.
The estimates performed here are the most delicate, and involve the results of §5.2.
Recall that 7™ is well-defined on an open set Oy, in the Banach space A = Agq, (see
§3), which contains K. We shall denote the renormalization intervals Ag N, A1 mn,
.oy Ap mn simply by A; = A, n (this shortened notation should cause no harm, since
N is fixed since Theorem 2.4 and m will be fixed in the particular estimates involving

these intervals).
We can write the derivative of 7™ in the following form

p—1 p—1
DT™(f)v = A(f) Y Bi(f)- Ci(f) + A(f) - D(f) Y E o Bj(f) - Eo Ci(f)
j=0 Jj=0
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where

A(f) = (7,

Bi(f) = () oUpj(f),

Cj(f) = UOUp—j—l(f),

D(f) = id-(f*) o Us(f) = M- Up(f) -

To carry out our estimates for 7™, we shall use the operators U; : f — floAy (i > 0).
Note that Uy(f) = Ay, hence Up is C! in whichever space C"(I,I) we work in, because
the scaling f +— Ay is C' by Lemma 8.12.

First we need some estimates for U;. It is clear that ||U;(f)|co < 1 always, but more
is true.

Lemma 8.18. There exists C > 0 with the following property. For every m, there exists
an open neigbourhood O,, C Oy, of K such that for all f € O,,, we have

Aol
[Ap—jl
for all 0 < j < p—1. Furthermore, ||[U;(f)||co < C|A;|, for all 0 < i < p.

1Bj(Hllco < C

Proof. Use bounded distortion and the real bounds. O
Lemma 8.19. For all f € Oy, and all v € Cy(I) with small norm, we have

1Ui(f +v) = Ui(f)ller < Kllvfler
for all 0 <i <p, where K = K(m) > 0.

Proof. This lemma follows from Lemma 8.15. ]

Next, we show an essential result to prove that the renormalization operator satisfies
properties B6 and B7. Here, we use again in a crucial way the geometric properties of
the postcritical set of f € O, proved in §5.

Proposition 8.20. (i) For every t > 2 which is not an integer there exist 0 < p < 1
and C > 0 with the following property. For every g € K and for every m, there is an
n > 0 such that for all f € O, with ||f — glla <1 and for all w € A® with [|w||c: < n
we have

p—1
(8.21) A Y Bi(N (Ci(f +w) = Ci(£))|| < Cu™|vllee -

Jj=0 Ct
(ii) For every p > 1 close to one, there is s < 2 close to two and C > 0 with the
following property: for every g € K and for every m, there is an 1 > 0 such that for all

f € O, with || f — glla < n and for all w € At with |w||c: < n we have that inequality
(8.21) above is also satisfied.
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Proof. Below, the positive constants ¢, ca, ... depend only on ¢ (and the real bounds),
while the positive constants Ky, K1, Ko, ... may depend also on m.

Let k and 0 < a < 1 be respectively the integer and the fractional part of ¢ (when
t = k + Lip take a = 1). We start observing that for each j we have

1B;(f) (Ci(f +w) = Ci(llce - < NIBj(HllcollC(f +w) = C(f)lle

(8.22) +Kol| B (Nl 1C5(f +w) = C5(Hllen -

Note that in the right-hand side of (8.22) only the second term carries a constant K. By
Lemma 8.18, there is ¢; > 0 such that for every integer m there is an open neighbourhood
O,, of K with the property that for each f € O,, we have

Ao

[Ap—j| .

In that neighborhood, we also have ||B;(f)||ct < Ki. By Proposition 8.5 and Lemma
8.19, taking 0 < € < 1 such that o — ¢ > 0, we obtain

1C5(f +w) = Ci(Hller < NC(f +w) = C5(f)llcr-

(8.23) 1Bi(Hllco <

IN

Kal[vllcel|Up—j—1(f + w) = Up—j1(f)llce

(8.24)

IN

Ks|lv|ctlwlge -

On the other hand, putting together Proposition 8.5 with Lemma 8.18 and with Lemma
8.19, we get

IC;(f +w) = Ci(Dller < eallUp—jr(f) lcollvllor
+ Ey||[Up—j1(f +w) = Up—ja(NEelvll e
(8.25) < eslAp—jallvller + Kslwl|gellvller -

