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Abstract. We show that a Kleinian surface group, or hyperbolic 3-
manifold with a cusp-preserving homotopy-equivalence to a surface, has
bounded geometry if and only if there is an upper bound on an asso-
ciated collection of coefficients that depend only on its end invariants.
Bounded geometry is a positive lower bound on the lengths of closed
geodesics. When the surface is a once-punctured torus, the coefficients
coincide with the continued fraction coefficients associated to the ending
laminations.
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1. Introduction

Let N be a hyperbolic 3-manifold homeomorphic to the interior of a com-
pact manifold. We say that N has bounded geometry if, outside the cusps of
N , there is a positive lower bound on injectivity radii. Equivalently, there
is a lower bound on the length of all closed geodesics in N .

The condition of bounded geometry is very helpful in understanding some
basic questions, such as classification by end invariants (Thurston’s Ending
Lamination Conjecture), and description of topological structure of the limit
set. For example, if N is homeomorphic to the interior of a manifold with
incompressible boundary and has no cusps, then bounded geometry provides
an explicit quasi-isometric model for N , which is known to imply that N is

Date: August 5, 2004.
Partially supported by NSF grant DMS-9971596.

1



2 YAIR N. MINSKY

uniquely determined by its end invariants, and gives a topological model for
the limit set of π1(N) acting on the Riemann sphere (see [43, 42] and Klar-
reich [32]; see also McMullen [36] for progress in the unbounded geometry
case). Bounded geometry also has implications for the spectral theory of a
hyperbolic 3-manifold and its L2-cohomology (Canary [13], Lott [33]).

The end invariants ofN are points in a certain parameter space associated
to each end, which describe the asymptotic geometry of N . Conjecturally,
N is determined uniquely by these invariants (see Thurston [50]). In this
paper we address the question of whether at least the condition of bounded
geometry can be detected from the end invariants, and our main theorem is
a first application of some tools that were developed with the full conjecture
in mind. As a corollary we will obtain a small extension of the setting in
which the conjecture itself can be established.

Let us restrict now to the case where N is homeomorphic to S×R, where
S is a surface of finite type. More specifically, we will describe our manifolds
as quotients of H3 by injective representations

ρ : π1(S)→ PSL2(C)

with discrete images, which are also type preserving, that is they map ele-
ments representing punctures of S to parabolics. Call such a representation
a (marked) Kleinian surface group. The theory of Ahlfors-Bers, Thurston
and Bonahon attaches to ρ two invariants (ν+, ν−) lying in a combination
of Teichmüller spaces and lamination spaces of S and its subsurfaces.

We will associate to the pair (ν+, ν−) a collection of positive integers
{dY (ν+, ν−)}, where Y runs over all isotopy classes of essential subsurfaces
in S (see Sections 2.2 and 2.6). These are analogues of the continued fraction
coefficients, considered in the setting where S is a once-punctured torus, in
[45]. We will establish:

Bounded Geometry Theorem Let ρ : π1(S)→ PSL2(C) be a Kleinian
surface group with no accidental parabolics, and end invariants (ν+, ν−).
Then ρ has bounded geometry if and only if the coefficients {πY (ν+, ν−)}
are bounded above.
Moreover, for any K > 0 there exists ε > 0, depending only on K and the

topological type of S, so that

sup
Y

dY (ν+, ν−) < K =⇒ inf
γ
`ρ(γ) > ε

where the infimum is over elements of π1(S) that are not externally short,
and the supremum is over essential subsurfaces for which dY (ν+, ν−) is de-
fined. Similarly given ε there exists K for which the implication is reversed.

As a corollary we obtain the following improvement of the main theorem
of [43]:

Corollary (Ending lamination theorem for bounded geometry) Let ρ1, ρ2 :
π1(S)→ PSL2(C) be two Kleinian surface groups where S is a closed surface.
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Suppose that ρ1, ρ2 have the same end invariants, and that ρ1 admits a lower
bound

inf
γ∈π1(S)

`ρ1
(γ) > 0. (∗)

Then ρ1 and ρ2 are conjugate in PSL2(C).

The main theorem of [43] gives this conclusion if both ρ1 and ρ2 are known
to satisfy the bound (∗). The Bounded Geometry theorem implies that (∗)
is equivalent to a condition depending only on the end invariants, which are
common to both representations. Thus the improvement closes a nagging
loophole in the earlier result. The condition that S be closed, rather than
finite type, is not essential, but an extension to the case with cusps would
require a reworking of [43].

The Bounded Geometry theorem gives us a richer class of manifolds
known to have bounded geometry. Previously, aside from geometrically fi-
nite manifolds for which bounded geometry is automatic, all examples came
from iteration of pseudo-Anosov or partial pseudo-Anosov mapping classes
acting on quasi-Fuchsian space or a Bers slice (see Thurston [48], McMullen
[38] and Brock [9]). The class of laminations satisfying the bound on projec-
tion coefficients is larger than this (in particular uncountable). Thurston’s
Double Limit Theorem [48] yields manifolds with these laminations as end
invariants, and our theorem guarantees that in fact they have bounded ge-
ometry.

In spite of this one should note that bounded geometry is a rare condi-
tion. In the boundary of a Bers slice, for example, there is a topologically
generic (dense Gδ) set of representations each of which has arbitrarily short
elements (see McMullen [37, Cor. 1.6], and Canary-Culler-Hersonsky-Shalen
[12] for generalizations). We hope that some of the techniques introduced in
this paper, when used more carefully, will yield information about general
geometrically infinite hyperbolic 3-manifolds as well.

Some remarks on the technical conditions of the theorem: The condition
of no accidental parabolics means that all cusps of N correspond to cusps
of S. Altough accidental parabolics can be allowed, the statement and the
proof become more awkward, and we prefer to defer this case to a later
paper.

The restriction of the second conclusion of the theorem to curves that
are not externally short rules out those curves that are already short in the
domain of discontinuity, if any (see §2.1). There are a bounded number of
such curves for any ρ, and we remark that at any rate they are detected by
the end invariants.

The theorem can be generalized in the standard ways to more complicated
manifolds, by considering their boundary subgroups. In the interests of
brevity we omit this discussion as well.
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Outline of the argument

See also the research announcement [40] for a more informal, and perhaps
more readable, account of the argument. See Section 2 for notation and
definitions.

One direction of the theorem,

inf
γ
`ρ(γ) > ε =⇒ sup

Y

dY (ν+, ν−) < K

for K depending only on ε and S and γ varying over the non-parabolic
elements of π1(S), has already been established in [46]. In fact a somewhat
stronger statement is proved, that for each individual subsurface Y a lower
bound on `ρ(∂Y ) implies an upper bound on dY (ν−, ν+).

We will discuss the proof of the opposite direction,

sup
Y

dY (ν+, ν−) < K =⇒ inf
γ
`ρ(γ) > ε

for ε depending only on K and S, with the infimum over γ that are not
externally short.

For each γ ∈ π1(S) which is not externally short, we will find a lower
bound on `ρ(γ) by finding an upper bound on the diameter of its Margulis
tube Tγ(ε0). The main idea of the proof involves an interplay between com-
binatorial structure on surfaces, namely elementary moves between pants
decompositions, and geometry of pleated surfaces, particularly homotopies
between them. The first of these is controlled by hyperbolicity of the com-
plex of curves and related results in [34, 35], and the second is controlled by
Thurston’s Uniform Injectivity Theorem [48] and its consequences.

We will construct a map H : S × [0, n] → Nρ, whose structure is deter-
mined by the end invariants ν±, and which has the following properties.

(1) H covers the Margulis tube Tγ(ε0) with degree 1.
(2) For each integer i ∈ [0, n], Hi = H|S×{i} is a pleated surface, map-

ping a pants decomposition Pi geodesically.
(3) Pi and Pi+1 are related by an elementary move, and the block

H|S×[i,i+1] has uniformly bounded tracks H({x} × [i, i+ 1]), except
in the special case that γ is a component of Pi or Pi+1.

(4) There is a uniform M , depending only on supY dY (ν+, ν−), so that
H is disjoint from Tγ(ε0) except on a segment S × [j, j +M ].

Clearly, except for the special case of property (3), these properties suffice
to bound the diameter of Tγ(ε0). If the special case occurs and γ is a
component of one of the Pi, then there is a solid torus in S × [0, n] that
is mapped over Tγ(ε0), and an additional argument must be given, using
the projection coefficient dγ(ν−, ν+) and a lemma on shearing (Section 6) to
bound the size of this solid torus.

The initial and final pants decompositions P0, Pn are chosen using the end
invariants; for example in the quasifuchsian case they are minimal-length
pants decompositions on the convex hull boundary, and in the degenerate



BOUNDED GEOMETRY FOR KLEINIAN GROUPS 5

case they are chosen sufficiently close to the ending laminations to guarantee
the covering property (1). We connect P0 to Pn with a special sequence
{Pi} called a resolution sequence, whose properties follow from the work in
Masur-Minsky [34], and are described in Section 5.

Property (3) is established in Section 4, where we make use of the conse-
quences of Thurston’s Uniform Injectivity theorem (discussed in §2.4).

Property (4) is established using a quasiconvexity property of the subset
of the complex of curves spanned by curves of bounded ρ-length (Section
3). This together with the fact that the resolution sequence {Pi} follows a
geodesic in the complex of curves serves to bound the part of the sequence
that can come near the Margulis tube of γ. The dependence of the bound
on supY dY (ν−, ν+) is one of the properties of the resolution sequence.

In addition to the notation and background material discussed in Section
2, some well-known and/or straightforward definitions and constructions in
hyperbolic geometry are also included in the appendix §8.

2. Preliminaries and notation

The following notation and constants will be used throughout the paper.

• S: a surface of genus g, with p punctures, admitting a finite-area
complete hyperbolic metric. (We may fix such a metric for reference,
but its choice is not important).

• D(S): The space of discrete, faithful representations of π1(S) into
PSL2(C) that are type-preserving, meaning that the image of any
element representing a puncture is parabolic. We call these “Kleinian
surface groups” for short.

• Dnp(S): The subset of D(S) consisting of representations without
accidental parabolics, meaning that only elements representing punc-
tures have parabolic images.

• Nρ: The quotient manifold H3/ρ(π1(S)) for a representation ρ ∈
D(S). Nρ is homeomorphic to S × R (Bonahon [6] and Thurston
[49]), and comes equipped with a homotopy equivalence S → Nρ

determined by ρ.
• l(α): The length of a curve or arc α. A subscript lσ usually denotes
a metric, or sometimes an ambient space as in lN .

• `(α): The minimum of l over the free homtopy class of a closed curve
α, or a homotopy class rel endpoints of an arc. Again a subscript
denotes an ambient metric or space, and in addition `ρ for ρ ∈ D(S)
denotes the length of the shortest representative of α in the manifold
Nρ, or equivalently the translation length of any isometry in the
conjugacy class determined by ρ(α).

• ε0: A Margulis constant for H2 and H3, chosen as in §2.5.
• ε1: A number in (0, ε0) satisfying the conditions in §2.5.
• L1: A number such that every hyperbolic structure on S admits a
pants decomposition of total length at most L1, and furthermore
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that for any geodesic α in S of length at least ε1 such a pants de-
composition exists that intersects α. See §2.6.

• K0: the bilipschitz constant in Sullivan’s theorem (§2.1).

2.1. End invariants and convex hulls. For additional discussions of end
invariants in the setting of this paper see [44, 46, 40], as well as Ohshika
[47] and of course Thurston [49] and Bonahon [6]. We will recall briefly
their relevant properties in the case of no accidental parabolics, i.e. when
ρ ∈ Dnp(S).

Let T (S) denote the Teichmüller space of S (see e.g. Abikoff [1] or Gar-
diner [19]). Let GL(S) denote the space of geodesic laminations on S and let
ML(S) be the space of measured geodesic laminations, i.e. geodesic lam-
inations equipped with transverse invariant measures of full support (see
Bonahon [5] or Casson-Bleiler [17]). On GL we have the topology of Haus-
dorff convergence of closed subsets of S, and on ML there is a topology
coming from weak-* convergence of the measures on transversals. We will
need the fact that if λi → λ inML then the supports of λi converge in GL,
after restriction to a subsequence, to a lamination containing the support of
λ.

Let UML(S) denote the “unmeasured laminations,” or the quotient space
of ML(S) by the equivalence relation that forgets measures. This is a non-
Hausdorff topological space, but it has a Hausdorff subset EL(S), which is
the image of the “filling” measured laminations: those laminations µ with
the property that µ intersects λ nontrivially for any λ ∈ ML(S) whose
support is not equal to the support of µ. (See Klarreich [31, §7] for a proof.
Note that [31] uses the equivalent language of measured foliations rather
than laminations).

The invariants ν+ and ν− for ρ ∈ Dnp(S) lie either in T (S) or in EL(S).
Let Qρ denote the union of standard cusp neighborhoods for the cusps of
Nρ, so that Nρ \ Qρ has two ends, which we call e+ and e−. (There is an
orientation convention for deciding which is which, that will not concern us
here).

