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Abstract. The earthquake flow and the Teichmüller horocycle flow
are flows on bundles over the Riemann moduli space of a surface, and
are similar in many respects to unipotent flows on homogeneous spaces
of Lie groups. In analogy with results of Margulis, Dani and others in
the homogeneous space setting, we prove strong nondivergence results
for these flows. This extends previous work of Veech. As corollaries
we obtain that every closed invariant set for the earthquake (resp. Te-
ichmüller horocycle) flow contains a minimal set, and that almost every
quadratic differential on a Teichmüller horocycle orbit has a uniquely
ergodic vertical foliation.
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1. Introduction

We consider two flows on noncompact moduli spaces associated with a
surface S: Thurston’s earthquake flow and the Teichmüller horocycle flow.
In recent years many parallels between the dynamics of these flows and
those of unipotent flows on homogeneous spaces of Lie groups have been
discovered. A fundamental series of results in the homogeneous space setting
originated with G. A. Margulis’ 1971 result that there are no divergent orbits
(i.e., orbits which eventually leave every compact subset of the space) for
a unipotent flow. This nondivergence result was improved substantially
in subsequent work of many authors, notably S. G. Dani, and has been
important in many applications.
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In this paper we prove analogous results in the geometric setting, extend-
ing earlier work of W. A. Veech. For three statements in the homogeneous
space setting (see below, Theorems U1, U2, U3) we obtain analogues for
the earthquake flow (Theorems E1, E2, E3) and the Teichmüller horocycle
flow (Theorems H1, H2, H3). These results are stated in §2. As a simple
special case of our results, we obtain:

There are no divergent orbits for the earthquake (resp., Te-
ichmüller horocycle) flow.

Even this statement, recently proved by Veech for the Teichmüller horo-
cycle flow, appears to be new for the earthquake flow.

In analogy with the developments in the homogeneous space setting fol-
lowing Margulis’ original result, the nondivergence results we obtain are
stronger in that they describe the relative amount of time that an orbit
spends within a compact set K in terms of the size of K. Take the third
statement for example. Theorem U3 (see §2 for a precise formulation),
proved in 1998 by D. Kleinbock and Margulis [KlMa], gives for any point
p in the space, any sufficiently large compact set K, and any T > 0, an
upper bound on the relative time, up to time T , that the orbit of p un-
der a unipotent flow spends in K. For various applications, it is important
that the bound can in some sense be made independent of p and T . Our
corresponding results are (see Theorems E3, H3):

There are constants C,α, depending only on S, such that for
every p in the flow-space, there is ρ > 0 such that for every
T > 0 and every 0 < ε < ρ we have:

|{t ∈ [0, T ] : φtp /∈ Kε}|
T

< C ·
(
ε

ρ

)α
,

where | · | denotes Lebesgue measure on R, φt denotes the
earthquake (resp., Teichmüller horocycle) map at time t, and
{Kε}ε>0 is a natural exhaustion of the flow-space by compact
sets.

Our results have applications of two kinds. The first concerns dynamical
properties of the earthquake flow and the Teichmüller horocycle flow. We
obtain the following (Corollaries 2.6 and 2.7):

• Any closed subset of the flow-space which is invariant under the
earthquake (resp. Teichmüller horocycle) flow contains a minimal
closed invariant subset. This subset is compact.

• Any locally finite invariant ergodic measure for the action of the
earthquake (resp. Teichmüller horocycle) flow is finite.

The second statement was proved previously by Veech in [Ve] for the
Teichmüller horocycle flow.

The second kind of application concerns the Teichmüller geodesic flow
and unique ergodicity of foliations. As in [KlMa] (and also implicitly in
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[KeMasSm]), it is possible to use nondivergence along certain paths (e.g.,
horocycles, orbits of the circle group, or polynomial curves) to obtain infor-
mation about the behavior of a typical geodesic near infinity. This makes
it possible to extend some previous results of Veech, Masur, and Kerckhoff–
Masur–Smillie. Thus we obtain (Corollary 2.8):

Let q be a quadratic differential, and let {hsq : s ∈ R} be
its Teichmüller horocycle orbit. Then for almost every s, the
vertical foliation associated to hsq is uniquely ergodic.

In the above result, ‘almost every s’ can be understood with respect to
either Lebesgue measure, or any measure on the real line satisfying a certain
decay condition similar to one introduced in [Ve].

To conclude this introduction, we briefly describe the relation of our
work to that of other authors. Many of the ideas used in our proofs for
the Teichmüller horocycle flow were introduced by Kerckhoff–Masur–Smillie
[KeMasSm] and developed further by Veech [Ve]. A nonessential difference
between these papers and our work is that they deal with the action of the
circle group SO(2,R), and use it to obtain information about horocycles,
while we work directly with horocycles. An essential difference is that, in
order to obtain our quantitative nondivergence results, we must avoid an
argument by contradiction and a passage to a limit used by previous au-
thors. This yields an effective proof, on which Theorem H3 and Corollary
2.8 depend.

For the earthquake flow, the questions considered here do not seem to have
been considered previously. In fact it appears that many rather obvious
questions regarding the dynamical properties of the earthquake flow (e.g.
description of invariant measures, ergodicity, etc.) await a systematic study.

Acknowledgements. We thank H. Masur for useful discussions and for his
interest in this project. F. Bonahon contributed the idea for the calculation
in the proof of Corollary 2.7.

1.1. Organization of the Paper. In §2 we describe the results, obtained
by Margulis, Dani, and others for homogeneous spaces, which motivate this
paper, and state our results. To give an idea of our arguments, in §3 we
have isolated a simple idea, which is a component of our proofs for both
the earthquake flows and Teichmüller horocycle flow, and appears in the
work of previous authors. We call this the “sparse cover argument”. Since
the preliminaries required for formulating and proving our results are rather
involved, they are deferred to a separate section, §4. In the hope of making
this paper understandable to those who are not experts in Teichmüller the-
ory, and given the lack of a suitable survey paper, we have tried in §4 to give
systematic definitions and pointers to the somewhat intimidating literature.
In §5 and §6 we prove the nondivergence results for the earthquake flow and
Teichmüller horocycle flow respectively. §7 is devoted to the proof of the
applications, and §8 to a result which demonstrates (in the case that S is
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a punctured torus or a quadruply punctured sphere) that while they share
many properties, the earthquake flow and Teichmüller horocycle flow are
quite different.

2. Strong nondivergence

A homogeneous space flow is given by a Lie group G, a closed subgroup
Γ, and a one–parameter subgroup U = {ut : t ∈ R}, where U acts on
the quotient G/Γ by u(gΓ) = (ug)Γ. For example, taking G = SL(2,R),
Γ = SL(2,Z), the flow-space G/Γ is the unit tangent bundle to the modular
surface and the flow is the geodesic flow when U is the diagonal group. It
is the horocycle flow when U is the group of upper triangular unipotent (all
eigenvalues 1) matrices.

2.1. A short history of the ‘Margulis Lemma’. A series of fundamental
theorems in the study of the dynamics of unipotent subgroups acting on
homogeneous spaces originated with the following result, proved by Margulis
[Ma1] in 1971:

Lemma 2.1 (Margulis). There are no divergent trajectories for the action
of a one–parameter unipotent subgroup on SL(n,R)/ SL(n,Z).

(A subgroup U ⊂ SL(n,R) is unipotent if every element u ∈ U is unipo-
tent).

The result, sometimes referred to as the ‘Margulis Lemma’,1 was con-
siderably strengthened in subsequent work of Margulis and many other au-
thors, notably Dani. We now give a brief survey of these developments,
which motivate this paper. In all of the results stated below, G = SL(n,R),
Γ = SL(n,Z) and {ut} is a unipotent one–parameter subgroup of G (the
results are actually valid in a more general setting). Letting | · | denote
Lebesgue measure on R, for K ⊂ G/Γ, x ∈ G/Γ and T > 0, we define

(1) AvgT,x(K) =
|{t ∈ [0, T ] : utx ∈ K}|

T
.

In the 1979 paper [Da1], Dani obtained the following strengthening of
Lemma 2.1, which shows not only that the orbit returns to a compact set
infinitely often, but that it returns along a set of times with positive lower
density:

Theorem 2.2. [Da1, Theorem 2.10] For any x ∈ G/Γ and any {ut}, there
is a compact subset K ⊂ G/Γ such that

lim inf
T→∞

AvgT,x(K) > 0.

In the same paper, Dani obtained the following corollary:

Corollary 2.3. [Da1, Theorem 0.1] Every locally finite {ut}-invariant, {ut}-
ergodic measure on G/Γ is finite.

1A wealth of other results by Margulis render this terminology somewhat ambiguous.
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In 1986 Dani obtained two results strengthening Theorem 2.2. The first
shows that for large enough K, the time averages can be made arbitrarily
close to one, and that K can be chosen uniformly for points in a compact:

Theorem U1. [Da3, Theorem 6.2] For any compact K ⊂ G/Γ and any
ε > 0 there is a (larger) compact K ′ ⊂ G/Γ such that for any x ∈ K,

lim inf
T→∞

AvgT,x(K
′) ≥ 1− ε.

The second shows that K can in fact be chosen uniformly for all points
in the space, outside of a natural class of potential counterexamples. Let us
say that an orbit {utx} is constant on a subspace if there is a proper linear
subspace W ⊂ Rn, defined over Q, such that t 7→ ‖utxpW ‖ is a constant

function. Here x ∈ G is a pre-image of x and pW ∈ ∧dimW Rn is a nontrivial
element in the one–dimensional subspace corresponding to W .

Theorem U2. [Da2, Theorem 3.1] For any ε > 0 there is a compact K ⊂
G/Γ such that for any x ∈ G/Γ, one of the following holds:

(1) lim inf
T→∞

AvgT,x(K) ≥ 1− ε.
(2) {utx} is constant on a subspace.

In [DaMa], Dani and Margulis deduced the following:

Corollary 2.4. Any closed {ut}-invariant set contains a minimal closed
{ut}-invariant set. Any minimal closed {ut}-invariant subset is compact.

In 1998, in the course of their work on Diophantine approximation on
manifolds, D. Kleinbock and Margulis obtained a quantitative version of
Theorem U1, relating AvgT,x(K) with the size of K. To state it, define for
every ε > 0,

Kε = {yΓ ∈ G/Γ : ∀v ∈ Zn − 0, ‖yv‖ ≥ ε}.
By Mahler’s compactness criterion, each Kε is compact, and each compact
K is contained in Kε for some ε.

Theorem U3. [KlMa, Theorem 5.3] There exists C > 0 such that for any
x ∈ G/Γ there exists ρ such that for any 0 < ε < ρ and any T > 0,

AvgT,x(Kε) ≥ 1− C
(
ε

ρ

)1/n2

.

It is essential for number–theoretic applications that the constants C and
1
n2 in the above statement do not depend on the point x.
See also the papers [Sh, EsMoSh, KlMa] for more work extending these

results in various directions and for various applications.

2.2. Strong nondivergence for earthquakes. We introduce only the no-
tation which will be required for stating our results, referring the reader to
§4 where the notation is re-introduced with more care and detail.

Let S be a surface, P̃ (resp. P̃1) the associated bundle (resp. moduli
space) of geodesic measured laminations over hyperbolic metrics, and π :



6 YAIR MINSKY AND BARAK WEISS

P̃ → P̃1 the quotient map. For every t ∈ R, Et : P̃1 → P̃1 denotes the
earthquake map at time t. Let ΓS be the equivalence classes of simple

closed curves and for each γ ∈ ΓS and p ∈ P̃ let `p,γ be the length of γ with
respect to π(p) and let `p,γ(t) be the length of γ with respect to the Etπ(p).
Averaging measures refer to averages along orbits of the earthquake flow
(that is, in (1), ut is replaced by Et).

For ε > 0 we let:

(2) Kε = π({p ∈ P̃1 : ∀γ ∈ ΓS , `p,γ ≥ ε}).
By a result of D. Mumford [Mu], Kε is compact, and each compact K ⊂ P1
is contained in Kε for some ε.

We prove the following:

Theorem E1. For any ε > 0 and any compact K ⊂ P1 there is a (larger)
compact K ′ ⊂ P1 such that for every p ∈ K and every T > 0 we have:

AvgT,p(K
′) ≥ 1− ε.

In order to state the next theorem, say that an earthquake orbit {Etp} is
constant on a subsurface if, fixing p ∈ π−1(p), there is an element γ ∈ ΓS

such that t 7→ `p,γ(t) is a constant function.

Theorem E2. For any ε > 0 there is a compact subset K ⊂ P1 such that
for any p ∈ P1, one of the following statements holds:

(1) lim inf
T→∞

AvgT,p(K) ≥ 1− ε.
(2) {Etp} is constant on a subsurface.

Theorem E3. There is C > 0 such that for every p ∈ P1 there is ρ > 0
such that for every T > 0 and every 0 < ε < ρ we have:

(3) AvgT,p(Kε) ≥ 1− Cε

ρ
.

2.3. Strong nondivergence for Teichmüller horocycles. Once again,
we introduce only the notation required for stating the results and refer the
reader to §4 for more details.