The first term on the last line of (8.25) looks a bit dangerous. What saves us here is the
geometric control on the post-critical set of f (hence on the intervals A;) that we have
at our disposal since §5.2. Substituting (8.23), (8.24) and (8.25) in (8.22) and adding
up the terms with 7 =0,...,p — 1 we arrive at

p—1
AN D Bi(H) (Ci(f +w) = C5(f)

Jj=0 Ct

-1
1 Ao - Ayl
< Cyq4 +K5 w||¢ V||t
’A0|Z |Apfj| ” HC’t H ||C )
7=0

72



But as we have seen in §5.2 :

(i) By Proposition 5.5 and Remark 5.1, if ¢ > 2 there exist 0 < v < 1 and
C > 0 with the following property. For every g € K and every m > 0,
there exists an 1 > 0 such that for all f € Q,, with ||f — g|la < n we
have

(8.26)

(ii) By Propostion 5.8 and Remark 5.1, for every v > 1 close to one, there
exists t < 2 close to two and C' > 0 with the following property. For every
g € K and every m >, there exists n > 0 such that for all f € O,, with
|lf — glla < n we have that the inequality (8.26) above is also satisfied.

These last estimates end the proof of this proposition, provided we take u = 4V and
n < pme. O

We arrive at last to the main two results of this section.

Theorem 8.21. (i) Ift > 2 is not an integer, there exist 0 < u < 1 and C' > 0 with the
following property. For every g € K and for every m, there is an n > 0 such that for all
f € Oy, with || f — glla <n and for all w € A with ||w|ct < n we have

(8.27) |DT™(f +w)o — DT™ (vl < Cu™ o] -

(i) For every pu > 1 close to one, there exist t < 2 close to 2 and C > 0 with the
following property. For every g € K and every m > 0, there exists n > 0 such that for
all f € O, with ||f — glla < n and all w € A" with ||w|jce < 1, the inequality (8.27)
above is also satisfied.

Part (ii) of this theorem with ¢ = s implies property B6 and part (i) is used later (for

t = r) to prove property B7.

Proof. In this proof the positive constants K;, Ks,... depend only on r and Q,, and
also on m. Let E : C'(I,I) — R be the evaluation map E(f) = f(0), which is linear,
and let U, : C*(1,I) — C*(I) be as before. Let us write DT™(f +w)v — DT™(f)(v) =
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E1+E2+E3—|-E4—|—E5+E6—|—E7, where

p—1

Ei = (A(f+w)—A(f)D_Bi(f +w)-Ci(f +w)
j:

B = A(f)%_:(Bj(vaw)—Bj(f))'Cj(f+w)
By = AU : B(1) - (C(f +w) ~ ()
B - (A(f+w>—A(f))-D(f+w)]§Eij(f+w)-Eon(erw)
&
B - A(f)~(D(f+w)D(f))g)Eij(f+w)-Eon(f+w)
By = A(f)'D(f)%;(Eij(f+w)—(Eij(f))'Eon(f+w>
2
B - A(f)'D(f)%_:Eij(f)‘(Eon(erw)—Eon(f)).
Z
By Lemma 8.12, we get
(829) A+ ) = AP = Py =3 o < Kl

Hence,
[E1l[cr < Ka|wllctllvllee and [[Eallce < Ksl[wllcellvlc: -

By Proposition 8.7 and Lemma 8.19, we obtain

I1B;(f +w) = Bi(Nller < KallUp—;(f +w) = Up—()llcr

Since E is a bounded linear operator and from the last inequality, we obtain
[Eollcr < Kgllwlctl[vllce and [[Egllcr < Krllwllcel[vllce -
Taking j = p in (8.29), we get
1Bp(f +w) = Bp(f)ller < Ksllwljce -
By Lemma 8.19 and by (8.28), we get
A f 4w - Up(f +w) = A - Up(f)llor < Kollwlloe -

Combining the last two inequalities, we get ||Es||ct < Kiollw|lctlv] et -
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Let k and 0 < a < 1 be the integer and the fractional part of ¢, and let 0 < e < 1 be
such that o — e > 0. ;From inequality (8.24), and since E is a bounded linear operator,
we get

[E(C5(f +w)) — E(C;(f) | < Kullwllgllvlce -
Thus, ||E7||ct < Kil|w||g:|lv]|ce - The only thing left to do is to bound ||Es/ct, and
this follows at once from Proposition 8.20. O

Theorem 8.22. If r > 2 is not an integer, there exist 0 < p < 1 and C > 0 with the
following property. For every g € K and for every m, there is an n > 0 such that for all
f € O, with || f — glla <n and for allv € A" with ||v||cr < n we have

(8.30) [T (f +v) =T™(f) = DT (f)vller < Cp™vllor -

This theorem together with Theorem 8.21 (i) for ¢ = r imply that the renormalization
operator satisfies property B7.