Let C(Nρ) denote the convex hull of Nρ. If there is a neighborhood of the
end es (where s denotes + or −) that is disjoint from C(Nρ) we say es is
geometrically finite, and there is a boundary component ∂sC(Nρ) which is in
fact the image of a pleated surface S → N , that bounds a neighborhood of
es. In the compactification N̄ρ = H3∪Ωρ/ρ(π1(S)) (where Ωρ is the domain
of discontinuity in the Riemann sphere), there is a component isotopic to
∂sC(Nρ), which inherits a conformal structure from Ωρ. This conformal
structure, seen as a point in T (S), is νs.

The hyperbolic structure on ∂sC(Nρ) yields a point ν
′
s in T (S). A theorem

of Sullivan (proof in Epstein-Marden [18]) states that ν ′s and νs differ by a
uniformly bilipschitz distortion. Let K0 denote this bilipschitz constant.

If es is not geometrically finite it is geometrically infinite, and νs is a
lamination in EL(S), with the following properties:
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(1) There exists a sequence of simple closed curves αi in S, whose geo-
desic representatives α∗i in Nρ are eventually contained in any neigh-
borhood of es (we say “α∗i exit the end es”), and whose lengths are
bounded.

(2) For any sequence of simple closed curves βi whose geodesics β∗i exit
the end es, βi → νs in UML(S).

Externally short curves. Call a curve γ in S externally short, with respect
to a representation ρ, if it is either parabolic or if at least one of ν± is a
hyperbolic structure with respect to which γ has length less than ε0.

2.2. Complexes of arcs and curves: Let Z be a compact surface, pos-
sibly with boundary. If Z is not an annulus, define A0(Z) to be the set
of essential homotopy classes of simple closed curves or properly embedded
arcs in Z. Here “homotopy class” means free homotopy for closed curves,
and homotopy rel ∂Z for arcs. “Essential” means the homotopy class does
not contain the constant map or a map into the boundary.

If Z is an annulus, we make the same definition except that homotopy for
arcs is rel endpoints.

If Z is a non-annular surface with punctures as well as boundaries, we
make a similar definition, in which arcs are allowed to terminate in punc-
tures.

We can extend A0 to a simplicial complex A(Z) by letting a k-simplex be
any (k + 1)-tuple [v0, . . . , vk] with vi ∈ A0(Z) distinct and having pairwise
disjoint representatives.

Let Ai(Z) denote the i-skeleton of A(Z), and let C(Z) denote the sub-
complex spanned by vertices corresponding to simple closed curves. This
is the “complex of curves of Z”, originally introduced by Harvey [24] (see
Harer [22, 23] and Ivanov [26, 28, 30] for subsequent developments).

If we put a path metric on A(Z) making every simplex regular Euclidean
of sidelength 1, then it is clearly quasi-isometric to its 1-skeleton. It is also
quasi-isometric to C(Z) except in a few simple cases when C(Z) has no edges.
When Z has no boundaries or punctures, of course A(Z) = C(Z). Note that
if Z is a torus with one hole or a sphere with four holes then this definition
does not agree with the one we used in previous papers (e.g. [45, 46]) –
in particular C(Z) is 0-dimensional, whereas it was 1-dimensional before.
However the 0-skeletons are the same in both definitions, and the distance
function restricted from A(Z) agrees up to bilipschitz distortion with the
distance function of the earlier version.

Note that A0(S) can identified with a subset of the geodesic lamination
space GL(S). Let Y ⊂ S be a proper essential closed subsurface (all bound-
ary curves are homotopically nontrivial, and Y is not deformable into a
cusp). We have a “projection map”

πY : GL(S)→ A(Ŷ ) ∪ {∅}
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defined as follows: there is a unique cover of S corresponding to the inclusion
π1(Y ) ⊂ π1(S), to which we can append a boundary using the circle at

infinity of the universal cover of S to yield a surface Ŷ homeomorphic to
Y (take the quotient of the compactified hyperbolic plane minus the limit
set of π1(Y )). Any lamination λ ∈ GL(S) lifts to this cover. If this lift
has leaves that are either non-peripheral closed curves or essential arcs that

terminate in the boundary components or the cusps of Ŷ , these components

determine a simplex of A(Ŷ ) and we can take πY (λ) to be its barycenter.
If there are no such components then πY (λ) = ∅. Note that πY (λ) 6= ∅
whenever λ contains a leaf that is either a closed non-peripheral curve in Y ,
or intersects ∂Y essentially.

A version of this projection also appears in Ivanov [29, 27].
If β, γ ∈ GL(S) have non-empty projections πY , we denote their “Y -

distance” by:

dY (β, γ) ≡ dA(Ŷ )
(πY (β), πY (γ)).

Note that A(Ŷ ) can be identified naturally with A(Y ), except when Y is an
annulus, in which case the pointwise correspondence of the boundaries mat-
ters. In the annulus case dY measures relative twisting of arcs determined
rel endpoints, and in all other cases we ignore twisting on the boundary of

Ŷ . If α is the core curve of an annulus Y we will also write

dα = dY .

Note that, if Y is a three-holed sphere (pair of pants), A(Y ) is a finite
complex with diameter 1, and there is not much information to be had
from πY . We will usually exclude three-holed spheres when considering the
projection πY .

We make a final observation that one can bound dA(S)(β, γ), as well as
dY (β, γ) when defined, in terms of the number of intersections of β and γ
(although there is no bound in the opposite direction). See e.g. Hempel
[25].

Elementary moves on pants decompositions. An elementary move
on a maximal curve system P is a replacement of a component α of P
by α′, disjoint from the rest of P , so that α and α′ are in one of the two
configurations shown in Figure 1.

We indicate this by P → P ′ where P ′ = P \ {α} ∪ {α′} is the new curve
system. Note that there are infinitely many choices for α′, naturally indexed
by Z.

In Section 4 we will show how to relate these moves to controlled homo-
topies between pleated surfaces in Nρ. In Section 5 we will describe the
combinatorial aspects of connecting any two pants decompositions by an
efficient sequence of elementary moves.
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a’

a’

Figure 1. The two types of elementary moves.

2.3. Unmeasured laminations and the boundary of C(S). In addition
to being the space of ending laminations for ρ ∈ Dnp(S), EL(S) also has an
interpretation as the Gromov boundary ∂C(S) of the δ-hyperbolic space
C(S) (see e.g. [16, 21, 20, 2, 7] for material on δ-hyperbolicity).

In the following theorem note that C0(S) can be considered as a subset of
UML(S).

Theorem 2.1. (Klarreich [31]) There is a homeomorphism

k : ∂C(S)→ EL(S),
which is natural in the sense that a sequence {βi ∈ C0(S)} converges to
β ∈ ∂C(S) if and only if it converges to k(β) in UML(S).

2.4. Pleated surfaces and uniform injectivity. A pleated surface is a
map f : S → N together with a hyperbolic metric on S, written σf and
called the induced metric, and a σf -geodesic lamination λ on S, so that
the following holds: f is length-preserving on paths, maps leaves of λ to
geodesics, and is totally geodesic on the complement of λ. Pleated surfaces
were introduced by Thurston [49]. See Canary-Epstein-Green [15] for more
details.

The set of all pleated surfaces (in fact all maps S → Nρ) admits a standard
equivalence relation, in which f ∼ f ◦h if h is a homeomorphism of S isotopic
to the identity. Let us refer to this as equivalence up to isotopy.

If P is a curve or arc system, i.e. a simplex in A(S), let
pleatρ(P )

denote the set of pleated surfaces f : S → Nρ, in the homotopy class deter-
mined by ρ, which map representatives of P to geodesics. Thurston observed
that such maps always exist provided P has no closed component which is
parabolic in ρ. Let pleatρ denote the set of all pleated surfaces in the
homotopy class of ρ.
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Note, if P contains an arc terminating in punctures, the corresponding
leaf in the lamination will be infinite and properly embedded in S, its ends
exiting the cusps.

In particular, if P is a maximal curve system, or “pants decomposition”,
pleatρ(P ) consists of finitely many equivalence classes, all constructed as
follows: Extend P to a triangulation of S with one vertex on each component
of P (and a vertex in each puncture, if any) and “spin” this triangulation
around P , arriving at a lamination λ whose closed leaves are P and whose
other leaves spiral onto P , as in Figure 2, or go out the cusps.

Figure 2. The lamination obtained by spinning a triangu-
lation around a curve system. The picture shows one pair of
pants in a decomposition.

Uniform Injectivity

Thurston’s Uniform Injectivity theorem for pleated surfaces [48] has two
corollaries that we will use here. For further discussion and proofs see [41],
[46] and also Brock [8].

Bridge arcs. If α is a lamination in S, a bridge arc for α is an arc in
S with endpoints on α, which is not deformable rel endpoints into α. A
primitive bridge arc is a bridge arc whose interior is disjoint from α. If σ
is a hyperbolic metric on S and τ is a bridge arc for α, let [τ ] denote the
homotopy class of τ with endpoints fixed, and for a metric σ let `σ([τ ])
denote the length of the minimal representative of [τ ].

For a lamination µ and two maps g, g′ ∈ pleatρ(µ), we say that g and
g′ are homotopic relative to µ if there is a homotopy between them fixing
µ pointwise. Lemma 3.3 in [46] guarantees that we can always precompose
g′ by a homeomorphism isotopic to the identity to obtain a map that is
homotopic to g relative to µ.

Let PH3 denote the tangent line bundle over H3. For g ∈ pleatρ mapping
a lamination µ geodesically, and a bridge arc τ of µ, define dp(g(τ)) as
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follows: Lift g(τ) to an arc g̃(τ) in H3 connecting two leaves of the lift of
g(µ). The endpoints of g̃(τ) and the leaves on which they lie determine two
points in PH3, and we let dp(g(τ)) be their distance. In other words, dp is
small when the two leaves are both close together and nearly tangent.

The following strengthening of Thurston’s Uniform Injectivity theorem is
essentially Lemma 3.4 in [46], which follows from Lemma 2.3 in [41].

Lemma 2.2. (Short bridge arcs) Fix the surface S. Given δ1 > 0 there
exists δ0 ∈ (0, δ1) such that the following holds.
Let ρ ∈ D(S) and let g ∈ pleatρ, mapping a lamination µ geodesically.

Suppose that τ a bridge arc for µ which is either primitive, or contained in
the ε1-thick part of σg. Then

dp(g(τ)) ≤ δ0 =⇒ `σg([τ ]) ≤ δ1.

Moreover if g′ is another map in pleatρ(µ), chosen so it is homotopic to g
relative to µ, then

`σg([τ ]) ≤ δ0 =⇒ `σg′ ([τ ]) ≤ δ1.

The second statement follows from the first, since the short bridge arc in
σg connects two leaves that contain two segments that remain close to each
other for roughly | log δ0|, thus the same is true for their images by g (hence
by g′). We get a bound on dp(g

′(τ)) and up to revising the constants we
have the desired statement.

Efficiency of pleated surfaces. Thurston also used Uniform Injectivity
to establish an estimate relating lengths of curves in a pleated surface to
their lengths in the 3-manifold. In order to state it we need the alternation
number

a(λ, γ)

where λ is a lamination with finitely many leaves and γ is a simple closed
curve (more generally a measured lamination. This quantity, a sort of refined
intersection number, is defined carefully in Thurston [48] and Canary [14].
For our purposes we need only the following observations: a finite-leaved
lamination consists of finitely many closed leaves, and finitely many infinite
leaves whose ends spiral around the closed leaves. If γ crosses only infinite
leaves of λ, then a(λ, γ) is bounded by the number of intersection points
with λ.

The following statement is a slight generalization of the theorem proved
in [48, Thm 3.3]. Thurston sketches the argument for this generalization,
and it also follows from a relative version of the theorem proved in [46].

Theorem 2.3. (Efficiency of pleated surfaces) Given S and any ε > 0,
there is a constant C > 0 for which the following holds.
Let ρ ∈ D(S) and suppose g ∈ pleatρ maps geodesically a maximal finite-

leaved lamination λ Suppose γ is a measured geodesic lamination in (S, σg)
which does not intersect any closed curve of λ whose length is less than ε.
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Then

`ρ(γ) ≤ `σg(γ) ≤ `ρ(γ) + Ca(λ, γ). (2.1)

2.5. Margulis tubes. We shall denote by Tα(ε) the ε-Margulis tube in Nρ

for a closed curve α in hyperbolic manifold, that is the region where α can
be represented with length at most ε. We let ε0 be a Margulis constant for 2
and 3 dimensions, meaning that Tα(ε0) is always a solid torus neighborhood
of a closed geodesic, or a horoball neighborhood of a cusp, and any two such
tubes are disjoint. We also choose ε0 sufficiently small that, on a hyperbolic
surface, any simple closed geodesic is disjoint from any ε0-Margulis tube but
its own.

If ρ ∈ D(S) is fixed, we will usually use Tα to denote Tρ(α), where α is a
conjugacy class in π1(S).

