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Abstract. We study dynamics of rational maps that satisfy a decay of geometry

condition. Well known conditions of non-uniform hyperbolicity, like summability

condition with exponent one, imply this condition. We prove that Julia sets have

zero Lebesgue measure, when not equal to the whole sphere, and in the polynomial

case every connected component of the Julia set is locally connected.

We show how rigidity properties of quasi-conformal maps that are conformal in

a big dynamically defined part of the sphere, apply to dynamics. For example we

give a partial answer to a problem posed by Milnor about Thurston’s algorithm and

we give a proof that the Mandelbrot set, and its higher degree analogues, are locally

connected at parameters that satisfy the decay of geometry condition. Moreover we

prove a theorem about similarities between the Mandelbrot set and Julia sets.

In an appendix we prove a rigidity property that extends a key situation encoun-

tered by Yoccoz in his proof of local connectivity of the Mandelbrot set at at most

finitely renormalizable parameters.
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à mon Père bien aimé

Introduction.

We study dynamics of complex rational maps R ∈ C(z), especially in the Julia set

J(R) ⊂ Ĉ of R, which is the closure of the repelling cycles of R. The set Crit of critical
points of R plays a special role; we denote by CV = R(Crit) the set of critical values of

R. We also denote by Bδ(z) ⊂ Ĉ the ball of radius δ centered at z ∈ Ĉ.

For our purposes is more natural to measure distances to critical values, rather than to
critical points. So for given c ∈ Crit∩ J(R) and δ > 0 we denote by B̃δ(c) the connected
component of R−1(Bδ(R(c))) that contains c.

We study dynamics of rational maps R ∈ C(z) that satisfy the following condition.

Decay of Geometry Condition. There is a function r0 such that r0(δ)→∞ as δ → 0
and such that for any c ∈ Crit ∩ J(R), any n ≥ 0 and any connected component W of

R−n(B̃δr0(δ)(c)) such that dist(W,CV) ≤ δ, we have diam(W ) ≤ δ.

We denote by S the class of rational maps that satisfy this condition. This condition
is vacuous for rational maps without critical points in the Julia set. The results that we
present here are either well known or vacuous for these rational maps.

Well known conditions of non-uniform hyperbolicity, like summability condition with
exponent one, imply the Decay of Geometry condition. A rational map R ∈ C(z) is said
to satisfy the summability condition with exponent β > 0 if

∑

n≥0

|(Rn)′(v)|−β <∞,

for every critical value v ∈ J(R) not in the backward orbit of a critical point; see also
[NS], [Pr2], [GS2] and [PU2]. Derivatives are taken with respect to the spherical metric.

A rational map is said to satisfy the stronger Collet-Eckmann condition if |(Rn)′(v)|
is exponentially big in n ≥ 0 for every such critical value v; see also [CE], [Pr2], [Pr3],
[GS1], [PRS] and references therein.

The following table indicates how r0(δ) growths as δ → 0, when one of these conditions
is satisfied.

• Summability condition exp. 1 r0(δ)→∞ as δ → 0.

• Summability condition exp. β ∈ (0, 1)
∫ δ0

0
(r0(δ))

−α dδ
δ
<∞, α = β

1−β .

• Collet-Eckmann r0(δ) ≥ Cδ−α for some α ∈ (0, 1].
• Non-Recurrent Equivalent to r0(δ) ∼ δ

−1.

Where Non-Recurrent stands for the condition that no critical point in the Julia set
accumulates on a critical point under forward iteration.

We remark that the summability and Collet-Eckmann conditions allow the existence
of parabolic cycles; compare with [PU2] and [GS2]. It is interesting to remark that there
are rational maps in S that do not satisfy any summability condition.

Local connectivity and measure of Julia sets.
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Our first result is that every connected component of a Julia set of a polynomial in S
is locally connected. In fact we prove a stronger fact about combinatorial descriptions of
dynamics done by Thurston for quadratic polynomials; see [T] and also [D]. We consider
the work of Kiwi [Ki] that is valid in any degree.

To each polynomial P ∈ C[z] without irrationally indifferent cycles we can associate
a ramified covering P top of C and a semi-conjugacy π : C −→ C from P to P top.
The dynamics of P top (in particular in J top(P ) = π(J(P ))) can be described in purely
combinatorial terms.

Thus if π is an homeomorphism, the dynamics of P corresponds to the well understood
dynamics of P top. We remark that polynomials in S do not have irrationally indifferent
cycles so these considerations apply to them (Corollary 7.2).

Theorem A. Let P ∈ C[z] be a polynomial in S. Then the following equivalent properties
hold.

(1) The projection π : C −→ C is a homeomorphism.
(2) (No wandering continua) For every non-trivial connected set ξ ⊂ J(P ) there are

l > 0 and k ≥ 0 such that P k(ξ) ∩ P k+l(ξ) 6= ∅.
(3) Every non-trivial connected subset of J(P ) contains a pre-periodic point.

Moreover these properties imply that every connected component of J(P ) is locally con-
nected.

The equivalence of properties 1−3 and that these imply the final statement, is proved
in [Ki]. The following corollary follows immediately from the last assertion of Theorem
A.

Corollary. The Julia set of a polynomial in S is locally connected when it is connected.

Our next result is about measure of Julia sets; see also [GS2], [Pr3] and [Lyu2].

Theorem B. Let R ∈ C(z) be a rational map in S such that J(R) 6= Ĉ. Then J(R) has
zero Lebesgue measure.

Rigidity and Thurston’s algorithm.

With the area estimates needed for the proof of Theorem B we prove a rigidity prop-
erty, which is our main technical result (Section 5.1). We refer to it as Rigidity. We also
include a related rigidity property on an appendix, that is stated in an abstract setting.
This generalizes a key situation encountered by Yoccoz in his unpublished proof of the
local connectivity of the Mandelbrot set at non-infinitely renormalizable parameters.

Now we describe applications of rigidity. The first application is about the convergence
of Thurston’s algorithm that we proceed to describe; see [DH3], [HS] and [Pil].

Consider a topological ramified covering R̃ of the sphere S2. That is R̃ : S2 −→ S2 is
locally of the form ξ(zn), where ξ is an homeomorphism and n ≥ 1. There is at most a

finite number of points for which n > 1; such points are called ramification points of R̃.

Define inductively coordinates hk : S2 −→ S2, for k ≥ 0, as follows. Let h0 be
equal to the identity and given the coordinate hk−1, for some k > 0, let hk be such

that Qk = hk−1 ◦ R̃ ◦ h
−1
k is a rational map; see Figure 1 (we identify S2 with Ĉ).

If R̃ is quasiregular such coordinate is uniquely determined up to normalization. The
3
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Figure 1. For k > 0 the coordinate hk is chosen so that Qk = hk−1 ◦
R̃ ◦ h−1k is a rational map.

ramified covering R̃ is said to be quasiregular if the homeomorphisms ξ as above are
quasi-conformal. (A normalization is to fix three preferred points of S2.)

In this way we obtain a sequence of rational maps Qk related to R̃. Note that, if
the rational maps Qk converge uniformly to a rational map Q and the coordinate hk
converge uniformly to a continuous map h : Ĉ −→ Ĉ, then R̃ ◦ h = Q ◦ h. That is R̃ is
semi-conjugated to Q by h.

Thurston considered quasiregular maps R̃ for which the set

P (R̃) = {R̃n(r) | for n ≥ 1 and r ramification point of R̃},

is finite. He determined (except for some specific cases) when the rational maps Qk

converge uniformly to a rational map. In this case hk|P (R̃) converges to an injective

map. Milnor posed the following problem.

Problem (Milnor [Mil1]). Under what conditions will the sequence of rational maps
Qk converge uniformly to a limiting map Q? Under what conditions, and on what subset
of Ĉ, will the maps hk converge uniformly to a limit h?.

The next theorem gives a partial answer to this problem and will allows us to make a
wide variety of small perturbations of a given rational map R ∈ S, with J(R) 6= Ĉ.

Theorem C. Let R ∈ C(z) be a rational map in S such that J(R) 6= Ĉ. Then for δ > 0
small the following assertions hold.

Non-Recurrent Quasiregular Perturbation: There is a quasiregular map R̃ of
Ĉ, of the same degree as R, such that the following properties hold.
• R̃ coincides with R outside B̃δ(Crit ∩ J(R)).
• For every ramified point r ∈ B̃δ(Crit ∩ J(R)) of R̃, we have R̃k(r) 6∈
B̃2δ(Crit ∩ J(R)) for k ≥ 1.

Convergence of Thurston’s Algorithm: Fix R̃ given by the first part and con-
sider Qk and hk as above, for an appropriated normalization of the coordinates
hk. Then there is a rational map Q ∈ C(z) and a continuous map h : Ĉ −→ Ĉ
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such that Qk → Q and hk → h uniformly; in particular Q has the same degree
as R. Moreover Q is close to R and h is close to the identity as δ is close to 0.

We remark that the limit h of the coordinates hk is not injective in general (Remark
6.1).

The proof of Thurston’s theorem (mentioned above) requires subtle considerations in
an appropriated Teichmuller space and it uses in an essential way the finiteness of the
set P (R̃) of post ramification points. In our situation the proof of the convergence of
Thurston’s algorithm only requires basic facts about quasi-conformal homeomorphisms.

Polynomials with only one critical point.

The rest of this work is dedicated to the families of unicritical polynomials. That is,
given d ≥ 2, we restrict our attention to the family of monic polynomials Pc(z) = zd+ c,
for c ∈ C, whose unique finite critical point is 0.

Our first result is about the variation of the dynamics of Pc for c near a parameter c0,
such that Pc0 ∈ S. One of the simplest dynamical properties of a polynomial Pc is the
recurrence of the critical point 0. A point w ∈ C is said to be recurrent under Pc if the
forward orbit of w under Pc accumulates on w. The following theorem shows a strong
instability in the dynamics at a polynomial Pc0 ∈ S with recurrent critical point. The
non-recurrent case is simpler to study; see for example [R-L1].

Theorem D (Instability in the Parameter). Consider a polynomial Pc0 ∈ S with
recurrent critical point. Then every non-trivial connected set of parameters containing
c0, also contains c such that the critical point of Pc is not recurrent.

This theorem is the parameter analogue of part 3 of Theorem A.

A polynomial Pc is said to be hyperbolic if Pc0 has a finite attracting cycle or if
Pnc0(0)→∞ as n→∞. The dynamics of hyperbolic polynomials is well understood.

The Hyperbolicity Conjecture for the family Pc(z) = zd+ c, for c ∈ C, asserts that the
set of parameters c ∈ C such that Pc is hyperbolic is dense in C. It is well known that if
the critical point of Pc0 is not recurrent, then c0 is approximated by parameters c such
that Pc is hyperbolic. Thus the Hyperbolicity Conjecture is equivalent to the following
statement.

Re-statement of Hyperbolicity Conjecture. Let c0 ∈ C be such that the critical
point of Pc0 is recurrent. Then c0 is approximated by parameters c ∈ C such that the
critical point of Pc is not recurrent.

In particular Theorem D implies that a parameter c0 such that Pc0 ∈ S has recurrent
critical point is accumulated by parameters c ∈ C such that Pc is hyperbolic. (This also
follows from Theorem B and [MSS].)

Douady and Hubbard made a remarkable conjecture that implies the density of hy-
perbolicity in the quadratic family (that is when d = 2); see [DH1]. Consider the con-
nectedness locus

Md = {c ∈ C | Jc is connected}.

For d = 2 it is just denoted byM and it is also called the Mandelbrot set. Douady and
Hubbard showed thatMd is compact and connected.

Conjecture (MLC). The Mandelbrot set is locally connected.
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As was mentioned, a positive answer to this conjecture implies density of hyperbolicity
in the quadratic family. The situation is analogous in any degree. So, if Md is locally
connected, then hyperbolicity is dense in the family Pc(z) = zd + c, for c ∈ C.

It follows easily from [Sch] that MLC is equivalent to the following statement.

Re-statement of MLC. Let c0 ∈ C be such that the critical point of Pc0 is recur-
rent. Then every non-trivial connected set of parameters containing c0 also contains a
parameter c such that the critical point of Pc is not recurrent.

Again the situation is analogous any degree. In fact if c0 ∈ C satisfies the property
above, then c0 ∈ ∂Md and Md is locally connected at c0; see Appendix 9. Thus we
obtain the following immediate corollary of Theorem D.

Corollary of Theorem D. Consider a polynomial Pc0 ∈ S with recurrent critical point.
Then c0 ∈ ∂Md andMd is locally connected at c0.

After Theorem A it is easy to prove that polynomials Pc ∈ S such that c ∈Md are at
most finitely renormalizable. Hence, for d = 2, Corollary of Theorem D follows from a
result of Yoccoz that states thatM is locally connected at parameters that are at most
finitely renormalizable. The proof of Yoccoz does not apply for d > 2 and it is not clear
if this corollary follows from his proof. In any case the technique in the proof of Theorem
D is different from that of Yoccoz. In particular in the proof of Theorem D we do not
mention puzzle pieces.

Our last theorem is about similarities betweenMd and Jc0 and near c0. We consider
the notion of asymptotic similarity introduced by T. Lei in [Lei]. Given a compact subset
X of C and r > 0 small, let

Xr = ({
1

r
w | w ∈ X} ∩ D) ∪ ∂D,

that is, to get Xr consider the intersection of X with the disc of radius r centered at 0,
scale it to the unit disk and for a technical reason add ∂D. Moreover, for λ ∈ C − {0}
and ζ ∈ C we denote λX = {λw | w ∈ X} and X − ζ = {w − ζ | w ∈ X}.

Theorem E. Let c0 ∈ ∂Md be such that Pc0 ∈ S and such that the function r0, in the
definition of the class S, satisfies

∫ δ0

0

(r0(δ))
− 2
d
dδ

δ
<∞, for some δ0 > 0.

Then Md and Jc0 are asymptotically similar at c0. That is, there is λ ∈ C − {0} such
that

lim
r→0

dH((Md − c0)r, (λ(Jc0 − c0))r) = 0,

where dH denotes the Hausdorff distance. If Moreover Pc0 satisfies the Collet-Eckmann
condition, then there are α > 0 and C > 0 such that for small r > 0,

dH((Md − c0)r, (λ(Jc0 − c0))r) ≤ Cr
α.

The following corollary follows immediately from the previous theorem and from the
table at the beginning of this introduction.

Corollary. Let c0 ∈ ∂Md be such that Pc0 satisfies the summability condition with
exponent 2

d+2 . ThenMd and Jc0 are asymptotically similar at c0.
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For any Pc0 ∈ S for which Theorem E works we can prove that the similarity factor
λ ∈ C− {0} is equal to

λ =
∑

n≥0

1

(Pnc0)
′(c0)

.

So we obtain the curious fact that the sum above is finite and different form zero for such
parameters.

Smirnov proved in [Sm] that the set of parameters in ∂Md satisfying the Collet-
Eckmann condition has full harmonic measure in ∂Md. So we obtain the following
corollary.

Corollary. There is a set of full harmonic measure of parameters c ∈ ∂Md such that
Md and Jc are asymptotically similar at c.

A stronger statement was obtained in [R-L2]. T. Lei proved in [Lei] thatM and Jc are
asymptotically similar at c, for parameters c for which the critical point of Pc is strictly
pre-periodic. The set of such parameters is countable. Moreover the corresponding poly-
nomials satisfy the Collet-Eckmann condition, since the critical point must be mapped
to a repelling periodic point. See also [W], and [R-L2] and [R-L1] for a finer notion of
similarity and related results.

The idea of the proof of Theorem E is that for any Pc0 ∈ S we can construct a
parameter map, which is a quasi-conformal homeomorphism form a neighborhood of c0
in the dynamical plane to a neighborhood of c0 in the parameter plane, that maps the
Julia set to a set approximatingMd near c0. Then asymptotic similarity easily reduces
to proving that the parameter map is conformal at c0. This parameter map is conformal
in a big part of its domain. If the integral condition in Theorem E is satisfied, then
the parameter map satisfies the hypothesis of a conformality criterion. In the Collet-
Eckmann case we prove that this parameter map is C1+α-conformal for some α > 0,
using McMullen’s measurable deep points. This yields the stronger conclusion in the
theorem.

Organization of the paper. Now we describe the contents of each section.

In Section 1 we state the Univalent Pull-back Condition and we prove that it is equiv-
alent to the Decay of Geometry Condition; see Proposition 1.2. In Section 1.1 we prove
the relations between summability and Collet-Eckmann conditions and the class S; see
Proposition 1.4.

In Section 2 we prove some lemmas about expansion and we introduce Martens prop-
erty in Section 2.1. In Section 2.2 we construct neighborhoods of critical points with
Martens property at every scale; see Proposition 2.7.

Section 3 is concerned with Theorem A about topological models of dynamics of
polynomials. The proof relies in a landing lemma for hyperbolic sets (proved in Section
3.1) and in Thurston-Kiwi Finiteness Theorem, stated in Section 3.2. In Section 3.2 we
prove Theorem A under a technical assumption and assuming that there are no parabolic
periodic points. In Section 7 we prove that this technical assumption is automatically
satisfied for polynomials in the class S. The proof of Theorem A in the general case
(when there are parabolic periodic points) is in Section 7.2.

In Section 4 we prove the area estimates needed in the proof of Theorem B and in
the proof of Rigidity. Moreover we prove Proposition B in Section 4.2, which is the
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essential part of Theorem B. To complete the proof of Theorem B we need again a mild
assumption. In Section 7 we prove that this assumption is automatically satisfied.

In Section 5 we prove Rigidity. The proof is very simple, given the area estimates of
Section 4; see Lemma 4.7 in Section 4.2. It relais in basic facts about qc maps that are
stated in Appendix 10.

Section 6 contains the proof of Theorem C about Thurston’s algorithm. We first state
Proposition C which is a more complete version of Theorem C, including the existence
of pseudo-conjugacies to the limiting rational map.

In Section 7 we exploit pseudo-conjugacies given by Proposition C, to prove that ratio-
nal maps in the class S whose Julia set in not the whole sphere, enjoy several expansion
properties at a global level (away from critical points). For example we prove that such
rational maps do not have irrationally indifferent cycles nor Herman rings. For this pur-
poses we state Corollary C of Theorem and Proposition C. As a consequence we complete
the proof of Theorem B. Moreover, in Section 7.2 we complete the proof of Theorem A in
the presence of parabolic periodic points. The main step is to construct neighborhoods
with Martens property taking into account parabolic points; see Proposition 7.11.

In Section 8 we consider the family Pc(z) = zd + c, for c ∈ C and for some fixed
d ≥ 2. After simple facts about dynamically defined holomorphic motions in Section 8.1,
we prove Theorem D in Section 8.2. The proof is independent of Section 6, except that
we need to know that the mild property EAC holds for polynomials; this is also proven
in [R-L3]. The rest of Section 8 is dedicated to the proof of Theorem E. We build a
parameter map in Sections 8.3 and 8.4 and in Section 8.5 we reduce Theorem E to prove
that this parameter map is conformal at the critical value. Then we apply a conformality
criterion to prove this. We also prove the stronger assertion in the Collet-Eckmann case.

In Appendix 9 we prove the re-statement of MLC, which follows easily from [Sch].

Appendix 10 contains some basic facts about quasi-conformal homeomorphisms.

In Appendix 11 we prove a rigidity property related to Rigidity of Section 5. The
conclusion is weaker, but the hypothesis are simple enough to be presented in an ab-
stract setting. This extends an argument of Yoccoz in his unpublished proof of the local
connectivity of the Mandelbrot set at non-infinitely renormalizable parameters.
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Preliminaries.

Given a rational map R ∈ C(z) we denote by Crit the set of critical points of R. For
a critical point c ∈ Crit we denote by µc the multiplicity of R at c and µmax = maxc µc

8



denotes the maximal multiplicity of critical points in J(R). In the case that a critical
point in J(R) is eventually mapped into another critical point, we treat a whole block c1,
..., ck of critical points, such that one is eventually mapped into the next one and maximal
with this properties; as a single critical point of multiplicity µc1 · ... · µck . For example
the critical value of this block means R(ck). With this convention we assume that no
critical point in J(R) is eventually mapped into some other critical point. Moreover we
denote by CV the set of critical values of R, so with the convention above CV ∩ J(R) is
disjoint from Crit.

Given z ∈ Ĉ we denote by ω(z) the omega limit set of z, that is the set of accumulation
points of the forward orbit of z. For two numbers A and B, A ∼ B and A = O(B) means
C−1B < A < CB and A < CB for some implicit constant C > 0, respectively. Distances
and derivatives are taken with respect to the spherical metric. For z ∈ C and δ > 0
we denote by Bδ(z) the ball centered at z of radius δ. Recall that, for a critical point

c ∈ J(R) and δ > 0 small B̃δ(c) is the connected component of R−1(Bδ(R(c))) that

contains c, so R(B̃δ(c)) = Bδ(R(c)) and diam(B̃δ(c)) ∼ δ
1
µc .

Fix periodic orbits O1 and O2 of period at least 2, so there is rK > 0 such that
for all z ∈ Ĉ, BrK (z) is disjoint from O1 or from O2. Hence for every n ≥ 0, every
connected component of R−n(BrK (z)) avoids O1 or O2. Thus we have the following
spherical version of Koebe Distortion Theorem; see [Pom].

Koebe Distortion Theorem. For ε ∈ (0, 1) there is D = D(ε) > 1 such that for any

z ∈ Ĉ and r ∈ (0, rK), if Ŵ ⊂W are univalent pull-backs of Bεr(z) ⊂ Br(z) by R
n, then

the distortion of Rn in Ŵ is bounded by D. That is,

D−1 ≤
|(Rn)′(z1)|

|(Rn)′(z2)|
≤ D, for z1, z2 ∈ Ŵ .

Moreover D(ε) = 1 +O(ε).

It is easy to see that, if R ∈ S, then CV is disjoint from the parabolic points of R.
Hence, by the Fatou-Sullivan classification of Fatou components, there is a neighborhood
of CV ∩ J(R) that avoids the forward orbits of critical points not in J(R). We will
implicitly assume that neighborhoods of points in CV∩J(R) or Crit∩J(R) are sufficiently
small to avoid these forward orbits.

1. Decay of geometry and univalent pull-back conditions.

In this section we prove that the Decay of Geometry Condition, stated in the intro-
duction, is equivalent to a Univalent Pull-back Condition. Moreover in Section 1.1 we
prove Proposition 1.4 relating various conditions of non-uniform hyperbolicity with the
asymptotics of the function r0, involved in the Decay of Geometry Condition.

Definition 1.1. The class S is the class of rational maps satisfying the Decay of Ge-
ometry Condition. Moreover, for R ∈ S and δ > 0 small, we denote by r(δ) the biggest
possible value of r0(δ).

Univalent Pull-back Condition. There is a function r1, defined for δ > 0, such
that r1(δ) → ∞ as δ → 0 and such that for all z ∈ Ĉ and n ≥ 0, such that Rj(z) 6∈
B̃δ(Crit ∩ J(R)) for 0 ≤ j < n and Rn(z) ∈ B̃δr1(δ)(c), for some c ∈ Crit ∩ J(R), we

have that the pull-back of B̃δr1(δ)(c) to z by Rn is univalent.
9



Proposition 1.2. If R satisfies the Decay of Geometry Condition then R satisfies the
Univalent Pull-back condition with function r1 = r. Furthermore, if R satisfies the
Univalent Pull-back condition with function r1, then there is κ ∈ (0, 1) only depending in
R such that R satisfies the Decay of Geometry Condition and r(δ) ≥ κr1(δ), for δ > 0
small. Moreover, for 0 < δ < δ0 small

κδr(δ) ≤ δ0r(δ0),

and therefore r(δ) = O(δ−1).

Proof. 1.− Let R ∈ C(z) satisfying the Decay of Geometry Condition. Let z ∈ Ĉ
and n ≥ 0 be as in the Univalent Pull-back Condition and consider a pull-back W0, ...,
Wn = B̃δr(δ)(c) along the orbit of z, so z ∈ W0. If Wi ∩ Crit 6= ∅, for some 0 ≤ i < n,

then by the Decay of Geometry Condition, diam(Wi+1) < δ. Since Ri+1(z) ∈Wi+1 does
not belong to Bδ(CV) we have that Wi+1 ∩ CV = ∅, which contradicts our assumption.
So the Wi are disjoint from Crit and therefore the pull-back is univalent.

2.− Let R ∈ C(z) satisfying the Decay of Geometry Condition with function r1. Let
κ ∈ (0, 1) to be determined later and let c ∈ Crit ∩ J(R). Consider the special case of
a pull-back W0, ..., Wn = Bκδr1(δ) so that Wi ∩ Bδ(CV) = ∅ for 0 < i ≤ n and so that
W0 ∩ Bδ(c0) 6= ∅, for some c0 ∈ Crit ∩ J(R). If W0 ⊂ Bδ(c0), there is nothing to prove,

so assume the contrary. Consider the respective pull-back W ′0, ..., W
′
n = B̃δr1(δ)(c). By

the Univalent Pull-back Property applied to a point z whose image lies in W0 −Bδ(c0),
we obtain that the pull-back W ′0 is univalent. So mod(W ′0 −W0) depends in κ ∈ (0, 1)
and it is big as κ is small. Note that W ′0 avoids one of the two fixed periodic orbits O1
and O2, as in the Preliminaries. Thus, considering that W0 ∩ Bδ(c0) 6= ∅ and c0 6∈ W0

we can choose κ, independent of δ, such that diam(W0) ≤ δ. If δ > 0 is small enough we
have, W ′0 ⊂ B2δ(c0) ⊂ Bκδr1(δ)(c0). Then the general case follows by induction.

