RATIONAL MAPS WITH DECAY OF GEOMETRY: RIGIDITY,
THURSTON’S ALGORITHM AND LOCAL CONNECTIVITY.
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ABSTRACT. We study dynamics of rational maps that satisfy a decay of geometry
condition. Well known conditions of non-uniform hyperbolicity, like summability
condition with exponent one, imply this condition. We prove that Julia sets have
zero Lebesgue measure, when not equal to the whole sphere, and in the polynomial
case every connected component of the Julia set is locally connected.

We show how rigidity properties of quasi-conformal maps that are conformal in
a big dynamically defined part of the sphere, apply to dynamics. For example we
give a partial answer to a problem posed by Milnor about Thurston’s algorithm and
we give a proof that the Mandelbrot set, and its higher degree analogues, are locally
connected at parameters that satisfy the decay of geometry condition. Moreover we
prove a theorem about similarities between the Mandelbrot set and Julia sets.

In an appendix we prove a rigidity property that extends a key situation encoun-
tered by Yoccoz in his proof of local connectivity of the Mandelbrot set at at most
finitely renormalizable parameters.
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a mon Pére bien aimé

INTRODUCTION.

We study dynamics of complex rational maps R € C(z), especially in the Julia set
J(R) C C of R, which is the closure of the repelling cycles of R. The set Crit of critical
points of R plays a special role; we denote by CV = R(Crit) the set of critical values of
R. We also denote by Bs(z) C C the ball of radius § centered at z € C.

For our purposes is more natural to measure distances to critical values, rather than to
critical points. So for given ¢ € CritN J(R) and 6 > 0 we denote by Bs(c) the connected
component of R™1(Bs(R(c))) that contains c.

We study dynamics of rational maps R € C(z) that satisfy the following condition.

Decay of Geometry Condition. There is a function ro such that ro(0) — 0o asd — 0
and sqch that for any ¢ € Crit N J(R), any n > 0 and any connected component W of
R™™(Bsry(5)(c)) such that dist(W,CV) < §, we have diam(W) < 6.

We denote by S the class of rational maps that satisfy this condition. This condition
is vacuous for rational maps without critical points in the Julia set. The results that we
present here are either well known or vacuous for these rational maps.

Well known conditions of non-uniform hyperbolicity, like summability condition with
exponent one, imply the Decay of Geometry condition. A rational map R € C(z) is said
to satisfy the summability condition with exponent 5 > 0 if

DO IEY )77 < oo,

n>0

for every critical value v € J(R) not in the backward orbit of a critical point; see also
[NS], [Pr2], [GS2] and [PU2]. Derivatives are taken with respect to the spherical metric.

A rational map is said to satisfy the stronger Collet-Eckmann condition if [(R™)'(v)]
is exponentially big in n > 0 for every such critical value v; see also [CE], [Pr2], [Pr3],
[GS1], [PRS] and references therein.

The following table indicates how 7 (d) growths as § — 0, when one of these conditions
is satisfied.

e Summability condition exp. 1 ro(0) — 0o as § — 0.

e Summability condition exp. (3 € (0,1) f060 (ro(0)) ™% < 00, a= %

e Collet-Eckmann ro(d) > CO~*  for some « € (0,1].
e Non-Recurrent Equivalent to ro(8) ~ 51,

Where Non-Recurrent stands for the condition that no critical point in the Julia set
accumulates on a critical point under forward iteration.

We remark that the summability and Collet-Eckmann conditions allow the existence
of parabolic cycles; compare with [PU2] and [GS2]. Tt is interesting to remark that there
are rational maps in § that do not satisfy any summability condition.

Local connectivity and measure of Julia sets.
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Our first result is that every connected component of a Julia set of a polynomial in &
is locally connected. In fact we prove a stronger fact about combinatorial descriptions of
dynamics done by Thurston for quadratic polynomials; see [T] and also [D]. We consider
the work of Kiwi [Ki] that is valid in any degree.

To each polynomial P € C[z] without irrationally indifferent cycles we can associate
a ramified covering P!P of C and a semi-conjugacy m : C — C from P to P%P.
The dynamics of PP (in particular in J*P(P) = n(J(P))) can be described in purely
combinatorial terms.

Thus if 7 is an homeomorphism, the dynamics of P corresponds to the well understood
dynamics of P!*P. We remark that polynomials in S do not have irrationally indifferent
cycles so these considerations apply to them (Corollary 7.2).

Theorem A. Let P € C[z] be a polynomial in S. Then the following equivalent properties
hold.

(1) The projection w : C — C is a homeomorphism.

(2) (No wandering continua) For every non-trivial connected set & C J(P) there are
1 >0 and k > 0 such that P*(&) N PEHL(€) # 0.

(3) Every non-trivial connected subset of J(P) contains a pre-periodic point.

Moreover these properties imply that every connected component of J(P) is locally con-
nected.

The equivalence of properties 1 —3 and that these imply the final statement, is proved
in [Ki]. The following corollary follows immediately from the last assertion of Theorem

A.
Corollary. The Julia set of a polynomial in S is locally connected when it is connected.
Our next result is about measure of Julia sets; see also [GS2], [Pr3] and [Lyu2].

Theorem B. Let R € C(z) be a rational map in S such that J(R) # C. Then J(R) has
zero Lebesgue measure.

Rigidity and Thurston’s algorithm.

With the area estimates needed for the proof of Theorem B we prove a rigidity prop-
erty, which is our main technical result (Section 5.1). We refer to it as Rigidity. We also
include a related rigidity property on an appendix, that is stated in an abstract setting.
This generalizes a key situation encountered by Yoccoz in his unpublished proof of the
local connectivity of the Mandelbrot set at non-infinitely renormalizable parameters.

Now we describe applications of rigidity. The first application is about the convergence
of Thurston’s algorithm that we proceed to describe; see [DH3], [HS] and [Pil].

Consider a topological ramified covering R of the sphere $2. That is R : $2 — 52 is
locally of the form &£(2™), where £ is an homeomorphism and n > 1. There is at most a
finite number of points for which n > 1; such points are called ramification points of R.

Define inductively coordinates hj; : S? — S2, for k > 0, as follows. Let hg be
equal to the identity and given the coordinate hy_j1, for some k > 0, let hy be such
that Q, = hy_10 R o h;l is a rational map; see Figure 1 (we identify S? with C)
If R is quasiregular such coordinate is uniquely determined up to normalization. The
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FIGURE 1. For k > 0 the coordinate hj is chosen so that Qp = hyp_1 o
Ro h,;l is a rational map.

ramified covering R is said to be quasiregular if the homeomorphisms ¢ as above are
quasi-conformal. (A normalization is to fix three preferred points of S2.)

In this way we obtain a sequence of rational maps @ related to R. Note that, if
the rational maps @ converge uniformly to a rational map @ and the coordinate hy
converge uniformly to a continuous map h : ¢ — @, then Roh = Qo h. That is R is
semi-conjugated to @ by h.

Thurston considered quasiregular maps R for which the set
P(R) = {R"(r) | for n > 1 and r ramification point of R},

is finite. He determined (except for some specific cases) when the rational maps Qp
converge uniformly to a rational map. In this case hg| p(R) converges to an injective
map. Milnor posed the following problem.

Problem (Milnor [Mill]). Under what conditions will the sequence of rational maps
Q1 converge uniformly to a limiting map Q? Under what conditions, and on what subset
of C, will the maps hy, converge uniformly to a limit h?.

The next theorem gives a partial answer to this problem and will allows us to make a
wide variety of small perturbations of a given rational map R € S, with J(R) # C.

Theorem C. Let R € C(z) be a rational map in S such that J(R) # C. Then for § > 0
small the following assertions hold.

Non-Recurrent Quasiregular Perturbation: There is a quasireqular map R of
C, of the same degree as R, such that the following properties hold.
e R coincides with R outside Bg(Crlt NJ(R)).
e For every ramified point v € Bs(Crit N J(R)) of R, we have RF(r) ¢
Bos(Crit N J(R)) for k> 1.

Convergence of Thurston’s Algorithm: Fiz R given by the first part and con-
sider Qi and hy as above, for an appropriated normalization of the coordinates
hi. Then there is a rational map @ € C(z) and a continuous map h : ¢ —¢C
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such that Qr — @ and hy, — h uniformly; in particular @ has the same degree
as R. Moreover Q) is close to R and h is close to the identity as 6 is close to 0.

We remark that the limit h of the coordinates hy is not injective in general (Remark
6.1).

The proof of Thurston’s theorem (mentioned above) requires subtle considerations in
an appropriated Teichmuller space and it uses in an essential way the finiteness of the
set P(R) of post ramification points. In our situation the proof of the convergence of
Thurston’s algorithm only requires basic facts about quasi-conformal homeomorphisms.

Polynomials with only one critical point.

The rest of this work is dedicated to the families of unicritical polynomials. That is,
given d > 2, we restrict our attention to the family of monic polynomials P,(z) = z¢ +¢,
for ¢ € C, whose unique finite critical point is 0.

Our first result is about the variation of the dynamics of P, for ¢ near a parameter cg,
such that P., € S. One of the simplest dynamical properties of a polynomial P. is the
recurrence of the critical point 0. A point w € C is said to be recurrent under P, if the
forward orbit of w under P, accumulates on w. The following theorem shows a strong
instability in the dynamics at a polynomial P,, € S with recurrent critical point. The
non-recurrent case is simpler to study; see for example [R-L1].

Theorem D (Instability in the Parameter). Consider a polynomial P., € S with
recurrent critical point. Then every mon-trivial connected set of parameters containing
co, also contains ¢ such that the critical point of P. is not recurrent.

This theorem is the parameter analogue of part 3 of Theorem A.

A polynomial P, is said to be hyperbolic if P, has a finite attracting cycle or if
P72 (0) — 0o as n — oco. The dynamics of hyperbolic polynomials is well understood.

The Hyperbolicity Conjecture for the family P.(z) = 2%+ ¢, for ¢ € C, asserts that the
set of parameters ¢ € C such that P, is hyperbolic is dense in C. It is well known that if
the critical point of P, is not recurrent, then ¢y is approximated by parameters ¢ such
that P, is hyperbolic. Thus the Hyperbolicity Conjecture is equivalent to the following
statement.

Re-statement of Hyperbolicity Conjecture. Let cq € C be such that the critical
point of P, is recurrent. Then cq is approzimated by parameters ¢ € C such that the
critical point of P, is not recurrent.

In particular Theorem D implies that a parameter ¢o such that P., € S has recurrent
critical point is accumulated by parameters ¢ € C such that P, is hyperbolic. (This also
follows from Theorem B and [MSS].)

Douady and Hubbard made a remarkable conjecture that implies the density of hy-
perbolicity in the quadratic family (that is when d = 2); see [DH1]. Consider the con-
nectedness locus

My ={ceC| J.is connected}.
For d = 2 it is just denoted by M and it is also called the Mandelbrot set. Douady and
Hubbard showed that M, is compact and connected.

Conjecture (MLC). The Mandelbrot set is locally connected.
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As was mentioned, a positive answer to this conjecture implies density of hyperbolicity
in the quadratic family. The situation is analogous in any degree. So, if M is locally
connected, then hyperbolicity is dense in the family P.(z) = z¢ + ¢, for ¢ € C.

It follows easily from [Sch] that MLC is equivalent to the following statement.

Re-statement of MLC. Let ¢y € C be such that the critical point of P, is recur-
rent. Then every non-trivial connected set of parameters containing cq also contains a
parameter ¢ such that the critical point of P, is not recurrent.

Again the situation is analogous any degree. In fact if ¢g € C satisfies the property
above, then ¢y € 0My and My is locally connected at cg; see Appendix 9. Thus we
obtain the following immediate corollary of Theorem D.

Corollary of Theorem D. Consider a polynomial P, € S with recurrent critical point.
Then cy € OMy and My is locally connected at cg.

After Theorem A it is easy to prove that polynomials P, € S such that ¢ € M, are at
most finitely renormalizable. Hence, for d = 2, Corollary of Theorem D follows from a
result of Yoccoz that states that M is locally connected at parameters that are at most
finitely renormalizable. The proof of Yoccoz does not apply for d > 2 and it is not clear
if this corollary follows from his proof. In any case the technique in the proof of Theorem
D is different from that of Yoccoz. In particular in the proof of Theorem D we do not
mention puzzle pieces.

Our last theorem is about similarities between M, and J., and near ¢y. We consider
the notion of asymptotic similarity introduced by T. Lei in [Lei]. Given a compact subset
X of C and r > 0 small, let

XT:({%w|w€X}ﬂ]D>)U8D,

that is, to get X, consider the intersection of X with the disc of radius r centered at 0,
scale it to the unit disk and for a technical reason add 9. Moreover, for A € C — {0}
and ¢ € C we denote A X ={ \w|we X}and X —(={w—-(|we X}.

Theorem E. Let ¢y € OM, be such that P, € S and such that the function ro, in the
definition of the class S, satisfies

5
Then Mg and J., are asymptotically similar at co. That is, there is A € C — {0} such
that

%0 2 d6
/ (ro(d))~ 24— < oo, for some §p > 0.
0

}ii% du((Ma — co)r, (A(Jey — c0))r) =0,

where di denotes the Hausdorff distance. If Moreover P, satisfies the Collet-Eckmann
condition, then there are o > 0 and C > 0 such that for small r > 0,

di(Ma = co)r, (A(Je, — c0))r) < Cr.

The following corollary follows immediately from the previous theorem and from the
table at the beginning of this introduction.

Corollary. Let cg € OMy be such that P, satisfies the summability condition with

exponent d%r?. Then My and J., are asymptotically similar at cg.
6



For any P., € S for which Theorem E works we can prove that the similarity factor
A € C — {0} is equal to

1
A= Byt

n>0 €o

So we obtain the curious fact that the sum above is finite and different form zero for such
parameters.

Smirnov proved in [Sm| that the set of parameters in OM, satisfying the Collet-
Eckmann condition has full harmonic measure in dM ;. So we obtain the following
corollary.

Corollary. There is a set of full harmonic measure of parameters ¢ € My such that
Mg and J. are asymptotically similar at c.

A stronger statement was obtained in [R-L2]. T. Lei proved in [Lei] that M and J. are
asymptotically similar at ¢, for parameters ¢ for which the critical point of P, is strictly
pre-periodic. The set of such parameters is countable. Moreover the corresponding poly-
nomials satisfy the Collet-Eckmann condition, since the critical point must be mapped
to a repelling periodic point. See also [W], and [R-L2] and [R-L1] for a finer notion of
similarity and related results.

The idea of the proof of Theorem E is that for any P.,, € S we can construct a
parameter map, which is a quasi-conformal homeomorphism form a neighborhood of ¢y
in the dynamical plane to a neighborhood of ¢y in the parameter plane, that maps the
Julia set to a set approximating My near ¢o. Then asymptotic similarity easily reduces
to proving that the parameter map is conformal at ¢g. This parameter map is conformal
in a big part of its domain. If the integral condition in Theorem E is satisfied, then
the parameter map satisfies the hypothesis of a conformality criterion. In the Collet-
Eckmann case we prove that this parameter map is C''*®-conformal for some o > 0,
using McMullen’s measurable deep points. This yields the stronger conclusion in the
theorem.

Organization of the paper. Now we describe the contents of each section.

In Section 1 we state the Univalent Pull-back Condition and we prove that it is equiv-
alent to the Decay of Geometry Condition; see Proposition 1.2. In Section 1.1 we prove
the relations between summability and Collet-Eckmann conditions and the class S; see
Proposition 1.4.

In Section 2 we prove some lemmas about expansion and we introduce Martens prop-
erty in Section 2.1. In Section 2.2 we construct neighborhoods of critical points with
Martens property at every scale; see Proposition 2.7.

Section 3 is concerned with Theorem A about topological models of dynamics of
polynomials. The proof relies in a landing lemma for hyperbolic sets (proved in Section
3.1) and in Thurston-Kiwi Finiteness Theorem, stated in Section 3.2. In Section 3.2 we
prove Theorem A under a technical assumption and assuming that there are no parabolic
periodic points. In Section 7 we prove that this technical assumption is automatically
satisfied for polynomials in the class S. The proof of Theorem A in the general case
(when there are parabolic periodic points) is in Section 7.2.

In Section 4 we prove the area estimates needed in the proof of Theorem B and in
the proof of Rigidity. Moreover we prove Proposition B in Section 4.2, which is the
7



essential part of Theorem B. To complete the proof of Theorem B we need again a mild
assumption. In Section 7 we prove that this assumption is automatically satisfied.

In Section 5 we prove Rigidity. The proof is very simple, given the area estimates of
Section 4; see Lemma 4.7 in Section 4.2. It relais in basic facts about qc maps that are
stated in Appendix 10.

Section 6 contains the proof of Theorem C about Thurston’s algorithm. We first state
Proposition C which is a more complete version of Theorem C, including the existence
of pseudo-conjugacies to the limiting rational map.

In Section 7 we exploit pseudo-conjugacies given by Proposition C, to prove that ratio-
nal maps in the class S whose Julia set in not the whole sphere, enjoy several expansion
properties at a global level (away from critical points). For example we prove that such
rational maps do not have irrationally indifferent cycles nor Herman rings. For this pur-
poses we state Corollary C of Theorem and Proposition C. As a consequence we complete
the proof of Theorem B. Moreover, in Section 7.2 we complete the proof of Theorem A in
the presence of parabolic periodic points. The main step is to construct neighborhoods
with Martens property taking into account parabolic points; see Proposition 7.11.

In Section 8 we consider the family P.(z) = 2% + ¢, for ¢ € C and for some fixed
d > 2. After simple facts about dynamically defined holomorphic motions in Section 8.1,
we prove Theorem D in Section 8.2. The proof is independent of Section 6, except that
we need to know that the mild property EAC holds for polynomials; this is also proven
in [R-L3]. The rest of Section 8 is dedicated to the proof of Theorem E. We build a
parameter map in Sections 8.3 and 8.4 and in Section 8.5 we reduce Theorem E to prove
that this parameter map is conformal at the critical value. Then we apply a conformality
criterion to prove this. We also prove the stronger assertion in the Collet-Eckmann case.

In Appendix 9 we prove the re-statement of MLC, which follows easily from [Sch].
Appendix 10 contains some basic facts about quasi-conformal homeomorphisms.

In Appendix 11 we prove a rigidity property related to Rigidity of Section 5. The
conclusion is weaker, but the hypothesis are simple enough to be presented in an ab-
stract setting. This extends an argument of Yoccoz in his unpublished proof of the local
connectivity of the Mandelbrot set at non-infinitely renormalizable parameters.
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Preliminaries.

Given a rational map R € C(z) we denote by Crit the set of critical points of R. For
a critical point ¢ € Crit we denote by p. the multiplicity of R at ¢ and fi,q, = maxg i
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denotes the maximal multiplicity of critical points in J(R). In the case that a critical
point in J(R) is eventually mapped into another critical point, we treat a whole block ¢y,
..., ¢ of critical points, such that one is eventually mapped into the next one and maximal
with this properties; as a single critical point of multiplicity i, - ... - te,. For example
the critical value of this block means R(cj). With this convention we assume that no
critical point in J(R) is eventually mapped into some other critical point. Moreover we
denote by CV the set of critical values of R, so with the convention above CV N J(R) is
disjoint from Crit.

Given z € C we denote by w(z) the omega limit set of z, that is the set of accumulation
points of the forward orbit of z. For two numbers A and B, A ~ B and A = O(B) means
C~'B < A< CB and A < CB for some implicit constant C' > 0, respectively. Distances
and derivatives are taken with respect to the spherical metric. For z € C and § > 0
we denote by Bs(z) the ball centered at z of radius §. Recall that, for a critical point
¢ € J(R) and § > 0 small Bs(c) is the connected component of R~ (Bs(R(c))) that
contains ¢, so R(Bs(c)) = Bs(R(c)) and diam(Bs(c)) ~ 67« .

Fix periodic orbits O; and Oy of period at least 2, so there is rx > 0 such that
for all z € C, B, (z) is disjoint from O, or from O,. Hence for every n > 0, every
connected component of R™" (B, (z)) avoids O; or Oy. Thus we have the following
spherical version of Koebe Distortion Theorem; see [Pom)].

Koebe Distortion Theorem. For e € (0,1) there is D = D(g) > 1 such that for any
zeCandre (0,7K), if W C W are univalent pull-backs of Ber(2) C B,(2) by R", then
the distortion of R™ in W is bounded by D. That is,

_1_ (B (=) 2
D 1§W§D, for z1,20 € W.

Moreover D(e) =1+ O(e).

It is easy to see that, if R € S, then CV is disjoint from the parabolic points of R.
Hence, by the Fatou-Sullivan classification of Fatou components, there is a neighborhood
of CV N J(R) that avoids the forward orbits of critical points not in J(R). We will
implicitly assume that neighborhoods of points in CVNJ(R) or CritN.J(R) are sufficiently
small to avoid these forward orbits.

1. DECAY OF GEOMETRY AND UNIVALENT PULL-BACK CONDITIONS.

In this section we prove that the Decay of Geometry Condition, stated in the intro-
duction, is equivalent to a Univalent Pull-back Condition. Moreover in Section 1.1 we
prove Proposition 1.4 relating various conditions of non-uniform hyperbolicity with the
asymptotics of the function rg, involved in the Decay of Geometry Condition.

Definition 1.1. The class S is the class of rational maps satisfying the Decay of Ge-
ometry Condition. Moreover, for R € S and § > 0 small, we denote by r(d) the biggest
possible value of ro(6).

Univalent Pull-back Condition. There is a function ri, defined for § > 0, such
that 11 (8) — 0o as & — 0 and such that for all z € C and n > 0, such that RI(z) ¢
Bs(Crit N J(R)) for 0 < j < n and R"(z) € Bgrl(g)(c), for some ¢ € Crit N J(R), we
have that the pull-back of B(;rl(g) (c) to z by R™ is univalent.