The diameter of an ε-Margulis tube grows as the length of the core curve
shrinks (see Brooks-Matelski [10] and Meyerhoff [39]). We shall need to use
the following facts. First, if `ρ(α) < ε < ε0 then the diameter of Tα(ε0) is
at least c+log(ε0/ε) for a universal c. Second, the distance from Tα(ε/2) to
∂Tα(ε), if the former is non-empty, is uniformly bounded away from 0 and
∞.

Margulis tubes in surface groups. Thurston observed that a constant
ε1 exists, depending only on S, so that for any ρ ∈ D(S), if a pleated surface
g ∈ pleatρ meets Tα(ε1) it can only do so in its own ε0-Margulis tube. Thus
α (if it is a primitive element) must be homotopic to the core of this tube
in S, and in particular simple. Together with Bonahon’s tameness theorem
[6], which implies that every point in C(Nρ) is within a bounded distance of
a pleated surface, we have that ε1 can be chosen so that `ρ(α) < ε1 implies
that α is simple.

In the remainder of the paper, we fix ε1 so that it has these properties,
and in addition ε1 < ε0/K0, where K0 is the constant in Sullivan’s theorem
(see §2.1) relating ν± to ν ′±. This has the effect that a curve which is not
externally short has length at least ε1 in ν ′± as well as ν±.

2.6. The projection coefficients. Let us now see how to define the coef-
ficients

dY (ν+, ν−)

which appear in the main theorem, where ν± are end invariants for some
ρ ∈ Dnp(S), and Y is any essential subsurface of S.

Using πY as above, we can already define this whenever ν± are lamina-
tions. In the case of a geometrically finite end when ν+ or ν− are hyperbolic
metrics, we can extend this definition as follows:

A theorem of Bers (see [3, 4] and Buser [11]) says that a constant L1 exists,
depending only on the topological type of S, so that for any hyperbolic
metric on S there is a maximal curve system (a pants decomposition) with
total length bounded by L1. Moreover, L1 can be chosen so that, if α
is a geodesic of length at least ε1 (the constant defined in §2.5), a pants
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decomposition can be chosen with length bounded by L1, and intersecting
α essentially. Fix this constant for the remainder of the paper.

Now we define

short(σ)

to be the set of curve systems of S with total σ-length at most L1.
Thus e.g. if both ν+ and ν− are hyperbolic structures, we may consider

distances

dY (P+, P−)

for any P± ∈ short(ν±) that both intersect Y essentially, and notice that
the numbers obtained cannot vary by more than a uniformly bounded con-
stant (because two different curves in short(σ) have a bounded intersection
number). We let dY (ν+, ν−) be, say, the minimum over all choices. The
case when one of ν± is a lamination and the other is a hyperbolic metric is
handled similarly.

This defines dY (ν+, ν−) for all Y , with the exception of an annulus whose
core curve has length less than ε1 in one of ν+ or ν−, and a three-holed sphere
all of whose boundary curves have this property. The case of three-holed
spheres will not make any difference, since at any rate their curve complexes
are finite. The case of annuli will require a bit of attention at the end of the
proof of the main theorem.

3. Quasiconvexity of the bounded curve set

Let C(ρ, L) denote the subcomplex of C(S) spanned by the vertices with
ρ-length at most L. In this section we will show that this set has certain
quasiconvexity properties. Before stating them we will need to define a map

Πρ : A(S)→ P(C(ρ, L1))

where P(X) denotes the set of subsets of X. Given x ∈ A(S) let Px be the
curve/arc system associated to the smallest simplex containing x. We define

Πρ(x) =
⋃

f∈pleatρ(Px)

short(σf ).

For convenience we will often write Πρ(P ) where P is a curve/arc system.
In the following theorem, a setA in a geodesic metric space is b-quasiconvex

if every geodesic with endpoints in A is contained in the b-neighborhood of
A.

Theorem 3.1. (Quasiconvexity) For any ρ ∈ D(S) and L ≥ L1, C(ρ, L) is
B-quasiconvex, where B depends only on L and the topology of S.
Moreover, if β is a geodesic in C(S) with endpoints in C(ρ, L) then

dC(x,Πρ(x)) ≤ B

for each x ∈ β.
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This will follow from the Coarse Projection lemma below, together with
the hyperbolicity of C(S), via the argument in Lemma 3.3.

The coarse projection property

Lemma 3.2. (Coarse Projection) For any ρ ∈ D(S) the map Πρ satisfies
the following:

(1) (Coarse Lipschitz) If dA(x, y) ≤ 1 then

diamC(Πρ(x) ∪Πρ(y)) ≤ b.

(2) (Coarse idempotence) If x ∈ C(S, ρ, L1) then

dC(x,Πρ(x)) = 0

where b depends only on S.

Note that here distance between sets (as in property (2)) is the minimal
distance, whereas diamC controls maximal distances.

Proof. Property (2) (Coarse idempotence) is immediate from the definition,
since for any f ∈ pleatρ(x), x is realized in σf with its minimal length, and
so is included in short(σf ).

Note next that there exists B = B(L1) such that, for any hyperbolic
structure σ,

diamC(short(σ)) < B (3.1)

since there is a uniform bound on the intersection number of any two curves
of length at most L1 in the same metric on S.

Now to prove part (1), it clearly suffices to consider x, y ∈ A0(S). The
condition d(x, y) = 1 means x and y are disjoint, so x ∪ y is a curve/arc
system, and since

Πρ(x ∪ y) ⊂ Πρ(x) ∩Πρ(y),

the intersection is non-empty. Thus it will suffice to obtain a bound of the
form

diamC(Πρ(γ)) ≤ B (3.2)

for any curve/arc system γ. To do this we must compare the short curves in
any two different surfaces pleated along γ. Let f, g ∈ pleatρ(γ), and assume
(see discussion in §2.4) that they are homotopic relative to γ.

Suppose first that γ meets the (non-cuspidal) ε1-thin part of σf . Then its
f -image meets the ε1-thin part of Nρ, and hence so does its g-image (since
they agree). Let α be the core curve of this component of the thin part.
The length of α in σg must also be at most ε0 (by the choice of ε1 in §2.5),
and in particular

α ∈ short(σf ) ∩ short(σg).
Together with (3.1), this implies a bound on

diamC(short(σf ) ∪ short(σg)).
The bound (3.2) follows.
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Now suppose that γ stays in the ε1-thick part of σf , except possibly for
cusps (γ may contain an infinite leaf terminating in a cusp).

By the second part of Lemma 2.2 (Short bridge arcs), there exists an ε > 0
so that, if τ is a bridge arc for γ in the ε1-thick part of σf and whose σf -
length is at most ε, then τ is homotopic rel endpoints to an arc of σg-length
ε0.

Given this ε, we may construct a curve γε in the ε1-thin part of σf , whose
σf -length is at most a constant L2, and which is composed of at most two
arcs of γ and at most two primitive bridge arcs of length ε or less. (The
proof is a standard argument, which we sketch in Lemma 8.5).

The bridge arcs can be homotoped to have σg length at most ε0, and
hence γε can be realized in σg with length at most L2 +2ε0. In each surface
this bounds its C-distance from the curves of length L1, and together with
(3.1) we again obtain a bound on

diamC(short(σf ) ∪ short(σg)),
and the desired bound (3.2) follows. ¤

Proof of Quasiconvexity

The Quasiconvexity theorem follows from the Coarse Projection lemma
via the following standard argument, which has its roots in the proof of
Mostow’s rigidity theorem (the difference between this and the standard
argument is the need to consider two projections, to a geodesic and to the
candidate quasiconvex set, whereas the standard argument involves only
projection to a geodesic).

Lemma 3.3. Let X be a δ-hyperbolic geodesic metric space and Y ⊂ X a
subset admitting a map Π : X → Y which is coarse-Lipschitz and coarse-
idempotent. That is, there exists C > 0 such that

• If d(x, x′) ≤ 1 then d(Π(x),Π(x′)) ≤ C, and
• If y ∈ Y then d(y,Π(y)) ≤ C.

Then Y is quasi-convex, and furthermore if g is a geodesic in X whose
endpoints are within distance a of Y then

d(x,Π(x)) ≤ b

for some b = b(a, δ, C), and every x ∈ g.

Proof. The condition of δ-hyperbolicity for X implies that for any geodesic
g (finite or infinite) the closest-points projection πg : X → g is coarsely
contracting in this sense: If x ∈ X and r = d(x, g) then the ball Br(x) has
πg-image whose diameter is bounded by a constant b0 depending only on δ.
(This is an easy exercise in the definitions – see e.g. [21, 20, 2, 7]. Indeed
this condition for all geodesics g implies δ-hyperbolicity [35]).
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It follows that if p is a path in X outside an r-neighborhood of g then its
length l(p) satisfies

l(p) ≥ r − 1

b0
diam(πg(p)). (3.3)

Now suppose that g has endpoints within a of Y and choose r > a. Let J
be a segment of g whose endpoints are within r of two points x, y ∈ Y but
whose interior is outside the r-neighborhood of Y . Then applying Π to the
path from x to J , across J and back to y we have a path p in Y satisfying

l(p) ≤ C(2r + l(J) + 1)

by the coarse-Lipschitz property. Since πJ(x) and πJ(y) are the endpoints
of J and x and y are distance C from the endpoints of p (by coarse idem-
potence), we have diam(πJ(p)) ≥ l(J) − 2b0. Thus, together with (3.3) we
obtain

r − 1

b0
(l(J)− 2b0) ≤ l(p) ≤ C(2r + l(J) + 1).

Now if we fix r so that (r − 1)/b0 − C > 1, we obtain an upper bound

l(J) ≤ (2r + 1)(C + 1)− 3.

This bounds by b1 = 1
2((2r+1)(C +1)− 3)+ r the maximum distance from

a point in g to Y , and hence Y is quasi-convex.
Now let x ∈ g be any point. We have the bound d(x, Y ) ≤ b1. Let y ∈ Y

be a nearest point to x. We have d(y,Π(y)) ≤ C by coarse idempotence.
Now applying coarse Lipschitz to the path from y to x, whose length is at
most b1, we find that d(Π(x),Π(y)) is at most C(b1 + 1). Finally by the
triangle inequality we obtain a bound on d(x,Π(x)). ¤

To apply this lemma to our setting, we recall first that in [35] we proved
that C(S), and hence A(S), is δ-hyperbolic. Our map Πρ has images that
are subsets of C(S) rather than single points, but this can easily be remedied
by choosing any method at all to select a single point from each set Πρ(x).
Lemma 3.2 implies that the resulting map has the properties required in
Lemma 3.3. ¤

4. Elementary moves on pleated surfaces

In this section we will show how to realize an elementary move between
two pants decompositions P0 and P1 of S as a controlled homotopy be-
tween pleated surfaces in pleatρ(P0) and pleatρ(P1). Lemma 4.1 (Homo-
topy bound) will show that two surfaces that are “good” with respect to
a single pants decomposition admit a controlled homotopy. Lemma 4.2
(Halfway surfaces) shows that a pleated surface exists which is “good” for
both P0 and P1 simultaneously. Thus we can concatenate a controlled ho-
motopy from a surface in pleatρ(P0) to the halfway surface, with one from
the halfway surface to a surface in pleatρ(P1).
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We begin with some definitions. Let collar(γ, σ) denote the standard
collar for γ in the surface S with metric σ, as defined in Section 8. Similarly
define collar(P, σ) for a curve system P .

Good maps: If P is a curve system in S, we let

goodρ(P,C)

denote the set of pleated maps g : S → Nρ in the homotopy class determined
by ρ, such that

`σg(γ) ≤ `N (γ∗) + C

for all components γ of P . Note that

pleatρ(P ) ⊂ goodρ(P,C)

for any C ≥ 0.

Good homotopies: Let f, g ∈ pleatρ and let P be a curve system. We
say that f and g admit a K-good homotopy with respect to P if there exists
a homotopy H : S × [0, 1]→ Nρ such that the following holds:

(1) H0 ∼ f and H1 ∼ g up to isotopy (§2.4).
(2) Denoting by σi the induced metric by Hi for i = 0, 1,

collar(P, σ0) = collar(P, σ1).

We henceforth omit the metric when referring to these collars.
(3) The metrics σ0 and σ1 are locally K-bilipschitz outside collar(P ).
(4) Let P0 denote the subset of P consisting of curves γ with `ρ(γ) < ε0.

The tracks H(p × [0, 1]) are bounded in length by K when p /∈
collar(P0).

(5) For each α ∈ P0, the image H(collar(α) × [0, 1]) is contained in a
K-neighborhood of the Margulis tube Tα(ε0).

The homotopy bound lemma

Lemma 4.1. (Homotopy bound) Given C there exists K so that for any
ρ ∈ Dnp(S) and maximal curve system P , if

f, g ∈ goodρ(P,C)

then f and g admit a K-good homotopy with respect to P .

Proof. Let us first give the proof in the case that S is a closed surface. At
the end we will remark on the changes necessary to allow cusps.