3.− For δ > 0 let r̃1(δ) be the biggest possible value of r1(δ). It follows by 2 that
κr̃1(δ) ≤ r(δ) ≤ r̃1(δ). It follows from the definition of the Univalent Pull-back condition
that, if 0 < δ < δ0, then δr̃1(δ) ≤ δ0r̃1(δ0). Thus κδr(δ) ≤ δ0r(δ0) and r(δ) ≤ Cδ−1,
where C = κ−1δ0r(δ0). ¤

Remark 1.3. In the Decay of Geometry and Univalent Pull-back conditions we mea-
sure distances to critical values, rather than critical points. That is why we consider
the balls B̃. This is because we are interested in conditions in the forward dynamics
such as summability and Collet-Eckmann conditions. Our considerations apply to condi-
tions in backward dynamics, by measuring distances to critical points, instead of critical
values. This is the case of the Topological Collet-Eckmann condition and its equivalent
formulations; see [PRS].

1.1. Summability and Collet-Eckmann conditions. In this section we establish
relations between different conditions of non-uniform hyperbolicity with the asymptotics
of the function r, involved in the definition of the class S.

Recall that by Proposition 1.2, for R ∈ S we have r(δ) = O(δ−1). Moreover, it is easy
to see that r(δ) ∼ δ−1 if and only if no critical point in R is accumulated by other critical
point. That is r(δ) ∼ δ−1 if and only if R is Non Recurrent; see Introduction. Together
with Proposition 1.2 the following proposition proves the table in the Introduction.

Proposition 1.4. Let R be a rational map of degree at least 2. Then,

(1) If R satisfies summability condition with exponent one, then R ∈ S.
10



(2) If R satisfies summability condition with exponent β ∈ (0, 1), then letting α =
β
1−β ,

∫ δ0

0

(r(δ))−α
dδ

δ
<∞ for δ0 > 0.

(3) If R satisfies the Collet-Eckmann condition, then r(δ) > Cδ−α for some α ∈ (0, 1]
and C > 0.

Recall that by Proposition 1.2 there is κ ∈ (0, 1) such that for 0 < δ < δ0 small we
have κδr(δ) ≤ δ0r(δ0). Thus, for given α > 0 the following conditions are equivalent.

(1)
∫ δ0

0
(r(δ))−α dδ

δ
<∞ for δ0 > 0.

(2) For all θ ∈ (0, 1) we have,
∑

n≥1 (r(θ
n))
−α

<∞.

(3) For some θ ∈ (0, 1) we have,
∑

n≥1 (r(θ
n))
−α

<∞.

The proof of Proposition 1.4 is based in Przytycki’s shrinking neighborhoods, which is
a tool to control distortion of backward iterates; see [Pr2]. It consists in the following:
choose a sequence of positive numbers {dn}n≥1 such that Πn≥1(1−dn) =

1
2 , and putDn =

Πk≤n(1 − dk). Then given r ∈ (0, rK) and w ∈ R−n(z) let U ′n ⊂ Un be the connected
components of R−n(BrDn(z)) and R

−n(BrDn+1
(z)) that contain w, respectively, so that

U0 = Br(z). Then, there is a constant K > 1 independent of n such that, if Uj does not
contain a critical point, for 0 ≤ j ≤ n, then

K−1dn < dist(w, ζ)|(Rn)′(ζ)| < Kd−1n , for ζ ∈ U ′n;(1)

see Lemma 1.2 of [Pr2]. For a critical point c ∈ Crit∩J(R) we will consider the shrinking
neighborhoods with balls B̃rDn(c), instead of BrDn(c). In this case we have the same
distortion estimate, but with other constant.

Let us consider some definitions for the proof of Proposition 1.4. Given v ∈ CV∩J(R)
and c ∈ Crit ∩ J(R) consider all the times 0 < k1(v, c) < k2(v, c) < ... so that the pull-

back of the closure of B̃ri(c) by Rki(v,c) to v is univalent, where ri > 0 is the smallest

number so that the closure of B̃ri(c) contains R
ki(c,v)(v). Denote by ξi(v, c) the respective

preimage of c by Rki(c,v).

Lemma 1.5. Suppose that R satisfies the summability condition with exponent β ∈ (0, 1].
If β = 1 let {ηn}n≥1 be such that ηn →∞ as n→∞ and,

∑

n≥1

ηn
|(Rn)′(v)|β

<∞, for v ∈ CV ∩ J(R).

If β > 1 let ηn = 1. Let C > 0 and for δ > 0 small put,

ρ(δ) = C inf
dist(ξi(v,c),v)≥δ

(

dist(ξi(v, c), v)

δ

)

|(Rki(v,c)+1)′(v)|1−βηki(v,c)+1.

Then, if C is small enough, for every c ∈ Crit ∩ J(R) and z ∈ R−n(c), such that

Ri(z) 6∈ B̃δ(Crit) for 0 ≤ i < n, the pull-back of B̃δρ(δ)(0) to z by Rn is univalent.

Proof. Let dk, as in the shrinking neighborhoods, be proportional to

ηk+1 max
v∈CV∩J(R)

|(Rk+1)′(v)|−β ,

for k ≥ 1 and let K > 0 be the constant involved is the distortion estimate for the
shrinking neighborhoods; see (1).

11



Put U0 = B̃2δr(c) for some r > 0 and consider shrinking neighborhoods (U ′i , Ui), for
0 ≤ i ≤ n, so that Rn−i(z) ∈ U ′i . Let k be the least integer, if any, so that Uk ∩ CV 6= ∅
and let v ∈ CV such that v ∈ Uk. So Rk is univalent in Uk. Note that we may assume that
v ∈ J(R); see Preliminaries. Moreover, k = ki(v, c) for some i ≥ 1 and ξ = ξi(v, c) ∈ U

′
k

is the k-th preimage of c in U ′k. By property (1), of shrinking neighborhoods, and

considering that d−1k is proportional to η−1k+1min
v∈CV∩J(R) |(R

k+1)′(v)|β , we have that

for some C0 > 0 only depending in R,

dist(ξ, v)

(δr)
1

µc0

≤ C0
dist(ξ, v)

dist(Rk(v), c0)

= C0

(

dist(ξ, v)

dist(Rk(v), c0)

)

µc0
−1

µc0

|(Rk)′(v)|
− 1
µc0

(

Kη−1k+1|(R
k+1)′(v)|β

)
1

µc0

= C1 (dist(ξ, v))
µc0

−1

µc0 |(Rk+1)′(v)|
β−1
µc0 η

− 1
µc0

k+1 ,

for some constant C1 > 0. Thus

δr > C
− 1
µc0

1 dist(ξ, v)|(Rk+1)′(v)|1−βηk+1.

By hypothesis dist(ξ, v) ≥ δ, so letting C = 1
2C
− 1
µc0

1 in the definition of ρ, we have
r > ρ(δ). Hence, if we take r = ρ(δ), the neighborhoods U ′k avoid critical values and

therefore the respective pull-back of B̃δρ(δ)(c) is univalent. ¤

Lemma 1.6. Let κ ∈ (0, 1) be the constant as in 2 of the proof of Lemma 1.2. Then
there is C0 > 0 such that R satisfies the Decay of Geometry Condition with the function
r0 given, for δ > 0 small, by the minimum between κ

2ρ(δ) and,

C0 inf
dist(ξi(v,c),v)<δ

(

δ

dist(ξi(v, c), v)

)µc−1

|(Rki(v,c)+1)′(v)|.

Proof. Define r0 as above, for some constant C0 > 0 to be determined. Given c ∈
Crit∩ J(R) consider a pull-back U0 = B̃δr0(δ)(c), U1, ..., Uk such that Uk ∩Bδ(CV) 6= ∅.
We suppose by contradiction that diam(Uk) > δ. Consider the respective pull-backs
U ′i and U ′′i of Bκ−1δr0(δ)(c0) and B2κ−1δr0(δ)(c0) respectively, so Ui ⊂ U ′i ⊂ U ′′i . Since
r0(δ) ≥ κ, for small δ > 0, arguing by induction is enough to consider the case when

Ui ∩ B̃δ(CV) = ∅ for 0 ≤ i ≤ k.

Since r0(δ) ≥
κ
2ρ(δ), we have by the previous lemma that, Rk : U ′′k −→ U ′′0 is univalent.

If U ′k is disjoint from Bδ(CV), we have, by definition of κ, that diam(Uk) ≤ δ.

So, let us assume that there is v ∈ U ′k ∩ CV. Hence k = ki(v, c), for some i ≥ 1
and ξ = ξi(v, c) ∈ U ′k is the k-th preimage of c in U ′k. Let c0 ∈ Crit ∩ J(R) be so that
R(c0) = v and let U ′k+1 be the connected component of R−1(U ′k) that contains c0. Since

Rk+1 is not univalent in U ′k+1, we cannot apply Lemma 1.5 to a preimage z of ξ in U ′k+1
and n = k + 1, therefore we have that ξ ∈ Bδ(v). By Koebe Distortion Theorem the
distortion of Rk in U ′k is bounded by some definite constant D > 1, so there is C1 > 0

12



only depending in R such that,

δ

(δr0(δ))
1
µc

≤ C1
diam(Uk)

diam(U0)
≤ C1D

dist(ξ, v)

dist(Rk(v), c)

≤ C1D
1+ 1

µc0

(

dist(ξ, v)

dist(Rk(v), c)

)
µc−1
µc

|(Rk)′(v)|
1
µc , so,

r0(δ) > C2

(

δ

dist(ξ, v)

)µc−1

|(Rk+1)′(v)|,

for some C2 > 0 only depending in R. Since dist(ξ, v) < δ, letting C0 = C2 we obtain a
contradiction. So, U ′k ∩ CV = ∅ for this choice of C0. ¤

Proof of Proposition 1.4. Note that by Lemma 1.2 is enough to prove the respective
estimates for the function r0, given by the previous lemma.

1.− It follows by the previous lemma, considering that ki(v, c), and hence ηki(v,c) and

|(Rki(v,c)+1)′(v)|, are big, when dist(ξi(v, c), v) is small.

2.− Choose θ ∈ (0, 1) and note that, as observed after the statement of Proposition
1.4, it is enough to prove that the sum below is finite. Note that β = α(1− β) so,

∑

nÀ1

(r0(θ
n))−α ≤ C

∑

i,v,c

(
∑

θn<dist(ξi(v,c),v)

(

dist(ξi(v, c), v)

θn

)−α

|(Rki(v,c)+1)′(v)|−α(1−β)

+
∑

θn>dist(ξi(v,c),v), n≥0

(

θn

dist(xi(v, c), v)

)−α(µc−1)

|(Rki(v,c)+1)′(v)|−α )

≤ C̃
∑

i,v,c

|(Rki(v,c)+1)′(v)|−β <∞.

3.− Since R satisfies the Collet-Eckmann condition, there are C0 > 0 and λ > 1 such
that for every v ∈ CV ∩ J(R) we have |(Rk)′(v)| ≥ C0λ

k. Choose µ ∈ (0, 1) and note

that if dist(ξi(v, c), v) > δ1−µ then dist(ξi(v,c),v)
δ

> δ−µ.

By [PU1] there is C1 > 0 and θ ∈ (0, 1) such that dist(ξi(v, c), v) ≥ C1θ
ki(v,c). There-

fore there is C2 > 0 and γ ∈ (0, 1) such that,

|(Rki(c,v)+1)′(v)| ≥ C0λ
ki(v,c) ≥ C2(dist(ξi(v, c), v))

−γ .

Hence if dist(ξi(v, c), v) ≤ δ1−µ, we have

|(Rki(v,c)+1)′(v)| ≥ C2dist(ξi(v, c), v)
−γ ≥ C2δ

−γ(1−µ).

Thus there is a constant C4 > 0 such that r0(δ) ≥ C4δ
−α, where α = min(µ, γ(1 − µ)).

¤

2. Martens property.

This section is concerned with some dynamical properties of rational maps in S which
will be exploited in the next sections. In particular we prove the existence of arbitrarily
small neighborhoods of critical values with the so called Martens property, see below.
We begin by proving two lemmas about expansion.
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Lemma 2.1. Let R ∈ S and δ0 > 0. Then there is N = N(δ0) > 0 such that for all z and

n ≥ N such that Rn(z) ∈ B̃ 1
2 r(δ0)δ0

(c), for some c ∈ Crit∩J(R), and Rj(z) 6∈ B̃δ0(Crit),

for 0 ≤ j < n, we have |(Rn)′(z)| > 1.

Proof. Suppose not. Then there is {zk}k≥1 and nk →∞ such that Rnk(zk) ∈ B̃δr(δ)(c),

for some c ∈ Crit ∩ J(R), dist(Rj+1(zk),CV) ≥ δ0, for 0 ≤ j < n, and |(Rnj )′(zj)| ≤ 1.

By the Univalent Pull-back Condition the pull-back Wk of B̃r(δ0)δ0(c) to zk is univalent.

Thus, by Koebe 14 Theorem, Wk contains a ball of definite radius. Taking a subsequence,
if necessary, assume that zk → z, so there is a ball B of definite radius such that B ⊂Wk

for big k. But this is not possible by the eventually onto property of Julia sets; see [CG].
¤

Lemma 2.2. Let R ∈ S, then there is C0 > 0 such that for δ > 0 small, for z ∈ Ĉ
and n ≥ 1 such that Rn(z) ∈ B̃ 1

2 r(δ)δ
(c), for some c ∈ Crit ∩ J(R), and Rj(z) 6∈

B̃δ(Crit ∩ J(R)), for 0 ≤ j < n, we have

(i): |(Rn)′(z)| ≥ C0(δr(δ))
1
µc min(δ−1, ρ−1), where ρ = dist(z,CV).

(ii): |(Rn)′(z)| ≥ C0δ
1
µc
− 1
µmax .

Proof. (i) By the Univalent Pull-back Condition, the pull-back W of Bδr(δ)(c) to z by
Rn is univalent. There are two cases.

Case 1. ρ < δ. By the Decay of Geometry Condition diam(W ) ≤ δ. So by Schwartz

lemma |(Rn)′(z)| ≥ C0(δr(δ))
1
µc δ−1 for some constant C0 > 0.

Case 2. ρ ≥ δ. By the Decay of Geometry Condition W ∩CV = ∅. Moreover, if Ŵ is the
respective pull-back of B̃ 1

2 δr(δ)
(c), then the distortion of Rn in Ŵ is bounded by some

definite constant. Hence by Koebe 1
4 Theorem there is a constant C1 > 0 such that

diam(B̃ 1
2 δr(δ)

(c))|(Rn)′(z)|−1 ≤ C1dist(z,CV) = C1ρ.

So |(Rn)′(z)| ≥ C0(δr(δ))
1
µc ρ−1 for some definite C0 > 0.

(ii) Let c0 ∈ Crit ∩ J(R) and consider w ∈ B̃δ(c0) such that there is l > 0 such that

Rl(w) ∈ B̃δ(c1) for some c1 ∈ Crit ∩ J(R) and Rj(w) 6∈ B̃δ(Crit ∩ J(R)), for 0 < j < l.

By (i) there is a constant C ′0 > 0 such that |(Rk−1)′(R(w))| ≥ C ′0(δr(δ))
1

µc1 δ−1. Since

|R′(w)| ∼ δ
µc0

−1

µc0 and since r(δ) À 1 for δ > 0 small, we have that for δ > 0 small

|(Rk)′(w)| ≥ δ
1

µc1
− 1
µc0 .

Choose δ > 0 small and put δ0 = 1
2δr(δ). Let n1 ≤ n be the least integer such that

Rn1(z) ∈ B̃δ0(Crit ∩ J(R)). It follows by Lemma 2.1 that |(Rn1)′(z)| ≥ C0 for some
definite C0 > 0. Consider the closest approximation times 0 < n1 < ... < nk = n
of the forward orbit of z to critical points (measuring distances with the balls B̃) and
let ci ∈ Crit ∩ J(R) be the closest critical point to Rni(z), so that ck = c. Then

|(Rni+1−ni)′(Rni)| ≥ δ
1

µci+1
− 1
µci , for 1 ≤ i < k. Therefore |(Rnk−n1)′(Rn1(z))| ≥

δ
1

µc1
− 1
µck and,

|(Rn)′(z)| ≥ C0δ
1

µc0
− 1
µc1 ≥ C0δ

1
µc
− 1
µmax .¤

2.1. Maximal invariant sets.
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Definition 2.3. Let V be a neighborhood of Crit∩ J(R) such that every connected com-
ponent of V contains exactly one critical point in J(R). Then we define:

K(V ) = {z | Rj(z) 6∈ V, for j ≥ 0}.

Note that K(V ) is compact and forward invariant by R. Moreover by Montel’s The-

orem int(K(V )) ⊂ Ĉ − J(R); see [CG]. If W is a connected component of Ĉ − K(V )

not intersecting Crit∩ J(R) then R(W ) is also a connected component of Ĉ−K(V ) and
R :W −→ R(W ) is proper.

Moreover note that if V ′ ⊂ V , then K(V ) ⊂ K(V ′), and if the orbit of c ∈ Crit∩J(R)
accumulates Crit ∩ J(R), then c 6∈ K(V ) for any V . In later sections it will be useful to
impose the following property.

Definition 2.4. For c ∈ Crit ∩ J(R) consider a simply-connected neighborhood V c of
c disjoint form the forward orbits of critical points not in J(R). Moreover suppose that
the sets V c are pairwise disjoint and put V = ∪Crit∩J(R)V

c. Then we say that V has

Martens property if for any n ≥ 1, and any connected component W of R−n(V ) we
have either W ∩ V = ∅ or W ⊂ V .

Martens defined the concept of nice interval in [Mar] for self-maps of the interval. A
interval is said to be nice if the forward orbit of every point in its boundary is disjoint
from the interval itself. As the following lemma shows, Martens property is an analogous
property.

Lemma 2.5. Suppose that V = ∪Crit∩J(R)V
c has Martens property. Then for every

z ∈ ∂V we have Rn(z) 6∈ V , for n ≥ 1. In particular, for each c ∈ Crit ∩ J(R), the set

V c is equal to the connected component of Ĉ −K(V ) that contains c, so ∂V c ⊂ K(V ).

Furthermore, for every connected component W of Ĉ − K(V ) there is mW ≥ 0 and
c(W ) ∈ Crit ∩ J(R) such that RmW : W −→ V c(W ) is a biholomorphism. Thus W is
simply-connected and therefore K(V ) is connected.

Proof. Suppose that z ∈ ∂V is such that for some n ≥ 1 we have Rn(z) ∈ V c, for some
c ∈ Crit∩ J(R). Then the pull-back W of V c by Rn to z is such that z ∈W ∩ ∂V . Thus
W ∩ V 6= ∅ but W 6⊂ V , which contradicts Martens property.

As remarked above, if W is a connected component of Ĉ −K(V ) different from V c,

for c ∈ Crit ∩ J(R), then R(W ) is also a connected component of Ĉ − K(V ) and R :
W −→ R(W ) is proper. It follows that R :W −→ R(W ) is a biholomorphism. Then the
rest of the assertions follow. ¤

The following lemma will be useful to produce sets with Martens property.

Lemma 2.6. LetW be a neighborhood of Crit∩J(R) such that each connected component
contains exactly one critical point in J(R). For c ∈ Crit ∩ J(R) let V c be a simply-
connected neighborhood of c disjoint from the forward orbits of critical points not in
J(R), such that the sets V c, for c ∈ Crit ∩ J(R), are pairwise disjoint. Put V = ∪V c

and suppose that V ⊂W and R(∂V ) ⊂ K(W ). Then V has Martens property.

Proof. LetW0,W1, ... be a pull-back such thatW0 is a connected component of V and let
Un be the connected component of Ĉ−K(W ) that containsWn. Since ∂V ⊂ R

−1(K(W ))
it follows that either Wn ⊂ U or Wn ∩ U = ∅, so is enough to prove that Wn ⊂ Un.
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We proceed by induction. For n = 0 just note thatW0 is contained inW by hypothesis,
so W0 ⊂ U0. So suppose that Wn ⊂ Un, for some n > 0. If Un does not intersect
Crit ∩ J(R) then R : Un −→ Un−1 is proper so Wn ⊂ Un by the induction hypothesis.
If Un intersects Crit∩ J(R) then let U ′n be the connected component of R−1(Un−1) that
contains Wn, so U

′
n ⊂ Un. By the induction hypothesis, Wn ⊂ U

′
n ⊂ Un. ¤

2.2. Neighborhoods with Martens property. Fix R ∈ S for all this section. In this
section we prove the existence of neighborhoods of Crit ∩ J(R) with Martens property
at every scale. This is one of the main properties of rational maps in the class S.

Proposition 2.7. Let R ∈ S. Then there is a constant C > 0 such that for any δ > 0
small and every v ∈ CV ∩ J(R) there is a simply-connected neighborhood U v of v such
that

Bδ(v) ⊂ U
v ⊂ Bη(δ)δ(v),

where η(δ) = 1 + C(r(δ))−
1

µmax , and so that the union V of the connected components
of R−1(U) intersecting Crit ∩ J(R) has Martens property, where U = ∪CV∩J(R)U

v.

The proof of Proposition 2.7 is at the end of this section and is based in the following
lemma.

Lemma 2.8. For δ > 0 small put V = B̃δ(Crit∩J(R)) and for c ∈ Crit∩J(R) and n ≥ 0

let V cn be the connected component of ∪0≤i≤nR−i(V ) that contains c. Then V cn ⊂ B̃2δ(c).

Proof. We proceed by induction in n. For n = 0 we have V c
0 = B̃δ(c), so the assertion is

trivial. Suppose that the assertion holds for n ≥ 0 and let w ∈ V c0
n+1−V . For every point

z ∈ V c0n+1 there is 0 ≤ m ≤ n+ 1 and c ∈ Crit ∩ J(R) such that Rm(z) ∈ B̃δ(c); let m(z)
be the least of such numbers. Let X be a connected component of V c0

n+1 − V containing

w and let z ∈ X minimizing m(z). Let c ∈ Crit ∩ J(R) be such that Rm(z)(z) ∈ B̃δ(c).
Considering that m(z) > 0, we have by induction hypothesis

Rm(z)(X) ⊂ V cn ⊂ B̃2δ(c0).

By the Univalent Pull-back condition the pull-back of B̃δr(δ)(c) by R
m(z) to z is univalent;

denote by g the respective inverse branch. Suppose that δ is small enough so that r(δ)À 2

and so that the distortion of g in B̃δ(c) is bounded by some definite constant D > 1. In

particular diam(X) ≤ 2Ddiam(g(B̃δ(c))). By (i) of Lemma 2.2, for some C0 > 0,

|(Rm(z)−1)′(R(z))| ≥ C0(δr(δ))
1
µc δ−1.

So there is a constant C1 > 0 such that

diam(g(V c0 )) ≤ DC−10 |R
′(z)|−1δ(δr(δ))−

1
µc diam(B̃δ(c)))

≤ C1δ
−
µc0

−1

µc0 δ(r(δ))−
1
µc .

Thus, if δ > 0 is small,

diam(X) ≤ 2Ddiam(g(B̃δ(c))) ≤ 2DC1δ
− 1
µc0 (r(δ))

1
µc ¿ diam(B̃δ(c0)).

It follows that w ∈ B̃2δ(c0) and therefore V c0n+1 ⊂ B̃2δ(c0). ¤

Proof of Proposition 2.7. For c ∈ Crit ∩ J(R) let V and V cn as in the previous lemma

with 2δ instead of δ, so V cn ⊂ B̃4δ(c). Note that V c = ∪n≥0V
c
n ⊂ B̃4δ(c) is the connected

component of Ĉ−K(V ) containing c.
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Thus for any connected component W of Ĉ−K(V ) there is mW ≥ 1 and c = c(W ) ∈
Crit ∩ J(R) such that RmW : W −→ V c is a biholomorphism. By the Univalent Pull-

back condition the inverse of this map extend in a univalent way to B̃2δr(2δ). By Koebe
Distortion Theorem we have that for δ > 0 small the distortion of RmW in W is bounded
by some definite constant independent of δ. It follows by Lemma 2.2 that there is a
constant C > 0 such that if W is a connected component Ĉ−K(V ) intersecting B2δ(v),

for some v ∈ CV∩J(R), then diam(W ) < Cδ(r(δ))−
1

µmax . Put η(δ) = 1+C(r(δ))−
1

µmax .

For v ∈ CV ∩ J(R) let,

Ûv = {Bδ(v) ∪ (∪W ) |W connected component of Ĉ−K(V ) intersecting Bδ(v)},

so Bδ(v) ⊂ Û
v ⊂ Bη(δ)δ(v) if δ is small enough. Moreover let

Uv = Ûv ∪ { connected component W of Ĉ− Ûv such that diam(W ) < diam(Ûv)}.

Note that diam(Ûv) ¿ diam(Ĉ) so there is only one connected component of Ĉ − Ûv
whose diameter is not smaller than Ûv. Thus Uv is simply-connected. Moreover Bδ(v) ⊂

Uv ⊂ Bη(δ)δ(v) and ∂Uv ⊂ ∂Ûv ⊂ K(V ) ∩ Bη(δ)δ(v). Then the proposition follows by
Lemma 2.6. ¤

3. Topological models of Julia sets.

In this section we indicate the proof of Theorem A, about topological models of poly-
nomials. The proof is based in a Landing Lemma proved in Section 3.1 and in Thurston-
Kiwi Finiteness Theorem stated in Section 3.2. We prove Theorem A under a technical
assumption and assuming that there are no parabolic periodic points; see Section 3.2.
The proof of this particular case of Theorem A contains the essential ideas involved in
the general case. In Section 7 we prove that this technical assumption is automatically
satisfied for polynomials in the class S. The proof of Theorem A in the general case is
in Section 7.2.

