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Abstract

For diffeomorphisms on surfaces with basic sets, we show

the following type of rigidity result: if a topological conjugacy

between them is differentiable at a point in the basic set then

the conjugacy has a smooth extension to the surface. These

results generalize the similar ones of D. Sullivan, E. de Faria,

and ours for one-dimensional expanding dynamics.
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1 Introduction

D. Sullivan in [13] states the following rigidity theorem for a topological

conjugacy between two expanding circle maps: if the conjugacy is differ-

entiable at a point then the conjugacy is smooth everywhere. In Theorem

1, we prove the corresponding result for diffeomorphisms with basic sets

contained in a surface.
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E. de Faria in [2] proves a stronger version of the above result of D. Sul-

livan, showing that it is sufficient the conjugacy to be uniformly asymp-

totically affine (uaa) at a point to imply that the conjugacy is smooth

everywhere. In [3], it is presented a generalization of this result to a larger

class of one-dimensional expanding maps. In Theorem 2, we extend these

results to diffeomorphisms f and g defined on surfaces which are topolog-

ically conjugated (h : Λf → Λg) on their basic sets Λf and Λg, proving, in

particular, that (i) if h is asymptotically affine (aa) at a point in Λf with

periodic orbit, or (ii) if h is (aa) at a point in Λf with dense orbit in Λf ,

or (iii) if h is (uaa) at a point in Λf , then h has a C1+Hölder extension to

the surface (see the definition of (aa) and (uaa) maps in §1.2).

An interesting feature of the theorems proved in this paper is that they

show an unexpected rigidity property for the conjugacy between diffeo-

morphisms with basic sets contained in a surface, since, in general, the

conjugacies between these systems are just Hölder continuous but under

the weak assumption of the conjugacy being differentiable at a point, for

instance, we show that the conjugacy is smooth everywhere. From a prac-

tical point of view these results are also useful. We note that it is easier to

check that a map is C1 at a point than everywhere.

1.1 Smoothness from a point to everywhere

Throughout the paper f is a C1+Hölder diffeomorphism on a surface S and

Λ is a basic set, i.e. a compact, topologically transitive, hyperbolic and

f -invariant set with a local product structure (see [11]). By C1+Hölder we

mean C1+α for some 0 < α ≤ 1. By the Stable Manifold Theorem (see

[6]), the local stable leaves `s(x) and the local ustable leaves `u(x) passing

through x ∈ Λ are C1+Hölder embedded 1-dimensional submanifolds of S.

We define the stable leaf segments `sΛ(x) by `
s(x)∩Λ and the unstable leaf

segments `uΛ(x) by `
u(x) ∩ Λ. Given any three distinct points x, y, z either
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in a stable leaf or in an unstable leaf, the order along the leaf tell us which

one of these three points is between the other two. We use this order along

the stable leaves `s(x) and along the unstable leaves `u(x) to determine

the order along the stable leaf segments `sΛ(x) and along the unstable leaf

segments `uΛ(x), respectively.

Definition 1 The C1+Hölder diffeomorphisms f and g are topologically

conjugate on their basic sets Λf and Λg if there is a homeomorphism h :

Λf → Λg such that h ◦ f(x) = g ◦ h(x), and h preserves the order along

the stable leaf segments `sΛf
(x) and along the unstable leaf segments `uΛf

(x)

for all x ∈ Λf . If h has a C
1+Hölder diffeomorphic extension to an open set

containing Λf then we say that f and g are C
1+Hölder conjugate on their

basic sets Λf and Λg.

Theorem 1 Let f and g be C1+Hölder diffeomorphisms on surfaces which

are topologically conjugate on their basic sets Λf and Λg. If the conjugacy

is differentiable at a point x ∈ Λf , then f and g are C
1+Hölder conjugate

on their basic sets Λf and Λg.