Since the σf and σg lengths of the components of P differ by at most
an additive constant C, Lemma 8.2 (applied to each component of S \ P )
gives us a homeomorphism h : S → S isotopic to the identity, which takes
collar(P, σf ) to collar(P, σg) and is locally K-bilipschitz in its complement,
with K depending only on C. Moreover arclengths on ∂ collar(P, σf ) are
additively distorted in a bounded way: if α ⊂ ∂ collar(P, σf ) is any arc
then |lσf (α)− lσg(h(α))| ≤ K. After replacing g with g ◦ h, we may assume
collar(P, σf ) = collar(P, σg) (and henceforth denote it just collar(P )), and
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that σf and σg are locally K-bilipschitz off collar(P ), and have bounded
additive length distortion on ∂ collar(P ).

Now let H : S × [0, 1] → Nρ be the homotopy between f and g whose
tracks H|{x}×[0,1] are geodesics parameterized at constant speed. (H exists
and is unique as a consequence of negative curvature and the fact that π1(S)
is non-elementary, see e.g. [41]).

We will bound the tracks of H on succesively larger parts of the surface.

Let Y denote a component of S \P , and let Y0 = Y \int(collar(∂Y )). We
first remark that, in either σf or σg, the length of any boundary component
γ of Y0 is at most 2 more than its corresponding geodesic in S, by (8.1), and
this in turn is bounded by the assumption that f, g ∈ goodρ(P,C). Thus
we have

lσ(γ) ≤ `ρ(γ) + C + 2 (4.1)

for σ = σf or σg.

Bounds on the tripods. Let ∆ be an essential tripod in Y0 with legs of
σf -length bounded by δ, as given by Lemma 8.1 in the Appendix. Adding
arcs in collar(∂), we may enlarge ∆ to an essential tripod ∆′ whose legs
terminate on ∂Y (or its cusps in the general case). Let X be a component of

the preimage of ∆ in the universal cover S̃, and let X ′ be the corresponding
lift of ∆′. Lift H to H̃ : S̃ × [0, 1]→ H3.

We claim there is a uniform bound on the lengths of the tracks H̃({x} ×
[0, 1]) for x ∈ X.

The image H̃(X ′×{0}) connects three lifts of boundary curves of Y , call

them L1, L2 and L3, and H̃(X ′ × {1}) connects the same three geodesics.
(See Figure 3).

Define neighborhoods Ni of Li as follows: If the boundary component
corresponding to Li has length less than ε1/2, let Ni be the lift of the corre-
sponding ε0-Margulis tube in Nρ. Otherwise let Ni be a 1-neighborhood of
Li. Since the boundary lengths of collar(∂Y ) are bounded via (4.1), Lemma
8.4 tells us that the collars map into uniformly bounded neighborhoods of
either the corresponding geodesics or their ε0-Margulis tubes if they are

short. Since we have a uniform diameter bound d0 = 2Kδ on H̃(X × {0})
and H̃(X × {1}), we find that

H̃(X × {i}) ⊂ Nd1
(N1) ∩Nd1

(N2) ∩Nd1
(N3) (4.2)

for i = 0, 1, with a uniform d1. Here Nr denotes an r-neighborhood in H3.
The idea now is that, by virtue of discreteness, the triple intersection of

the Nd1
(Ni) cannot have very large diameter.

If one of the Ni corresponds to a boundary component of Y of length less
than ε1/2, let Ni(ε1) ⊂ Ni denote a lift of the corresponding ε1-Margulis
tube. Note that dist(Ni(ε1), ∂Ni) is uniformly bounded away from 0 and∞.
If two of the Ni, say N1 and N2, are in this case, then they are disjoint, and
hence their convex subsets Ni(ε1) are a definite distance apart. Applying
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H X’( {0})´

H X’( {1})´

N1

N2

N3

~

~

Figure 3. The images ofX ′×{0} andX ′×{1} connect three
lifts of boundary components of Y . Because their lengths
outside the neighborhoods Ni are bounded, they cannot be
too far apart.

Lemma 8.6 of the Appendix to N1(ε1) and N2(ε1), we can deduce that the
intersection Nd1

(N1) ∩Nd1
(N2) has diameter bounded by some d2.

For the remainder of the argument, pick a pleated surface h ∈ pleatρ(P ).
Suppose that just N1 corresponds to a curve of length less than ε1/2.

We claim that L2 is disjoint from N1(ε1), for otherwise the corresponding
boundary component of γ of Y has h-image that meets an ε1-Margulis tube,
and hence (by our choice of ε1) γ meets the ε0-collar of another boundary
component of Y (in S with the metric σh). By our choice of ε0, a simple
geodesic cannot meet an ε0-Margulis tube in a surface unless it is the core of
that tube, so this is a contradiction. Now N1(ε1) contains the convex subset
N1(ε1/2) which is definite distance from its boudary, and hence we can
apply Lemma 8.6 to N1(ε1/2) and L2, deducing a bound on diam(Nd1

(N1)∩
Nd1

(N2)).
Finally suppose all three boundary components of Y have length at least

ε1/2. Then in fact the three axes {Li} themselves come within bounded
distance 2d3. If the intersection of all three Nd3

(Li) has diameter D then
L1, L2 and L3 contain segments of length at least D − 2d3 that remain
distance d3 apart. There are therefore two a-priori constants d4, b > 0 so
that there exists a point p ∈ H3 which is at most ε(D) = d4e

−bD from all
three Li, and so that the tangent directions to Li at the points xi closest
to p are at most ε(D) apart in PH3. The points xi are the vertices of a
triangle with legs of length at most ε(D), which is homotopic rel vertices to
the h-image of a triangle of primitive bridge arcs of ∂Y in Y . This triangle
can be collapsed to an essential tripod with the same diameter bound, and
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an application of Lemma 8.1 of the Appendix to this tripod tells us that at
least one leg of the triangle is longer than some constant δ1.

Let δ0 be the corresponding constant given by Lemma 2.2 (Short bridge
arcs). If D is sufficiently large that ε(D) < δ0, then by Lemma 2.2 we
obtain a triangle of primitive bridge arcs for ∂Y in Y , with all legs of length
bounded by δ1. This contradiction yields the desired bound on the diameter.

Now, thanks to (4.2) and the bound on diam(X), we have a uniform

bound on the track lengths of H̃ restricted to X, and hence H restricted to
∆.

Bounds outside the collars. To bound the tracks of H on the rest of
S \ collar(P ), we first bound them on ∂ collar(P ).

Let γ be a component of ∂ collar(P ). Let Y be the component of S \ P
containing γ, so that γ is in the boundary of Y0 ≡ Y \ int(collar(∂Y )). By
Lemma 8.1 there is a bounded essential tripod ∆ in Y with endpoint x ∈ γ,
so that we already have a bound, say t0, on the track length H({x}× [0, 1]).

If `ρ(γ) ≤ 1, we have the bound (4.1) on the lσf (γ) and lσg(γ). Via the
triangle inequality we immediately get a bound on H({y} × [0, 1]) for any
y ∈ γ.

Suppose that `ρ(γ) > 1. Let G = H|γ × [0, 1], and let G̃ : γ̃ × [0, 1]→ H3

be a lift to the universal covers. Lift x to {xi|i ∈ Z} in γ̃. Let Γ be the

geodesic lift of γ∗ to H3 which is invariant by the holonomy of G̃.
Because of the bound (4.1) on lσ(γ) (for σ = σf or σg), we may apply

Lemma 8.4 to either G̃0 = G̃(·, 0) or G̃1 = G̃(·, 1). For any y ∈ γ̃ let

ηi = π(G̃i(y)), where π : H3 → Γ is the orthogonal projection. Then the
lemma gives us, first, a bound

d(G̃i(y), ηi) ≤ a1

and i = 0, 1.

Let ξij = π(G̃i(xj)). The main part of Lemma 8.4 tells us that for any
y ∈ [x0, x1], its projection η0 lies a bounded distance a2 from the point in
[ξ00, ξ01] that is at distance |[x0, y]|f from ξ00. Here | · |f and | · |g denote the
lifts of σf and σg arclength to γ̃. Similarly we have a bound for η1, [ξ10, ξ11]
and |[x0, y]|g.

The length bound on G(x× [0, 1]) tells us that d(ξ0j , ξ1j) ≤ 2a1+t0. Since
|[x0, y]|f and |[x0, y]|g differ by at most K (via Lemma 8.2, as discussed in
the beginning of the proof), we obtain a uniform upper bound on d(η0, η1)

and hence on the track length G̃({y} × [0, 1]).
This proves our uniform bound on the track lengths for ∂ collar(P ).

Now for any point z in S \ collar(P ) there is an arc β connecting z to
some point z′ in ∂ collar(P ) whose length in either σf or σg is uniformly
bounded. The length of H(z′ × [0, 1]) is bounded by the above, so we may
bound H(z × [0, 1]) using the triangle inequality.
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Bounds in the collars. It remains to control H on collar(P )× [0, 1]. For
each component γ of P , collar(γ)× [0, 1] is a solid torus, and we will control
H by considering a meridian curve

m = ∂(a× [0, 1])

where a is an orthogonal geodesic arc connecting the boundary components
of collar(γ).

Suppose first that `ρ(γ) ≥ ε0. Then the radius of collar(γ) is bounded
above by s ≡ w(ε0) in either σf or σg. Let a denote a minimal σf -length
arc crossing collar(γ), and let us find a bound on L ≡ lσg(a). (Note that
up to the usual equivalence of maps we may assume a is geodesic in both
metrics).

Let γg be the σg-geodesic representative of γ. We first replace a by a
homotopic path (with fixed endpoints) q0∗a′∗q1 where a′ is the σg-orthogonal
projection of a to γg, and qi are orthogonal segments to γg of length at most
s. Thus l(a′) ≥ L − 2s. Now apply Lemma 8.4 to deform g(a′), fixing
endpoints, to a path p0 ∗ a′′ ∗ p1 in N with pi of length bounded by a1, a

′′

traveling along the geodesic representative of γ,

lN (a′′) ≥ c1l(a
′)− c2

where c1 and c2 depend on the constants in the lemma. It follows that the
geodesic representative of the path g(a) in N has length at least c3L − c4
for suitable constants c3, c4.

Now consider a lift H̃(m) of the meridian to H3. The endpoints of H̃(a×
{1}) are at least c3L− c4 apart, and on the other hand the other three legs
of m give us an upper bound of 2s+2t1, where t1 is the track bound we have
already obtained on H outside the collars. This gives us an upper bound on
L, and hence on the length of H(m).

A bound on the tracks of H follows immediately for any point of a, and
since we can foliate collar(γ) by arcs such as a, we obtain a bound in the
entire collar.

Finally suppose that `ρ(γ) < ε0, that is γ ∈ P0. Since `σf (γ) and `σg(γ)
are bounded by ε0 + C, we may foliate collar(γ) by closed curves with
this length bound in both metrics (again, up to precomposing the maps by
homeomorphisms homotopic to the identity, we may assume the same curves
are bounded in both metrics). For each such curve β, the geodesic homotopy
H must be contained in Tγ(ε0) for all but a bounded portion. This is a
standard area argument, for the area of the ruled annulus H(β × [0, 1]) is
bounded by the length of its boundary, and on the other hand a long section
of the annulus outside of Tγ(ε0) would have area at least ε0 times its length.
(See [49, 6] for similar area arguments).

Thus H(collar(γ)× [0, 1]) is contained in a uniformly bounded neighbor-
hood of Tγ(ε0), which is what we needed to prove.

Surfaces with cusps. It remains to discuss the case when S has cusps.
The main difference is that the components Y of S\P may have cusps rather
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than boundary components. All the arguments go through in the same way,
with collar(P ) replaced by the union of collar(P ) with the collars of the
cusps. In the complement of these collars we still obtain a bilipschitz relation
between σg and σf . In bounding the tracks on tripods, the neighborhoods
Ni must be allowed to be Margulis tubes of parabolic elements when the
corresponding boundary component of Y is a cusp. ¤

Remark: The bilipschitz relation between σf and σg generally breaks down
in the collars of P , but a careful consideration of the proof will show that,
if γ ∈ P is a component with `ρ(γ) bounded both above and below, then
we may extend the bilipschitz relation to collar(γ) as well. This is a conse-
quence of the simultaneous bound on the arcs a crossing the collar in both
metrics.

Halfway surfaces

Lemma 4.2. (Halfway surfaces) There exists a C1 > 0 depending only on
S, so that if ρ ∈ D(S) and P0 → P1 is an elementary move then

goodρ(P0, C1) ∩ goodρ(P1, C1) 6= ∅.
A map in this intersection is called a halfway surface for P0 and P1.

Proof. We will construct a pleated surface g ∈ pleatρ(P0 ∩ P1) to which we
can apply Thurston’s Efficiency of Pleated Surfaces (Theorem 2.3).

Let α0 ∈ P0 and α1 ∈ P1 be the curves exchanged by the elementary
move. Let Y be the component of S− (P0∩P1) containing α0 and α1. Note
that Y is a 4-holed sphere or 1-holed torus.

Let us describe a lamination λ on Y by first considering its lift to a planar
cover. In Figure 4 we indicate the plane R2 with a small disk removed around
every point in the lattice Z2. When Y is a one-holed torus it is obtained as
the quotient of this by the action of Z2, and when Y is a four-holed sphere
it is the quotient by the group generated by (2Z)2 and −I. Normalize the
picture so that α0 lifts to lines parallel to the x-axis and α1 lifts to lines
parallel to the y-axis.

