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Abstract. Let 0 < θ < 1 be an irrational number with continued fraction expan-
sion θ = [a1, a2, a3, . . .], and consider the quadratic polynomial Pθ : z 7→ e2πiθz+z2.
By performing a trans-quasiconformal surgery on an associated Blaschke product
model, we prove that if

log an = O(
√
n) as n → ∞,

then the Julia set of Pθ is locally-connected and has Lebesgue measure zero. In
particular, it follows that for almost every 0 < θ < 1, the quadratic Pθ has a Siegel
disk whose boundary is a Jordan curve passing through the critical point of Pθ. By
standard renormalization theory, these results generalize to the quadratics which
have Siegel disks of higher periods.
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1. Introduction

Consider the quadratic polynomial Pθ : z 7→ e2πiθz + z2, where 0 < θ < 1 is an
irrational number. It has an indifferent fixed point at 0 with multiplier P ′θ(0) = e2πiθ,
and a unique finite critical point located at −e2πiθ/2. Let Aθ(∞) be the basin of
attraction of infinity, Kθ = C r Aθ(∞) be the filled Julia set, and Jθ = ∂Kθ be the
Julia set of Pθ. The behavior of the sequence of iterates {P ◦nθ }n≥0 near Jθ is intricate
and highly non-trivial. (For a comprehensive account of iteration theory of rational
maps, we refer to [CG] or [M].)
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2 C. L. PETERSEN AND S. ZAKERI

The quadratic polynomial Pθ is said to be stable near the indifferent fixed point
0 if the family of iterates {P ◦nθ }n≥0 restricted to a neighborhood of 0 is normal in
the sense of Montel. In this case, the largest neighborhood of 0 with this property
is a simply-connected domain ∆θ called the (maximal) Siegel disk of Pθ. The unique

conformal isomorphism ψθ : ∆θ
'−→ D with ψθ(0) = 0 and ψ′θ(0) > 0 linearizes Pθ in

the sense that ψθ ◦ Pθ ◦ ψ−1θ (z) = Rθ(z) := e2πiθz on D.
Consider the continued fraction expansion θ = [a1, a2, a3, . . .] with an ∈ N, and the

rational convergents pn/qn := [a1, a2, . . . , an]. The number θ is said to be of bounded
type if {an} is a bounded sequence. A celebrated theorem of Brjuno and Yoccoz [Yo3]
states that the quadratic polynomial Pθ has a Siegel disk around 0 if and only if θ
satisfies the condition ∞∑

n=1

log qn+1
qn

< +∞,

which holds almost everywhere in [0, 1]. But this theorem gives no information as
to what the global dynamics of Pθ should look like. The main result of this paper
is a precise picture of the dynamics of Pθ for almost every irrational θ satisfying the
above Brjuno-Yoccoz condition:

Theorem A. Let E denote the set of irrational numbers θ = [a1, a2, a3, . . .] which
satisfy the arithmetical condition

log an = O(
√
n) as n→∞.

If θ ∈ E, then the Julia set Jθ is locally-connected and has Lebesgue measure zero. In
particular, the Siegel disk ∆θ is a Jordan domain whose boundary contains the finite
critical point.

This theorem is a rather far-reaching generalization of a theorem which proves the
same result under the much stronger assumption that θ is of bounded type [P2]. It
is immediate from the definitions that the class E contains all irrationals of bounded
type. But the distinction between the two arithmetical classes is far more remarkable,
since by a theorem of Khinchin E has full measure in [0, 1], whereas numbers of
bounded type form a set of measure zero (compare Corollary 2.2).

The foundations of Theorem A was laid in 1986 by several people, notably Douady
[Do]. Their idea was to construct a model map Fθ for Pθ by performing surgery
on a cubic Blaschke product fθ. Along with the surgery, they also proved a meta
theorem asserting that Fθ and Pθ are quasiconformally conjugate if and only if fθ
is quasisymmetrically conjugate to the rigid rotation Rθ on S1. Soon after, Herman
used a cross ratio distortion inequality of Światek [Sw] for critical circle maps to give
this meta theorem a real content. He proved that fθ (or any real-analytic critical
circle map with rotation number θ for that matter) is quasisymmetrically conjugate
to Rθ if and only if θ is of bounded type [H2]. In 1993, Petersen showed that for
every irrational θ, the “Julia set” J(Fθ) is locally-connected and has measure zero,
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which by Herman’s theorem implies the same statement for Jθ in the case θ is of
bounded type [P2]. In this case, the Siegel disk ∆θ is a quasidisk in the sense of
Ahlfors and its boundary contains the finite critical point. The measure statement in
the bounded type case was improved by McMullen, who showed that the Hausdorff
dimension of the Julia set of Pθ is strictly less than 2 [Mc2]. Motivated by Theorem A
and McMullen’s result, we ask:

Question 1. What can be said about the Hausdorff dimension of Jθ when θ belongs
to the arithmetical class E?

The idea behind the proof of Theorem A is to replace the technique of quasiconfor-
mal surgery by a trans-quasiconformal surgery on a cubic Blaschke product fθ. Let
us give a brief sketch of this process.

We fix an irrational number 0 < θ < 1 and following [Do] we consider the degree
3 Blaschke product

fθ : z 7→ e2πit z2
(
z − 3

1− 3z

)
,

which has a double critical point at z = 1. Here 0 < t = t(θ) < 1 is the unique
parameter for which the critical circle map fθ|S1 : S1 → S1 has rotation number θ (see
subsection 2.4). By a theorem of Yoccoz [Yo1], there exists a unique homeomorphism
hθ : S1 → S1 with hθ(1) = 1 such that hθ ◦ fθ|S1 = Rθ ◦ hθ. Let H : D → D be any
homeomorphic extension of hθ and define

Fθ(z) = Fθ,H(z) :=

{
fθ(z) if |z| ≥ 1

(H−1 ◦Rθ ◦H)(z) if |z| < 1

Then Fθ is a degree 2 topological branched covering of the sphere. It is holomorphic
outside of D and is topologically conjugate to a rigid rotation on D. This is the
candidate model for the quadratic map Pθ.

By way of comparison, if there is any correspondence between Pθ and Fθ, the Siegel
disk for Pθ should correspond to the unit disk for Fθ, while the other bounded Fatou
components of Pθ should correspond to other iterated Fθ-preimages of the unit disk,
which we call drops. The basin of attraction of infinity for Pθ should correspond to a
similar basin A(∞) for Fθ (which is the immediate basin of attraction of infinity for
fθ). By imitating the case of polynomials, we define the “filled Julia set” K(Fθ) as
C r A(∞) and the “Julia set” J(Fθ) as the topological boundary of K(Fθ), both of
which are independent of the homeomorphism H (compare Fig. 2).

By the theorem of Petersen mentioned above, J(Fθ) is locally-connected and has
measure zero for all irrational numbers θ. Thus, the local-connectivity statement in
Theorem A will follow once we prove that for θ ∈ E there exists a homeomorphism
ϕθ : C → C such that ϕθ ◦Fθ ◦ϕ−1θ = Pθ. The measure zero statement in Theorem A
will follow once we prove ϕθ is absolutely continuous.
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The basic idea described by Douady in [Do] is to choose the homeomorphic ex-
tension H in the definition of Fθ to be quasiconformal, which by Herman’s theorem
is possible if and only if θ is of bounded type. Pulling back the standard confor-
mal structure µ0|D by H to a conformal structure µ|D = H∗(µ0|D), and spreading
µ|D by the iterated inverse branches of Fθ to all the drops, yields an Fθ-invariant
conformal structure µ with bounded dilatation and with the support contained in
the filled Julia set K(Fθ). The measurable Riemann mapping theorem shows that µ
can be integrated by a quasiconformal homeomorphism, which, when appropriately
normalized, yields the desired conjugacy ϕθ.

To go beyond the bounded type class in the surgery construction, one has to give up
the idea of a quasiconformal surgery. The main idea, which we bring to work here, is
to use extensions H which are trans-quasiconformal, i.e., have unbounded dilatation
with controlled growth. What gives this approach a chance to succeed is the theorem
of David on integrability of certain conformal structures with unbounded dilatation
[Da]. David’s integrability condition requires that for all largeK, the area of the set of
points where the dilatation is greater than K must be dominated by an exponentially
decreasing function of K (see subsection 2.5 for precise definitions). An ACL (ab-
solutely continuous on lines) orientation-preserving homeomorphism between planar
domains is a David homeomorphism if it pulls back the standard conformal structure
to one which satisfies the above integrability condition. Such homeomorphisms are
absolutely continuous.