In Section 2, we give the proof of Theorem 1 which has essentially

two parts. In the first part, we transform the problem into two problems

of one-dimensional expanding dynamics corresponding to the stable and

unstable directions associated to the maps f and g. We do this by con-

structing C1+Hölder Markov maps Mf,s, Mf,u, Mg,s and Mg,u (with respect

to atlases Af,s, Af,u, Ag,s and Ag,u), which retain the information of the

smooth structures along the stable and unstable leaves associated to the

diffeomorphisms f and g. Then, we use Theorem 1 in [3] which tell us that

there is a C1+Hölder conjugacy ψs between Mf,s and Mg,s and a C1+Hölder

conjugacy ψu between Mf,u and Mg,u. In the second part, we use these

C1+Hölder conjugacies ψs and ψu between the one-dimensional expanding

dynamics together with orthogonal charts to prove that the conjugacy be-
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tween the diffeomorphisms f and g has a C1+Hölder extension to an open

set of the surface.

1.2 (aa) and (uaa) regularities

Here, we present and give some motivation for the definitions of asymp-

totically affine (aa) and uniformly asymptotically affine (uaa) (or, equiva-

lently, symmetric) functions, that we will use to generalize Theorem 1 (as

presented in Theorem 2).

(Uaa) functions are relevant in several distinct mathematical contexts

as we point out next by reminding some fundamental results about them.

We start noting that by the Beurling-Ahlfors extension theorem every qua-

sisymmetric homeomorphism of R̂ has an extension to a quasiconformal

homeomorphism of the upper half plane (we say that a homeomorphism

h is quasisymmetric if the modulus of continuity χc of h in Definition 2 is

just a bounded function). In [5], it is proved that (uaa) (or, equivalently,

symmetric) homeomorphisms are the boundary values of quasiconformal

homeomorphisms of the upper half plane whose conformal distortion tends

to zero at the boundary. (Uaa) homeomorphisms turn out to be precisely

those homeomorphisms which have boundary dilatation equal to one, in

the sense of Strebel, [12]. In [5], it is also noted that the (uaa) homeomor-

phisms of a circle comprise the closure, in the quasisymmetric topology,

of the real analytic homeomorphisms and this closure contains the set of

C1 diffeomorphisms. Another application of (uaa) functions appear in the

following extension of the classic Arnold-Herman-Yoccoz rigidity theorem

for diffeomorphisms of the circle: a C1+zigmund diffeomorphism of the circle

with golden rotation number is (uaa) conjugate to the rigid golden rotation

(see [4]). Finally, we observe that in [14], it is shown an one-to-one corre-

spondence between (uaa) conjugacy classes of expanding circle maps and

complex structures on a solenoidal surface, and moreover that the (uaa)
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conjugacy classes of (uaa) expanding circle maps form a natural completion

of the C1+Hölder conjugacy classes of C1+Hölder expanding circle maps.

As we pass to explain, the definition of an (uaa) function f is a geomet-

ric notion consisting in a bound of the ratio distortion for triples of points

called the modulus of continuity χ(t) of f . This bound is slightly weaker

than the one satisfied by smooth functions. We recall that if f is C1+α

then the modulus of continuity χ(t) satisfies the inequality χ(t) < O(|t|α),

where 0 < α < 1. The (uaa) regularity is characterized by only demanding

that χ(t) converges to zero when t tends to zero. Hence, the (uaa) reg-

ularity arise as a natural limit on the degree 1 + α of smoothness of the

functions when α tends to 0, instead of the usual C1 smoothness.

Definition 2 The local homeomorphism φ : I ⊂ R → R is uniformly

asymptotically affine (uaa) at a point x ∈ I if, for all c ≥ 1, there is a

continuous function χc : R
+
0 → R+

0 satisfying χc(0) = 0 such that for all

points y1, y2, y3 ∈ I with c
−1 ≤ (y3 − y2)/(y2 − y1) ≤ c, we have

∣

∣

∣

∣

∣

log
φ(y2)− φ(y1)

φ(y3)− φ(y2)

y3 − y2
y2 − y1

∣

∣

∣

∣

∣

< χc(max{|y3 − x|, |y1 − x|}). (1)

We call χc the modulus of continuity of φ. The left hand-side of (1) is

called the ratio distortion of φ at the points y1, y2 and y3.

The local homeomorphism φ : I → R is (uaa) if φ is (uaa) at every

point x ∈ I with modulus of continuity χc not depending upon the point

x.