Let Q̃1 (resp. Q1) be the bundle (resp. moduli space) of unit area holo-

morphic quadratic differentials on S and let π : Q̃1 → Q1 be the quotient
map. Let ht : Q1 → Q1 denote the Teichmüller horocycle map at time t.
Averaging measures refer to averages along orbits of this flow (that is, in
(1), ut is replaced with ht).

For q ∈ Q̃1 let Lq be the set of saddle connections of q on S, and for
δ ∈ Lq, let lq,δ denote the length of δ in the flat metric corresponding to q
and let lq,δ(t) be the length of δ in the flat metric corresponding to htπ(q).

Define, for ε > 0,

Kε = π({q ∈ Q̃1 : ∀δ ∈ Lq, lq,δ ≥ ε}).
As before, this is a compact subset of Q1. Also, Q1 =

⋃
ε>0Kε.
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Caution: In this setting it is no longer true that every compact K ⊂ Q1

is contained in Kε for some ε. This accounts for the somewhat weaker
formulation of Theorem H1 below.

We prove the following:

Theorem H1. For any ε > 0 and any η > 0 there is η′ > 0 such that for
every q ∈ Kη and T > 0 we have:

Avgt,q(Kη′) ≥ 1− ε.
The special case of Theorem H1 in which Kη is replaced with a single

point was proved by Veech [Ve, Theorem 5.28].
We say that a Teichmüller horocycle {htq} is constant on a saddle con-

nection if, fixing q ∈ π−1(q), there is an element δ ∈ Lq such that t 7→ lq,δ(t)
is a constant function.

Theorem H2. For any ε > 0 there is a compact subset K ⊂ Q1 such that
for any q ∈ Q1, one of the following statements holds:

(1) lim inf
T→∞

AvgT,q(K) ≥ 1− ε.
(2) {htq} is constant on a saddle connection.

Theorem H3. There are constants C > 0, α > 0 such that for every q ∈ Q1

there is ρ > 0 such that for every T > 0 and every 0 < ε < ρ we have:

AvgT,q(Kε) ≥ 1− C ·
(
ε

ρ

)α
.

Remark 2.5. We obtain explicit bounds on the constants C,α appearing in
the statement of the theorem (see the remark following Theorem 6.3).

2.4. Applications. We now state some applications of our nondivergence
results. The first two are analogous to Corollaries 2.3 and 2.4:

Corollary 2.6. For both the earthquake flow and the Teichmüller horocycle
flow, any locally finite ergodic invariant measure is finite.

In the flow-space Q1, any locally finite invariant measure which is ergodic
for the action of SL(2,R) is finite.

(A measure is locally finite if it is finite on compact sets).
For the Teichmüller horocycle flow this was proved by Veech (see [Ve,

Theorem 0.4]).

Corollary 2.7. For both the earthquake flow and the Teichmüller horocycle
flow, any closed invariant set contains a minimal closed invariant subset.
Any minimal closed invariant set is compact.

Whereas Corollary 2.6 follows from our nondivergence results by an ar-
gument of Dani (which is included for the reader’s convenience), the proof
of Corollary 2.7 requires some additional geometric arguments.



8 YAIR MINSKY AND BARAK WEISS

Our results also yield information regarding the Teichmüller geodesic flow.

Recall that a quadratic differential q ∈ Q̃1 is said to be uniquely ergodic if
there is a unique (up to scaling) transverse invariant measure for the vertical
foliation defined by q. It was proved by Masur [Mas1] that almost every q ∈
Q1 is uniquely ergodic. A natural question is how the set of uniquely ergodic
points intersects lower–dimensional subsets ofQ1, for example submanifolds,
Cantor sets, etc. Instances of this general question have been considered in
a number of papers. The main result of [KeMasSm] is that for every q ∈ Q1

and almost every θ (with respect to Lebesgue measure on T), eiθq is uniquely
ergodic. The main result of [Ve] is that for a measure µ satisfying a certain
decay condition (see below), for every q ∈ Q1, and µ−almost every θ, eiθq
is uniquely ergodic. Our results yield similar conclusions, in which the orbit
of the circle group is replaced with an orbit for the Teichmüller horocycle
flow {hs : s ∈ R}:
Corollary 2.8. Let q ∈ Q1. For almost every s ∈ R, hsq is uniquely ergodic.

To state our results for general measures, we make some definitions. Let
B(x, r) denote the interval (x−r, x+r) ⊂ R, let µ be a Borel measure on R,
and let F : R+ → R+ be a continuous function. We say that µ is F -decaying
if for every x ∈ R, every r > 0 and every 0 < ε < 1 we have

(4) µ(B(x, εr)) ≤ F (ε)µ(B(x, r)).

Note that Lebesgue measure is F -decaying for F (x) = x. Another exam-
ple of an F -decaying measure is the standard measure on the middle–thirds

Cantor set, which is F -decaying with F (x) = Cx
log 2
log 3 . See [Ve, §2] for more

details.
We say that µ satisfies Veech’s decay condition if it is F -decaying for some

F satisfying limx→0 F (x) = 0.

Corollary 2.9. If µ is a measure on R which satisfies Veech’s decay condi-
tion, then for µ-almost every s, hsq is uniquely ergodic.

3. Good families and sparse covers

In order to explain our ideas, let us begin with a simple argument, which
we call the ‘Sparse Cover argument’, and which will be useful in the sequel.
It illustrates how a polynomial–like property of length functions gives a
quantitative estimate of the amount of time in which there is at least one
small length function.

Let F be a collection of continuous functions R → R+. For θ > 0, f ∈ F
and I ⊂ R an interval, we let

If,θ = {s ∈ I : f(s) < θ},
IF ,θ = {s ∈ I : ∃f ∈ F , f(s) < θ},

and
‖f‖I = sup

s∈I
f(s).
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Definition 3.1. Let C,α, ρ be positive constants. We say that F is (C,α, ρ)-
good if for every interval I ⊂ R and every f ∈ F we have, for 0 < ε < ρ,

(5)
|If,ε|
|I| ≤ C

(
ε

‖f‖I

)α

(where | · | denotes Lebesgue measure on R).
We say that F is (C,α)-good if it is (C,α, ρ)-good for every ρ.

ef,
I

rf,
I

r

e

f

Figure 1. A few functions from a good family. IF ,ε is thick-
ened on the x axis.

Definition 3.1 is motivated by work of Kleinbock and Margulis. An ex-
ample of a (C,α)-good collection is any collection of polynomials with a
uniform bound on the degree. See [KlMa, §3] for more details.

We are interested in estimating the measure of IF ,ε.

Proposition 3.2 (Sparse Cover). Let F and I be as above. Suppose that
there are positive C, α, ρ, M such that:

(1) F is (C,α, ρ)-good.
(2) For every f ∈ F , ‖f‖I ≥ ρ.
(3) For every s ∈ I,

#{f ∈ F : f(s) < ρ} ≤M.

Then for every 0 < ε < ρ,

(6)
|IF ,ε|
|I| ≤MC

(
ε

ρ

)α
.

Proof: Let

J =

∫

I
#{f ∈ F : f(s) < ρ}ds.
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The integrand in J is bounded above by M , and hence

(7) J ≤M |I|.
For any f ∈ F , write If,ρ as a countable union of disjoint intervals

⋃
V ∈V V .

For each V ∈ V we have by (5) that

|Vf,ε| ≤ C|V |
(
ε

ρ

)α

and hence

|If,ε| ≤ C|If,ρ|
(
ε

ρ

)α
.

Using continuity of each f ∈ F and assumption 3, we see that the set

{f ∈ F : If,ρ 6= ∅}
is countable, so the sum

∑
f∈F |If,ρ| is well–defined. Thus we obtain:

J =
∑

f∈F
|If,ρ|

≥
[
C

(
ε

ρ

)α]−1∑

f∈F
|If,ε|

≥
[
C

(
ε

ρ

)α]−1
|IF ,ε|.

(8)

where the last line follows from the fact that IF ,ε =
⋃
f∈F If,ε.

Combining (7) and (8) yields (6). ¤

3.1. Ideas for proving non-divergence. We explain our strategy for
proving our non-divergence results. By a result of Mumford, if a sequence
pn ∈ P1 (resp. qn ∈ Q1) leaves compact sets, then there are simple
closed curves γn (resp. saddle connections δn) such that `pn,γn → 0 (resp.
lqn,δn → 0). From this one sees that our non-divergence results would follow
if the conditions of Proposition 3.2 hold for the collection F of all length
functions `γ(t) (resp. lδ(t)).

For the hyperbolic length functions `p,γ(t) this turns out to be true. More
precisely, the verification that F is (C,α, ρ)-good for appropriate C,α, ρ is
the main result of §5. The remaining conditions are easily verified.

For the flat length functions lq,δ(t), the fact that F is good is easily
verified, but condition 3 does not hold, and the idea of the proof is to find
a subcollection F0 ⊂ F for which condition 3 does hold, and such that, for
a large set of t, if there is δ ∈ F for which lδ(t) is small then there is also
δ′ ∈ F0 for which lδ′(t) is small. Finding this subset F0 is the main result
of §6 (proof of Theorem 6.3).
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3.2. µ-good functions. We record a variant of Proposition 3.2 which will
be useful when dealing with measures satisfying a certain decay condition
(see §6.5). To this end, let ρ be a positive constant, let I ⊂ R be an interval,
let µ be a regular Borel measure on R, and let F : R+ → R+ be a continuous
function.

Definition 3.3. We say that F is (µ, F, ρ)-good on I if for every f ∈ F
and 0 < ε < ρ we have

µ(If,ε)

µ(If,ρ)
≤ F (ε/ρ).

The following more general form of Proposition 3.2 follows using the same
proof:

Proposition 3.4. Let F and I be as above. Suppose that there is a positive
M , and µ, F, ρ as above such that:

(1) F is (µ, F, ρ)-good on I.
(2) For every s ∈ I,

#{f ∈ F : f(s) < ρ} ≤M.

Then for any 0 < ε < ρ,

(9)
µ(IF ,ε)

µ(I)
≤MF (ε/ρ).

¤

4. The flow spaces

In this section we will give the necessary definitions for working with

the earthquake flow-space P̃1 and the Teichmüller flow-space Q̃1. Below we
let S be an orientable surface of genus g with n punctures, where χ(S) =
2− 2g − n < 0 so that S admits a hyperbolic structure.

Let Homeo+(S) denote the group of orientation-preserving homeomor-
phisms of S, Homeo0(S) its identity component, and let

Mod(S) = Homeo+(S)/Homeo0(S)

denote the mapping class group.
The Teichmüller space of S, denoted Teich(S), is the space of all finite-

area complete hyperbolic metrics (equivalently analytically finite complex
structures) on S, modulo the action of Homeo0(S). “Analytically finite”
means that punctures have neighborhoods holomorphically equivalent to a
disk minus a point. Another description is the set of all faithful represen-
tations π1(S) → PSL(2,R) with discrete image, such that loops around
punctures are mapped to parabolic elements, modulo conjugation of the
image in PSL(2,R). The image group is called a Fuchsian group, and the
quotient of H2 by its action yields an identification of S with a hyperbolic
surface. See e.g. [Ab] or [Gar] for details.
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The Riemann moduli space is Teich(S)/Mod(S), or in other words the
space of all hyperbolic (or complex) structures up to homeomorphisms.

4.1. Measured Laminations. Let σ be a complete hyperbolic metric on
S. A geodesic lamination λ on (S, σ) is a closed subset of S foliated by
geodesics. A measured lamination λ is a geodesic lamination together with
a Borel measure on every closed arc transverse to λ, so that this family of
measures is invariant under restriction and isotopy through transverse arcs.
We also assume that λ is the support of its measure – i.e. no arc crossing λ
has zero measure.

The measured laminations with compact support make up a space denoted
byML(S, σ), which has a natural topology coming from weak-* convergence
of the measures on transversals. Thurston introduced this space and proved
that it is homeomorphic to R6g−6+n. (For more about laminations, see
[CasBle], [Bon1], or [Bon2]).

Let ΓS be the set of free homotopy classes of unoriented simple closed
curves on S, and let us write R+Γ

S = R+ × ΓS . Given σ, R+Γ
S can be

identified with a subset of ML(S, σ), by associating to wγ ≡ (w, γ) the
lamination with support the geodesic representative of γ, and transverse
measure assigning mass w to every intersection point of an arc with the
geodesic. Thurston showed that this subset, which we call the simple lami-
nations, is dense in ML(S, σ).

There is an action of R+ on all of ML(S, σ), given by multiplying the
transverse measure by positive numbers. The quotient

PML(S, σ) = (ML(S, σ)− 0)/R+,

known as the projective measured lamination space, is homeomorphic to a
sphere.

If a different metric σ′ is used the space ML(S, σ′) is naturally home-
omorphic to ML(S, σ), via a map that restricts to the identity on R+Γ

S .
Thus it is justifiable to write ML(S) and PML(S), omitting the metric.