To carry out a trans-quasiconformal surgery, we have to address two fundamental
questions:

Question 2. Under what optimal arithmetical condition EDE on θ does the lineariza-
tion hθ admit a David extension H : D → D?

Question 3. Under what optimal arithmetical condition EDI on θ does the model Fθ
admit an invariant conformal structure satisfying David’s integrability condition in
the plane?

It turns out that the two questions have the same answer, i.e., EDE = EDI. Clearly
EDE ⊇ EDI, but the other inclusion is a non-trivial result, which we prove in this paper
by means of the following construction.

Define a measure ν supported on D by summing up the push forwards of Lebesgue
measure on all the drops. In other words, for any measurable set E ⊂ D, set

ν(E) := area(E) +
∑

g

area(g(E)),

where the summation is over all the univalent branches g = F−kθ mapping D to any
drop. Evidently ν is absolutely continuous with respect to Lebesgue measure on D.
However, we prove a much sharper result:

Theorem B. The measure ν is dominated by a universal power of Lebesgue measure.
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In other words, there exists a universal constant 0 < β < 1 and a constant C > 0
(depending on θ) such that

ν(E) ≤ C (area(E))β

for every measurable set E ⊂ D.

It follows immediately from this key estimate that the Fθ-invariant conformal struc-
ture µ constructed above is David integrable if µ|D is David integrable, or equivalently,
if there is a David extension H for hθ.

In view of Theorem B, a conjugacy ϕθ between Fθ and Pθ exists whenever hθ admits
a David extension to the disk. The following theorem proves the existence of David
extensions for circle homeomorphisms which arise as linearizations of critical circle
maps with rotation numbers in E . This theorem, as formulated here in the context
of our trans-quasiconformal surgery, is new. However, we should emphasize that all
the main ingredients of its constructive proof are already present in a manuscript of
Yoccoz [Yo2].

Theorem C. Let f : S1 → S1 be a critical circle map whose rotation number θ =
[a1, a2, a3, . . .] belongs to the arithmetical class E. Then the normalized linearizing
map h : S1 → S1, which satisfies h ◦ f = Rθ ◦h, admits a David extension H : D → D
so that

area

{
z ∈ D :

∣∣∣∣
∂H(z)

∂H(z)

∣∣∣∣ > 1− ε

}
≤M e−

α
ε for all 0 < ε < ε0.

Here M > 0 is a universal constant, while in general the constant α > 0 depends on
lim supn→∞(log an)/

√
n and the constant 0 < ε0 < 1 depends on f .

Let us point out that Theorem C proves E ⊂ EDE, where EDE is the arithmetical
condition in Question 2. We have reasons to speculate that the above inclusion should
in fact be an equality, but so far we have not been able to prove this.

The idea of constructing rational maps by quasiconformal surgery on Blaschke prod-
ucts has been taken up by several authors. For instance Zakeri, who in [Z1] models
the one-dimensional parameter space of cubic polynomials with a Siegel disk of a given
bounded type rotation number. Also this idea is central to the work of Yampolsky
and Zakeri in [YZ], where they show that any two quadratic Siegel polynomials Pθ1
and Pθ2 with bounded type rotation numbers θ1 and θ2 are mateable provided that
θ1 6= 1 − θ2. We believe adaptations of the ideas and techniques developed in the
present paper will give generalizations of those results to rotation numbers in E .
Acknowledgements. The first author would like to thank the Mathematics De-
partment of Cornell University for its hospitality and IMFUA at Roskilde University
for its financial support. The second author is grateful to IMS at Stony Brook for
supporting part of this research during the Spring semester of 1999.
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2. Preliminaries

2.1. Some general notations. We will adopt the following notations throughout
this paper:

• T is the quotient R/Z.

• S1 is the unit circle {z ∈ C : |z| = 1}; we often identify T and S1 via the
exponential map x 7→ e2πix without explicitly mentioning so.

• |I| is the Euclidean length of an interval I ⊂ T or S1.

• For x, y ∈ T or S1 which are not antipodal, [x, y] = [y, x] (resp. ]x, y[=]y, x[)
denotes the shorter closed (resp. open) interval with endpoints x, y.

• dist(·, ·), diam(·) and area(·) denote the Euclidean distance, Euclidean diam-
eter and Lebesgue measure in C.

• For a hyperbolic Riemann surfaceX, `X(·) and diamX(·) denote the hyperbolic
arclength and diameter in X.

• In a given statement, by a universal constant we mean one which is indepen-
dent of all the parameters/variables involved. Two positive numbers a, b are
said to be comparable up to a constant C > 1 if b/C ≤ a ≤ bC. For two
positive sequences {an} and {bn}, we write an 4 bn if there exists a universal
constant C > 1 such that an ≤ C bn for all large n. We define an < bn in a
similar way. We write an ³ bn if bn 4 an 4 bn, i.e., if there exists a universal
constant C > 1 such that bn/C ≤ an ≤ C bn for all large n. Any such rela-
tion will be called an asymptotically universal bound. Note that for any such
bound, the corresponding inequalities hold for every n if C is replaced by a
larger constant (which may well depend on our sequences and no longer be
universal).

Another way of expressing an asymptotically universal bound, which we
will often use, is as follows: When an 4 bn, we say that an/bn is bounded
from above by a constant which is asymptotically universal. Similarly, when
an ³ bn, we say that an and bn are comparable up to a constant which is
asymptotically universal.

Finally, let {an = an(x)} and {bn = bn(x)} depend on a parameter x
belonging to a set X. Then we say that an ³ bn uniformly in x ∈ X if
there exists a universal constant C > 1 and an integer N ≥ 1 such that
bn(x)/C ≤ an(x) ≤ Cbn(x) for all n ≥ N and all x ∈ X.

2.2. Some arithmetic. Here we collect some basic facts about continued fractions;
see [Kh] or [La] for more details. Let 0 < θ < 1 be an irrational number and consider
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the continued fraction expansion

θ =
1

a1 +
1

a2 +
1

a3 + · · ·

= [a1, a2, a3, . . .],

with an = an(θ) ∈ N. The n-th convergent of θ is the irreducible fraction pn/qn :=
[a1, a2, . . . , an]. We set p0 := 0, q0 := 1. It is easy to verify the recursive relations

(2.1)
pn = an pn−1 + pn−2
qn = an qn−1 + qn−2

for n ≥ 2. The denominators qn grow exponentially fast; in fact it follows easily from
(2.1) that

qn > (
√
2)n for n ≥ 2.

Elementary arithmetic shows that

(2.2)
1

qn(qn + qn+1)
<

∣∣∣∣θ −
pn
qn

∣∣∣∣ <
1

qnqn+1
,

which implies pn/qn → θ exponentially fast.
Various arithmetical conditions on irrational numbers come up in the study of

indifferent fixed points of holomorphic maps. Of particular interest are:

• The class Dd of Diophantine numbers of exponent d ≥ 2. An irrational θ
belongs to Dd if there exists some C > 0 such that |θ − p/q| ≥ Cq−d for all
rationals p/q. It follows immediately from (2.2) that for any d ≥ 2

(2.3) θ ∈ Dd ⇔ sup
n

qn+1
qnd−1

< +∞⇔ sup
n

an+1
qnd−2

< +∞.

• The class D :=
⋃

d≥2Dd of Diophantine numbers. From (2.3) it follows that

θ ∈ D ⇔ sup
n

log qn+1
log qn

< +∞.

• The class D2 of Diophantine numbers of exponent 2. Again by (2.3)

θ ∈ D2 ⇔ sup
n
an < +∞.

For this reason, any such θ is called a number of bounded type.

• The class B of numbers of Brjuno type. By definition,

θ ∈ B ⇔
∞∑

n=1

log qn+1
qn

< +∞.
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We have the proper inclusions

D2 ( Dd ( D ( B
for any d > 2. Diophantine numbers of any exponent d > 2 have full measure in [0, 1]
while numbers of bounded type form a set of measure zero.

The following theorem due to Khinchin characterizes the asymptotic growth of the
sequence {an} for random irrational numbers [Kh]:

Theorem 2.1. Let ψ : N → R be a given positive function.