We say that φ : I → R is asymptotically affine (aa) at a point x ∈ I if

φ satisfies inequality (1) in the case where y2 = x.

The classical definition of an (uaa) (or, equivalently, symmetric) func-

tion φ is given by taking c = 1. Here, we consider in the definition all c ≥ 1

because I does not have to be an interval. For instance I can be a Cantor

set. However, we note that these two conditions are equivalent if I is an

interval (see Remark 1 in [3]).
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Definition 3 The homeomorphism h : Λf → Λg is (aa) (resp. (uaa)) at a

point x ∈ Λf if h|`
s
Λf
(x) and h|`uΛf

(x) are (aa) (resp. (uaa)) at the point

x. The homeomorphism h : Λf → Λg is (aa) in a set X ⊂ Λf if, for every

x ∈ X, h|`sΛf
(x) and h|`uΛf

(x) are (aa) at x, and the modulus of continuity

does not depend upon the point x ∈ X.

A generating set G is a subset of Λf with the property that

Λf = cl ({fn(a) : a ∈ G and n ≥ 0}) .

A sub-orbit is a subset {fni(p) : i ∈ Z} of Λf , where p ∈ Λf and (ni)i∈Z is

an increasing sequence of integers.

Theorem 2 Let f and g be C1+Hölder diffeomorphisms on surfaces with

basic sets Λf and Λg, and topologically conjugate by a homeomorphism

h : Λf → Λg. (i) If h is (aa) in a sub-orbit then f and g are C
1+Hölder

conjugate on their basic sets Λf and Λg; (ii) If h is (aa) in a generating set

then f and g are C1+Hölder conjugate on their basic sets Λf and Λg; (iii) If

h is (uaa) at a point in Λf then f and g are C
1+Hölder conjugate on their

basic sets Λf and Λg.

We would like to point out that the previous conditions used in the

previous theorem correspond to very natural and simple dynamical objects.

An example of a generating set G is a point with dense orbit; and an

example of a sub-orbit is a point with periodic orbit.

The proof of Theorem 2 follows in the same way as the proof of Theorem

1.

2 Properties of basic sets

The proof of Theorem 1 involves several properties of basic sets that we

will recall in this section.
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2.1 Rectangles

Let ρ be a C1+Hölder Riemannian metric on S and d the distance on S

determined by ρ. Since Λf has a local product structure, there exist con-

stants ξ, ξ′ > 0 such that, for every x, y ∈ Λf with d(x, y) < ξ′, the bracket

[x, y]ξ,ξ′ = `s(x, ξ) ∩ `u(y, ξ) is a single point contained in Λf , where

`s(x, ε) = {y ∈ S : d(fn(x), fn(y)) < ε, for all n ≥ 0}

and

`u(x, ε) = {y ∈ S : d(f−n(x), f−n(y)) < ε, for all n ≥ 0}.

A rectangle R = Rf is a subset of Λf which is closed under the bracket,

i.e for every x, y ∈ R, the bracket [x, y]ξ,ξ′ is contained in R. A rectangle

R is proper if R is the closure of its interior in Λf . A stable spanning

leaf segment `sR(x) contained in a proper rectangle R is the union of a

stable leaf segment `sΛf
(x) with its endpoints and satisfying the property

that [x, y]ξ,ξ′ ∈ `sR(x) for every y ∈ R. Similarly, we define the unstable

spanning leaf segment `uR(x), replacing `sΛf
(x) by `uΛf

(x). Let ∂`τR(x) be

the set consisting of the endpoints of `τR(x), and let `τR(x) \ ∂`
τ
R(x) be

denoted by int `τR(x) for τ ∈ {s, u}. By the local product structure of

Λf , for every proper rectangle R and for every x ∈ R, the interior of R is

intR = {[y, z]ξ,ξ′ : y ∈ `
u
R(x) and z ∈ `

s
R(x)}, and the boundary of R is

∂R = {[y, z]ξ,ξ′ : (y ∈ ∂`
u
R(x) and z ∈ `

s
R(x)) or (y ∈ `uR(x) and z ∈ ∂`

s
R(x))}.