We begin with an easy consequence of Lemma 2.2.

Lemma 3.1. Fix η > 1 and let δ > 0 be small. Let V = ∪V c be a neighborhood of Crit∩
J(R) with Martens property such that B̃δ(Crit ∩ J(R)) ⊂ V ⊂ B̃ηδ(Crit ∩ J(R)). Then
there is a constant C1 > 0, independent of δ, such that for every connected component
W of Ĉ−K(V ) we have

(i): diam(W ) ≤ C1δ
1

µmax .

(ii): If ρ = dist(U, c0) then diam(W ) ≤ C1max(δ, ρ)(r(δ))−
1

µmax .

Proof. Let m = mW ≥ 1 and c = c(W ) ∈ Crit ∩ J(R) be such that Rm : W −→ V c is
a biholomorphism. By the Univalent Pull-back Property the inverse of this map extend
in an univalent way to B̃δr(δ)(c). We may suppose δ small enough so that r(δ) > 2η,
so by Koebe Distortion theorem the distortion of Rm in W is bounded by some definite

constant independent of δ. Considering that diam(V c) ∼ δ
1
µc we have diam(W ) ≤

C2δ
1
µc |(Rm)′(z)|−1, for any z ∈W and some definite constant C2 > 0. Then the lemma

follows considering that by Lemma 2.2 there is a definite constant C0 > 0 such that

|(Rn)′(z)|−1 ≤ C−10 (r(δ)δ)−
1
µc max(δ, ρ) and |(Rn)′(z)|−1 ≤ C−10 δ

1
µmax

− 1
µc .¤
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3.1. Landing Lemma. The aim of this section is to prove a general Landing Lemma for
hyperbolic sets of polynomials. An analogous property was proved in greater generality
by Przytycki, in [Pr1]. The proof that we present here is essentially the same as the
usual proof in the case of repelling periodic points; see for example [Mil3].

We need to introduce the notion of ray. We first introduce it in the more standard
case when the Julia set is connected. In Section 3.1.1 we consider the disconnected case.
For references to this section see [GM] and [CG].

Let P ∈ C[z] be a polynomial and let,

K(P ) = {z | {Pn(z)}n≥0 is bounded},

which is called the filled in Julia set of P . Then P−1(K(P )) = K(P ) and K(P ) is a
compact subset of C. Moreover J(P ) = ∂K(P ).

If K(P ) is connected there is a conformal representation ϕ : Ĉ−K(P ) −→ Ĉ−D fixing
infinity, that conjugates the dynamics of P to that of z −→ zd, where d is the degree of
P . There are exactly d−1 such coordinates. The continuous function G = GP : C −→ R
equal to ln |ϕ| in C − K(P ) and equal to 0 in K(P ), is called the potential or Green
function. This function does not depend in the choice of ϕ and satisfies G ◦ P = d. The
sets of the form G−1(p), for p > 0, are analytic Jordan curves called equipotentials.

The sets of the form ϕ−1({re2πiθ| r > 1}) are called rays and the set of accumulation
points of this ray, is the set of accumulation points of ϕ−1(re2πiθ), as r → 1, which is a
full compact set. If this set is the singleton z, then we say that the ray lands at z and
that z is the landing point of the ray. Rays and its accumulation sets do not depend in
the choice of ϕ.

Landing Lemma. Let P ∈ C[z] and let K ⊂ J(P ) be a forward invariant set for P ,
such that P is uniformly expanding in K. Then every ζ ∈ K(P ) is the landing point of
some ray.

The proof of this lemma is based in the following well known univalent pull-back
property for such K: There is r > 0 such that for all y ∈ K and n ≥ 0 the pull-back B
of Br(P

n(y)) to y by Pn is univalent. Note that, taking r smaller, we may assume that
the distortion of Pn in B is bounded by some definite constant.

Proof of the Landing Lemma in the connected case.

1.- By the property stated above it follows that there is C1 > 0 such that for all y ∈ K
and z ∈ BC1|(Pk)′(y)|−1(y), we have that G(z) ≤ d−k.

2.- For z 6∈ K(P ) let δ(z) = dist(z,K(P )). Note that for all ε > 0 there is C = C(ε) >
1 such that δ(z) ≥ εdist(z, y) for y ∈ K implies,

C−1|(P k)′(y)|−1 < dist(z, y) < C|(P k)′(y)|−1,

where k = [ln |G(z)|] is the integer part of ln |G(z)|. In fact, let m be the least integer
such that dist(Pm(z), Pm(y)) is comparable to r. By bounded distortion we have

δ(Pm(z)) ≥ D−1εdist(Pm(z), Pm(y)),

where D > 1 is a definite distortion constant. This implies that G(Pm(z)) ∼ 1 for
some implicit constant only depending in ε, or equivalently |m − k| < K(ε). Thus
dist(z, y) ∼ |(Pm)′(y)|−1 ∼ |(P k)′(y)|−1, for implicit constants only depending in ε.
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3.- Given a point zn with d−n ≤ G(zn) < d−(n−1) let zk be the point in the same ray
as zn but with equipotential G(zk) = dk−nG(zn). It follows by a well known theorem of
Koebe (see Corollary 1.4 of [Pom]) that δ(zk) ∼ dist(zk, zk−1). Let us prove that for all
ε > 0 small there is m = m(ε) ≥ 1 such that if δ(zk) ≥ εdist(zk, ζ) then there is k−m <
k1 < k such that δ(zk1) ≥ εdist(zk1 , ζ). In fact suppose that δ(zk+i) < εdist(zk+i, ζ), for
0 < i ≤ n. In this case,

dist(zk+i+1, ζ) ≤ dist(zk+i, ζ) + dist(zk+i+1, zk+i) ≤ dist(zk+i, ζ) +K0δ(zk+i)

≤ (1 +K0ε)dist(zk+i, ζ),

for some definite K0 > 0. Let λ > 1 be so that |(P l)′(w)| ≥ K1λl for all w ∈ K and l ≥ 0.
Then, if ε is small enough so that 1+K0ε < λ, it follows that dist(zk+n, ζ)¿ |(P

n)′(ζ)|−1

if n is big enough. By 1 it follows that n < m = m(ε), which proves the assertion.

4.- By the property stated above there is ε > 0 such that for any n big there is zn 6∈
K(P ) such that δ(zn) ≥ εdist(zn, ζ). Fix such zn with nÀ 1. It follows by induction in
3 that there is ε0 and a sequence n = n0 < n1 < ... such that ni+1 − ni < m = m(ε0)
and such that δ(zni) ≥ ε0dist(zni , ζ). Hence by bounded distortion there is ε1 > 0 such
that for all k ≤ n we have δ(zk) > ε1dist(zk, ζ), so by 2, dist(zk, ζ) ∼ |(P

k)′(ζ)|−1.

5.- Consider a sequence znn like above, so that the points zni for i ≥ n belong to the
same ray. Consider a sequence ni →∞ such that zni0 → z0. Then the ray containing z0
lands at ζ, since by 4, dist(zi, ζ) ∼ |(P

i)′(ζ)|−1 which decreases exponentially. ¤

3.1.1. Disconnected case. If the Julia set of a polynomial P ∈ C[z] is not connected then

we cannot define rays as in the connected case because Ĉ−K(P ) is not represented by

Ĉ− D. We consider a definition of ray following Goldberg and Milnor; see Appendix A
of [GM].

We begin by defining the potential or Green function G : C −→ [0,∞) of a polynomial
P ∈ C[z] of degree d ≥ 2; see [CG] for references. This function is given by,

G(z) = lim
n→∞

1

dn
ln |Pn(z)|;

it is implicit that the limit always exists. Then G(z) = 0 if and only if z ∈ K(P ) and
that G is a continuous function and harmonic in C −K(P ). In the connected case the
gradient flow −∇G does not have singularities in C − K(P ) and the rays are the flow
lines of −∇G in C − K(P ). In the disconnected case −∇G has singularities that are
locally the preimage by zm, with m ≥ 2, of a constant flow. The singularities are exactly
the preimages of critical points in Ĉ−K(P ).

As in the connected case there are coordinates ϕ conjugating the polynomial P to zd

near infinity. These coordinates satisfy ln |ϕ(z)| = G(z), so they map flow lines to pieces
of straight lines passing through 0. So we can parameterize the different flow lines in a
neighborhood of infinity, by angles in R/Z, just as in the connected case.

Given an angle θ ∈ R/Z there are two cases. Either the corresponding flow line is
smooth and we call it a ray as in the connected case, or the corresponding flow line is not
smooth and we consider two (broken) rays that are the limits of smooth rays with angles
converging to θ. One is when the convergence to θ and the other is when the convergence
is from the left. We associate them angles θ+ and θ− respectively. We can think of the
ray with angle θ+ (resp. θ−) as the (broken) flow line of −∇G the we obtaining by
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continuing with the rightmost (resp. leftmost) flow line at each time that we encounter
a singularity of −∇G.

Note that the potential function gives a natural parameterization of a ray by the
interval (0,∞). As in the connected case we define the set of accumulation points of a
ray r : (0,∞) −→ C, parametrized by the potential, as the set of accumulation points of
r(t) as t → 0. If the accumulation set of a ray is the singleton {z} ⊂ J(P ) we say that
the ray lands at z.

The Landing Lemma also holds in the disconnected case. The proof is analogous to
the connected case. The only adaptation is that in 5, of the proof of the connected case,
we may choose znn in a smooth ray, so the limit of these smooth rays is also a ray.

3.2. Thurston-Kiwi Finiteness Theorem and Theorem A. It will important to
known, in order to apply the Landing Lemma, that polynomials in S satisfy the following
property.

EAC. Given R ∈ C(z) be a rational map and denote by P the set of parabolic points of
R. Then for every neighborhood V of Crit∪P the rational map R is uniformly expanding
in,

{z ∈ J(R) | Rn(z) 6∈ V for n ≥ 0}.

It is proven in Corollary 7.9 in Section 7 that polynomials in S satisfy this property.
Przytycki proved in ([Pr2], Lemma 3.1) that rational maps satisfying the summability
condition with exponent one satisfy this property. In the real setting Mañé proved in
[Mañé] that an analogous property holds for any map of class C2. However there are
complex quadratic polynomials that do not satisfy this property; see example of Douady
and Hubbard in [Mil2].

To state the Finiteness Theorem we need to introduce the so called puzzle ends (see
[Lev]) or fibers; see [Sch]. We follow the approach of Kiwi; see [Ki].

Let P ∈ C[z] be a polynomial without irrationally indifferent periodic points. The
puzzle end of a point w ∈ J(P ) is the intersection of all the sets that are the connected
components of J(P )−Z containing w, where Z ⊂ J(R)−{w} is a finite set of pre-periodic
points. Puzzle ends are full compact connected sets that partition J(P ). Moreover the
image by P of a puzzle end is also a puzzle end.

Finiteness Theorem (Thurston-Kiwi). Let P ∈ C[z] be a polynomial without ir-
rationally indifferent periodic points. Then a puzzle end is either pre-periodic, in which
case it is a singleton, or it intersects at most a finite number of accumulation sets of
rays.

This theorem was proved by Thurston for quadratic polynomials and by Kiwi in its
full generality; see [Ki]. We remark that in fact the stronger assertion hold, that a puzzle
end that is not pre-periodic can intersect at most a 2d ray impressions, where d ≥ 2 is
the degree of P ; see [Ki].

Now we give a proof of Theorem A assuming EAC and that there no indifferent
periodic points. In Section 7 we prove that polynomials in the class S satisfy EAC and
do not have irrationally indifferent periodic points. In the presence of parabolic periodic
points we improve Martens neighborhoods given by Proposition 2.7; see Proposition 7.11.
Then the proof is the same as the particular case presented here; see Section 7.2.
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In [Ki] Kiwi proved that conditions 1−3 in Theorem A are equivalent to the condition
that every puzzle end is a singleton. Moreover these conditions imply the last assertion
in Theorem A. So to prove Theorem A is enough to prove that every puzzle end is a
singleton.

Proof of Theorem A assuming property EAC and that there are no indifferent periodic
points. Since there are no irrationally indifferent periodic points the considerations of
puzzle ends apply to P . Recall that by [Ki] is enough to prove that all puzzle ends are
singletons.

Suppose, by contradiction, that the puzzle end ξ of a critical point is not a singleton,
so by the Finiteness Theorem ξ intersects at most a finite number of accumulation sets of
rays. By Proposition 2.7 there is a sequence Vi = ∪cV

c
i of neighborhoods of Crit ∩ J(P )

with Martens property so that the diameter of V c
i goes to zero as i → ∞. Since ξ is

connected it follows that ξ intersects ∂Vi in a point xi, for big i. We may suppose that
the xi are different.

By Lemma 2.5 xi ∈ ∂Vi ⊂ K(Vi) so xi belongs to the set K(Vi)∩J(P ). By hypothesis
P satisfies EAC and it does not have parabolic periodic points, so P is uniformly expand-
ing in K(Vi)∩J(P ). So by the Landing Lemma each xi is the landing point of some ray;
see Section 3.1. But this contradicts the Finiteness Theorem since each {xi} ⊂ ξ is an
accumulation set of a ray. Hence all puzzle ends containing critical points are singletons.

Let w ∈ J(P ) such that ω(w)∩Crit 6= ∅. Let ni be the least integer such that P ni(w) ∈
V cii for some ci ∈ Crit ∩ J(P ). We may univalently pull-back V cii to w by Pni to obtain
Vi(z), that contains w. By Lemma 3.1 we have that, diam(Vi(w)) ≤ Cdiam(V cii ) → 0
as i→∞, for some definite C > 0; hence we can prove that the puzzle end containing w
is trivial just as before.

It remains to prove that the puzzle end of a point z ∈ J(P ) such that ω(z)∩Crit = ∅
is a singleton. This is now standard given the triviality of the puzzle ends of critical
points; see for example [H], [Lyu2] and [Mil2]. ¤

4. Area estimates.

In this section we prove area estimates for rational maps in S. This is one of the main
ingredients in the proof of Theorem B. It is also used in a essential way in the proof of
Rigidity (sated in the next section) and in the proof of Theorems C, D and E.

Given X ⊂ Ĉ, we denote by |X| the spherical area of X.

Area Estimates. Let R ∈ S such that J(R) 6= Ĉ and fix η > 1 close to one. Then
there is ε = ε(η) > 0 and A = A(η) > 0 such that the following assertion is true. For
δ > 0 small consider simply connected neighborhoods V c

δ of c ∈ Crit ∩ J(R) such that

B̃δ(c) ⊂ V
c
δ ⊂ B̃ηδ(c) and such that Vδ = ∪cV

c
δ has Martens property. Then

|B̃εδr(δ)(c)−K(Vδ)|

|B̃εδr(δ)(c)|
≤ A(r(δ))−

2
µmax .

We first construct a special nest Vn of neighborhoods of Crit ∩ J(R) with Martens
property. Clearly it will be enough to prove that Area Estimates for Vδ = Vn.
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Fix η > 1 as in the Area Estimates and fix τ ∈ (0, η−1). Let ε > 0 be small and for
n ≥ n0, for some big n0, let m(n) be the greatest integer such that τm(n) ≤ 2ετnr(τn).
Since δr(δ) ≤ δ0r(δ0) for δ ≤ δ0 it follows that m(n) is a non decreasing sequence.

Proposition 4.1. There is n0 À 1 such that for all n ≥ m(n0) and v ∈ CV∩J(R) there
is a simply-connected neighborhood U vn of v, such that,

Bτn(v) ⊂ U
v
n ⊂ Bητn(v),

and so that if V cn is the connected component of R−1(Un) that contains c ∈ Crit ∩ J(R),
then Vn = ∪Crit∩J(R)V

c
n has Martens property. Moreover, for n ≥ n0 we have ∂Un ⊂

K(Vm(n)), where Un = ∪Uvn.

Put Ln = R−1(K(Vm(n)))−Vn. Then for every connected componentW of Ĉ−Ln there

is mW ≥ 1 and c(W ) ∈ Crit∩J(R) such that RmW :W −→ V
c(W )
m(n) is a biholomorphism,

with distortion bounded by D = D(ε) ≤ 1 +Mε, for some constant M independent of n.

Note that is enough to prove the Area Estimates for Vδ = Vn, for n ≥ n0. We will
prove the Area Estimates hold for Vn, for n ≥ n0, for an appropriated choice of ε > 0;
see Section 4.1.

For c ∈ Crit ∩ J(R) and n ≥ n0 let

ξcn =
|V cm(n) −K(Vn)|

|V c
m(n)|

and ξn = max
c
ξcn.

Thus, to prove the Area Estimates, is enough to prove that there is a constant A0 > 0

such that for n big ξn ≤ A0(r(τ
n))−

2
µmax . Finally note that, since J(R) 6= Ĉ, it follows

that K(Vn) ∩ V cm(n) has non empty interior, so ξn < 1.

Proof of Proposition 4.1. Let Um(n0) given by Proposition 2.7 for δ = τm(n0). For

v ∈ CV ∩ J(R) and for m(n0) ≤ r ≤ n0 + 1 let, Ũvr be the connected component of,

Bτr (v) ∪ (C−K(Vm(n0))),

that contains v. Therefore ∂Ũvr ⊂ K(Vm(n0)). Let

Uvr = Ũvr ∪ { connected components U of Ĉ− Ũvr such that diam(U) < diam(Ũvr )},

which is a simply connected neighborhood of v so that ∂U vr ⊂ K(Vm(n0)). Moreover, by
Lemma 3.1 we have Bτr (v) ⊂ Uvr ⊂ Bη1τr (v), where η1 = 1 +O(ε).

For c ∈ Crit∩J(R) let V cr be the connected component of R−1(U
R(c)
n ) that contains c.

By Lemma 2.6, Vr = ∪V
c
r has Martens property. Taking ε smaller if necessary one may

suppose that Vm(n0) ⊃ Vm(n0)+1 ⊃ ... ⊃ Vn0
. In a similar way we can define inductively

neighborhoods Uvj of v ∈ CV ∩ J(R), for j > n0 + 1, such that ∂Uj+1 ⊂ K(Vm(j)) and
Bτr (v) ⊂ Uvr ⊂ Bη1τr (v), that satisfy the conclusions of the Proposition.

If W is a connected component of Ĉ − Ln, then R(W ) is a connected component
of C − K(Vn), so there is m = mW and c = c(W ) ∈ Crit ∩ J(R) such that Rm :
R(W ) −→ V cm(n) is a biholomorphism. By the Univalent Pull-back Property the inverse

of this map extends to B̃τm(n)r(τm(n))(c), so the distortion of Rm in R(W ) is bounded

1 + C1(r(τ
m(n)))−

1
µc , for a constant C1 > 0 independent of W and n. By Lemma 3.1

there is C2 > 0 independent of W and n such that diam(R(W )) ≤ C2εdiam(Un). By
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definition of Ln we have R(W )∩Un = ∅, so by Koebe Distortion Theorem, the distortion
of R in W is 1 +O(ε). Thus the distortion of Rm+1 in W is 1 +O(ε). ¤

Remark 4.2. Note that the neighborhoods Vn of the nest are such that ∂K(Vn)− J(R)
has zero Lebesgue measure. In fact, by construction ∂K(Vn) − J(R) is locally a finite
union of analytic curves; cf. proof of Proposition 2.7.

4.1. First landing maps and decay of area. In this section we proof the Area Es-
timates. We keep the previous notation. Recall that is enough to prove that there is a
constant A0 > 0 such that for big n we have

ξn = max
Crit∩J(R)

{

ξcn =
|V cm(n) −K(Vn)|

|V c
m(n)|

}

≤ A0(r(τ
n))−

2
µmax .

We first prove that ξn → 0, by showing that the ξn satisfy an inductive inequality; see
Lemmas 4.3 and 4.4. Then we prove the desired bound for ξn, see Lemma 4.5.

Let us begin with a remark about distortion. Let W be a connected component of the
complement of Ln = R−1(K(Vm(n))) − Vn, different from V cn , for c ∈ Crit ∩ J(R). By
Proposition 4.1 there is mW ≥ 1 and c = c(W ) ∈ Crit ∩ J(R) such that RmW : W −→
V cm(n) is a biholomorphism with distortion bounded by D = D(ε) > 1. Therefore, letting

ξW = |W−Kn|
|W | , we have that

ξW
ξn
≤ D2

1− ξW
1− ξn

,

or equivalently ξW ≤ ξ̃n = D2ξn
1+(D2−1)ξn

≤ D2ξn.

The following lemma is independent of dynamics.

Lemma 4.3. Let vn ∈ (0, 1) such that vn → 1 as n→∞ and let σ ∈ (0, 1). If D > 1 is
close to one, then every sequence ξn ∈ (0, 1) such that,

1− ξn ≥
1− ξn−1

1 + (D2 − 1)ξn−1
vn

1

1−D−2ξ̃n−1σ
,

where ξ̃n−1 =
D2ξn−1

1−(D2−1)ξn−1
, is such that ξn → 0 as n→∞.

Proof. For ξ ∈ (0, 1) put ξ̃ = D2ξ
1+(D2−1)ξ . Note that,

(1 + (D2 − 1)ξ)(1−D−2ξ̃σ) < 1 + (D2 − 1)ξ −
ξσ

1 + (D2 − 1)ξ
.

So, if ρ ∈ (0, σ) and if D is close enough to one, there is ξ0 ∈ (0, 1) such that,

(2) (1 + (D2 − 1)ξ)(1−D−2ξ̃σ) < 1− ρξ,

for ξ ∈ (0, ξ0). Moreover we may suppose that D is close enough to one, so that (1 +
(D2 − 1)ξ)(1 −D−2ξσ) < 1 for ξ ∈ [ξ0, 1]. Thus, if ρ > 0 is small enough, we have (2)

for all ξ ∈ (0, 1). Hence 1− ξn ≥
1−ξn−1

1−ρξn−1
vn.

Consider ε ∈ (0, 1). If ξn−1 < ε we have 1−ξn
1−ξn−1

≥ vn
1−ρε . Since vn → 1 as n → ∞ it

follows that there are infinitely many n for which ξn < ε. Note that 1− ξn ≥
1−ξn−1

1−ρξn−1
vn

implies,

ξn ≤
1− ρ

1− ρξn−1
ξn−1vn + (1− vn).
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Since vn → 1 as n → ∞, it follows that for n big, ξn−1 < ε implies ξn < ε. Therefore
there is n(ε) such that ξn < ε for every n ≥ n(ε). Since ε ∈ (0, 1) was arbitrary, it follows
that ξn → 0 as n→∞. ¤

Lemma 4.4. ξn → 0 as n→∞.

Proof. We denote Kl = K(Vl).

1.− Let U be a connected component of Vm(n) − Vn−1 − Kn−1 and let mU ≥ 0 and

c(U) ∈ Crit∩J(R) be such that RmU : U −→ V
c(U)
n−1 is a biholomorphism. By Proposition

4.1 we have that,

D−2
|V

c(U)
n−1 ∩Kn|

|V
c(U)
n−1 |

≤
|U ∩Kn|

|U |
,

so |U −Kn| ≤ |U |

(

1−D−2
|V

c(U)
n−1 ∩Kn|

|V
c(U)
n−1 |

)

.

Fix c ∈ Crit∩J(R). Note that V cm(n)−V
c
n−1−Kn−1 is contained in Vm(n)−Vn−1−Ln−1.

As remarked above, for each connected component W of this later set, we have

|W − Ln−1| ≤ ξ̃n−1|W |.

Therefore
∑

U |U | ≤
∑

W ξ̃n−1|W | ≤ ξ̃n−1|V
c
m(n) − V cn−1|, where the sum is over all

connected components U of V cm(n) − V
c
n−1 −Kn−1, and all connected components W of

V cm(n) − V
c
n−1 − Ln−1, respectively.

Therefore we have,

|V cm(n)|ξ
c
n = |V cm(n) −Kn| ≤ |V

c
n−1|+

∑

W

|W |

(

1−D−2
|V

c(W )
n−1 ∩Kn|

|V
c(W )
n−1 |

)

≤ |V cn−1|+ ξ̃n−1|V
c
m(n) − V

c
n−1|

(

1−D−2(min
c0

|V c0n−1 ∩Kn|

|V c0n−1|
)

)

, so

1− ξcn ≥
|V cm(n) − V

c
n−1|

|V c
m(n)|

(

1− ξ̃n−1 + ξ̃n−1D
−2(min

c0

|V c0n−1 ∩Kn|

|V c0n−1|
)

)

.

2.− In a similar way we obtain

|V cn−1 −Kn| ≤ |V
c
n |+ ξ̃n−1|V

c
n−1 − V

c
n |

(

1−D−2(min
c0

|V c0n−1 ∩Kn|

|V c0n−1|
)

)

.