(i) If
∑∞

n=1

1

ψ(n)
< +∞, then for almost every irrational 0 < θ < 1 there are

only finitely many n for which an(θ) ≥ ψ(n).

(ii) If
∑∞

n=1

1

ψ(n)
= +∞, then for almost every irrational 0 < θ < 1 there are

infinitely many n for which an(θ) ≥ ψ(n).

Corollary 2.2. Let E be the set of all irrational numbers 0 < θ < 1 for which the
sequence {an = an(θ)} satisfies

(2.4) log an = O(
√
n) as n→∞.

Then E has full measure in [0, 1].

The class E will be the center of focus in the present paper. It is easily seen to be a
proper subclass of Dd for any d > 2.

2.3. Rigid rotations. We now turn to elementary properties of rigid rotations on
the circle. For a comprehensive treatment, we recommend Herman’s monograph
[H1]. Let Rθ : x 7→ x + θ (mod Z) denote the rigid rotation by θ. For x ∈ R, set
‖x‖ := infn∈Z |x− n|. Then, for n ≥ 2,

‖qnθ‖ < ‖iθ‖ for all 1 ≤ i < qn.

Thus, considering the orbit of 0 ∈ T under the iteration of Rθ, the denominators qn
constitute the moments of closest return. Clearly the same is true for the orbit of
every point. It is not hard to verify that

(2.5) ‖qnθ‖ = (−1)n(qnθ − pn),

so that the closest returns occur alternately on the left and right side of 0.
Consider the decreasing sequence ‖q1θ‖ > ‖q2θ‖ > ‖q3θ‖ > · · · and define the

scaling ratio

sn :=
‖qnθ‖
‖qn+1θ‖

> 1.

By (2.1) and (2.5)

sn−1 = an+1 +
1

sn
.
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xqn+1
xqn+1 qn qn-1

xqn + xqn-1

...
0nqx x qn+1

Figure 1. Selected points in the orbit of 0 under the rigid rotation.

In particular, the two sequences {an+2} and {sn} have the same asymptotic behavior.
For example, it follows that the sequence {sn} is bounded if and only if θ is of bounded
type.

There are two basic facts about the structure of the orbits of rotations that we will
use repeatedly:

• For i ∈ Z, let xi denote the iterate R−iθ (0) (Caution: We have labeled the orbit
of 0 backwards to simplify the subsequent notations; this corresponds to the
standard notation for the inverse map R−1θ ). Given two consecutive closest
return moments qn and qn+1, the points in the orbit of 0 occur in the order
shown in Fig. 1 (the picture shows the case n is odd; for the case n is even
simply rotate the picture 180◦ about 0). Note that |[0, xqn ]| = |[0, x−qn ]| =
‖qnθ‖. Evidently, the orbit of any other point of T enjoys the same order.

• Let In := [0, xqn ] be the n-th closest return interval for 0. Then the collection
of intervals

(2.6) Πn(Rθ) := {R−iθ (In)}0≤i≤qn+1−1 ∪ {R−iθ (In+1)}0≤i≤qn−1
defines a partition of the circle modulo the common endpoints. We call Πn(Rθ)
the dynamical partition of level n for Rθ.

Theorem 2.3 (Poincaré). Let f : T → T be any circle homeomorphism with irra-
tional rotation number ρ(f) = θ. Then there exists a continuous degree 1 monotone
map h : T → T such that h ◦ f = Rθ ◦ h.
Any such map h is called a Poincaré semiconjugacy. It easily follows from this
theorem that the combinatorial structure of the orbits of any circle homeomorphism
with irrational rotation number θ is the same as the combinatorial structure of the
orbit of 0 for Rθ.

2.4. Critical circle maps. For our purposes, a critical circle map will be a real-
analytic homeomorphism of T with a critical point at 0. It was proved by Yoccoz
[Yo1] that for a critical circle map with irrational rotation number, every Poincaré
semiconjugacy is in fact a conjugacy:

Theorem 2.4 (Yoccoz). Let f : T → T be a critical circle map with irrational
rotation number ρ(f) = θ. Then there exists a homeomorphism h : T → T such that
h ◦ f = Rθ ◦ h. This h is uniquely determined once normalized by h(0) = 0.

We will reserve the notation xi for the backward iterate f−i(0) of the critical point
0 and In := [0, xqn ] for the n-th closest return interval under f−1. The dynamical
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partition Πn(f) of level n for f will be defined as h−1(Πn(Rθ)), or equivalently, by
(2.6) with Rθ replaced by f .

Herman took the next step in studying critical circle maps by showing that the
linearizing map h is quasisymmetric if and only if ρ(f) is irrational of bounded type.
The proof of this theorem makes essential use of the existence of real a priori bounds
developed by Światek and Herman. Here is a version of this result that we will need
in this paper (see [Sw], [H2], [dFdM], or [P4]).

Theorem 2.5 (Światek-Herman). Let f : T → T be a critical circle map with ρ(f)
irrational. Then

(i) There exists an asymptotically universal bound

|[y, f ◦qn(y)]| ³ |[y, f−qn(y)]|
which holds uniformly in y ∈ T.

(ii) The lengths of any two adjacent intervals in the dynamical partition Πn(f) are
comparable up to a bound which is asymptotically universal. In other words,

max

{ |I|
|J | : I, J ∈ Πn(f) are adjacent

}
³ 1.

An important corollary of (ii), which exhibits a sharp contrast with the case of
rigid rotations, is that the scaling ratio

sn(f) :=
|In|
|In+1|

is bounded from above and below by an asymptotically universal constant regardless
of the map f .

Remark 2.6. The above (i) and (ii) are presumably the most general statements one
can expect when working with the class of all critical circle maps. However, stronger
versions of these bounds can be obtained by restricting to a special class of such maps.
For example, fix a critical circle map f0 and consider the one-dimensional family

F = {Rt ◦ f0 : 0 ≤ t ≤ 1 and ρ(Rt ◦ f0) is irrational}.
Then, within this family the above bounds hold for all n (rather than all large n),
with the constant depending only on f0 and not on t. In other words, there exists a
constant C = C(f0) > 1 such that

1

C
≤ |[y, f ◦qn(y)]|
|[y, f−qn(y)]| ≤ C for all n ≥ 1, y ∈ T, and f ∈ F ,

1

C
≤ max

{ |I|
|J | : I, J ∈ Πn(f) are adjacent

}
≤ C for all n ≥ 1 and f ∈ F .
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We will need the following result on the size of the intervals in the dynamical
partitions for a critical circle map; it is a direct consequence of real a priori bounds
(see for example [dFdM], Theorem 3.1):

Lemma 2.7. Let f : T → T be a critical circle map, with ρ(f) irrational, and let
Πn(f) denote the dynamical partition of level n for f . Then there exist universal
constants 0 < σ1 < σ2 < 1 such that

σn1 4 |In| ≤ max
I∈Πn(f)

|I| 4 σn2 .

2.5. David homeomorphisms. Let Ω,Ω′ be domains in C and ϕ : Ω → Ω′ be
an orientation-preserving homeomorphism which is absolutely continuous on almost
every horizontal and vertical line (we abbreviate this property by ACL). Then ϕ has
partial derivatives ∂ϕ and ∂ϕ almost everywhere. The complex dilatation of ϕ is
defined by the measurable Beltrami differential

µϕ :=
∂ϕ

∂ϕ

dz

dz

which satisfies |µϕ|(z) < 1 at almost every z ∈ Ω. The map ϕ is quasiconformal if
and only if ‖µϕ‖∞ < 1. In this work, however, we are mainly concerned with the case
where this sup norm is equal to 1. We call ϕ a David homeomorphism if there exist
constants M > 0, α > 0, and 0 < ε0 < 1 such that

(2.7) area{z ∈ Ω : |µϕ|(z) > 1− ε} ≤M e−
α
ε for all 0 < ε < ε0.

Such homeomorphisms were first introduced and studied by Guy David in [Da] (where
he called them “µ-homeomorphisms”). Alternatively, we can express the above con-
dition in terms of the (real) dilatation

Kϕ :=
1 + |µϕ|
1− |µϕ|

=
|∂ϕ|+ |∂ϕ|
|∂ϕ| − |∂ϕ|

,

which satisfies 1 ≤ Kϕ < +∞ almost everywhere. It is easy to check that ϕ is a
David homeomorphism if and only if there exist constants M > 0, α > 0, and K0 > 1
such that

(2.8) area{z ∈ Ω : Kϕ(z) > K} ≤M e−αK for all K > K0.