9



Proposition 1.2. If R satisfies the Decay of Geometry Condition then R satisfies the
Univalent Pull-back condition with function r1 = r. Furthermore, if R satisfies the
Univalent Pull-back condition with function r1, then there is k € (0,1) only depending in
R such that R satisfies the Decay of Geometry Condition and r(§) > kri(d), for 6 >0
small. Moreover, for 0 < § < §y small

kdr(6) < dor(do),
and therefore r(§) = O(671).
Proof. 1.— Let R € C(z) satisfying the Decay of Geometry Condition. Let z € ¢
and n > 0 be as in the Univalent Pull-back Condition and consider a pull-back Wy, ...,
Wy = Bsy(s)(c) along the orbit of z, so z € Wy. If W; N Crit # 0, for some 0 < i < n,
then by the Decay of Geometry Condition, diam(W; 1) < §. Since Ri™1(2) € W;;1 does
not belong to Bs(CV) we have that W, 1 N CV = ), which contradicts our assumption.
So the W; are disjoint from Crit and therefore the pull-back is univalent.

2.— Let R € C(z) satisfying the Decay of Geometry Condition with function ;. Let
k € (0,1) to be determined later and let ¢ € Crit N J(R). Consider the special case of
a pull-back Wy, ..., Wy, = By, (s) so that W; N Bs(CV) = () for 0 < i < n and so that
Wo N Bs(cp) # 0, for some ¢ € Crit N J(R). If Wy C Bs(cp), there is nothing to prove,
so assume the contrary. Consider the respective pull-back W{, ..., W/ = Bgn((;)(c). By
the Univalent Pull-back Property applied to a point z whose image lies in Wy — Bys(co),
we obtain that the pull-back W is univalent. So mod(W{, — Wy) depends in x € (0,1)
and it is big as x is small. Note that W} avoids one of the two fixed periodic orbits Oy
and Os, as in the Preliminaries. Thus, considering that Wy N Bs(co) # 0 and ¢y & Wy
we can choose k, independent of §, such that diam(Wy) < 4. If § > 0 is small enough we
have, Wg C Bas(co) C Brsr, (s)(co). Then the general case follows by induction.

3.— For 6 > 0 let 71(0) be the biggest possible value of r1(5). It follows by 2 that
k71(8) < r(0) < 71(d). Tt follows from the definition of the Univalent Pull-back condition
that, if 0 < 0 < 50, then 5?:1(5) < 60?1((50). Thus nér(d) < 50T(50) and 1"(5) < 0571,
where C = £~ 16¢7(50). O

Remark 1.3. In the Decay of Geometry and Univalent Pull-back conditions we mea-
sure distances to critical values, rather than critical points. That is why we consider
the balls B. This is because we are interested in conditions in the forward dynamics
such as summability and Collet-Eckmann conditions. Our considerations apply to condi-
tions in backward dynamics, by measuring distances to critical points, instead of critical
values. This is the case of the Topological Collet-Eckmann condition and its equivalent
formulations; see [PRS].

1.1. Summability and Collet-Eckmann conditions. In this section we establish
relations between different conditions of non-uniform hyperbolicity with the asymptotics
of the function r, involved in the definition of the class S.

Recall that by Proposition 1.2, for R € S we have 7(6) = O(§~1). Moreover, it is easy
to see that r(§) ~ ! if and only if no critical point in R is accumulated by other critical
point. That is r(6) ~ 6! if and only if R is Non Recurrent; see Introduction. Together
with Proposition 1.2 the following proposition proves the table in the Introduction.

Proposition 1.4. Let R be a rational map of degree at least 2. Then,

(1) If R satisfies summability condition with exponent one, then R € S.
10



(2)

&

R satisfies summability condition with exponent 8 € (0,1), then letting o =

[

)

1—

»

do
/ (r(é))*ad—é < o0 for dg > 0.
0 0

(3) If R satisfies the Collet-Eckmann condition, thenr(§) > C6~% for some a € (0, 1]
and C > 0.

Recall that by Proposition 1.2 there is x € (0,1) such that for 0 < § < J§p small we
have kd7(8) < dor(dp). Thus, for given a > 0 the following conditions are equivalent.
(1) Jo(r(6)~*4L < oo for &y > 0.
(2) For all 0 € (0,1) we have, > -, (r(0™)"" < oo.

(3) For some 0 € (0,1) we have, > -, (r(0)™* < oco.

The proof of Proposition 1.4 is based in Przytycki’s shrinking neighborhoods, which is
a tool to control distortion of backward iterates; see [Pr2]. It consists in the following:
choose a sequence of positive numbers {d,, } ,>1 such that II,,>1 (1—d,,) = %, and put D,, =
I;<n(1 — dg). Then given r € (0,7x) and w € R™"(z) let U, C U,, be the connected
components of R~"(B,p, (z)) and R™"(B,p,_,(#)) that contain w, respectively, so that
Up = B,(z). Then, there is a constant K > 1 independent of n such that, if U; does not
contain a critical point, for 0 < j < n, then

(1) K~'d, < dist(w,Q)|(R")'(¢)| < Kd,*, for ¢ € U;

see Lemma 1.2 of [Pr2]. For a critical point ¢ € CritNJ(R) we will consider the shrinking
neighborhoods with balls B,.p, (c), instead of B,p, (c). In this case we have the same
distortion estimate, but with other constant.

Let us consider some definitions for the proof of Proposition 1.4. Given v € CVN.J(R)
and ¢ € Crit N J(R) consider all the times 0 < k1(v,¢) < ka(v,¢) < ... so that the pull-
back of the closure of B, (c) by R¥ ("¢ to v is univalent, where r; > 0 is the smallest
number so that the closure of B,., (¢) contains R*(>*) (v). Denote by &; (v, ¢) the respective
preimage of ¢ by RFi(ev),

Lemma 1.5. Suppose that R satisfies the summability condition with exponent 8 € (0, 1].
If =1 let {ny}n>1 be such thatn, — oo as n — oo and,

;M]W < 00, forvECVﬁJ(R)

If 6>1letn, =1. Let C >0 and for 6 > 0 small put,

B . dist(& (v, c),v) ki (0,e)+1y/ () y |18
po) =, (SR gy g

Then, if C is small enough, for every ¢ € Crit N J(R) and z € R™"(c), such that
Ri(z) € Bs(Crit) for 0 <i < n, the pull-back of Bs,s)(0) to z by R™ is univalent.

Proof. Let dj, as in the shrinking neighborhoods, be proportional to
& max RFHL)Y (v)| 78,
Mes1  AmAX [(R77) (v)]

for Kk > 1 and let K > 0 be the constant involved is the distortion estimate for the
shrinking neighborhoods; see (1).
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Put Uy = Bas,(c) for some r > 0 and consider shrinking neighborhoods (U, U,), for
0 <i < n,sothat R"(z) € U/. Let k be the least integer, if any, so that U N CV # ()
and let v € CV such that v € Uj. So R” is univalent in Uj. Note that we may assume that
v € J(R); see Preliminaries. Moreover, k = k;(v,¢) for some i > 1 and & = &;(v,¢) € Uj,
is the k-th preimage of ¢ in Uj. By property (1), of shrinking neighborhoods, and
considering that d; ' is proportional to 771:+11 min, e (g) |(RF+1) (v)|?, we have that
for some Cjy > 0 only depending in R,

dist(&,v) dist(&,v)
oy dist(RE(v),co)

dist(&,v)
Co <dist(R’f(v), co)

Peg—1

) TR @) (K [(REY (0)]%) 7

1

n —1 B—1 _T
€0
Heq 77k+1 R

Ch (dist(€,v)) P |(RM1)(v)

for some constant C7; > 0. Thus
§r > Cy "0 dist(€,v)| (R (0)[" g

_1
By hypothesis dist(£,v) > 6, so letting C' = %Cl "0 in the definition of p, we have
r > p(0). Hence, if we take r = p(d), the neighborhoods U}, avoid critical values and
therefore the respective pull-back of Bj,s)(c) is univalent. O

Lemma 1.6. Let € (0,1) be the constant as in 2 of the proof of Lemma 1.2. Then
there is Cy > 0 such that R satisfies the Decay of Geometry Condition with the function
ro given, for 6 >0 small, by the minimum between §p(0) and,

5 pe—1
inf ki(v,c)+1y/ )
Co dist(fig)l,c)7v)<6 (dist(fﬂv,c),v)) (R J ()]

Proof. Define rg as above, for some constant Cy > 0 to be determined. Given ¢ €
Crit N J(R) consider a pull-back Uy = Bs,(s(c), Un, ..., Ur such that Uy N Bs(CV) # 0.
We suppose by contradiction that diam(Uy) > 0. Consider the respective pull-backs
U} and U{" of B, -15,(s)(co) and By, -15r4(s)(co) respectively, so U; C Uj C U;’. Since
ro(d) > K, for small § > 0, arguing by induction is enough to consider the case when
Ui N Bs(CV) =0 for 0 <i < k.

Since ro(8) > £p(8), we have by the previous lemma that, R* : U}/ — U}/ is univalent.
If U}, is disjoint from Bs(CV), we have, by definition of «, that diam(U) < 0.

So, let us assume that there is v € U, N CV. Hence k = k;(v,c), for some i > 1
and & = &;(v,c) € U}, is the k-th preimage of ¢ in Uj.. Let ¢y € Crit N J(R) be so that
R(co) = v and let U}, | be the connected component of R~!(U}) that contains co. Since
RF+1 is not univalent in Uy 11, we cannot apply Lemma 1.5 to a preimage z of £ in U,
and n = k + 1, therefore we have that £ € Bs(v). By Koebe Distortion Theorem the
distortion of R* in U} is bounded by some definite constant D > 1, so there is C1 > 0

12



only depending in R such that,

0o gty g p dist(E0)
(8670(8)) e diam(Up) dist(RF(v),c)
14-L dist(&,v) S Eas o vl
< D Heo [ ———>2" 7 he . S
< ' (AR ) T Y .
(6> 2 ()" )
0 2\ dist(€,v) ’
for some Cy > 0 only depending in R. Since dist(&,v) < 9§, letting Cy = Cy we obtain a
contradiction. So, U, N CV = { for this choice of Cj. O

Proof of Proposition 1.4. Note that by Lemma 1.2 is enough to prove the respective
estimates for the function rq, given by the previous lemma.

1.— Tt follows by the previous lemma, considering that k;(v, ¢), and hence Mk (v,c) and
|(RF:(v:9)+1)/ ()|, are big, when dist(&; (v, ¢),v) is small.

2.— Choose 0 € (0,1) and note that, as observed after the statement of Proposition
1.4, it is enough to prove that the sum below is finite. Note that § = a(1 — 3) so,

2 (@)™ < €O (3 <dt(£e())) (BRI ()] =0

n>1 ©,v,¢ On<dist(&; (v,c),v)
on —a(pe—1) & ( )+1
RFi(vie ’ —«
+ , Z (dist(mﬂv,c),v)) I y@I™)
0 >dist(&;(v,c),v), n>0
< CY(RHCOY )] < oa

1,v,c

3.— Since R satisfies the Collet-Eckmann condition, there are Cy > 0 and A > 1 such
that for every v € CV N J(R) we have |(RF)'(v)| > CoAF. Choose p € (0,1) and note

that if dist(& (v, c),v) > §'# then W& LA) o 5o

By [PU1] there is C; > 0 and 6 € (0, 1) such that dist(&;(v,c),v) > C10%(V¢). There-
fore there is Cy > 0 and v € (0,1) such that,

|(Rk"(c’”)+1)’(v)| > CpAFi(ve) > Cy(dist(&(v,c),v)) 7.
Hence if dist(&;(v,c),v) < 617#, we have
(RA 41 ()] 2 Codist (6, ),0) ™ = Cpo= 0

Thus there is a constant Cy > 0 such that r¢(6) > C4d~°, where o = min(p, y(1 — u)).
O

2. MARTENS PROPERTY.

This section is concerned with some dynamical properties of rational maps in & which
will be exploited in the next sections. In particular we prove the existence of arbitrarily
small neighborhoods of critical values with the so called Martens property, see below.
We begin by proving two lemmas about expansion.

13



Lemma 2.1. Let R € S and 6o > 0. Then there is N = N(d9) > 0 such that for all z and
n = N such that R"(2) € Bi,(s,)s,(c), for some ¢ € CritNJ(R), and RI(z) ¢ Bs,(Crit),
for 0 < j <n, we have |(R")'(z)| > 1.

Proof. Suppose not. Then there is {2z }x>1 and ny — oo such that R™ (z;) € EM((;) (¢),
for some ¢ € Crit N J(R), dist(RI*(2;),CV) > 4, for 0 < j < n, and |[(R™)'(2;)] < 1.
By the Univalent Pull-back Condition the pull-back Wy, of BT((gO)gO(C) to zp is univalent.
Thus, by Koebe % Theorem, W}, contains a ball of definite radius. Taking a subsequence,
if necessary, assume that z; — z, so there is a ball B of definite radius such that B C Wy
for big k. But this is not possible by the eventually onto property of Julia sets; see [CG].
|

Lemma 2.2. Let R € S, then there is Co > 0 such that for 6 > 0 small, for z € C
and n > 1 such that R"(z) € Bi,4)s(c), for some ¢ € Crit N J(R), and Ri(z) ¢

Bs(Crit N J(R)), for 0 < j < n, we have

@1): |(R™)(z)] > 00(67”1(5))% min(§—1, p=1), where p = dist(z,CV).
(ii): |(R"Y(2)] = oo~

Proof. (i) By the Univalent Pull-back Condition, the pull-back W' of By, () (c) to z by
R"™ is univalent. There are two cases.

Case 1. p < 0. By the Decay of Geometry Condition diam(W) < §. So by Schwartz
lemma |(R™)(z)| > C’O(§r(§))i5_1 for some constant Cy > 0.

Case 2. p > 4. By the Decay of Geometry Condition WNCV = (). Moreover, if W is the

respective pull-back of B 1 sr(5)(c), then the distortion of R" in W is bounded by some

definite constant. Hence by Koebe % Theorem there is a constant C; > 0 such that

diam(ééér((;) (N|(R™) (2)|7! < Cydist(z,CV) = Cyp.
So [(R™)(2)| > C’Mér(é))ip_l for some definite Cy > 0.
(i) Let co € Crit N J(R) and consider w € Bs(co) such that there is [ > 0 such that
R'(w) € Bs(c1) for some ¢; € Crit N J(R) and R/ (w) ¢ Bs(Crit N J(R)), for 0 < j < I.

By (i) there is a constant C§ > 0 such that |[(RF=1)(R(w))| > C{,(dr(é))“il §-1. Since

cn—1

|R'(w)] ~ & #eo and since r(§) > 1 for 6 > 0 small, we have that for § > 0 small
[(RY) (w)] > §7er ™ Feo.
Choose § > 0 small and put 6y = 267(5). Let n; < n be the least integer such that

R™(2) € Bs,(Crit N J(R)). It follows by Lemma 2.1 that |(R™)'(z)| > Cy for some

definite Cy > 0. Consider the closest approximation times 0 < n; < ... < nx = n

of the forward orbit of z to critical points (measuring distances with the balls B) and

let ¢; € Crit N J(R) be the closest critical point to R™(z), so that ¢, = c¢. Then
1

|(Rra+1=mi)/(R™)| > §Fer Fei for 1 < i < k. Therefore |[(R™ ™) (R™ (2))| >

1 1
JHer  Hep and,

1 1 1
[(R™)(2)] > Cob7e0 e > Code ~mmaz .00

2.1. Maximal invariant sets.
14



Definition 2.3. Let V' be a neighborhood of Crit N J(R) such that every connected com-
ponent of V' contains exactly one critical point in J(R). Then we define:

K(V)={2| R(2) ¢V, for j > 0}.

Note that K (V') is compact and forward invariant by R. Moreover by Montel’s The-
orem int(K(V)) ¢ C — J(R); see [CG]. If W is a connected component of C — K (V)
not intersecting Crit N J(R) then R(W) is also a connected component of C — K (V) and
R:W — R(W) is proper.

Moreover note that if V' C V, then K (V) C K(V’), and if the orbit of ¢ € CritNJ(R)

accumulates Crit N J(R), then ¢ ¢ K(V) for any V. In later sections it will be useful to
impose the following property.

Definition 2.4. For ¢ € Crit N J(R) consider a simply-connected neighborhood V¢ of
¢ disjoint form the forward orbits of critical points not in J(R). Moreover suppose that
the sets V¢ are pairwise disjoint and put V = UCrith(R)VC' Then we say that V has
Martens property if for any n > 1, and any connected component W of R~™(V') we
have either W NV =0 or W C V.

Martens defined the concept of nice interval in [Mar] for self-maps of the interval. A
interval is said to be nice if the forward orbit of every point in its boundary is disjoint
from the interval itself. As the following lemma shows, Martens property is an analogous
property.

Lemma 2.5. Suppose that V = UCrith(R)VC has Martens property. Then for every

z € OV we have R™(z) ¢ V, for n > 1. In particular, for each c¢ € Crit N J(R), the set
Ve is equal to the connected component of C — K(V) that contains ¢, so dV¢ C K(V).
Furthermore, for every connected component W of ¢ - K(V) there is my > 0 and
¢(W) € Crit N J(R) such that R™ : W — VW) s q biholomorphism. Thus W is

simply-connected and therefore K (V') is connected.

Proof. Suppose that z € 9V is such that for some n > 1 we have R"(z) € V¢, for some
c € CritN J(R). Then the pull-back W of V¢ by R" to z is such that z € W N V. Thus
WNV #Qbut W ¢ V, which contradicts Martens property.

As remarked above, if W is a connected component of C — K (V) different from V¢,
for ¢ € Crit N J(R), then R(W) is also a connected component of C — K(V) and R :
W — R(W) is proper. It follows that R : W — R(W) is a biholomorphism. Then the
rest of the assertions follow. O

The following lemma will be useful to produce sets with Martens property.

Lemma 2.6. Let W be a neighborhood of CritNJ(R) such that each connected component
contains exactly one critical point in J(R). For ¢ € Crit N J(R) let V© be a simply-
connected neighborhood of ¢ disjoint from the forward orbits of critical points not in
J(R), such that the sets V¢, for ¢ € Crit N J(R), are pairwise disjoint. Put V = UV®
and suppose that V. C W and R(OV) C K(W). Then V has Martens property.

Proof. Let Wy, W1, ... be a pull—baclf such that W is a connected component of V' and let
U, be the connected component of C— K (W) that contains W,,. Since V C R™*(K(W))
it follows that either W,, C U or W,, N U = 0, so is enough to prove that W,, C U,.
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We proceed by induction. For n = 0 just note that Wy is contained in W by hypothesis,
so Wy C Up. So suppose that W,, C U, for some n > 0. If U, does not intersect
Crit N J(R) then R : U, — U, _; is proper so W,, C U, by the induction hypothesis.
If U,, intersects Crit N J(R) then let U/, be the connected component of R~ (U,,_1) that

contains W,,, so U/, C U,,. By the induction hypothesis, W,, C U C U,,. O

2.2. Neighborhoods with Martens property. Fix R € S for all this section. In this
section we prove the existence of neighborhoods of Crit N J(R) with Martens property
at every scale. This is one of the main properties of rational maps in the class S.

Proposition 2.7. Let R € §. Then there is a constant C > 0 such that for any § > 0
small and every v € CV N J(R) there is a simply-connected neighborhood U of v such
that

Bs(v) C U” C Bys)s(v),

where n(0) = 1+ C’(r(é))_unﬂiaw , and so that the union V of the connected components
of R™Y(U) intersecting Crit N J(R) has Martens property, where U = UCVni(r) Uv.

The proof of Proposition 2.7 is at the end of this section and is based in the following
lemma.

Lemma 2.8. For§ > 0 small put V = Bs(CritNJ(R)) and for ¢ € Critn.J(R) andn >0
let V,¢ be the connected component of Uy<i<n R~ (V) that contains c. Then V,¢ C Bas(c).

Proof. We proceed by induction in n. For n = 0 we have Vj§ = Bg(C), so the assertion is
trivial. Suppose that the assertion holds for n > 0 and let w € V,;9, — V. For every point
z € V9, thereis 0 <m < n+1 and ¢ € Crit N J(R) such that R™(z) € Bs(c); let m(z)
be the least of such numbers. Let X be a connected component of V79, — V containing
w and let z € X minimizing m(z). Let ¢ € Crit N J(R) be such that R™(*)(z) € Bs(c).
Considering that m(z) > 0, we have by induction hypothesis

R™3)(X) € V¢ C Bas(co).

By the Univalent Pull-back condition the pull-back of Bgr((;) (¢) by R™®) to z is univalent;
denote by g the respective inverse branch. Suppose that § is small enough so that r(§) > 2
and so that the distortion of ¢ in Bs(c) is bounded by some definite constant D > 1. In
particular diam(X) < 2Ddiam(g(Bs(c))). By (i) of Lemma 2.2, for some C > 0,

(R™E71Y (R(2))] > Co(0r(8)) 77",
So there is a constant C; > 0 such that
diam(g(Vg)) < DCy'|R'(2)]76(6r(6)) 7 diam(Bs(c)))

_Hegt

< G180 §(r(8)) e

Thus, if § > 0 is small,
diam(X) < 2Ddiam(g(Bs(c))) < 2DCL8~ 70 (r(6)) 7 < diam(Bs(co)).
It follows that w € Bas(co) and therefore Vs, C Bas(co). O

Proof of Proposition 2.7. For c€ CritN J(R) let V and V¢ as in the previous lemma
with 2§ instead of §, so V,¢ C Bys(c). Note that V¢ = U,,>0V,* C Bys(c) is the connected
component of C — K(V) containing c.
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Thus for any connected component W of C — K (V) there is my > 1 and ¢ = ¢(W) €
Crit N J(R) such that R™" : W — V¢ is a biholomorphism. By the Univalent Pull-
back condition the inverse of this map extend in a univalent way to BQ(;T(Q(;). By Koebe
Distortion Theorem we have that for 6 > 0 small the distortion of R™% in W is bounded
by some definite constant independent of §. It follows by Lemma 2.2 that there is a
constant C' > 0 such that if W is a connected component C — K (V) intersecting Bas(v),
for some v € CVNJ(R), then diam(W) < C&(r(&))_ﬁ. Put n(9) = 1+C(r(5))_m.

For v € CV N J(R) let,
U? = {Bs(v) U (UW) | W connected component of C — K (V) intersecting Bs(v)},
so Bs(v) c U* Biy5)5(v) if ¢ is small enough. Moreover let
UY = U U{ connected component W of C — U" such that diam(W) < diam(U")}.