Length and intersection number: The length of λ ∈ ML(S, σ) is de-
fined by integrating over the support of λ the product of the transverse
measure and the arclength measure on the leaves. On simple laminations
wγ, this reduces to the σ-length of γ, multiplied by w. Denote this length
by `(λ, σ).

The geometric intersection number of two geodesics, which is just the
number of their transverse intersections, extends to a function i :ML(S)×
ML(S) → R, which is the total mass of the product of the transverse
measures.

Both i and ` are continuous. Both are homogeneous in their lamination
parameters, i.e. i(aλ, bµ) = abi(λ, µ), and `(cλ, σ) = c`(λ, σ). In particular
note that for each σ ∈ Teich(S), PML(S) can be identified with {λ ∈
ML(S) : `(λ, σ) = 1}.
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The lamination bundles: Let

P̃ = Teich(S)×ML(S)
and let P̃1 ⊂ P̃ be the subset of unit-length laminations, namely the set of
pairs (σ, λ) with `(λ, σ) = 1. We can make the identification

P̃1 = Teich(S)× PML(S)
by the above discussion. If p ∈ P̃ we denote its coordinates by σp and λp.

The mapping class group Mod(S) acts naturally on both metrics and

laminations. The action on P̃ is discrete, and we define P = P̃/Mod(S)

and P1 = P̃1/Mod(S). Let π : P̃1 → P1 be the quotient map.

4.2. The earthquake flow. Thurston introduced earthquakes in the late
70’s as a generalization of Dehn twists. Kerckhoff [Ker2] applied them to
prove the Nielsen realization conjecture. A very readable and general devel-
opment can be found in [Th]. We will give a simplified account suitable for
our purposes.

Let us first define an earthquake along a simple closed geodesic λ in a
hyperbolic surface (S, σ). Intuitively this is a change of hyperbolic structure
produced by cutting along λ, shifting the two sides a relative distance t along
λ, and re-gluing.

To keep track of the structure as a point in Teichmüller space, it is helpful
to first lift to the universal cover H2 of S, where π1(S) acts as a Fuchsian
group Gσ and λ lifts to an invariant discrete family of disjoint geodesics
Λ = ∪iλi, which are called the “fault lines”. Given t ∈ R, an earthquake
of measure t on this picture is a bijective (but not necessarily continuous)
map E : H2 → H2 whose restriction EX to each component X of H2 − Λ is
an orientation-preserving isometry, and such that, if X and Y are adjacent
components separated by λi, then EX and EY differ by a translation of t
along λi. That is, E−1X EY is a translation by |t| along λi, leftward as viewed
from X if t > 0 and rightward if t < 0. Note that the definition of “leftward”
depends on fixing an orientation of H2, and is invariant under interchange
of X and Y .

Λ and the number t determine E uniquely on H2−Λ up to post-composition
by isometries, and Λ is Gσ-invariant. One can verify from this that for each
g ∈ Gσ there is an isometry gt such that Eg = gtE on H2 − Λ, and the map
g 7→ gt is an isomorphism of Gσ to a new Fuchsian group Gt

σ. We write
Gt
σ = EGσE−1, which certainly holds on H2 − E(Λ), and can be made to

hold everywhere with an appropriately invariant definition of E on Λ. The
resulting representation π1(S)→ Gt

σ gives us a point of Teich(S), which we
denote by E(t, λ, σ).

We can generalize this to an earthquake along an arbitrary measured
lamination λ, as follows. First if we multiply λ by a weight m > 0 we can
define E(t,mλ, σ) = E(mt, λ, σ). Since R+Γ

S is dense in ML(S), we can
take a sequence miγi ∈ R+Γ

S converging to any λ ∈ ML(S). Kerckhoff
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Figure 2. An earthquake in the Poincaré disk

shows in [Ker2] that the corresponding structures E(mit, γi, σ) converge in
Teich(S), and the limit is independent of the sequence (Thurston in [Th]
gives a definition without a limiting step).

Now given a point p ∈ P̃1, we define

Et(p) = (E(t, λp, σp), λp).

It is not hard to see that Et preserves P̃1, and defines a flow. The action
of Et clearly commutes with Mod(S), and so we obtain a flow on P1, also
denoted Et.

For γ ∈ ML(S), let `p,γ(t) denote the length `(γ, σEt(p)). Kerckhoff
proved in [Ker2] that, if pi → p, then

(10) `pi,γ → `p,γ

uniformly on compact subsets of R. Kerckhoff further showed:

Proposition 4.1. For every p ∈ P̃1 and every γ ∈ ΓS, the function t 7→
`p,γ(t) is C

1 and convex.
If i(γ, λp) = 0 then `p,γ(t) is constant, and if i(γ, λp) > 0 then `p,γ is

proper, with derivative strictly increasing and given by

(11)
d

dt
`p,γ(t) =

∫

γt

cos(θy,t)dλ(y).

Here γt is the σEt(p)-geodesic representative of γ, and θy,t is the angle of
intersection between λp and γt at an intersection point y (note that the
support of the transverse measure of λ on γt is the set of intersection points).

In particular we note that for all t,

(12) −i(λp, γ) <
d

dt
`p,γ(t) < i(λp, γ).

Let us record here some well-known properties of P1:
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Proposition 4.2 (Mumford’s Compactness Criterion). [Mu] Let P ⊂ P̃1 be
given. Then π(P ) ⊂ P1 is precompact if and only if

inf{`p,γ : p ∈ P, γ ∈ ΓS} > 0.

Note, the standard version of this is that compact subsets of the moduli
space Teich(S)/Mod(S) correspond to lower bounds on lengths of geodesics;
this extends immediately to P1 because PML(S) is compact.

The following standard fact may be derived from the Collar Lemma (see
e.g. [Bu, Chapters 4–5]):

Proposition 4.3. For every ρ > 0 there exists M such that for every σ ∈
Teich(S),

(13) #{γ ∈ ΓS : `(γ, σ) ≤ ρ} ≤M.

For ρ sufficiently small, one may take M = 3g − 3 + n.

4.3. Quadratic differentials and measured foliations. A holomorphic
quadratic differential on S, for the purposes of this paper, is a singular
Euclidean metric with a foliation by straight lines, with singularities of cone
angle a multiple of π.

More precisely, following Kerckhoff-Masur-Smillie [KeMasSm] let Q =
Q(S) be the set of all atlases of charts q of the following type. Consider
first the case that S is closed. Away from a finite set Σ ⊂ S, every point
on S has a neighborhood with a chart to R2, so that transition maps are of
the form z 7→ ±z+ c. Thus the Euclidean metric and the set of lines of any
given slope in R2 are preserved by the transitions, and make sense on S−Σ
as well. The preimages of the horizontal and vertical lines in R2 are called
the horizontal and vertical foliations of q, respectively.

Around a singular point x ∈ Σ there is a neighborhood U and a k-fold
branched cover (k ≥ 3) from U to R2/± (branched over x and taking x to 0),
which when restricted to a small neighborhood in the complement of x, and
lifted back to R2, gives a chart compatible with the charts in the previous
paragraph. Thus the horizontal foliation has a k-pronged singularity at x,
and the metric in a neighborhood is inherited from k Euclidean halfplanes
glued cyclically together along rays.

If S has punctures let Ŝ be the compactification obtained by filling the
punctures, and require of q that it extend to Ŝ, so that a puncture has a
singular neighborhood as above, but with k ≥ 1 instead of k ≥ 3 (see Figure
3). We still denote by Σ(q) the set of singularities in S, not including the
punctures (but see Lemma 4.9 to see how to turn punctures into regular
singularities with a branched cover).

The horizontal and vertical foliations have natural transverse measures,
in which transverse arcs to one of them are assigned the length of their
projection to the other.
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Figure 3. k-pronged singularities for k = 1 and k = 3.

The natural action of Homeo+(S) gives us quotients

Q̃ = Q/Homeo0(S)(14)

Q = Q/Homeo+(S) = Q̃/Mod(S).(15)

Let |q| denote the total area of q, let Q1 = {q ∈ Q : |q| = 1}, let Q̃1 and

Q1 be the corresponding quotients, and let π : Q̃1 → Q1 be the projection.

There is a standard description of Q̃ as a bundle of holomorphic tensors
over the Teichmüller space, as follows. Identifying R2 with C we see that
the charts of any q ∈ Q give a complex structure on S. The tensor dz2 ≡
dz ⊗ dz on C pulls back via the charts to give a quadratic differential that
is holomorphic with respect to this structure. Its zero set is exactly Σ (the
order of a zero is 2 less than the number k of prongs), and it may have up
to first-order poles at the punctures (corresponding to k = 1). Taking the

quotient by the action of Homeo+(S), we obtain a projection Q̃ → Teich(S)
whose fibres are the spaces of holomorphic quadratic differentials at each

point. This description endows Q̃ with a natural bundle topology.
Convergence qi → q has the following properties: there is a sequence of

homeomorphisms fi : S → S isotopic to the identity, so that

• Singularities converge: The sets fi(Σ(qi)) converge, in the Hausdorff
topology, to Σ(q).

Furthermore, every singular horizontal leaf of q is a limit of fi-
images of singular horizontal leaves of qi.

• Flat structure converges: Any x /∈ Σ(q) has a neighborhood U ⊂
S − Σ(q) with q-chart h : U → C so that, for large enough i, there
are qi-charts hi for which hi ◦ f−1i ◦ h−1 converge in C∞ to a map
of the form z 7→ ±z + c.

These properties follow from the fact that in the universal cover H2 the

differentials are represented by holomorphic functions and convergence in Q̃
corresponds to convergence of these functions in the compact-open topology.
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4.4. The spaces are equivalent: Hubbard-Masur showed [HubMas] that

Q̃ can be expressed as a product

Q̃ = Teich(S)×MF(S),
whereMF(S) is Thurston’s space of measured foliations. This is the space
of all foliations on S with transverse measures and singularity structure as
described above, modulo the equivalence relation generated by Homeo0(S)
and “Whitehead moves”, which collapse together singularities joined by a

leaf, or do the inverse (see [FLP] or [Lev]). For any q ∈ Q̃, its projection
to theMF(S) factor is just the horizontal measured foliation defined by its
charts. The projection to the Teich(S) factor is just the bundle map defined
above.

Thurston showed that MF(S) is naturally identified with ML(S), by
“straightening” the leaves: each non-singular leaf of a measured foliation
(i.e. a leaf that does not meet Σ), lifted to the universal cover H2, meets the
circle at infinity in two points and so determines a geodesic joining those
two points. The closure of the union of these geodesics, projected back to S,
forms a geodesic lamination (see [Lev]). As with PML(S) we let PMF(S)
denote the projectivization.

Thus we obtain an identification of Q̃ with P̃. Since each fiber of Q̃1

over Teich(S) may be identified with PMF(S), and each fiber of P̃1 may be

identified with PML(S), we obtain an identification of Q̃1 with P̃1. These
identifications respect the Mod(S)-action, and hence give an identification
of P1 with Q1.

4.5. SL(2,R) action on Q̃1 and flows. Again following [KeMasSm], there

is a natural action on Q̃1 by SL(2,R): For any q ∈ Q̃1 and M ∈ SL(2,R),
replace each chart φ of q by M ◦ φ where M acts linearly on R2. This
preserves the compatibility condition. (In fact this action factors through
PSL(2,R) but this will not matter for us.)

Let U denote the unipotent subgroup of SL(2,R) represented by
{
ht =

(
1 t
0 1

)
: t ∈ R

}
.

The action of this group on Q̃1 is called the Teichmüller horocyclic flow.
The action of the subgroup

{
gl =

(
el/2 0

0 e−l/2

)
: l ∈ R

}
.

is the Teichmüller geodesic flow.

4.6. Action on paths and saddle connections. Let α be a path in S
(smooth in the differentiable structure of q). Because of the form of the
transition maps of q, the local projections of dα to the x and y axes in
charts are well-defined up to sign, and integrating them we obtain a vector,
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denoted (x(α,q), y(α,q)), well-defined up to a multiple of ±1. SL(2,R)
transforms these linearly, and in particular

(16)

(
x(α, ht(q))
y(α, ht(q))

)
= ±

(
x(α,q) + ty(α,q)

y(α,q)

)
.

A saddle connection with respect to q is a path δ : (0, 1) → S − Σ
whose image in any chart is a Euclidean straight line, and which extends
continuously to δ̄ : [0, 1] → Ŝ mapping the endpoints to singularities or
punctures. We will sometimes confuse the reader by writing δ (resp. δ̄)
for δ((0, 1)) (resp. δ̄([0, 1])). We say that two saddle connections δ1, δ2 are
disjoint if δ1(s1) 6= δ2(s2) for any s1, s2 ∈ (0, 1).

Let Lq denote all the saddle connections for q. Since linear maps do not
change the property of being a straight line, we may identify Lq with LMq

for any M ∈ SL(2,R).
For δ ∈ Lq let

l(δ,q) = max(|x(δ,q)|, |y(δ,q)|).
(Note it is more common to take Euclidean length, but this will be more
convenient for us). Now considering the horocyclic flow ht we define

lq,δ(t) ≡ l(δ, ht(q)).