David homeomorphisms can be defined on arbitrary domains on the sphere Ĉ; to do
this the Euclidean area must be replaced by the spherical area in either of the above
growth conditions.

Any measurable Beltrami differential which satisfies the growth condition (2.7) will
be called a David-Beltrami differential.

David homeomorphisms differ from classical quasiconformal maps in some respects.
A significant example is the fact that the inverse of a David homeomorphism is
not necessarily David. However, they enjoy many convenient properties (such as
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compactness) of quasiconformal maps; see [T] for a study of some of these similarities.
The following result is particularly important to us [Da]:

Theorem 2.8. Let ϕ : Ω → Ω′ be a David homeomorphism. Then ϕ and ϕ−1 are
both absolutely continuous; in other words, for a measurable set E ⊂ Ω,

area(E) = 0⇔ area(ϕ(E)) = 0.

The main theorem about David homeomorphisms is a marvelous generalization of
the theorem of Morrey-Ahlfors-Bers [AB]. It asserts that the measurable Riemann
mapping theorem holds for the class of David-Beltrami differentials [Da]:

Theorem 2.9 (David). Let Ω be a domain in C and µ be a David-Beltrami differential
on Ω. Then µ is integrable, i.e., there exists a David homeomorphism ϕ : Ω → Ω′

whose complex dilatation µϕ coincides with µ almost everywhere. Moreover, ϕ is
unique up to postcomposition with a conformal map. In other words, if Φ : Ω→ Ω′′ is
another David homeomorphism such that µΦ = µ almost everywhere, then Φ ◦ ϕ−1 :
Ω′ → Ω′′ is conformal.

2.6. Extentions of linearizing homeomorphisms. Let f be a critical circle map
with ρ(f) irrational and consider the linearizing map h given by Yoccoz’s Theorem 2.4.
The problem of extending h to a self-homeomorphism of the disk with nice analytic
properties arises in various circumstances in holomorphic dynamics, particularly in
the construction of Siegel disks by means of surgery. When ρ(f) is of bounded type,
it follows from Theorem 2.5 that h is quasisymmetric. Hence, by the theorem of
Beurling-Ahlfors [BA], it can be extended to a quasiconformal map D → D whose
dilatation only depends on the quasisymmetric norm of h (which in turn only depends
on supn an(θ), where θ = ρ(f)). This allows a quasiconformal surgery (compare [Do],
[P2], [Z1], or [YZ]).

On the other hand, when ρ(f) is not of bounded type, again by Theorem 2.5, h
fails to be quasisymmetric and hence it admits no quasiconformal extension. Thus,
one is forced to give up the idea of quasiconformal surgery.

Still, one can ask if in this case h admits a David extension to D. One way to address
this problem is to develop a Beurling-Ahlfors theory for David homeomorphisms of
the disk. For example, it is possible to show that a circle homeomorphism whose local
distortion has controlled growth admits a David extension [Z2]. But, to the best of our
knowledge, the problem of characterizing boundary values of David homeomorphisms
has not yet been solved completely:

Problem. Find necessary and sufficient conditions for a circle homeomorphism to
admit a David extension to the unit disk.

Another approach, less general but very effective in our dynamical framework, is
to attempt to construct David extensions directly for the circle homeomorphisms
which arise as linearizing maps of critical circle maps. This approach turns out to
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be successful because of the existence of real a priori bounds (Theorem 2.5). In fact,
using Yoccoz’s work in [Yo2], one can prove the following:

Theorem C. Let f : S1 → S1 be a critical circle map whose rotation number θ =
[a1, a2, a3, . . .] belongs to the arithmetical class E defined in (2.4). Then the linearizing
map h : S1 → S1, which satisfies h ◦ f = Rθ ◦ h and h(1) = 1, admits a David
extension H : D → D. Moreover, the constant M in definition (2.7) is universal,
while in general α depends on lim supn→∞(log an)/

√
n and ε0 depends on f .

The proof of this result is rather lengthy and will be postponed to the appendix.

3. A Blaschke Model

3.1. Definitions. Given an irrational number 0 < θ < 1, consider the degree 3
Blaschke product

(3.1) f = fθ : z 7→ e2πit(θ) z2
(
z − 3

1− 3z

)
,

which has superattracting fixed points at 0 and ∞ and a double critical point at
z = 1. Here 0 < t(θ) < 1 is the unique parameter for which the critical circle
map f |S1 : S1 → S1 has rotation number θ. By Theorem 2.4, there exists a unique
homeomorphism h : S1 → S1 with h(1) = 1 such that h◦f |S1 = Rθ◦h. Let H : D → D
be any homeomorphic extension of h and define

(3.2) F (z) = Fθ,H(z) :=

{
f(z) if |z| ≥ 1

(H−1 ◦Rθ ◦H)(z) if |z| < 1

It is easy to see that F is a degree 2 topological branched covering of the sphere which
is holomorphic outside of D and is topologically conjugate to a rigid rotation on D.
By imitating the polynomial case, we define the “filled Julia set” of F by

K(F ) := {z ∈ C : The orbit {F ◦n(z)}n≥0 is bounded}
and the “Julia set” of F as the topological boundary of K(F ):

J(F ) := ∂K(F ).

Let A(∞) be the basin of attraction of ∞ for F . Then A(∞) is simply-connected
and

K(F ) = C r A(∞), J(F ) = ∂A(∞).

Let us point out that although the homeomorphism H is by no means canonical,
neither J(F ) nor K(F ) nor any of the definitions to follow depends on a particular
choice of H. This is simply because the constructions do not involve the values of F
on D. The main purpose of introducing F for the following constructions is to forget
about the f -preimages of D in D. A particular choice of H is only used in the final
step of the proof of Theorem A, where we need H to be a David homeomorphism.
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Figure 2. Filled Julia set K(F ) for θ = [a1, a2, a3, . . .], where an =
be
√
nc. Computation gives t(θ) ≈ 0.441759143 for this value of θ.

The Blaschke product f was introduced by Douady and Herman [Do], using an
earlier idea of Ghys, and has been used by various authors in order to study rational
maps with Siegel disks; see for example [P2] and [Mc2] for the case of quadratic
polynomials, and [Z1] and [YZ] for variants in the case of cubic polynomials and
quadratic rational maps.

3.2. Drops and limbs. Here we follow the presentations of [P2] and [YZ] with
minor modifications. The reader can consult either of these references for a more
detailed description.

By definition, the unique component of F−1(D) r D is called the 0-drop of F and
is denoted by U0. (In Fig. 2, U0 is the prominently visible Jordan domain attached
to the unit disk at z = 1.) For n ≥ 1, any component U of F−n(U0) is a Jordan
domain called an n-drop, with n being the depth of U . The map F ◦n = f ◦n : U → U0
is a conformal isomorphism which extends isomorphically to a neighborhood of U ,
because U 0 does not intersect the forward orbit of the critical values. The unique
point F−n(1)∩ ∂U is called the root of U and is denoted by x(U). The boundary ∂U
is a real-analytic Jordan curve except at the root where it has an angle of π/3. We
simply refer to U as a drop when the depth is not important. For convenience, we
define D to be a (−1)-drop, i.e., a drop of depth −1. Note that these drops do not
depend on the extension H we used to define the map F in (3.2).

Let U and V be distinct drops of depths m and n, respectively, with m ≤ n. Then
either U ∩ V = ∅ or else U ∩ V = x(V ) and m < n. In the latter case, we call U the
parent of V , and V a child of U . Every n-drop with n ≥ 0 has a unique parent which
is an m-drop with −1 ≤ m < n. In particular, the root of this n-drop belongs to the
boundary of its parent.