Note that diam(U") < diam(C) so there is only one connected component of C — U”
whose diameter is not smaller than U?. Thus U" is simply-connected. Moreover Bj (v) C
UY C Bys)s(v) and 0UY C U c K(V)n By (5)5(v). Then the proposition follows by
Lemma 2.6. O

3. TOPOLOGICAL MODELS OF JULIA SETS.

In this section we indicate the proof of Theorem A, about topological models of poly-
nomials. The proof is based in a Landing Lemma proved in Section 3.1 and in Thurston-
Kiwi Finiteness Theorem stated in Section 3.2. We prove Theorem A under a technical
assumption and assuming that there are no parabolic periodic points; see Section 3.2.
The proof of this particular case of Theorem A contains the essential ideas involved in
the general case. In Section 7 we prove that this technical assumption is automatically
satisfied for polynomials in the class S. The proof of Theorem A in the general case is
in Section 7.2.

We begin with an easy consequence of Lemma 2.2.

Lemma 3.1. Fizn > 1 and let 6 > 0 be small. Let V.= UV be a neighborhood of Crit N
J(R) with Martens property such that Bs(Crit N J(R)) C V C B,s(Crit N J(R)). Then
there is a constant Cy > 0, independent of §, such that for every connected component

W of C — K(V) we have

(): diam(W) < CySwmas .
(il): If p = dist(U,co) then diam(W) < Cy max(J, p)(r(é))_m.

Proof. Let m = mw > 1 and ¢ = ¢(W) € Crit N J(R) be such that R™ : W — V¢ is
a biholomorphism. By the Univalent Pull-back Property the inverse of this map extend
in an univalent way to B(;T((;) (¢). We may suppose 0 small enough so that r(§) > 27,
so by Koebe Distortion theorem the distortion of R™ in W is bounded by some definite

constant independent of §. Considering that diam (V) ~ 57 we have diam(W) <

Cobie |[(R™)(2)| 7!, for any z € W and some definite constant Cy > 0. Then the lemma
follows considering that by Lemma 2.2 there is a definite constant Cy > 0 such that

(™) (2)] 71 < C5 ' (r(8)0) ™ 7 max(8, p) and |(R")(2)| ! < Cg ' §7mar ~7e. 0
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3.1. Landing Lemma. The aim of this section is to prove a general Landing Lemma for
hyperbolic sets of polynomials. An analogous property was proved in greater generality
by Przytycki, in [Prl]. The proof that we present here is essentially the same as the
usual proof in the case of repelling periodic points; see for example [Mil3].

We need to introduce the notion of ray. We first introduce it in the more standard
case when the Julia set is connected. In Section 3.1.1 we consider the disconnected case.
For references to this section see [GM] and [CG].

Let P € C[z] be a polynomial and let,
K(P) ={z|{P"(2)}n>0 is bounded},

which is called the filled in Julia set of P. Then P~1(K(P)) = K(P) and K(P) is a
compact subset of C. Moreover J(P) = 0K (P).

If K(P) is connected there is a conformal representation ¢ : C— K (P) — C—D fixing
infinity, that conjugates the dynamics of P to that of z — 2%, where d is the degree of
P. There are exactly d — 1 such coordinates. The continuous function G = Gp : C — R
equal to In|p| in C — K(P) and equal to 0 in K(P), is called the potential or Green
function. This function does not depend in the choice of ¢ and satisfies Go P = d. The
sets of the form G~!(p), for p > 0, are analytic Jordan curves called equipotentials.

The sets of the form ¢~ ({re?™®|r > 1}) are called rays and the set of accumulation
points of this ray, is the set of accumulation points of ¢~ (re?™¥) as r — 1, which is a
full compact set. If this set is the singleton z, then we say that the ray lands at z and
that z is the landing point of the ray. Rays and its accumulation sets do not depend in
the choice of ¢.

Landing Lemma. Let P € C[z] and let K C J(P) be a forward invariant set for P,
such that P is uniformly expanding in K. Then every ¢ € K(P) is the landing point of
some ray.

The proof of this lemma is based in the following well known univalent pull-back
property for such K: There is r > 0 such that for all y € K and n > 0 the pull-back B
of B.(P"(y)) to y by P™ is univalent. Note that, taking r smaller, we may assume that
the distortion of P™ in B is bounded by some definite constant.

Proof of the Landing Lemma in the connected case.

1.- By the property stated above it follows that there is C'; > 0 such that for all y € K
and z € Be,|(pry(y)|-1 (¥), we have that G(z) < d~*.

2.- For z ¢ K(P) let 6(z) = dist(z, K(P)). Note that for all ¢ > 0 there is C = C(e) >
1 such that 0(z) > edist(z,y) for y € K implies,

CTH(PYY (y)| 7! < dist(2,y) < C|(P*) (y)| 7",

where k = [In|G(z)]] is the integer part of In|G(z)|. In fact, let m be the least integer
such that dist(P™(z), P™(y)) is comparable to r. By bounded distortion we have

I(P™(2)) > D_lsdist(Pm(z),Pm(y)),

where D > 1 is a definite distortion constant. This implies that G(P™(z)) ~ 1 for
some implicit constant only depending in e, or equivalently |m — k| < K(e). Thus
dist(z,y) ~ [(P™) (y)|~! ~ |(P*)(y)|~!, for implicit constants only depending in ¢.
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3.- Given a point z, with d=" < G(z,) < d=("=1) let z; be the point in the same ray
as z, but with equipotential G(z;) = d*~"G(z,). It follows by a well known theorem of
Koebe (see Corollary 1.4 of [Pom]) that 6(zx) ~ dist(zg, zk—1). Let us prove that for all
e > 0 small there is m = m(e) > 1 such that if 6(zy) > edist(zg, () then there is k —m <
k1 < k such that 6(zg,) > edist(zk,, (). In fact suppose that §(zx4;) < edist(zk14, (), for
0 < i <n. In this case,

dist(zk_,_i_,_l, C) < dist(2k+i, C) + dist(zk+i+1, Zk-i—z’) < dist(zk_H', C) + K0§(Zk+i)
< (1 +K0€)di8t(zk+i,<),

for some definite Ky > 0. Let A > 1 be so that |(P!)(w)| > K1\ for all w € K and [ > 0.
Then, if £ is small enough so that 14+ Koe < A, it follows that dist(zg4n,¢) < |[(P™)(¢)|7!
if n is big enough. By 1 it follows that n < m = m(e), which proves the assertion.

4.- By the property stated above there is € > 0 such that for any n big there is z,, &
K (P) such that d(z,) > edist(zy, (). Fix such z, with n > 1. Tt follows by induction in
3 that there is €9 and a sequence n = ng < n; < ... such that n;41 —n; < m = m(eg)
and such that §(zy,,) > odist(zn,, (). Hence by bounded distortion there is €; > 0 such
that for all k < n we have §(z;) > e1dist(z, (), so by 2, dist(z,¢) ~ |(P*)'(¢)|~*.

5.- Consider a sequence z;' like above, so that the points z]* for ¢ > n belong to the
same ray. Consider a sequence n; — oo such that 2" — 2. Then the ray containing zg
lands at , since by 4, dist(z;, () ~ |(P*)'(¢)|~! which decreases exponentially. a

3.1.1. Disconnected case. If the Julia set of a polynomial P € C[z] is not connected then
we cannot define rays as in the connected case because C — K (P) is not represented by

C — D. We consider a definition of ray following Goldberg and Milnor; see Appendix A
of [GM].

We begin by defining the potential or Green function G : C — [0, 00) of a polynomial
P € C[z] of degree d > 2; see [CG] for references. This function is given by,

G(:) = Jim [P (2)]
it is implicit that the limit always exists. Then G(z) = 0 if and only if z € K(P) and
that G is a continuous function and harmonic in C — K(P). In the connected case the
gradient flow —VG does not have singularities in C — K(P) and the rays are the flow
lines of —VG in C — K(P). In the disconnected case —VG has singularities that are
locally the preimage by z™, with m > 2, of a constant flow. The singularities are exactly
the preimages of critical points in C — K (P).

As in the connected case there are coordinates ¢ conjugating the polynomial P to z¢
near infinity. These coordinates satisfy In |p(z)| = G(z), so they map flow lines to pieces
of straight lines passing through 0. So we can parameterize the different flow lines in a
neighborhood of infinity, by angles in R/Z, just as in the connected case.

Given an angle § € R/Z there are two cases. Either the corresponding flow line is
smooth and we call it a ray as in the connected case, or the corresponding flow line is not
smooth and we consider two (broken) rays that are the limits of smooth rays with angles
converging to 6. One is when the convergence to 6 and the other is when the convergence
is from the left. We associate them angles 67 and 6~ respectively. We can think of the
ray with angle 67 (resp. 67) as the (broken) flow line of —VG the we obtaining by
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continuing with the rightmost (resp. leftmost) flow line at each time that we encounter
a singularity of —VG.

Note that the potential function gives a natural parameterization of a ray by the
interval (0,00). As in the connected case we define the set of accumulation points of a
ray r: (0,00) — C, parametrized by the potential, as the set of accumulation points of
r(t) as t — 0. If the accumulation set of a ray is the singleton {z} C J(P) we say that
the ray lands at z.

The Landing Lemma also holds in the disconnected case. The proof is analogous to
the connected case. The only adaptation is that in 5, of the proof of the connected case,
we may choose 2] in a smooth ray, so the limit of these smooth rays is also a ray.

3.2. Thurston-Kiwi Finiteness Theorem and Theorem A. It will important to
known, in order to apply the Landing Lemma, that polynomials in S satisfy the following
property.

EAC. Given R € C(2) be a rational map and denote by P the set of parabolic points of
R. Then for every neighborhood V' of CritUP the rational map R is uniformly expanding
mn,

{z€ J(R) | R"(z) ¢ V for n > 0}.

It is proven in Corollary 7.9 in Section 7 that polynomials in S satisfy this property.
Przytycki proved in ([Pr2], Lemma 3.1) that rational maps satisfying the summability
condition with exponent one satisfy this property. In the real setting Mané proved in
[Maiié] that an analogous property holds for any map of class C2. However there are
complex quadratic polynomials that do not satisfy this property; see example of Douady
and Hubbard in [Mil2].

To state the Finiteness Theorem we need to introduce the so called puzzle ends (see
[Lev]) or fibers; see [Sch]. We follow the approach of Kiwi; see [Ki].

Let P € CJz] be a polynomial without irrationally indifferent periodic points. The
puzzle end of a point w € J(P) is the intersection of all the sets that are the connected
components of J(P)—Z containing w, where Z C J(R)—{w} is a finite set of pre-periodic
points. Puzzle ends are full compact connected sets that partition J(P). Moreover the
image by P of a puzzle end is also a puzzle end.

Finiteness Theorem (Thurston-Kiwi). Let P € C[z] be a polynomial without ir-
rationally indifferent periodic points. Then a puzzle end is either pre-periodic, in which
case it is a singleton, or it intersects at most a finite number of accumulation sets of
rays.

This theorem was proved by Thurston for quadratic polynomials and by Kiwi in its
full generality; see [Ki]. We remark that in fact the stronger assertion hold, that a puzzle
end that is not pre-periodic can intersect at most a 2¢ ray impressions, where d > 2 is
the degree of P; see [Ki].

Now we give a proof of Theorem A assuming EAC and that there no indifferent
periodic points. In Section 7 we prove that polynomials in the class S satisfy EAC and
do not have irrationally indifferent periodic points. In the presence of parabolic periodic
points we improve Martens neighborhoods given by Proposition 2.7; see Proposition 7.11.
Then the proof is the same as the particular case presented here; see Section 7.2.
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In [Ki] Kiwi proved that conditions 1 —3 in Theorem A are equivalent to the condition
that every puzzle end is a singleton. Moreover these conditions imply the last assertion
in Theorem A. So to prove Theorem A is enough to prove that every puzzle end is a
singleton.

Proof of Theorem A assuming property EAC and that there are no indifferent periodic
points. Since there are no irrationally indifferent periodic points the considerations of
puzzle ends apply to P. Recall that by [Ki] is enough to prove that all puzzle ends are
singletons.

Suppose, by contradiction, that the puzzle end £ of a critical point is not a singleton,
so by the Finiteness Theorem £ intersects at most a finite number of accumulation sets of
rays. By Proposition 2.7 there is a sequence V; = U.V,® of neighborhoods of Crit N J(P)
with Martens property so that the diameter of V¢ goes to zero as i — oo. Since € is
connected it follows that £ intersects dV; in a point z;, for big i. We may suppose that
the x; are different.

By Lemma 2.5 ; € 9V; C K(V;) so x; belongs to the set K (V;)NJ(P). By hypothesis
P satisfies EAC and it does not have parabolic periodic points, so P is uniformly expand-
ing in K(V;)NJ(P). So by the Landing Lemma each z; is the landing point of some ray;
see Section 3.1. But this contradicts the Finiteness Theorem since each {z;} C ¢ is an
accumulation set of a ray. Hence all puzzle ends containing critical points are singletons.

Let w € J(P) such that w(w)NCrit # 0. Let n; be the least integer such that P™i(w) €
V£ for some ¢; € Crit N J(P). We may univalently pull-back V;“ to w by P™ to obtain
Vi(z), that contains w. By Lemma 3.1 we have that, diam(V;(w)) < Cdiam(V;") — 0
as i — 0o, for some definite C' > 0; hence we can prove that the puzzle end containing w
is trivial just as before.

It remains to prove that the puzzle end of a point z € J(P) such that w(z) N Crit =0
is a singleton. This is now standard given the triviality of the puzzle ends of critical
points; see for example [H|, [Lyu2] and [Mil2]. O

4. AREA ESTIMATES.

In this section we prove area estimates for rational maps in §. This is one of the main
ingredients in the proof of Theorem B. It is also used in a essential way in the proof of
Rigidity (sated in the next section) and in the proof of Theorems C, D and E.

Given X C C, we denote by | X| the spherical area of X.

Area Estimates. Let R € S such that J(R) # C and fix n > 1 close to one. Then
there is € = ¢(n) > 0 and A = A(n) > 0 such that the following assertion is true. For
d > 0 small consider simply connected neighborhoods Vi of ¢ € Crit N J(R) such that
Bs(c) C Vi C Bys(c) and such that Vs = UV has Martens property. Then

| Beses)(€) = K (Vs)] A(r(5)) T
|B.sr(5)(c)| = Ao |

We first construct a special nest V,, of neighborhoods of Crit N J(R) with Martens
property. Clearly it will be enough to prove that Area Estimates for Vs = V,.
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Fix 7 > 1 as in the Area Estimates and fix 7 € (0,77 !). Let € > 0 be small and for
n > ng, for some big ng, let m(n) be the greatest integer such that 7™(") < 2e77p(77).
Since dr(8) < dor(dp) for 6 < g it follows that m(n) is a non decreasing sequence.

Proposition 4.1. There is ng > 1 such that for alln > m(ng) and v € CVNJ(R) there
is a simply-connected neighborhood U} of v, such that,
B:n(v) C U} C Byrn(v),

and so that if V.¢ is the connected component of R~1(U,,) that contains ¢ € Crit N J(R),
then V,, = UCrith(R)VnC has Martens property. Moreover, for n > ng we have OU,, C
K (Viy(ny), where U,, = UU}.

Put L, = R’l(K(Vm(H)))—Vn. Then for every connected component W of C—L,, there
ismw > 1 and ¢(W) € CritNJ(R) such that R™" : W — VT(;((‘;LV)) is a biholomorphism,
with distortion bounded by D = D(e) < 1+ Me, for some constant M independent of n.

Note that is enough to prove the Area Estimates for Vs = V,,, for n > ng. We will
prove the Area Estimates hold for V;,, for n > ng, for an appropriated choice of € > 0;
see Section 4.1.

For ¢ € Crit N J(R) and n > ng let
Vi — E(Va)]

&n = Ve and &, = max &n-
m(n)

Thus, to prove the Area Estimates, is enough to prove that there is a constant Ay > 0

such that for n big ¢, < AO(T(T”))_Mjam . Finally note that, since J(R) # C, it follows
that K(V,)NV¢ ) has non empty interior, so &, < 1.

m(n
Proof of Proposition 4.1. Let U, (y,) given by Proposition 2.7 for § = 7m(n0) - For
v € CV N J(R) and for m(ng) < r < ng+ 1 let, U? be the connected component of,

B.- (’U) U ((C — K(Vm(no))),
that contains v. Therefore OUY C K (Vyu(n,))- Let

U? = UP U { connected components U of C — UY such that diam(U) < diam(U")},

which is a simply connected neighborhood of v so that OU” C K(V,(n,)). Moreover, by
Lemma 3.1 we have B(v) C U} C By, +~(v), where 1 =1+ O(e).

For ¢ € CritNJ(R) let V. be the connected component of R_l(Uf(c)) that contains c.
By Lemma 2.6, V,, = UV,® has Martens property. Taking € smaller if necessary one may
suppose that Vi, (0) DO Vin(ng)+1 2 -+ O Viy- In a similar way we can define inductively
neighborhoods U} of v € CV N J(R), for j > ng + 1, such that OU;11 C K(V,,(5)) and
B.-(v) C UY C By, ,~(v), that satisfy the conclusions of the Proposition.

If W is a connected component of C — L,,, then R(W) is a connected component
of C — K(V,,), so there is m = my and ¢ = ¢(W) € Crit N J(R) such that R™ :
RW) — VTZ(H) is a biholomorphism. By the Univalent Pull-back Property the inverse
of this map extends to BTMH)T(TM"))(C), so the distortion of R™ in R(W) is bounded
14 C’l(r(Tm(")))_ﬁ, for a constant C1 > 0 independent of W and n. By Lemma 3.1

there is Cy > 0 independent of W and n such that diam(R(W)) < Ciediam(U,). By
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definition of L,, we have R(W)NU,, = (), so by Koebe Distortion Theorem, the distortion
of Rin W is 14 O(e). Thus the distortion of R™*! in W is 1 + O(e). O

Remark 4.2. Note that the neighborhoods V,, of the nest are such that 0K (V,,) — J(R)
has zero Lebesque measure. In fact, by construction 0K (V) — J(R) is locally a finite
union of analytic curves; cf. proof of Proposition 2.7.

4.1. First landing maps and decay of area. In this section we proof the Area Es-
timates. We keep the previous notation. Recall that is enough to prove that there is a
constant Ay > 0 such that for big n we have

Vi — K(Va)l >
o= max g =m0 g ()
CritnJ(r) |V (n)| o(r(™))

We first prove that £, — 0, by showing that the &, satisfy an inductive inequality; see
Lemmas 4.3 and 4.4. Then we prove the desired bound for &,,, see Lemma 4.5.

Let us begin with a remark about distortion. Let W be a connected component of the
complement of L, = R~ (K (Vp(n))) — Vi, different from V,¢, for ¢ € Crit N J(R). By
Proposition 4.1 there is my > 1 and ¢ = ¢(W) € Crit N J(R) such that R™W : W —
Ve (n) 188 biholomorphism with distortion bounded by D = D(g) > 1. Therefore, letting

m

Ew = ‘W‘;Vﬂ("l, we have that
w o el 8w
gn 1- fn
or equivalently &y < &, = ﬁ D?¢,,.

The following lemma is independent of dynamics.

Lemma 4.3. Let v, € (0,1) such that v, — 1 asm — oo and let o € (0,1). If D > 1 is
close to one, then every sequence &, € (0,1) such that,
f 1- gn 1 1
"SI (D2 Dé — D2, 10’

where fn,l = , 18 such that &, — 0 as n — .

T—(DZ-DE S

Proof. For € € (0,1) put £ = m Note that,
(1+(D? - 1)6)(1 — D™%¢0) < 1+ (D? )5—540.
1+ (D% -1)¢
So, if p € (0,0) and if D is close enough to one, there is &, € (0,1) such that,
(2) (14 (D? = 1)&)(1 - D~%0) < 1— pt,

for £ € (0,&). Moreover we may suppose that D is close enough to one, so that (1 +
(D? —1)¢)(1 — D7 2¢0) < 1 for & 6 [€0,1]. Thus, if p > 0 is small enough, we have (2)

for all € € (0,1). Hence 1 &, > {=5=v,.

Consider € € (0,1). If §,—1 < € we have 125’; > 13—’;6. Since v,, — 1 as n — o0 it

follows that there are infinitely many n for which &, < €. Note that 1 —¢&, > 11:55111 Un
implies,
1—
&n < ﬁgn—lvn + (1 = vp).
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Since v, — 1 as n — oo, it follows that for n big, &,_1 < e implies &, < €. Therefore
there is n(e) such that &, < e for every n > n(e). Since € € (0, 1) was arbitrary, it follows
that &, — 0 as n — oo. (]

Lemma 4.4. &, — 0 as n — oo.

Proof. We denote K; = K(V}).
1.— Let U be a connected component of Vintn) = Va1 — Kp—1 and let my > 0 and

¢(U) € CritnJ(R) be such that R™v : U — V)
4.1 we have that,

is a biholomorphism. By Proposition

D72|VC<U NEn| _ [UNK,|
oy = Ul
Viiy|

so |U - K,| < |U| (1 _D—2W17(Qf<).

Fix ¢ € CritNnJ(R). Note that V¢ n(n) —Vy_1—K,_1is contained in Vy,, () — Vi1 —Lp—1.

As remarked above, for each connected component W of this later set, we have
(W — Lyp—1] < &n1|W].