When q is clear from the context we abbreviate lq,δ(t) by lδ(t) and we
sometimes write lq,δ for lq,δ(0). An immediate consequence of (16) is:

Lemma 4.4. For each q ∈ Q̃1 and each δ ∈ Lq, either lq,δ(t) is a constant
function of t or there are t0 and c > 0 such that

lq,δ(t) = max{c, c|t− t0|}.

t
0 t +

0
1

c

Figure 4. The (flat) length of a saddle connection along a horocycle.

From this it is easy to see that

Proposition 4.5. The collection

F = {lq,δ : q ∈ Q, δ ∈ Lq}
is (2, 1)-good.
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See figure 4. ¤

In analogy with Proposition 4.2, we have:

Proposition 4.6. Let Q ⊂ Q̃1 be such that

inf{lq,δ : q ∈ Q, δ ∈ Lq} > 0.

Then π(Q) ⊂ Q1 is compact.

Proof: See e.g. [KeMasSm, Prop. 1]. ¤

The direct analogue of Proposition 4.3 does not hold for flat lengths of
saddle connections. We will use the following weaker statements:

Proposition 4.7. There exists M (depending only on S) such that for all

q ∈ Q̃1, if δ1, . . . , δr ∈ Lq are disjoint then r ≤M .

Proof: See e.g. [KeMasSm, Lemma, pg. 302]. ¤

We will also require the following:

Proposition 4.8. For every ρ > 0 and every q ∈ Q̃1,

#{δ ∈ Lq : lq,δ ≤ ρ} <∞.
The proof is an easy consequence of compactness and the uniqueness of

saddle connections in a homotopy class. ¤

4.7. Punctures and branched covers. There is a simple reduction that
allows us to ignore the case of punctures in most of the arguments regarding
quadratic differentials.

If S has punctures, represented as a subset P of the compactified surface

Ŝ, suppose that β : S̃ → Ŝ is a finite-sheeted cover branched over P . Con-
formal structures and holomorphic quadratic differentials (viewed as charts)
naturally pull back via β. If q ∈ Q(S) has a k-pronged singularity at x ∈ P ,
then at a preimage branched b times, the pullback β∗q has a bk-pronged
singularity. In particular if b ≥ 3 then the preimage of a puncture is always
a zero of β∗q, even if the puncture is a pole (k = 1). With this in mind we
state:

Lemma 4.9. For any oriented closed surface Ŝ and nonempty finite set

P ⊂ Ŝ, if S = Ŝ − P is hyperbolic then there is a finite branched covering

β : S̃ → Ŝ, branched of degree at least 3 at each preimage of each point in
P , and unbranched elsewhere.

This covering induces a map β∗ : Q̃(S) → Q̃(S̃), which commutes with

the action of SL(2,R), and so that for each q ∈ Q̃(S) the set {lq,δ : δ ∈ Lq}
of length functions of saddle connections is the same as the corresponding
set {lβ∗q,δ′ : δ′ ∈ Lβ∗q}.
Proof: For any integer d > 1 and any nonempty finite subset Z of a

surfaceX whose cardinality |Z| is even, there is a connected coverXd,Z → X
of degree d so that each point of Z has a single preimage branched with
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degree d over it. (Make cuts along disjoint segments connecting pairs of
points in Z, take d copies and glue appropriately).

Thus, if |P | is even we take the cover Ŝ3,P → Ŝ.
If |P | is odd and greater than 1, fix one p0 ∈ P and let P ′ = P − {p0}.

In the cover R = Ŝ2,P ′ , the preimage P̃ of P has an even number of points,
one for each point in P ′ and two for p0. We therefore take the cover R

3,P̃
.

Finally if |P | = 1 then Ŝ cannot be a sphere since S is hyperbolic. Ŝ

therefore admits a double (unbranched) cover R and we form R
3,P̃

with P̃

the preimage of P .

In all cases call the final branched cover β : S̃ → Ŝ. Since, for any
q ∈ Q(S), every β-preimage of a puncture is a zero of β∗q, we obtain a

map β∗ : Q(S) → Q(S̃). The homotopy lifting property implies that any

homeomorphism Ŝ → Ŝ that is isotopic to the identity fixing P lifts to such

a map on S̃. Thus β∗ induces a map β∗ : Q̃(S)→ Q̃(S̃).
It is also clear that the map commutes with the SL(2,R) action, since this

action is by post-composition on charts, which commutes with pullback.
Finally, fixing q ∈ Q(S), any saddle connection in S (including those

terminating in punctures) clearly lifts to a union of saddle connections for
β∗q, each of the same length. Conversely, a saddle connection for β∗q
projects to a geodesic arc for q, which cannot have self-intersections since
it makes constant angle with the horizontal foliation, and thus is a saddle
connection. The statement about length functions follows. ¤

5. Nondivergence for earthquakes

5.1. Length Functions are good. Our proofs of theorems E1-E3 will be
based on the fact that, as a consequence of Kerckhoff’s theorem and a little
geometry, length functions along earthquake paths form a good family.

Proposition 5.1. There are c, ρ such that the family of length functions

F = {`p,γ(t) : p ∈ P̃1, γ ∈ ΓS}
is (c, 1, ρ)-good.

This proposition will follow from Lemma 5.2 below, which states that each
length function is a bounded distance from a function of the form c|t− t0|,
in an appropriately uniform way.

For p ∈ P̃1 and γ ∈ Γs, we let

µ = i(λp, γ).

If µ 6= 0 then `γ(t) ≡ `p,γ(t) is nonconstant, and by Kerckhoff’s convexity
theorem (Proposition 4.1), the minimum

(17) εγ = min
t∈R

`γ(t)
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is attained at a unique point tγ ∈ R, and for every ρ > 0,

J(ρ) = {t ∈ R : `γ(t) ≤ ρ}
is an interval.

With this notation we can state:

Lemma 5.2. There are constants ρ and C, depending only on S, such that

for any p ∈ P̃1, γ ∈ ΓS and all t ∈ J(ρ),
(18) µ|t− tγ | − Cεγ ≤ `p,γ(t) ≤ µ|t− tγ |+ εγ .

t
0

e
g

Figure 5. Lemma 5.2 shows that `p,γ is sandwiched between
two V-shaped functions.

Proof: Note first that the right-hand inequality in (18) follows immedi-
ately from Kerckhoff’s theorem (12) and the mean value theorem (see [St,
§4.3]). Thus it remains to prove the left-hand inequality.

By replacing p by Etγp we may (and will) assume that tγ = 0. If µ = 0
then `γ(t) = εγ for all t and there is nothing to prove. So we may assume
that µ > 0.

The rest of the lemma will follow from this claim:

Claim 5.3. There are constants C and ρ0, depending only on S, such that
whenever εγ ≤ ρ0 we have:

(19) 1− Cεγ ≤ `γ(±1/µ).
Proof that Claim 5.3 implies Lemma 5.2: Set ρ < min{ρ0, 1

1+C }.
By (19), the function `p,γ(t) is at least µ|t|−Cεγ for t = 0 and t = ±1/µ. If
it falls below µ|t|−Cεγ for t ∈ [−1/µ, 1/µ], then by the mean value theorem

| ddt`p,γ(t)| ≥ µ for some t, contradicting (12). Thus if J = J(ρ) is contained
in [−1/µ, 1/µ] we are done. Otherwise, since 0 ∈ J and J is an interval,
we obtain that either 1/µ ∈ J or −1/µ ∈ J . Applying (19) we get that
1− Cρ ≤ ρ, and this contradicts the assumption that ρ < 1

1+C . ¤

Proof of Claim 5.3: The idea is that, if εγ is sufficiently small then
at time tγ = 0 the leaves of λ are squeezed close together where they cross
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the geodesic representative of γ. Thus the ±1/µ-earthquake along λ can be
approximated by a single shift of size 1 along just one leaf, and an O(εγ)-
correction. We shall take some care in the proof in order to be sure that our
estimates are uniform. Some standard estimates used in the argument will
be deferred to §5.3.

For a number x the notation x = O(ε) means that there is C > 0, de-
pending only on S, such that |x| ≤ Cε. For a matrix G, G = O(ε) means
that ‖G‖ = O(ε), where we use the matrix norm ‖G‖ = supv 6=0 |Gv|/|v|.

Because of the density of simple laminations in ML(S), and the conver-
gence property (10) for length functions, there is no loss of generality in
assuming that λp is a simple closed curve.

We start with ρ0 = 1 (we will have to make ρ0 smaller later on). Abbre-
viate ε = εγ . So from now on we assume that |µt| = 1, and that ε ≤ 1.

As in §4.2, let Gσp be a Fuchsian group uniformizing the metric σp and

let λ̃ be the lift of λp to H2. Let E denote a t-earthquake map of H2 with

fault locus λ̃ (determined up to post-composition with isometries), and Gt
σp

the Fuchsian group EGσpE−1 uniformizing σEtp.
Let A ∈ Gσp be an element representing γ, so that its axis L projects to

the σp-geodesic representative of γ in S. If At = EAE−1 denotes the image
of A in Gt

σp
, then our length `γ(t) is the translation distance d(At) of At

along its axis.
Fixing the orientation on L which makes A a positive translation, let

{λi}i∈Z be the leaves of λ̃ which intersect L, ordered by the position of the

intersection points zi = λi ∩ L on L. Because λ̃ is Gσp-invariant, there is
some n ∈ N such that A(λi) = λi+n for all i. Let εi = dist(zi, zi+1). We
have ε =

∑n
i=1 εi.

Let Xi be the complementary component of λ̃ containing the interval
(zi, zi+1). Up to postcomposing E with a hyperbolic isometry, we may as-
sume that EX0

is the identity. With this normalization, At is given by the
Möbius transformation EXn ◦A.

By the definition of earthquakes, we can express EXn as a composition of
shifts along the λi,

(20) EXn = B1 ◦ · · · ◦Bn

where

Bi = E−1Xi−1
◦ EXi

is the hyperbolic translation with axis λi and translation distance 1/n =
|tµ|/n in the direction to the left of L.

Let
−→
λi denote the ray on λi with basepoint zi, pointing to the left of L.

Notice that Bi maps
−→
λi into itself. There is a unique isometry Gi mapping−→

λi onto
−−→
λi+1.

Normalizing so that z0 = i =
√
−1 ∈ H2, we have:
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Claim 5.4. For each i and k between 0 and n,

Gi = I +O(εi),

and

Bk
i = O(1).

In fact, we can express Gi as a composition Ci+1 ◦Ri ◦ C−1
i , where Ci is

a translation along L taking i to zi and Ri is a rotation around i of angle
θi+1 − θi. We have |θi+1 − θi| < εi because the leaves λi and λi+1 are
disjoint (see Proposition 5.7 in §5.3). Thus Ri = I + O(εi). The distance
from i to each of the zi is at most

∑
εi = ε ≤ 1, so Ci = O(1) and hence

Ci ◦ Ri ◦ Ci−1 = I + O(εi). Finally, Ci+1C
−1
i = I + O(εi) since it is a

translation along L of distance εi. This establishes the first part of the
claim.

To obtain the second part, express Bk
i as CiRiT

k
i C

−1
i , where Ti is a trans-

lation by distance 1/n along an axis passing through i. ¤

We have Bi+1 = GiBiG
−1
i . Therefore for any s and any i = 1, . . . , n − 1

we have

(21) BiB
s
i+1 = BiGiB

s
iG

−1
i = Bs+1

i [B−s
i , Gi],

where [a, b] denote the commutator aba−1b−1. Applying induction on n we
obtain:

(22) B1 · · ·Bn = Bn
1 ·

n−1∏

i=1

[Bi−n
i , Gi].

Using the bounds in Claim 5.4, we obtain that that for each i, [Bi−n
i , Gi] =

I +O(εi). Lemma 5.6 implies that

(23)
n−1∏

i=1

[Bi−n
i , Gi] = I +O(ε).

We conclude that At = Bn
1 (I + O(ε)). The translation distance of Bn

1 is
1, and Bn

1 is in a compact subset of SL(2,R) (since its axis runs through
z1). Thus, since translation distance is a differentiable function on SL(2,R)
we conclude that

`γ(t) = d(At) = 1 +O(ε),

completing the proof of Claim 5.3 and hence of Lemma 5.2. ¤

We can now complete the proof that length functions form a good family:
Proof of Proposition 5.1: Let ρ and C be as in Lemma 5.2, and let

εγ and µ be as above. Let c > 4(1 + C), and let I ⊂ R, f = `γ ∈ F and
0 < ε < ρ be given. Let If,ε = {t ∈ I : f(t) ≤ ε}. If If,ε = ∅ there is nothing
to prove, so we may assume that ε ≥ εγ and µ > 0.

Assume first that ε ≥ ‖f‖I/2. Then c
(

ε
‖f‖I

)
≥ 4 · 1/2 > 1 ≥ |If,ε|

|I| .
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Now suppose that ε < ‖f‖I/2. Let t0 ∈ If,ε. There is t ∈ If,ε such that

|t− t0| ≥ |If,ε|
2 . Hence, by the left hand side of (18):

(24) µ
|If,ε|
2

≤ µ|t− t0| ≤ f(t) + Cεγ ≤ f(t) + Cε ≤ ε(1 + C).