We have indicated the lamination λ̃ in this cover, which is obtained from
a standard triangulation by spinning leftward around the boundary compo-
nents. The projection of this to Y is λ. This discussion applies equally well
when Y has ends that are cusps of S. In this case the leaves that we drew
as winding around ∂Y simply go out the corresponding cusp.

Let g ∈ pleatρ(P0 ∩ P1) be the pleated surface mapping λ geodesically.
An inspection of the diagram gives this bound on the alternation numbers:

a(λ, αi) ≤ 4

for i = 0, 1 (in fact it is 2 when Y is a one-holed torus and 4 when Y is a
four-holed sphere). And furthermore that α0 and α1 cross no closed leaves
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Figure 4. The lamination λ̃ in the planar cover of Y .

of λ. Efficiency of Pleated Surfaces then gives us the inequality

`σg(αi) ≤ `ρ(αi) + C

for i = 0, 1 and a uniform C. Thus g ∈ goodρ(Pi, C) for i = 0, 1, and the
lemma is proved. ¤

The following lemma controls the geometry of a halfway surface. It will
be instrumental in the last part of the proof of the main theorem.

Lemma 4.3. Let P0 → P1 be an elementary move exchanging α and α
′, and

let g ∈ goodρ(P0, C1) ∩ goodρ(P1, C1). Assume that α and α
′ are realized

as geodesics in σg, and suppose that

`ρ(α) < ε1/2

but
`σg(α) ≥ ε1.

Then there is an upper bound C2, depending only on ε1, C1 and the topological
type of S, so that

lσg(a) ≤ C2

for each arc a of α′ ∩ collar(α, σg).
Proof. Let a be an arc of α′ ∩ collar(α, σg) – there may be one or two such
arcs. Let L = lσg(a) = lN (g(a)). Deform a to a path q0 ∗ a′ ∗ q1 with qi
orthgonal paths from ∂a to α, and a′ running along α. The lengths of qi are
at most w(ε0), and l(a′) ≤ L. Lemma 8.4 allows us to deform g(a′), fixing
endpoints, to p0 ∗ a′′ ∗ p1 with lN (pi) ≤ a1 and a′′ in the ε1/2-Margulis tube
of α, so that

lN (a′′) = nε1/2 + r′
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where we write l(a′) = n`σg(α) + r, n ∈ Z≥0, r ∈ [0, `σg(α)], and |r − r′| ≤
a2. Since `σg(α) ≥ ε1, we conclude that g(a) can be deformed to an arc
a′′′ = g(q0) ∗ p0 ∗ a′′ ∗ p1 ∗ g(q1), so that

lN (a′′′) ≤ 1
2L+ c (4.3)

with c depending on the previous constants. This is shorter than g(a) by
at least L/2 − c, so we can shorten the curve g(α′) by at least this much,
concluding that

`ρ(α
′) ≤ `σg(α

′)− 1
2L+ c.

On the other hand `σg(α
′) − C1 ≤ `ρ(α

′) since g ∈ goodρ(α′, C1), so we
obtain an upper bound on L. ¤

5. Resolution sequences

In [34], we show the existence of special sequences of elementary moves
that are controlled in terms of the geometry of the complex of curves, and
particularly the projections πY . First some terminology: if P0 → P1 →
· · · → Pn is an elementary-move sequence and β is any vertex of C(S), we
denote

Jβ = {j ∈ [0, n] : β ∈ Pj}.
Note that if Jβ is an interval [k, l], then the elementary move Pk−1 → Pk

exchanges some α for β, and Pl → Pl+1 exchanges β for some α′. Both
α and α′ intersect β, and we call them the predecessor and successor of β,
respectively.

In the following theorem, where β0, . . . , βm is a sequence of vertices in
C(S) we use the notation

J[s,t] ≡
t⋃

i=s

Jβi .

Theorem 5.1. (Controlled Resolution Sequences) Let P and Q be maximal
curve systems in S. There exists a geodesic in C1(S) with vertex sequence
β0, . . . , βm, and an elementary move sequence P0 → . . . → Pn, with the
following properties:

(1) β0 ∈ P0 = P and βm ∈ Pn = Q.
(2) Each Pj contains some βi.
(3) Jβ, if nonempty, is always an interval, and if [s, t] ⊂ [0,m] then

|J[s,t]| ≤ K(t− s) sup
Y

dY (P,Q)a,

where the supremum is over only those non-annular subsurfaces Y
whose boundary curves are components of some Pk with k ∈ J[s,t].

(4) If β is a curve with non-empty Jβ, then its predecessor and successor
curves α and α′ satisfy

|dβ(α, α′)− dβ(P,Q)| ≤ δ.
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The constants K, a, δ depend only on the topological type of S. The expres-
sion |J | for an interval J denotes its diameter.

The sequence {Pi} in this theorem is called a resolution sequence. Such
sequences are constructed in Masur-Minsky [34], using what we call “hi-
erarchies of geodesics” in C(S). The machinery of [34] is cumbersome to
describe fully, so we will give just a rough description of the construction
and an indication of how the results of [34] imply Theorem 5.1.

The construction is by an inductive procedure: we begin with what we
call a “tight geodesic”, which is a sequence mi of simplices in C(S) with the
first in P and the last in Q, so that any sequence βi ∈ mi of vertices yields
a geodesic in C1(S) joining P to Q. (The mi satisfy an additional condition
which we need not use here). The link of each mi is itself a curve complex
for a subsurface, in which mi−1 and mi+1 represent two simplices, and we
construct a geodesic connecting them. We then repeat, with the complex-
ity of the subsurfaces decreasing at each step. (The actual construction is
considerably complicated by the need to take care of endpoints of geodesics
correctly, and by the fact that a typical simplex cuts up the surface into sev-
eral components, in each of which the construction continues independently).
The final structure is a collection of geodesics in subsurfaces related by in-
clusion, and the pants decompositions Pk are obtained by taking “slices”:
picking a vertex at one level and then inductively adding vertices from the
geodesics supported in its complementary subsurfaces. These slices can be
“resolved” into the sequence described in Theorem 5.1, where the elemen-
tary moves Pk → Pk+1 correspond to steps along geodesics in highest-level
subsurfaces, which are always one-holed tori or four-holed spheres.

The fact that Jβ is always an interval follows from the proof of Proposition
5.4 in [34], in the course of which we establish a monotonicity property of
the way a resolution steps through the geodesics in a hierarchy, that implies
no curve is ever repeated once it has been traversed.

To obtain the inequality in part (3), note first that the length of J[s,t] is
just the sum of the lengths of the geodesics in the highest level subsurfaces
meeting the slices based at βs, . . . , βt. Each of these subsurfaces arises from
vertices in a lower-level (higher complexity) subsurface, so their number
is bounded by the sum of the lengths of the geodesics at the lower level.
Continuing inductively, if we have a length bound of B on all the geodesics
encountered (and a length (t − s) at the bottom level), we obtain a bound
of the form K(t − s)Ba, where a bounds the number of levels, which only
depends on the topological complexity of S.

Finally, the length of a geodesic supported in a subsurface Y is bounded
by a multiple of the projection distance dY (P,Q): this is the substance of
Lemma 6.2 of [34], which involves a crucial use of the hyperbolicity property
of C(S), from [35]. The bound of part (3) follows.
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Part (4) follows from the same construction, which in fact includes annuli
and their arc complexes as part of the discussion. The bound is just a
restatement of Lemma 6.2 of [34] applied to annuli.

6. The bounded shear lemma

In this section we will develop some estimates of shearing in annuli that
will be used near the end of the proof of the main theorem, in Section 7.

We begin with an observation. Let σ be a hyperbolic metric on S, γ
a simple geodesic in S, and B = collar(γ, σ). Let Ŷ be the compactified

annular lift associated to γ and B̂ the annular lift of B to Ŷ . Let E denote
one of the components of Ŷ \ B̂.

There is only a bounded amount of twisting that a geodesic crossing Ŷ
can do in E. In fact, let β1 and β2 be any two geodesic lines connecting the
two boundaries of Ŷ . We have:

dA(E)(β1 ∩ E, β2 ∩ E) ≤ 4. (6.1)

E

b1

b2

B
^

Figure 5. The relative twisting dA(E) of β1 ∩ E and β2 ∩ E is bounded.

Proof. The width of the collar of γ is the function w(`(γ)) described in the
Appendix.

Lift B̂ to a w-neighborhood B̃ of a geodesic lift Γ of γ in H2. For i = 1, 2,

βi lifts to a geodesic arc β̃i connecting ∂B̃ to the circle at infinity. Let p

denote the length of its orthogonal projection to Γ. This is largest when β̃i
is tangent to ∂B̃, so let us consider this case. The arcs β̃i and its projection
to Γ form opposite sides of a quadrilateral with three right angles and an
ideal vertex, whose two finite sides have lengths w and p (see Figure 6).
Hyperbolic trigonometry (Buser [11, 2.3.1(i)]) gives us

sinh(w) sinh(p) = 1.
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On the other hand we have from the definitions in §8 that w = max(w0/2, w0−
1) where w0 satisfies

sinh(w0) sinh(`/2) = 1.

From this we obtain an expression for p/` as a function of w0, and one can
deduce that this quantity is bounded. Indeed the maximum is obtained at
w0 = 2, and we have

p

`
< 1.5

In other words, βi ∩ E travels less than 1.5 times around the annulus, as
measured by its orthogonal projection. We deduce that β1 and β2 intersect
at most 3 times in E. The bound (6.1) follows. ¤

B
~

bi

~

w

p

Figure 6. The quadrilateral formed by β̃i and its projection
to the lift of γ

This observation prompts us to define the following measure of shearing
of two different metrics outside a collar. Let σ, τ be two hyperbolic metrics
on S and let B be an annulus which is equal to both collar(γ, σ) and

collar(γ, τ). Lift to B̂ in Ŷ as above. We let the shear outside B of the two
metrics be the quantity

sup
E,ασ ,ατ

dA(E)(ασ ∩ E,ατ ∩ E).

Here E varies over the two complementary annuli of B̂ in Ŷ , ασ varies over
all σ-geodesics that connect the two boundaries, and ατ varies over all τ -
geodesics that connect the two boundaries. Note that the shear depends on
the pointwise metrics, and not just their isotopy classes.

The point of having a bound on this shear is that it allows us to measure
twisting by restricting to a collar. That is, suppose in the setting above the
shear outside B is bounded by D. Then if ασ and ατ are any two σ and τ
geodesics, respectively, which cross γ, we immediately have

|dA(B)(ασ ∩B,ατ ∩B)− dγ(ασ, ατ )| ≤ 2D. (6.2)
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Note that dA(B) is a measure of twisting inside the collar which depends
on the particular curves we chose, whereas dγ depends only on homotopy
classes.

The main lemma of this section bounds the shear outside a collar for pairs
of metrics satisfying a special condition.

Lemma 6.1. (Shear bound) Suppose R is a subsurface of S which is convex
in two hyperbolic metrics σ and τ , and that σ and τ are locally K-bilipschitz
in the complement of R. Suppose that one component of R is an annulus B
which is equal to both collar(γ, σ) and collar(γ, τ) for a certain curve γ.

a
s

B

B

a
s

a
t

^

^

Figure 7. Ŷ , seen in the metric σ̂ on top, and the metric τ̂
on the bottom. Some components of R̂ are shown, shaded.

Then the shear outside B of σ and τ is bounded above by δ0K, where δ0
depends only on the topological type of S.

Proof. Let Ŷ be the compactified annular lift, and let σ̂ and τ̂ be the lifts
of σ and τ to Ŷ . Let R̂ denote the lift of R to Ŷ . Let E be one of the
components of Ŷ \ B̂. There is a uniform upper bound b to the σ̂-length of

the shortest arc α connecting B̂ to any component D of R̂ contained in E.
This comes from a standard area bound: Since `σ(∂B) is bounded below by
b0 (see §8), an embedded collar of radius r around B has area at least b0r.
Since the area of S is fixed by the Gauss-Bonnet theorem, r is uniformly
bounded. The first self-tangency of this collar yields a bound for b.
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Since by (6.1) the choice of ασ cannot change the twisting number in the
lemma by more than 4, we may assume that ασ ∩ E has an initial segment
which is this shortest arc α. Similarly we may assume that ατ is orthogonal
to ∂B in the metric τ . The Lipschitz condition in the complement of R
implies that the τ̂ -length of α is bounded by Kb. Thus the number of
essential intersections that ατ can have with ασ in the interval α is bounded
by Kb/2, since between any two such there is a segment of α that projects
orthogonally (in τ̂) to an entire boundary component of B. The remainder
of ασ is contained in a convex set whose boundary ξ is the lift of a boundary
component of R. Since R is a convex subsurface both in σ and τ , ξ still
bounds a convex set in the metric τ̂ . Thus ατ can have at most one essential
intersection with ασ in this convex set. ¤

7. The proof of the main theorem

As discussed in the outline, after [46] it suffices to prove this direction of
the theorem:

sup
Y

dY (ν+, ν−) < K =⇒ inf
γ
`ρ(γ) > ε

for ε depending only on K and S, with the infimum over γ that are not
externally short.