Proof. In this proof the constants 6,601,60s,... are greater than zero and smaller than
one and just depend upon r. The positive constants c, c1,co,... depend only on r and
Oy, and the positive constants K, K1, Ko, ... depend also on m. Start observing that
since T™(f) = A; ' - Up(f), we have T™(f +v) = T™(f) = DT™(f)v = A+ B+C, where

A = X (Up(f +0) = Up(f) — DU(f)v)
B = (0L, = - DA W) Uy(f + )
C = DA (Up(f +0) ~ Up(f) -

By Lemma 8.12, we have that f — )\]71 is C! and that there is ; such that ||B||cr <

K ||o]| 657 Since [[U(f + v) = Up(f)llor < Kalv]|or, we have also [|Cller < Kalol|%-
Hence inequality (8.30) will be established if we prove the following claim.

Claim. If r > 2 there exist 0 < p < 1 and ¢; > 0 with the following property: for every
g € K and for every m, there is an n > 0 such that for all f € Q,, with ||f —g|la <7
and for all v € A” with [|v]|cr < n we have

(8.31) 1Up(f + ) = Up(f) = DUp(f)vller < crp™Aplllvlicr -

To prove this claim, we will proceed recursively. Let us write for i =0, ..., p,
R; = Ui(f +v) = Us(f) — DU(f)v .
Note that R;y1 = E; + F; + f' o U;(f) - R;, where
E; = foUlf+v)— foUilf) = foUlf) (U(f+v)—Ui(f))
F, = volU(f+v)—voUlf) .
Thus, working recursively from these expressions, we get

p—1
Rp =Ry - Gp + Z<E2 . Gp—i—l + F; - Gp—i—l) ,
=0

75



where Gp_i—1 = (fP7"1 o Ui1(f) and Ry = Afiy — Ay — DA¢(v). Since f € Oy, by
Proposition 8.7 and Lemma 8.19, we get

|Eillcr < Kal|Ui(f +v) — Ui(H)lle? < Ks )| &b

for 63 = 1—{r}. Therefore, Zf:_ol E; -Gp_i-1 ’C’ < KgHvHétBQ. By Lemma 8.12, there

is 03 such that ||Rollcr < K7Hlecte3. Hence, ||Ry - Gpllcr < K8||UHICJ£03. Finally, by
Proposition 8.20, there exists 84 > 0 such that
146
< Kyllollgr™ + can™ M gplllvller -

p—1
Y F-Gpi
=0 cr

This proves our original claim. O

8.5. Proof of Theorem 8.1. All the pieces of the puzzle may now be put together.
We know already that the spaces A = A, B= A", C = A® and D = A satisfy property
B1. By Theorem 5.1, the pair (A7, A%) is p,-compatible with (T,K) and p, < A for
~ sufficiently close to 2 and is 1-compatible for v > 2. Hence property B2 is satisfied
because s < 2 is close to 2 and r > 2. Since r > s+ 1, we know from Lemma 8.13 that
T satisfies property B3. It also satisfies property B4 by Lemma 8.14, and property B5
by Lemma 8.17. Finally, T satisfies property B6 by Theorem 8.21, and property B7 by
Theorem 8.22. Therefore the renormalization operator 7" is indeed robust with respect
to (A7, A%, AD).

8.6. Proof of Theorem 8.2. In order to prove Theorem 8.2, let us consider the Banach
space AF~1THP  Note that the natural inclusion i : AF — AF~1HLP s an isometric
embedding. Indeed, for all v € A¥ we have ||v||cx = ||v||, by the mean-value theorem.