Also, by Proposition 4.1, f(t′) = ‖f‖I where t′ is one of the endpoints of I.
Therefore, using the right hand side of (18):

(25) |I| ≥ |t′ − t0| ≥
f(t′)− εγ

µ
≥ f(t′)− ε

µ
=
‖f‖I − ε

µ
≥ ‖f‖I

2µ
.

Now putting together equations (24) and (25) we obtain

|If,ε|
|I| <

cε

‖f‖I
.

¤

5.2. Proofs of the Theorems. Throughout this subsection, we let ρ, c > 0
be as in Proposition 5.1, M =M(ρ) be as in Proposition 4.3.

Now applying Propositions 3.2 and 5.1 we immediately obtain:

Theorem 5.5. Let ρ0 ∈ (0, ρ],p ∈ P̃1 and the interval I ⊂ R satisfy:

(26) for every γ ∈ ΓS , ‖`p,γ‖I ≥ ρ0.

Then for all 0 < ε′ < ρ0,

|{t ∈ I : Etp /∈ Kε′}|
|I| <

cMε′

ρ0
.

¤

Proof of Theorem E2: Let ε > 0 be given. Making ε smaller if neces-
sary, assume that ε′ = ερ

cM < ρ. Now let K = Kε′ . By Mumford’s compact-
ness criterion, K is a compact subset of P1.

Let p ∈ P1 and p ∈ π−1(p). Assume that the second alternative in
the statement of the theorem does not hold. Thus `p,γ(t) is a nonconstant
function of t for any γ ∈ ΓS .

Let

(27) Γ0 = {γ ∈ ΓS : `p,γ(0) < ρ}.
Γ0 is finite by Proposition 4.3. Each of the functions

{`p,γ(t) : γ ∈ Γ0}
is nonconstant by our assumption, and hence by Proposition 4.1, is proper.
Thus for t0 large enough we will have `p,γ(t0) ≥ ρ for all γ ∈ Γ0. Then it
follows that for all T ≥ t0, (26) is satisfied for I = [0, T ] and ρ0 = ρ, and
hence

(28) AvgT,p(K) ≥ 1− cMε′

ρ
= 1− ε.

¤
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Proof of Theorem E1: Given ε and K as in the statement of the
theorem, let

θ = inf{`p,γ : p ∈ π−1(K), γ ∈ ΓS}.
By Proposition 4.2, θ > 0. Let

ρ0 = min{ρ, θ}.
Let ε′ = ρ0ε

CM . By making ε′ smaller if necessary, assume that ε′ < ρ0. Now
define K ′ = Kε′ .

Since ρ0 ≤ θ, for γ ∈ ΓS and any p ∈ π−1(K) we have `p,γ(0) ≥ ρ0 and
hence (27) is satisfied for I = [0, T ] for any T > 0. Hence,

AvgT,p(K
′) ≥ 1− cMε′

ρ0
≥ 1− ε.

¤

Proof of Theorem E3: Let C = c(3g − 3 + n), where g is the genus
of S and n is the number of punctures. Given p, let ρ0 be small enough so
that:

• ρ0 ≤ ρ.
• M =M(ρ0) ≤ 3g − 3 + n (see Proposition 4.3).
• ρ0 ≤ infγ∈ΓS `p,γ .

Then for any T > 0, ε < ρ0, (26) is satisfied for I = [0, T ], and hence

AvgT,p(Kε) ≥ 1− cMε

ρ0
≥ 1− Cε

ρ0
.

¤

5.3. Auxilliary results. In this subsection we complete the proofs of two
estimates which were used in the proof of Lemma 5.2.

The first is the following matrix inequality.

Lemma 5.6. Let A1, . . . , An ∈Md(R) be matrices satisfying
∑ ‖Ai‖ < C1.

Then
n∏

i=1

(I +Ai) = I +O
(∑

‖Ai‖
)

where the implicit constant depends only on C1.

Proof. Let εi = ‖Ai‖ and
∑
εi < C1. Note first the inequality

∥∥∥∥∥

n∏

i=1

(I +Ai)− I
∥∥∥∥∥ ≤

n∏

i=1

(1 + εi)− 1

which comes from expanding both sides and applying the triangle inequality
and submultiplicativity of the matrix norm.

Next, we note that 1+x ≤ ex ≤ 1+C2x for x ∈ [0, C1], where C2 depends
on C1, and conclude that

∏
(1 + εi) ≤

∏
eεi = e

∑
εi ≤ 1 + C2

∑
εi.
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This establishes the desired inequality. ¤

The following lemma is a well-known basic fact in hyperbolic geometry.
See [CaEpGr, 5.2.6] for a similar statement.

Lemma 5.7. Let L be a geodesic in H2. For i = 1, 2, let zi be a point in
L, let λi be a geodesic intersecting L at zi, and let θi denote the (clockwise)
angle between L and λi at zi. Suppose λ1, λ2 are disjoint. Then

|θ1 − θ2| ≤ dist(z1, z2).

Proof: Assume without loss of generality that θ1 > θ2. Then we can
rotate λ1 counterclockwise around z1 until it is asymptotic to λ2 on one
side of L, and this only increases the left side of the inequality. Thus it
suffices to bound this case. The hyperbolic triangle with one ideal vertex
bounded by L, λ1 and λ2 has area π− (θ2+π− θ1) = θ1− θ2, by the Gauss-
Bonnet formula. It has one finite edge of length dist(z1, z2), and an explicit
computation shows that the area of a hyperbolic triangle with one side of
length c is at most c. ¤

6. Nondivergence for horocycles

6.1. Sets of disjoint saddle connections. Let us first give an indica-
tion of our argument for proving non-divergence results, which is essentially
an effective version of similar arguments in [KeMasSm] and [Ve]. As for
earthquakes, we will use the sparse cover argument described in §3. The
collection F of all length functions, with respect to the flat metric, is good
(Proposition 4.5) but another condition of Proposition 3.2 is not satisfied:
there is no uniform upper bound on the number of simultaneously short
saddle connections. In the case of hyperbolic length functions, there is such
an upper bound, as follows from the ‘Collar Lemma’ (see Proposition 4.3),
which implies that if γ ∈ ΓS is sufficiently short, then any γ ′ ∈ ΓS which
intersects γ must be long.

The replacement for this statement is a geometric lemma (Lemma 6.2)
due to [KeMasSm] and [Ve], which implies that if δ is a saddle connection
which is on the boundary of a subcomplex which is triangulated by short
saddle connections, then δ has the following isolation property:

If δ is short then any saddle connection which intersects δ is
long.

We are able to apply the sparse cover argument by selecting a subset F0 ⊂
F which consists of saddle connections which have the isolation property.

We proceed to the details. First let us introduce some notation which will
be used throughout this section. In the rest of the proof we will assume that
S is a closed surface, and return in §6.4 to discuss the case with punctures.

Let M be as in Proposition 4.7, let 1 ≤ r ≤M , and let q ∈ Q̃1. Define

Er = {E ⊂ Lq : E consists of r disjoint segments}.
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Define

lq,E(t) = max
δ∈E

lq,δ(t),

and

αr(t) = αq,r(t) = min
E∈Er

lq,E(t).

Note that the minimum in this definition is attained because of Proposi-
tion 4.8. We denote lq,δ ≡ lq,δ(0), lq,E ≡ lq,E(0), and αq,r = αq,r(0).

For E ∈ Er, define S(E) as the closure of the union of the simply connected
connected components of S −⋃δ∈E δ.

Proposition 6.1. There exists ρ0 > 0 (depending only on S) such that for

every q ∈ Q̃1, every r ∈ {1, . . . ,M} and every E ∈ Er, if S(E) = S then
lq,E ≥ ρ0. In particular αq,M ≥ ρ0.

Proof: This follows from a standard area argument. See e.g. [KeMasSm,
pg. 302, Lemma]. ¤

Lemma 6.2. Let q ∈ Q̃1, and r ∈ {1, . . . ,M − 1}. Suppose that E ∈ Er
such that lq,E < θ

3
√
2
and αr+1 ≥ θ for some θ, and suppose that δ is a

saddle connection on ∂S(E).

Then for any δ′ ∈ Lq such that δ 6= δ′ and δ ∩ δ′ 6= ∅ we have lq,δ′ ≥
√
2θ
3 .

This lemma follows from the arguments in [Ve, Corollary 4.19 and pre-
ceding discussion] or [KeMasSm, §3]. For the reader’s convenience, a proof
is included in §6.3.

6.2. Proofs of the Theorems. The following is the main result of this
section:

Theorem 6.3. There are positive constants C1, C2, α, ρ0, depending only

on S, such that if q ∈ Q̃1, an interval I ⊂ R, and 0 < ρ′ ≤ ρ0 satisfy:

(29) for any δ ∈ Lq, ‖lq,δ‖I ≥ ρ′,

then for any 0 < ε < C1ρ
′ we have:

(30) |{t ∈ I : α1(t) < ε}| ≤ C2

(
ε

ρ′

)α
|I|.

Remark: The proof we shall give yields the following explicit bounds
on the constants appearing in the statement of the theorem: one may take

α = 1
M−1 , C1 = (

√
2/9)

1
M−1 and C2 = 9

√
2M(M − 1).

First let us record a lemma, which follows from Lemma 4.4, and whose
proof is deferred to §6.3:
Lemma 6.4. Let f and f̃ be two functions of the form t 7→ max{c, c|t−t0|}.
Suppose that for some b > 0 and s ∈ R we have f(s) < b/3 and f̃(s) < b/3.

Then, possibly after exchanging f and f̃ , f(t) < b whenever f̃(t) < b/3.
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Proof of Theorem 6.3: Let M and ρ0 be as in Propositions 4.7 and 6.1,
and let α = 1

M−1 . Let q, I, ρ
′ satisfy (29), and let 0 < ε < C1ρ

′, where
C1 ≤ 1 is a constant to be chosen below. Let

Vε = {t ∈ I : α1(t) < ε}.
For k = 1, . . . ,M − 1, define

Lk = ε

(
ρ′

ε

) k−1
M−1

.

Note that L1 = ε, LM = ρ′, and the Lk’s increase by a constant multi-
plicative factor:

(31)
Lk
Lk+1

=

(
ε

ρ′

) 1
M−1

< C
1

M−1

1 .

For every t ∈ Vε let
r(t) = max{k : αk(t) < Lk}.

Since αM (t) ≥ ρ0 ≥ ρ′ = LM by Proposition 6.1, we have r(t) ≤M − 1 and

αr(t)(t) < Lr(t), αr(t)+1(t) ≥ Lr(t)+1.

Let
Vk = {t ∈ Vε : r(t) = k}.

Then Vε is the disjoint union of the measurable sets V1, . . . , VM−1 and thus
there is some r for which

(32) |Vr| ≥
|Vε|

M − 1
.

With this choice of r we can now define:

L = Lr, U = Lr+1

and

Definition 6.5. For δ ∈ Lq, let H(δ) be the set of t ∈ I for which

lq,δ(t) < L,

and whenever δ ∩ δ′ 6= ∅ for δ 6= δ′ ∈ Lq, we have

lq,δ′(t) ≥
U
√
2

3
.

In other words, H(δ) is the set of times when δ is “isolating”.
Define

F0 = {δ ∈ Lq : Vr ∩H(δ) 6= ∅},
the set of δ that are isolating at some point in Vr.

We will apply Proposition 3.2 (Sparse Cover), setting F , ε, ρ, C, α in the
statement of the proposition equal respectively to F0, L, U

√
2/9, 2 and 1. Let

us check that the hypotheses of the Proposition are satisfied. Hypotheses
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1 and 2 follow from Proposition 4.5 and (29). By making C1 small enough
and using (31), we can ensure that ε < ρ. Hypothesis 3 follows from:

Claim 6.6. For all t ∈ I,

#{δ ∈ F0 : lδ(t) ≤
U
√
2

9
} ≤M.

By making C1 smaller if necessary and using (31), assume that L ≤
U
√
2/9. Suppose t ∈ I and δ, δ′ ∈ F0 are such that lδ(t), lδ′(t) ≤ U

√
2

9 . By
Lemma 4.4 and Proposition 6.4, we obtain (possibly after exchanging δ and

δ′) that if lδ(s) <
U
√
2

9 then lδ′(s) <
U
√
2

3 . Since for s ∈ Vr ∩H(δ) (the last

set is nonempty by the definition of F0) we must have lδ(s) < L ≤ U
√
2

9 , we
get from the definition of H(δ) that δ ∩ δ′ = ∅. Since, by Proposition 4.7,
the number of disjoint elements of Lq is at most M , the claim follows.

From the Proposition and (31) we conclude:

(33)
|⋃δH(δ)|

|I| ≤ 2ML

U
√
2/9

< C2(ε/ρ
′)α

(where C2 = C2(M) is a constant).
The theorem now follows from (32), (33), and:

Claim 6.7.

Vr ⊂
⋃

δ∈Lq

H(δ).