By definition, D is said to be of generation 0. Any child of D is of generation 1.
In general, a drop is of generation k if and only if its parent is of generation k − 1.
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Given a point w ∈ ⋃n≥0 F
−n(1), there exists a unique drop U with x(U) = w. In

particular, two distinct children of a parent have distinct roots.
We give a symbolic description of drops by assigning addresses to them. Set U∅ :=

D, where ∅ is the empty index. For n ≥ 0, let xn := F−n(1) ∩ S1 and let Un be
the n-drop of generation 1 with root xn. Let ι = ι1ι2 · · · ιk be any multi-index of
length k ≥ 1, where each ιj is a non-negative integer. We inductively define the
(ι1 + ι2 + · · ·+ ιk)-drop Uι1ι2···ιk of generation k with root

x(Uι1ι2···ιk) = xι1ι2···ιk

as follows. We have already defined these for k = 1. Suppose that we have defined
xι1ι2···ιk−1

for all multi-indices ι1ι2 · · · ιk−1 of length k − 1. Then, we define

xι1ι2···ιk :=

{
F−1(xι2···ιk) ∩ ∂Uι1ι2···ιk−1

if ι1 = 0

F−1(x(ι1−1)ι2···ιk) ∩ ∂Uι1ι2···ιk−1
if ι1 > 0

The drop Uι1ι2···ιk will be determined by the condition of having xι1ι2···ιk as its root.
By the way these drops have been given addresses, we have

F (Uι1ι2···ιk) =

{
Uι2···ιk if ι1 = 0

U(ι1−1)ι2···ιk if ι1 > 0

Let us fix a drop Uι1···ιk . By definition, the limb Lι1···ιk is the closure of the union
of this drop and all its descendants, i.e., children, grand children, etc.:

Lι1···ιk :=
⋃

Uι1···ιk··· .

The integers k and ι1 + · · · + ιk are called generation and depth of the limb Lι1···ιk ,
respectively. Any two limbs are either disjoint or nested. Moreover, for any limb
Lι1···ιk , we have

F (Lι1···ιk) =

{
Lι2···ιk if ι1 = 0

L(ι1−1)ι2···ιk if ι1 > 0

In particular, every limb eventually maps to L0 and then to the entire filled Julia set
L∅ = K(F ).

3.3. Main results on J(F ). The Julia set J(F ) = J(Fθ,H) serves as a model for the
Julia set of the quadratic polynomial Pθ : z 7→ e2πiθz + z2 when the latter Julia set
is locally-connected. In fact, it follows from the following theorem that F and Pθ are
topologically conjugate if and only if Jθ is locally-connected:

Theorem 3.1 (Petersen). For every irrational 0 < θ < 1 the Julia set J(F ) is
locally-connected.

See [P2] for the original proof as well as [Ya] for a simplified version of it. The central
theme of the proof is the fact that the Euclidean diameter of a limb Lι1···ιk tends to
0 as its depth ι1 + · · ·+ ιk tends to ∞.
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Another issue is the Lebesgue measure of these Julia sets:

Theorem 3.2 (Petersen, Lyubich). For every irrational 0 < θ < 1 the Julia set J(F )
has Lebesgue measure zero.

This theorem was first proved in [P2] for θ of bounded type. The proof of the general
case, suggested by Lyubich, can be found in [Ya].

4. Puzzles and A Priori Area Estimates

4.1. The Dyadic Puzzle. This subsection outlines the construction of puzzle pieces
which give useful dynamical partitions of the filled Julia set K(F ) and are essential
in the proof of both Theorem A and Theorem B; see [P2] or [P3] for further details
on puzzle pieces.

Let R0 denote the closure of the fixed external ray landing at the repelling fixed
point β ∈ C r D of F . Similarly, let R1/2 := F−1(R0)rR0 denote the closure of the
external ray landing at the preimage of β (for landing of (pre)periodic rays, see for
example [DH1], [P1], or [TY]). Let E be the equipotential {z : G(z) = 1}, where
G : A(∞)→ R is the Green’s function on the basin of infinity. The set

C r (R0 ∪R1/2 ∪ E ∪ D ∪ U0 ∪ U00 ∪ U000 ∪ · · · ∪ U1 ∪ U10 ∪ U100 ∪ · · ·)
has two bounded connected components which are Jordan domains. Let P1,0 be the
closure of the connected component of the above set which intersects the external
rays with angles in ]0, 1/2[. Call the closure of the other connected component P1,1,
i.e., the one which intersects the external rays with angles in ]1/2, 1[. We call these
two sets the puzzle pieces of level 1. They form the basis of a dyadic puzzle as follows.
For n ≥ 2, define the puzzle pieces of level n as the set of homeomorphic (univalent in
the interior) preimages F−(n−1)(P1,0) and F−(n−1)(P1,1). There are exactly 2n puzzle
pieces of level n. The collection of all puzzle pieces of all levels ≥ 1 is the dyadic
puzzle.

Let P and P ′ be two distinct puzzle pieces of levels m and n, respectively, with
m ≤ n. Then either P and P ′ are interiorly disjoint or else P ′ ( P and m < n.
Moreover, for any puzzle piece P and any drop U , either P ∩U = ∅ or else P contains
a neighborhood of U r {x(U)}, where x(U) is the root of U . The boundary of each
puzzle piece P consists of a rectifiable arc in A(∞) and a rectifiable arc in J(F ). The
latter arc starts at an iterated preimage of β, follows along the boundaries of drops
passing from child to parent until it reaches the boundary of a drop U of minimal
generation. It then follows the boundary of U along a non-trivial arc I. Finally, it
returns along the boundaries of another chain of descendants of U until it reaches a
different iterated preimage of β. We call I = I(P ) ⊂ ∂U the base arc of the puzzle
piece P .

Recall that xj := F−j(1) ∩ S1 for all j ∈ Z. A puzzle piece P is called critical
if it contains the critical point x0 = 1. The base arc I(P ) of a critical puzzle piece
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Figure 3. Critical puzzle pieces P n given by Proposition 4.2.

P is an arc [xj, 1] ⊂ S1, where j = αqn + qn−1 for some n ≥ 1 and 0 ≤ α < an+1.
The critical puzzle piece P is “below” the critical point 1 if n is even and “above”
it if n is odd. For 0 < k < qn, none of the puzzle pieces F−k(P ) with base arc
F−k(I(P )) ⊂ S1 are critical. But F−qn(P ) contains two puzzle pieces P ′ and P ′′

which are critical with base arcs I(P ′) = [1, xqn ] and I(P ′′) = [xj+qn , 1]. Note that
I(P ′) ∩ I(P ) = {1} while I(P ′′) ( I(P ). We call P ′ the swap (for swapping sides) of
P and write P ′ = Swap(P ).

R1/2

R0

4.2. Further definitions.

Definition 4.1. LetR be the closure of the unique external ray landing at the critical

value x−1 and let R̂ be the image of R under the reflection z 7→ 1/z. For an open
interval J ( S1 r {x−1}, define the simply-connected domain

(4.1) CJ := (C r (S1 ∪R ∪ R̂)) ∪ J.
The notations diamJ(·) = diamCJ (·) and `J(·) = `CJ (·) will be reserved for the hyper-
bolic diameter and the hyperbolic arclength in CJ .

For n ≥ 0, set In = In0 := [xqn , 1] and J
n = Jn0 :=]x−qn+1+qn , x−qn [. For 0 ≤ j < qn+1,

define Inj and Jnj as the iterated preimages (F |S1)−j(In) and (F |S1)−j(Jn), respectively.
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Observe that Inj ( Jnj , and that the collection

{Inj }qn+1−1
j=0 ∪ {In+1j }qn−1j=0

induces the dynamical partition Πn(f) as defined in subsection 2.4.

The following is a central result in the proof of local-connectivity of J(F ) in [P2].

Proposition 4.2. There exists a sequence of critical puzzle pieces {P n}n≥0, with
I(P n) = In and I(Swap(P n)) = In+1 for all n, such that their hyperbolic perimeter
is bounded from above and below by an asymptotically universal constant:

`Jn(∂P
n) ³ 1,

`Jn+1(∂ Swap(P n)) ³ 1.

Note that P 0 in the above proposition is the puzzle piece P1,1 if 0 < θ < 1
2
, and is the

puzzle piece P1,0 if
1
2
< θ < 1 (see subsection 4.1). We should also emphasize that P n

is not a puzzle piece of level n.

Proof. The first bound is the content of Proposition and Definition 3.1, Lemma 3.4
and Lemma 3.6 in [P2]. (There is a slight difference between the definition of CJ in
[P2] and the one used here. The above mentioned Lemma 3.4 serves to compensate
for this difference.) The second bound follows from exactly the same arguments. ¤

Remark 4.3. By an elaborate adaptation of the ideas in [P2], one can show that the
sequence {P n} defined by P 0 as above and P n+1 := Swap(P n) for all n ≥ 0 satisfies
the conditions of Proposition 4.2. But this simplifying choice of the critical puzzle
pieces is not needed here.