Note that the definitions of intR and ∂R do not depend upon x ∈ R. A

τ -side of R is a τ -spanning leaf segment `τR(x) contained in the boundary

of R for τ ∈ {s, u}. A corner of R is an endpoint of a side of R.

2.2 Basic holonomies

Let τ be equal to s or u, and τ ′ be the opposite of τ . Given a proper

rectangle R and two points x, y ∈ R, we denote by Θ : `τR(x)→ `τR(y) the
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basic holonomy given by Θ(z) = `τ
′

R (z) ∩ `
τ
R(y) for every z ∈ `

τ
R(x). From

Theorem 2.1 in [7], we get the following result.

Lemma 1 Each basic holonomy Θ : `τR(x) → `τR(y) is a C
1+Hölder diffeo-

morphism, i.e Θ has a C1+Hölder extension Θ̃ : `τ (x)→ `τ (y) to the leaves

`τ (x) and `τ (y) such that `τR(x) ⊂ `τ (x) ∩ Λf and `
τ
R(y) ⊂ `τ (y) ∩ Λf .

2.3 Markov partition

By Theorem 3.12 in page 79 of [1], the basic set Λf has a Markov partition

given by a collection M = {R1, . . . , Rm} of proper rectangles with the

following properties: (i) intRi

⋂

intRj = ∅, if i 6= j; (ii) Λf =
⋃m
i=1Ri; (iii)

if x ∈ Ri and f(x) ∈ Rj, then

(a) f
(

`sRi
(x)

)

⊂ `sRj
(f(x)) and f−1

(

`uRj
(f(x))

)

⊂ `uRi
(x);

(b) f
(

`uRi
(x)

)

⋂

Rj = `uRj
(f(x)) and f−1

(

`sRj
(f(x))

)

⋂

Ri = `sRi
(x).

The last condition means that f(Ri) goes across Rj just once. The proper

rectangles Ri ∈M are called Markov rectangles.

3 From two to one-dimensional dynamics

We will use the properties of the basic sets presented in the previous section

to pass from two-dimensional dynamics to one-dimensional expanding dy-

namics. We do it by constructing C1+Hölder Markov maps on train tracks.

3.1 Train tracks

Let T τ = T τf be the set of all τ ′-leaf spanning segments `τ
′

R (x) for all R ∈M

and for all x ∈ R, where we identify two of these τ ′-leaf spanning segments

`τ
′

R (x) and `τ
′

R (y) if int`τ
′

R (x) ∩ int`τ
′

R (y) 6= ∅. The set T τ is a train track.

Let πf,τ : Λf → T τ be the projection which associates to a point x ∈ Λf
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Figure 1: The chart φ on T s

the spanning leaf segment (or segments) ` ∈ T τ which contains x. We note

that, for every x ∈ intR, the projection πf,τ (x) is a single point in T τ . For

a point x contained in a τ -side of a Markov rectangle the projection πf,τ (x)

can consist in more than one point.

3.2 Atlas on train tracks

We say that I ⊂ T τ is a segment of T τ associated to a leaf segment `τI (not

intersecting the τ -boundary of a Markov rectangle) if and only if (i) for

every x ∈ `τI there exists a leaf `τ
′

∈ I such that `τ
′

∩ `τI 6= ∅ and (ii) for

every `τ
′

∈ I, `τ
′

∩ `τI 6= ∅. A chart φ : I → R on a segment I is defined by

φ(`τ
′

) = i
(

`τ
′

∩ `τI
)

, where i : `τI → R is a homeomorphism onto its image

which preserves the local order of the points in `τI . The map φ : I → R

defined by φ(`τ
′

) = i
(

`τ
′

∩ `τI
)

is a chart on T τ (see Figure 1).

We say that the charts φ : I → R and ψ : J → R on T τ are C1+α

compatible if the overlap map ψ ◦ φ−1 : φ(I ∩ J) → ψ(I ∩ J) has a C1+α

diffeomorphic extension to R, where α > 0. A C1+Hölder atlas Aτ on T τ

consists on a finite set of charts on T τ which cover all small segments of

T τ and any two of them are C1+α compatible with C1+α bounded norm,

for some α > 0.