Indeed, let t ∈ Vr. Making C1 small enough, in (31) we get that L <
U/3

√
2. There is E ∈ Er such that

lq,E(t) = αr(t) < L <
U

3
√
2
.

By Proposition 6.1, S(E) 6= S, so let δ ∈ E be on the boundary of S(E).
Then for any δ′ ∈ Lq, if δ 6= δ′ and δ ∩ δ′ 6= ∅ then, by Lemma 6.2 (with

θ = U), we have lq,δ′(t) ≥ U
√
2

3 . Thus t ∈ H(δ), proving the claim, and the
theorem. ¤

For the remainder of this section, let C1, C2, ρ, α be as in Theorem 6.3.

Proof of Theorem H3: Given q ∈ Q̃1, let ρ′ ≤ ρ0 be no larger than
min{lδ : δ ∈ Lq}. The minimum exists because of Proposition 4.8.

Now let ρ = C1ρ
′ and let T and 0 < ε < ρ be given. Applying Theorem

6.3 with I = [0, T ] we obtain:

|{t ∈ I : α1(t) < ε}| ≤ C2

(
ε

ρ′

)α
|I| = C

(
ε

ρ

)α
|I|.

From this the theorem follows. ¤
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Proof of Theorem H1: Given ε and η, let ρ′ = min{η, ρ0}. Let η′ < ρ′ be

small enough so that C2

(
η′

ρ′

)α
< ε. Then for any T > 0 and any q ∈ Kη,

(29) is satisfied for I = [0, T ], q ∈ π−1(q) and the theorem follows. ¤

Proof of Theorem H2: Given ε let ε′ be small enough so that

C2

(
ε′

ρ0

)α
< ε and ε′ < C1ρ0.

Let

K = π({q ∈ Q̃1 : lq,δ ≥ ε′, ∀δ ∈ Lq}).
K is compact by Proposition 4.6.

Let q ∈ Q̃1 and suppose the second alternative in the statement of the
theorem does not hold. The set

L0 = {δ ∈ Lq : lδ < ρ0}
is finite by Proposition 4.8. Since we are assuming that none of the functions
t 7→ lδ(t) are constant, they all diverge by Lemma 4.4. Thus there is some
T0 such that for all δ ∈ L0, lδ(T0) ≥ ρ0.

For any T ≥ T0 we can now apply Theorem 6.3 with I = [0, T ] and
ρ′ = ρ0, and obtain that

AvgT,q(Q1 −K) < ε.

From this the theorem follows. ¤

6.3. Auxilliary Results.

Proof of Lemma 6.2: The lemma is stated using lengths lq defined as the
maximum of horizontal and vertical components, but it is more convenient
to prove using the Euclidean length, which we denote Lq. Define α̂r as the
analogous quantity to αr, with Lq replacing lq. Since the two lengths are
related by:

1√
2
Lq ≤ lq ≤ Lq

it suffices to prove

(*) If Lq,E < θ/3 and α̂r+1 ≥ θ, and if δ is a saddle connection
on ∂S(E), then for any δ′ ∈ Lq such that δ 6= δ′ and

δ ∩ δ′ 6= ∅ we have Lq,δ′ ≥ 2θ
3 .

Let

D = {σ ∈ Lq : δ ∈ E =⇒ σ ∩ δ = ∅}.
Recall that E ∈ Er, so α̂r+1 ≥ θ implies that the length of any element of D
is at least θ.

For A ⊂ Lq we let A denote the closure of the union of saddle connections
in A (the closure just adds their endpoints). If Ω is a union of connected
components of S − E, we let Ω denote the completion of Ω in the path
metric – this adds a boundary ∂Ω, which is mapped to E by the continuous
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extension of the inclusion map of Ω. In particular any segment of E which
Ω meets on both sides is covered by two segments of ∂Ω.

Ω inherits the piecewise Euclidean metric of q from S, and any two adja-
cent segments of ∂Ω meet in a well-defined internal angle.

We first establish the following

Claim 6.8 ([Ve], Lemma 4.16). If Ω0 is a component of S−E, and at least
one internal angle of ∂Ω0 is less than π, then Ω0 ⊂ S(E).

Suppose δ1, δ2 ∈ ∂Ω0 have endpoints x1, z and z, x2 respectively, such
that the internal angle at z is less than π. Let η be the path which is the
concatentation of δ1 and δ2 and let η′ be the shortest representative of the
homotopy class, rel x1, x2, in Ω0, of η. Since η is not length minimizing,
η′ 6= η and the homotopy between them covers a disk Ω1 with nonempty
interior. Then η′ consists of saddle connections which are either on ∂Ω0 or
contained in Ω0, that is, the image η′′ of η′ in S consists of saddle connections
in D ∪E. Since the length of η′′ is less than 2θ

3 , we have η′′ ⊂ E, and hence
η′ ⊂ ∂Ω0. Thus ∂Ω1 ⊂ ∂Ω0, and hence Ω1 = Ω0. This makes Ω0 a disk, so
Ω0 ⊂ S(E) and we have proved the claim.

Now recall we have a saddle connection δ in ∂S(E) and δ′ 6= δ intersecting
δ. Thus δ′ cannot be contained in S(E). Let ω = [x1, x2] be a segment on
δ′ whose interior is outside S(E) and whose endpoints are either on ∂S(E)
or on saddle connections of q. For each xi that is not already a saddle, let
δi be the saddle connection in ∂S(E) containing it, and let σi be the shorter
of the two components of δi − {xi}. If xi is a saddle, let σi = xi. Let η be
the concatenation of σ1, ω and σ2.

If (*) is not true, then Lq,δ′(t) <
2θ
3 and hence the length of η is at most θ.

Let η′ be the shortest path homotopic to η rel endpoints within S − S(E).
Then its image η′′ in S consists of saddle connections in D ∪ E. Since its
total length is less than θ, all of the saddle connections must be in E.

The homotopy between η and η′ in S − S(E) must cover a disk Ω1 with
degree 1, and ∂Ω1 must map to E and ω. Thus, except possibly for the two
angles corresponding to the endpoints of ω, all internal angles of ∂Ω1 are
internal angles of S − S(E), and hence at least π, by Claim 6.8. However,
a disk with a piecewise Euclidean metric, geodesic boundary, interior cone
points with angle least 2π and only two internal boundary angles less than
π violates the Gauss-Bonnet theorem. This contradiction establishes the
lemma. ¤

Proof of Lemma 6.4: Let c, t0 (resp. c̃, t̃0) be the constants in the defini-

tion of f (resp. f̃). If either of f, f̃ is a constant function there is nothing

to prove. Exchanging f and f̃ if necessary, assume that 0 < c ≤ c̃. Since

f̃(t) < b/3 and f̃(s) < b/3 we have that c̃|t− t̃0| < b/3 and c̃|t̃0 − s| < b/3.
Dividing these inequalities by c̃ and adding yields
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|t− s| ≤ |t− t̃0|+ |t̃0 − s| <
2b

3c̃
.

Since f(s) < b/3 we have c < b/3. We consider separately the two cases
according as t0 is or is not between s and t. If t0 is between s and t then

c|t− t0| ≤ c̃|s− t| < 2b

3
.

If t0 is not between s and t then

c|t− t0| = c|s− t0|+ c|t− s| < f(s) +
2b

3
< b.

In either case we get that f(t) < b. ¤

6.4. The case with punctures. If S has punctures we may reduce to the
case of a closed surface by using the branched cover given by Lemma 4.9.
In particular the set of length functions of saddle connections is unaltered
by passage to the branched cover, so that the proofs in the cover imply the
same conclusions down in S.

6.5. Veech’s decay condition on measures. In this section we show that
the results of §6.2 can be generalized to averages with respect to measures
which satisfy Veech’s decay condition. The main observation we shall use is
that if a suitable interval is chosen, length functions for saddle connections
are good for any F -decaying measure.

For every function f : R → R+ and every θ > 0, let

Rf,θ = {t ∈ R : f(t) < θ}.
Proposition 6.9. Let

F = {lq,δ : q ∈ Q̃1, δ ∈ Lq}.
Let I ⊂ R be an interval and let ρ > 0 satisfy:

(34) Rf,ρ ∩ I 6= ∅ =⇒ Rf,ρ ⊂ I.

Then for any F -decaying measure µ, F is (µ, F, ρ)-good on I.

Proof: Given 0 < ε < ρ, if If,ε = ∅ there is nothing to prove. Otherwise,
we have from (34) that

If,ε = Rf,ε, If,ρ = Rf,ρ.

From Proposition 4.4 there are t0 ∈ I and r > 0 such that

If,ρ = B(t0, r), If,ε = B(t0,
ε

ρ
r).

Now using our assumption on µ we get that

µ(If,ε)

µ(If,ρ)
≤ F (ε/ρ).

¤
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Now repeating the proof of Theorem 6.3 (using Proposition 3.4 instead of
Proposition 3.2), we obtain:

Theorem 6.10. There are ρ0, C1, C2, α (depending only on S) such that for
every F -decaying measure µ the following holds.:

Suppose q ∈ Q̃1, an interval I ⊂ R, and 0 < ρ′ ≤ ρ0 satisfy:

(35) for any δ ∈ Lq, Rlδ ,ρ ∩ I 6= ∅ =⇒ Rlδ,ρ ⊂ I.

Then for any 0 < ε < C1ρ
′ we have:

(36)
µ({t ∈ I : α1(t) < ε})

µ(I)
≤ C2F

(
ε

ρ′

)α
.

¤

7. Finiteness, minimal sets and ergodicity

7.1. Ergodic measures are finite. In this section, unless otherwise in-
dicated, the proofs for the earthquake flow and the Teichmüller horocycle
flow are identical. For definiteness, all proofs are given for the Teichmüller
horocycle flow. The constants C1, C2, ρ0, α (resp. ρ, c) are as in Theorem
6.3 (resp. Proposition 5.1).

Recall the statement of the first corollary:

Corollary 2.6 For both the earthquake flow and the Teichmüller horocycle
flow, any locally finite ergodic invariant measure is finite.

In the flow-space Q1, any locally finite invariant measure which is ergodic
for the action of SL(2,R) is finite.

Proof of Corollary 2.6: The argument sketched below is due to Dani
[Da1], and is included for the reader’s convenience.

Let ν be an ergodic invariant measure, and let f : Q1 → R be a continuous
positive function such that

∫
Q1
fdν = 1 (one exists because the measure is

locally finite). By the Birkhoff ergodic theorem (see [Kr]), for a.e. q ∈ Q1

the limit

(37) f̄(q) = lim
T→∞

1

T

∫ T

0
f(htq)dt

exists, is in L1(Q1, ν), and is ht-invariant.
Let us show that if q is any point for which the limit in (37) exists, then

f̄(q) > 0. By Theorem H3 let K be a compact subset of Q1 such that for
all T > 0 we have AvgT,q(K) ≥ 1/2. Let

α = min
p∈K

f(p) > 0,

then it is clear that f̄(q) ≥ α/2.
Now the sets Qn

1 = {q ∈ Q1 : f̄(q) ≥ 1/n} are measurable, ht-invariant,
and exhaust Q1, therefore there is n for which ν(Qn

1 ) > 0. By ergodicity
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ν(Q1) = ν(Qn
1 ), and since f̄ ∈ L1 we get that ν(Q1) < ∞. This proves the

first assertion.
Let a locally–finite measure µ on Q1 which is invariant and ergodic for

the natural action of G = SL(2,R) be given. Let U denote the subgroup of
upper–triangular matrices. An elementary calculation (see e.g. [Ma2, §1])
shows that the inclusion U ⊂ G satisfies the Mautner property, i.e., for any
unitary representation of G, any vector which is fixed by U is fixed by G.
Considering the natural action of G on the Hilbert space L2(Q1, µ), this
implies that µ is already ergodic with respect to the Teichmüller horocycle
flow. Thus the last assertion follows from the preceding one. ¤

7.2. Minimal invariant sets. Recall the statement of the second corollary:

Corollary 2.7 For both the earthquake flow and the Teichmüller horocycle
flow, any closed invariant set contains a minimal closed invariant subset.
Any minimal closed invariant set is compact.

For the proof of Corollary 2.7 we will need the following:

Lemma 7.1. Suppose X0 is a closed invariant subset of Q1 such that

(38) inf{lq,δ : q ∈ π−1(X0), δ ∈ Lq, lq,δ(t) ≡ const} > 0.

Then X0 contains a minimal closed invariant set.

Proof: We claim that there is a compact K ⊂ Q1 which intersects the
trajectory {htq} for every q ∈ X0. Indeed, let ρ′ be a positive number
smaller than the infimum in (38) and ρ0. Let ε < C1ρ

′ be small enough so
that

C2

(
ε

ρ′

)α
< 1,

and let K = Kε. Now, given q ∈ X0 and arguing as in the proof of Theorem
H2 we can find T large enough so that the hypotheses of Theorem 6.3 will
be satisfied for I = [0, T ]. We obtain from (30) that Avgq,T (K) > 0 and our
claim follows.