For simplicity of exposition, let us first prove the theorem in the case
when both ends of Nρ are degenerate. At the end of the section we will
indicate the changes in the argument necessary if one or both of the ends
are geometrically finite.

Let K1 be a constant to be determined shortly, and let ε2 be such that a
K1-neighborhood of any ε2-Margulis tube is still contained in an ε1-Margulis
tube (see §2.5).

Fix a closed curve γ in S, and assume `ρ(γ) < ε2. In particular γ must be
simple (§2.5), and represents a vertex of C0(S). Our goal will be to bound
the diameter of the Margulis tube Tγ(ε0).

Initial pants

Our first step is to obtain two pants decompositions P+ and P− of mod-
erate ρ-length, and pleated surfaces f± ∈ pleatρ(P±) which homologically
encase Tγ(ε1).

Lemma 7.1. Suppose that ρ ∈ Dnp(S) has two degnerate ends, so that
ν± ∈ EL(S).
Let U+ and U− denote neighborhoods in UML(S) of ν+ and ν−, respec-

tively. There exist pants decompositions P+ and P− lying in U+ and U−,
respectively, with the following properties:

(1) `ρ(P±) ≤ L1

(2) Given f+ ∈ pleatρ(P+) and f− ∈ pleatρ(P−), Tγ(ε1) is homologi-
cally encased by f+ and f−.
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The last statement in the lemma means that Tγ(ε1) is covered with degree
1 by any 3-chain whose boundary relative the cusps is f+−f−. In particular,
any proper homotopy from f+ to f− must cover all of Tγ(ε1).

Proof. Since the e+ end is degenerate, there is a sequence of pleated surfaces
f+
i eventually contained in every neighborhood of the end. Choose P+

i ∈
short(σf+

i
). Then the geodesic representatives of P+

i must also eventually

exit e+. In particular they must converge to ν+ in UML. The same
discussion applies with + replaced by −.

Since (Nρ, cusps) is homeomorphic to (S × R, cusps × R) and Tγ(ε1) is
compact, any pleated surface in the proper homotopy class of ρ which is
sufficiently far in a neighborhood of e+ (or e−) can be deformed to infinity,
through cusp-preserving maps, without meeting Tγ(ε1).

Choosing i high enough, then, insures that f+
i and f−i homologically en-

case Tγ(ε1) and that P±i ∈ U±. Furthermore P±i ∈ short(σf+
i
) implies that

f±i ∈ goodρ(P±i , L1), so that by Lemma 4.1 there is a K-good homotopy

(with K depending on L1) between f
±
i and any map in pleat(P±i ). This ho-

motopy has bounded tracks outside the Margulis tubes of P±i , if any. Thus
we may choose i high enough that this homotopy also avoids Tγ(ε1), so that
P± = P±i satisfies the conclusions of the lemma. ¤

Resolution sequence and block map

Join P+ to P− with a resolution sequence P− = P0 → · · · → Pn = P+,
as in Theorem 5.1. Let {βi}mi=0 be the vertex sequence of the associated
geodesic in C(S).

Define a map H : S × [0, n] → Nρ as follows. For each j = 0, . . . , n
choose gj ∈ pleatρ(Pj), and for j = 0, . . . , n − 1 let gj+ 1

2

be a map in

goodρ(Pj , C1)∩goodρ(Pj+1, C1), promised to exist by Lemma 4.2 (Halfway
surfaces).

Lemma 4.1 (Homotopy bound) gives us a constant K1 so that gj and
gj+ 1

2

admit a K1-good homotopy, and so do gj+ 1

2

and gj+1. Let H|S×[j,j+ 1

2
]

and H|S×[j+ 1

2
,j+1] be these two homotopies. Up to suitable precomposition

by homeomorphisms of S isotopic to the identity, we can arrange for the
definitions to agree on each integer and half-integer level, so they may be
concatenated to yield a single map H. The constant K1 described here gives
us our choice of ε2, which we note depends only on the topological type of
S.

Let σ(u) = σHu be the induced metric on S × {u}, which we note is
hyperbolic for u an integer or half-integer. We endow S × [0, n] with the
metric that restricts to σ(u) in the horizontal direction and to the induced
metric from R in the vertical direction, and such that the two directions are
orthogonal.

Restricting the block map
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Assuming the neighborhoods U± have been chosen sufficiently small, we
can throw away all but a bounded number of the blocks and still have the
encasing condition. To see this, begin with the following claim:

Claim 7.2. There is a constant C2 depending only on the topological type
of S, and a subinterval Iγ ⊆ [0,m] of diameter at most C2, so that H(S ×
[j, j + 1]) can meet Tγ(ε2) only if j or j + 1 are in JIγ .

(The notation JI is defined in §5.)
Proof. Let βi be a vertex that is in Pj . If H(S × {j}) meets Tγ(ε1) then
(see §2.5) `σ(j)(γ) ≤ ε0, and in particular

γ ∈ short(σ(j)) ⊂ Πρ(βi).

It follows from Lemma 3.1 (Quasiconvexity) that

dC(βi, γ) ≤ C

where C depends only on the topological type of S. Thus, since {β0, . . . , βm}
are the vertices of a geodesic, the possible values of i lie in an interval of
diameter at most 2C, which we call Iγ . In other words, j ∈ JIγ .

It remains to notice that, by the choice of ε2 and the K1-good homotopy
property, if any part of a block H(S × [j, j + 1]) meets Tγ(ε2) then one of
the boundaries must meet Tγ(ε1), and hence j or j + 1 are in JIγ . ¤

Let us therefore restrict our elementary move sequence to

Ps−1 → · · · → Pt+1

where [s, t] = JIγ . This subsequence must still encase Tγ(ε2), since we have
thrown away only blocks that avoid Tγ(ε2). Let M = t− s = |JIγ |.

In order to deduce a bound on M from the diameter bound on Iγ , we
consider part (3) of Theorem 5.1, which tells us that

M ≤ K(2C) sup
Y

dY (P+, P−)
a, (7.1)

where the supremum is over subsurfaces Y whose boundaries appear among
the Pj in our subsequence. Such Pj must lie in a C + 1 neighborhood of γ,
in the dC metric. In order to compare dY (P+, P−) to dY (ν+, ν−) for such Y ,
we will need the following lemma:

Lemma 7.3. There exists a constant b depending only on S, so that given
γ ∈ C0(S), R > 0 and ν ∈ EL(S), there is a neighborhood U of ν in UML(S)
for which the following holds:
If Y ⊂ S is a subsurface with dC(γ, ∂Y ) ≤ R and β ∈ C0(S) ∩ U , then

dY (β, ν) ≤ b.

Proof. By Klarreich’s Theorem 2.1, EL(S) is naturally identified with the
Gromov boundary of C(S). By the definition of the Gromov boundary,
there is a neighborhood U of ν such that, if β, β ′ ∈ C0(S) are in U then
any geodesic g in C1(S) connecting them must lie outside an R + 2-ball of
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γ. In particular every vertex of g must be at least distance 2 from ∂Y , and
hence must intersect ∂Y essentially. Theorem 3.1 of [34] states that in such
a situation

diamY (πY (g)) ≤ A

for a constant A depending only on the topological type of S, and in par-
ticular dY (β, β

′) ≤ A.
Now consider a sequence βi converging to ν in UML(S), with β0 =

β. After restricting to a subsequence if necessary, the βi converge in the
Hausdorff topology to a lamination that includes the support of ν, which
means that eventually diamY (πY (βi) ∪ πY (ν)) ≤ 2. Thus dY (β, ν) ≤ A +
2. ¤

Thus if we choose the original neighborhoods U+ and U− sufficiently small,
this lemma gives us

dY (P+, P−) ≤ dY (ν+, ν−) + 2b. (7.2)

The hypothesis of the main theorem bounds the right side, so together with
(7.1) we obtain our desired uniform bound on M .

Suppose that γ is not a component of any Pj . Then according to Lemma
4.1, each block H|S×[j,j+1] has track lengths of at most 2K1 within Tγ(ε1).
There are only M + 2 blocks in our restricted sequence, and they cover all
of Tγ(ε1), so

diamTγ(ε1) ≤ 2K1(M + 2).

This bounds `ρ(γ) from below, and we are done.

Bounding twists

Now suppose that γ does appear among the {Pj}. Then Jγ is some
nonempty subinterval of JIγ by Theorem 5.1, and we let α and α′ be the
predecessor and successor curves to γ in the sequence. Both of them cross
γ, and we have by part (4) of Theorem 5.1 that dγ(α, α

′) is uniformly ap-
proximated by dγ(P+, P−), which by (7.2) and the hypothesis of the main
theorem, is uniformly bounded. Let D denote this bound.

Write Jγ = [k, l]. By the normalization used in Lemma 4.1, for all integer
and half-integer u ∈ [k, l] the annuli collar(γ, σ(u)) coincide. Name this
common annulus B. consider the solid torus

U = B × [k − 1
2 , l +

1
2 ].

The map H can take the complement of U at most 2K1(M +2) into Tγ(ε1),
by the same argument as above, and hence there is a uniform ε3 > 0 so that
H(U) must cover Tγ(ε3). Assume `ρ(γ) < ε3, for otherwise we are done.

Consider the geometry of ∂U . The top annulusB×{k− 1
2} is collar(γ, σ(k − 1

2)).
Since Hk− 1

2

∈ good(γ,C1) by construction, we have an upper bound of

ε3 + C1 on the circumference of this collar. We also have a lower bound
of ε3 since the image of Hk−frac12 avoids the interior of Tγ(ε3). Thus, this
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annulus has uniformly bounded geometry. The same holds for B × {l + 1
2}

in the metric σ(l + 1
2)

The vertical annuli ∂B × [k − 1
2 , l +

1
2 ] have height bounded by M + 1.

Thus ∂U is up to uniformly bounded distortion a Euclidean square torus,
and H maps it with a uniform Lipschitz constant into N . Let us now try to
control a meridian curve for U .

Realize α as a geodesic in σ(k − 1
2) and let a be an arc of α ∩ B (there

may be two). Similarly assume α′ is a geodesic in σ(l + 1
2) and let a′ be

an arc of α′ ∩ B. Lemma 4.3 gives an upper bound for the length of a in
σ(k − 1

2), and for the length of a′ in σ(l + 1
2). The curve

m = ∂(a× [k − 1
2 , l +

1
2 ]),

is a meridian of U , and we claim that its length is uniformly bounded.
The arc a may a priori be long in σ(l + 1

2), but its length is estimated by
the number of times it twists around the annulus, which in turn is estimated
by dA(B)(a, a

′) since a′ has bounded length in this metric.
We can bound this twisting using the results in Section 6. Note first

that, for each j = k − 1
2 , k, . . . , l − 1

2 , l, the pair of metrics σ(j), σ(j + 1
2)

satisfy the hypotheses of Lemma 6.1 (Shear bound). That is, they are K1-
bilipschitz outside a union of collars including B. Thus, Lemma 6.1 bounds
the shearing outside B at each step, and the number of steps is bounded by
2M + 2. We conclude that there is a bound on the shearing outside B of
the two metrics σ(k − 1

2) and σ(l+
1
2). It follows as in (6.2) that we have a

bound of the form

|dA(B)(a, a
′)− dγ(α, α

′)| ≤M ′ (7.3)

With this estimate and the bound dγ(α, α
′) ≤ D, we find that a and a′

intersect a bounded number of times, so that the length of a is uniformly
bounded in S × {l + 1

2}. It follows that H(m) is uniformly bounded. It
therefore spans a disk of bounded diameter, and now by a coning argument
we can homotope H on all of U to a new map of bounded diameter. This
bounds the diameter of Tγ(ε3) from above, and again we are done.

The case of geometrically finite ends

The main change in the argument comes at the beginning, in our choice
of P+ and P−.

Suppose that e+ is geometrically finite. It suffices to consider γ which
is not externally short, i.e. `ν+

(γ) > ε0, because the second statement in
the main theorem considers only such curves, and the first statement is
insensitive to the removal of a finite number of curves from consideration.
The choice of ε1 and Sullivan’s theorem (see §2.5) imply that we also have
`ν′

+
(γ) > ε1.

We may therefore choose a pants decomposition P+ ∈ short(ν ′+) so that
γ is not one of its components (our choice of L1 was made so that this would
be possible, see §2.6). Let f ′+ : S → ∂+(C(Nρ)) be the pleated surface in
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the homotopy class of ρ that parametrizes the e+-boundary of the convex
hull. In particular f ′+ ∈ goodρ(P+, L1). Thus, choosing f+ ∈ pleatρ(P+),
Lemma 4.1 gives us a K2-good homotopy G+ between f ′+ and f+, with K2

depending on L1. Since γ is not a component of P+, G+ can only penetrate a
distance K2 into Tγ(ε1), and hence does not meet Tγ(ε4), with ε4 depending
only on K2.

We do the same thing with f−, P− if e− is geometrically finite, or we repeat
the original discussion if e− is degenerate. Thus we have f+, f− encasing
Tγ(ε4).