Therefore we have

|V cn−1 ∩Kn|

|V cn−1|
≥
|V cn−1 − V

c
n |

|V cn−1|

(

1− ξ̃n−1

(

1−D−2(min
c0

|V c0n−1 ∩Kn|

|V c0n−1|
)

))

, and,

min
c0

|V c0n−1 ∩Kn|

|V c0n−1|
≥

(1− ξ̃n−1)(minc
|V cn−1−V

c
n |

|V cn−1|
)

1−D−2ξ̃n−1(minc
|V cn−1−V

c
n |

|V cn−1|
)
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3.− Combining 2 and 3 it follows that,

1− ξcn
1− ξn−1

=
1− ξcn

1− ξ̃n−1

1

1 + (D2 − 1)ξn−1

≥
1

1 + (D2 − 1)ξn−1

|V cm(n) − V
c
n−1|

|V c
m(n)|



1 +
D−2ξ̃n−1(minc

|V cn−1−V
c
n |

|V cn |
)

1−D−2ξ̃n−1(minc
|V cn−1−V

c
n |

|V cn |
)





=
1

1 + (D2 − 1)ξn−1

|V cm(n) − V
c
n−1|

|V c
m(n)|





1

1−D−2ξ̃n−1(minc
|V cn−1−V

c
n |

|V cn |
)



 .

Note that minc
|V cn−1−V

c
n |

|V cn |
= 1− τ

2
µmax +O(ε), so if ε is small enough, there is σ ∈ (0, 1)

so that σ ≤ minc
|V cn−1−V

c
n |

|V cn |
for big n. Moreover,

vn = min
c

|V cm(n) − V
c
n−1|

|V c
m(n)|

∼ 1− (r(τn))−
2

µmax → 1 as n→∞.

Hence the sequence ξn satisfies the hypothesis of the previous lemma. Since D = D(ε) =
1 +O(ε) we have that, if ε > 0 was chosen small enough then ξn → 0. ¤

Lemma 4.5. Let n À 1 and k ≥ 1 be such that m(n) = m(n + 1) = ... = m(n + k).

Letting bi = ξiminc
|V cm(n)|

|V cn |
we have

bn+k ≤ 1 +D9max
c

|V cm(n)|

|V c
m(n−1)|

bn−1.

Proof. By hypothesis m(n+ k) = m(n), so for any connected component W of Vm(n) −
Vn+k −R−1(Km(n)) there is m ≥ 1 and c0 ∈ Crit ∩ J(R) so that RmW :W −→ V c0

m(n) is

a biholomorphism.

Since m(n) ≥ n− 1 it follows that, if U is a connected component of Vm(n) − Vn+k −
R−1(Kn−1), then there are m ≥ 1 and c0 ∈ Crit ∩ J(R) so that Rm : U −→ V c0m is a
biholomorphism.

Fix c ∈ Crit ∩ J(R). It follows by the distortion property of Proposition 4.1 that

ξcn+k|V
c
m(n+k)| − |V

c
n+k| = |V cm(n) − V

c
n+k −Kn+k|

≤ D2|V cm(n) − V
c
n+k −R

−1(Kn−1)|(max
c0

|V c0n−1 −Kn+k|

|V c0n−1|
).

As in the previous lemma we have

|V cm(n) − V
c
n+k −R

−1(Kn−1)| ≤ D
2ξn−1|V

c
m(n) − V

c
n+k|, and also

|V cn−1 − V
c
n+k −R

−1(Kn−1)| ≤ D
2ξn−1|V

c
n−1 − V

c
n+k|.

1.− Let us prove that for big n we have maxc0
|V

c0
n−1−Kn+k|

|V
c0
n−1|

≤ Dmaxc
|V cn+k|

|V cn−1|
. In a similar

way as above we obtain

|V cn−1 − V
c
n+k −Kn+k|

|V cn−1|
≤ D2

|V cn−1 − V
c
n+k −R

−1(Kn−1)|

|V cn−1 − V
c
n+k|

(max
c0

|V c0n−1 −Kn+k|

|V c0n−1|
)

≤ D4ξn−1(max
c0

|V c0n−1 −Kn+k|

|V c0n−1|
),

25



Therefore

max
c0

|V c0n−1 −Kn+k|

|V c0n−1|
≤ (1−D4ξn−1)

−1(max
c

|V cn+k|

|V cn−1|
)

Considering that ξn → 0 as n→∞ we have that, for big n,

max
c0

|V c0n−1 −Kn+k|

|V c0n−1|
≤ D(max

c

|V cn+k|

|V cn−1|
).

2.− Combining previous inequalities we obtain

ξcn+k|V
c
m(n+k)| − |V

c
n+k| ≤ D5ξn−1|V

c
m(n) − V

c
n+k|(max

c0

|V c0n+k|

|V c0n−1|
)

≤ D5ξn−1|V
c
m(n)|(max

c0

|V c0n+k|

|V c0n−1|
), so

ξcn+k =
|V cm(n) −Kn+k|

|V cn+k|
≤
|V cn+k|

|V c
m(n)|

+D5ξn−1(max
c0

|V c0n+k|

|V c0n−1|
).

Thus bn+k ≤ 1 + D5minc
|V cm(n)|

|V c
n+k|

ξn−1(maxc0
|V

c0
n+k|

|V
c0
n−1|

). Note that the minimum and the

maximum are realized for c and c0 with maximal multiplicity. Since for such critical
points the respective quantities are comparable by a factor of D2, it follows that if c

minimizes
|V cm(n)|

|V c
m(n−1)

| we have

bn+k ≤ 1 +D7
|V cm(n)|

|V c
m(n−1)|

(ξn−1
|V cm(n−1)|

|V cn−1|
)

≤ 1 +D9max
c

|V cm(n)|

|V c
m(n−1)|

bn−1.¤

Proof of the Area Estimates. Note that is enough to prove that the bi are bounded. By
the previous lemma is enough to bound the bj for j so that m(j + 1) < m(j). If j1 < j2
are two such consecutive numbers it follows by the previous lemma that,

bj2 ≤ 1 +D9max
c

|V cm(j1+1)|

|V c
m(j1)

|
bj1 .

Letting ε > 0 smaller if necessary we may assume that D9maxc
|V cm(j1+1)|

|V c
m(j1)

| is less than

some definite constant less than one. Then the bj are bounded and the Area Estimates
follows. ¤

4.2. About Lebesgue measure of Julia sets. In this section we prove the following.

Proposition B. Let R ∈ S be a rational map such that J(R) 6= Ĉ and consider a nest
Vn = ∪V cn of neighborhoods with Martens property given by Proposition 4.1. Then the

area of Ĉ−K(Vn) goes to zero as n→∞. In particular the set,

{z ∈ J(R) | ω(z) ∩ Crit 6= ∅} = ∩nÀ1(Ĉ−K(Vn)),

has zero Lebesgue measure.

Recall that ω(z) denotes the omega limit set of z ∈ Ĉ, which is the set of accumulation
points of the forward orbit of z.
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In Section 7 we prove that, if J(R) 6= Ĉ, then the set of points in J(R) that do
not accumulate critical points under forward iteration has zero Lebesgue measure. This
completes the proof of Theorem B asserting that in this case the Julia set has zero
Lebesgue measure. The proof of this fact is somehow indirect and it depends in the
proof of Theorem C. There is a more direct proof by Przytycki, under the stronger
summability condition with exponent one; see Lemma 3.1 of [Pr2]. So now we obtain.

Corollary. Let R ∈ C(z) be a rational map satisfying the summability condition with

exponent one and so that J(R) 6= Ĉ. Then, the Lebesgue measure of J(R) is zero.

The proof of Proposition B depends in the following lemma, which is a consequence
of the Area Estimates.

Lemma 4.6. Fix η > 1 close to one. Given δ > 0 small let Uδ = ∪
v∈CV∩J(R)U

v be

as in Proposition 2.7, so that Bδ(v) ⊂ Uv ⊂ Bηδ(v) and the union Vδ of the connected
components of R−1(Uδ) intersecting Crit ∩ J(R) has Martens property. Then there is a
constant A1 > 0 independent of δ > 0 such that,

|Uv −K(Vδ)|

|Uv|
≤ A1(r(δ))

− 2
µmax .

Proof. Denote by V cδ the connected component of Vδ containing c ∈ Crit∩ J(R) so Vδ =

∪cV
c
δ . Since Vδ has Martens property, for every connected component W of Ĉ −K(Vδ)

there are m = mW ≥ 0 and c = c(W ) ∈ Crit ∩ J(R) such that Rm : W −→ V cδ is
a biholomorphism. Denote by R−mW the respective inverse branch of RmW . By the
Univalent Pull-back Property R−mW extends univalently to B̃r(δ)δ(c).

For v ∈ CV ∩ J(R) let Sv = {W | W ∩ Uv 6= ∅} and let ε > 0 given by the Area

Estimates. For W ∈ S and ν ∈ (0, 1) let W (ν) = R−mW (B̃νεr(δ)δ(c(W ))). By Koebe
Distortion Theorem there is ν ∈ (0, 1) independent of δ such that if W0, W1 ∈ S are such
that W0(ν) ∩W1(ν) 6= ∅, then either W0(ν) ⊂W1(1) or W1(ν) ⊂W0(1). Let

T v = {W ∈ Sv |W (ν) 6⊂W0(1) for all W0 ∈ S
v − {W}} .

Thus the sets W (ν), for W ∈ T v, are pairwise disjoint. By Koebe Distortion Theorem
the distortion of RmW in W (1) is bounded by some constant D > 1, independent of
δ > 0. It follows by Lemma 3.1 that if δ > 0 is small enough there is a constant C > 0
independent of δ such that

Uv −K(Vδ) ⊂ (∪TvW (1)) ⊂ BCδ(v).

By the Area Estimates we have

|W −K(Vδ)| ≤ D
2A(r(δ))−

2
µmax |W |.

Therefore

|Uv −K(Vδ)| ≤ D
2A(r(δ))−

2
µmax

∑

Tv

|W (1)| ≤ ν−2D4A(r(δ))−
2

µmax

∑

Tv

|W (ν)|.

Considering that the setsW (ν), forW ∈ T v, are pairwise disjoint we have
∑

Tv |W (ν)| ≤

|BCδ(v)|. Thus there is a constant A1 > 0 such that |Uv −K(Vδ)| ≤ A1(r(δ))
− 2
µmax |Uv|.

¤
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Proof of Proposition B. Let τ ∈ (0, 1) and η ∈ (1, τ−1) be as in Proposition 4.1, so that

B̃τ i(c) ⊂ V
c
i ⊂ B̃ητ i(c). Then, for iÀ 1,

|Ĉ−K(Vi+1)| ≤ D
2
i

(

max
c

|V ci −K(Vi+1)|

|V ci |

)

|Ĉ−K(Vi)|,

where the distortion constant Di > 1 satisfies Di = 1 +O((r(τn))−
1

µmax ). Applying the

previous lemma for δ = τ i it follows that
|V ci −K(Vi+1)|

|V ci |
is less than some definite constant

less than one, so the proposition follows. ¤

The following lemma is an easy consequence of Lemma 4.6 and it will be used in
Section 5 to prove Rigidity.

Lemma 4.7. Let R ∈ S be such that J(R) 6= Ĉ. Then for every ε0 > 0 there is
δ0 = δ0(ε0) > 0 and ρ > 1 such that for any δ ∈ (0, δ0) the set V = ∪V c with Martens
property given by Proposition 2.7, for this choice of δ, is such that for any c ∈ Crit∩J(R),

|B̃ρδ(c)−K(V )|

|B̃ρδ(c)|
< ε0.

Proof. Let ρ > 1 be such that for every c ∈ Crit ∩ J(R) and δ > 0 small, |B̃2δ(c)| <
ε0
2 |B̃ρδ(c)|. By Lemma 4.6, applied to ρδ instead of δ, and by Koebe Distortion Theorem,
we have that for every c ∈ Crit ∩ J(R) and every δ > 0 small

|B̃ρδ(c)− V
c −K(V )| <

ε0
2
|B̃ρδ(c)|,

Hence,

|B̃ρδ(c)−K(V )| = |B̃ρδ(c)− V
c −K(V )|+ |V c| < (

ε0
2

+
ε0
2
)|B̃ρδ(c)|.¤

5. Mostly conformal maps and Rigidity.

Let us fix throughout all this section a rational map R ∈ S such that J(R) 6= Ĉ. In
this section we prove a rigidity property of qc maps that are conformal in a big dynam-
ically defined set. Such maps appear naturally in pull-back procedures like Thurston’s
algorithm (see Section 6), in pseudo-conjugacies (see [Lyu2] and Section 8.2) and in
parameter maps; see [Lyu3], [R-L2] and Section 8.4.

Before the statement of Rigidity, let us recall a simplified version of Proposition 4.1,
that provide us with a nest of neighborhoods with Martens property.

Lemma 5.1. Fix τ ∈ (0, 1) and η ∈ (1, τ−1). Then there are neighborhoods U vn, for
nÀ 1 and v ∈ CV ∩ J(R) so that

Bτn(v) ⊂ U
v
n ⊂ Bητn(v),

and so that, if V cn is the connected component of R−1(U
R(c)
n ) that contains c ∈ Crit∩J(R),

then Vn = ∪V cn has Martens property. Moreover there is a sequence m(n) ≤ n so that
n−m(n)→∞ as n→∞ such that and ∂Un ⊂ K(Vm(n)), where Un = ∪Uvn, nÀ 1.

Note that this lemma implies that for any N > 1 and any n À 1, we have that for
every connected componentW of Ĉ−K(Vn) there ismW ≥ 0 and c = c(W ) ∈ Crit∩J(R)
such that RmW : W −→ V cn is a biholomorphism whose inverse extends univalently to
V cm(n). By Koebe Distortion Theorem it follows that, for n À 1, the distortion of RmW
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in W is bounded by some definite constant D = D(n) > 1; in fact D only depends in
n−m(n) and D = D(n)→ 1 as n→∞.

5.1. Statement of Rigidity. The following is our main technical result.

Rigidity. Let R ∈ S such that J(R) 6= Ĉ and consider the nest Vn = ∪V cn as in Lemma
5.1. There are constants K > 1 and C > 0 only depending in minc,nÀ1mod(V

c
n −V

c
n+1),

so that for n big enough and for every qc-homeomorphism χ : V c
n −→ χ(V cn ) ⊂ Ĉ that is

conformal Lebesgue almost everywhere in V c
n ∩K(Vn+1), there is a K-qc homeomorphism

χ̂ : V cn −→ χ(V cn ) at hyperbolic distance from χ at most C.

Remark 5.2. (1) The property that χ̂ is at a bounded hyperbolic distance from χ
implies that, if χ extends continuously to the boundary of V c

n , then so does χ̂ and
their extensions coincide. This property will be important to apply the Gluing
Lemma, stated in Appendix 10.

(2) Note that given a preferred point w ∈ V cn we may assume that χ̂(w) = χ(w), by
changing the constants K > 1 and C > 0.

(3) As the proof of Rigidity shows, for each c ∈ Crit ∩ J(R) the annulus Acn =
V cn−1 − V

c
n also has this Rigidity property. In fact, for any qc map χ : Acn −→ C

that is conformal Lebesgue almost everywhere in Acn ∩ K(Vn), there is a K0-qc
homeomorphism χ̂ : Acn −→ χ(Acn) at a hyperbolic distance at most C from χ,
for definite constants K0 > 1 and C > 0. In particular mod(χ(Acn)) is at least
K−10 mod(Acn), which is independent of χ; compare with the rigidity property in
Appendix 11. It follows from the proof that we can take K0 > 1 arbitrarily close
to 1 by letting n big.

Rigidity holds because Vn−Vn+1−K(Vn+1) has well distributed and small area. With
the following Lemma 5.3 we will make this precise. First let us consider some notation.
Given U ⊂ Ĉ conformaly equivalent to D and E ⊂ U put,

‖E‖U = sup |ϕ(E)|,

where the supremum is taken over all biholomorphisms ϕ : U −→ D. Note that ‖E‖U is
invariant by biholomorphisms.

Lemma 5.3. Given ε > 0 small, there is N > 1 and n0 À 1, so that if n ≥ n0 then for
all c ∈ Crit ∩ J(R), we have ‖V cn−N −K(Vn)‖V c

n−N
< ε.

Proof. By Koebe Distortion Theorem there is D > 1 that bounds the distortion in V c0
m+1,

for mÀ 1, of any univalent map defined in V cm. By Lemma 4.7, in Section 4.2, there is
N > 1 such that for nÀ 1,

|V c0n+1−N −K(Vn)|

|V c0n+1−N |
< D−2ε.

Consider a biholomorphism ϕ : V cn−N −→ D. For each connected component W of
V cn−N −K(Vn+1−N ) there is mW ≥ 0 and c(W ) ∈ Crit ∩ J(R) such that RmW : W −→

V
c(W )
n+1−N is a biholomorphism whose inverse gW extends univalently to V

c(W )
n−N . So the

distortion of ϕ ◦ gW in Vn+1−N is bounded by D. Therefore,

|ϕ(W −K(Vn))|

|ϕ(W )|
≤ D2

|V
c(W )
n+1−N −K(Vn)|

|V
c(W )
n+1−N |

< ε.
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Since such W cover V cn−N −K(Vn) the lemma follows. ¤

Observe that for n À 1 the connected components of Vn − Vn+1 − K(Vn+1) are
organized by the connected components of Vn − Vn+1 − K(Vn−N ), which are mapped
biholomorphic to the V cn−N , for c ∈ Crit ∩ J(R), by appropriated iterates of R. By
the previous lemma we have ‖W − K(Vn)‖W < ε, for n À 1. It is in this sense that
V cn − V

c
n+1 −K(Vn) has well distributed and small area.

5.2. Smoothing. In this section we consider smoothing lemmas used in the proof of
Rigidity; see Lemmas 5.4 and 5.6

Lemma 5.4. Given δ0 > 0 and K0, K1 > 1 there is ε > 0 such that if W0, W ⊂ C are
biholomorphic to D and E ⊂W0 satisfies ‖E‖W0

< ε, then for any K1-qc homeomorphism
χ : W0 −→ W conformal Lebesgue almost everywhere outside E, then there is a K0-qc
homeomorphism χ̂ :W0 −→W such that,

hypdW (χ, χ̂) ≤ δ0.

Proof. Consider a tilling of D by hyperbolic hexagons Hi as in Figure 2, so that every
such hexagon is isometric to a model hexagon H. We define χ̂ equal to χ in the vertices
of the hexagons. For a given hexagon we consider coordinates in D so that it becomes
the model hexagon H, centered at 0, and so that χ fixes 0. By hypothesis χ is conformal
except for a set of Lebesgue measure at most ε, where ε > 0 is to be chosen.

By Lemma 10.3 in Appendix 10, χ is close to some map z −→ λz, with |λ| = 1, as
ε → 0. We suppose ε small enough so that the image of the vertices of H by χ form a
hyperbolic hexagon H. We let χ̃ map the sides of H to the sides of H, in such a way that
the hyperbolic length is preserved, up to a multiplicative constant in each side. If ε > 0
is small enough χ̂ extends to a K0-qc homeomorphism between the interior of H and the
interior of H and so that the hyperbolic distance between χ and χ̂ in H is at most δ0.

Doing this for every hexagon Hi we obtain an homeomorphism χ̂ of D at a distance
at most δ0 from χ and that is K0-qc in the complement of ∪∂Hi. Since ∪∂Hi has σ
finite length, it is a qc removable set and therefore χ̂ is a K0-qc homeomorphism; see
Appendix 10. ¤

Lemma 5.5. For r ∈ (0, 1) there is K(r) ≥ 1 such that for every homeomorphism χ of
D conformal in {r < |z| < 1}, there is a K(r)-qc homeomorphism χ̂ of D that coincides

with χ in {r
1
2 < |z| < 1}.

Proof. For s > 0 denote {|z| < s} by Ds. Consider an uniformization

ϕ : χ(D
r

1
2
) −→ D

r
1
2
,

such that ϕ ◦ χ(0) = 0. By Schwartz reflection principle applied to ∂D
r

1
2
, we have that

ϕ extends to a biholomorphism ϕ : χ(D) −→ V for some neighborhood V of D
r

1
2
. Let χ̂

be the homeomorphism of D that coincides with χ in {r
1
2 < |z| < 1} and so that

ϕ ◦ χ̂(seiθ) = seih(θ),(3)

in D
r

1
2
. Note that the function h : R −→ R is analytic.

Since ϕ is conformal, is enough to estimate the dilatation of ϕ ◦ χ̂ in terms of r only.
This distortion is clearly equal to max(sup(eih)′, (inf(eih)′)−1), which is bounded by the
distortion of eih. Since ϕ ◦χ is holomorphic and univalent in {r < |z| < 1} and by (3), it
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Figure 2. The vertices of the hexagons from a uniformly distributed
set in D.

follows by Koebe Distortion Theorem that the distortion of eih can be bounded in terms
of r only. ¤

Lemma 5.6. Let U ⊂ C be biholomorphic to D, let K ⊂ U be a full compact set and let
K0 ≥ 1. Then there is K1 ≥ 1, only depending in K0 and in the modulus of the annulus
A = U −K, so that for any homeomorphism χ : U −→ χ(U) ⊂ C that is K0-qc in A,
there is a K1-qc homeomorphism χ̂ : U −→ χ(U) at a hyperbolic distance to χ bounded
in terms of K−10 mod(A) only.

Proof. We may suppose that U = D and note that there is r ∈ (0, 1) only depending
in mod(A) so that {r < |z| < 1} ⊂ A. For χ given, consider a K0-qc homeomorphism
ψ : χ(U) −→ D so that ψ ◦ χ is conformal in A. Then the lemma follows by Lemma 5.5

with K1 = K0K(r) and considering that mod({r
1
2 < |z| < 1}) ≥ 1

2K
−1
0 mod(A). ¤

5.3. Proof of Rigidity. Let N > 1 and fix nÀ 1. We organize the connected compo-
nents of Vn −K(Vn+1) in levels as follows; we will call this connected components just
components. For c ∈ Crit ∩ J(R) let V cn+1, have level 0. Note that for each connected

component W of Vn−Vn+1−R−1(K(Vn)) there is mW ≥ 1 and c = c(W ) ∈ Crit∩J(R)
such that RmW :W −→ V cn is a biholomorphism. We denote its inverse by gW .

By Lemma 5.1 gW extends univalently to V cn−N . Then gW (V cn+1) is a connected
component of Vn −K(Vn+1), we assign it level 1. In general a connected component W
of Vn −K(Vn+1) determines c = c(W ) ∈ Crit∩ J(R) and connected components W1, ...,
Wl of Vn − Vn+1 −R−1(K(Vn)) so that,

W = gW1
◦ ... ◦ gWl

(V cn+1).

We assign level l toW and we denote gW = gW1
◦...◦gWl

, which extends in a univalent way

to V cn−N . Note that if W0 and W1 are components of the same level, then gW0
(V

c(W0)
n )

and gW1
(V

c(W1)
n ) are disjoint.
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Lemma 5.7. It is enough to prove Rigidity for maps χ that are conformal Lebesgue
almost everywhere outside components of level at most k(χ) ≥ 0.

Proof. Let χ be as in Rigidity. By Ahlfors-Bers Integration Theorem, for every k ≥ 0,
we can write χ = hk ◦ χk, where χk : V cn −→ χ(V cn ) is a qc homeomorphism, that is
conformal Lebesgue almost everywhere in the components of level at most k and hk is a
normalized qc homeomorphism of χ(V cn ), that is conformal Lebesgue almost everywhere
outside the components of level at least k.

Moreover we may suppose that the dilatation of hk is bounded by the dilatation of χ.
Since the area of the union of the components of level at least k, goes to zero as k →∞,
it follows that hk converges uniformly to the identity of χ(V cn ); see part 1 of Lemma 10.3.

Suppose that Rigidity holds for χk, for definite constants K > 1 and C > 0, and
let χ̂k be the respective K-qc homeomorphisms. By the compactness of normalized
K-qc homeomorphisms there is ki → ∞ as i → ∞ so that χ̂ki converges to a K-qc
homeomorphism χ̂ : V cn −→ χ(V cn ). Since the hyperbolic distance between χ̂k and χ is
at most C, it follows that the hyperbolic distance of χ̂ to χ is also bounded by C. ¤

Note that the connected components of Vn − Vn+1 −K(Vn−N ) cover the components
of level one. We call these connected components pieces of level 0. Moreover for any
component W of level l the image by gW of a piece of level 0 will be called a piece of
level l. Thus a piece of level l+1 is contained in a unique piece of level l and every piece

of level l is contained in gW (V
c(W )
n+1 ) for some component W of level l.

Proof of Rigidity. Fix K0 > 1 and let K1 > 1 be as in Lemma 5.6 for U = V cn and
K = V cn+1, where n À 1 and c ∈ Crit ∩ J(R). Note that, by the proof of Lemma 5.6

we can take K1 = K0K(r), where r only depends in mod(V cn − V
c
n+1). Thus K1 can be

taken arbitrarily close to K(r) by letting K0 close to 1. Hence K = K1 depends only in
mincmod(V

c
n − V

c
n+1) for big n.

Let ε > 0 as in Lemma 5.4 for these choices of K0 and K1 and consider N = N(ε) as
in Lemma 5.3. Fix nÀ 1 and we consider the notation and terminology above.

1.− Consider a qc homeomorphism χ : V cn −→ χ(V cn ) ⊂ Ĉ conformal in V cn ∩K(Vn+1).
By Lemma 5.7 we may suppose that χ is conformal outside the components of level at
most k.

We will prove by induction in 0 ≤ m ≤ k the two following properties.

(1) There is a qc homeomorphism χm : V cn −→ χ(V cn ) that coincides with χ outside
the pieces of level m and it is K0-qc in each piece of level m.

(2) There is a qc homeomorphism χ̃m that coincides with χ outside ∪gW (V
c(W )
n )

and it is K1-qc in ∪gW (V
c(W )
n ), where the union is over all components W of

level m.

Note that Rigidity follows from 2 for m = 0, with K = K1. Moreover, by hypothesis 1
is satisfied for m = k.