We can now use Zorn’s lemma. We order the closed invariant subsets of
X0 by inclusion. For any totally ordered family {Xα} of closed invariant
subsets of X0, the finite intersections K ∩ Xα1 ∩ · · · ∩ Xαr are nonempty
since all trajectories meet K, hence by compactness

⋂
αXα 6= ∅. Then by

Zorn’s lemma there is a minimal closed invariant subset in X0. ¤

We will also use the following lemma. For a proof see [DaMa] and the
references therein.

Lemma 7.2. Let {Tt} be an action of R, by homeomorphisms, on a locally
compact space Z. Suppose there is a compact K ⊂ Z such that for every
z ∈ Z the subsets {t ≥ 0 : Ttz ∈ K} and {t ≤ 0 : Ttz ∈ K} are both
unbounded. Then Z is compact.
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Proof of Corollary 2.7: First let us prove that if a minimal set exists,
then it is compact. Let X be a minimal set. Using Lemma 7.2 it is enough
to show that for every q ∈ X, the positive and negative semi–orbits {htq :
t ≥ 0} and {htq : t ≤ 0} are both dense in X. Let X+(q) denote the
accumulation points of the positive semi–orbit of q; then X+(q) is a closed
invariant set, which is nonempty by Theorem H1. By minimality X+(q) =
X. The proof for the negative semi–orbit is similar.

Now to prove the existence of a minimal set, we must show that every
closed invariant subset X ⊂ Q1 contains a closed invariant subset X0 veri-
fying condition (38) of Lemma 7.1. We will separate this part of the proof
into two cases.

Verifying the condition for earthquakes. Let p ∈ X, let p ∈ π−1(p),
and let

L(p) = min{`p,γ : γ ∈ ΓS , `p,γ(t) ≡ const}.
By Proposition 4.3, L(p) > 0.

We will set X0 = {Etp : t ∈ R}, and argue that if p is suitably chosen
then L(p) is the infimum in (38) for X0 as well.

In order to do this we introduce the notion of extendability ε(λ) of a
geodesic lamination λ: ε(λ) is the largest number k such that there exists a
sequence of distinct geodesic laminations λ = λ0 ⊂ · · · ⊂ λk.

The complement of λ is an open surface which we can endow with the
path metric – in particular its inclusion in S is an injective immersion but
typically not an embedding. Its completionRλ in the path-metric is a surface
of finite area with geodesic boundary. The inclusion ι : S − λ→ S extends
to a map ῑ : Rλ → S which takes ∂Rλ onto the boundary leaves of λ – those
that are isolated on at least one side. (See Figure 6 for an example). We will
use the following facts, whose proof will appear at the end of the argument:

Claim 7.3. (1) ε(λ) is bounded above by a number depending only on
S.

(2) If λ ⊆ µ then ε(λ) ≥ ε(µ), with equality only if λ = µ.
(3) ε(λ) depends only on the complementary surface Rλ.

Now let p be chosen so that, for p ∈ π−1(p), ε(λp) is maximal in X (the
choice of p does not change ε), and let X0 be the closure of its orbit.

Fix any p∞ ∈ X0 and a sequence ti ∈ R such that pi ≡ Etip converges to

p∞. Choose lifts p∞ ∈ P̃1 of p∞ and pi ∈ P̃1 of pi so that pi → p∞.
By definition, the laminations λi ≡ λpi

converge to λ∞ ≡ λp∞ , in
PML(S). The metrics σi ≡ σpi

converge to σ∞ ≡ σp∞ in Teichmüller
space, and after suitable reparametrization we may assume they converge
pointwise. Possibly taking a subsequence, we may also assume that λi con-
verge to a lamination λH in the Hausdorff topology on closed subsets of S,
and λH contains the support of λ∞. Our goal now is to prove that λH = λ∞.
By part (2) of Claim 7.3 we already have ε(λH) ≤ ε(λ∞), and it suffices to
show that ε(λH) = ε(λ∞).
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Figure 6. An example of a minimal lamination λ and its
associated surface Rλ. Here χ(S) = −2, χ(Rλ) = −1 and
β = 2.

Let λ ≡ λp. Since all the pi are on a single earthquake path, there is
for each i an isometry ϕi : Rλ → Rλi , where Rλi is considered with the σi
metric. This map is obtained from the restriction of the earthquake map to
the complement of λ. Since σi → σ∞ in Teich(S) we may assume that the
metrics are converging pointwise. Letting ιi : S − λi → S be the inclusion
map, and using the definition of the Hausdorff topology, we find that the
maps ιi ◦ ϕi converge to an isometric immersion of int(Rλ) into S with the
σ∞ metric, whose image is the complement of λH . In other words RλH is
isometric to Rλ, and we conclude that ε(λH) = ε(λ) (by part (3) of Claim
7.3). Since ε(λ) is maximal by choice of p, we have ε(λH) ≥ ε(λ∞), and
hence the two are equal.

The condition that `p,γ is a constant function is equivalent to the condition
that γ does not intersect λp. Now since the support of λ∞ equals λH , any
curve γ disjoint from λ∞ is disjoint from λH , and hence eventually from λi.
It follows that `(γ) is already on our list of constant length functions, and
so L(p∞) = L(p), as desired.

This completes the proof for earthquakes, modulo the proof of the claim:

Proof of Claim 7.3: Part (2) of the claim is immediate from the definition.
Let us now consider the structure of Rλ (for details see [Bon1, Bon2],

[CasBle]). The area of Rλ is the same as that of S, namely −2πχ(S) by the
Gauss-Bonnet formula. The boundary components of Rλ are either closed
geodesics, or infinite geodesics. At each end of an infinite geodesic it is
asymptotic to the end of another (possibly the same) geodesic. The region
between two such asymptotic ends is called a “spike”. The Gauss-Bonnet
formula applied to Rλ gives a second expression for its area, −2πχ(Rλ)+πβ,
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where β = β(Rλ) is the number of spikes (or the number of infinite boundary
components). Equating these two expressions tells us that β is even.

The laminations µ containing λ are in one-to-one correspondence with
the laminations in Rλ containing the boundary, via the map ῑ : Rλ → S.
Thus part (3) of the claim follows immediately.

Finally to give the bound in part (1) we apply an argument suggested by
F. Bonahon.

Let ∂Rλ ⊂ µ1 ⊂ · · · ⊂ µn = µ be a maximal-length sequence of lamina-
tions in Rλ. We may assume Rµ is a union of ideal triangles, since otherwise
we may enlarge µ by adding isolated leaves in Rµ that are asymptotic to the
boundary.

A basic structure theorem about geodesic laminations (see [CaEpGr, Thm
4.2.8]) says that any geodesic lamination is a finite union of minimal lamina-
tions and isolated leaves which accumulate onto them. A minimal lamination
is either a simple closed curve, or an uncountable union of infinite leaves,
each of which is dense. Applying this to the lamination µ, we see that each
step of the sequence µi must involve the addition of either a minimal lam-
ination or an isolated leaf, and so our task is to bound the number of such
elements of µ.

Each isolated leaf of µ is the ῑ-image of two leaves of ∂Rµ – one from each
side. Similarly a minimal sublamination ν that is not a closed leaf has leaves
that are the images of at least two leaves of ∂Rµ. This is seen as follows:
β(Rν) is even, as observed before, so there are at least two infinite leaves in
∂Rν (if there were none then ν would be a closed leaf). A leaf of µ cannot
accumulate onto an infinite leaf l of ∂Rν from within Rν , since as soon as
it is sufficiently close it is forced to continue into one of the spikes of l, and
cannot return. Thus l is also a boundary leaf of Rµ.

This tells us that the number of isolated leaves and non-closed minimal
components is bounded by 1

2β(Rµ). Rµ is a union of N ideal triangles,
each of area π so N = −2χ(S), and clearly β(Rµ) = 3N . Thus the bound
becomes −3χ(S). (In fact it is −3χ(S)−β(Rλ), since each infinite boundary
leaf of Rλ is also a boundary leaf of Rµ.)

The number of simple closed curves in µ is bounded by −(3χ(Rλ) + κ)/2
by an Euler characteristic argument, where κ is the number of punctures of
Rλ. Putting these two bounds together (and noting that −χ(Rλ) is at most
−χ(S)) we have our bound on ε(λ). ¤

Verifying the condition for horocycles. We will prove the condition for
the case where S has no punctures. The general case reduces to this one,
again via Lemma 4.9.

For q ∈ Q̃1 and δ ∈ Lq we have that lq,δ ≡ const if and only if δ is
contained in a horizontal leaf for q. Let Ξq be the union of all horizontal
leaves of q that meet singularities, endowed with the path-metric restricted
from q. This is a graph with finitely many edges, some of which may be
infinite rays. It is injectively immersed in S.
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Ξq will play the same role that Rλ played in the case of earthquakes.
Indeed if λq is the geodesic lamination associated to the horizontal foliation
of q (as discussed in §4.4), then we can relate Rλq

to Ξq as follows: Lift Ξq

to Ξ̃q in the universal cover H2 of S, and let N denote an embedded regular
neighborhood of it. Each component of N is simply connected, and each
boundary component of N is an infinite path terminating at two distinct
points in S1, and hence is homotopic to a unique geodesic. Thus, the closure
of any component of N is properly isotopic to a subset of H2 with geodesic
boundary, and the union of these projects down to Rλq

in S (see Levitt [Lev]
for details).

Note in particular that Rλq
is homotopy-equivalent to Ξq, by a map that

takes boundary components of Rλq
to “boundary paths” of Ξq. A boundary

path is an immersed path in Ξq with these properties: whenever it traverses
a singularity it enters and exits along two adjacent prongs. The other prongs
are either always to the right of the path (fixing an orientation), or to the
left.

Define ε(q) to be ε(λq). By Claim 7.3, ε(q) depends only on Ξq.
Now choose q ∈ X so that ε(q) is maximal (where q ∈ π−1(q)), and let

X0 be the closure of {htq}. Let q∞ be a point of X0 and qi = htiq a sequence
coverging to q∞. Lift these to a convergent sequence qi → q∞.

We wish to prove that Ξq and Ξq∞ are isometric. Indeed, because the
Teichmüller horocyclic action leaves the horizontal direction invariant, Ξq is
isometric to Ξqi

for each i. Let ψi be this isometry. Let fi : S → S be the

comparison maps described in §4.3 in the discussion of convergence in Q̃. It
follows from that discussion that the maps fi ◦ ψi converge, possibly after
restriction to a subsequence, to a map ψ∞ : Ξq → Ξq∞ , which is a local
isometric embedding. In particular a point of Ξq with k ≥ 2 prongs (k = 2
applies to a non-singular point) must map to a point of Ξq∞ with at least k
prongs, and the images of the prongs are distinct.

We claim that ε(q∞) ≥ ε(q), with equality only if ψ∞ is an isometry.

To see this, lift to the universal cover. The map ψ∞ lifts to ψ̃∞ : Ξ̃q →
Ξ̃q∞ , which is a local isometry (but not necessarily globally injective). It
is surjective since every singular leaf of q∞ is a limit of images of singular

leaves in qi (§4.3). Every boundary leaf of Ξ̃q maps to some path in Ξ̃q∞ (not
necessarily a boundary path), and after the straightening step we obtain, in
the quotient surface, an embedding of Rλq

in Rλq∞
. We conclude ε(q∞) ≥

ε(q), by part (2) of Claim 7.3. By maximality of ε(q), we have ε(q) = ε(q∞).

Therefore every boundary leaf of Ξ̃q must in fact map to a boundary leaf

of Ξ̃q∞ . It follows that a k-pronged point must map to a k-pronged point
(if it mapped to point with k′ > k prongs then there would have to be two
adjacent prongs mapping to non-adjacent prongs, and the corresponding

boundary leaf would not map to a boundary leaf), so that ψ̃∞ is a covering

map. Since each component of Ξ̃q is simply connected, i.e. a tree, ψ̃∞ is
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a homeomorphism, hence an isometry, from each component to its image
component.

It remains to verify that ψ̃∞ cannot identify two different components of

Ξ̃q. Suppose otherwise, and let Ξ1,Ξ2 be two such components. Since each
component contains at least one singularity with k ≥ 3 prongs, let L1 be a
leaf of Ξ1 passing through a singularity v and let P1 be a half-leaf emanating
from v to one side of L1. Let L2, P2 be the leaves of Ξ2 identified to L1, P1
by ψ̃∞. Since ψ̃∞ is a limit of embeddings ψ̃i, for each i we find that ψ̃i(L1)

separates the disk into two components, and ψ̃i(L2) is eventually arbitrarily

close to ψ̃i(L1) on one side. Since the images are disjoint, the half-leaf

ψ̃i(P1) is on the other side. It follows that ψ̃i(P2) is separated from ψ̃i(P1)

by ψ̃i(L1), and hence they cannot have the same limit.