Now the key observation is the following. The operator T': O — Agq, is robust with
respect to (B,C, D), where B = AF-1+LiP ¢ — AF=1-8 with 0 < B < 1 and D = A",
This is a special case of Theorem 8.1.

Applying Theorem 6.1 to B, we see that for every g € K the local stable set W¢ ’B(g)
is a codimension one C'' Banach submanifold of B. In fact, there exists a C'' function
® : Oy — R, where Oy C B is an open set containing g, such that 0 € R is a regular
value for ®, with

$1(0) = O N WEE(g)
and such that D®(g)u, # 0. Let O; = i~ 1(Op) C A*¥. Then O; is open and ® o :
O1 — R is CL. Since u, € A* and D(® 0i)(g)uy, = D®(g)u, # 0, it follows that 0 € R
is a regular value for ® o4 at g. Hence, by the implicit function theorem,

O1NWEk(g) = 01 N WEB(g) = 01N (@ oi) 1(0) ,

is a C'!, codimension one Banach submanifold of A¥.

Using Theorem 6.15 (iii), and once again noting that u, € A* we deduce that these
local stable manifolds form a continuous lamination in A¥. Finally, if F is a C? ordered
transversal (in the sense of §7) to the stable lamination in U*, then io F is a C? ordered
transversal to the stable lamination in B, and therefore by Theorem 7.1 the holonomy
in U* is C'*Y for some 6 > 0.
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This proves Theorem 8.2 and shows that parts (i), (ii) of Theorem 2.5 hold true for
r = k also, for all integers k& > 3.

9. THE GLOBAL STABLE MANIFOLDS OF RENORMALIZATION

In this section we construct the global stable manifolds of the renormalization operator
T in U", for all r sufficiently large, thereby finishing the proof of Theorem 2.5.

Let g be an element of the (bounded-type) invariant set K of 7. Recall that the global
stable set W*"(g) of g € U" is given by

W= (g) ={f €U | T"(f) =T"(g)|lcr — 0 when n — oo} .

JFrom Theorems 8.1 and 8.2, we know that the convergence is exponential, and the
exponential rate of convergence is independent of f and g, provided r > 2 + « with
0 < a < 1 close to one.

Theorem 9.1. For every r > 3+ « with a < 1 sufficiently close to 1, and every g € K,
the global stable set W7 (g) is an immersed, codimension one C' Banach submanifold

of U".

Remark 9.1. By [24] and [25], if the invariant set K of the renormalization operator
is of bounded type then for every r > 2 and every g € K we have that W*"(g) coincides
with the set of all maps f € U with the same combinatorial type of g.

Proof. We already know that the local stable sets are C'' submanifolds. The idea is
to pull-back such manifold structure by 7" using the implicit function theorem. More
precisely, by Theorem 2.5 (ii) (or equivalently, by Theorems 6.1, 8.1 and 8.2), there exist
g, 3 > 0 so small that W r=1=6 (g) is a codimension one C'' Banach submanifold of U",
for all g € K. We may assume that ¢ > 0 is so small that the vector uy is transversal to
the local stable set WS’Pl*B(g) at each one of its points.

Now fix g € K and let f € W*"(g). There exists N = N(f) > 0 so large that

TV(f) € WE(T™N(g)) € W21 P(TN(g)) -

Since v = upn () is transversal at TN(f) to W 7P(TN (g)), There exist a small open
set Qg € U7 containing TV (f) and a C! function ® : @y — R such that ®~1(0) =
21BN (g)) € Oy for which 0 € R is a regular value and D®(TN (f))v # 0. By
Lemma 8.13, TV is C' as a map from U” into U8, Let O; C U” be an open set
containing f such that 7V (0Q1) C Qp. We want to show that 0 € R is a regular value
for ® o TV : 07 — R. Defining F; = TN (f) +tv (for |t| small), we get a C! family {F}}
of maps in U™ which is transversal to W' "7(TN(g)) at Fy = TN(f). Now, we have
the following claim.
Claim. There exists a C! family {f;} with f; € U” such that for all small ¢+ we have
TN (fy) = F.
Let us assume this claim for a moment. Setting

d

W= — ,
il
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we obtain that

D(® o TN)(f)w = D®(Fy)v #0 .
Therefore, ® o TV is a C' local submersion at f. By the implicit function theorem
(® o TN)~1(0) is a codimension one, C'' Banach submanifold of Q7 (or U"), as was to
be proved.