2.− Suppose that 1 holds for level 0 ≤ m ≤ k. Then for every component W of level

m the homeomorphism χm is K0-qc in gW (V
c(W )
n −V

c(W )
n+1 ). Thus by Lemma 5.6 there is

a K1-qc homeomorphism χW : gW (V
c(W )
n ) −→ χ(gW (V

c(W )
n )) at a bounded hyperbolic

distance from χm, where the bound is independent of W . Thus replacing χm in each
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gW (V
c(W )
n ), for all components W of level m, we obtain χ̃m by the Gluing Lemma, as in

2.

3.− Suppose that 2 holds for level 0 < m ≤ k. Let W be a piece of level m− 1, so χ̃m
is K1-qc in W . Since there is an iterate of R which is a biholomorphism between W and

V
c(W )
n−N for some c = c(W ) ∈ Crit∩J(R); it follows that ‖W −K(Vn)‖W < ε. Since χ and
χ̃m coincide in W ∩K(Vn) and χ is conformal there, it follows that χ̃m is also conformal
in W ∩K(Vn) (cf. part 2 of Gluing Lemma); so Lemma 5.4 applies to χ̃m to give us a
K0-qc homeomorphism χW : W −→ χ(W ) at a bounded hyperbolic distance from χ̃m.
Replacing χ̃m in each such W , we obtain by the Gluing Lemma a qc homeomorphism
χm−1 that is K0-qc in the pieces of level m− 1. So 1 holds for m− 1 and the induction
is complete. ¤

6. Thurston’s algorithm.

In this section we prove Theorem C about Thurston’s algorithm. The first part of
Theorem C follows from the existence of a nest as in Lemma 5.1. We give a more
detailed version of the second part of Theorem C as Proposition C below. The proof of
Proposition C is in Sections 6.1 and 6.2.

Let us recall Thurston’s algorithm. We say that a map R̃ : Ĉ −→ Ĉ is quasiregular
if it is locally of the form ξ(zm), for some m ≥ 1 and some qc homeomorphism ξ; see
Appendix 10 for background in quasi-conformal maps. In particular a quasiregular map
R̃ is a ramified covering of Ĉ. Let σ0 be the standard complex structure of Ĉ and
let σk = (R̃∗)k(σ0) be its pull-back under R̃k. Consider the unique biholomorphism

hk : (Ĉ, σk) −→ (Ĉ, σ0) with an appropriated normalization, so Qk = hk−1 ◦ R̃ ◦ h
−1
k is a

rational map of the same degree as R; see Figure 1.

Proposition C. Let R ∈ S be a rational map such that J(R) 6= Ĉ and consider nests
Vn = ∪V cn and Un = ∪vU

v
n, for c ∈ Crit∩J(R) and v ∈ CV∩J(R), given by Lemma 5.1.

Let n big and consider a quasiregular map R̃ of the same degree as R, that coincides with
R outside Vn+1 and so that for any ramification point r of R̃ we have R̃(r) ∈ K(Vn).
Consider Qk and hk as above, so that hk fixes three preferred points of K(Vn). Then the
following assertions hold.

Thurston’s algorithm: There is a rational map Q and a continuous map h :
Ĉ −→ Ĉ, so that Qk → Q and hk → h uniformly. Then h maps ramification
points of R̃ to critical points of Q, preserving local degrees. Furthermore Q is
close to R and h is close to the identity as n is big.

Pseudo-conjugacy: Let K ≥ 1 be given by Rigidity and let Q and h as above.
Then there is a K-qc homeomorphism h̃ of Ĉ that coincides with h in K(Vn) and
so that h ◦R(w) = Q ◦ h(w) for all w 6∈ Vn.

Remark 6.1. (1) In general h is not injective. For example, by making a small

perturbation to some R̃0, we may obtain R̃ with a saddle periodic point. So the
semi-conjugacy h cannot be injective in this case.

(2) We remark that R̃ may have several ramification points in V cn , with the appropri-

ated multiplicities. Thus the number of ramification points of R̃ may be strictly
bigger than the number of critical points of R.
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Proof of Theorem C given Proposition C. Choose τ ∈ (0, 2−
1
3 ) and positive integers N

and N0 such that for δ > 0 small there is n such that for v ∈ CV ∩ J(R),

Uvn+N0
⊂ Bδ(v) ⊂ U

v
n+1 ⊂ U

v
n ⊂ B2δ(v) ⊂ U

v
n−N .

Thus the part of Theorem C about Thurston’s algorithm follows from the respective
part of Proposition C. It reminds to prove the first part of Theorem C. By Lemma 5.1
the connected component W v of Ĉ−K(Vn−N ) containing v ∈ CV ∩ J(R) is well inside
Uvn+N0

; see also Lemma 3.1. Consider a qc homeomorphism ξv of Uvn+N0
that extends

to the identity in ∂Uvn+N0
and so that ξv(v) ∈ ∂W v. Let ξ be the homeomorphism of Ĉ

that coincides with ξv in Uvn+N0
and is the identity otherwise. By the Gluing Lemma ξ

is qc.

Put R̃ = ξ ◦ R which is a quasiregular map. Note that R̃ coincides with R outside
Vn+N0

= ∪V cn+N0
⊂ Bδ(Crit ∩ J(R)) and the ramification points of R̃ in Vn+N0

are the
points in Crit ∩ J(R). Let c ∈ Crit ∩ J(R) and put v = R(c), so

R̃(c) = ξv(v) ∈ ∂W v ⊂ K(Vn−N ).

Since R̃ coincides with R in K(Vn−N ) it follows that the orbit of c by R̃ is contained in

K(Vn−N ). In particular it is disjoint from Vn−N , which contains B̃2δ(Crit ∩ J(R)). ¤

6.1. Compactness and stabilization. Consider a quasiregular map R̃ as in Proposi-
tion C, but with the stronger assumption that for every ramification point r of R̃ we have
R̃(r) ∈ K(Vn−1), instead of R̃(r) ∈ K(Vn). This is just a formally stronger property:

consider a nest Ṽm = ∪V cm so that Ṽ2n = Vn and then replace n + 1, n and n − 1 by
2n+ 2, 2n+ 1 and 2n respectively in the argument.

The proof of Proposition C is as follows. We first prove that, for k ≥ m, the qc
homeomorphism h−1k ◦ hm is conformal almost everywhere in hm(F+m), where Fm =

R̃−m(K(Vn+1)); see Lemma 6.2. Given m ≥ 1 we apply Rigidity to restrictions of the
maps hk ◦ h

−1
m , for k ≥ m, and using compactness of K-qc maps we construct a K-qc

homeomorphism χm so that for k ≥ m the maps χk ◦ hk and χm ◦ hm coincide in Fm;
see Figure 3. Moreover χm is conformal Lebesgue almost everywhere in hm(Fm), where

Fm = R̃−m(K(Vn)).

In Section 6.2 we study the geometry of the sets F̂m = χm ◦ hm(Fm). We prove

that the connected components of Ĉ− F̂m have small diameter as m is big; see Lemma
6.5. As consequence we obtain that the maps χk−1 ◦ Qk ◦ χ

−1
k and χk ◦ hk converge

uniformly to maps Q : Ĉ −→ Ĉ and h : Ĉ −→ Ĉ respectively; see Lemma 6.6. Then we
prove that the Lebesgue measure of Ĉ− F̂m is small as m is big; see Lemma 6.7. Since
χ−1m is conformal Lebesgue almost everywhere in F̂m = χm(hm(Fm)) it follows that χm
converges to the identity as m→∞. We conclude that Qm and hm converge uniformly
to Q and h respectively, so Q is a rational map of the same degree as R.

Lemma 6.2. For m ≥ 0 let F+m = R̃−m(K(Vn+1)). Then, for every k ≥ m the qc

homeomorphism hk ◦ h−1m of Ĉ is conformal Lebesgue almost everywhere in hm(F+m).

Proof. By construction K(Vn+1) is forward invariant by R̃ and R̃ is conformal almost
everywhere there. Therefore σ0 and σk−m coincide almost everywhere in K(Vn+1).

Thus σm = (R̃m)∗(σ0) and σk = (R̃m)∗(σk−m) coincide almost everywhere in F+m =

R̃−m(K(Vn+1)). Since h−1m : (Ĉ, σ0) −→ (Ĉ, σm) and hk : (Ĉ, σk) −→ (Ĉ, σ0) are holo-
morphic, it follows that hk ◦ h

−1
m is conformal almost everywhere in hm(F+m). ¤
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Figure 3. The limit maps χi.

Since R̃(r) ∈ K(Vn−1) for every ramification point of R̃, it follows that any pull-back

of V cn−1, for c ∈ Crit ∩ J(R), by R̃ is univalent. Let m ≥ 0 and let W be a connected

component of Ĉ−Fm, where Fm = R̃−m(K(Vn)). So there is l ≥ m and c ∈ Crit∩J(R)
so that W is a pull-back of V cn by R̃l. By the remark above it follows that the respective
pull-back of V cn−1 is univalent. We denote it by W−.

Lemma 6.3. Put Fm = R̃−m(K(Vn)) and let W be a connected component of Ĉ−Fm.
Then there is a biholomorphism ϕW : V cn−1 −→ hm(W−) such that ϕW (V cn ) = hm(W ),

ϕW (V cn−1 ∩K(Vn)) = hm(W− ∩ Fm) and

ϕW (V cn−1 ∩K(Vn+1)) = hm(W− ∩ F+m).

Proof. Note that R̃m(W ) (resp. R̃m(W−)) is a connected component of Ĉ−K(Vn) (resp.

Ĉ−K(Vn−1)) and R̃
m is univalent in W (resp. W−). Therefore,

Q1 ◦ ... ◦Qm : hm(W−) −→ R̃m(W ),

is a biholomorphism that maps hm(W ), hm(Fm) and hm(F+m) to R̃m(W ), K(Vn) and

K(Vn+1) respectively; see Figure 3. Since R̃m(W−) is a connected component of Ĉ −
K(Vn−1), there is l ≥ 1 such that Rl : W− −→ V cn−1 is a biholomorphism that maps

R̃m(W ), W− ∩ K(Vn) and W− ∩ K(Vn+1) to V cn , V
c
n−1 ∩ K(Vn) and V cn−1 ∩ K(V cn+1)

respectively. Then the lemma follows with ϕ−1W = Rl ◦Q1 ◦ ... ◦Qm. ¤

Let K ≥ 1 and C > 0 be the constants given by Rigidity, that are independent of n;
see Section 5.1. Let W be a connected component of Ĉ− Fm and let ϕW as in Lemma
6.3. By the previous lemma it follows that for every k ≥ m,

hk ◦ h
−1
m ◦ ϕW : V cn −→ hk(W )
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is a qc homeomorphism that is conformal almost everywhere in V c
n∩K(Vn+1). By Rigidity

there is a K-qc homeomorphism at hyperbolic distance from hk ◦ h
−1
m ◦ ϕW bounded by

C; see Section 5.1. It follows by the Gluing Lemma that there is a normalized K-qc
homeomorphism χk,m of Ĉ that coincides with hk ◦h

−1
m in hm(Fm); see 1 of Remark 5.2.

By compactness of normalized K-qc homeomorphisms of Ĉ, it follows that there is
a sequence li → ∞ such that for every m ≥ 0, the homeomorphisms χli,m converge
uniformly to a normalized K-qc homeomorphism χm. Note that χk,m coincides with

hk ◦ h−1m in hm(Fm) and it is holomorphic there. Therefore χ−1li,k ◦ χli,m, and hence

χ−1k ◦ χm, coincides with hk ◦ h
−1
m in hm(Fm) and it is holomorphic there. Hence for

k ≥ m the homeomorphisms χk ◦ hk and χm ◦ hm coincide in Fm.

Considering that R̃ = h−1m−1◦Qm◦hm, it follows that for k ≥ m the maps χk−1◦Qk◦χ
−1
k

and χm−1 ◦Qm ◦ χ−1m coincide in F̂m = χm ◦ hm(Fm).

6.2. Geometry in the limit. In this section we complete the proof of Proposition C.

For m ≥ 0 let F̂m = χm ◦hm(Fm). We call a connected component Ŵ of Ĉ− F̂m, for

some m ≥ 0, component. Note that there is a connected component W of Ĉ− Fm such
that Ŵ = χm ◦ hm(W ). We denote Ŵ− = χm ◦ hm(W−).

The level of Ŵ is the integer l ≥ 0 such that R̃l : W −→ V cn is an homeomorphism,

for some c ∈ Crit ∩ J(R). Since in this case R̃m(W ) is a connected component of the
complement of F0 = K(Vn), it follows that l ≥ m. Thus a connected component of

Ĉ− F̂m has level at least l. Moreover a component of level l is a connected component
of Ĉ−Fl, but is not a connected component of Ĉ− F̂l+1.

For c ∈ Crit ∩ J(R) put V̂ c = χ0(V
c
n ) and V̂ c− = χ0(V

c
n−1). We begin with a lemma

analogous to Lemma 6.3.

Lemma 6.4. Let Ŵ be a component of level l. Then there is c = c(Ŵ ) ∈ Crit ∩ J(R)

and a K-qc homeomorphism ψŴ : Ŵ− −→ V̂ c− such that ψŴ (Ŵ ) = V̂ c and

ψŴ (Ŵ− ∩ Fl+1) = V̂ c− ∩ F̂1.

Proof. By definition of level there is W and c ∈ Crit ∩ J(R) such that R̃ : W −→ V cn is

an homeomorphism and such that χl ◦ hl(W ) = Ŵ . Then

Q1 ◦ ... ◦Ql : χ
−1
l (W−) −→ V cn−1

As in Lemma 6.3 the K-qc homeomorphism

ψŴ = χ−1m ◦Q1 ◦ ... ◦Ql : Ŵ
− −→ V cn−1

has the required properties. ¤

Note that the property ∂Un ⊂ K(Vn−1) implies that if Wi is a connected component

of Ĉ − Fmi
, for i = 0, 1, such that W1 ⊂ W0 but W1 6= W0, then W

−
1 ⊂ W0. Hence, if

Ŵ0 and Ŵ1 are different components such that Ŵ1 ⊂ Ŵ0, then Ŵ1 ⊂ Ŵ0.

Lemma 6.5. For every ε > 0 there is M > 0 such that if m ≥M , then every connected
component W of F̂m has diameter less than ε.

Proof. 1.− Since a connected component of Ĉ − F̂m has level at least m, is enough to
prove that components of high level have small diameter.
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Let Ŵ be a component of big level. Let Ŵk = Ŵ ⊂ Ŵk−1 ⊂ ... ⊂ Ŵ0 be all different

components that contain Ŵk. Thus Ŵ0 is a connected component of Ĉ − F̂0, let l0 be
the level of Ŵ0.

For 0 ≤ i ≤ k let ψi : Ŵ
−
i −→ V ci− be the map given by Lemma 6.4 for Ŵi, where

ci ∈ Crit ∩ J(R). Thus, for i < k, we have that ψi(Ŵi+1) is a connected component of

Ĉ−F1. Let li+1 be the level of this component. Thus l = l0 + l1 + ....+ lk. Then there
are three cases.

Case 1.- l0 is big. Since F̂0 = χ0(K(Vn)), it follows that Ŵ0 has small diameter. Hence
W =Wk ⊂W0 has small diameter.

Case 2.- There is 0 < i ≤ k such that li is big. Then it follows that the diameter of

Ûi = ψi−1(Ŵi) ⊂ V̂ ci−1 is small. Thus the modulus of V̂
ci−1

− − Ûi is big. Since ψi−1 is

K-qc it follows that the modulus of Ŵ−i−1 − Ŵi is big and therefore the diameter of Ŵi

is small.

Case 3.- k is big. As remarked above for all 1 ≤ i ≤ k we have that Ŵ−i ⊂ Ŵi−1. Since

ψi−1(Ŵ
−
i − Ŵi) = V̂ ci− − V̂

ci

has definite modulus and ψi−1 is K-qc it follows that Ŵ−i − Ŵi has definite modulus.

By Grotzsch inequality it follows that the modulus of Ŵ0 − Ŵk is big, so Ŵ = Ŵk has
small diameter. ¤

Lemma 6.6. The maps χm−1 ◦ Qm ◦ χ−1m and χm ◦ hm converge uniformly to maps

Q : Ĉ −→ Ĉ and h : Ĉ −→ Ĉ respectively.

Proof. We prove the assertion about χm ◦ hm, the other being similar. Let ε > 0 and
let M = M(ε) be given by the previous lemma. Recall that for k ≥ M we have that

χk ◦hk coincides with χM ◦hM in FM . Thus, ifW is a connected component of F̂M , then
χk ◦ hk(W ) = Ŵ = χM ◦ hM (W ), for k ≥M . By the previous lemma diam(Ŵ ) < ε, so
the distance between χk0 ◦ hk0 and χk1 ◦ hk1 , for k0, k1 ≥M , is at most ε. Thus χk ◦ hk
is a Cauchy sequence, and hence a convergent one. ¤

Lemma 6.7. The set ∪m≥0F̂m has full Lebesgue measure in Ĉ. Hence the Lebesgue

measure of Ĉ− F̂m is small as m is big.

This lemma is based in the following one.

Lemma 6.8. Fix c ∈ Crit∩J(R) and fix pc ∈ Ac = V̂ c−− V̂
c contained in the interior of

F̂1. Then there is ε > 0 such that for every K-qc homeomorphism ξ : Âc −→ ξ(Âc) ⊂ C
such that ξ(Âc) encloses 0 and ξ(pc) = 1, the ball {|z−1| < ε} is contained in ξ(Âc∩F̂1).

Proof. Suppose not, so there is a sequence of K-qc homeomorphisms ξi : Â
c −→ ξi(Â

c) ⊂

C so that ξi(Â
c) encloses 0, ξi(pc) = 1 and so that the ball {|z−1| < 1

ki
} is not contained

in ξi(Â
c ∩ F̂1), where ki → ∞ as i → ∞. By compactness of K-qc maps we may

suppose that ξki converges uniformly to a K-qc homeomorphism ξ : Âc −→ ξ(Âc).

Hence 1 = ξ(pc) does not belong to the interior of ξ(Âc ∩ F̂1), which is a contradiction

since pc was chosen in the interior of F̂1. ¤
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Proof of Lemma 6.7. Let ŵ 6∈ ∪F̂m. Is enough to prove that ŵ is not a Lebesgue density
point of the complement of ∪F̂m.

Let ... ⊂ Ŵk ⊂ Ŵk−1 ⊂ ... ⊂ Ŵ0 be all different components that contain ŵ. Note that

there is infinitely many of them. Recall that for i > 0 we have Ŵ−i ⊂ Ŵi−1. Hence by

Grotzsch inequality diam(Ŵi) goes to zero as i→∞. By Lemma 6.4 for each i ≥ 0 there

is a K-qc map ψi that maps the annulus Âi = Ŵ−i − Ŵi to the annulus Âci = V̂ ci− − V̂
ci ,

for some ci ∈ Crit∩ J(R), and that maps points in F̂li+1 to points in F̂1, where li is the

level of Ŵi.

It follows by the previous lemma that for each i ≥ 0 there is a ball in F̂li+1 centered at
ψ−1i (pci) with radius at least of the order of dist(ŵ, ψ−1i (pci)). Thus ŵ is not a Lebesgue

density point of Ĉ− ∪F̂m. ¤

Proof of Proposition C. Recall that χm is a normalized K-qc homeomorphism of Ĉ such
that χ−1m is conformal Lebesgue almost everywhere in F̂m. Since the Lebesgue measure

of Ĉ−F̂m is small as m is big, it follows that χ−1m converges uniformly to the identity; see
Lemma 10.3. By Lemma 6.6 the maps χm−1 ◦Qm ◦χ−1m and χm ◦hm converge uniformly

to a maps Q : Ĉ −→ Ĉ and h : Ĉ −→ Ĉ respectively. Hence Qm and hm converges
uniformly to Q and h respectively. In particular Q is a rational map of the same degree
as R.

Note that h coincides with χ1 ◦ h1 in F1 = R̃−1(K(Vn)) and this set contains all

ramification points of R̃. Moreover F1 is connected; see Proposition 2.5. Since χ1 ◦ h1 is
an homeomorphism, it follows that for every ramification point r of R̃ the local degree
of Q at χ1 ◦ h1(r) is at least equal to the local degree of R̃ at r. Since this is true for

every ramification point r of R̃, it follows that h(r) is a critical point of Q with the same
local degree.

It reminds to prove the pseudo-conjugacy part. Note that by construction χ0 is a
normalized K-qc homeomorphism of Ĉ that conjugates R̃, and therefore R, in K(Vn) to

Q in χ0(K(Vn)). But every connected component of Ĉ−K(Vn) is univalently mapped by
some iterate of R to some V cn . Since R is conformal we can redefine χ0 in these connected

components (different from the V cn ) to obtain a normalized K-qc homeomorphism h̃ of

Ĉ that conjugates R to Q outside Vn. Then the proposition follows considering that h̃
coincides with χ0 (and therefore with h) in K(Vn). ¤

7. Measure and expansivity.

In this section we prove that rational maps in S, whose Julia set in not Ĉ, have
several expanding properties. For example we prove that these rational maps do not
have irrationally indifferent cycles nor Herman rings (see Corollary 7.2 below) and we
complete the proof of Theorem B by proving that the set of points that do not accumulate
critical points under forward iteration has zero Lebesgue measure; see Proposition B in
Section 4.2. Moreover in Section 7.1 we deal with parabolic periodic points and we prove
property EAC stated in Section 3.2; see Proposition 7.8. In Section 7.2 we complete the
proof of Theorem A by improving sets with Martens property.

The difficulty proving this properties is that the Decay of Geometry Condition (defin-
ing the class S) imposes a condition on forward orbits that accumulate critical points.
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But the properties that we prove in this section are related to forward orbits that do not
accumulate critical points. So is not clear how to prove these facts directly.

The basic idea in the proofs is to use the pseudo-conjugacies given by Proposition C, of
the previous section. Theorem C and Proposition C provide us with pseudo-conjugacies
between the rational map in question and a rational map that does not have critical points
in its Julia set; see Corollary C below. This later rational map satisfies the properties
that we want to prove, and we use the pseudo-conjugacy to transport these properties.

So the results in this section will depend in the following immediate corollary of
Proposition and Theorem C.

Corollary C. Let R ∈ S be such that J(R) 6= Ĉ and consider the nest Vn = ∪V cn as in
Lemma 5.1. Then, for every nÀ 1 there is a rational map Qn with no critical points in
J(Qn) and a qc homeomorphism χn of Ĉ that conjugates the dynamics of R in K(Vn)
to the dynamics of Qn in χn(K(Vn)). Moreover χn(K(Vn)) does not contains critical
points of Qn.

Rational maps with with no critical points in the Julia set are well behaved. In fact
by a Theorem of Fatou such a rational map cannot have irrationally indifferent cycles
nor Herman rings; see for example [CG] or [Mil3]. So these rational maps can have at
worst parabolic cycles.

These rational maps are also referred as parabolic rational maps. The Julia set of a
parabolic rational map has zero Lebesgue measure; see [Lyu1]. Furthermore they admit
an expanding metric defined in a neighborhood of the Julia set minus the parabolic
points; see [LY]. It follows that parabolic rational maps satisfy condition EAC stated in
Section 3.2.

Proposition 7.1. Let R, Q ∈ C(z) be rational maps of degree at least two, let V be a

neighborhood of Crit ∩ J(R) and suppose that there is a qc homeomorphism χ of Ĉ that
conjugates R and Q outside V . If {p1, ..., pm} is a repelling, attracting, parabolic, Siegel
or Cremer cycle of R that is disjoint from V , then {χ(p1), ..., χ(pm)} is a cycle of Q of
the same kind.

Proof. Replacing R andQ by Rm andQm we may suppose thatm = 1, so p = p1 is a fixed
point of R. By hypothesis χ conjugates R in a neighborhood of p to Q in a neighborhood
of χ(p). Hence p is an attracting (resp. repelling) fixed point of R if and only if Q is
an attracting (resp. repelling) fixed point of Q. Parabolic fixed points are characterized
as non-attracting fixed points that attract an open set. Moreover Siegel fixed points
are characterized as having arbitrarily small neighborhoods that are invariant by the
map and a local inverse of the map. Since these properties are preserved by topological
conjugacy it follows that p is parabolic (resp. Siegel) if and only if χ(p) is. It follows
that p is Cremer if and only if χ(p) is. ¤

Corollary 7.2. A rational map R ∈ S such that J(R) 6= Ĉ, does not have irrationally
indifferent cycles nor Herman rings.

Proof. Let p be a periodic point of R and let nÀ 1 so that the orbit of p is disjoint from
Vn. Let Qn and χn be as in Corollary C, so Qn does not have critical points in J(Qn)
and therefore Qn does not have irrationally indifferent cycles nor Herman rings; see [CG]
or [Mil3]. By Proposition 7.1 p has the same nature as χn(p), so p is not irrationally
indifferent.
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Suppose that R has a Herman ring H with period k. Choose n À 1 so that the
interior of K(Vn) intersects H. Since K(Vn) is forward invariant by R, it follows that
K(Vn) contains a sub annulus A ⊂ H ∩K(Vn) so that Rk : A −→ A is conjugated to an
irrational rotation. Then Qkn : χn(A) −→ χn(A) is conjugated to an irrational rotation.
Thus χn(A) is contained in a Herman ring or in a Siegel disc of Qn, but Qn has neither
of them. ¤

Corollary 7.3. Consider a Vn pseudo-conjugacy χ between R and a rational map Q.
Then χ(K(Vn) ∩ J(R)) = χ(K(Vn)) ∩ J(Q).