Let I ⊂ T τ be a segment of T τ associated to a leaf segment `τI . Let
˜̀τ
I
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be a leaf containing `τI and c : (−1, 1) → ˜̀τ
I a C1+α diffeomorphism given

by the Stable Manifold Theorem applied to f . We say that Aτ
f is an atlas

on T τ determined by f if Aτ
f is a set consisting of charts φf : I → R given

by φf (`
τ ′) = c−1

(

`τ
′

∩ `τI
)

.

3.3 Markov maps

The C1+Hölder diffeomorphism f determines Markov maps Mf,s : T
s → T s

and Mf,u : T u → T u such that the following diagrams commute:

Λf
f−1

−→ Λf




y

πf,s





y

πf,s

T s
Mf,s
−→ T s

and

Λf
f
−→ Λf





y

πf,u





y

πf,u

T u
Mf,u
−→ T u

The Markov partition {R1, . . . , Rm} of f determines the Markov partition

{Iτ1 , . . . , I
τ
m} of Mf,τ , where I

τ
i =

⋃

x∈Ri
`τ
′

Ri
(x) for every i = 1, . . . ,m.

A Markov map Mf,τ is C1+Hölder with respect to an atlas Aτ
f if (i) for

every charts φ : I → R and ψ : J → R in Aτ
f such that the composition

ψ◦Mf,τ ◦φ
−1 : φ(I)→ ψ(J) is a homeomorphism and has a C1+α extension

Mφ,ψ to R with uniformly bounded C1+α norm; and (ii) there exist c, λ > 0

such that for all possible compositions Mφn,φn−1
◦ . . . ◦Mφ1,φ0

we have

‖Mφn,φn−1
◦ . . . ◦Mφ1,φ0

‖C1 > cλn. (2)

Lemma 2 If f is a C1+Hölder diffeomorphism of a compact surface with

a basic set then the atlas Aτ
f determined by f is C

1+Hölder and Mf,τ is a

C1+Hölder Markov map with respect to the atlas Aτ
f , for τ ∈ {s, u}.

Proof: Let us prove Lemma 2 in two parts. In the first part we prove that

the overlap maps for charts in Aτ
f are C1+Hölder and so Aτf is a C1+Hölder

atlas. In the second part we prove that the Markov map Mf,τ is C1+Hölder

with respect to Aτ
f .

Let I and J be segments associated to leaf segments `τI and `τJ , and

φ : I → R and ψ : J → R be charts in Aτ
f such that φ(`τ

′

) = c−1I
(

`τ
′

∩ `τI
)
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and ψ(`τ
′

) = c−1J
(

`τ
′

∩ `τJ
)

, where cI and cJ are C1+Hölder curves given by

the Stable Manifold Theorem (see [6]).

Part I: Let us suppose that I∩J 6= ∅. The segment I∩J has leaf segments

`τI,J ⊂ `τI and `τJ,I ⊂ `τJ associated to it, and ψ ◦ φ−1 = c−1J ◦ θ ◦ cI where

θ : `τI∩J → `τJ∩I is a holonomy. By Lemma 1, θ is C1+Hölder and so c−1J ◦θ◦cI

has a C1+Hölder diffeomorphic extension to R. Hence, the atlas Aτ
f is

C1+Hölder.

Part II: Let us suppose that ψ ◦ Mf,τ ◦ φ
−1 : φ(I) → ψ ◦ Mf,τ (I) is a

homeomorphism. Let `τM,I = Mf,τ (`
τ
I ) and θ : `τM,I → `τJ be a holonomy.

First, we note that ψ ◦ Mf,τ ◦ φ
−1 = c−1J ◦ θ ◦ f ◦ cI and by Lemma 1

c−1J ◦ θ ◦ f ◦ cI has a C1+Hölder diffeomorphic extension to R. Since Λf is

hyperbolic, we obtain that the Markov map Mf,τ also satisfies inequality

(2).

3.4 C1+Hölder conjugacies between Markov maps

Let h : Λf → Λg be the conjugacy between f and g on their basic sets.