It remains to prove the claim. We first note that F; = hyo Fy where each hy € C"(I, 1)
is a C" diffeomorphisms of I = [~1,1]. Since TV (f) = Fp, there exist p > 0 and closed,
pairwise disjoint intervals 0 € Ag, Aq,...,Ap_1 C I with f(A;) C Ajpq for0<i<p-—1
and f(Ap—1) € A, such that

Fo=TN(f)=A; o fPoAyg,

where Ay : I — Ag is the map x — fP(0)x. Let hy : Ag — Ag be the C™ diffeomorphism
given by he = A fohy oAJTI. Consider a C" extension of h; to a diffeomorphism H; : I — I
with the property that Hy|A; is the identity for all ¢ # 0. Then let f; € U" be the map
ft = Hyo f. Note that f;/(0) = f*(0) for all 0 < ¢ < p, that f; is N-times renormalizable
(under T') and that

T(f) = AjloffoAs
= Aylo(Hiof)|a, o (Hiof)|a, y0...0(Hiof)|a,0As
= A;loﬁtoprAf
= A;loAfohto(AflofpoAf>
= htOFO
= Fta

which proves the claim. O

10. ONE-PARAMETER FAMILIES

Our main theorem (Theorem 2.5) has an important corollary (Corollary 2.6) for one-
parameter families of maps. We think of a one-parameter family of maps as a map
¥ :[0,1] x I — I (where I = [—1,1] is the phase space) such that ¢, = ¥(t, -) belongs to
U” for all t € [0,1]. If ¥ is a C* map, then we say that 1 is a C* family (of C" unimodal
maps). We often identify the family ¢ with the curve {¢:}o<t<1 of unimodal maps in
U”. We shall denote by UF* the space of all C* families with the C* topology (UF ks
a subset of C*([0,1] x I)).

We say that two families are C''t equivalent if there exist a diffeomorphism from one
into the other which sends each infinitely renormalizable map (with a fixed bounded
combinatorial type) to a map with the same combinatorics. We are now in a position
to state the result we have in mind.

Theorem 10.1. Let r > 3 4+ a with o > 0 close to 1, and let 2 < k < r. There exists
an open and dense subset O C UF* of one-parameter C* families of C™ unimodal maps
having the following properties:
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(i) Every family v € O intersects the global stable lamination L* of renor-
malization transversally.

(ii) For every i € O, there exist 0 =tg < t; < ... <ty =1 such that for
each i = 0,1,...,n — 1 the sub-arc {1y : t; <t < tip1} is P diffeo-
morphic, via a holonomy-preserving diffeomorphism, to a corresponding
sub-arc in the quadratic family. Here 8 > 0 is given by Theorem 2.5.

Note that this theorem implies Corollary 2.6. The proof will require a few lemmas.
The first Lemma says that every C* family can be approximated (in the C* sense) by
a real analytic family.

Lemma 10.2. If ¥ € UFF, then for each ¢ > 0 there exists a real analytic family
f € UF? such that |1V — flloko1x1) < €

Proof. Write each 1; € U™ as hy o q, where ¢(z) = 2% and h; is a diffeomorphism,
and consider the C*¥ map h : [0,1] x I — I given by h(t,z) = hi(x), a C* family of
C" diffeomorphisms. To approximate h by a real analytic family of diffeomorphisms,
consider the convolution of h with the heat kernel k(t,z,¢) = e~ +a*)/4e for ¢ > 0
sufficiently small (see [1]). O

Given this “denseness” result, the idea will be to show that arbitrarily close to an f
as in Lemma 10.2 we can find a C* family which is also transversal to the global stable
lamination £? of renormalization, by some kind of perturbation argument, to eliminate
possible tangencies between {f;} and L°.

We will reduce our problem to the following general result about laminations with
complex analytic leaves, whose elegant proof is due to Douady.

Lemma 10.3. Let £ C C? be a C° lamination whose leaves are complex one-manifolds,
and let F' : D — C be a holomorphic function whose graph is tangent of finite order at
(0, F(0)) to a leaf Ly € L. Then the tangency is isolated: there exists a neighborhood of
(0, F(0)) in C? on which every other intersection of the graph of F with the leaves of L
s a transversal intersection.