Therefore >, |U| < > w Ena|W| < én_1|v,;(n) — V¢ 4|, where the sum is over all
connected components U of V¢ im(n) — V¢, — K,_1, and all connected components W of
ve | —V¢  — L, 1, respectively.

m(n) n—1

Therefore we have,

Ve N K,
Vamlé&n = WViam — Eal S Vi |+ZW|< - D~ QW
c e c c —2 . |VncglmKn|
< Vel +&aalVinm = Vol (1= D7 (min ——=——) |, so
co |Vn31|

|Vni(n)* Vi 1|< - - V21 N Ky
1-gg > 1—5n1+5n1D2<mm"‘c))
Vil co Vit

2.— In a similar way we obtain

~ Ve Nk,
|ufl—Kusqwﬂ+&11wfl—wf<1—D—%@yLﬁ§a7—5)
n—1

Therefore we have

Ve Nk Vi = Ve Viti N Ky
| n—1 n| > ‘ n— ‘ < ﬁn 1< —Dz(minLu))y and,

Ve 2 vl in
3 Ve 1=Vl
VRS N K (1 —&,—1)(min, ﬁ)
min > _ k
<o Valil 1 — D=2&,_(min, %)
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3.— Combining 2 and 3 it follows that,

1-& _ 1-& 1
1 =& 1= &y 14+ (D% = 1)1
C —2F : V1= Vil
1 Vi) = V-1l D2, (min, )
- 2 - = . Ve Ve
L+ (D2 =D V5, (n)| 1 — D=2, _1(min, %)
_ 1 Ve (n) — Vil 1
1+ (D2 — 1)€n—1 lV (n)| 1-— Zgn 1(1111110 VCTVc_‘Vﬂ)
Note that min, % =1— rima + O(e), so if € is small enough, there is o € (0,1)
so that o < min, W‘ﬁ/ill for big n. Moreover,
. |Vrf7,(n) - Vncfl| AN 2
Up =min ———————— ~ 1 — (r(7")) Fmaz — 1 as n — oo.
¢ |Vncz(n)|
Hence the sequence &, satisfies the hypothesis of the previous lemma. Since D = D(e) =
1+ O(e) we have that, if € > 0 was chosen small enough then &, — 0. O
Lemma 4.5. Let n > 1 and k > 1 be such that m(n) = m(n+ 1) = ... = m(n + k).
Letting b; = & min, ‘V‘V(c‘)‘ we have
bn_;’_k < 1 + D maX an_l.

Proof. By hypothesis m(n 4 k) = m(n), so for any connected component W of V() —
Visk — R (K () there is m > 1 and ¢ € Crit N J(R) so that R™W : W — VTfLO(n) is
a biholomorphism.

Since m(n) > n — 1 it follows that, if U is a connected component of Vi,,(ny — Viiyr —
R™Y(K,_1), then there are m > 1 and ¢y € Crit N J(R) so that R™ : U — V,% is a
biholomorphism.

Fix ¢ € Crit N J(R). It follows by the distortion property of Proposition 4.1 that

n+k| (n+k)| v, +k\ = |V m(n) — n+k Kk

. - V21 — Kyl
< D| m(n) Vn—&-k*R 1(Kn_1)|(1’IlcE:X |Vc0 |" )

As in the previous lemma we have

Vi) — ok — R (Kn )| < D6 |V () — Vagrls and also

Ve = Vit = BT H(Eno1)| < D260 |Vii_y = Vil
1.— Let us prove that for big n we have max,, I‘/no“l/iowl < Dmax, :v?:li\l In a similar
way as above we obtain
|V7f—1 - Vnc+k B K7L+k| < D2 |Vnc—1 - Vrerk; - Ril(Kn—l)‘ (max |Vncgl - n+k|)
|V¢f—1| n ‘Vrf—l va+k| co |Vrfgl‘
Vo, — Kngk
< D' (max UIIVT|+>’
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Therefore

|Vyfg1 *Kn+k| 4 | Vi k|
max ———— 1-D max
S N s e vl
Considering that &, — 0 as n — oo we have that, for big n,
Ve Ve
maxu—lf()"*’f‘ < D(max' "C+’f|)
co ‘Vn—1| |Vn—1|
2.— Combining previous inequalities we obtain
Vet
&kl Vinman| = Vel < D6 1|V — n+k|( ‘Vyf:o |)
1
5 Vol
< D En—1| m(n)‘( H;ZO |)7 S0
v, — Konyil Viikl Vil
Ehvk = m“{ TS 4 D6 (max ).

Vil ~ Vi Vil

)]
Thus b, x < 1+ D5min, l‘v"é#)‘ﬁn_l(max% ‘lv’if;’“l‘) Note that the minimum and the
n+k

maximum are realized for ¢ and ¢y with maximal multiplicity. Since for such critical

points the respective quantities are comparable by a factor of D2, it follows that if c
Vi)

minimizes s we have
‘V (n— 1)|
Vel Ve ey
bn—‘,—k § 1+ D7 cm z (fn—l mcn )
Venl " V]
< 1+D9ma |C7"7”)|bn_1.m
|Vm (n— 1)|

Proof of the Area Estimates. Note that is enough to prove that the b; are bounded. By
the previous lemma is enough to bound the b; for j so that m(j + 1) < m(j). If j1 < jo
are two such consecutive numbers it follows by the previous lemma that,

|Vncz<h+1>|b

bj, <1 +D? max |V°(

J1)|

. . IV, \
Letting € > 0 smaller if necessary we may assume that D max, %
m(j1)

some definite constant less than one. Then the b; are bounded and the Area Estimates
follows. O

is less than

4.2. About Lebesgue measure of Julia sets. In this section we prove the following.

Proposition B. Let R € S be a rational map such that J(R) # C and consider a nest
Vi = UV,$ of neighborhoods with Martens property given by Proposition 4.1. Then the
area of C — K(V,,) goes to zero as n — oo. In particular the set,

{z € J(R) | w(z) N Crit # 0} = Nyt (C — K(V)),
has zero Lebesgue measure.

Recall that w(z) denotes the omega limit set of z € C, which is the set of accumulation
points of the forward orbit of z.
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In Section 7 we prove that, if J(R) # C, then the set of points in J(R) that do
not accumulate critical points under forward iteration has zero Lebesgue measure. This
completes the proof of Theorem B asserting that in this case the Julia set has zero
Lebesgue measure. The proof of this fact is somehow indirect and it depends in the
proof of Theorem C. There is a more direct proof by Przytycki, under the stronger
summability condition with exponent one; see Lemma 3.1 of [Pr2]. So now we obtain.
Corollary. Let R € C(z) be a rational map satisfying the summability condition with
exponent one and so that J(R) # C. Then, the Lebesgue measure of J(R) is zero.

The proof of Proposition B depends in the following lemma, which is a consequence
of the Area Estimates.

Lemma 4.6. Fiz n > 1 close to one. Given § > 0 small let Us = UveCVmJ(R)UU be

as in Proposition 2.7, so that Bs(v) C UY C Bys(v) and the union Vs of the connected
components of R~1(Us) intersecting Crit N J(R) has Martens property. Then there is a
constant Ay > 0 independent of § > 0 such that,

U” — K(Vs)l o2

T < Ailr(8)
Proof. Denote by V¢ the connected component of Vs containing ¢ € Crit N J(R) so Vs =
Uc Vs . Since Vs has Martens property, for every connected component W of C-K (Vs)
there are m = my > 0 and ¢ = ¢(W) € Crit N J(R) such that R™ : W — V¢ is
a biholomorphism. Denote by R™™W the respective inverse branch of R™W. By the
Univalent Pull-back Property R~™" extends univalently to BT-((S)&(C).

For v € CVNJ(R) let S* = {W | WN U # 0} and let € > 0 given by the Area
Estimates. For W € S and v € (0,1) let W(v) = R™™W (Bycr(5)s(c(W))). By Koebe
Distortion Theorem there is v € (0,1) independent of ¢ such that if Wy, Wy € S are such
that Wy(v) N Wi (v) # 0, then either Wy(v) € Wi (1) or Wy(v) € Wy(1). Let

T ={W € S | W(v) ¢ Wy(1) for all Wy € S” — {W}}.

Thus the sets W(v), for W € TV, are pairwise disjoint. By Koebe Distortion Theorem
the distortion of R™Y in W (1) is bounded by some constant D > 1, independent of
0 > 0. It follows by Lemma 3.1 that if § > 0 is small enough there is a constant C > 0
independent of § such that

UY — K(Vs) C (UpoW (1)) C Bes(v).
By the Area Estimates we have

W — K (Vs)] < D2A(r(8)) Fmar |W].
Therefore

\UY — K (V5)| < D2A(r(8)) wmaz > W) < V2D A(r(5))” Fmas S W)l
T TV
Considering that the sets W (v), for W € T, are pairwise disjoint we have ) ., [W(v)| <
| Bes(v)|. Thus there is a constant A; > 0 such that |[U? — K(V5)| < Al(r(d))_unfam |U?|.
(]
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Proof of Proposition B. Let T € (0,1) and 1 € (1,771) be as in Proposition 4.1, so that
Bi(c) C Vi C Byri(c). Then, for i > 1,

Ve = K(Via)

€= k(W) < D2 (max MEZFLE) i re,

where the distortion constant D; > 1 satisfies D; = 1+ O((r(7™))~ Az ). Applying the

previous lemma for § = 7% it follows that W

less than one, so the proposition follows. O

is less than some definite constant

The following lemma is an easy consequence of Lemma 4.6 and it will be used in
Section 5 to prove Rigidity.

Lemma 4.7. Let R € S be such that J(R) # C. Then for every eg > 0 there is
do = do(e0) > 0 and p > 1 such that for any 6 € (0,00) the set V.= UV with Martens
property given by Proposition 2.7, for this choice of §, is such that for any ¢ € CritNJ(R),

|Bys(c) = K(V)]

= < €p.

|Bp6 (C) |
Proof. Let p > 1 be such that for every ¢ € Crit N J(R) and ¢ > 0 small, | Bas(c)| <
% |B,s(c)|. By Lemma 4.6, applied to pd instead of 0, and by Koebe Distortion Theorem,
we have that for every ¢ € Crit N J(R) and every § > 0 small

[Bus() =V = K(V)| < T |Bys(c)],

~ ~ EO

Bys(c) = K(V)| = [Bps(e) = Vo = K(V)] + V] < (2 + ) By ().

5. MOSTLY CONFORMAL MAPS AND RIGIDITY.

Let us fix throughout all this section a rational map R € S such that J(R) # C. In
this section we prove a rigidity property of qc maps that are conformal in a big dynam-
ically defined set. Such maps appear naturally in pull-back procedures like Thurston’s
algorithm (see Section 6), in pseudo-conjugacies (see [Lyu2] and Section 8.2) and in
parameter maps; see [Lyu3], [R-L2] and Section 8.4.

Before the statement of Rigidity, let us recall a simplified version of Proposition 4.1,
that provide us with a nest of neighborhoods with Martens property.

Lemma 5.1. Fiz 7 € (0,1) and n € (1,771). Then there are neighborhoods UP, for
n>1 and v € CVNJ(R) so that

Brn(v) C U C Byon (v),

and so that, if V.¢ is the connected component ofR_l(Uf(c)) that contains ¢ € CritNJ(R),
then V,, = UV,¢ has Martens property. Moreover there is a sequence m(n) < n so that
n—m(n) — oo as n — oo such that and OU, C K(Vi,(n)), where U, = UU,, n > 1.

Note that this lemma implies that for any NV > 1 and any n > 1, we have that for
every connected component W of C— K (V,,) there is my > 0 and ¢ = ¢(W) € CritNJ(R)
such that R™W : W — V¢ is a biholomorphism whose inverse extends univalently to

Vrg(n). By Koebe Distortion Theorem it follows that, for n > 1, the distortion of R™W
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in W is bounded by some definite constant D = D(n) > 1; in fact D only depends in
n—m(n) and D = D(n) — 1 as n — co.

5.1. Statement of Rigidity. The following is our main technical result.

Rigidity. Let R € S such that J(R) # C and consider the nest V,, = UV as in Lemma
5.1. There are constants K > 1 and C > 0 only depending in ming 1 mod(V,$ —m),
so that for n big enough and for every qc-homeomorphism x : V.6 — x(V,€) C C that is
conformal Lebesgue almost everywhere in V.CNK (V,41), there is a K-qc homeomorphism

X : V¢ — x(V:) at hyperbolic distance from x at most C.

Remark 5.2. (1) The property that X is at a bounded hyperbolic distance from x
implies that, if x extends continuously to the boundary of V.2, then so does x and
their extensions coincide. This property will be important to apply the Gluing
Lemma, stated in Appendiz 10.

(2) Note that given a preferred point w € V. we may assume that x(w) = x(w), by
changing the constants K > 1 and C > 0.
(3) As the proof of Rigidity shows, for each ¢ € Crit N J(R) the annulus A, =
¢ | — V¢ also has this Rigidity property. In fact, for any qc map x : AS — C
that is conformal Lebesgue almost everywhere in AS N K(V,,), there is a Ky-qc
homeomorphism X : A5 — x(AS) at a hyperbolic distance at most C from x,
for definite constants Ko > 1 and C > 0. In particular mod(x(AS)) is at least
Ky 1m0d(A$L), which is independent of x; compare with the rigidity property in
Appendiz 11. 1t follows from the proof that we can take Ko > 1 arbitrarily close
to 1 by letting n big.

Rigidity holds because V,, — V,, 11 — K(V,,+1) has well distributed and small area. With
the following Lemma 5.3 we will make this precise. First let us consider some notation.
Given U C C conformaly equivalent to D and E C U put,

1Bl = sup [p(E)],

where the supremum is taken over all biholomorphisms ¢ : U — D. Note that || E||y is
invariant by biholomorphisms.

Lemma 5.3. Given € > 0 small, there is N > 1 and ng > 1, so that if n > ng then for
all c € Crit N J(R), we have |Vi_n — K(Vi)llve_ <e.

Proof. By Koebe Distortion Theorem there is D > 1 that bounds the distortion in V7, ;,
for m > 1, of any univalent map defined in V,$,. By Lemma 4.7, in Section 4.2, there is

N > 1 such that for n > 1,
|Vncil—N - K(Vn)|

> < D%

Vatinl
Consider a biholomorphism ¢ : V¢ 5, — D. For each connected component W of
Ve ny — K(Vps1-n) there is my > 0 and ¢(W) € Crit N J(R) such that R™W : W —

V;SK_) y is a biholomorphism whose inverse gy extends univalently to Kf(_v}\/,) So the

distortion of ¢ o gy in Vi,41—n is bounded by D. Therefore,

W = KVl _ Vit — K(V2)

— c(W
(W) s
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Since such W cover V.2 — K(V,,) the lemma follows. O

Observe that for n > 1 the connected components of V,, — V,,y1 — K(V;,41) are
organized by the connected components of V,, — V.11 — K(V,,_n), which are mapped
biholomorphic to the V¢, for ¢ € Crit N J(R), by appropriated iterates of R. By
the previous lemma we have |W — K(V,,)|lw < ¢, for n > 1. It is in this sense that
Ve = Ve | — K(V,) has well distributed and small area.

5.2. Smoothing. In this section we consider smoothing lemmas used in the proof of
Rigidity; see Lemmas 5.4 and 5.6

Lemma 5.4. Given dg > 0 and Ky, K1 > 1 there is € > 0 such that if Wy, W C C are
biholomorphic to D and E C Wy satisfies | Ellw, < €, then for any Ki-qc homeomorphism
X : Wo — W conformal Lebesgue almost everywhere outside E, then there is a Kg-qc
homeomorphism x : Wy — W such that,

hypdw (X, X) < do-

Proof. Consider a tilling of D by hyperbolic hexagons H; as in Figure 2, so that every
such hexagon is isometric to a model hexagon H. We define x equal to x in the vertices
of the hexagons. For a given hexagon we consider coordinates in D so that it becomes
the model hexagon H, centered at 0, and so that x fixes 0. By hypothesis x is conformal
except for a set of Lebesgue measure at most €, where € > 0 is to be chosen.

By Lemma 10.3 in Appendix 10, x is close to some map z — Az, with |[A| = 1, as
€ — 0. We suppose € small enough so that the image of the vertices of H by x form a
hyperbolic hexagon H. We let ¥ map the sides of H to the sides of H, in such a way that
the hyperbolic length is preserved, up to a multiplicative constant in each side. If ¢ > 0
is small enough x extends to a Ky-qc homeomorphism between the interior of H and the
interior of H and so that the hyperbolic distance between x and x in H is at most dg.

Doing this for every hexagon H; we obtain an homeomorphism x of D at a distance
at most dp from y and that is Ky-qc in the complement of UOH;. Since UOH; has o
finite length, it is a qc removable set and therefore y is a Kp-qc homeomorphism; see
Appendix 10. O

Lemma 5.5. Forr € (0,1) there is K(r) > 1 such that for every homeomorphism x of
D conformal in {r < |z| < 1}, there is a K(r)-gc homeomorphism ¥ of D that coincides
with x in {rz < |z| <1}.

Proof. For s > 0 denote {|z| < s} by D,. Consider an uniformization
¢ x(D ;) — D

1
T2 T2

1, we have that

2

¢ extends to a biholomorphism ¢ : x(D) — V for some neighborhood V' of ]D)T 1. Let x

such that ¢ o x(0) = 0. By Schwartz reflection principle applied to (“)ID)T

be the homeomorphism of I that coincides with y in {r2 < |z| < 1} and so that

(3) pox(se’) = 5™,

in ID)T%. Note that the function h : R — R is analytic.

Since ¢ is conformal, is enough to estimate the dilatation of ¢ o ¥ in terms of r only.
This distortion is clearly equal to max(sup(e?)’, (inf(e*)")~1), which is bounded by the
distortion of €. Since ¢ oy is holomorphic and univalent in {r < |2| < 1} and by (3), it
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FIGURE 2. The vertices of the hexagons from a uniformly distributed
set in D.

follows by Koebe Distortion Theorem that the distortion of e*” can be bounded in terms
of r only. 0

Lemma 5.6. Let U C C be biholomorphic to D, let K C U be a full compact set and let
Ky > 1. Then there is K1 > 1, only depending in Ko and in the modulus of the annulus
A =U — K, so that for any homeomorphism x : U — x(U) C C that is Ky-qc in A,
there is a K;-qc homeomorphism x : U — x(U) at a hyperbolic distance to x bounded
in terms of Ky 'mod(A) only.

Proof. We may suppose that U = D and note that there is » € (0,1) only depending
in mod(A) so that {r < |z| < 1} C A. For x given, consider a Ky-qc homeomorphism
¥ : x(U) — D so that v o x is conformal in A. Then the lemma follows by Lemma 5.5
with Ky = KoK (r) and considering that mod({r? < |z| <1}) > 1K 'mod(A). O

5.3. Proof of Rigidity. Let NV > 1 and fix n > 1. We organize the connected compo-
nents of V,, — K(V,,41) in levels as follows; we will call this connected components just
components. For ¢ € Crit N J(R) let V¢, ;, have level 0. Note that for each connected
component W of V,, — V,,11 — R™Y(K(V},)) there is my > 1 and ¢ = ¢(W) € CritN J(R)
such that R™W : W — V¢ is a biholomorphism. We denote its inverse by gy .

By Lemma 5.1 gy extends univalently to Vi’ . Then gw (V)5 ;) is a connected
component of V;, — K(V,,11), we assign it level 1. In general a connected component W
of V,, — K(V,41) determines ¢ = ¢(W) € Crit N J(R) and connected components W1, ...,
W, of V,, — Vi1 — R7Y(K(V,,)) so that,

W = gy 00 gwi (Vies).
We assign level [ to W and we denote gw = gw, ©...ogw, , which extends in a univalent way
to V,¢_ . Note that if Wy and W7 are components of the same level, then gWO(V},C,(WO))

and gw, (Viy (Wl)) are disjoint.
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Lemma 5.7. It is enough to prove Rigidity for maps x that are conformal Lebesgue
almost everywhere outside components of level at most k(x) > 0.

Proof. Let x be as in Rigidity. By Ahlfors-Bers Integration Theorem, for every k > 0,
we can write x = hg o Xk, where xi : V¢ — x(V.¢) is a qc homeomorphism, that is
conformal Lebesgue almost everywhere in the components of level at most k and hy is a
normalized gc homeomorphism of x(V,¢), that is conformal Lebesgue almost everywhere
outside the components of level at least k.

Moreover we may suppose that the dilatation of hj is bounded by the dilatation of y.
Since the area of the union of the components of level at least k, goes to zero as k — oo,
it follows that hj, converges uniformly to the identity of x(V5); see part 1 of Lemma 10.3.

Suppose that Rigidity holds for xg, for definite constants K > 1 and C > 0, and
let xx be the respective K-qc homeomorphisms. By the compactness of normalized
K-qc homeomorphisms there is k; — oo as ¢ — oo so that xj, converges to a K-qc
homeomorphism x : V,¢ — x(V,¢). Since the hyperbolic distance between Y and x is
at most C, it follows that the hyperbolic distance of x to x is also bounded by C. O

Note that the connected components of V,, — V,, 41 — K(V,,_n) cover the components
of level one. We call these connected components pieces of level 0. Moreover for any
component W of level [ the image by gw of a piece of level 0 will be called a piece of

level [. Thus a piece of level [ + 1 is contained in a unique piece of level [ and every piece

c(W
‘/;L-(i-l )

Proof of Rigidity. Fix Ko > 1 and let K; > 1 be as in Lemma 5.6 for U = V¢ and
K = V¢, |, where n > 1 and ¢ € Crit N J(R). Note that, by the proof of Lemma 5.6

of level [ is contained in gy ( ) for some component W of level .

we can take K; = KoK (r), where r only depends in mod(V,y — V¢, ;). Thus K; can be
taken arbitrarily close to K(r) by letting Ky close to 1. Hence K = K; depends only in
min, mod(V,y — V¢, ) for big n.

Let € > 0 as in Lemma 5.4 for these choices of Ky and K; and consider N = N(¢) as
in Lemma 5.3. Fix n > 1 and we consider the notation and terminology above.

1.— Consider a q¢ homeomorphism x : V¢ — x(V,¢) € C conformal in V¢ N K (V,,41).
By Lemma 5.7 we may suppose that y is conformal outside the components of level at
most k.

We will prove by induction in 0 < m < k the two following properties.

(1) There is a qc homeomorphism x,, : V,¢ — x (V%) that coincides with x outside
the pieces of level m and it is Ky-qc in each piece of level m.

(2) There is a qc homeomorphism Y, that coincides with x outside Ugy (V;y (W))
and it is Ki-qc in Ugyw (Vi (W)), where the union is over all components W of
level m.

Note that Rigidity follows from 2 for m = 0, with K = K. Moreover, by hypothesis 1
is satisfied for m = k.

2.— Suppose that 1 holds for level 0 < m < k. Then for every component W of level

m the homeomorphism Yy, is Ko-qc in gW(VnC(W) - V;J(rvlv)) Thus by Lemma 5.6 there is

a K1-qc homeomorphism 1w : gw (Vii™)) — x(gw (VE™))) at a bounded hyperbolic
distance from x,,, where the bound is independent of W. Thus replacing x,, in each
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aw (Vie (W)), for all components W of level m, we obtain Y, by the Gluing Lemma, as in

2.