Given a Markov partition Mf = {R1, . . . , Rm} of f , we consider the

Markov partition of g given by Mg = {h(R1), . . . , h(Rm)}. The conju-

gacy h : Λf → Λg determines the conjugacy ψs : T sf → T sg between the

Markov mapsMf,s andMg,s, and the conjugacy ψu : T uf → T ug between the

Markov maps Mf,u and Mg,u such that the following diagrams commute:

Λf
h
−→ Λg





y

πf,s





y

πf,s

T sf
ψs−→ T sg

and

Λf
h
−→ Λg





y

πf,u





y

πf,u

T uf
ψu−→ T ug

Lemma 3 Let f and g be C1+Hölder diffeomorphisms on surfaces which

are topologically conjugate on their basic sets. If the conjugacy between f

and g satisfies the hypotheses of Theorem 1 or of Theorem 2 then Mf,τ and

Mg,τ are C
1+Hölder conjugate for τ ∈ {s, u}.
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Proof: Similarly to Lemma 2 (using that the basic holonomies are C1+Hölder),

if the conjugacy h is C1 at a point p then ψτ is C1 at the point πf,τ (p) for

τ ∈ {s, u}. Hence, by Theorem 1 in [3], we obtain that ψτ has a C1+Hölder

extension.

4 From one to two dimensional dynamics

Here, we do the last step of the proof of Theorem 1 which consists in using

the C1+Hölder conjugacies between Markov maps, as proved in Lemma 3, to

prove the existence of a C1+Hölder diffeomorphic extension of the conjugacy

between C1+Hölder diffeomorphisms on surfaces as claimed in theorem 1 and

2.

4.1 Proof of theorems 1 and 2

For every x ∈ Λf , let R
f be a rectangle containing x in its interior. Let

`sf (x) and `
u
f (x) be stable and unstable leaves with the property that `sf (x)∩

Λf = `sRf (x) and `uf (x) ∩ Λf = `uRf (x). By the Stable Manifold Theorem,

there are C1+Hölder curves cf,s : (−1, 1) → `sf (x) and cf,u : (−1, 1) →

`uf (x) with c−1f,s(x) = c−1f,u(x) = 0. Let us denote by if : intRf → R2

the orthogonal map given by if (z) =
(

c−1f,s([x, z]), c
−1
f,u([z, x])

)

, for every

z ∈ intRf . Similarly, for Rg = h(Rf ) we define as above C1+Hölder curves

cg,s : (−1, 1) → `sg(h(x)) and cg,u : (−1, 1) → `ug (h(x)) and the orthogonal

map ig : intR
g → R2. Since the Markov maps Mf,τ and Mg,τ are C

1+Hölder

conjugate then c−1g,s ◦ h ◦ cf,s and c
−1
g,u ◦ h ◦ cf,u have C1+Hölder diffeomorphic

extensions ĥs : R → R and ĥu : R → R. Hence, the map ig ◦ h ◦ i
−1
f

has a C1+Hölder diffeomorphic extension H : R2 → R2 given by H(z, w) =
(

ĥs(z), ĥu(w)
)

.

Since Sf and Sg are C
1+Hölder manifolds, there are C1+Hölder atlas Sf on

Sf and Sg on Sg consisting of charts with C1+Hölder overlap maps. Using
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Proposition 5.4 in [8], the orthogonal map if extends to a chart îf on an

open set Ûf ⊂ Sf containing x and which is contained in the smooth atlas

Sf . Similarly, the orthogonal map ig extends to a chart îg on an open set

Ûg ⊂ Sg containing h(x) and which is contained in the smooth atlas Sg.

We choose an open set Uf ⊂ Ûf of Sf containing x and small enough

such that Uf ∩ R
f = Uf ∩ Λf and H(Uf ) ⊂ Ûg. Hence, for every x ∈ Λf

the map h|(Uf ∩ Λf ) has a C1+Hölder diffeomorphic extension to Uf given

by î−1g ◦H ◦ îf . Therefore, using partitions of the unity (see Lemma 5.6 in

[8]) the map h : Λf → Λg has a C1+Hölder diffeomorphic extension to an

open set Uf of Sf containing Λf .
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