Proof. Using a suitable chart, we may assume that the leaf Ly is the horizontal plane
w = 0 in C?, and that the other leaves of £ in that chart are the graphs of holomorphic
functions ¢, : D — C (with ¢,(0) = p € D, where D C C is some open disk around
zero, and ¢ = 0).

Since £ is a C° lamination, ¢, converges to 0 uniformly in D as x tends to 0. Hence,
for |p| small enough, we have ¢,(D) C D. Moreover, ¢,(z) # 0 for all z € D (leaves
cannot intersect), so in fact ¢, (D) C D*.

Now, we have F(0) = F'(0) = ... = F1D(0) = 0 # F®)(0), for some k > 2.
Composing the chart with a bi-holomorphic map if necessary, we may therefore assume
that F(z) = 2",

Let us fix p € D\ {0} and suppose that zg € D is such that ¢, (20) = F(20). We
assume that |z9| < 1/2 (taking |u| small enough). To show that this intersection between
¢u and F' is transversal, it suffices to show that ¢ (z0) # F'(20). But, by Schwarz’s
Lemma, the derivative ¢/ (z0) measured with respect to the Poincaré metrics of domain

79



D and range D* must be less than or equal to 1, that is to say
2
()] (1 120%)
ulz0) Tog (Iguz0) ") ~

[CACOIPE

Thus, we have

4 _
¢ (z0)] < Sklzol* log (|20l ™) -
On the other hand,
‘F’(Zo)‘ = k‘zdkil .
This shows that ’SDL(ZO)‘ / |F'(20)| converges to 0 as p1 tends to 0, whence ¢/, (20) # F'(20)
for all sufficiently small |u|. Therefore (0, F'(0)) is an isolated tangency as claimed. [

We may now state and prove the result on laminations with real analytic leaves which
is needed for the proof of Theorem 10.1.

Lemma 10.4. Let F C [a,b] x R be a C° foliation whose leaves are the graphs of real
analytic functions ¢, : [a,b] — R with, say, ¢,(a) = p € [0,1]. Let L C F be a sub-
lamination which is transversally totally disconnected (i.e. Ko = {p € [0,1] : gr(p,) C
L} is a totally disconnected set). If F : [a,b] — R is a real analytic function, then

(i) gr(F) is tangent to F at only finitely many points;

(ii) for all e > 0 and all k > 0, there exists a real analytic G : [a,b] — R

such that |F — G||cx < € and all tangencies of gr(G) with F belong to

F\ L; in particular, gr(G) is transversal to L.

Proof. (i) Complexifying F (i.e. the leaves ¢,) as well as F, we put ourselves in the
situation of Lemma 10.3. All tangencies are therefore isolated, and since [a, b] is compact,
there are only finitely many such, say at z; € [a,b],7i=1,2,...,n.

(ii) Let d; be the order of tangency of F' with F at (z;, F'(z;)). Then for every real
analytic G sufficiently close to F' in the C* topology with k large (k > >_1  d; will do),
the number n(G) of tangencies of gr(G) with F — not counting multiplicies — is bounded
by >, d;. Hence we can find Gy : [a,b] — R real analytic with [|[F' — Go|lcr < /2
such that n(Gp) is maximal. All tangencies of Gy with F must be first-order tangencies
(d; = 1). Indeed, if, say, d; > 1, then adding a suitable polynomial with small C* norm
to Go, vanishing of very high order at zs,z3,..., 2, ,), we could unfold the tangency
at x1 to produce a new real analytic G with n(G) > n(Gp). Now we may consider
Gy : [a,b] — R given by Gi(x) = Go(z) +t for |t| < /2. Since first-order tangencies
are persistent, each tangency (z;, Go(x;)) of Gy with F generates a continuous, non-
constant path (zi(t), G¢(zi(t))) € gr(pu, ) of (first-order) tangencies of G; with F.
Each function ¢ — p;(t), i = 1,2,...,n(Gy), is continuous and non-constant. Since K
is totally disconnected, there exists ¢ (with |¢| < £/2) such that p;(t) € [0,1] \ Ky for
all 4. Therefore, all tangencies of G with F fall in F \ £, whence Gy is transversal to
L. O