Proof. Since K(Vn) is forward invariant and by the previous corollary it follows that a
point w ∈ K(Vn) belongs to the Fatou set of R if and only if Rn(w) converges to an
attracting or parabolic cycle contained in K(Vn). As in the previous corollary χ(K(Vn))
is disjoint form the Siegel discs and Herman rings of Q. So χ(w) belong to the Fatou
set of Q if and only if its forward orbit converges to an attracting or parabolic cycle in
χ(K(Vn)). Thus w ∈ K(Vn) belongs to the Fatou set of R if and only if χ(w) belongs to
the Fatou set of Q. ¤

Proof of Theorem B. In Proposition B we proved that the set {z ∈ J(R) | ω(z)∩Crit 6= ∅}
has zero Lebesgue measure, so it is enough to prove that the set of points in J(R) that
do not accumulate critical points under forward iteration has zero Lebesgue measure;
see Section 4.2. Hence it is enough to prove that the sets K(Vn) ∩ J(R) have zero
Lebesgue measure. If Qn and χn are as in Corollary C, then by the previous corollary
χn(K(Vn) ∩ J(R)) ⊂ J(Qn). Since Qn has no critical points in J(Qn) and J(Qn) 6= Ĉ
it follows that J(Qn) has zero Lebesgue measure; see [Lyu1]. Since qc homeomorphisms
preserve sets of zero Lebesgue measure, the theorem follows. ¤

The following corollary will by needed in Section 8.

Corollary 7.4. The set ∂K(Vn) has zero Lebesgue measure.

Proof. By Theorem B it follows that K(Vn) ∩ J(R) has 0 Lebesgue measure and by
construction ∂K(Vn)− J(R) has 0 Lebesgue measure; see Remark 4.2 in Section 4. ¤

The following lemma will be used in the next section to prove property EAC.

Lemma 7.5. Let Q and R be rational maps and let K ⊂ K̃ ⊂ Ĉ be compact sets forward
invariant by Q, such that K̃ is a non-trivial connected set and Q is uniformly expanding
in K. Moreover suppose that χ is a qc homeomorphism of Ĉ that conjugates the dynamics
of Q in K̃ to the dynamics of R in χ−1(K̃) and χ−1(K) does not contains critical points
of R. Then R is uniformly expanding in χ−1(K).

Proof. Since χ−1(K) does not contains critical points of R, there is ε0 > 0 such that
for all w ∈ χ(K) the distortion of R in Bε0(w) is bounded by some D > 1, close to 1.
Since Q is uniformly expanding in K there is ε1 > 0 and λ > 1 such that for all z ∈ K
the pull-back W of Bε1(Q

n(z)) by Qn to z is univalent and diam(W ) ≤ Cλ−n for some
definite C > 0; we assume ε1 > 0 small enough so that diam(χ−1(W )) < ε0. By the
Hölder property of qc homeomorphisms there are α ∈ (0, 1) and C0 > 0 be such that,

dist(χ−1(z0), χ
−1(z1)) ≤ C0dist(z0, z1)

α, z0, z1 ∈ Ĉ;

see Appendix 10. Suppose that ε1 ¿ diam(K̃) and fix z ∈ K. Since K̃ is connected, for

n big there is wn ∈ ∂B ε1
2
(Qn(z)) ∩ K̃, so dist(χ−1(Qn(z)), χ−1(wn)) ∼ 1.
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Consider the preimage yn of wn byQn in the connected component ofQ−n(Bε1(Q
n(z)))

that contains z. So dist(z, yn) ≤ Cλ
−n and therefore dist(χ(z), χ(yn)) ≤ C0C

αλ−αn. So
there is C1 > 0 such that |(Rn)′(z)| ≥ C1(λ

αD−1)n. By taking ε0 smaller if necessary
we may assume that λαD−1 > 1, so R is uniformly expanding in χ(K). ¤

7.1. Parabolic periodic points and property EAC. In this section we deal with
parabolic points and we prove that rational maps R ∈ C(z), for which J(R) 6= Ĉ, satisfy
property EAC stated in Section 3.2; see also Proposition 7.8 below. This property is
used in the proof of Theorem A.

We begin with some concepts and notation; see Appendix A of [Sh] or [DH1] for
references. Given R ∈ C(z) let P ⊂ J(R) be the set of parabolic points of R. Every

parabolic point p ∈ P has associated a set Π(p) of repelling petals π ⊂ Ĉ that are
open sets containing p in the boundary, for which there is a so called Fatou coordinate
ϕπ : π −→ {Rez < 0} with the property that for every positive integer n such that
Rn(π) ∩ π 6= ∅ the map Rn is given by z −→ z + n in the coordinate ϕπ. We denote by
Π = ∪PΠ(p) the set of all repelling petals. For π ∈ Π and k ≥ 0 we denote

B̃−k(π) = ϕπ({Rez < −k}),

and for p ∈ P ,

B̃−k(p) = {p} ∪
(

∪Π(p)B̃−k(π)
)

,

which is a neighborhood of p in J(R); usually k will be an integer. We may suppose

that, if π0, π1 ∈ Π are such that R(π0) ∩ π1 6= ∅, then R(B̃−1(π0)) = B̃0(π1) = π1.

Lemma 7.6. Let R ∈ S and fix δ > 0 small. Let rK > 0 be as in Koebe Distortion
Theorem and let r ∈ (0, rK) and w ∈ J(R). Then there are ε0 > 0 and C0 > 0 such that
for every ε ∈ (0, ε0) and any univalent pull-back W of Br(w) disjoint from P, such that

the respective pull-back Wε of Bεr(w) intersects B̃−1(π) for some π ∈ Π (resp. B̃δ(c)
for some c ∈ Crit ∩ J(R)), then we have that Wε ⊂ π and diam(ϕπ(Wε)) ≤ C0ε (resp.

diam(Wε) ≤ C0εdiam(B̃δ(c))).

Proof. The case when Wε intersects B̃δ(c) is simple is similar to part (i) of Lemma 3.1,
so we restrict our attention to the other case.

Let p ∈ P be the parabolic point such that π ∈ Π(p). By the local description of
dynamics of parabolic points we know that the boundary of π makes a definite angle at
p and that the image of J(R) by ϕπ lies in a strip of the form,

{z | |Im(z)| < R0 and Re(z) < 0};

see figure 4 and see [CG] or [Mil3] for references.

Hence the distance from any point w0 ∈ J(R)∩ B̃−1(π) to the boundary of π = B̃0(π)
is comparable to the distance from w0 to p. Iterating if necessary we may assume that
Wε intersects B̃−1(π) − B̃−2(π). Since Wε intersects J(R) there is a definite κ > 0

independent of ε such that Wκ ⊂ B̃−1(π), where Wκ is the respective pull-back of
Bκr(w). We assumed that ϕπ(Wε) intersects {z| − 2 < Re(z) < −1}, so by Koebe
Distortion Theorem there is C0 > 0 such that diam(ϕπ(Wε)) ≤ C0ε. ¤

Lemma 7.7. Let R ∈ S and let δ > 0 be small. Consider a neighborhood V =

∪Crit∩J(R)V
c with Martens property given by Proposition 2.7, so that diam(V c) ∼ δ

1
µc .

Let U be a connected component of Ĉ−K(V ) intersecting B̃−1(π) for some π ∈ Π. Then
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Figure 4. Local structure of petals. The cusp contains the part of Julia
set in the petal.

U ⊂ π and diam(ϕπ(U)) ≤ C1(r(δ))
− 1
µmax , for some C1 > 0 independent of δ > 0. In

particular diam(U) = o(dist(U,P)).

Proof. Let m = mW and c = c(W ) ∈ Crit ∩ J(R) be such that Rm : U −→ V c is
a biholomorphism. By the Univalent Pull-back Condition the respective pull-back of
B̃δr(δ)(c) by Rm is univalent. Then we just apply the previous lemma to w = c, to

B̃δr(δ)(c) instead of Br(c), and with ε = (r(δ))−
1
µc . ¤

Proposition 7.8. Let R ∈ S such that J(R) 6= Ĉ and denote by P the set of parabolic
points of R. Then R satisfies property EAC. That is, for every neighborhood V of
(Crit ∩ J(P )) ∪ P the rational map R is uniformly expanding in,

K(V ) = {z ∈ J(P ) | P i(z) 6∈ V for i ≥ 0}.

Proof. Recall that K(Vn) is forward invariant by R and K(Vn) is connected; see Lemma
2.5. For n À 1 let Qn and χn as in Corollary C. So Qn does not have critical points in
J(Qn) and therefore it satisfies property EAC.

It follows by Lemma 7.7 that for every p ∈ P we may choose an arbitrarily small
neighborhood V p so that ∂V p ⊂ K(Vn). Put V = Vn ∪ (∪PV

p). Since Qn does not have
critical points in J(Qn) and χn(K(Vn) ∩ J(R)) ⊂ J(Qn) it follows that Qn is uniformly
expanding in χn(K(V )) ⊂ χn(K(Vn)). By Lemma 7.5 applied to K = χ(K(V )) and to

K̃ = χ(K(Vn)) it follows that R is uniformly expanding in K(V ). Since this is for any n
big, the proposition follows. ¤

The following immediate consequence of Proposition 7.8 was used in the proof of
Theorem A in Section 3.2 (in the absence of parabolic periodic points).

Corollary 7.9. Polynomials in the class S satisfy property EAC.

7.2. Improvement of Martens sets and proof of Theorem A. In this section we
complete the proof of Theorem A. Recall that in Section 3 we indicated the proof of
Theorem A in the absence of parabolic points. The proof in the general case is the same,
only that we have to improve Martens neighborhoods to include parabolic periodic points;
see Proposition 7.11 below.

The following property is analogous to the Univalent Pull-back Condition, but for
parabolic points; see Section 1.
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Univalent Pull-back Property For Parabolic Points. Let R ∈ S and let δ > 0 be
small. Then there is δP > 0 such that for any parabolic point p ∈ P, any k ≥ 1 and
any w ∈ R−k(p) such that Rk−1(w) 6∈ P and such that Rj(w) 6∈ B̃δ(Crit ∩ J(R)), for
0 ≤ j ≤ k, we have that the pull-back of B̃δP (p) by R

k to w is univalent.

Proof. We assume that P 6= ∅, otherwise the statement is vacuous. So J(R) 6= Ĉ and the
considerations of Section 7 apply to R. Consider a nest Vn = ∪V cn for nÀ 1 as in Lemma
5.1 and let n be such that Vn−1 ⊂ Bδ(Crit ∩ J(R)). Consider the pseudo-conjugacy χn
and the rational map Qn given by Corollary C. So Qn does not contains critical points
in its Julia set.

1.− The following property of Qn is a consequence of the existence of a expanding
metric for Qn, defined in some neighborhood of J(Qn)− P; see for example [LY].

Let W be a neighborhood of the set P̂ of parabolic periodic points of Q. Then for
every δ0 > 0 there is ε̂(δ0) > 0 such that for every set U intersecting J(Qn), disjoint from
W and with diameter less than ε̂(δ0), we have that every pull-back of U has diameter
less than δ0.

2.− Let p̂ be a parabolic point of Qn and consider ŵ ∈ Q−kn (p̂) such that Qk−1n (ŵ) 6∈

P̂. Let ε̂ > 0 small, to be chosen later. Consider the respective pull-back Ŵ0, ...,
Ŵk = Bε(p̂) by Qn along the orbit of ŵ. Assume ε̂ > 0 small enough so that Ŵk−1 is

disjoint from a fixed neighborhood W of P̂. Choosing δ0 < dist(∂χn(Vn−1), χn(Vn)) and

assuming ε̂ ≤ ε̂(δ0) (where ε̂(δ0) is as in 1) we have that, if Ŵ0 intersects ∂χn(Vn−1),

then Ŵ0 ∩ χn(Vn) = ∅.

3.− By Lemma 7.7 we may choose a neighborhood Û of p̂ contained in Bε(p̂) so that

∂Û ⊂ χn(K(Vn)). Since χn is a Vn pseudo-conjugacy it follows from 2 that U = χ−1n (Û)
is such that for every pull-back W0, W1, ..., Wk = U , such that Wk−1 does not contains
p = χ−1n (p̂), we have that W0 ∩ ∂Vn−1 6= ∅ implies W0 ∩ Vn = ∅.

4.− Choose δP > 0 small enough so that BδP (p) ⊂ U for every p ∈ P, where U = U(p)
as in 3. Fix p ∈ P and let w ∈ R−k(p) be such that Rk−1(w) 6∈ P and consider the
respective pull-back W0, W1, ..., Wk = BδP (p), so that Wk−1 does not contains p. Note
that is enough to prove that the Wi are disjoint from Vn. Suppose that for some i the
pull-back Wi intersects Vn. Since Ri(w) ∈ Wi lies outside of V , that contains Vn−1, we
have that Wi must intersect ∂Vn−1. Hence by 3 we have Wi ∩ Vn 6= ∅, which contradicts
our assumption. So the statement follows. ¤

We have the consequent decay of geometry; compare with part (ii) of Lemma 3.1.

Corollary 7.10. There is C2 > 0 such that for every δ > 0 small there is l = l(δ) À 1
such that the following property holds. For any parabolic periodic point p ∈ P, any
k ≥ 1 and any w ∈ R−k(p) such that Ri(w) 6∈ B̃δ(Crit ∩ J(R)), for 0 ≤ i < k, and

such that the connected component W0 of R−k(B̃−l(p)) containing w intersects B̃−l(π),

for some π ∈ Π (resp. B̃δ(c) for some c ∈ Crit ∩ J(R)) we have that W0 ⊂ π and

diam(ϕπ(W0)) ≤ C2(r(δ))
− 1
µmax (resp. diam(W0) ≤ C2(r(δ))

− 1
µmax diam(V c)).

Proof. Put ε = (r(δ))−
1

µmax and let l = l(δ) be big enough so that for every p ∈ P we have

B̃−l(p) ⊂ BεδP (p), where δP is as above. Consider the pull-back W0, ..., Wk = B̃−l(p)

and the respective pull-back Ŵ0, ..., Wk = BδP (p). If R
k−1(w) belongs to the orbit of p,

then we have Wk−1 = B̃−(l−1)(R
k−1(w)), so we may assume that Rk−1(w) is not in the
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orbit of p. Therefore, by the previous, the pull-back Ŵ0 is univalent. Then the corollary
follows from Proposition 7.6. ¤

The following proposition is an improvement of Proposition 2.7, that takes into account
parabolic points.

Proposition 7.11. Let R ∈ S, let δ > 0 be small and let k = k(δ) be given by the previous
corollary. Then there is C > 0 only depending in R such that for every c ∈ (Crit∩J(R))
there are open sets V c satisfying the properties of Proposition 2.7 and for every p ∈ P
there is a set V p such that

B̃−k(p) ⊂ V
p ⊂ B̃−k+ln η(δ)(p),

where η(δ) = 1 + C(r(δ))−
1

µmax such that if W is a pull-back of V c, for some c ∈
(Crit ∩ J(R)) ∪ P, then either W ∩ V = ∅ or W ⊂ V , where V = ∪(Crit∩J(R))∪PV

c.

Proof. The proof is exactly the same as the proof of Proposition 2.7in Section 2.2, since
we have univalent pull-back property (stated above) and decay of geometry given by
Lemma 7.7 and Corollary 7.10. ¤

Consider V = ∪(Crit∩J(R))∪PV
c as in the previous proposition. As in Lemma 2.5

we have ∂V ⊂ K(V ). By Corollary 7.9, if P ∈ S is a polynomial, then P is uniformly
expanding in K(V )∩J(R) and therefore every point in K(V )∩J(R) is the landing point
of some ray; see Landing Lemma in Section 3.1. In particular every point in ∂V is the
landing point of some ray.

Proof of Theorem A. We proceed as in the proof of the case when there are no parabolic
cycles; see Section 3.2. We just replace the neighborhoods with Martens property given
by Proposition 2.7 by the neighborhoods given by the previous Proposition 7.11 and we
replace the set Crit∩J(P ) by (Crit∩J(P ))∪P in the argument, to prove that the puzzle
ends corresponding to critical points in J(P ) are singletons.

Then the proof follows as before, that is, we use Lemma 3.1 to prove that puzzle ends
of points whose orbit accumulate critical points are singletons and we use the standard
argument to prove that the rest of the puzzle ends are singletons; see [H], [Mil2], [Lyu2]
and see [Ki] for puzzles in the presence of parabolic points. ¤

8. Unicritical polynomials.

This section is dedicated to the family of polynomials Pc(z) = zd + c, for c ∈ C and
for a given d ≥ 2. We prove Theorem D about instability in the parameter and Theorem
E about similarities between the connectedness locusMd and Julia sets.

We begin with Section 8.1 where we review some basic properties of holomorphic
motions compatible with dynamics. Basic facts about holomorphic motions are stated
in Appendix 10. Section 8.2 contains the proof of Theorem D. The proof is based in the
concept of pseudo-conjugacies that appears in [Lyu2] and we use Rigidity several times.

The proof of Theorem D is independent of Sections 6 and 7, except that we use that
polynomials in S satisfy property EAC stated in Section 3.2. Recall that by Corollary
7.9 polynomials in S satisfy this property. This is also proven in [R-L3]. Moreover
Przytycki proved this property for rational maps that satisfy the summability condition
with exponent one; see proof of Lemma 3.1 of [Pr2].
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The remaining sections are dedicated to the proof of Theorem E. The idea is to
transport dynamical data to parameter plane via holomorphic motions. This part is
largely inspired by [Lyu3]. In Sections 8.3 and 8.4 we construct, for each polynomial
Pc0 ∈ S, a parameter map from the dynamical plane to the parameter plane. Then in
Section 8.5 we prove Theorem E by proving that, under the hypothesis of Theorem E,
this parameter map is conformal at the critical value (and C1+-conformal in the Collet-
Eckmann case). For this we use a conformality criterion stated in [LV] and McMullen’s
measurable deep points to obtain C1+-conformality.

8.1. Holomorphic motions compatible with dynamics. In this section we consider
some basic properties of holomorphic motions compatible with dynamics. Basic facts
about holomorphic motions are stated in Appendix 10.

First let us recall the notion of Botcher coordinates. For every c ∈ C there is a
coordinate ϕc that conjugates Pc near infinity to the map zd and that is tangent to the
identity at infinity. Such coordinate is called Botcher coordinate and it can be defined so
that it depends holomorphically in c. In the case that J(Pc) is connected, this coordinate
can be extended to C−K(Pc) and it is determined as the unique biholomorphism between

Ĉ−K(Pc) to Ĉ− D that is tangent to the identity at infinity.

Fix a parameter c0 ∈ C. Then an holomorphic motion i :W×K −→ C with base point
c0 ∈ W it is said to be compatible with dynamics if for all z ∈ K such that Pc0(z) ∈ K
we have ic(Pc0(z)) = Pc(ic(z)), for all c ∈W .

Lemma 8.1. Let W ⊂ C be a connected open set, c0 ∈ W and U ⊂ C − K(Pc0) an
open set invariant by Pc0 . If i :W ×U −→ C is an holomorphic motion compatible with
dynamics, with base point c0, then ic : U −→ C is holomorphic for every c ∈W .

Proof. Note that we may suppose W bounded. Consider a neighborhood U∞ of ∞
forward invariant by Pc0 so that ϕc0 is defined in U∞ and ϕ−1c is defined in ϕc0(U∞), for
all c ∈ W . Since W is connected it follows that for any (c, z) ∈ W × (U ∩ U∞) we have
ic(z) = ϕ−1c ◦ ϕc0(z), so ic is holomorphic in U∞.

For (c, z) ∈ W × U we can find a neighborhood Û of z so that there is n for which

Pnc0(Û) ⊂ U and Pnc0 : Û −→ Pnc (Û) is a biholomorphism. It follows that P nc is univalent

in ic(Û), denote by gc its inverse branch. Then ic is given by the holomorphic map

gc ◦ ic ◦ Pnc0 in Û . ¤

Lemma 8.2. Let c0 ∈ C and suppose that K ⊂ C is closed and forward invariant by
Pc0 and that Pc0 is uniformly expanding in K. Then there is r > 0 and an holomorphic
motion i : Br(c0)×K −→ C compatible with dynamics, so that ic0 ≡ id.

Note that K is not assumed to be compact.

Proof. For the compact subset of K of points with bounded orbit, this follows by the
expansive property; see [Sh]. For the unbounded case fix an invariant neighborhood U∞
of ∞, so there is an holomorphic motion of U∞ defined in a neighborhood of c0, that is
compatible with dynamics. Considering that Pc0 is uniformly expanding in K, there is a
unique way to pull-back this holomorphic motion to an holomorphic motion of U∞ ∪K,
reducing the domain of definition if necessary. ¤
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Lemma 8.3. Let i : W ×K −→ C by an holomorphic motion. Moreover suppose that
(c0, z0) ∈ W ×K is such that c0 = ic0(z0), but ic(z0) 6≡ c. Then for z ∈ K close to z0
there is c ∈W close to c0 such that c = ic(z).

Proof. Consider the holomorphic motion jc(w) = ic(w)− ic(z0), so jc(z0) ≡ 0. Reducing
W and K if necessary we may assume that j(W × K) ⊂ BR(0), for some R > 0. Let
ψ : W −→ C be defined by ψ(c) = c− ic(z0), so ψ(c0) = 0 but ψ 6≡ 0 by hypothesis; let
m ≥ 1 be such that ψ(c) ∼ (c− c0)

m. Note that for z ∈ K close to z0 we have to find c
close to c0 such that jc(z) = ψ(c).

Let γ ⊂ W be the path around c0 which is the preimage of {w | |w| = 2|jc0 |} by
ψ. So ψ : γ −→ {w| |w| = 2|jc0(z)|} is of degree m and there is C > 0 such that

γ ⊂ B
C|jc0 (z)|

1
m
(c0). Since |jc0(z)|

1
m ln |jc0(z)| ¿ 1 it follows by Lemma 10.4 that there

is κ > 0 such that for all c ∈ γ ⊂ B
C|jc0 (z)|

1
m
(c0),

|jc(z)− jc0(z)| ≤ κ|c− c0||jc0(z)| ln(|jc0(z)|
−1) ≤ κ1|jc0(z)|

1+ 1
m ln(|jc0(z)|

−1),

for some κ1 > 0. So if z is close enough to z0 we have that |jc(z)| < 2|jc0(z)| for all
c ∈ γ. By Rouche’s theorem it follows that there are m ≥ 1 parameters c inside γ for
which jc(z) = ψ(c). ¤

8.2. Pseudo-conjugacies and instability. In this section we prove Theorem D assert-
ing that, if Pc0 ∈ S has recurrent critical point, then for every non-trivial connected set
ξ ⊂ C containing c0 there is a parameter c ∈ ξ such that the critical point of Pc is not
recurrent.

We fix a parameter c0 ∈ ∂Md in the class S throughout all this section. Consider
the nest Vn as in Lemma 5.1. Since 0 is the only critical point in J(Pc0) we have that
Vn = V 0n and Un = U0n are connected and moreover Vn = P−1c0 (Un).

All qc homeomorphisms of C that we will consider will be conformal in a definite
neighborhood of infinity. The normalization of such homeomorphisms will be to be
tangent to the identity at infinity and to fix 0; see Appendix 10.

Definition 8.4. Let nÀ 1. Then a Vn pseudo-conjugacy between Pc0 and Pc is a nor-
malized qc homeomorphism χ of C that is conformal in int(K(Vn)) and that conjugates
the dynamics of Pc0 in K(Vn) to that of Pc in χ(K(Vn)).

By redefining a Vn pseudo conjugacy in the complement of K(Vn), we may suppose
that it conjugates the dynamics of Pc0 and Pc outside Vn; without increasing its dilata-
tion.

If χ is a Vn pseudo conjugacy between Pc0 and Pc, then Pc : χ(∂Vn) −→ χ(∂Un) is
of degree d. Thus the critical point of Pc belongs to χ(Vn) or equivalently c ∈ χ(Un).
In particular χ(K(Vn)) does not contains 0 and there for the forward orbit under Pc
of every point in χ(K(Vn)) does not accumulate 0. It follows that, if Pc is such that
c ∈ χ(K(Vn)), then the critical point of Pc is not recurrent.

Lemma 8.5. Let K ≥ 1 be given by Rigidity for the nest Vn. Then for every Vn pseudo-
conjugacy χ there is a K-qc Vn−1 pseudo-conjugacy that coincides with χ in K(Vn−1).

Proof. By Corollary 7.4, ∂K(Vn) has zero Lebesgue measure, thus a Vn pseudo-conjugacy
is conformal Lebesgue almost everywhere in K(Vn). Hence, we can apply Rigidity to χ
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restricted to every connected component of C−K(Vn−1). Applying the Gluing Lemma we
obtain that there is a K-qc Vn−1 pseudo-conjugacy χ̂ that coincides with χ in K(Vn−1).
We assumed that χ̂(0) = 0 = χ(0), which is not a priori warranted by Rigidity, but by
part 2 of Remark 5.2 in Section 5.1 we may assume so. ¤

Lemma 8.6. Let Wn ⊂ C be the set of all parameters c for which there is a Vn pseudo-
conjugacy between Pc0 and Pc. Then diam(Wn)→ 0 as n→ 0.