3.— Suppose that 2 holds for level 0 < m < k. Let W be a piece of level m — 1, so X,
is K1-qc in W. Since there is an iterate of R which is a biholomorphism between W and
Vnc(j;/v) for some ¢ = ¢(W) € CritNJ(R); it follows that ||W — K(V,,)|lw < €. Since x and
Xm coincide in W N K(V,,) and x is conformal there, it follows that Y., is also conformal
in WnNK(V,) (cf. part 2 of Gluing Lemma); so Lemma 5.4 applies to X, to give us a
Ky-qc¢ homeomorphism yw : W — x(W) at a bounded hyperbolic distance from X .
Replacing x,, in each such W, we obtain by the Gluing Lemma a qc homeomorphism
Xm—1 that is Ky-qc in the pieces of level m — 1. So 1 holds for m — 1 and the induction
is complete. O

6. THURSTON’S ALGORITHM.

In this section we prove Theorem C' about Thurston’s algorithm. The first part of
Theorem C' follows from the existence of a nest as in Lemma 5.1. We give a more
detailed version of the second part of Theorem C' as Proposition C' below. The proof of
Proposition C is in Sections 6.1 and 6.2.

Let us recall Thurston’s algorithm. We say that a map R : C— Cis quasireqular
if it is locally of the form &(z™), for some m > 1 and some qc homeomorphism &; see
Appendlx 10 for background in quasi-conformal maps. In particular a quaswegular map
R is a ramified covering of C. Let oy be the standard complex structure of C and
let 0 = (R*)*(00) be its pull-back under R*¥. Consider the unique biholomorphism

E (C, og) — ((C, 00) with an appropriated normalization, so Qy = hx_1 0 Ro h;l isa
rational map of the same degree as R; see Figure 1.

Proposition C. Let R € S be a rational map such that J(R) # C and consider nests
Vo = UV, and U, = U,UY, for c € CritNJ(R) and v € CVNJ(R), given by Lemma 5.1.
Let n big and consider a quasireqular map R of the same degree as R, that coincides with
R outside V,, 11 and so that for any ramification point r of R we have R(r) € K(V,).
Consider Qr and hy, as above, so that hy, fizes three preferred points of K(V,,). Then the

following assertions hold.

Thurston’s algorithm: There is a rational map Q and a continuous map h :
C — C, so that Qr — Q and hy — h uniformly. Then h maps ramification
points of R to critical points of Q, preserving local degrees. Furthermore Q is
close to R and h 1is close to the identity as n is big.

Pseudo-conjugacy: Let K > 1 be given by Rigidity and let Q and h as above.
Then there is a K -q¢ homeomorphism h of C that coincides with h in K (V) and
so that h o R(w) = Q o h(w) for allw & V.

Remark 6.1. (1) In geneml h is not injective.  For example, by making a small
perturbation to some Ry, we may obtain R with a saddle periodic point. So the
semi-conjugacy h cannot be injective in this case.

(2) We remark that R may have several ramification points in V.2, with the appropri-
ated multiplicities. Thus the number of ramification points of R may be strictly
bigger than the number of critical points of R.
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Proof of Theorem C given Proposition C. Choose T € (0,2’§) and positive integers N
and Np such that for ¢ > 0 small there is n such that for v € CV N J(R),

Upnin, C Bs(v) CUpyyy CU, C Bas(v) C U,y

Thus the part of Theorem C about Thurston’s algorithm follows from the respective
part of Proposition C. It reminds to prove the first part of Theorem C. By Lemma 5.1
the connected component W* of C — K(V,,_n) containing v € CV N J(R) is well inside

Uy, n,; see also Lemma 3.1. Consider a qc homeomorphism ¥ of Uy,  that extends

to the identity in OU,, v and so that £¥(v) € W". Let £ be the homeomorphism of C
that coincides with £” in U}, v, and is the identity otherwise. By the Gluing Lemma §
is qc.

Put R = ¢ o R which is a quasiregular map. Note that R coincides with R outside
Vian, = UVS n, C Bs(Crit N J(R)) and the ramification points of R in V.4, are the
points in Crit N J(R). Let ¢ € Crit N J(R) and put v = R(c), so

R(c) =€ (v) € OW" C K (Vyi_n).

Since R coincides with R in K (V;,_y) it follows that the orbit of ¢ by R is contained in
K(V,—n). In particular it is disjoint from V,,_x, which contains Bas(Crit N J(R)). O

6.1. Compactness and stabilization. Consider a quasiregular map R as in Proposi-
tion C, but with the stronger assumption that for every ramification point  of R we have
R(r) € K(V,_1), instead of R(r) € K(V,,). This is just a formally stronger property:
consider a nest f/m = UV, so that ‘72” = V,, and then replace n + 1, n and n — 1 by
2n+ 2, 2n + 1 and 2n respectively in the argument.

The proof of Proposition C is as follows. We first prove that, for k& > m, the qc
homeomorphism h;l o hy, is conformal almost everywhere in hy,(F), where F,, =
R’m(K(VnH)); see Lemma 6.2. Given m > 1 we apply Rigidity to restrictions of the
maps hy o h,l, for k > m, and using compactness of K-qc maps we construct a K-qc
homeomorphism x,, so that for & > m the maps xx o hy and X, © hy, coincide in Fpy;
see Figure 3. Moreover x,, is conformal Lebesgue almost everywhere in h,, (F,,), where

Fm = R™(K(V,)).

In Section 6.2 we study the geometry of the sets Fn = Xm © hm(Fm). We prove
that the connected components of C — F,, have small diameter as m is big; see Lemma
6.5. As consequence we obtain that the maps xrp_1 0 Qx © Xgl and xx o hy converge
uniformly to maps @ : C—Candh:C—C respectively; see Lemma 6.6. Then we
prove that the Lebesgue measure of C — F,, is small as m is big; see Lemma 6.7. Since
X! is conformal Lebesgue almost everywhere in Fon = Xm (R (Fin)) it follows that x,,
converges to the identity as m — co. We conclude that @, and h,, converge uniformly
to @ and h respectively, so ) is a rational map of the same degree as R.

Lemma 6.2. For m > 0 let F;t = R-™(K(Vny1)). Then, for every k > m the qc
homeomorphism hy o h;! of@ is conformal Lebesque almost everywhere in h, (F,}).

Proof. By construction K (V) is forward invariant by R and R is conformal almost

everywhere there. Therefore o9 and ok_,, coincide almost everywhere in K(Vj,41).

Thus o, = (R™)*(00) and o = (R™)*(0_m) coincide almost everywhere in Fjf =

R™™(K (Vy41)). Since k' : (C,00) — (C,0) and hy : (C,04) — (C,00) are holo-

morphic, it follows that hy, o h,,,! is conformal almost everywhere in h,, (F.5). g
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Since R(r) € K(V,—1) for every ramification point of R, it follows that any pull-back
of V¢ ., for ¢ € Crit N J(R), by R is univalent. Let m > 0 and let W be a connected
component of C— F,,, where F,, = R™™(K(V;)). So there is [ > m and ¢ € CritN.J(R)
so that W is a pull-back of V¢ by R!. By the remark above it follows that the respective
pull-back of V,¢_; is univalent. We denote it by W .

Lemma 6.3. Put F,, = R-™(K(V;,)) and let W be a connected component of C — F,.
Then there is a biholomorphism ow : V,S_y — hy (W) such that pw (V,F) = hy (W),

n—1
ow (Ve i NK(V,)) =hym(W™ NFy) and
@W(Vrf—l N K(Vn+l)) = hm(Wi N ‘7:;;)

Proof. Note that R™(W) (resp. R™(W ™)) is a connected component of C— K (V,,) (resp.
C— K(V,—1)) and R™ is univalent in W (resp. W ). Therefore,
Qr0...0Qm: hm(W_) - Rm(W)a
is a biholomorphism that maps A, (W), hy(Fp) and hy,(Fh) to R™(W), K(V,) and
K(Vy11) respectively; see Figure 3. Since R™(W ™) is a connected component of C —
K(V,_1), there is [ > 1 such that R : W~ — V¢, is a biholomorphism that maps
R™(W), W= N K(V,) and W~ N K(Vy41) to VS, Ve, N K (Vy,) and Vie_y N K (Vi)
respectively. Then the lemma follows with <p;V1 =R'oQi0..00Q,,. O
Let K > 1 and C' > 0 be the constants given by Rigidity7 that are independent of n;
see Section 5.1. Let W be a connected component of C — F,,, and let ¢y as in Lemma
6.3. By the previous lemma it follows that for every k > m,
hi o bt o oy Vi€ — hy (W)
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is a qc homeomorphism that is conformal almost everywhere in V,°NK (V,,11). By Rigidity
there is a K-qc homeomorphism at hyperbolic distance from hy, o h,;! o oy bounded by
C; see Section 5.1. It follows by the Gluing Lemma that there is a normalized K-qc
homeomorphism xy ,, of C that coincides with hy o h;ll in A, (Fm); see 1 of Remark 5.2.

By compactness of normalized K-qc homeomorphisms of @, it follows that there is
a sequence [; — oo such that for every m > 0, the homeomorphisms Y, ,, converge
uniformly to a normalized K-qc homeomorphism x,,. Note that xj ., coincides with
hi o bt in Ay, (Fn) and it is holomorphic there. Therefore xl_lk © X1;,m, and hence
Xgl © Xm, coincides with hy o Al in h,,(F,,) and it is holomorphic there. Hence for
k > m the homeomorphisms xj o hx and X, © by, coincide in Fp,.

Considering that R= h;l_lonohm, it follows that for £ > m the maps Xk—lOQkOX;f
and X1 0 Qm 0 ;' coincide in Fp, = X © hon (Fn)-

6.2. Geometry in the limit. In this section we complete the proof of Proposition C.

For m > 0 let F,, = Xm © b (Frm). We call a connected component W of C — F,,, for
some m > 0, component. Note that there is a connected component W of C — F,,, such
that W = xm 0 hp (W), We denote W~ = x,, 0 by (W),

The level of W is the integer [ > 0 such that R:W — V¢ is an homeomorphism,
for some ¢ € Crit N J(R). Since in this case R™(W) is a connected component of the
complement of Fy = K(V,,), it follows that [ > m. Thus a connected component of
C — F,, has level at least . Moreover a component of level [ is a connected component
of C — Fi, but is not a connected component of C - .7%14_1.

For ¢ € Crit N J(R) put V¢ = xo(V,¢) and V¢ = xo(V¢ ;). We begin with a lemma
analogous to Lemma 6.3.

Lemma 6.4. Let W be a component of level I. Then there is ¢ = ¢(W) € Crit N J(R)
and a K-qc homeomorphism 1y, : W= — Ve such that wW(W) =V° and
Uy (W™ N Fip1) = VENFu

Proof. By definition of level there is W and ¢ € Crit N J(R) such that R : W — V¢ is
an homeomorphism and such that x; o hy(W) = W. Then
Qro..0Q;: Xfl(Wf) — Ve,
As in Lemma 6.3 the K-qc¢ homeomorphism
Uiy = Xom' 0 Q100 Qi W™ — Vi,

has the required properties. O

Note that the property oU,, C K(V,,—1) implies that if W; is a connected component
of C = Fip,, for i = 0,1, such that Wy C Wy but Wy # Wy, then W, C Wy. Hence, if
WO and Wl are different components such that W1 C Wo, then W1 C WO.

Lemma 6.5. For every e > 0 there is M > 0 such that if m > M, then every connected
component W of F,, has diameter less than €.

Proof. 1.— Since a connected component of C — Fyn has level at least m, is enough to
prove that components of high level have small diameter.
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Let W be a component of big level. Let We=W CW_1C..C WO be all different
components that contain Wk Thus WO is a connected component of C — .7:0, let Iy be
the level of WO.

For 0 <7 < klet v : W[ — V° be the map given by Lemma 6.4 for W;, where
¢; € Crit N J(R). Thus, for i < k, we have that v;(W;,,) is a connected component of

C— Fy. Let li+1 be the level of this component. Thus [ = [y + 11 + .... + l;. Then there
are three cases.

Case 1.- Iy is big. Since Fo= Xo(K (Vy)), it follows that Wo has small diameter. Hence
W = W, C Wy has small diameter.

Case 2.- There is 0 < ¢ < k such that [; is big. Then it follows that the diameter of
U, = zbi_l(Wi) C V-1 is small. Thus the modulus of V' — U; is big. Since 1;_1 is

K-qc it follows that the modulus of W;l - W_Z is big and therefore the diameter of WZ-
is small.

Case 3.- k is big. As remarked above for all 1 < i < k we have that VAV[ C Wi_l. Since

Yia (W = W) = Ve = Ve

has definite modulus and ;1 is K-qc it follows that Wi_ — Wl has definite modulus.

By Grotzsch inequality it follows that the modulus of Wo — Wy, is big, so W = W}, has
small diameter. O

Lemma 6.6. The maps Xm-1 © Qm © X' and Xom © hy, converge uniformly to maps
Q: C—Candh:C—C respectively.

Proof. We prove the assertion about y,, o h,,, the other being similar. Let € > 0 and
let M = M(e) be given by the previous lemma. Recall that for & > M we have that
Xk ©hg coincides with xp;0hps in Fpy. Thus, if W is a connected component of .7:"M, then
Xk © hig(W) = W = xas 0 har (W), for k > M. By the previous lemma diam(W) < &, so
the distance between xy, o hx, and xx, © hg,, for ko, k1 > M, is at most €. Thus xj o hy,
is a Cauchy sequence, and hence a convergent one. O

Lemma 6.7. The set Umzoﬁm has full Lebesgue measure in C. Hence the Lebesgue
measure of C — F, is small as m is big.

This lemma is based in the following one.

Lemma 6.8. Fiz ¢ € CritNJ(R) and fiz p. € A° = V© — Ve contained in the interior of
F1. Then there is € > 0 such that for every K-qc homeomorphism & : A — §(/AIC) cC
such that £(A°) encloses 0 and £(p.) = 1, the ball {|z—1| < €} is contained in §(A°NFy).

Proof. Suppose not, so there is a sequence of K-qc homeomorphisms &; : A — fi(/lc) C
C so that & (A°) encloses 0, & (pe) = 1 and so that the ball {|z—1| < ki} is not contained
in fl(/l” N .7:"1)7 where k; — oo as i — oo. By compactness of K-qc maps we may
suppose that £, converges uniformly to a K-qc homeomorphism ¢ : Ae — ¢ (flc).
Hence 1 = £(p.) does not belong to the interior of £(A¢ N F}), which is a contradiction

since p. was chosen in the interior of Fj. O
37



Proof of Lemma 6.7. Let w & UF,. Is enough to prove that w is not a Lebesgue density
point of the complement of UF,,.

Let ... C Wy, C Wy_1 C ... C W, be all different components that contain w. Note that
there is infinitely many of them. Recall that for i > 0 we have W[ C Wi_1. Hence by

Grotzsch inequality diam(W;) goes to zero as ¢ — 0o. By Lemma 6.4 for each i > 0 there
is a K-qc map ; that maps the annulus A= Wif — W; to the annulus A% = V& — Vei,
for some ¢; € Crit N J(R), and that maps points in ﬁl7¢+1 to points in Fy, where [; is the
level of Wl

It follows by the previous lemma that for each 7 > 0 there is a ball in ]:'liﬂ centered at
¥ (pe,) with radius at least of the order of dist (1, ); *(pe,)). Thus @ is not a Lebesgue
density point of C — UF,,. (]

Proof of Proposition C. Recall that x,, is a normalized K-qc homeomorphism of C such
that x,,! is conformal Lebesgue almost everywhere in Fpm. Since the Lebesgue measure
of C— F,, is small as m is big, it follows that x;,! converges uniformly to the identity; see
Lemma 10.3. By Lemma 6.6 the maps X.,_10Qm 0 X;,} and X, © hy, converge uniformly
to a maps @ : C—Candh:C—C respectively. Hence @Q,, and h,, converges

uniformly to @ and h respectively. In particular @ is a rational map of the same degree
as R.

Note that h coincides with y; o hy in F; = Rfl(K(Vn)) and this set contains all
ramification points of R. Moreover F; is connected; see Proposition 2.5. Since x1 o hy is
an homeomorphism, it follows that for every ramification point r of R the local degree
of @ at x1 o hi(r) is at least equal to the local degree of R at r. Since this is true for
every ramification point 7 of R, it follows that h(r) is a critical point of @ with the same
local degree.

It reminds to prove the pseudo-conjugacy part. Note that by construction yg is a
normalized K-qc homeomorphism of C that conjugates R, and therefore R,in K(V,,) to
Q in xo(K(V;,)). But every connected component of C-K (V) is univalently mapped by
some iterate of R to some V,¢. Since R is conformal we can redefine x in these connected
components (different from the V,¢) to obtain a normalized K-qc homeomorphism h of
C that conjugates R to @ outside V,,. Then the proposition follows considering that h
coincides with xo (and therefore with k) in K(V,,). O

7. MEASURE AND EXPANSIVITY.

In this section we prove that rational maps in S, whose Julia set in not C, have
several expanding properties. For example we prove that these rational maps do not
have irrationally indifferent cycles nor Herman rings (see Corollary 7.2 below) and we
complete the proof of Theorem B by proving that the set of points that do not accumulate
critical points under forward iteration has zero Lebesgue measure; see Proposition B in
Section 4.2. Moreover in Section 7.1 we deal with parabolic periodic points and we prove
property EAC stated in Section 3.2; see Proposition 7.8. In Section 7.2 we complete the
proof of Theorem A by improving sets with Martens property.

The difficulty proving this properties is that the Decay of Geometry Condition (defin-
ing the class §) imposes a condition on forward orbits that accumulate critical points.
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But the properties that we prove in this section are related to forward orbits that do not
accumulate critical points. So is not clear how to prove these facts directly.

The basic idea in the proofs is to use the pseudo-conjugacies given by Proposition C, of
the previous section. Theorem C and Proposition C provide us with pseudo-conjugacies
between the rational map in question and a rational map that does not have critical points
in its Julia set; see Corollary C below. This later rational map satisfies the properties
that we want to prove, and we use the pseudo-conjugacy to transport these properties.

So the results in this section will depend in the following immediate corollary of
Proposition and Theorem C.

Corollary C. Let R € S be such that J(R) # C and consider the nest V,, = UV,S as in
Lemma 5.1. Then, for every n > 1 there is a rational map @, with no critical points in
J(Qn) and a qc homeomorphism xn of C that conjugates the dynamics of R in K(V,)
to the dynamics of Qn in xn(K(Vy,)). Moreover x,(K(V,)) does not contains critical
points of Q.

Rational maps with with no critical points in the Julia set are well behaved. In fact
by a Theorem of Fatou such a rational map cannot have irrationally indifferent cycles
nor Herman rings; see for example [CG| or [Mil3]. So these rational maps can have at
worst parabolic cycles.

These rational maps are also referred as parabolic rational maps. The Julia set of a
parabolic rational map has zero Lebesgue measure; see [Lyul]. Furthermore they admit
an expanding metric defined in a neighborhood of the Julia set minus the parabolic
points; see [LY]. It follows that parabolic rational maps satisfy condition EAC stated in
Section 3.2.

Proposition 7.1. Let R, QQ € C(z) be rational maps of degree at least two, let V be a
neighborhood of Crit N J(R) and suppose that there is a gc homeomorphism x of C that
conjugates R and Q outside V. If {p1,...,pm} is a repelling, attracting, parabolic, Siegel
or Cremer cycle of R that is disjoint from V, then {x(p1), ..., X(pm)} is a cycle of Q of
the same kind.

Proof. Replacing R and @ by R™ and Q™ we may suppose that m = 1, so p = p; is a fixed
point of R. By hypothesis x conjugates R in a neighborhood of p to @ in a neighborhood
of x(p). Hence p is an attracting (resp. repelling) fixed point of R if and only if @ is
an attracting (resp. repelling) fixed point of Q). Parabolic fixed points are characterized
as non-attracting fixed points that attract an open set. Moreover Siegel fixed points
are characterized as having arbitrarily small neighborhoods that are invariant by the
map and a local inverse of the map. Since these properties are preserved by topological
conjugacy it follows that p is parabolic (resp. Siegel) if and only if x(p) is. It follows
that p is Cremer if and only if x(p) is. O

Corollary 7.2. A rational map R € § such that J(R) # C, does not have irrationally
indifferent cycles nor Herman rings.

Proof. Let p be a periodic point of R and let n > 1 so that the orbit of p is disjoint from
V... Let Q, and x,, be as in Corollary C, so Q,, does not have critical points in .J(Q,,)
and therefore @, does not have irrationally indifferent cycles nor Herman rings; see [CG]
or [Mil3]. By Proposition 7.1 p has the same nature as x,(p), so p is not irrationally
indifferent.
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Suppose that R has a Herman ring H with period k. Choose n > 1 so that the
interior of K (V,,) intersects H. Since K(V,,) is forward invariant by R, it follows that
K (V,,) contains a sub annulus A C H N K(V,,) so that RF : A — A is conjugated to an
irrational rotation. Then QF : x,(A) — x»(A) is conjugated to an irrational rotation.
Thus x,(A) is contained in a Herman ring or in a Siegel disc of @, but Q,, has neither
of them. ]

Corollary 7.3. Consider a V,, pseudo-conjugacy x between R and a rational map Q.
Then x(K(Vn) N J(R)) = x(K(Va)) N J(Q).

Proof. Since K(V,,) is forward invariant and by the previous corollary it follows that a
point w € K(V;,) belongs to the Fatou set of R if and only if R™(w) converges to an
attracting or parabolic cycle contained in K (V,,). As in the previous corollary x (K (V,,))
is disjoint form the Siegel discs and Herman rings of Q. So x(w) belong to the Fatou
set of @ if and only if its forward orbit converges to an attracting or parabolic cycle in
X(K(V;,)). Thus w € K(V,) belongs to the Fatou set of R if and only if x(w) belongs to
the Fatou set of Q. O

Proof of Theorem B. In Proposition B we proved that the set {z € J(R) | w(z)NCrit # (0}
has zero Lebesgue measure, so it is enough to prove that the set of points in J(R) that
do not accumulate critical points under forward iteration has zero Lebesgue measure;
see Section 4.2. Hence it is enough to prove that the sets K (V) N J(R) have zero
Lebesgue measure. If @,, and x,, are as in Corollary C, then by the previous corollary
n(K (V) N J(R)) C J(Q,). Since @, has no critical points in .J(Q,) and J(Q,) # C
it follows that J(Q,) has zero Lebesgue measure; see [Lyul]. Since q¢ homeomorphisms
preserve sets of zero Lebesgue measure, the theorem follows. ([l

The following corollary will by needed in Section 8.