Proof of Theorem 10.1. Both properties (i) and (ii) are easily seen to be open, hence we
concentrate in proving that they are dense. Let € > 0.
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Take any family ¢ € UF*. By Lemma 10.2, there exists a real analytic family
f € UF* whose C* distance from ¢ is less than £/2. The corresponding curve {f;} in
U" may fail to be transversal to the global stable lamination £*, so let us show how to
perturb it locally to get a transversal family. Let ¢ € [0, 1] be such that f;, € £° (and
{ft} is tangent to L£® at f;,). Since f;, is infinitely renormalizable and real analytic,
there exists N > 0 such that RV (f;,) € A, (where a > 0 is the constant in Theorem
2.4). Let J C [0,1] be an interval containing to such that R™(f;) is well-defined and
belongs to Ag, for all ¢ € J. We restrict our attention to the sub-family {f;}ics from
now on.

First we embed {f;}ics in a two-parameter family in the following way. Note that
each f; belongs to Aq_, for some (fixed) @ > 0. As a map from (an open subset of) Aq_
into Aq,, RY is a real analytic operator.

Claim. There exist analytic vectors v € Aq, and w € Ag, such that DRV (f;,)v = w
and w is transversal to £ = £5 N Aq, at RN (f,) € LS.

To see this, take any wy € Aq, transversal to the (co-dimension one) lamination £3 at
R (f4,). The same construction used in the proof of Theorem 9.1 yields a C* vector v
at fi, such that DRY(fy,)vo = wo. Now approximate vg by an analytic vector v € Aq,
(in the C™ sense for m > 7). Then w = DRN(fo)v will still be transversal to L.
Shrinking .J if necessary, we may in fact assume that DR (f;)v is transversal to £2 for
all t € J. Hence, let us consider the two-parameter family of maps f;s € Aq, given by
ft.s = ft +sv with t € J and |s| < § with § small. We have

W={fis: teJ, sc[-60]}=Jx[-§ CR?,

and RN|W : W — Aq, is an injective, real analytic map. Recall now that in A, we have
a CY foliation F with real analytic leaves (coming from hybrid classes, cf. §3) and that
L3 C F is the sub-lamination corresponding to the stable leaves of renormalization,
which is transversally totally disconnected. Taking Fyr = R™N(F) C W and L§, =
R™N(L£:) € W and noting that DRN(f, s)v = w is transversal to L for all t € J,
s € [0, 6] (making § smaller if necessary) we deduce that Fy is a C? foliation (in W)
by real analytic curves, and Lj, C Fi is a sub-lamination. Therefore we can apply
Lemma 10.4 to this situation (with 7 = Fw and £ = Lj},), obtaining a new analytic
curve {g: }res with || fi — gellox < /2, transversal to L5}, in W, and such that {RY (g;)}
is transversal to £ at R™(gs,). Since by Theorem 2.5 (ii) the holonomy of £3 is C1*+#
for some § > 0 (and the quadratic family is transversal to L) we deduce that {g:}
satisfies properties (a) and (b) of the statement. This completes the proof. O

11. A SHORT LIST OF SYMBOLS

For the reader’s convenience, we present below a short list of symbols used in this
paper.
p: Period of renormalization.
Ar: Scaling factor Ay = fP(0).
Ag: Linear scaling Ay : o — fP(0) - .
R: Renormalization operator RY f = A}Tl o fPoly.
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10.

11.

12.

13.

14.

15.

16.
17.

K: Bounded type limit set of R.

pr: Number of renormalization intervals at level k.

A; ;(f): Renormalization intervals at level k& (0 << pj —1).

Zy: Post-critical set of f.

Ay: Real Banach space of continuous maps ¢ : V — C, holomorphic inside V/
symmetric about real axis.

T = RY : 0 — Ag,: Real analytic operator for which K C Q is a hyperbolic basic
set (a and N are fixed).

ug(t): Parametrization of the local unstable manifold W (g).

u,: Unit vector tangent to W(g) at g.

d4: Unique real number such that DT(g)u, = dgupy).

5§n): The product 6,07y - .. Opn-1(g)-

Ly = DT(f): Derivative of T" at f.

U": Unimodal maps, C", with quadratic critical point at 0.
A": Tangent space to unimodal maps contained in U".
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