Based on the above sequence {P n}, we shall define several new sets, which will be
the basis of the proof of our main theorems. In what follows the integer n ≥ 0 will
be fixed.

(1) Define P n
0 := P n and P n

qn+1
:= Swap(P n). For 0 ≤ j < qn+1, let P n

j be the
unique puzzle piece with base arc Inj which maps isomorphically to P n by

F ◦j, and for qn+1 ≤ j < qn+1 + qn, let P n
j be the unique puzzle piece with

base arc In+1j−qn+1
which maps isomorphically to P n

qn+1
by F ◦j−qn+1 .

(2) For 0 ≤ j < qn+1 + qn, we define the reflected puzzle piece P̂ n
j ⊂ D as the

image of P n
j under z 7→ 1/z. Abusing the language, these reflected puzzle

pieces and their iterated F -preimages outside D shall also be called “puzzle
pieces”. To emphasize this distinction, the original elements of the dyadic
puzzle will sometimes be referred to as the exterior puzzle pieces.

(3) Let Qn
0 ⊂ U0 be the unique puzzle piece which satisfies F (Qn

0 ) = f(P̂ n
qn+1

) =

P̂ n
qn+1−1. For 0 ≤ j < qn+1 + qn, define Q

n
j to be the unique puzzle piece in
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Figure 4. Some other puzzle pieces.

Uj which maps isomorphically to Qn
0 by F ◦j. Similarly, for 0 ≤ j < qn+1 + qn,

define Q̂n
j ⊂ D to be the image of Qn

j under the reflection z 7→ 1/z (see Fig. 4).

(4) For 0 ≤ j < qn+1 + qn, j 6= qn+1 − 1, let P n
0,j be the unique puzzle piece whose

base arc is on ∂U0 and satisfies F (P n
0,j) = P n

j . Similarly, we define P̂ n
0,j ⊂ U0

as the reflection of P n
0,j in ∂U0, i.e., the unique puzzle piece with the same

base arc as P n
0,j which satisfies F (P̂ n

0,j) = P̂ n
j .

(5) For 0 ≤ j < qn+1 + qn, let Qn
0,j and Q̂n

0,j denote the unique puzzle pieces

containing x0,j which map by F to Qn
j and Q̂n

j , respectively.

(6) We define the closed annuli

An :=

qn+1+qn−1⋃

j=0

(
P n
j ∪Qn

j

)

Ân :=

qn+1+qn−1⋃

j=0

(
P̂ n
j ∪ Q̂n

j

)

An := An ∪ Ân

It is easy to check that An is a closed topological annulus which contains the
unit circle in its interior.
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Figure 5. Schematic picture of the annulus An and the “rectangle” An
0 .

(7) Similarly, we define the closed “rectangles”

An
0 :=

qn+1+qn−1⋃

j=0,j 6=qn+1−1
P n
0,j ∪

qn+1+qn−1⋃

j=0

Qn
0,j

Ân
0 :=

qn+1+qn−1⋃

j=0,j 6=qn+1−1
P̂ n
0,j ∪

qn+1+qn−1⋃

j=0

Q̂n
0,j

An
0 := An

0 ∪ Ân
0

It is easy to check that An
0 is a closed topological disk which does not contain

the critical point x0 = 1. Moreover, An ∪ An
0 contains an open neighborhood

of the union S1 ∪ ∂U0 (see Fig. 5).

An

An ∩ An
0

An
0

(8) Finally, pull these annuli and rectangles back to define the sets

Zn
−1 := Ân Zn

k := Ân ∪
k⋃

m=0

F−m(Ân
0 ∪Qn

0 ) Zn := Ân ∪
∞⋃

m=0

F−m(Ân
0 ∪Qn

0 ),

Yn
−1 := An Yn

k := An ∪
k⋃

m=0

F−m(An
0 ) Yn := An ∪

∞⋃

m=0

F−m(An
0 ).

Observe that Zn
k and Zn = limk→∞Zn

k are subsets of the filled Julia set K(F ).
Moreover, we have the inclusions

Zn+2
k ⊂ Zn

k Yn+2
k ⊂ Yn

k Zn
k ⊂ Yn

k

Zn+2 ⊂ Zn Yn+2⊂ Yn Zn ⊂ Yn
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In what follows we use the generic symbol P for any of the puzzle pieces P or
Q defined in the items (1)-(5) above, as well as their iterated preimages under F .

Similarly, the generic symbol P̂ will be used for any of the puzzle pieces P̂ or Q̂
defined in (1)-(5) and their preimages. Note that puzzle pieces always come in pairs

(P, P̂ ) which are the reflections of one another through the boundary of some drop

U , with P ∩ U = ∅, and P̂ ⊂ U .
By an abuse of language, we say that a puzzle piece P belongs to one of the sets

defined in items (6)-(8) above if P appears as a puzzle piece in one of the unions used
in the definition of that set. We use the notation / to express this relation. As an
example, P n

0 belongs to An and we write P n
0 / A

n. Note that the relation / implies

the set-theoretic ⊂, but not vice verse. For instance, P̂ n+2
0 ⊂ Zn but P̂ n+2

0 /Zn does
not hold.

4.3. Supporting lemmas. This subsection will prove several a priori estimates on
the geometry of the puzzle pieces and the sets we defined above. Let us start with
the following

Lemma 4.4. We have the following asymptotically universal bounds:

diamJn(P
n
0 ) = diamJn(P̂

n
0 ) ³ 1

diamJn+1(P n
qn+1

) = diamJn+1(P̂ n
qn+1

) ³ 1

diamJn(Q
n
0 ) = diamJn(Q̂

n
0 ) ³ 1

Proof. The first two are immediate from Proposition 4.2. To prove the third bound,

observe that diam(P̂ n
qn+1

) ³ diam(Qn
0 ) and hence by the second bound we have the

(Euclidean) asymptotically universal bound

|Jn| ³ |Jn+1| ³ diam(P̂ n
qn+1

) ³ diam(Qn
0 ).

Since Qn
0 is a subset of U0 which makes a definite angle with the unit circle at z = 1,

the third bound follows. ¤

Lemma 4.5. We have the following asymptotically universal bound:

area(P n
0 ) ³ |In|2.

Proof. By Lemma 4.4, diamJn(P
n
0 ) ³ 1 which implies diam(P n

0 ) ³ |Jn|. Hence
area(P n

0 ) 4 |In|2, since |In| ³ |Jn| by real a priori bounds.
To obtain the lower estimate, take an almost equilateral triangle T0 ⊂ U0 with a

vertex at z = 1 whose sidelength is comparable to |Jn+2|, so that we have area(T0) ³
|Jn+2|2 ³ |In+2|2 and diamJn+2(T0) 4 1. The univalent branch of f−qn+2 which maps
Jn+2 to ]x−qn+3+2qn+2

, 1[ maps the interval In+2 to [x2qn+2
, xqn+2

] and T0 to some “tri-
angle” Tn+2 ⊂ Uqn+2

with a distortion which is asymptotically universal (compare
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Theorem 4.7). It follows from real a priori bounds that

1 ³ area(T0)

|In+2|2 ³ area(Tn+2)

|[x2qn+2
, xqn+2

]|2 ³
area(Tn+2)

|In+2|2 ³ area(Tn+2)

|In|2 .

But Uqn+2
⊂ P n

0 , so

area(P n
0 ) ≥ area(Uqn+2

) ≥ area(Tn+2) ³ |In|2.
¤

Lemma 4.6. We have the following asymptotically universal bounds:

area(P n
0 r An+2) ³ area(P̂ n

0 r Ân+2) ³ area(P n
0 ∪ P̂ n

0 )

area(P n
qn+1

r An+2) ³ area(P̂ n
qn+1

r Ân+2) ³ area(P n
qn+1

∪ P̂ n
qn+1

)

area(Qn
0 r An+2) ³ area(Q̂n

0 r Ân+2) ³ area(Qn
0 ∪ Q̂n

0 )

Proof. We prove the first bound, the other two being similar. Clearly,

area(P n
0 r An+2) ³ area(P̂ n

0 r Ân+2) 4 area(P n
0 ∪ P̂ n

0 ),

so we should only prove the reverse bound. It follows from the combinatorics of the
closest returns that the puzzle piece P n+2

0,qn+qn−1
is contained in P n

0 r An+2 (see Fig. 4).
Observe that by real a priori bounds and Lemma 4.5,

|In|2 ³ |[xqn+2+qn+qn−1
, xqn+qn−1

]|2

³ |[x0,qn+2+qn+qn−1−1, x0,qn+qn−1−1]|2

³ area(P n+2
0,qn+qn−1

).