Corollary 7.4. The set 0K(V,,) has zero Lebesgue measure.

Proof. By Theorem B it follows that K(V,,) N J(R) has 0 Lebesgue measure and by
construction 0K (V,,) — J(R) has 0 Lebesgue measure; see Remark 4.2 in Section 4. [

The following lemma will be used in the next section to prove property EAC.

Lemma 7.5. Let Q and R be rational maps and let K C K cC be compact sets forward
invariant by Q, such that K is a non-trivial connected set and Q is uniformly expanding
in K. Moreover suppose that x is a qc homeomorphism of@ that conjugates the dynamics
of Q in K to the dynamics of R in x ' (K) and x~'(K) does not contains critical points
of R. Then R is uniformly expanding in x 1 (K).

Proof. Since x~!(K) does not contains critical points of R, there is g > 0 such that
for all w € x(K) the distortion of R in B.,(w) is bounded by some D > 1, close to 1.
Since @ is uniformly expanding in K there is £; > 0 and A > 1 such that for all z € K
the pull-back W of B, (Q™(2)) by Q™ to z is univalent and diam(W) < CA~"™ for some
definite C' > 0; we assume &7 > 0 small enough so that diam(x~1(W)) < 9. By the
Holder property of q¢c homeomorphisms there are o € (0,1) and Cy > 0 be such that,

dist(x " *(20), x (21)) < Codist(zg,21)%, 20,21 € C;

see Appendix 10. Suppose that e < diam(f() and fix z € K. Since K is connected, for
n big there is w, € 9B (Q"(2)) N K, so dist(x"H(Q™(2)), x *(wy)) ~ 1.
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Consider the preimage y,, of w, by @™ in the connected component of Q™" (Be, (Q"(2)))
that contains z. So dist(z,y,) < CA™™ and therefore dist(x(2), x(yn)) < CoC*A™*". So
there is C; > 0 such that [(R")(2)| > C1(A®*D~1)". By taking ¢ smaller if necessary
we may assume that A*D~! > 1, so R is uniformly expanding in x(K). O

7.1. Parabolic periodic points and property EAC. In this section we deal with
parabolic points and we prove that rational maps R € C(z), for which J(R) # C, satisfy
property EAC stated in Section 3.2; see also Proposition 7.8 below. This property is
used in the proof of Theorem A.

We begin with some concepts and notation; see Appendix A of [Sh] or [DH1] for
references. Given R € C(z) let P C J(R) be the set of parabolic points of R. Every
parabolic point p € P has associated a set II(p) of repelling petals ™ C C that are
open sets containing p in the boundary, for which there is a so called Fatou coordinate
on : m — {Rez < 0} with the property that for every positive integer n such that
R™"(m) N7 # () the map R" is given by z — z + n in the coordinate . We denote by
IT = UpII(p) the set of all repelling petals. For = € IT and k£ > 0 we denote

B_i(m) = pr({Rez < —k}),
and for p € P,
B_i(p) = {p} U (Ungy B-a(m))

which is a neighborhood of p in J(R); usually & will be an integer. We may suppose
that, if mp,m; € II are such that R(m) Nmy # 0, then R(B_1(my)) = Bo(m) = m1.

Lemma 7.6. Let R € S and fix § > 0 small. Let rg > 0 be as in Koebe Distortion
Theorem and let r € (0,rk) and w € J(R). Then there are €9 > 0 and Cy > 0 such that
for every e € (0,20) and any univalent pull-back W of B,(w) disjoint from P, such that
the respective pull-back W, of Be,(w) intersects B_,() for some © € II (resp. Bs(c)
for some ¢ € Crit N J(R)), then we have that W, C m and diam(p-(W)) < Coe (resp.
diam(W.) < Coediam(B;(c))).

Proof. The case when W, intersects Bj(c) is simple is similar to part (i) of Lemma 3.1,
so we restrict our attention to the other case.

Let p € P be the parabolic point such that 7 € II(p). By the local description of
dynamics of parabolic points we know that the boundary of m makes a definite angle at
p and that the image of J(R) by ¢, lies in a strip of the form,

{z | |Im(z)| < Ro and Re(z) < 0};
see figure 4 and see [CG] or [Mil3] for references.

Hence the distance from any point wy € J(R) N B_; () to the boundary of m = By(n)
is comparable to the distance from wg to p. Iterating if necessary we may assume that
W intersects B_i(m) — B_o(m). Since W. intersects J(R) there is a definite £ > 0
independent of € such that W, C B_j(w), where W, is the respective pull-back of
By (w). We assumed that ¢, (W) intersects {z| — 2 < Re(z) < —1}, so by Koebe
Distortion Theorem there is Cy > 0 such that diam(p,(W:)) < Coe. O
Lemma 7.7. Let R € § and let 6 > 0 be small. Consider a neighborhood V =

1
UCrith(R)VC with Martens property given by Proposition 2.7, so that diam(V ) ~ §re .
Let U be a connected component of C— K (V) intersecting B_1(r) for some w € TI. Then
a1



FIGURE 4. Local structure of petals. The cusp contains the part of Julia
set in the petal.

U C 7 and diam(p(U)) < C’l(r(é))fm, for some Cy > 0 independent of 6 > 0. In
particular diam(U) = o(dist(U, P)).

Proof. Let m = my and ¢ = ¢(W) € Crit N J(R) be such that R™ : U — V° is
a biholomorphism. By the Univalent Pull-back Condition the respective pull-back of

B(;T((;) (¢) by R™ is univalent. Then we just apply the previous lemma to w = ¢, to
1

é(;r((;) (¢) instead of B,.(c), and with € = (r(§)) ™ #e. O

Proposition 7.8. Let R € S such that J(R) # C and denote by P the set of parabolic
points of R. Then R satisfies property EAC. That is, for every neighborhood V of
(Crit N J(P)) U P the rational map R is uniformly expanding in,

K(V)={z¢€ J(P)| P'(2) €V fori>0}.

Proof. Recall that K(V,,) is forward invariant by R and K (V},) is connected; see Lemma
2.5. For n > 1 let Q,, and x,, as in Corollary C. So @,, does not have critical points in
J(Qn) and therefore it satisfies property EAC.

It follows by Lemma 7.7 that for every p € P we may choose an arbitrarily small
neighborhood V? so that 0V? C K(V,,). Put V =V, U (UpV?P). Since Q,, does not have
critical points in J(Q,) and x,(K(V,) N J(R)) C J(Qy) it follows that Q,, is uniformly
expanding in x,(K(V)) C xn(K(V4)). By Lemma 7.5 applied to K = x(K(V)) and to
K = x(K(V,,)) it follows that R is uniformly expanding in K (V). Since this is for any n
big, the proposition follows. O

The following immediate consequence of Proposition 7.8 was used in the proof of
Theorem A in Section 3.2 (in the absence of parabolic periodic points).

Corollary 7.9. Polynomials in the class S satisfy property EAC.

7.2. Improvement of Martens sets and proof of Theorem A. In this section we
complete the proof of Theorem A. Recall that in Section 3 we indicated the proof of
Theorem A in the absence of parabolic points. The proof in the general case is the same,
only that we have to improve Martens neighborhoods to include parabolic periodic points;
see Proposition 7.11 below.

The following property is analogous to the Univalent Pull-back Condition, but for
parabolic points; see Section 1.
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Univalent Pull-back Property For Parabolic Points. Let R € S and let § > 0 be
small. Then there is dp > 0 such that for any parabolic point p € P, any k > 1 and
any w € R™%(p) such that R*'(w) ¢ P and such that R/ (w) ¢ Bs(Crit N J(R)), for
0 < j <k, we have that the pull-back of Bs, (p) by R* to w is univalent.

Proof. We assume that P # 0, otherwise the statement is vacuous. So J(R) # C and the
considerations of Section 7 apply to R. Consider a nest V,, = UV,¢ for n > 1 as in Lemma
5.1 and let n be such that V,,_; C Bs(Crit N J(R)). Consider the pseudo-conjugacy X
and the rational map @Q,, given by Corollary C. So @),, does not contains critical points
in its Julia set.

1.— The following property of @, is a consequence of the existence of a expanding
metric for @, defined in some neighborhood of J(Q,,) — P; see for example [LY].

Let W be a neighborhood of the set P of parabolic periodic points of Q. Then for
every 0y > 0 there is £(dp) > 0 such that for every set U intersecting J(Q,,), disjoint from
W and with diameter less than £(dg), we have that every pull-back of U has diameter
less than dg.

2.— Let p be a parabolic point of @,, and consider @ € Q" (p) such that Q¥ () ¢
P. Let £ > 0 small, to be chosen later. Consider the respective pull-back WO, e
Wi, = B. (p) by @, along the orbit of w. Assume & > 0 small enough so that Wi_1 is
disjoint from a fixed neighborhood W of P. Choosing dy < dist(dxn(Vi_1), Xn(Vy)) and
assuming & < £(0o) (where &(dp) is as in 1) we have that, if Wy intersects dxn(Vi_1),
then Wo N xn (Vi) = 0.

3.— By Lemma 7.7 we may choose a neighborhood U of p contained in B, (p) so that
oU ¢ Xn(K(V,,)). Since x,, is a V,, pseudo-conjugacy it follows from 2 that U = Xgl((j)
is such that for every pull-back Wy, Wy, ..., Wi = U, such that Wj_; does not contains
p = x 1 (p), we have that Wy N dV,,_1 # 0 implies Wy N'V,, = 0.

4.— Choose dp > 0 small enough so that Bs,, (p) C U for every p € P, where U = U(p)
asin 3. Fix p € P and let w € R™%(p) be such that R¥~*(w) ¢ P and consider the
respective pull-back Wy, W1, ..., Wy, = By, (p), so that Wj_1 does not contains p. Note
that is enough to prove that the W; are disjoint from V,,. Suppose that for some i the
pull-back W; intersects V,,. Since Ri(w) € W; lies outside of V', that contains V,,_1, we
have that W; must intersect OV, _;. Hence by 3 we have W; NV, # ), which contradicts
our assumption. So the statement follows. O

We have the consequent decay of geometry; compare with part (i4) of Lemma 3.1.

Corollary 7.10. There is Cy > 0 such that for every § > 0 small there is 1 = 1(§) > 1
such that the following property holds. For any parabolic periodic point p € P, any
k> 1 and any w € R™*(p) such that R*(w) ¢ Bs(Crit N J(R)), for 0 < i < k, and
such that the connected component Wy of R™*(B_;(p)) containing w intersects B_;(),
for some © € II (resp. Bs(c) for some ¢ € Crit N J(R)) we have that Wy C 7 and

diam(ox(Wo)) < Ca(r(5)) #maz (resp. diam(Wo) < Co(r(6)) ™ #mar diam(V<)).

Proof. Put e = (r(é))fﬁ and let [ = [(4) be big enough so that for every p € P we have

B_i(p) C Be:s, (p), where dp is as above. Consider the pull-back Wy, ..., W = B_i(p)

and the respective pull-back Wy, ..., Wy, = Bs, (p). If R*¥~1(w) belongs to the orbit of p,

then we have Wj_q = B_(l_l)(kal(w)), so we may assume that R¥~!(w) is not in the
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orbit of p. Therefore, by the previous, the pull-back Wo is univalent. Then the corollary
follows from Proposition 7.6. 0

The following proposition is an improvement of Proposition 2.7, that takes into account
parabolic points.

Proposition 7.11. Let R € S, let 6 > 0 be small and let k = k(5) be given by the previous
corollary. Then there is C > 0 only depending in R such that for every c € (CritNJ(R))
there are open sets V¢ satisfying the properties of Proposition 2.7 and for every p € P
there is a set VP such that

B*k(p) cVPc B*k+lnn(5)(p>7

where n(0) = 1+ C’(T(é))_wviaz such that if W is a pull-back of V€, for some c €
(Crit N J(R)) UP, then either WNV =0 or W CV, where V = U Critns(ryur Y -

Proof. The proof is exactly the same as the proof of Proposition 2.7in Section 2.2, since
we have univalent pull-back property (stated above) and decay of geometry given by
Lemma 7.7 and Corollary 7.10. g

Consider V = U(Crith(R))uPVC as in the previous proposition. As in Lemma 2.5
we have 9V C K (V). By Corollary 7.9, if P € S is a polynomial, then P is uniformly
expanding in K (V)N J(R) and therefore every point in K (V)N J(R) is the landing point
of some ray; see Landing Lemma in Section 3.1. In particular every point in 0V is the
landing point of some ray.

Proof of Theorem A. We proceed as in the proof of the case when there are no parabolic
cycles; see Section 3.2. We just replace the neighborhoods with Martens property given
by Proposition 2.7 by the neighborhoods given by the previous Proposition 7.11 and we
replace the set CritNJ(P) by (CritNJ(P))UP in the argument, to prove that the puzzle
ends corresponding to critical points in J(P) are singletons.

Then the proof follows as before, that is, we use Lemma 3.1 to prove that puzzle ends
of points whose orbit accumulate critical points are singletons and we use the standard
argument to prove that the rest of the puzzle ends are singletons; see [H], [Mil2], [Lyu2]
and see [Ki] for puzzles in the presence of parabolic points. O

8. UNICRITICAL POLYNOMIALS.

This section is dedicated to the family of polynomials P.(z) = 2? + ¢, for ¢ € C and
for a given d > 2. We prove Theorem D about instability in the parameter and Theorem
E about similarities between the connectedness locus M, and Julia sets.

We begin with Section 8.1 where we review some basic properties of holomorphic
motions compatible with dynamics. Basic facts about holomorphic motions are stated
in Appendix 10. Section 8.2 contains the proof of Theorem D. The proof is based in the
concept of pseudo-conjugacies that appears in [Lyu2] and we use Rigidity several times.

The proof of Theorem D is independent of Sections 6 and 7, except that we use that
polynomials in S satisfy property EAC stated in Section 3.2. Recall that by Corollary
7.9 polynomials in S satisfy this property. This is also proven in [R-L3]. Moreover
Przytycki proved this property for rational maps that satisfy the summability condition
with exponent one; see proof of Lemma 3.1 of [Pr2].
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The remaining sections are dedicated to the proof of Theorem E. The idea is to
transport dynamical data to parameter plane via holomorphic motions. This part is
largely inspired by [Lyu3]. In Sections 8.3 and 8.4 we construct, for each polynomial
P., € §, a parameter map from the dynamical plane to the parameter plane. Then in
Section 8.5 we prove Theorem E by proving that, under the hypothesis of Theorem E,
this parameter map is conformal at the critical value (and C'*-conformal in the Collet-
Eckmann case). For this we use a conformality criterion stated in [LV] and McMullen’s
measurable deep points to obtain C'*-conformality.

8.1. Holomorphic motions compatible with dynamics. In this section we consider
some basic properties of holomorphic motions compatible with dynamics. Basic facts
about holomorphic motions are stated in Appendix 10.

First let us recall the notion of Botcher coordinates. For every ¢ € C there is a
coordinate ¢, that conjugates P, near infinity to the map z? and that is tangent to the
identity at infinity. Such coordinate is called Botcher coordinate and it can be defined so
that it depends holomorphically in ¢. In the case that J(P.) is connected, this coordinate
can be extended to C— K (P,) and it is determined as the unique biholomorphism between
C- K(P,.) to C — D that is tangent to the identity at infinity.

Fix a parameter ¢y € C. Then an holomorphic motion i : W x K — C with base point
cop € W it is said to be compatible with dynamics if for all z € K such that P, (z) € K
we have i.(Pe, (%)) = Pe.(ic(2)), for all c € W.

Lemma 8.1. Let W C C be a connected open set, co € W and U C C — K(P,,) an
open set invariant by Pe,. If i : W x U — C is an holomorphic motion compatible with
dynamics, with base point cq, then i, : U — C 1is holomorphic for every c € W.

Proof. Note that we may suppose W bounded. Consider a neighborhood Uy, of oo
forward invariant by P, so that ¢, is defined in U,, and ¢! is defined in ¢, (Us,), for
all ¢ € W. Since W is connected it follows that for any (¢,z) € W x (U N Uy) we have
ic(2) = ot 0 e, (2), 50 i is holomorphic in Us,.

For (¢,z) € W x U we can find a neighborhood U of z so that there is n for which

P2 (U) Cc U and P2 U—s P*(U) is a biholomorphism. It follows that P is univalent
in ic(U), denote by g. its inverse branch. Then i, is given by the holomorphic map
geoico Pl inU. O
Lemma 8.2. Let ¢y € C and suppose that K C C is closed and forward invariant by
P., and that P, is uniformly expanding in K. Then there is v > 0 and an holomorphic
motion i : B.(co) X K — C compatible with dynamics, so that i., = id.

Note that K is not assumed to be compact.

Proof. For the compact subset of K of points with bounded orbit, this follows by the
expansive property; see [Sh]. For the unbounded case fix an invariant neighborhood U,
of 00, so there is an holomorphic motion of U, defined in a neighborhood of cq, that is
compatible with dynamics. Considering that P, is uniformly expanding in K, there is a
unique way to pull-back this holomorphic motion to an holomorphic motion of Uy U K,
reducing the domain of definition if necessary. a
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Lemma 8.3. Leti: W x K — C by an holomorphic motion. Moreover suppose that
(co,20) € W x K is such that co = ic,(20), but ic.(z0) # c. Then for z € K close to zg
there is ¢ € W close to ¢o such that ¢ = i.(z).

Proof. Consider the holomorphic motion j.(w) = i.(w) —i.(20), s0 jc(20) = 0. Reducing
W and K if necessary we may assume that j(W x K) C Bg(0), for some R > 0. Let
1 : W — C be defined by 1(c) = ¢ — i.(20), so ¥(co) = 0 but 1» £ 0 by hypothesis; let
m > 1 be such that ¥(c) ~ (¢ — ¢o)™. Note that for z € K close to zg we have to find ¢
close to ¢g such that j.(z) = ¥(c).

Let v+ C W be the path around ¢g which is the preimage of {w | |w| = 2|je|} by
Y. So v 1y — {w||w] = 2|j,(2)|} is of degree m and there is C' > 0 such that
vCB 1 (co). Since |je, (2)]7 In [je, (2)] < 1 it follows by Lemma 10.4 that there

Cliey (2)| ™
is K > 0 such that forallce y C B 1 (o),
Cliey (z)Im
. . . . - . 1 . _
17e(2) = Jeo (2)] < le = colljey (2) (] (2)I71) < B2y (2)] 77 (| ey ()| 7).
for some k1 > 0. So if z is close enough to zp we have that [j.(2)| < 2|jc,(2)| for all

c € v. By Rouche’s theorem it follows that there are m > 1 parameters c inside -y for
which j.(z) = ¥(c). O

8.2. Pseudo-conjugacies and instability. In this section we prove Theorem D assert-
ing that, if P,, € S has recurrent critical point, then for every non-trivial connected set
& C C containing cq there is a parameter ¢ € £ such that the critical point of P, is not
recurrent.

We fix a parameter ¢y € dMy in the class S throughout all this section. Consider
the nest V,, as in Lemma 5.1. Since 0 is the only critical point in J(P,,) we have that
V, = V2 and U,, = U? are connected and moreover V,, = Pc_ol(Un).

All q¢c homeomorphisms of C that we will consider will be conformal in a definite
neighborhood of infinity. The normalization of such homeomorphisms will be to be
tangent to the identity at infinity and to fix 0; see Appendix 10.

Definition 8.4. Letn > 1. Then a V,, pseudo-conjugacy between P, and P, is a nor-
malized gc homeomorphism x of C that is conformal in int(K(V,)) and that conjugates

the dynamics of P., in K(V,) to that of P, in x(K(V,)).

By redefining a V,, pseudo conjugacy in the complement of K(V,,), we may suppose
that it conjugates the dynamics of P,, and P. outside V,,; without increasing its dilata-
tion.

If x is a V,, pseudo conjugacy between P, and P., then P. : x(0V,) — x(9U,,) is
of degree d. Thus the critical point of P. belongs to x(V,,) or equivalently ¢ € x(U,).
In particular x(K(V,,)) does not contains 0 and there for the forward orbit under P,
of every point in x(K(V,)) does not accumulate 0. It follows that, if P, is such that
¢ € x(K(V,)), then the critical point of P, is not recurrent.

Lemma 8.5. Let K > 1 be given by Rigidity for the nest V,,. Then for every V,, pseudo-
conjugacy X there is a K-qc V,_1 pseudo-conjugacy that coincides with x in K(Vy,_1).

Proof. By Corollary 7.4, K (V,,) has zero Lebesgue measure, thus a V,, pseudo-conjugacy
is conformal Lebesgue almost everywhere in K (V,,). Hence, we can apply Rigidity to x
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restricted to every connected component of C— K (V;,_1). Applying the Gluing Lemma we
obtain that there is a K-qc V,,—1 pseudo-conjugacy x that coincides with x in K(V;,_1).
We assumed that x(0) = 0 = x(0), which is not a priori warranted by Rigidity, but by
part 2 of Remark 5.2 in Section 5.1 we may assume so. O

Lemma 8.6. Let W,, C C be the set of all parameters c for which there is a V,, pseudo-
congugacy between P., and P.. Then diam(W,) — 0 as n — 0.

Proof. By the previous lemma, for ¢ € W,, there is a K-qc V,,—1 pseudo-conjugacy
X between P, and P, that is conformal in K(V,,_1). By Proposition B the Lebesgue
measure of C— K (V,,) goes to zero as n — o0o; see Section 4.2. Since K > 1 is independent
of n, it follows by Lemma 10.3 that for every £ > 0 there is N > 1 such that if n > N
then ¢ € x(U,,) C B:(Uy,). Thus W,, C B-(U,). Since diam(U,) — 0 as n — oo we have

that diam(W,,) — 0 as n — oo. O

Lemma 8.7. Let c € W, and x. be a V,, pseudo-conjugacy between P, and P,. Then
there is r > 0 and a holomorphic motion

1:Bp(cg) xC—C

compatible with dynamics in B,.(co) x K(V,,), so that for all ¢ € W, the map iz : C — C
is a Vi, pseudo-conjugacy between P, and P.. Moreover i, = x. in K(V,,). In particular
W, is an open set.