We can therefore continue as before, constructing a resolution sequence
from P− to P+ and then restricting it. The argument goes through with
slightly altered constants (since we have replaced ε1 with ε4), and the one
step that needs attention is the comparison (7.2) between dY (P+, P−) and
dY (ν+, ν−), for appropriate Y . In other words we must bound

dY (P+, ν+)

in the geometrically finite case (and similarly for e−). This quantity by defi-
nition is just minQ+

dY (P+, Q+) where Q+ varies over pants decompositions
in short(ν+), provided P+ meets Y nontrivially and Q+ can be found which
does the same.

Since ν+ and ν ′+ admit a K0-bilipschitz map by Sullivan’s theorem (§2.1),
The ν ′+-length of Q+ is bounded by K0L1, which gives a bound on its
intersection number with P+. This bounds dY (P+, Q+) provided both pants
decompositions interesct Y .

If Y is not an annulus (and recall that we never consider three-holed
spheres), then it automatically intersects any pants decomposition. Thus
the only problematic case is if Y is an annulus whose core is a component
of P+ or Q+. However, we recall that the only annulus that actually comes
into the argument is the annulus with core γ. Since γ is not externally short,
we have already chosen P+ so that γ is not a component of it, and we can
do the same for Q+.

The rest of the proof goes through in the same way. ¤

8. Appendix: Hyperbolic geometry

In this appendix we write out statements, and sketch some proofs, of a
few facts and constructions in hyperbolic geometry. These are “well-known”
in the sense that those working in this field are familiar at least with some
variation of them, or would find it straightforward to derive them. Still it
seems advisable to include some discussion.

Throughout, a hyperbolic surface always means a finite area hyperbolic
surface which could have closed geodesic boundary components and/or cusps.
By abuse of notation we usually think of a cusp as a boundary component
of length 0.

Collars
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Let w0 be the function

w0(t) = sinh−1

(
1

sinh (t/2)

)
.

For a simple closed geodesic γ of length ` in a hyperbolic surface X, we
define

collar0(γ,X) = {p ∈ X : dist(p, γ) ≤ w0(`)}.
When the ambient surface X is understood we omit it from the notation.
This set is always an embedded annulus, and in fact if γ1 . . . , γk are disjoint
and homotopically distinct then collar0(γi) are pairwise disjoint. (See e.g.
Buser [11, Chapter 4].)

We will need a slightly smaller collar, so as to guarantee a definite amount
of space in its complement. Define

w = max(w0/2, w0 − 1)

and let

collar(γ,X) = {p ∈ X : dist(p, γ) ≤ w(`)}.
Let γ′0 be a boundary component of collar0(γ) (assume γ′0 6= γ if γ itself

is in ∂X), and similarly let γ ′ 6= γ be a boundary component of collar(γ).
The length of γ′0 (resp. γ′) is given by ` cosh(w0(`)) (resp. ` cosh(w(`))). A
bit of arithmetic shows that

l(γ′) ≤ l(γ′0) ≤ `(γ) + 2 (8.1)

We can define collar0(γ) and collar(γ) also when γ represents a cusp of
X, describing them either explicitly or as a limit as ` → 0. The boundary
of collar0(γ) for a cusp is horocyclic, and its length is 2 (the limiting value
of ` cosh(w0(`)) as ` → 0). The slightly smaller collar(γ) has horocylic
boundary a distance 1 inside the boundary of collar0(γ), so its length is
2/e.

We remark in fact that the boundary length ` coshw0(`) of collar0(γ) is
increasing with `, and hence always at least 2. There is a similar lower bound
b0 for the boundary of collar(γ), which we will not compute explicitly.

If P = {γ1, . . . , γk} is a curve system we let collar(P ) = ∪i collar(γi).

Hyperbolic pairs of pants

If Y is a hyperbolic surface as above, with genus 0 and three boundary
components, we call it a hyperbolic pair of pants. The three boundary
lengths determine the metric on Y completely (up to isotopy). Let Y0 =
Y \ int(collar(∂Y )).

A tripod is a copy of the 1-complex ∆ obtained from three disjoint copies
of [0, 1] (called “legs”) by identifying the three copies of {0}. The three
copies of {1} are called the boundary of ∆. An essential tripod in Y0 is an
embedding of ∆ (also called ∆) taking ∂∆ to ∂Y0, such that each subarc
of ∆ obtained by deleting one copy of (0, 1] is not homotopic rel endpoints
into ∂Y0 (Figure 8).
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Figure 8. The two types of essential tripods

Lemma 8.1. There is a constant δ > 0 such that for any hyperbolic pair of
pants Y and each boundary component γ of Y0, there is an essential tripod
∆ ⊂ Y0 whose three legs have length at most δ, and which meets γ
On the other hand, there exists δ′ > 0 such no essential tripod in any Y0

has all three legs of length less than δ′.

The next lemma describes how an estimate on the boundary lengths of
Y yields an estimate on its isometry type.

Lemma 8.2. Given C ≥ 0 there exists K ≥ 1 such that the following holds.
Let Y and Y ′ be two hyperbolic pairs of pants with boundaries {γi}3i=1 and

{γ′i}3i=1, respectively. Suppose that

|`(γi)− `(γ′i)| ≤ C.

Then there is a homeomorphism h : int(Y ) → int(Y ′) taking Y0 to Y
′
0 and

collar(γi) to collar(γ
′
i), which is K-bilipschitz on Y0. Furthermore, for any

arc a on ∂Y0 we have |l(α)− l(h(α))| ≤ K.

Let us prove Lemma 8.2 first. Any hyperbolic pair of pants Y admits
a canonical decomposition into two congruent right-angled hexagons, by
cutting along the shortest arcs connecting each pair of boundary components
(see Buser [11]. In the limiting case of cusps we obtain degenerate hexagons
with ideal vertices). Thus it will suffice to find appropriate bilipschitz maps
between such hexagons.

Comparison of hexagons

Let Ξ be a hyperbolic right-angled hexagon, with three alternating sides
A1, A2, A3 of lengths a1, a2, a3. (we will adopt the convention here of de-
noting edges by capital letters and their lengths by the corresponding lower
case letters). Each side Ai admits an embedded “collar rectangle”, which
we call collar(Ai,Ξ), and is just the w(2ai)-neighborhood of Ai in Ξ. If Y
is the hyperbolic pair of pants obtained from Ξ by doubling along its other
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three boundaries, then collar(Ai,Ξ) is clearly just collar(γi, Y ) ∩ Ξ, where
γi is the double of Ai.

Lemma 8.2 clearly follows from the following property of hexagons:

Lemma 8.3. Given C > 0 there exists K ≥ 1 so that the following holds:
Let Ξ,Ξ′ be two hyperbolic right-angled hexagons with alternating sides

{Ai} and {A′i}, respectively. Suppose that
|ai − a′i| ≤ C, i = 1, 2, 3.

Then there is a label-preserving homeomorphism f : Ξ → Ξ′ which takes
collar(Ai,Ξ) to collar(A

′
i,Ξ

′) and is K-bilipschitz on the complement of the
collars. Furthermore for any arc α in ∪Ai, we have |l(α)− l(f(α))| ≤ K.

Proof. We begin by describing a decomposition of Ξ into controlled pieces
in a way that is determined by the {ai}. In the following, (i, j, k) always
denotes a permutation of (1, 2, 3).

Case 1: Suppose that the three “triangle inequalities”

ai ≤ aj + ak (8.2)

all hold. Then there is a unique triple r12, r23, r13 ≥ 0 satisfying

rij + rik = ai. (8.3)

(where we use the convention rij = rji). In fact we simply set rij =
1
2(ai +

aj − ak).
Now define three “bands” Bij in Ξ as follows: Bij is the (closed) rij-

neighborhood of the edge Cij of Ξ which is the common perpendicular of Ai

and Aj . See Figure 9.
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Figure 9. The bands decomposition of Ξ in case 1.

The two segments Bij ∩Ai and Bik ∩Ai cover all of Ai and meet in their
common boundary point. The interiors of Bij are disjoint as a consequence
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of the triangle inequality and the fact that dist(Cij , Cik) = ai. The closure
T of the complement Ξ\⋃ij Bij is a “triangle” with the following properties:

• Each edge Eij = T ∩ Bij has curvature κij ∈ [0, 1], which is in fact
given by tanh rij . The curvature vector points outward.

• Adjacent edges meet at angle 0.

From this and the Gauss-Bonnet theorem we have∑

ij=12,13,23

eijκij = π − area(T )

which implies the upper bound

eij ≤
π

tanh rij
. (8.4)

There is also a lower bound

eij ≥ 2 log
2√
3

(8.5)

obtained as follows: Extend each Eij to a line of constant curvature in H2.
Each bounds a region Rij that contains Bij , so that the three regions have
disjoint interiors. Since κij ≤ 1, through any point x ∈ ∂Rij passes the
boundary of a horoball contained in Rij . One can check that for any three
horoballs in H2 with disjoint interiors, and any point p, the distance from p
to at least one of the horoballs is at least log 2√

3
(the extreme case is where

all three are tangent). The midpoint of Eij meets a horoball in Rij and is a
distance at most eij/2 from horoballs in Rij and Rjk. Thus we have (8.5).

The geometry of the band Bij is easy to describe: it can parametrized by
the rectangle [0, rij ]× [0, cij ] with the metric

dx2 + cosh2(x)dy2, (8.6)

Where Cij is identified with {0} × [0, cij ].

Case 2: Suppose that one of the opposite triangle inequalities holds, e.g.

a1 ≥ a2 + a3. (8.7)

We then let r12 = a2, r13 = a3, and

r11 = a1 − a2 − a3,

So that a1 = r12 + r11 + r13. We then have bands B12 and B13 as before,
and B11 is defined as follows (see Figure 10): Let H1 be the common per-
pendicular of A1 and its opposite edge C23. In A1 let J11 be the closure of
the complement of B12 ∩ A1 and B13 ∩ A1. This has length r11. Join each
x ∈ J11 to a point y ∈ C23 with a curve equidistant from H1. We obtain a
foliated rectangle, B11 (if r11 = 0 then B11 is a single segment). Similarly
to the other bands, we can describe the metric in B11 by the formula (8.6),
but on a rectangle of the form [u2, u3]× [0, h1], where u3 − u2 = r11.

The closure of Ξ \⋃iB1i is now two triangles T2, T3, with angles 0, 0 and
π/2. Let E1m = Tm ∩ B1m and let E11,m = Tm ∩ B11, for m = 2, 3. Note
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Figure 10. The bands decomposition of Ξ in case 2.

that the curvature of E11,m is κ11,m = tanh |um|. Upper and lower bounds
on e1m and e11,m can be derived from (8.4) and (8.5), by observing that the
union of Tm with its reflection across C23 is a triangle of the same type as
T in case 1. For e1m we obtain (8.4) and (8.5) exactly, whereas for e11,m we
get

e11,m ≤
π

2 tanh |um|
(8.8)

and

e11,m ≥ log
2√
3
. (8.9)

Let |um| be the larger of |u2|, |u3|. Then |um| ≥ r11/2, and since e11,m must
then be the larger of |e11,2|, |e11,3|, we have a bound for j = 2, 3:

e11,j ≤
π

2 tanh(r11/2)
(8.10)

The comparison: Now consider two hexagons Ξ,Ξ′ satisfying the bound
|ai − a′i| ≤ C.

Suppose first that both Ξ and Ξ′ are in case 1. Note immediately that we
also have |rij − r′ij | ≤ 3C

2 .

If rij > 3C for each i, j, then r′ij >
3C
2 . In this case we have upper bounds

of π/ tanh(3C/2) on both eij and e′ij . The bilipschitz map Ξ → Ξ′ can be
constructed separately on each piece of the decomposition.

Map each band Bij to B′ij using an affine stretch on the parameter rect-

angles. The metric described in (8.6) gives a uniform bilipschitz bound on
this map. Note that the assumption that both rij and r

′
ij are bounded away

from 0 bounds the bilipschitz constant in the x direction, and the fact that
their difference is bounded gives a bound in the other direction (since the
cosh factor gives an exponential scaling).

The triangles T and T ′ are also in uniform bilipschitz correspondence,
since in fact they vary in a compact family of possible figures (due to the
length and curvature bounds).
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If at least one rij < C we must take a bit more care. Let us consider a
limiting case where at least one rij = 0 and the rest are no smaller than C.
These cases are illustrated in Figure 11.

Figure 11. The boundary cases where some rij = 0. From
left to right, one, two and all three are 0.

If r12 = r23 = r13 = 0 then a1 = a2 = a3 = 0 and Ξ is an ideal triangle.
Recall that we are interested only in bounds on the complements of the
collars, and this is in this case a right-angled “hexagon” with three of the
sides equal to horocyclic arcs of definite length. If r12 = r13 = 0 but r23 > C,
then T has two geodesic edges meeting in an ideal vertex, and a third leg
E23 satsifying the bounds (8.4,8.5). To this leg is attached the band B23.