Proof. By the previous lemma, for c ∈ Wn there is a K-qc Vn−1 pseudo-conjugacy
χ between Pc0 and Pc that is conformal in K(Vn−1). By Proposition B the Lebesgue
measure of C−K(Vn) goes to zero as n→∞; see Section 4.2. SinceK ≥ 1 is independent
of n, it follows by Lemma 10.3 that for every ε > 0 there is N À 1 such that if n ≥ N
then c ∈ χ(Un) ⊂ Bε(Un). Thus Wn ⊂ Bε(Un). Since diam(Un)→ 0 as n→∞ we have
that diam(Wn)→ 0 as n→∞. ¤

Lemma 8.7. Let c ∈ Wn and χc be a Vn pseudo-conjugacy between Pc0 and Pc. Then
there is r > 0 and a holomorphic motion

i : Br(c0)× C −→ C
compatible with dynamics in Br(c0)×K(Vn), so that for all ĉ ∈Wn the map iĉ : C −→ C
is a Vn pseudo-conjugacy between Pc0 and Pc. Moreover ic ≡ χc in K(Vn). In particular
Wn is an open set.

Proof. By Corollary 7.9, Pc0 is uniformly expanding in K(Vn) and by Lemma 7.5 Pc is
uniformly expanding in Pc(K(Vn)). Thus it follows by Lemma 8.2 there is an holomorphic
motion i : Br(c) × K(Vn) −→ C which is compatible with dynamics and such that
ic = χc|K(Vn). Then the lemma follows by Slodkowsky Extension Theorem; see Appendix
10. ¤

The following lemma is an immediate consequence of compactness of normalized qc
homeomorphisms.

Lemma 8.8. Let c ∈ Wn and {ci}i≥1 ⊂ Wn such that ci → c as i → ∞. Moreover
let χi be a K-qc Vn−1 pseudo-conjugacy between Pc0 and Pci . Taking a sub sequence if
necessary we may assume that χi converges uniformly to some χ. Then χ is a K-qc
Vn−1 pseudo-conjugacy between Pc0 and Pc.

Lemma 8.9. We have that c ∈ Wn (resp. ∂Wn) if and only if there is a K-qc Vn−1
pseudo-conjugacy between Pc0 and Pc such that c ∈ χ(Un) (resp. c ∈ χ(∂Un)).

It follows by this lemma that if c ∈ ∂Wn, then the critical point 0 is not recurrent
under Pc. Indeed if χ is a Vn−1 pseudo conjugacy given by the lemma, then P (0) = c ∈
χ(∂Un) ⊂ χ(K(Vn)).

Proof. If c ∈ Wn then the lemma follows by previous observations. On the other hand,
if χ is a K-qc Vn−1 pseudo-conjugacy between Pc0 and Pc with c ∈ χ(Un), then consider
the holomorphic motion i : Br(c0) × C −→ C, given by Lemma 8.7. Taking r smaller
if necessary we may assume that for all ĉ ∈ Br(c), we have ĉ ∈ iĉ(Un). Consider the
restriction j of i toBr(c)×K(Vn−1). Extend j to Br(c)×K(Vn), by a pull-back procedure.
By Slodkowsky Extension Theorem, we may suppose that j is defined in Br(c)×C, so for
all ĉ ∈ Br(c), the map jĉ is a Vn pseudo-conjugacy between Pc0 and Pc. Hence c ∈Wn.

If c ∈ ∂Wn, the existence of a K-qc pseudo-conjugacy χ so that c ∈ χ(Un) follows
from Lemma 8.8. By the previous χ(c) 6∈ χ(Un) since c 6∈Wn, so χ(c) ∈ χ(∂Un). On the
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other hand suppose that c is such that there is a K-qc Vn−1 pseudo-conjugacy χ between
Pc0 and Pc such that c ∈ χ(∂(Un)). By the previous c 6∈ Wn. Consider r > 0 and the
holomorphic motion i : Br(c)×C −→ C as in Lemma 8.7. By Lemma 8.3, for all ẑ ∈ Un
close to χ−1(c) ∈ ∂Un there is ĉ ∈ Br(c) close to c so that ĉ = iĉ(z) ∈ iĉ(Un). By the
previous ĉ ∈Wn. Hence c ∈Wn −Wn = ∂Wn as claimed. ¤

Proof of Theorem D. Let ξ be a connected set containing c0. By Lemma 8.6 diam(Wn)→
0 as n→∞ and sinceWn contains c0, it follows that there is nÀ 1 such that ξ∩∂Wn 6= ∅.
By the previous lemma, if c ∈ ξ ∩ ∂Wn, then the critical point of Pc is not recurrent. ¤

8.3. Full neighborhoods. Recall that the open set Wn is the set of all parameters cC
for which there is a Vn pseudo-conjugacy between Pc0 and Pc. The aim of this section is
to prove the following proposition.

Proposition (Full Neighborhoods). There is an homomorphic motion in : Wn ×
C −→ C compatible with dynamics in Wn×K(Vn), so that ic0 ≡ id and so that for every
c ∈Wn the homeomorphism ic is a Vn pseudo-conjugacy between Pc0 and Pc.

It follows by this proposition that the sets Vn are full in the sense that Wn is the
maximal domain where K(Vn) can be extended in such holomorphic motion. In fact,
if such an holomorphic motion in can be extended to c ∈ ∂Wn, then by Lemma 8.9
we should have c ∈ (in)c(∂Un). But this implies every one of the d > 1 preimages w
of (in)

−1
c (c) by Pc0 is mapped to 0 by in, which is not possible since (in)c should be

injective.

The proof of this proposition is at the end of this section and it depends in two lemmas.

Lemma 8.10. Fix n big. Suppose that c1, c2 ∈ Wn are such that there are Vn pseudo-
conjugacies χi between Pc0 and Pci such that χ−11 (c1) = χ−12 (c2) ∈ K(Vn). Then c1 = c2.

Proof. Let V i = χi(Vn) for i = 1, 2 and put χ = χ2 ◦ χ
−1
1 . By hypothesis V i is

disjoint from the postcritical set of Pci and therefore, for every m ≥ 0 and any connected
component W of P−mci (V i) we have that Pmci : W −→ V i is univalent. As before, by

redefining χ outside V 1, we may suppose that χ conjugates Pc1 to Pc2 outside V 1.

For k ≥ 0 we will define inductively a qc homeomorphism χk that conjugates Pc1
to Pc2 outside P−kc1 (V 1), whose dilatation is bounded by that of χ. Put χ0 = χ and

suppose that χk is already defined for some k ≥ 0. For any connected component W of

P
−(k+1)
c1 (V 1), the polynomial Pc1 is univalent in W , so we may redefine χk in W so that

the conjugacy equation Pc2 ◦χ
k+1 = χk+1 ◦Pc1 is satisfied in W . By the Gluing Lemma

such χk+1 is qc and its dilatation is bounded by that of χk.

It follows that the dilatation of the χk is bounded by that of χ and therefore there
is a subsequence ki → ∞ so that χki converges uniformly to a qc homeomorphism χ∞.
Since the diameters of the connected components of P−kc1 (V 1) converge to zero as k →∞
it follows that χ∞ is a qc conjugacy between Pc1 and Pc2 . Moreover χ∞ is conformal
outside Jc1 .

Since χ1(c1) ∈ K(Vn) it follows that the critical point of Pc1 is not recurrent, so Jc1
has zero Lebesgue measure. Thus χ∞ is conformal Lebesgue almost everywhere and
therefore χ∞ must be the identity. Hence c1 = c2. ¤

Lemma 8.11. Given n big and z ∈ Un ∩ K(Vn−1) there is a unique c = ψ(z) ∈ W0

for which there is a K-qc Vn pseudo-conjugacy χc between Pc0 and Pc with c = χc(z).
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Moreover ψ is continuous in Un ∩K(Vn−1) and ψ(∂Un) = ∂Wn. In particular ∂Wn =
ψ(∂Un) is connected and therefore Wn is simply-connected.

Proof. The existence of c = ψ(z) for z ∈ Un ∩K(Vn−1) is given by Proposition C. For
z ∈ ∂Un ⊂ K(Vn−1) follows considering that z is accumulated by points in Un∩K(Vn−1)
and then by considering the limiting pseudo-conjugacy as in Lemma 8.8.

Uniqueness of c follows by the previous lemma and that ψ(∂Un) = ∂Wn follows by
Lemma 8.9. It reminds to prove that ψ is continuous. Let z ∈ Un∩K(Vn−1) put c = ψ(z)
and consider r > 0 and the holomorphic motion i : Br(c) × K(Vn−1) −→ C given by
Lemma 8.7. If ẑ ∈ Br(c) is close to c, by Lemma 8.3 there is ĉ close to c so that iĉ(ẑ) = ĉ.
So, if ẑ ∈ Un ∩K(Vn−1), then ψ(ẑ) = ĉ is close to ψ(z) = c. ¤

Proof of the proposition. Let us measure distances in Wn with respect to the hyperbolic
distance of Wn, so for r > 0 the set Br(c0) ⊂ Wn denotes the hyperbolic ball with
radius r centered at c0. Let r be the supremum of the numbers r for which there is an
holomorphic motion, as in the proposition, defined in Br(c0). So we want to prove that
r =∞.

Suppose by contradiction that r <∞. By Lemma 8.7 there is ε > 0 such that for all
c ∈ ∂Br(c0) there is an holomorphic motion j defined in Bε(c)×K(Vn) compatible with
dynamics and such that jc ≡ ic|K(Vn). Since Bε(c)∩Br(c0) is connected it follows that i
coincides with j in Bε(c) ∩Br(c0) and therefore, using Slodkowsky Extension Theorem,
i extends to Bε(c). Repeating this argument we see that if we take a ε

2 -dense set c1, ...,
cn in ∂Br(c0), then i extend to Br+ ε

2
(c0) ⊂ Br(c0) ∪ (∪1≤i≤nBε(ci)). This contradicts

the definition of r, so we must have r =∞ and the proposition follows. ¤

8.4. Parameter map. The objective of this section is to construct a qc map ψ from
the dynamical plane to the parameter plane, so that it almost maps the Julia set toMd.
The main ingredient is the following easy consequence of the previous section. So let us
consider the holomorphic motion in as in the previous section.

Proposition 8.12. Fix n so that in is defined. Then for every z ∈ Un there is a unique
ψn(z) ∈ Wn such that ψn(z) = iψn(z)(z) ∈ Wn. The map ψn : Un −→ Wn is a locally
qc homeomorphism that is conformal Lebesgue almost everywhere in Un ∩ K(Vn). In
particular a point z ∈ Un ∩K(Un) belongs to J(Pc0) if and only if ψn(z) ∈Md.

The proof of this proposition is at the end of this section. Now we define a parameter
map.

Note that for every connected component W of Un − K(Vn−1) there is m ≥ 1 such
that Pmc0 : W −→ Vn is a biholomorphism. Moreover the closure of such W is contained
in Un, so ψ is qc in suchW and therefore we can apply Rigidity to ψn restricted toW . It
follows by the Gluing Lemma and by compactness of K-qc homeomorphisms that there
is a K-qc homeomorphism ψ̃n : Un −→ Wn that coincides with ψ in Un ∩K(Vn−1). In

particular ψ̃n(Un+1) =Wn+1.

Let n0 ≥ 0 so that in is defined for n ≥ n0 and put U = Un0
. By the Gluing Lemma

and by compactness of K-qc homeomorphisms there is a K-qc map ψ : U −→Wn0
that

coincide with ψ̃n in (Un − Un+1) ∩ K(Vn−1) for n ≥ n0. It follows that the diameters
of Wn = ψn(Un) go to zero as n → 0, so ψ(c0) = c0; compare with Lemma 8.6. By
Corollary 7.4 the set ∂K(Vn) has zero Lebesgue measure, so ψ is conformal Lebesgue
almost everywhere outside the sets (Un − Un+1)−K(Vn−1) for n ≥ n0.
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Proof of Proposition 8.12. The proof follows the lines of [Lyu3]. Consider z ∈ Un. Note
that for c ∈Wn close to ∂Wn we have that (in)c(z) is close to the boundary of (in)c(Un),
so c 6= ic(z). Hence the number of solutions ψ(z) of the equation ψn(z) = iψn(z)(z) in
Wn is equal to the winding number of c− ic(z), when c makes one turn around a closed
curve close to ∂Wn. This number depends continuously in z, so it is independent of z.
By Lemma 8.10 this number is equal to 1 for all z ∈ Un ∩K(Vn−1), so it is equal to 1
for all z ∈ Un.

In other words we proved that the graph G = {(c, c) | c ∈Wn} is a global transversal
to the foliation F with leaves Fz = {(c, (in)c(z)) | c ∈ Wn}. Then ψn is the holonomy
between the global transversal T = {c0} ×Un and G. It follows (just as the Qc Lemma)
that this holonomy is locally qc. Moreover by Lemma 8.1 the foliation with leaves
Fz for z ∈ Un ∩ int(K(Vn)) is holomorphic, so the holonomy ψn is holomorphic in
Un ∩ int(K(Vn)). ¤

8.5. Conformality of the parameter map and asymptotic similarity. In this
section we prove Theorem E about asymptotic similarity between Md and Julia sets.
We first reduce Theorem E to prove that the parameter map, of the previous section, is
conformal; and to prove that it is C1+-conformal in the Collet-Eckmann case.

A map ψ : U −→ C is said to be conformal at a point c0 ∈ U if there is λ ∈ C−{0} such
that ψ(w) = ψ(c0) + λ(w− c0) + o(|w− c0|). If o(|w− c0|) is replaced by O(|w− c0|

1+α)
for some α > 0, we say that ψ is C1+-conformal at c0.

Recall that by Proposition 1.4, if Pc0 satisfies the Collet-Eckmann condition, then
there are α0 > 0 and C0 > 0 such that r(δ) ≥ C0δ

−α0 . Consider the flat metric | dz
z
| in

C− {0} that makes C− {0} isometric to the straight cylinder S1 × R.

Lemma 8.13. If the parameter map ψ of the previous section is conformal at c0, then
Md and Jc0 are asymptotically similar at c0. Moreover suppose that there are α0 > 0 and
C0 > 0 such that r(δ) ≥ C0δ

−α0 and suppose that the parameter map ψ is C1+-conformal
at c0. Then there are α > 0 and C > 0 such that, if λ ∈ C − {0} is the derivative of ψ
at c0, then

dH((Md − c0)r, (λ(Jc0 − c0))r) ≤ Cr
α.

Recall that dH denotes the Hausdorff distance and for X ⊂ C and r > 0 the set Xr

denotes 1
r
(X ∩ {|z| ≤ r}) ∪ ∂D.

Proof. Diameter will be taken with respect to the flat metric. Let E = ∪n≥n0
(Un −

Un+1 − K(Vn−1)). By Lemma 3.1 every connected component W of E has diameter

o(dist(W, c0)) in C− {c0}. Let J̃ = Jc0 ∪E, so dH((Jc0 − c0)r, (J̃ − c0)r)→ 0 as r → 0.

Since ψ(c0) = c0 and since ψ is qc it follows that for every connected component W
of E the diameter of ψ(W ) in C− {c0} is o(dist(W ), c0). Moreover the boundary of W
intersects Jc0 . Since for z ∈ U − E we have that ψ(z) ∈ Md if and only if z ∈ Jc0 , it
follows that dH((ψ(J̃)− c0)r, (Md − c0)r) = o(1).

Suppose that ψ is conformal at c0 and let λ ∈ C−{0} be the derivative of ψ at c0. Then

dH((λ(J̃ − c0))r, (ψ(J̃)− c0)r) = o(1), so it follows that dH((λ(Jc0 − c0))r, (Md− c0)r) =
o(1) which by definition is thatMd and Jc0 are asymptotically similar at c0. The second
part follows in a similar way. ¤

To prove the conformality of the parameter map we use the following conformality
criterions; see [LV] and [McM].
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Conformality Criterion. Let ψ : U −→ ψ(U) ⊂ C be a qc homeomorphism. Suppose
that c0 ∈ U is such that ψ is conformal outside a set of finite measure in C− {c0}, with
respect to the flat metric of C− {c0}. Then ψ is conformal at c0.

C1+-Conformality Criterion (McMullen [McM]). Let ψ : U −→ ψ(U) ⊂ C be a
qc homeomorphism. Suppose that there are α1 and C1 such that for r > 0 small, ψ is
conformal in Br(c0) except for a set of Lebesgue measure at most C1r

2+α1 . Then ψ is
C1+-conformal at c0.

Recall that τ ∈ (0, 1) and η ∈ (1, τ−1) are such that Bτn(c0) ⊂ Un ⊂ Bητn(c0)
and recall that the parameter map ψ is conformal Lebesgue almost every where outside
the sets Un − Un+1 − K(Un+1). Moreover by Lemma 4.6 there is A1 > 0 such that

|Un − Un+1 −K(Un)| < A1|Un|r(τ
n)−

2
d .

Proof of Theorem E. By the above there is K0 > 0 such that the cylindrical area of
Un − Un+1 − K(Un) is bounded by K0r(τ

n)−
2
d . By the remark after Proposition 1.4

we have by hypothesis that
∑

n≥n0
r(τn)−

2
d < ∞. Thus ψ satisfies the hypothesis of

the conformality criterion, so ψ is conformal at c0 and by Lemma 8.13,Md and Jc0 are
asymptotically similar at c0.

Collet-Eckmann case. Suppose that Pc0 satisfies the Collet-Eckmann case. So by Propo-
sition 1.4 there are α0 > 0 and C0 > 0 such that r(δ) ≥ C0δ

−α0 . By Lemma 8.13 is
enough to prove that the parameter map ψ is C1+-conformal at c0. By the above there
is K1 > 0 independent of n, such that,

|Un −K(Vn)| ≤ A1|Un|r(τ
n)−

2
d ≤ A1|Un|C

−1
0 (τn)

2
d
α0 ≤ K1(τ

n)2+
2
d
α0 .

Thus ψ satisfies the hypothesis of the C1+-conformality criterion, with α1 = 2
d
α0 and

with some constant C1 > 0. Hence ψ is C1+-conformal at c0 and Theorem E follows by
Lemma 8.13. ¤

9. Appendix: Re-statement of MLC.

Now we prove the re-statement of MLC stated in the introduction. This follows easily
from the theory of parapuzzle ends or fibers in [Sch]. Now we state some properties of
parapuzzle ends that can be found in [Sch]. Fix d ≥ 2 and let Pc(z) = zd + c, for c ∈ C.

For each c0 ∈ C such that Pc0 is not hyperbolic, we associate its parapuzzle end.
Parapuzzle ends are full compact sets that are either disjoint or equal. As mentioned in
the introduction, if the parapuzzle end of a parameter c0 is trivial, then c0 ∈ ∂Md and
Md is locally connected at c0.

Lemma (parapuzzle ends). Let c0 ∈ ∂Md such that the critical point of Pc0 is
recurrent and such that all its periodic points are repelling. In particular Pc0 is not
hyperbolic. Then the parapuzzle end of c0 is equal to the maximal connected set ξ ⊂ C
of parameters that contains c0 and such that for every c ∈ ξc0 the critical point of Pc is
recurrent.

The parapuzzle end of a parameter whose respective polynomial has an indifferent
periodic point is trivial. The parapuzzle end of a parameter c0 ∈ C such that the critical
point of Pc0 is not recurrent, and such that Pc0 is not hyperbolic, is trivial; see [H] and
[Sch]. Thus this lemma implies that the re-statement of MLC is in fact equivalent to
MLC.
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Let us define parapuzzle ends of parameters c0 ∈ C such that Pc0 is not hyperbolic
and such that all its periodic points are repelling.

Douady and Hubbard proved thatMd is a full connected set, and moreover there is a
biholomorphic map ϕMd

: Ĉ−Md −→ Ĉ−D which is tangent to the identity at infinity.
The preimage by ϕMd

of {re2πiθ | r > 0, θ ∈ R} is called the ray with angle θ; and the
preimage of {|z| = r | r > 1} is an analytic Jordan curve called equipotential. The ray
of angle θ is said to land at some point c0 if ϕ−1Md

(re2πiθ) → c0 as r → 1. It is known
that all rays with rational angle land and the landing parameter is such that the critical
point is not recurrent. More precisely the critical point is either strictly pre-periodic or
it converges to a parabolic cycle.

A parapuzzle ofMd is a disc bounded by a finite number of rays with rational angles
and an equipotential, so that the intersection withMd is a non-empty connected set; see
[H]. Then the parapuzzle end of c0 is the intersection of all parapuzzles containing c0.

Proof of the lemma. Recall that the parapuzzle end of a parameter c with all cycles
repelling and with non-recurrent critical point in J(Pc), is trivial; see [H] and [Sch].
Since parapuzzle ends are disjoint or equal, it follows that for all c in the parapuzzle end
of c0, the critical point of Pc is recurrent. Thus the parapuzzle end of c0 is contained in
ξ.

If Π is a parapuzzle containing c0 then, as remarked above, a parameter c ∈ ∂Π∩Md

is such that the critical point of Pc is not recurrent. Since for parameters c not inMd,
the critical point of Pc is not recurrent (the critical point escapes to infinity), it follows
that ξ ⊂ Π. Thus ξ is contained in the parapuzzle end of c0. ¤

10. Appendix. Quasi-conformal homeomorphisms and holomorphic motions.

In this appendix we review some properties of quasi-conformal maps. See [LV] and
[A] for references.

Given K ≥ 1 we say that an homeomorphism χ is K-quasi-conformal, or K-qc for
short, if the following equivalent conditions hold.

(1) For every annulus A ⊂ C we have K−1mod(A) ≤ mod(χ(A)) ≤ Kmod(A).
(2) χ has a distributional derivative that is locally in L2 and ‖Dχ‖2 ≤ KJac(Dχ)

Lebesgue almost everywhere.

By 1 the inverse of a K-qc homeomorphism is also a K-qc homeomorphism. In this case
χ is differentiable (in the usual sense) Lebesgue almost everywhere and this derivative
coincides with the distributional derivative almost everywhere. The constant K ≥ 1 is
called the dilatation of χ. If we do not want to specify the dilatation we just say that χ
is quasi-conformal or qc. Conformal maps coincide with 1-qc maps.

Qc homeomorphisms preserve sets of Lebesgue measure 0 and sets of σ-finite sets are
qc removable: if χ : U −→ χ(U) ⊂ C is an homeomorphism that is K-qc outside a set
of σ-finite length, then χ is K-qc. Moreover K-qc homeomorphisms of C are Hölder
with constants only depending in K. The same is true for K-qc homeomorphisms of the
sphere that fix three prescribed points and for K-qc homeomorphisms of the disc with
respect to the hyperbolic metric.

An ellipse field σ is to associate to Lebesgue almost every point z ∈ Ĉ an ellipse in
the tangent plane to Ĉ at z, up to scale. All ellipse fields considered will have bounded
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dilatation, that is the dilatation of Lebesgue almost every ellipse is bounded by a constant
K ≥ 1. The dilatation of an ellipse is the ratio of its major axis to its minor axis. In this
case we say the dilatation of the ellipse field is bounded by K. Moreover all ellipse fields
will be measurable in the sense that the dilatation and the direction of the major axis of
the ellipses are measurable functions.

We denote by σ0 the standard complex structure, which is the one formed just by
circles. For any K-qc homeomorphism h, the pull-back χ∗σ0 is an ellipse field with
dilatation bounded by K; cf. characterization 2 of K-qc homeomorphisms. The following
theorem is a remarkable converse of this property.

Ahlfors-Bers Integration Theorem. Let σ be a measurable ellipse field of Ĉ with
dilatation bounded by K ≥ 1. Then there is a unique K-qc homeomorphism h, up to
postcomponing with an automorphism of Ĉ, so that σ = h∗σ0.

Thus an ellipse field in Ĉ induces a complex structure in Ĉ using the homeomorphism
given by the Ahlfors-Bers Integration Theorem as a single chart. So ellipse fields will
also be called complex structures.

An important property is compactness of normalized K-qc homeomorphisms: for any
K ≥ 1 and any sequence of normalized K-qc homeomorphisms there is a subsequence
that converges uniformly to a normalized K-qc homeomorphism. A normalization is
a restriction that can be satisfied for every homeomorphism after post-composing by a
uniquely determined automorphism of Ĉ. A normalization in Ĉ is to fix three points. If
we only consider homeomorphisms that are holomorphic in a definite neighborhood of
∞, a normalization is being tangent to the identity at infinity and fixing 0.

All previous considerations apply to general Riemann surfaces. A normalizations in
C and D is to fix two preferred points.

One of the main points of this paper is to use rigidity properties of qc maps that are
conformal in a big set, where big can be taken in several senses; cf. Sections 5, 6 and 8
and see also Appendix 11. Lemmas 10.3 below is a basic property of this kind that is
used several times in this paper; see also Lemma 10.1.

Let us consider some concepts. We begin by recalling the definition of the modulus of
an annulus. Every topological annulus A ⊂ Ĉ is either conformally equivalent to C−{0}
or to {z| 1 < |z| < R}, where R ∈ (1,∞] is then uniquely determined. In this case ln(R)
is called the modulus of A and is denoted by mod(A). This is not completely standard,
some authors prefer to call 1

2π lnR the modulus of A; see for example [A]. We follow
[LV].

Other definition of mod(A) is given by,

mod(A) =

(

1

2π
inf
h

∫ ∫

A

|∇h|2dxdy

)−1

,

where the infimum is taken over all C1 functions h : A → (0, 1) such that h(z) → 1 as
z approaches a determined end of A and h(z) → 0 as z approaches the other end. The
infimum of this Dirichlet integral is realized by an harmonic function.

Consider the flat metric | dz
z
| in C − {0} that makes C − {0} isometric to S1 × R.