Proof. By Corollary 7.9, P, is uniformly expanding in K(V;,) and by Lemma 7.5 P, is
uniformly expanding in P.(K(V;,)). Thus it follows by Lemma 8.2 there is an holomorphic
motion ¢ : B,(c) x K(V,,) — C which is compatible with dynamics and such that
ic = Xe|Kk(v,)- Then the lemma follows by Slodkowsky Extension Theorem; see Appendix
10. O

The following lemma is an immediate consequence of compactness of normalized qc
homeomorphisms.

Lemma 8.8. Let ¢ € W,, and {ci}i>1 C Wy, such that ¢; — ¢ as i — oo. Moreover
let xi be a K-qc V,,_1 pseudo-conjugacy between P, and P.,. Taking a sub sequence if
necessary we may assume that x; converges uniformly to some x. Then x is a K-qc
Via—1 pseudo-conjugacy between P, and P,.

Lemma 8.9. We have that ¢ € W,, (resp. OW,,) if and only if there is a K-qc¢ V1
pseudo-conjugacy between P, and P, such that ¢ € x(Uy,) (resp. ¢ € x(0Uy,)).

It follows by this lemma that if ¢ € W, then the critical point 0 is not recurrent
under P.. Indeed if x is a V,,_; pseudo conjugacy given by the lemma, then P(0) =c €
X(0Un) C X(K(Vn)).

Proof. If ¢ € W, then the lemma follows by previous observations. On the other hand,
if x is a K-qc V;,—1 pseudo-conjugacy between P, and P, with ¢ € x(U,,), then consider
the holomorphic motion ¢ : B,.(cy) x C — C, given by Lemma 8.7. Taking r smaller
if necessary we may assume that for all ¢ € B,(c), we have é € i:(U,). Consider the
restriction j of i to By.(¢)x K (V,,—1). Extend j to B,.(c)x K (V},), by a pull-back procedure.
By Slodkowsky Extension Theorem, we may suppose that j is defined in B,.(¢) x C, so for
all ¢ € B,(c), the map je is a V,, pseudo-conjugacy between P, and P.. Hence ¢ € W,.

If ¢ € OW,, the existence of a K-qc pseudo-conjugacy x so that ¢ € x(U,) follows
from Lemma 8.8. By the previous x(c¢) & x(Un) since ¢ ¢ W, so x(c¢) € x(0U,,). On the
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other hand suppose that c is such that there is a K-qc V,,_1 pseudo-conjugacy x between
P., and P, such that ¢ € x(0(U,)). By the previous ¢ ¢ W,,. Consider » > 0 and the
holomorphic motion ¢ : B,.(¢) x C — C as in Lemma 8.7. By Lemma 8.3, for all 2 € U,
close to x~!(c) € AU, there is ¢ € B,(c) close to ¢ so that é = ia(2) € is(U,). By the
previous é € W,,. Hence ¢ € W,, — W,, = OW,, as claimed. O

Proof of Theorem D. Let £ be a connected set containing ¢g. By Lemma 8.6 diam(W,,) —
0 as m — oo and since W,, contains cg, it follows that there is n > 1 such that ENOW,, # 0.
By the previous lemma, if ¢ € £ N OW,,, then the critical point of P, is not recurrent. [J

8.3. Full neighborhoods. Recall that the open set W, is the set of all parameters cC
for which there is a V,, pseudo-conjugacy between P, and F,.. The aim of this section is
to prove the following proposition.

Proposition (Full Neighborhoods). There is an homomorphic motion i, : W, X
C — C compatible with dynamics in W, x K(V,,), so that i., = id and so that for every
¢ € Wy, the homeomorphism i. is a V, pseudo-conjugacy between P, and P..

It follows by this proposition that the sets V,, are full in the sense that W, is the
maximal domain where K(V,,) can be extended in such holomorphic motion. In fact,
if such an holomorphic motion i, can be extended to ¢ € 0W,,, then by Lemma 8.9
we should have ¢ € (i,).(0U,). But this implies every one of the d > 1 preimages w
of (in);1(c) by P, is mapped to 0 by i,, which is not possible since (i,). should be
injective.

The proof of this proposition is at the end of this section and it depends in two lemmas.

Lemma 8.10. Fiz n big. Suppose that c1,co € W, are such that there are V,, pseudo-
conjugacies x; between P., and P., such that x7'(c1) = x5 '(ca) € K(V;,). Then ¢; = cy.

Proof. Let V' = x;(V,,) for i = 1,2 and put x = y2 o x;'. By hypothesis V? is
disjoint from the postcritical set of P., and therefore, for every m > 0 and any connected
component W of P;™ (V") we have that P" : W — V" is univalent. As before, by

redefining x outside V!, we may suppose that x conjugates P., to P., outside V1.

For k > 0 we will define inductively a qc homeomorphism x* that conjugates P,
to P, outside P_*(V1), whose dilatation is bounded by that of y. Put x° = x and
suppose that x* is already defined for some k > 0. For any connected component W of
P, (k+1) (V1), the polynomial P., is univalent in W, so we may redefine x* in W so that
the conjugacy equation P,, o x**1 = y**1 o P, is satisfied in W. By the Gluing Lemma
such x**! is qc and its dilatation is bounded by that of x*.

It follows that the dilatation of the x* is bounded by that of x and therefore there
is a subsequence k; — oo so that xj, converges uniformly to a qc homeomorphism x*°.
Since the diameters of the connected components of P;k(Vl) converge to zero as k — 0o
it follows that x> is a qc conjugacy between P., and P.,. Moreover x> is conformal
outside J, .

Since x1(c1) € K(V,,) it follows that the critical point of P, is not recurrent, so J.,
has zero Lebesgue measure. Thus x*° is conformal Lebesgue almost everywhere and
therefore x> must be the identity. Hence ¢1 = ca. O

Lemma 8.11. Given n big and z € U, N K(V,,_1) there is a unique ¢ = (z) € Wy
for which there is a K-qc V,, pseudo-conjugacy x. between P, and P, with ¢ = x.(z).
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Moreover 1 is continuous in U, N K(V,_1) and (0U,) = OW,,. In particular OW,, =
Y(0U,,) is connected and therefore W,, is simply-connected.

Proof. The existence of ¢ = ¥(z) for z € U, N K(V,,_1) is given by Proposition C. For
z € 9U,, C K(V,,_1) follows considering that z is accumulated by points in U,, N K (V,,—1)
and then by considering the limiting pseudo-conjugacy as in Lemma 8.8.

Uniqueness of ¢ follows by the previous lemma and that ¢ (90U, ) = 0W,, follows by
Lemma 8.9. It reminds to prove that ¢ is continuous. Let z € U,,NK (V,,_1) put ¢ = 9(2)
and consider r > 0 and the holomorphic motion i : B,(c) x K(V,_1) — C given by
Lemma 8.7. If 2 € B,.(c) is close to ¢, by Lemma 8.3 there is ¢ close to ¢ so that iz(2) = é.
So, if 2 € U, N K(V,,_1), then ¥(2) = ¢ is close to ¢(z) = c. O

Proof of the proposition. Let us measure distances in W,, with respect to the hyperbolic
distance of W,,, so for r > 0 the set B,.(co) C W, denotes the hyperbolic ball with
radius r centered at cg. Let r be the supremum of the numbers r for which there is an
holomorphic motion, as in the proposition, defined in B, (¢p). So we want to prove that
r = 00.

Suppose by contradiction that r < co. By Lemma 8.7 there is € > 0 such that for all
¢ € 9B, (cp) there is an holomorphic motion j defined in B (c) X K(V,,) compatible with
dynamics and such that j. = ic|g(v,). Since Bc(c) N B;(co) is connected it follows that
coincides with j in B.(c) N B,(cg) and therefore, using Slodkowsky Extension Theorem,
i extends to Bc(c). Repeating this argument we see that if we take a §-dense set ¢y, ...,
¢n in OB, (cp), then i extend to BT+%(CO) C By(co) U (Ur<i<nB:(¢;)). This contradicts
the definition of r, so we must have r = co and the proposition follows. O

8.4. Parameter map. The objective of this section is to construct a qc map ¥ from
the dynamical plane to the parameter plane, so that it almost maps the Julia set to M.
The main ingredient is the following easy consequence of the previous section. So let us
consider the holomorphic motion 7, as in the previous section.

Proposition 8.12. Fix n so that i, is defined. Then for every z € U, there is a unique
Yn(2) € Wy such that ¥, (2) = iy, (2)(2) € Wy, The map by, = Uy — Wy, is a locally
gc homeomorphism that is conformal Lebesgue almost everywhere in U, N K(V,). In
particular a point z € U, N K(U,) belongs to J(P.,) if and only if 1, (z) € M.

The proof of this proposition is at the end of this section. Now we define a parameter
map.

Note that for every connected component W of U,, — K(V,,_1) there is m > 1 such
that P': W — V), is a biholomorphism. Moreover the closure of such W is contained
in Uy, so 9 is qc in such W and therefore we can apply Rigidity to 1), restricted to W. It
follows by the Gluing Lemma and by compactness of K-qc¢ homeomorphisms that there
is a K-qc homeomorphism ﬁn : U, — W, that coincides with ¢ in U,, N K(V,,—1). In
particular wNn(UnH) = Wpt1.

Let ng > 0 so that 4, is defined for n > ny and put U = U,,,. By the Gluing Lemma
and by compactness of K-qc homeomorphisms there is a K-qc map ¢ : U — W, that
coincide with 1, in (Up — Upg1) N K(Vp—1) for n > ng. It follows that the diameters
of W,, = ¥, (Uy) go to zero as n — 0, so 1(cg) = ¢p; compare with Lemma 8.6. By
Corollary 7.4 the set K (V,,) has zero Lebesgue measure, so ¢ is conformal Lebesgue
almost everywhere outside the sets (U,, — Up+1) — K(V,,—1) for n > ng.
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Proof of Proposition 8.12. The proof follows the lines of [Lyu3]. Consider z € U,,. Note
that for ¢ € W, close to OW,, we have that (i,).(z) is close to the boundary of (i,).(U,),
so ¢ # i.(z). Hence the number of solutions v(z) of the equation ¥, (2) = iy, (»)(2) in
W, is equal to the winding number of ¢ — i.(z), when ¢ makes one turn around a closed
curve close to 0W,,. This number depends continuously in z, so it is independent of z.
By Lemma 8.10 this number is equal to 1 for all z € U, N K(V,,_1), so it is equal to 1
for all z € U,.

In other words we proved that the graph G = {(c,¢) | ¢ € W,,} is a global transversal
to the foliation F with leaves F, = {(c, (in)c(2)) | ¢ € Wy, }. Then v, is the holonomy
between the global transversal T = {co} x U, and G. It follows (just as the Qc Lemma)
that this holonomy is locally qc. Moreover by Lemma 8.1 the foliation with leaves
F, for z € U, Nint(K(V,)) is holomorphic, so the holonomy 1), is holomorphic in
Up, Nint(K(Vy,)). O

8.5. Conformality of the parameter map and asymptotic similarity. In this
section we prove Theorem E about asymptotic similarity between M, and Julia sets.
We first reduce Theorem E to prove that the parameter map, of the previous section, is
conformal; and to prove that it is C'**-conformal in the Collet-Eckmann case.

A map ¢ : U — C is said to be conformal at a point ¢y € U if there is A\ € C—{0} such
that ¥(w) = 1 (co) + Mw — o) + o(|w — o). If o(|w — cpl) is replaced by O(jw — co|1+®)
for some o > 0, we say that v is C'*-conformal at c.

Recall that by Proposition 1.4, if P, satisfies the Collet-Eckmann condition, then
there are ag > 0 and Cy > 0 such that r(§) > Cod~*. Counsider the flat metric |d7z| in
C — {0} that makes C — {0} isometric to the straight cylinder S! x R.

Lemma 8.13. If the parameter map ¥ of the previous section is conformal at cq, then
Mg and J., are asymptotically similar at co. Moreover suppose that there are ag > 0 and
Co > 0 such that r(6) > Cod~%° and suppose that the parameter map 3 is C*+-conformal
at cg. Then there are « > 0 and C > 0 such that, if X € C — {0} is the derivative of v
at ¢y, then

dH((Md - CO)T7 (/\(‘]Co - CO))T) <Cr®.

Recall that dy denotes the Hausdorff distance and for X C C and r > 0 the set X,
denotes 1 (X N{|z| <r})UdD.

Proof. Diameter will be taken with respect to the flat metric. Let E = Up>p,(Up —
Un+1 — K(Vp—1)). By Lemma 3.1 every connected component W of E has diameter
o(dist(W,co)) in C — {co}. Let J = Joy UE, 50 dig((Jey — €0)ry (J — €0)p) — 0 as 7 — 0.

Since ¥(cg) = ¢o and since ¥ is qc it follows that for every connected component W
of E the diameter of (W) in C — {co} is o(dist(W), cp). Moreover the boundary of W
intersects J.,. Since for z € U — E we have that ¢(z) € My if and only if z € J,,, it

follows that dg ((¢(J) — ¢o)ry (Mg — co)r) = o(1).
Suppose that v is conformal at ¢ and let A € C—{0} be the derivative of ¥ at ¢y. Then

dir (AT = ¢0))r, (W(J) = o)) = 0(1), s0 it follows that dzr((A(Jey — €0))r, (Ma—co)r) =
o(1) which by definition is that M, and J,, are asymptotically similar at ¢y. The second

part follows in a similar way. O

To prove the conformality of the parameter map we use the following conformality
criterions; see [LV] and [McM].
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Conformality Criterion. Let ¢ : U — ¢(U) C C be a gc homeomorphism. Suppose
that ¢y € U is such that ¥ is conformal outside a set of finite measure in C — {co}, with
respect to the flat metric of C —{co}. Then 1 is conformal at cg.

C'T-Conformality Criterion (McMullen [McM]). Let v : U — (U) C C be a
gc homeomorphism. Suppose that there are oy and Cy such that for r > 0 small, ¥ is
conformal in B, (co) except for a set of Lebesque measure at most C1r?t1. Then ) is
C** -conformal at cg.

Recall that 7 € (0,1) and n € (1,77') are such that Bn(co) C U, C Byrn(co)
and recall that the parameter map 1 is conformal Lebesgue almost every where outside
the sets U, — Upy1 — K(Upy1). Moreover by Lemma 4.6 there is A; > 0 such that
U, = Upi1 — K(Uy)| < A1|Up|r(7™) 4.

Proof of Theorem E. By the above there is Ky > 0 such that the cylindrical area of
Up — Upy1 — K(Uy,) is bounded by Kor(r™)~4. By the remark after Proposition 1.4
we have by hypothesis that anno T(T")’% < o00. Thus 9 satisfies the hypothesis of
the conformality criterion, so v is conformal at ¢y and by Lemma 8.13, My and J,, are
asymptotically similar at cg.

Collet-Eckmann case. Suppose that P, satisfies the Collet-Eckmann case. So by Propo-
sition 1.4 there are g > 0 and Cy > 0 such that r(d) > Cpd~*°. By Lemma 8.13 is
enough to prove that the parameter map 1 is C''*-conformal at cy. By the above there
is K1 > 0 independent of n, such that,

Uy — K (V)| < AU, |r(7™) ™% < AU, |Cyt(77) 890 < Ky (77)2H 3%,

Thus 1 satisfies the hypothesis of the C''*-conformality criterion, with a; = %ao and
with some constant C; > 0. Hence v is C''*-conformal at ¢y and Theorem E follows by
Lemma 8.13. U

9. APPENDIX: RE-STATEMENT OF MLC.

Now we prove the re-statement of MLC stated in the introduction. This follows easily
from the theory of parapuzzle ends or fibers in [Sch]. Now we state some properties of
parapuzzle ends that can be found in [Sch]. Fix d > 2 and let P.(z) = 2% + ¢, for ¢ € C.

For each ¢y € C such that P,, is not hyperbolic, we associate its parapuzzle end.
Parapuzzle ends are full compact sets that are either disjoint or equal. As mentioned in
the introduction, if the parapuzzle end of a parameter cg is trivial, then ¢ € OMy and
My is locally connected at cq.

Lemma (parapuzzle ends). Let ¢co € OMy such that the critical point of P, is
recurrent and such that all its periodic points are repelling. In particular P, is not
hyperbolic. Then the parapuzzle end of co is equal to the maximal connected set & C C
of parameters that contains co and such that for every c € &, the critical point of P, is
recurrent.

The parapuzzle end of a parameter whose respective polynomial has an indifferent
periodic point is trivial. The parapuzzle end of a parameter ¢y € C such that the critical
point of P, is not recurrent, and such that P, is not hyperbolic, is trivial; see [H] and
[Sch]. Thus this lemma implies that the re-statement of MLC is in fact equivalent to
MLC.
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Let us define parapuzzle ends of parameters cg € C such that P, is not hyperbolic
and such that all its periodic points are repelling.

Douady and Hubbard proved that My is a full connected set, and moreover there is a
biholomorphic map @aq, : C— My —> C—D which is tangent to the identity at infinity.
The preimage by ¢, of {re?™ | r > 0, § € R} is called the ray with angle 6; and the
preimage of {|z| = r | » > 1} is an analytic Jordan curve called equipotential. The ray
of angle 0 is said to land at some point ¢ if w;}d (re?™%) — ¢cq as r — 1. It is known
that all rays with rational angle land and the landing parameter is such that the critical
point is not recurrent. More precisely the critical point is either strictly pre-periodic or
it converges to a parabolic cycle.

A parapuzzle of My is a disc bounded by a finite number of rays with rational angles
and an equipotential, so that the intersection with M is a non-empty connected set; see
[H]. Then the parapuzzle end of ¢ is the intersection of all parapuzzles containing cy.

Proof of the lemma. Recall that the parapuzzle end of a parameter ¢ with all cycles
repelling and with non-recurrent critical point in J(P,.), is trivial; see [H] and [Sch].
Since parapuzzle ends are disjoint or equal, it follows that for all ¢ in the parapuzzle end
of ¢g, the critical point of P, is recurrent. Thus the parapuzzle end of ¢q is contained in
£

If I is a parapuzzle containing ¢y then, as remarked above, a parameter ¢ € 9IIN My
is such that the critical point of P. is not recurrent. Since for parameters ¢ not in Mg,
the critical point of P, is not recurrent (the critical point escapes to infinity), it follows
that & C II. Thus € is contained in the parapuzzle end of cy. (|

10. APPENDIX. QUASI—CONFORMAL HOMEOMORPHISMS AND HOLOMORPHIC MOTIONS.

In this appendix we review some properties of quasi-conformal maps. See [LV] and
[A] for references.

Given K > 1 we say that an homeomorphism y is K-quasi-conformal, or K-qc for
short, if the following equivalent conditions hold.

(1) For every annulus A C C we have K ~'mod(A) < mod(x(A)) < Kmod(A).
(2) x has a distributional derivative that is locally in L? and ||Dx||? < KJac(Dy)
Lebesgue almost everywhere.

By 1 the inverse of a K-qc homeomorphism is also a K-qc homeomorphism. In this case
x is differentiable (in the usual sense) Lebesgue almost everywhere and this derivative
coincides with the distributional derivative almost everywhere. The constant K > 1 is
called the dilatation of x. If we do not want to specify the dilatation we just say that x
is quasi-conformal or ge. Conformal maps coincide with 1-qc maps.

Qc homeomorphisms preserve sets of Lebesgue measure 0 and sets of o-finite sets are
qc removable: if x : U — x(U) C C is an homeomorphism that is K-qc outside a set
of o-finite length, then x is K-qc. Moreover K-qc homeomorphisms of C are Holder
with constants only depending in K. The same is true for K-qc homeomorphisms of the
sphere that fix three prescribed points and for K-qc homeomorphisms of the disc with
respect to the hyperbolic metric.

An ellipse field o is to associate to Lebesgue almost every point z € C an ellipse in
the tangent plane to C at z, up to scale. All ellipse fields considered will have bounded
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dilatation, that is the dilatation of Lebesgue almost every ellipse is bounded by a constant
K > 1. The dilatation of an ellipse is the ratio of its major axis to its minor axis. In this
case we say the dilatation of the ellipse field is bounded by K. Moreover all ellipse fields
will be measurable in the sense that the dilatation and the direction of the major axis of
the ellipses are measurable functions.

We denote by o¢ the standard complex structure, which is the one formed just by
circles. For any K-qc homeomorphism h, the pull-back x*og is an ellipse field with
dilatation bounded by K; cf. characterization 2 of K-qc homeomorphisms. The following
theorem is a remarkable converse of this property.

Ahlfors-Bers Integration Theorem. Let o be a measurable ellipse field of C with
dilatation bounded by K > 1. Then there is a unique K-qc homeomorphism h, up to
postcomponing with an automorphism of C, so that o = h*oy.

Thus an ellipse field in C induces a complex structure in C using the homeomorphism
given by the Ahlfors-Bers Integration Theorem as a single chart. So ellipse fields will
also be called complex structures.

An important property is compactness of normalized K-qc homeomorphisms: for any
K > 1 and any sequence of normalized K-qc homeomorphisms there is a subsequence
that converges uniformly to a normalized K-qc homeomorphism. A normalization is
a restriction that can be satisfied for every homeomorphism after post-composing by a
uniquely determined automorphism of C. A normalization in C is to fix three points. If
we only consider homeomorphisms that are holomorphic in a definite neighborhood of
00, a normalization is being tangent to the identity at infinity and fixing 0.

All previous considerations apply to general Riemann surfaces. A normalizations in
C and D is to fix two preferred points.

One of the main points of this paper is to use rigidity properties of qc maps that are
conformal in a big set, where big can be taken in several senses; cf. Sections 5, 6 and 8
and see also Appendix 11. Lemmas 10.3 below is a basic property of this kind that is
used several times in this paper; see also Lemma 10.1.

Let us consider some concepts. We begin by recalling the definition of the modulus of
an annulus. Every topological annulus A C C is either conformally equivalent to C — {0}
or to {z]1 < |z| < R}, where R € (1, 0] is then uniquely determined. In this case In(R)
is called the modulus of A and is denoted by mod(A). This is not completely standard,
some authors prefer to call % In R the modulus of A; see for example [A]. We follow
[LV].