Hence by another application of Lemma 4.5,

area(P n
0 ∪ P̂ n

0 ) ³ |In|2 ³ area(P n+2
0,qn+qn−1

).

Since
area(P n

0 r An+2) ≥ area(P n+2
0,qn+qn−1

),

we obtain the reverse bound

area(P n
0 r An+2) < area(P n

0 ∪ P̂ n
0 ).

¤

Our next task is to estimate the area of the sets Zn and Yn defined above. This will
require some distortion tools from the theory of univalent maps. Let us first recall
the following version of the classical Köebe distortion theorem [Po]:

Theorem 4.7. Let φ : U → C be a univalent map on a simply-connected domain
U ( C and let K ⊂ U be compact with hyperbolic diameter d. Then

χ(φ,K) := sup

{∣∣∣∣
φ′(z)

φ′(w)

∣∣∣∣ : z, w ∈ K
}
≤ e4d.
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Using Lemma 4.4, we immediately obtain

Corollary 4.8. Let g be any univalent branch of f−k defined on the simply-connected
domain CJn0

. Then, we have the asymptotically universal distortion bounds

χ(g, P n
0 ∪ P̂ n

0 ) ³ χ(g, P n−1
qn ∪ P̂ n−1

qn ) ³ χ(g,Qn
0 ∪ Q̂n

0 ) ³ 1

uniformly in g.

We use the above corollary to prove two distortion lemmas which will be essential
in the proof of Theorem 4.13. The first lemma deals with the pull-backs of the critical
puzzle pieces to An and An

0 only:

Lemma 4.9. Every pair (P, P̂ ) / An or An
0 is a bounded distortion pull-back of the

corresponding pair of critical puzzle pieces in An. More precisely, let g be the univalent

branch of f−j which maps the pair of critical puzzle pieces (P ′, P̂ ′) / An to (P, P̂ ),

where (P ′, P̂ ′) = (P n
0 , P̂

n
0 ) or (P n

qn+1
, P̂ n

qn+1
) or (Qn

0 ∪ Q̂n
0 ). Then

χ(g, P ′ ∪ P̂ ′) ³ 1

uniformly in g.

Proof. Let us first assume (P, P̂ ) / An. It suffices to consider the case (P, P̂ ) =

(P n
j , P̂

n
j ) for some 0 ≤ j < qn+1, because the other two cases are similar. The critical

values of f ◦j are located at 0,∞, x−1, . . . , x−j, none of which belongs to CJn0
since

j < qn+1. Hence the univalent branch g = f−j which maps P n
0 ∪ P̂ n

0 to P n
j ∪ P̂ n

j

extends univalently to the simply-connected domain CJn0
, and the claim follows from

Corollary 4.8.

Now let us assume (P, P̂ ) /An
0 . Then either (P, P̂ ) = (P n

0,j , P̂
n
0,j) for some 0 ≤ j <

qn+1 − 1, or for some qn+1 − 1 < j < qn+1 + qn, or else (P, P̂ ) = (Qn
0,j, Q̂

n
0,j) for some

0 ≤ j < qn+1+ qn. Again, let us consider only the first case, the others being similar.

In this case, the branch g = f−j−1 which maps P n
0 ∪ P̂ n

0 to P n
0,j ∪ P̂ n

0,j has a univalent
extension to CJn0

since by j + 1 < qn+1 the latter set does not contain any critical
value of f ◦j+1. Hence, again, the claim follows from Corollary 4.8. ¤

The second distortion lemma considers further pull-backs of puzzle pieces. First,
it will be convenient to include the following

Definition 4.10. For an integer k ≥ 0 and a k-drop U , consider the branch of
f−k = F−k mapping U0 isomorphically to U . It is easy to see that this branch has
a univalent extension to the simply-connected domain C r (D ∪ R), where R is the
closure of the external ray landing at the critical value x−1. We denote this univalent
extension by gU . Furthermore, we define

Gk := {gU : U is a drop of depth k},
and we set G :=

⋃∞
k=0 Gk. Note that G0 = {id}.
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Lemma 4.11. For every pair of puzzle pieces (P, P̂ )/An
0 , we have the asymptotically

universal distortion bound

χ(g, P ∪ P̂ ) ³ 1

which holds uniformly in (P, P̂ ) and g ∈ G.

Proof. Note that every g ∈ G is defined on An
0 since the domain Cr (D∪R) certainly

contains An
0 . Fix a pair (P, P̂ )/An

0 . By the proof of Lemma 4.9, the univalent branch

g1 of f
−j−1 which maps the pair of critical puzzle pieces (P ′, P̂ ′) /An to (P, P̂ ) has a

univalent extension to CJn0
or CJn+1

0
(depending on which of the three possible types

(P ′, P̂ ′) is). Let us assume we are in the first case, the other two cases being similar.

If Ω := g1(CJn0
), it follows that the hyperbolic diameter diamΩ(P ∪ P̂ ) is equal to

diamJn0
(P ′ ∪ P̂ ′) which is ³ 1 by Lemma 4.4. It is easy to see that Ω ⊂ C r (D∪R),

so that g is univalent on Ω. Since diamΩ(P ∪ P̂ ) ³ 1, it follows from Theorem 4.7

that χ(g, P ∪ P̂ ) ³ 1 as claimed. ¤

Lemma 4.12.

(i) Let k ≥ 0, U be a k-drop, P ′ be an exterior puzzle piece, and n ≥ 0. If
U ∩ P ′ 6= ∅, then U ⊂ P ′ and gU(An

0 ) ⊂ P ′.

(ii) Let k ≥ 0 and U be a k-drop. Then either gU(An
0 ) ⊂ Yn

k−1 or else we have

gU(Â
n
0 ) ∩ Yn

k−1 = ∅.
(iii) For every k ≥ 0 we have the equality

Yn
k = Yn

k−1 ∪
⋃
{P ∪ P̂ : P̂ / Gk(Ân

0 ) and P̂ ∩ Yn
k−1 = ∅}.

(iv) For every P̂ / Gk(Ân
0 ) with P̂ ∩ Yn

k−1 = ∅, we have P̂ r Yn+2
k = P̂ r Zn+2

k .

Proof. (i) As it was remarked in subsection 4.1, U ∩ P ′ 6= ∅ implies U ⊂ P ′ so that

P̂ ⊂ P ′ for every P̂ / gU(Â
n
0 ). If P / gU(A

n
0 ), then the interior of P intersects the

interior of P ′ since P ′ contains a neighborhood of U r {x(U)}. It follows from the
nested property of puzzle-pieces that P ⊂ P ′.

(ii) For k = 0 the claim is clear since Ân
0 ∩ Yn

−1 = ∅. Assume k ≥ 1 and consider

a k-drop U . If gU(Â
n
0 ) ∩ Yn

k−1 6= ∅, then for some external puzzle piece P ′ / Yn
k−1 we

must have U ∩P ′ 6= ∅. It follows from (i) that U ⊂ P ′ and gU(An
0 ) ⊂ P ′. This proves

gU(An
0 ) ⊂ Yn

k−1.

(iii) It follows from the definition that Yn
k = Yn

k−1 ∪Gk(An
0 ). Hence the inclusion ⊃

is trivial. For the reverse inclusion, suppose that z ∈ Yn
k r Yn

k−1. Then z ∈ Gk(An
0 ),

which means z ∈ P∪P̂ , where P̂ /gU(Ân
0 ) for some k-drop U . Since z ∈ gU(An

0 )rYn
k−1,

by (ii) we must have gU(Â
n
0 ) ∩ Yn

k−1 = ∅, so that P̂ ∩ Yn
k−1 = ∅.
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(iv) As P̂ ∩ Yn
k−1 = ∅ implies P̂ ∩ Yn+2

k−1 = ∅, we have

P̂ r Yn+2
k = P̂ r Gk(An+2

0 ) = P̂ r Gk(Ân+2
0 ∪Qn+2

0 ) = P̂ r Zn+2
k ,

where the last equality holds since P̂ ∩ Zn+2
k−1 = ∅. ¤

The following is one of the main technical results of this paper. It is this estimate
which allows us to show that the pull-back of a David-Beltrami differential on D to
the union of all drops is a David-Beltrami differential on C (compare Theorem B).