If r12 = 0 and r13, r23 > C then we obtain a triangle T with one geodesic
leg and two curved legs to which are attached the bands. Note that the
length bounds on the curved legs imply a length bound on the straight leg.

If we now take a general Ξ with some rij < C, consider the family of
shapes obtained by taking those rij to 0, and fixing the rest. These must
converge to one of the three cases above, and the bands corresponding to
rjk ≥ C remain fixed. Thus we can find some uniformly bilipschitz mapping
taking Ξ to the limiting case.

Two hexagons Ξ and Ξ′ both near one of the boundary cases are therefore
near to each other, via the composition of the two maps.

Now suppose our two hexagons are in case 2. Again we obtain bounds
|r1j − r′1j | ≤ C for j = 2, 3 and |r11 − r′11| ≤ 3C. Assume first r1j > 6C
for j = 1, 2, 3. The bands B12, B13 again have uniformly bilipschitz maps to
B′12 and B′13, respectively, coming from the affine stretches of the parameter
rectangles. The same is true for B11 → B′11, using the parametrization
[u2, u3]× [0, h1] with metric (8.6), together with the bounds (8.8–8.10).
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The cases where some r1j ≤ 6C are handled as before, by comparing to
the boundary cases where some r1j = 0. We leave the details to the reader.

It is also possible for Ξ to be in case 1 and Ξ′ to be in case 2. However, this
can only happen if both of them are near their respective boundary cases,
and one can check that these boundary cases are in fact in the overlap of
case 1 and case 2, and hence can be compared with each other.

What we have shown is that Ξ and Ξ′ admit a homeomorphism which
is bilipschitz outside the collars of those Ai, A

′
i that are sufficiently short.

For the long Ai we observe that, as in (8.1), the length of the boundary
of collar(Ai) in int(Ξ) is at most ai + 1, and the collar width w has been
chosen so that it is at most half the width of the largest embedded collar.
It follows from this that the map can be adjusted to take all collars of Ξ to
collars of Ξ′, with a bounded change in the bilipschitz constant. The additive
distortion in length of all subarcs of Ai follows from the construction. ¤

The proof of Lemma 8.1 is fairly simple from the geometric picture of
hexagons we have just produced. Let Y be decomposed as the double of a
hexagon Ξ. If Ξ is in Case 1, the curved triangle T , minus the collars of the
Ai, is a bounded-diameter hexagon, and an essential tripod of bounded size
can be embedded in it. This tripod meets all three boundary collars.

In Case 2, we consider the double of T2 (or T3) across C23. This is a curved
triangle of the same type as T , and after cutting away the intersections with
the collars we can again obtain a bounded essential tripod. Note that this
tripod has two legs terminating on the same boundary component of Y . It
only meets two boundary collars, but since we can choose both T2 and T3,
for each collar there is a tripod meeting it.

To obtain the lower bound on any essential tripod in Y , we argue as in
the lower bound on eij in the previous proof. Suppose the legs of the tripod
have length less than l. Lifting the tripod to H2 we see that the intersection
point of the legs has distance ≤ l from three distinct lifts of the collars,
each of which is bounded by by a curve of constant curvature κ ∈ [0, 1].
The smallest possible l is again obtained if κ = 1 for each curve, namely
l ≥ 2 log 2√

3
. ¤

A curve shortening lemma

Let γ be a circle of length l(γ), and let h : γ → N be a homotopically
nontrivial, arclength-preserving map into a hyperbolic 3-manifold N . Lift h

to a map h̃ : γ̃ → H3. After appropriate choice of basepoints, h∗(π1(γ)) is a

nontrivial cyclic subgroup of π1(N) preserving h̃(γ̃). Let `N (h) ≥ 0 denote
the translation length of its generator. If it is loxodromic let Γ be its axis
and let h(γ)∗ denote the quotient of Γ in N , and if it is parabolic or has

translation length less than ε0, let T̃h(ε) (for 0 < ε ≤ ε0) be the invariant
lift of its corresponding ε-Margulis tube in N .
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Lemma 8.4. Suppose h : γ → N is as above and satisfies the condition

l(γ) ≤ `N (h) + C.

Let α ⊂ γ̃ be an arc whose length is l(α) = nl(γ) + r, with n ∈ Z≥0 and
r ∈ [0, l(γ)). Let ε ∈ (0, ε0] be given. Then h(α) can be deformed, rel
endpoints, to a path p0 ∗ α′ ∗ p1 with the following properties:

(1) pi are geodesics orthogonal to Γ or T̃h(ε), and l(pi) ≤ a1, for i = 0, 1.

(2) α′ lies on the geodesic Γ if `N (h) ≥ ε, and in T̃h(ε) otherwise.
(3) lN (α′) = nl′ + r′, where

l′ = max(`N (h), ε) (8.11)

and

|r − r′| ≤ a2. (8.12)

The constants ai depend only on ε and C.

Proof. Fix a generator γ̄ of π1(γ), and let A = h∗(γ̄). Let ` = `N (h) be the
translation distance of A. Suppose first that A is loxodromic. If x ∈ H3

with d(x,Γ) = r and s = d(x,Ax) then one can obtain (see e.g. Buser [11,
2.3.1]

sinh
s

2
≥ sinh

`

2
cosh r (8.13)

Suppose that s ≤ `+C and ` ≥ ε. Then, since the function sinh(t+C)/ sinh t
is decreasing, we have cosh r ≤ sinh(ε+C)/ sinh(ε), yielding an upper bound
on r.

Let ξ ∈ Γ be the closest point to x (so [x, ξ] ⊥ Γ), and let xt be the point
on [x, ξ] with d(xt, ξ) = t. Suppose that ` ≤ ε and hence s ≤ ε + C. We
claim that

d(xt, A(xt)) ≤ a
cosh t

cosh r
(8.14)

where a depends only on ε+ C. To see this, note that the distance from x
to Ax along the r-equidistant surface to Γ is at most a constant c′, since we
can project the geodesic [x,Ax] to this surface with bounded distortion. On
the other hand the distance from xt to Axt along the t-equidistant surface

is
√
`2 cosh2 t+ θ2 sinh2 t, where `+ iθ is the complex translation length of

A. A little algebra yields (8.14).

It follows that there exists a1 depending only on ε such that xt ∈ T̃ (ε) for
all t ∈ [0, r − a1].

When A is parabolic the same discussion works using coordinates adapted
to its parabolic fixed point, replacing equidistant surfaces to Γ with horo-
spheres.

Now for any arc α ⊂ γ̃, with endpoints x, y, let p0 and p1 be the orthogonal

geodesics from h̃(x) and h̃(y), respectively, to Γ when ` ≥ ε, and to T̃ (ε)
when ` < ε. The above discussion bounds the lengths of p0 and p1 uniformly.
Let ξ, η be the other endpoints of p0 and p1.
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Consider first the case that ` ≥ ε. Let α′ be the geodesic segment [ξ, η] on
Γ. Write l(α) = nl(γ) + r as in the statement of the lemma. If r = 0 then
η = A±nξ, and it is immediate that l(α′) = n`, which is what we wished to
prove.

Suppose n = 0, so that l(α) = r < l(γ), and let us prove (8.12). Identify γ̃
with R so that the generator γ̄ of π1(γ) acts by t 7→ t+l(γ). Let x′ = x+l(γ).

We may assume y ∈ [x, x′]. Let ξ′ ∈ Γ be the closest point to h̃(x′). Then

h̃(x), h̃(x′) and h̃(y) are distance at most a1 from ξ, ξ′ and η, respectively.
We have

d(ξ, η) ≤ 2a1 + |x− y| (8.15)

and
d(ξ′, η) ≤ 2a1 + |x′ − y| (8.16)

by the triangle inequality and the fact that h̃ is arclength-preserving. We
have by hypothesis

|x− x′| − d(ξ, ξ′) ≤ C. (8.17)

We have |x′ − y| = |x′ − x| − |y − x| since y ∈ [x, x′], and we have d(ξ′, η) ≥
d(ξ, ξ′)− d(ξ, η) by the triangle inequality, so (8.16) yields:

d(ξ, ξ′)− d(ξ, η) ≤ 2a1 + |x′ − x| − |y − x|. (8.18)

Now rearranging and applying (8.17) we have

d(ξ, η) ≥ |y − x| − 2a1 − C. (8.19)

Now d(ξ, η) = r′ and |y−x| = r, so (8.15) and (8.19) together bound |r−r′|.
Together with the upper bound (8.16) on d(ξ ′, η), we find that η is in fact

constrained to within bounded distance of the point in [ξ, ξ ′] at distance r
from ξ (as opposed to the point on the other side of ξ at the same distance).
This together with the case of n > 0, r = 0 yields the general case, by
concatentation.

Now consider the case that ` < ε. Writing l(α) = nl(γ) + r, let α′

be the concatenated chain of geodesic segments connecting the sequence of
ξ = A0ξ, . . . , Anξ, η. The length estimate on α′ is immediate.

¤

Truncated curves

Lemma 8.5. Let γ be a simple closed geodesic or a simple properly embedded
geodesic line on a hyperbolic surface S. Suppose that γ avoids the ε1-thin
part of S, except possibly for its ends leaving the ε1-cusps. Given ε, there
exists a homotopically non-trivial, non-peripheral curve γε, homotopic to a
simple curve, with the following properties:

(1) γε has length at most L2.
(2) γε is composed of at most 2 segments of γ and at most 2 bridge arcs
for γ of length at most ε.

The constant L2 depends only on ε, ε1 and the topology of S.
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Proof. (Sketch) We may assume ε << ε1. Let L = 3π|χ(S)|/ε, and let
L2 = 2(L+ ε).

First, in case γ is already a simple closed geodesic with length less than
L2, take γε = γ.

If γ is a properly embedded geodesic whose length outside the ε-cusps
is at most L, γε can be constructed as a boundary component of a slight
thickening of γ union the cusps (see Figure 12).

Figure 12. Constructing γε when γ is a bounded arc mod-
ulo cusps.

Finally if γ has length larger than L outside the ε-cusps, let γ0 denote
any arc of γ outside the cusps of length L, and consider the immersion
of γ0 × [−ε, ε] taking each {p} × [−ε, ε] to the geodesic segment of length
2ε orthogonal to γ at its midpoint p. The choice of L2 and the bound of
2π|χ(S)| on the area of S imply that there must be a point z covered with
multiplicity 3 by this map. Thus γ passes within ε of z three times with
(unoriented) directions varying by O(ε) in the projectivized tangent bundle.
At least two of those times the orientations match, and we may build γε
as shown in Figure 13. The resulting curve is homotopically nontrivial and
non-peripheral because it can be smoothed out to have curvature near 0 and
length bounded away from 0. ¤

Figure 13. Constructing γε when γ is long

Junctures of convex sets
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Lemma 8.6. Fix r0 > 0. For any b > 0 there is a d > 0 such that
the following holds: if A and B are convex sets in H3, and suppose that
dist(A,B) ≥ r0. Then

diam(Nb(A) ∩Nb(B)) ≤ d.

Here Nb denotes b-neighborhood in H3.

Proof. Convexity and the lower bound on dist(A,B) imply that A and B are
contained in disjoint half-spaces HA and AB that are at least r0 apart. The
intersection Nb(HA)∩Nb(HB) is compact so it has some diameter bound d.
A sharp value is not hard to compute but we will not need it. ¤

References

1. W. Abikoff, The real-analytic theory of Teichmüller space, Springer-Verlag, 1980, Lec-
ture Notes in Mathematics no. 820.

2. J. M. Alonso, T. Brady, D. Cooper, V. Ferlini, M. Lustig, M. Mihalik, M. Shapiro,
and H. Short, Notes on word hyperbolic groups, Group Theory from a Geometrical
Viewpoint, ICTP Trieste 1990 (E. Ghys, A. Haefliger, and A. Verjovsky, eds.), World
Scientific, 1991, pp. 3–63.

3. L. Bers, Spaces of degenerating Riemann surfaces, Discontinuous groups and Riemann
surfaces, Ann. of Math. Stud. 79, Princeton Univ. Press, 1974, pp. 43–59.

4. , An inequality for Riemann surfaces, Differential geometry and complex anal-
ysis, Springer, Berlin, 1985, pp. 87–93.

5. F. Bonahon, Geodesic laminations on surfaces, to appear in Proceedings of the Stony
Brook 1998 Workshop on Foliations and Laminations.

6. , Bouts des variétés hyperboliques de dimension 3, Ann. of Math. 124 (1986),
71–158.

7. B. Bowditch, Notes on Gromov’s hyperbolicity criterion for path-metric spaces, Group
theory from a geometrical viewpoint (Trieste, 1990), World Scientific Publishing, 1991,
pp. 64–167.

8. J. Brock, Continuity of Thurston’s length function, preprint, to appear Geom. Funct.
Anal.

9. , Iteration of mapping classes on a Bers slice, Ph.D. thesis, UC Berkeley, 1997.
10. R. Brooks and J. P. Matelski, Collars in Kleinian groups, Duke Math. J. 49 (1982),

no. 1, 163–182.
11. P. Buser, Geometry and Spectra of Compact Riemann Surfaces, Birkhäuser, 1992.
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