Other definition of mod(A) is given by,

1 -1
mod(A) = <%i%f//AVh2da:dy> )

where the infimum is taken over all C! functions h : A — (0,1) such that h(z) — 1 as
z approaches a determined end of A and h(z) — 0 as z approaches the other end. The
infimum of this Dirichlet integral is realized by an harmonic function.

Consider the flat metric |%| in C — {0} that makes C — {0} isometric to S x R.
The restriction of this metric a round annulus {1 < |z| < R} will also be called the flat
metric of this annulus. Then one can define such a metric in every annulus, by means of
a biholomorphism into a round annulus.
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Lemma 10.1. Let A be an annulus endowed with the flat metric and let x : A — x(A)
be a K-qc homeomorphism conformal in A — N for some N' C A. Then,

%) < mod(x(A)) < mod(A) + (K—Qii)m

where |N| is the area of N with respect to the flat metric.

mod(A) <1 +

Remark 10.2. This lower bound is somehow pessimistic, it can be attained only for
N with a very particular geometry. In Appendiz 11 we give conditions in the sizes
and distribution of the components of N, so that there is a lower bound of mod(x(A))
independent of the dilatation of x; see also Remark 5.2 in Section 5.1

Proof. We just prove the lower bound, the other inequality is stated in [LV]; see (6.6)
p. 221. Suppose that A is the straight cylinder S* x (0,mod(A)) and denote by 7 the
projection 7 : A — (0, 1) given by w(6,t) = W(A)' By the definition of modulus above,

1 1 // N 1 72// —1)2
— < — V(mox dxdy = — (mod(A Dy dxdy
mod () = 27 ) J oo V( )| 5, (mod(4)) " H |

< %(mod(A))’Z ( / /X N Jac(yV)dzdy + (K — 1) / /X . Jac(xl)dzdy>

~ 2mmod(A) + (K — 1)|NV]| 0
B 27 (mod(A))? '

Lemma 10.3. Let K > 1 be given. Then the following assertions hold.

(1) Let {xr}r>1 be a sequence of K-qc normalized homeomorphisms such that xy, is
conformal outside a set of Lebesque measure €y, so that e, — 0 as k — oo. Then
Xk converges uniformly to the identity.

(2) Then for every € > 0 there is 0 such that any normalized K -qc homeomorphism
of C that is conformal except for a set of Lebesque measure §, is € close to the
identity.

Proof. 1.— Consider a subsequence X, that converges uniformly to a normalized K-qc
homeomorphism x. If A is an annulus we have by the previous lemma that mod(x,(A)) —
mod(A) so mod(x(A)) = mod(A). Thus x preserves the modulus of annuli and by the
characterization 1 of qc homeomorphisms, x is 1-qc. Thus x is conformal. Since y is
normalized we have that x = id. Since this is for an arbitrary convergent subsequence,
the assertion follows.

2.— If this is not true then there is a sequence of normalized K-qc¢ homeomorphisms
Xk that are e away from the identity and so that xj is conformal outside a set of measure
- This contradicts 1. O

The following lemma can be found in [DH2].

Gluing Lemma. Let U C C be a bounded open set and x : C — C a K-qc homeomor-
phism. Suppose that xo : U — x(U) so that the map X that is equal to x outside U and
is equal to xo in U. Then :

(1) x is a gc homeomorphism of C.
(2) The derivatives of X and x coincide Lebesgue almost everywhere in C — U.
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10.1. Holomorphic motions. In this section we review the concept of holomorphic
motions and some of its properties; see [MSS] for references. Let W be an open subset of
C, often biholomorphic to the unit disc D. Then an holomorphic motion i of a set K C C
defined over W, isamapi: W x K — (C so that for all ¢ € W the map i. : K — ¢
is injective and for all z € K the function ¢ — 4.(z) is holomorphic. Usually there is a
base point co € W for which i, is the identity.

Slodkowsky Extension Theorem. Any holomorphzc motion i : D x K — C of
K c C, can be extended to an holomorphic motion of(C

See [S]]. The following lemma was proven in [MSS].

Qc Lemma. Let W C C and U C C be open sets and let i : W x U — C be
an holomorphic motion with base point. Then, for every ¢ € W the map i. is quasi-
conformal.

We use the following lemma in Section 8.1.

Lemma 10.4. Let W C C be an open set and let K C C. Consider an holomorphic
motion j: W x K — Bgr(0) C C for some R > 0. Moreover suppose there is zg € K is
such that j.(z0) =0 and fix co € W. Then there is a constant k > 0 such that for every
(¢,2) € W x K with |c — co|In(|je(2) — jeo (2)| 1) < 1 we have

[7e(2) = deo (2)] < Kle = collje, (2)[ (| ey ()| 7).

Proof. Dividing j par R, we may suppose that R = 1. Moreover we may suppose that
W =D and ¢ = 0. Fix z € K — {20} and put wg = jo(z). Note that the function

¢ — je(z) goes from D to D — {0}. Moreover the map w — woe%h“z“‘ is a local

isometry between D and D — {0}, with respect to the hyperbolic metrics pp and pp_ oy,
that maps 0 to wy. By Schwartz lemma,

Je(2) € {¢ € D= {0} | pp—103(¢, 20) < pp(c, 0)}

Hence,

2 1n |z0]

Ge(2) = Jeg(2)] < sup |zgeies Il o) = | |[eTHHer ImI20l _ q.

[w|<|el

By hypothesis |c|In |zp| < 1 so there is a constant £ > 0 such that

[7e(2) = Jeo (2)] < Clel|z0| In(|20] ~1).0

11. APPENDIX. RIGID ANNULI.

In his unpublished proof of local connectivity of the Mandelbrot set at non-infinitely
renormalizable parameters, J. C. Yoccoz encountered the following situation. There is a
quasi-conformal map x defined in the annulus A = {z € C | § < |Re(z)| and |[Im(2)| <
1} that is conformal Lebesgue almost everywhere outside the set A/, which is defined as
the least set containing the square {z € C | |Re(2)|,|Im(z)| < 1} and the images of itself
z+1

3

and z — 253; see Figure 5.

under the affine maps z —

An important step in his proof was to prove that there is a bound independent of the
map x for the modulus of the annulus y(A). Note that there is no restriction in the
dilatation of y.
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FIGURE 5. The annulus A and the set A in black.

There are various ways to prove this property. Probably the easiest one is an extremal
length argument, observing that the set (A — A) NR has positive capacity. There is also
a proof using Dirichlet integrals in [Se] and there is a much stronger result in [Kal.

Unfortunately this part of the argument, in Yoccoz theorem, was replaced by Hubbard
in [H], which is to the best of my knowledge the only complete published proof of Yoccoz
theorem.

Here we extend this rigidity property to some other pairs (4, ), where N is obtained
by an iterative function system with possibly infinitely many branches. This situation
appears naturally in dynamics as fist return maps, and this rigidity property has appli-
cations to make estimates in parameter planes (as in Yoccoz'’s theorem; see also [Lyu3])
or in pull-back procedures like in Theorem C; see also [R-L3].

Theorem (Rigid Annuli). Let U C C be a bounded disc and K C U be a non-trivial
compact set, so that A =U — K is an annulus. Moreover consider a collection of discs
{Ui}i>1 with pairwise disjoint closures such that U, C A and let gu, : U — U; be
biholomorphisms. Let N be the smallest set containing K and all the images of itself by
the gu,. Then there are mg > 0 and €9 > 0 such that if:

Modulus: The maps gy, extend in a univalent way to a disc U’, such that m =
mod(U' —U) > mo;
area(UU;)

Area: € = area(l)

is smaller than eq;
then there is a constant M > 0 such that for any qc homeomorphism x : A — x(A)
conformal Lebesque almost everywhere in A — N, we have

mod(x(A4)) = M.

Remark 11.1. (1) Note that the U; can accumulate the boundary of A. Moreover
K can have non-empty interior and for example 0K may have positive Lebesgue
measure.

(2) Since the U; are disjoint and mod(U! — U;) is definite, with U] C A, it follows
that diam(U;) — 0.
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FIGURE 6. Illustration for (4, N\).

The conclusion of this theorem is weaker than Rigidity of Section 5.1 (see part 3 of
Remark 5.2) but the hypothesis are simple enough to be presented in a more abstract
setting. The proofs is via Dirichlet integrals, following the proof in [Se] of Yoccoz’s
situation. This theorem appeared in the unpublished [R-L3] to prove some results weaker
that those stated in Section 7.

11.1. Collapsing map in Sobolev space. In this section we will reduce the theorem
to the existence of a function in an appropriated Sobolev space, that collapses all the
connected components of A to a point. For an open set i C C denote by W12(U) the
Sobolev space of functions f : Y — C with distributional derivatives in L?(I/) and norm,

1F12 = 11200 = / /M |Df|Pdudy.

This norm is invariant by conformal maps. That isif x : f — V is a conformal map then
Ilf ox v = || f]lu, this is easy to see by the change of variable formula and considering
that || Dx~1||* = Jac(x 1), since x ! is conformal.

We will reduce the Theorem to the following lemma.

Lemma 11.2. Let (A,N) be as in the theorem. Then, if m is big enough and € > 0 is
small enough, there is a continuous function

f:A— S'x(0,1)c S*x[0,1],
satisfying the following properties.

(1) If {zi}i>1 C A is such that z; — OU then f(z;) — S x {1} and if z; — OK then
f(Zl) — St x {0}

(2) We have f(z) = f(y), with x # y if and only if x and y belong to the closure of
the same connected component of N.

(3) We have f € WH2(A) and the norm of f can be bounded in terms of mod(A)
only.

Let us deduce deduce the theorem assuming the previous lemma. Let x : A — C be a
gc homeomorphism into its image, conformal in A — AN in the distributional sense. Hence
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x ! and fox ! belong locally to W2 and xy~! is conformal in the distributional sense
in x(A — N); see Remark 11.1. Let 7 : St x (0,1) — (0, 1) the projection 7((6,t)) = t.
Considering that D f|x = 0 we have

// V(o fox ) dudy
x(A)

IN

/ / Vr(fox HEID(f o XV |Pdady
X

(A)
/ / ID(f o x~V)|Pdady
X(A-N)

N N S R R
X(N)

[ ] 1pspdsdy = 1173,
A-N

By the definition of modulus with Dirichlet integrals, this gives a lower bound of || f||;*
for mod(x(A)); see [A] or Appendix 10.

IN

11.2. Model. In next section we will construct inductively a sequence f, € W12(A)
converging to the desired f of Lemma 11.2. In this section we will describe a model
function h : U — U in WH2(U) that will serve to construct f,, from f,_;.

This model function h will be continuous and such that h(z) = h(y), with « # y, if
and only if 2,y € K. Moreover h will be C? in A = U — K and it will be equal to the
identity in a neighborhood of OU. Furthermore |U|~!||h||? will be bounded in terms of
mod(A) only, where | X| denotes the area of X C C.

We will construct h that is C? in A, except for an analytic curve. We can obtain h to
be C? in by using a bump function. Fix zy € K and let ¢ : U — D be a biholomorphism
such that ¢(z9) = 0. Consider 6 > 0 small and let U;_s = ¢~ (|D1_5). We will choose
0 depending in mod(A) only. Consider a conformal representation,

Y:Ui_s — K — Di_s _ﬁro

sending the end corresponding to dU;_s to the end corresponding to dD;_s and for
t€lro,1 —0)let Uy = KUy~ 1({|z] < t}).

Let hg : [ro, 1—0] — [0, 1—4] be the quadratic diffeomorphism tangent to the identity
at 1 —4. Note that }NLO has a non-zero derivative at 9. Consider hg : Dq_s -D,, — Di_s
given in polar coordinates by ho(6,7) = (¢(6), ho(r)) so that hgot) = ¢ in dU;_5. So the
function ¢ : R — R is analytic and its distortion is bounded in terms of mod(A) only.
Moreover note that || Dhg|| is bounded and it can be bounded in terms of mod(A) only.
Then h is defined as the identity in U — U;_g, equal to cp_l ohgot in U;_s — K and
constant equal to zg in K; see Figure 7.

Note that h is C? in A = U — K, except for the analytic curve OU;_s.

1.— Let us prove that h € W2(U). Note that h € L?(U) as bounded function. For
t small let hy : Dy_5 — Dyyyt — D;_s be defined like hy but with iLQ replaced with
he @ [ro +t,1 — 8 — [0,1 — 8] which is the unique homeomorphism which coincides
with hg in [ro + 2t,1 — 6] and that is affine in [rg + ¢, 79 + 2t]. So the derivative of h; in
[ro + t,70 + 2t] is close to 2h) ().

In an analogous way define continuous maps h, : U — U which are the identity in
U —U;_s and constant in Unﬁ_t. Like h, the functions h; and h; belong to L? as bounded
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FIGURE 7. The model function h is defined radially with hq.

functions and moreover iLt is C?in A = U — K except in OU;_s and OU,,++ which are
analytic curves. Extend h; to D;_s by defining it constant equal to 0 in Dy, y+.

By conformality of 1 it follows that ||h¢|u, ; = ll¢~" © he|lp,_,. By Koebe Distor-
tion Theorem the distortion of ¢! in D;_s is bounded by some constant D > 1, only
depending in §. Thus

lo™" © hellpy s < Dlhell, -
But ||ht||p,_, is uniformly bounded, since || Dh;|| is uniformly bounded in D;_s (for small
t). Hence hy € Wh2(U).
Note that h; — h uniformly. Let us prove that the convergence is also in W2(U). Fix

to small. Note that Dhy = 0 in D,,, and || Dh¢|| is bounded in D, 4+, — Dy, , independently
of t < tg. Thus, for all s,t < tg we have

// HD(ht - hs)”leL'dy S Cl|Dro+to - ID)T‘()| = Clﬂ'to(27"0 +t0)
Drg+tg

By the conformal invariance of the norm in W12(U) it follows that h, is a Cauchy
sequence in W12(U) and therefore h € W2(U).

2.— Now let us prove that |U|7!||h[|# can be bounded in terms of mod(A) only. In fact
[l[E = U = Ur—s| + [|AlIZ, _, and

1 1

[hllv,—s = lle™" o ho o ¥llu, 5 = [l¢™" o hollp, ;-
Note that [Us_s| < D?|(o=Y/(O)PID_s. So ¢~ o holls,_, < Dl(e=2YO)lrollos_,
and [~ o hollg, , < K|U{_4lllholl§,_,, where K > 0 only depends in 4. Since h only
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depends in 6 and 7 (which depend in mod(A) only) it follows that [U|~!||h||? can be
bounded in terms of mod(A) only.

3.— The following lemma will be used in Section 11.4.

Lemma 11.3. For every k > 0 there is €, = €1(d, mod(A)) > 0 such that if the relative
area of E C U in U is less than €, then,

/ / | Dh|Pdedy < llho.
E

Proof. All implicit constants and dependences will by in terms of mod(A) only. Note
that [|hlly > [A(U)| = |U|. Since h =id in U — U5, we have [ [, | Dh|[*dzdy =
|E — Ui_s|. On the other hand, since ¢ is conformal,

/ / | Dh|?dzdy / / Do~ © ho)|2dady
ENU;_s Y(ENU1_5)

< Cle ™) (O)P[p(ENU1-s)l;
the last considering that the distortion of ¢ =" in ID;_s is bounded in terms of ¢ only and
[|Dho|| is bounded in terms of mod(A) only. Then the lemma follows considering that if
the relative area of E N U;_s in Up_s is small then the relative area of ¥)(E N U;_s) in
Dy _s is also small. O

1

11.3. The quasi-affine property. Let us describe the procedure to construct the func-
tion f of Lemma 11.2. We organize the connected components of N (or just components
for short) in levels as follows. By definition the K; = gy, (K) are connected components
of N and we assign them level 1. In general a component L can be written in a unique
way as,

L= gUil © gUiz ©...040u;, (K)
We assign to L level n and denote gy, o...ogu,, by gr. Note that such L has naturally
associated W = g1, (U), then we denote gw = gz and W' = gy (U’) and we say that W

is of level n.

We will define inductively functions f,, : A — ST x (0,1) such that f,(z) = fu_1(2)
unless z € L for some L of level n. Moreover f, will satisfy properties 1 and 3 of Lemma
11.2 and property 2 for all connected components of A of level less than or equal to n.
In Section 11.4 we prove that {f,}i>1 is a Cauchy sequence in W12(A).

Furthermore f,, will satisfy the following property by induction,

Quasi-affine property. There is D > 0 such that for all W of level n+1, there is a real
affine map Aw of R? and a function fw : U — C that is C? such that || fw —id||c2.w < D
and

fnogw =Awo fw U — fu(Ui, ).

where W = gu;, ©---°9u;, (U).

Let fo: A — S x (0,1) be an homeomorphism resulting by composing a conformal
representation of A into a straight cylinder, with an appropriated real affine map. Then
the quasi-affine property for fy follows by Koebe Distortion Theorem for some constant
D = Dy, which is small as m is big.
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Inductive step. Suppose by induction that we are given f,,_; with the properties above,
satisfying the quasi-affine property with some small constant D = D,,_;. We will con-
struct f, satisfying the properties above and the quasi-affine property with some small
constant D,,. For W of level n define f,, in W as,

fn'W = fnfl o gw © h Ogaflv
and for points not in any W of level n define f,, as f,,—1. Then f,, is continuous, since the
diameters of the components of level n go to 0; see Remark 11.1. Moreover f,, satisfies
1 and 3 of Lemma 11.2 and 2 of the same lemma for components of level less than or
equal to n.

Lemma 11.4. Given d > 0 there is m1 = mq(mod(A)) > 0 such that if m > my then
for all U,
||A[711 oho qu;, — id”chU <d.

where Ay, = D(h o gy,)(z0)-

Proof. Since his C? in A = U — K is enough to prove the lemma for components U;
close to K. If m < mod(U’ — U) is big enough we may suppose that U; C U;_s, where
U; C U] is uniquely determined by

mod(U] — 51) = mod(U; = U;) = %mod(U{ -U;) > %

Since 1 o gy, is conformal mod((U; — U;)) > 2 and ¢ is C? close to a conformal affine
map in U; by Koebe Distortion Theorem. Moreover there are f(m) = O(e”™) and
n(m) =14 O(e™™) such that

Y(U;) C (ro +to,ro +n(m)to) x (6o, 00 + 6(m))

in polar coordinates, for some 6y and ty. Moreover ho(r, 0) = (ho(r), ¢(0)(r — o)), where
¢() is analytic in 6 and with distortion bounded in terms of mod(A) only. Since hg is
differentiable at rg, d,-hg is almost constant in ¢(U;). Furthermore,

Oph
sup  Jeholzo) O(e™™),
0,z en(U?) doho(21)
hence,
145} o hogu, —idlic2 = O(e™™).
This considering that diam(ho(1(U;))) is small and therefore the distortion of ¢ in this
set is small by Koebe distortion. (Il

Now lets prove the quasi-affine property for f,. So fix W of level n as above and
Wy € W of level n + 1. Note that every component of level n + 1 is contained in
some W of level n, so we are in the general situation. Let U; uniquely determined
by gw, = gw o gu,. By induction hypothesis we have f,_; o gw = Aw o fu, where
| fw —id||c2,uv < Dp—1 and Aw is affine. Note that by definition f, = Aw o fw ohog;vl.
Let Ay, as in the lemma and let Ay, = Aw o Ay,, then if m is big enough,

||AE11 ohogy, —idlc2u < d,
for some fixed small d. Put

fw, = A‘jvll ocAw o fwohogy, = (A(}i1 o fwoAy,)o (AEi1 ohogy,).
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Note that ||Ay, || = O(e™™) so Ay, is a definite contraction for big m. By the quasi-affine
property

|A7) o fw o Ay, —id| g2 = O(Dp-1]|Au, ),
so if m is big enough we get a bound 7D,,_1 for the norm above, for some 7 = 7(m, mod(A)) €

(0,1) independent of n. Considering that by hypothesis e™™ and D,,_; are small the

quasi-affine property follows for f, for some D, = 7'D,_1 + O(e™™), where 7/ =

7/(m, mod(A)) is such that fixed mod(A), 7" — 0 as m — oo. Hence, fixed mod(A),
if m is big enough the {D,,} are small and in particular uniformly bounded.

11.4. Sobolev estimates. For a real affine map A denote Dil(A) = SUD|yy| =] =1 ‘é—z:.

Let W be of level n and Ay, fy as in the quasi-affine property, so f,_109w = Awo fw :
U — fu(Ui,), where gw = gy, ©o...0 gy, . By the quasi-affine property,

Vo l?r = / /W\|D<Awofwog;;>|\2dxdy
- / /U ID(Aw o fur)|2dady

= //UDil(AW o fw)Jac(Aw o fw)dxdy
Dil(Aw )| fa—1(W)].

Considering that f, o gw = Aw o f o h and by the quasi-affine property,
[ [ 100w o fiv o ho gy Pdsdy

w
// |D(Aw o fw o h)||*dzdy

U

2

[FA e

IN

//UDZ'Z(D(AW o fw)) o hJac(Aw o fw) o h||Dh||*dzdy
Dil(Aw)| £ (W)U~ IR

By the previous it follows that || f,||%, < K| fa—1||% for some definite K > 0 which only
depends in m and mod(A). Let Wy be a component of level n — 1, then

S flw < K / / LT

WCcWo, level n

2

- K / / ID(Aws, © fiv, © h o gih)|Pdady
uw

- K / / ID(Aw, © fiv, o b)|*dzdy
Uq;vt(W)

IA

o1 (Wo)
K Dil(Aw,) |f ‘1U| 0 |// || Dh)|dzdy
< Kikll fa-zllwg

Where K7, K > 0 only depend in mod(A) and k can be taken arbitrarily small by
letting ¢ small enough; see Lemma 11.3. Thus if ¢ is small enough it follows that there
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isy €

Thus

(0,1) such that for all n,

Yoo Mfallw<sy DY lfaellm

w level n ws level n—2

| fns1 — fulla = O(Y™) so {fn} is a Cauchy sequence in W12(A) and hence a

convergent one. This proves Lemma 11.2 considering that the f,, converge uniformly to
some f, by Remark 11.1 and the quasi-affine property.
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