We conclude, since ψ̃∞ is surjective, it must in fact be a global isometry

of Ξ̃q to Ξ̃q∞ , and downstairs ψ∞ is an isometry.
Thus Ξq∞ and Ξq are isometric, and in particular their horizontal saddle

connections have the same lengths. This verifies condition (38). ¤

7.3. Unique Ergodicity. Recall that q ∈ Q1 is called minimal if there are
no proper closed subsets of Q1 which are union of leaves for the vertical
foliation of q. Let {gt : t ∈ R} denote the Teichmüller geodesic flow. An
orbit {gtq : t ≥ 0} is called divergent if for any compact K ⊂ Q1 there is t0
such that

t ≥ t0 =⇒ gtq /∈ K.
To prove Corollaries 2.8 and 2.9 we will follow Masur’s strategy of using

non–divergence results in conjunction with the following:

Proposition 7.4 (Masur [Mas1], [Mas2]). Suppose q ∈ Q1 is minimal and
not uniquely ergodic. Then {gtq : t ≥ 0} is divergent.

Recall the statement of the corollary:

Corollary 2.8 Let q ∈ Q1. For almost every s ∈ R, hsq is uniquely ergodic.

Proof of Corollary 2.8: Arguing by contradiction, we obtain the exis-
tence of q ∈ Q1 and a finite interval I ⊂ R such that

(39) η =
|{s ∈ I : hsq is not uniquely ergodic }|

|I| > 0.

Pick some s0 ∈ I and let

ρ′′ = min{lδ,q(s0) : δ ∈ Lq},
and

ρ′ = min{ρ′′, |I|ρ
′′

2
, ρ0}.
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Claim 7.5. For any δ ∈ Lq and any t ≥ 0 there is s ∈ I such that the
length of the horizontal component of δ in the flat metric corresponding to
gthsq is at least ρ′.

Suppose the coordinates of δ with respect to the flat metric corresponding
to q are (x, y). It follows from the discussion in §2.5 that the coordinates of
δ with respect to the flat metric corresponding to gthsq are:

(
et/2 0

0 e−t/2

)(
1 s
0 1

)(
x
y

)
=

(
et/2(x+ sy)

e−t/2y

)
.

Since et/2 ≥ 1 it suffices to find s ∈ I such that

|x+ sy| ≥ ρ′.

If y = 0 then lq,δ(s0) = x, and by the definitions of ρ′ and ρ′′ we have x ≥ ρ′.
If y 6= 0 and x+ s0y < ρ′ then by the definition of ρ′′ we must have |y| ≥ ρ′′.
In this case the function s 7→ |x+ sy| has slope ±y and thus for at least one
of the endpoints s of I we will have:

|x+ sy| ≥ |I|
2
|y| ≥ ρ′′|I|

2
≥ ρ′.

This proves the claim.

Now let ε > 0 be small enough so that

C2

(
ε

ρ′

)α
<
η

2
.

Let K = Kε. For any t0 > 0, let I ′ = {et0s : s ∈ I} and let q′ = gt0q.
Using Theorem 6.3 and Claim 7.5 we obtain that

(40)
|{s ∈ I : gt0hsq /∈ K}|

|I| =
|{s ∈ I ′ : hsq′ /∈ K}|

|I ′| ≤ η

2
.

Let

S0 = {s ∈ I : hsq is not minimal}.
Claim 7.6. S0 is countable.

Using (16), for any δ ∈ Lq which is not horizontal, there is at most one
s = s(δ) ∈ I such that δ is vertical with respect to hsq. Now let s0 ∈ S0,
and let σ ⊂ S be a segment which is in a horizontal leaf for q. Since the
vertical foliation of hs0q is not minimal, neither is the interval exchange
σ → σ given by the first return map along the vertical foliation of hs0q. It
then follows from a result of Keane [Kea] that there is a saddle connection
δ which is contained in the vertical foliation for hs0q, i.e., s0 = s(δ). Thus
the countability of S0 follows from that of Lq.

From the claim and Proposition 7.4 it follows that the measure of the set
of points in I whose forward trajectory under {gt} is divergent has measure
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at least η|I|. Since all divergent trajectories eventually leave K, there is t0
such that

|{s ∈ I : gt0hsq /∈ K}| ≥
2η

3
· |I|.

This contradicts (40). ¤

We now turn to

Corollary 2.9 If µ is a measure on R which satisfies Veech’s decay condi-
tion, then for µ-almost every s, hsq is uniquely ergodic.

Proof of Corollary 2.9: Again by contradiction, there is q ∈ Q1 and
an interval I = [b, c] for which (39) (with µ instead of | · |) holds. Construct
an interval J = [a, d] containing I by adjoining two intervals I1 = [a, b] and
I2 = [c, d] to I on both sides. Making η smaller if necessary, we obtain that

η =
µ({t ∈ I : htq is not uniquely ergodic})

µ(J)
> 0.

This implies that for any interval I ′ = [s1, s2], with si ∈ Ii, we have

µ({t ∈ I ′ : htq is not uniquely ergodic})
µ(I ′)

≥ η.

Picking some xi ∈ Ii, i = 1, 2 we let

ρ′′ = min{lδ,q(xi) : δ ∈ Lq, i = 1, 2},
and

ρ′ = min{ρ′′, |Ii|ρ
′′

2
, ρ0}.

Repeating the proof of Claim 7.5 for both I1 and I2 we obtain:
For i = 1, 2, any δ ∈ Lq and any t ≥ 0 there is s ∈ Ii such that the length

of the horizontal component of δ in the flat metric corresponding to gthsq is
at least ρ′.

Now choosing ρ̃ small enough so that

C2

(
ρ̃

ρ′

)α
< 1,

we obtain from Theorem 6.3 that for each t ≥ 0 and each i, there is si =
si(t) ∈ Ii such that for all δ ∈ Lq,

lgthsiq,δ ≥ ρ̃.

This implies that (35) is satisfied for I ′ = [s1, s2] instead of I and ρ̃ instead
of ρ.

Now suppose that µ is F -decaying for some function F with limx→0 F (x) =
0. Choosing ε small enough and using Theorem 6.10 we obtain

µ({s ∈ I : gths /∈ Kε})
µ(I)

≤ C2F

(
ε

ρ̃

)α
<
η

2
,

and arguing as before, arrive at a contradiction. ¤
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8. Comparing horocycles and earthquakes

In this section we compare, in the special case of one complex dimensional
Teichmüller spaces, the earthquake flow to the Teichmüller horocyclic flow.

Teich(S) has one complex dimension exactly when S is a torus with at
most one puncture, or a 4-punctured sphere. In this case Teich(S) can be
identified with the upper half-plane H2. The Teichmüller horocycle flow is
just the regular horocycle flow for H2. The Teichmüller metric is exactly
the hyperbolic metric.

An unpunctured torus admits no hyperbolic metric, so the earthquake
flow is not defined. The naturally corresponding definition using the Eu-
clidean metric works out to be identical to the horocyclic flow.

From now on we will assume that S is a once-punctured torus or 4-

punctured sphere. The identification of both P̃1 and Q̃1 with Teich(S) ×
PML(S) preserves asymptotic behavior with respect to Thurston’s com-
pactification Teich(S) = Teich(S) ∪ PML(S). That is, let π : Teich(S) ×
PML(S) → Teich(S) denote projection to the first factor and let p ∈ P̃1
and q ∈ Q̃1 be given by pairs (x, λ) and (y, λ), respectively. Then the pro-
jected orbits {π ◦ Etp} and {π ◦ htq} limit to λ in the compactification, as
t→ ±∞.

In spite of this, it turns out that the flows are quite different. We shall
prove:

Proposition 8.1. Let S be a once-punctured torus or a four-times punctured
sphere. For every point x ∈ Teich(S) and every irrational lamination λ ∈
PML(S), the projected flow lines {π ◦ ht(x, λ)} and {π ◦ Et(x, λ)} are an
infinite Hausdorff distance apart in H2.

We recall that the Hausdorff distance between two sets in a metric space
is the infimum of all δ for which each set is in a δ-neighborhood of the other,
or ∞ if there is no such δ.

A lamination λ is rational if and only if its support is a simple closed
curve. In the rational case both earthquake and horocyclic orbits project in
moduli space to homotopic closed curves, and hence are a finite Hausdorff
distance apart.

In this setting, both projected orbits are level sets of a length function.
The projection of the earthquake path π◦Et(x, λ) is exactly the set of points

(41) {z : `λ(z) = 1}.
The horocycle π ◦ ht(x, λ) is the set

(42) {z : eλ(z) = 1}
where eλ(z) denotes extremal length of the lamination λ in the conformal
structure of z. For a definition of Ahlfors-Beurling’s notion of extremal
length of curves see [Ah]. Kerckhoff [Ker1] generalized this to a continuous
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function on measured laminations (or foliations), analogous to, but quanti-
tatively quite different from, the hyperbolic length `. In particular if λ is
equivalent to the horizontal foliation of a holomorphic quadratic differential
q then eλ is equal to the area of q, and (42) follows.

A K-quasiconformal map distorts all extremal lengths by a factor of at
most K, and the definition of Teichmüller distance then implies:

(43) distTeich(S)(w, z) ≥ sup
λ∈ML(S)

1

2
log

eλ(z)

eλ(w)
.

(In fact Kerckhoff shows in [Ker1] that this inequality is an equality, but we
will not need this).

Our strategy will be based on the following estimate, showing that ex-
tremal length of λ grows without bound if the earthquake path is not con-
fined to a compact part of the moduli space.

Lemma 8.2. There exist constants c, ε0 such that, if γ is a simple closed
curve and the length function `γ(Et(x, λ)) reaches a minimum of ε < ε0 at
t = tγ, then

eλ(tγ) ≥
3

ε(c+ 2 log(1/ε))2
.

We then argue as follows. By a theorem of Hedlund [Hed] when λ is
irrational the horocycle h(x, λ) is dense in the moduli space, and in particular
unbounded. If E(x, λ) stays in a compact part of the moduli space then
automatically the Hausdorff distance between the two paths is infinite, and
we are done. Hence assume that E(x, λ) also leaves every compact part
of the moduli space, and so there are curves γ with `γ(Etγ (x, λ)) = ε for
arbitrarily small ε. Lemma 8.2 then implies that eλ is unbounded along the
earthquake path, whereas on the horocycle path it is constant, and hence
by (43) the Hausdorff distance is again infinite. ¤

It remains to establish Lemma 8.2:
Let γ be a simple closed curve on S, let tγ be the minimum point for

`γ(t) ≡ `γ(Et(x, λ)), and let ε = εγ be the minimum value of `γ(t).
Consider the hyperbolic metric corresponding to Etγ (x, λ). For intersec-

tion points y of γ with leaves of λ, the angles of intersection θy vary in an
interval of the form [θ − ε/2, θ + ε/2], by Lemma 5.7. Since tγ is a min-
imum point for `γ , Kerckhoff’s equation for the derivative of `γ gives us∫
γ cos(θy)dµ(y) = 0 where dµ is the transverse measure on γ induced by

λ. Integrating, it follows that cos(θ + ε/2) < 0 < cos(θ − ε/2) and hence
|θ − π/2| < ε/2. Thus each θy satisfies

(44)
∣∣∣θy −

π

2

∣∣∣ < ε.

We can use this to estimate `λ(tγ), as follows. There is a maximal collar Cγ

around the geodesic γ, of radius r satisfying

(45) r ≤ log
1

ε
+ c1



44 YAIR MINSKY AND BARAK WEISS

with a constant c1 independent of any of the data (see Buser [Bu, Chap
4] for a more precise version). Every component b of λ ∩ Cγ is a geodesic
segment connecting the boundaries of the collar and crossing its core γ at
one of the angles θy. Its length has a bound

(46) l(b) ≤ 2r + c2

following from the bound (44) on θy, and the hyperbolic sine law. (That

is, lifting to the universal cover, the segment of b̃ from its midpoint on γ̃

to a boundary component of C̃γ , together with the perpendicular dropped
down to γ̃ and a segment on γ̃, form a right triangle for which we have
sinh(l(b)/2)/ sin(π/2) = sinh(r)/ sin(θy).)

Each segment a of λ∩ (S−Cγ) has length bounded by a uniform c3, for ε
sufficiently small. This is because γ cuts S into one or two hyperbolic thrice-
punctured spheres, with ends that are cusps or of length ε, and a is a properly
embedded arc in the complement of the collars and cusp neighborhoods.
This is the only place where the fact that S is a once-punctured torus or
four-times-punctured sphere plays an essential role.

Putting these together we find that the length of λ is bounded by

(47) `λ ≤ i(λ, γ)

(
2 log

1

ε
+ c4

)

for a uniform c4. On the other hand since we are on the earthquake path
`λ = 1 and we conclude

(48) i(λ, γ) ≥ 1

2 log 1
ε + c4

.

A result of Maskit [Mskt, Corollary 2] implies that there exists ε′ > 0
such that, for any curve γ with length `γ < ε′ and any hyperbolic metric,

(49) eγ < `γ/3.

Let us now assume ε < ε′ so that eγ < ε/3 in our setting. It is also a
standard consequence of the definition of extremal length (see e.g. [Min])
that for any two measured laminations α, β and any surface,

(50) eαeβ ≥ i(α, β)2.

Thus we have

eλ ≥
i(λ, γ)2

eγ

≥ 3

ε(2 log 1
ε + c4)2

which establishes lemma 8.2. ¤
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