The restriction of this metric a round annulus {1 < |z| < R} will also be called the flat
metric of this annulus. Then one can define such a metric in every annulus, by means of
a biholomorphism into a round annulus.
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Lemma 10.1. Let A be an annulus endowed with the flat metric and let χ : A −→ χ(A)
be a K-qc homeomorphism conformal in A−N for some N ⊂ A. Then,

mod(A)

(

1 +
(K − 1)|N |

2πmod(A)

)−1

≤ mod(χ(A)) ≤ mod(A) +
(K − 1)|N |

2π
,

where |N | is the area of N with respect to the flat metric.

Remark 10.2. This lower bound is somehow pessimistic, it can be attained only for
N with a very particular geometry. In Appendix 11 we give conditions in the sizes
and distribution of the components of N , so that there is a lower bound of mod(χ(A))
independent of the dilatation of χ; see also Remark 5.2 in Section 5.1

Proof. We just prove the lower bound, the other inequality is stated in [LV]; see (6.6)
p. 221. Suppose that A is the straight cylinder S1 × (0,mod(A)) and denote by π the
projection π : A −→ (0, 1) given by π(θ, t) = t

mod(A) . By the definition of modulus above,

1

mod(χ(A))
≤

1

2π

∫ ∫

χ(A)

|∇(π ◦ χ−1)|2dxdy =
1

2π
(mod(A))−2

∫ ∫

χ(A)

‖Dχ−1‖2dxdy

≤
1

2π
(mod(A))−2

(

∫ ∫

χ(A)

Jac(χ−1)dxdy + (K − 1)

∫ ∫

χ(N )

Jac(χ−1)dxdy

)

=
2πmod(A) + (K − 1)|N |

2π(mod(A))2
.¤

Lemma 10.3. Let K ≥ 1 be given. Then the following assertions hold.

(1) Let {χk}k≥1 be a sequence of K-qc normalized homeomorphisms such that χk is
conformal outside a set of Lebesgue measure εk, so that εk → 0 as k →∞. Then
χk converges uniformly to the identity.

(2) Then for every ε > 0 there is δ such that any normalized K-qc homeomorphism

of Ĉ that is conformal except for a set of Lebesgue measure δ, is ε close to the
identity.

Proof. 1.− Consider a subsequence χkn that converges uniformly to a normalized K-qc
homeomorphism χ. IfA is an annulus we have by the previous lemma thatmod(χn(A))→
mod(A) so mod(χ(A)) = mod(A). Thus χ preserves the modulus of annuli and by the
characterization 1 of qc homeomorphisms, χ is 1-qc. Thus χ is conformal. Since χ is
normalized we have that χ = id. Since this is for an arbitrary convergent subsequence,
the assertion follows.

2.− If this is not true then there is a sequence of normalized K-qc homeomorphisms
χk that are ε away from the identity and so that χk is conformal outside a set of measure
1
k
. This contradicts 1. ¤

The following lemma can be found in [DH2].

Gluing Lemma. Let U ⊂ C be a bounded open set and χ : C −→ C a K-qc homeomor-
phism. Suppose that χ0 : U −→ χ(U) so that the map χ̃ that is equal to χ outside U and
is equal to χ0 in U . Then :

(1) χ̃ is a qc homeomorphism of C.
(2) The derivatives of χ̃ and χ coincide Lebesgue almost everywhere in C− U .
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10.1. Holomorphic motions. In this section we review the concept of holomorphic
motions and some of its properties; see [MSS] for references. Let W be an open subset of

C, often biholomorphic to the unit disc D. Then an holomorphic motion i of a set K ⊂ Ĉ
defined over W , is a map i : W ×K −→ Ĉ, so that for all c ∈ W the map ic : K −→ Ĉ
is injective and for all z ∈ K the function c −→ ic(z) is holomorphic. Usually there is a
base point c0 ∈W for which ic0 is the identity.

Slodkowsky Extension Theorem. Any holomorphic motion i : D × K −→ Ĉ of
K ⊂ Ĉ, can be extended to an holomorphic motion of Ĉ.

See [Sl]. The following lemma was proven in [MSS].

Qc Lemma. Let W ⊂ C and U ⊂ Ĉ be open sets and let i : W × U −→ Ĉ be
an holomorphic motion with base point. Then, for every c ∈ W the map ic is quasi-
conformal.

We use the following lemma in Section 8.1.

Lemma 10.4. Let W ⊂ C be an open set and let K ⊂ C. Consider an holomorphic
motion j :W ×K −→ BR(0) ⊂ C for some R > 0. Moreover suppose there is z0 ∈ K is
such that jc(z0) ≡ 0 and fix c0 ∈ W . Then there is a constant κ > 0 such that for every
(c, z) ∈W ×K with |c− c0| ln(|jc(z)− jc0(z)|

−1)¿ 1 we have

|jc(z)− jc0(z)| ≤ κ|c− c0||jc0(z)| ln(|jc0(z)|
−1).

Proof. Dividing j par R, we may suppose that R = 1. Moreover we may suppose that
W = D and c0 = 0. Fix z ∈ K − {z0} and put w0 = j0(z). Note that the function

c −→ jc(z) goes from D to D − {0}. Moreover the map w −→ w0e
−2w
1+w ln |z0| is a local

isometry between D and D− {0}, with respect to the hyperbolic metrics ρD and ρD−{0},
that maps 0 to w0. By Schwartz lemma,

jc(z) ∈ {ζ ∈ D− {0} | ρD−{0}(ζ, z0) ≤ ρD(c, 0)}.

Hence,

|jc(z)− jc0(z)| ≤ sup
|w|<|c|

|z0e
−2w
1+w ln |z0| − z0| = |z0||e

−2|c|
1+|c|

ln |z0| − 1|.

By hypothesis |c| ln |z0| ¿ 1 so there is a constant κ > 0 such that

|jc(z)− jc0(z)| ≤ C|c||z0| ln(|z0|
−1).¤

11. Appendix. Rigid Annuli.

In his unpublished proof of local connectivity of the Mandelbrot set at non-infinitely
renormalizable parameters, J. C. Yoccoz encountered the following situation. There is a
quasi-conformal map χ defined in the annulus A = {z ∈ C | 13 < |Re(z)| and |Im(z)| <
1} that is conformal Lebesgue almost everywhere outside the set N , which is defined as
the least set containing the square {z ∈ C | |Re(z)|, |Im(z)| < 1

3} and the images of itself

under the affine maps z −→ z+1
3 and z −→ z−3

3 ; see Figure 5.

An important step in his proof was to prove that there is a bound independent of the
map χ for the modulus of the annulus χ(A). Note that there is no restriction in the
dilatation of χ.
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A

N

Figure 5. The annulus A and the set N in black.

There are various ways to prove this property. Probably the easiest one is an extremal
length argument, observing that the set (A−N )∩R has positive capacity. There is also
a proof using Dirichlet integrals in [Se] and there is a much stronger result in [Ka].

Unfortunately this part of the argument, in Yoccoz theorem, was replaced by Hubbard
in [H], which is to the best of my knowledge the only complete published proof of Yoccoz
theorem.

Here we extend this rigidity property to some other pairs (A,N ), where N is obtained
by an iterative function system with possibly infinitely many branches. This situation
appears naturally in dynamics as fist return maps, and this rigidity property has appli-
cations to make estimates in parameter planes (as in Yoccoz’s theorem; see also [Lyu3])
or in pull-back procedures like in Theorem C; see also [R-L3].

Theorem (Rigid Annuli). Let U ⊂ C be a bounded disc and K ⊂ U be a non-trivial
compact set, so that A = U −K is an annulus. Moreover consider a collection of discs
{Ui}i≥1 with pairwise disjoint closures such that Ui ⊂ A and let gUi : U −→ Ui be
biholomorphisms. Let N be the smallest set containing K and all the images of itself by
the gUi . Then there are m0 > 0 and ε0 > 0 such that if:

Modulus: The maps gUi extend in a univalent way to a disc U ′, such that m =
mod(U ′ − U) ≥ m0;

Area: ε = area(∪Ui)
area(U) is smaller than ε0;

then there is a constant M > 0 such that for any qc homeomorphism χ : A −→ χ(A)
conformal Lebesgue almost everywhere in A−N , we have

mod(χ(A)) ≥M.

Remark 11.1. (1) Note that the Ui can accumulate the boundary of A. Moreover
K can have non-empty interior and for example ∂K may have positive Lebesgue
measure.

(2) Since the Ui are disjoint and mod(U ′i − Ui) is definite, with U ′i ⊂ A, it follows
that diam(Ui)→ 0.

56



i

g
i

U

U

U

K

A = U - K

K i
U j

U’j

Figure 6. Illustration for (A,N ).

The conclusion of this theorem is weaker than Rigidity of Section 5.1 (see part 3 of
Remark 5.2) but the hypothesis are simple enough to be presented in a more abstract
setting. The proofs is via Dirichlet integrals, following the proof in [Se] of Yoccoz’s
situation. This theorem appeared in the unpublished [R-L3] to prove some results weaker
that those stated in Section 7.

11.1. Collapsing map in Sobolev space. In this section we will reduce the theorem
to the existence of a function in an appropriated Sobolev space, that collapses all the
connected components of N to a point. For an open set U ⊂ C denote by W 1,2(U) the
Sobolev space of functions f : U → C with distributional derivatives in L2(U) and norm,

‖f‖2U = ‖f‖2U,1,2 =

∫ ∫

U

‖Df‖2dxdy.

This norm is invariant by conformal maps. That is if χ : U −→ V is a conformal map then
‖f ◦χ−1‖V = ‖f‖U , this is easy to see by the change of variable formula and considering
that ‖Dχ−1‖2 = Jac(χ−1), since χ−1 is conformal.

We will reduce the Theorem to the following lemma.

Lemma 11.2. Let (A,N ) be as in the theorem. Then, if m is big enough and ε > 0 is
small enough, there is a continuous function

f : A −→ S1 × (0, 1) ⊂ S1 × [0, 1],

satisfying the following properties.

(1) If {zi}i≥1 ⊂ A is such that zi → ∂U then f(zi)→ S1×{1} and if zi → ∂K then
f(zi)→ S1 × {0}.

(2) We have f(x) = f(y), with x 6= y if and only if x and y belong to the closure of
the same connected component of N .

(3) We have f ∈ W 1,2(A) and the norm of f can be bounded in terms of mod(A)
only.

Let us deduce deduce the theorem assuming the previous lemma. Let χ : A −→ C be a
qc homeomorphism into its image, conformal in A−N in the distributional sense. Hence
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χ−1 and f ◦ χ−1 belong locally to W 1,2 and χ−1 is conformal in the distributional sense
in χ(A−N ); see Remark 11.1. Let π : S1 × (0, 1) −→ (0, 1) the projection π((θ, t)) = t.
Considering that Df |N ≡ 0 we have

∫ ∫

χ(A)

|∇(π ◦ f ◦ χ−1)|2dxdy ≤

∫ ∫

χ(A)

|∇π(f ◦ χ−1)|2‖D(f ◦ χ−1)‖2dxdy

≤

∫ ∫

χ(A−N )

‖D(f ◦ χ−1)‖2dxdy

+

∫ ∫

χ(N )

‖Df(χ−1)‖2‖Dχ−1‖2dxdy

=

∫ ∫

A−N

‖Df‖2dxdy = ‖f‖2A,

By the definition of modulus with Dirichlet integrals, this gives a lower bound of ‖f‖−1A
for mod(χ(A)); see [A] or Appendix 10.

11.2. Model. In next section we will construct inductively a sequence fn ∈ W 1,2(A)
converging to the desired f of Lemma 11.2. In this section we will describe a model
function h : U −→ U in W 1,2(U) that will serve to construct fn from fn−1.

This model function h will be continuous and such that h(x) = h(y), with x 6= y, if
and only if x, y ∈ K. Moreover h will be C2 in A = U −K and it will be equal to the
identity in a neighborhood of ∂U . Furthermore |U |−1‖h‖2U will be bounded in terms of
mod(A) only, where |X| denotes the area of X ⊂ C.

We will construct h that is C2 in A, except for an analytic curve. We can obtain h to
be C2 in by using a bump function. Fix z0 ∈ K and let ϕ : U −→ D be a biholomorphism
such that ϕ(z0) = 0. Consider δ > 0 small and let U1−δ = ϕ−1(|D1−δ). We will choose
δ depending in mod(A) only. Consider a conformal representation,

ψ : U1−δ −K −→ D1−δ − Dr0
sending the end corresponding to ∂U1−δ to the end corresponding to ∂D1−δ and for
t ∈ [r0, 1− δ) let Ut = K ∪ ψ−1({|z| < t}).

Let h̃0 : [r0, 1−δ] −→ [0, 1−δ] be the quadratic diffeomorphism tangent to the identity

at 1−δ. Note that h̃0 has a non-zero derivative at r0. Consider h0 : D1−δ−Dr0 −→ D1−δ
given in polar coordinates by h0(θ, r) = (c(θ), h̃0(r)) so that h0 ◦ψ = ϕ in ∂U1−δ. So the
function c : R −→ R is analytic and its distortion is bounded in terms of mod(A) only.
Moreover note that ‖Dh0‖ is bounded and it can be bounded in terms of mod(A) only.
Then h is defined as the identity in U − U1−δ, equal to ϕ

−1 ◦ h0 ◦ ψ in U1−δ − K and
constant equal to z0 in K; see Figure 7.

Note that h is C2 in A = U −K, except for the analytic curve ∂U1−δ.

1.− Let us prove that h ∈ W 1,2(U). Note that h ∈ L2(U) as bounded function. For

t small let ht : D1−δ − Dr0+t −→ D1−δ be defined like h0 but with h̃0 replaced with

h̃t : [r0 + t, 1 − δ] −→ [0, 1 − δ] which is the unique homeomorphism which coincides

with h̃0 in [r0 + 2t, 1− δ] and that is affine in [r0 + t, r0 + 2t]. So the derivative of h̃t in

[r0 + t, r0 + 2t] is close to 2h̃′0(r0).

In an analogous way define continuous maps ĥt : U −→ U which are the identity in

U−U1−δ and constant in U r0+t. Like h, the functions ĥt and ht belong to L2 as bounded
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Figure 7. The model function h is defined radially with h̃0.

functions and moreover ĥt is C
2 in A = U −K except in ∂U1−δ and ∂Ur0+t which are

analytic curves. Extend ht to D1−δ by defining it constant equal to 0 in Dr0+t.

By conformality of ψ it follows that ‖ĥt‖U1−δ
= ‖ϕ−1 ◦ ht‖D1−δ

. By Koebe Distor-

tion Theorem the distortion of ϕ−1 in D1−δ is bounded by some constant D > 1, only
depending in δ. Thus

‖ϕ−1 ◦ ht‖D1−δ
≤ D‖ht‖D1−δ

.

But ‖ht‖D1−δ
is uniformly bounded, since ‖Dht‖ is uniformly bounded in D1−δ (for small

t). Hence ĥt ∈W
1,2(U).

Note that ĥt → h uniformly. Let us prove that the convergence is also inW 1,2(U). Fix
t0 small. Note that Dht ≡ 0 in Dr0 and ‖Dht‖ is bounded in Dr0+t0−Dr0 , independently
of t < t0. Thus, for all s, t < t0 we have

∫ ∫

Dr0+t0

‖D(ht − hs)‖
2dxdy ≤ C1|Dr0+t0 − Dr0 | = C1πt0(2r0 + t0).

By the conformal invariance of the norm in W 1,2(U) it follows that ĥt is a Cauchy
sequence in W 1,2(U) and therefore h ∈W 1,2(U).

2.− Now let us prove that |U |−1‖h‖2U can be bounded in terms of mod(A) only. In fact

‖h‖2U = |U − U1−δ|+ ‖h‖
2
U1−δ

and

‖h‖U1−δ
= ‖ϕ−1 ◦ h0 ◦ ψ‖U1−δ

= ‖ϕ−1 ◦ h0‖D1−δ
.

Note that |U1−δ| ≤ D2|(ϕ−1)′(0)|2|D|1−δ. So ‖ϕ−1 ◦ h0‖D1−δ
≤ D|(ϕ−1)′(0)|‖h0‖D1−δ

and ‖ϕ−1 ◦ h0‖
2
D1−δ

≤ K|U ′1−δ|‖h0‖
2
D1−δ

, where K > 0 only depends in δ. Since h only

59



depends in δ and r0 (which depend in mod(A) only) it follows that |U |−1‖h‖2U can be
bounded in terms of mod(A) only.

3.− The following lemma will be used in Section 11.4.

Lemma 11.3. For every κ > 0 there is ε1 = ε1(δ,mod(A)) > 0 such that if the relative
area of E ⊂ U in U is less than ε1 then,

∫ ∫

E

‖Dh‖2dxdy ≤ κ‖h‖U .

Proof. All implicit constants and dependences will by in terms of mod(A) only. Note
that ‖h‖U ≥ |h(U)| = |U |. Since h = id in U − U1−δ, we have

∫ ∫

E−U1−δ
‖Dh‖2dxdy =

|E − U1−δ|. On the other hand, since ψ is conformal,
∫ ∫

E∩U1−δ

‖Dh‖2dxdy =

∫ ∫

ψ(E∩U1−δ)

‖D(ϕ−1 ◦ h0)‖
2dxdy

≤ C|(ϕ−1)′(0)|2|ψ(E ∩ U1−δ)|,

the last considering that the distortion of ϕ−1 in D1−δ is bounded in terms of δ only and
‖Dh0‖ is bounded in terms of mod(A) only. Then the lemma follows considering that if
the relative area of E ∩ U1−δ in U1−δ is small then the relative area of ψ(E ∩ U1−δ) in
D1−δ is also small. ¤

11.3. The quasi-affine property. Let us describe the procedure to construct the func-
tion f of Lemma 11.2. We organize the connected components of N (or just components
for short) in levels as follows. By definition the Ki = gUi(K) are connected components
of N and we assign them level 1. In general a component L can be written in a unique
way as,

L = gUi1 ◦ gUi2 ◦ ... ◦ gUin (K).

We assign to L level n and denote gUi1 ◦ ... ◦ gUin by gL. Note that such L has naturally

associated W = gL(U), then we denote gW = gL and W ′ = gW (U ′) and we say that W
is of level n.

We will define inductively functions fn : A −→ S1 × (0, 1) such that fn(z) = fn−1(z)
unless z ∈ L for some L of level n. Moreover fn will satisfy properties 1 and 3 of Lemma
11.2 and property 2 for all connected components of N of level less than or equal to n.
In Section 11.4 we prove that {fn}i≥1 is a Cauchy sequence in W 1,2(A).

Furthermore fn will satisfy the following property by induction,

Quasi-affine property. There is D > 0 such that for all W of level n+1, there is a real
affine map AW of R2 and a function fW : U → C that is C2 such that ‖fW−id‖C2,W < D
and

fn ◦ gW = AW ◦ fW : U −→ fn(Uin+1
).

where W = gUi1 ◦ ... ◦ gUin+1
(U).

Let f0 : A −→ S1 × (0, 1) be an homeomorphism resulting by composing a conformal
representation of A into a straight cylinder, with an appropriated real affine map. Then
the quasi-affine property for f0 follows by Koebe Distortion Theorem for some constant
D = D0, which is small as m is big.
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Inductive step. Suppose by induction that we are given fn−1 with the properties above,
satisfying the quasi-affine property with some small constant D = Dn−1. We will con-
struct fn satisfying the properties above and the quasi-affine property with some small
constant Dn. For W of level n define fn in W as,

fn|W = fn−1 ◦ gW ◦ h ◦ g
−1
W ,

and for points not in anyW of level n define fn as fn−1. Then fn is continuous, since the
diameters of the components of level n go to 0; see Remark 11.1. Moreover fn satisfies
1 and 3 of Lemma 11.2 and 2 of the same lemma for components of level less than or
equal to n.

Lemma 11.4. Given d > 0 there is m1 = m1(mod(A)) > 0 such that if m ≥ m1 then
for all Ui,

‖A−1Ui ◦ h ◦ gUi − id‖C2,U < d.

where AUi = D(h ◦ gUi)(z0).

Proof. Since h is C2 in A = U − K is enough to prove the lemma for components Ui
close to K. If m ≤ mod(U ′ − U) is big enough we may suppose that Ũi ⊂ U1−δ, where

Ũi ⊂ U
′
i is uniquely determined by

mod(U ′i − Ũ i) = mod(Ũi − U i) =
1

2
mod(U ′i − U i) ≥

m

2
.

Since ψ ◦ gUi is conformal mod(ψ(Ũi − Ui)) ≥
m
2 and ψ is C2 close to a conformal affine

map in Ui by Koebe Distortion Theorem. Moreover there are θ(m) = O(e−m) and
η(m) = 1 +O(e−m) such that

ψ(Ui) ⊂ (r0 + t0, r0 + η(m)t0)× (θ0, θ0 + θ(m))

in polar coordinates, for some θ0 and t0. Moreover h0(r, θ) = (h̃0(r), c(θ)(r− r0)), where
c(θ) is analytic in θ and with distortion bounded in terms of mod(A) only. Since h̃0 is
differentiable at r0, ∂rh0 is almost constant in ψ(Ui). Furthermore,

sup
z0,z1∈ψ(U ′i)

∂θh0(z0)

∂θh0(z1)
= O(e−m),

hence,

‖A−1Ui ◦ h ◦ gUi − id‖C2,U = O(e−m).

This considering that diam(h0(ψ(Ui))) is small and therefore the distortion of ϕ in this
set is small by Koebe distortion. ¤

Now lets prove the quasi-affine property for fn. So fix W of level n as above and
W1 ⊂ W of level n + 1. Note that every component of level n + 1 is contained in
some W̃ of level n, so we are in the general situation. Let Ui uniquely determined
by gW1

= gW ◦ gUi . By induction hypothesis we have fn−1 ◦ gW = AW ◦ fW , where
‖fW − id‖C2,U < Dn−1 and AW is affine. Note that by definition fn = AW ◦fW ◦h◦g

−1
W .

Let AUi as in the lemma and let AW1
= AW ◦AUi , then if m is big enough,

‖A−1Ui ◦ h ◦ gUi − id‖C2,U < d,

for some fixed small d. Put

fW1
= A−1W1

◦AW ◦ fW ◦ h ◦ gUi = (A−1Ui ◦ fW ◦AUi) ◦ (A
−1
Ui
◦ h ◦ gUi).
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Note that ‖AU0
‖ = O(e−m) so AU0

is a definite contraction for bigm. By the quasi-affine
property

‖A−1U0
◦ fW ◦AU0

− id‖C2 = O(Dn−1‖AU0
‖),

so ifm is big enough we get a bound τDn−1 for the norm above, for some τ = τ(m,mod(A)) ∈
(0, 1) independent of n. Considering that by hypothesis e−m and Dn−1 are small the
quasi-affine property follows for fn for some Dn = τ ′Dn−1 + O(e−m), where τ ′ =
τ ′(m,mod(A)) is such that fixed mod(A), τ ′ → 0 as m → ∞. Hence, fixed mod(A),
if m is big enough the {Dn} are small and in particular uniformly bounded.

11.4. Sobolev estimates. For a real affine map Â denote Dil(Â) = sup|u|=|v|=1
|Âu|

|Âv|
.

Let W be of level n and AW , fW as in the quasi-affine property, so fn−1◦gW = AW ◦fW :
U −→ fn(Uin), where gW = gUi1 ◦ ... ◦ gUin . By the quasi-affine property,

‖fn−1‖
2
W =

∫ ∫

W

‖D(AW ◦ fW ◦ g
−1
W )‖2dxdy

=

∫ ∫

U

‖D(AW ◦ fW )‖2dxdy

=

∫ ∫

U

Dil(AW ◦ fW )Jac(AW ◦ fW )dxdy

∼ Dil(AW )|fn−1(W )|.

Considering that fn ◦ gW = AW ◦ fW ◦ h and by the quasi-affine property,

‖fn‖
2
W =

∫ ∫

W

‖D(AW ◦ fW ◦ h ◦ g
−1
W )‖2dxdy

=

∫ ∫

U

‖D(AW ◦ fW ◦ h)‖
2dxdy

≤

∫ ∫

U

Dil(D(AW ◦ fW )) ◦ hJac(AW ◦ fW ) ◦ h‖Dh‖2dxdy

∼ Dil(AW )|fn(W )||U |−1‖h‖2U .

By the previous it follows that ‖fn‖2W ≤ K‖fn−1‖
2
W for some definite K > 0 which only

depends in m and mod(A). Let W0 be a component of level n− 1, then

∑

W⊂W0, level n

‖fn‖W ≤ K

∫ ∫

∪W

‖Dfn−1‖
2dxdy

= K

∫ ∫

∪W

‖D(AW0
◦ fW0

◦ h ◦ g−1W0
)‖2dxdy

= K

∫ ∫

∪g−1
W0
(W )

‖D(AW0
◦ fW0

◦ h)‖2dxdy

≤ K2Dil(AW0
)
|fn−1(W0)|

|U |

∫ ∫

∪Ui

‖Dh‖dxdy

≤ K1κ‖fn−2‖W0

Where K1,K2 > 0 only depend in mod(A) and κ can be taken arbitrarily small by
letting ε small enough; see Lemma 11.3. Thus if ε is small enough it follows that there
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is γ ∈ (0, 1) such that for all n,
∑

W level n

‖fn‖W ≤ γ
∑

W1 level n−2

‖fn−2‖W1
.

Thus ‖fn+1 − fn‖A = O(γn) so {fn} is a Cauchy sequence in W 1,2(A) and hence a
convergent one. This proves Lemma 11.2 considering that the fn converge uniformly to
some f , by Remark 11.1 and the quasi-affine property.
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