Theorem 4.13. We have the following asymptotically universal bound:

(4.2) area(Yn r Yn+2) ³ area(Yn).

As a result, there exists a universal constant 0 < δ < 1 such that

(4.3) area(Zn) ≤ area(Yn) 4 δn.

Proof. Combining Lemma 4.6 with Lemma 4.9, we obtain a universal constant 0 < λ′ < 1
and an integer N ′ ≥ 1 such that for every n ≥ N ′,

(4.4)
area(P̂ r Ân+2) ≥ λ′ area(P ∪ P̂ ) for all P̂ / Ân

area(P̂ r Ân+2
0 ) ≥ λ′ area(P ∪ P̂ ) for all P̂ / Ân

0 .

This, together with Lemma 4.11, shows that there exist a universal constant λ and
an integer N , with 0 < λ < λ′ < 1 and N ≥ N ′, such that for every n ≥ N , k ≥ 0,

and P̂ / Gk(Ân
0 ),

(4.5) area(P̂ r Zn+2
k ) ≥ λ area(P ∪ P̂ ).

We shall prove by induction on k ≥ −1 that for every n ≥ N ,

(4.6) area(Zn
k r Yn+2

k ) ≥ λ area(Yn
k ).

For the induction basis, note that the puzzle pieces which belong to Ân have disjoint

interiors. Thus, summing up the first estimate in (4.4) over all P̂ / Ân, we obtain

area(Zn
−1 r Yn+2

−1 ) = area(Zn
−1 r Zn+2

−1 ) ≥ λ′ area(An) > λ area(Yn
−1).

For the induction step, assume (4.6) holds for some k − 1 ≥ −1. Writing Zn
k =

Zn
k−1∪Gk(Ân

0 ∪Qn
0 ), we have the following estimates in which the sums are taken over
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all puzzle pieces P̂ / Gk(Ân
0 ) which do not intersect Yn

k−1:

area(Zn
k r Yn+2

k ) ≥ area(Zn
k−1 r Yn+2

k ) +
∑

P̂

area(P̂ r Yn+2
k )

(by Lemma 4.12(iv)) = area(Zn
k−1 r Yn+2

k−1 ) +
∑

P̂

area(P̂ r Zn+2
k )

(by (4.5) and (4.6)) ≥ λ area(Yn
k−1) +

∑

P̂

λ area(P ∪ P̂ )

(by Lemma 4.12(iii)) ≥ λ area(Yn
k ).

This completes the induction step. It now follows from (4.6) that for every k ≥ −1
and n ≥ N ,

area(Yn r Yn+2
k ) ≥ area(Yn

k r Yn+2
k ) ≥ area(Zn

k r Yn+2
k ) ≥ λ area(Yn

k ).

Taking the limit as k →∞ yields area(Yn rYn+2) ≥ λ area(Yn), which is equivalent
to (4.2).

The proof of (4.3) is now immediate. Let 0 < η := 1 − λ < 1 and let N be as
above. Then by induction we obtain

area(Yn) ≤ η
n−N−1

2 area(Y1) ≤ η
n−N−1

2 area{z : G(z) ≤ 1},
where G : A(∞)→ R is the Green’s function on the basin of infinity. Since this last
area is bounded by a universal constant C > 0, we obtain

area(Yn) ≤ C η
n
3

for all n ≥ 3N + 3, which proves (4.3) with δ := η
1
3 . ¤

5. Proofs of Theorems A and B

In this section we prove Theorems A and B cited in the introduction. As indi-
cated there, Theorem B implies that a David-Beltrami differential supported on D
extends to an F -invariant David-Beltrami differential on C by pull-back. Note that
the statement of this theorem is completely independent of the arithmetic of the ro-
tation number θ. Thus, with Theorem B in hand, it follows that Theorem A is true
for any arithmetical condition on θ for which the more elementary Theorem C holds
(compare Questions 2 and 3 in the introduction and the discussion there).

5.1. Concentrating Lebesgue measure. Consider the Blaschke product f = fθ
of (3.1) and the modified map F = Fθ,H of (3.2) for any irrational 0 < θ < 1 and
any homeomorphism H. We will associate to f a measure ν = νθ depending only on
θ, supported on the closed unit disk and with total mass equal to area(K(F )). This
measure is obtained by summing up the push forward of Lebesgue measure on each
drop U by the minimal iterate of f mapping U to D. More explicitly, let g0 : D → U0
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denote the univalent branch of f−1 = F−1 and let G be as in Definition 4.10. Then,
for any measurable set E ⊂ D,

(5.1) ν(E) := area(E) +
∑

g∈G
area(g ◦ g0(E)).

Evidently ν is absolutely continuous with respect to Lebesgue measure on D so that
ν(E) → 0 as area(E) → 0. Remarkably, it is possible to control the rate of this
convergence by the following power law:

Theorem B. The measure ν = νθ is dominated by a universal power of Lebesgue
measure. In other words, there exists a universal constant 0 < β < 1 and a constant
C > 0 (depending on θ) such that

ν(E) ≤ C (area(E))β

for every measurable set E ⊂ D.

Following the notations of section 4, we consider the sequence of puzzle pieces

{P̂ n
qn+1−1}n≥1 in D containing the critical value x−1 (compare Fig. 6). For simplicity,

we set ∆n := P̂ n
qn+1−1, and thus we obtain the nest of puzzle pieces

∆1 ⊃ ∆2 ⊃ · · · ⊃ ∆n ⊃ · · · ⊃ {x−1}.
Note that diam(∆n) ³ |Inqn+1−1| by Lemma 4.4 and Lemma 4.9. In particular,
diam(∆n)→ 0 as n→∞, and hence

⋂

n≥1
∆n = {x−1}.

Define

D0 := D r ∆1 and Dn := ∆n r ∆n+1 for n ≥ 1.

Using the a priori area estimates we developed in the previous section, it is quite easy
to prove Theorem B in the special case where E = Dn for large n:

Lemma 5.1. There exists a universal constant 0 < β1 < 1 such that the following
asymptotically universal bound holds:

ν(Dn) 4 (area(Dn))β1 .

Proof. Since

Dn ∪
⋃

g∈G
g ◦ g0(Dn) ⊂ Zn

for all n ≥ 1, it follows from (5.1) and Theorem 4.13 that

(5.2) ν(Dn) ≤ area(Zn) ≤ area(Yn) 4 δn.

We claim that
area(Dn) ³ area(∆n).
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Figure 6. Puzzle pieces ∆n and ∆n+1 near the critical value x−1.

In fact, In+2qn+1−1 and I
n+1
qn+2−1 are interiorly disjoint subintervals of Inqn+1−1, and by The-

orem 2.5
|In+2qn+1−1| ³ |In+1qn+2−1| ³ |Inqn+1−1|.

It follows in particular that P̂ n+2
qn+1−1 ⊂ Dn (compare Fig. 6). By Lemma 4.5 and

Lemma 4.9,

area(∆n) ≥ area(Dn) ≥ area(P̂ n+2
qn+1−1) ³ |In+2qn+1−1|2 ³ |Inqn+1−1|2 ³ area(∆n),

which proves our claim. It follows that

(5.3) area(Dn) ³ area(∆n) ³ |Inqn+1−1|2 < σ6n1 ,

where 0 < σ1 < 1 is the universal constant given by Lemma 2.7. Now by (5.2) and
(5.3), any positive constant β1 < (log δ)/(6 log σ1) will satisfy the condition of the
lemma. ¤

Lemma 5.2. We have the following asymptotically universal bound:

dist(x−1, ∂P
n
qn+1−1 r S1) ³ |Inqn+1−1|.

Proof. The upper bound dist(x−1, ∂P n
qn+1−1rS1) 4 |Inqn+1−1| follows immediately from

Proposition 4.2 combined with Lemma 4.9. For the lower bound, we use some more
refined estimates from [P2]. Throughout this and only this proof, we change the
definition of CJ in (4.1) to CJ := (C∗ r S1) ∪ J . Define the arcs Jn− :=]x−qn+1

, x−qn [
and Jn+ :=]x−qn+1+qn , x−qn+1

[ so that Jn0 = Jn− ∪ Jn+ ∪ {x−qn+1
}. The boundary of the

exterior puzzle piece P n = P n
0 can be partitioned into 5 distinguished subarcs

∂P n = In ∪On ∪Bn ∪Rn ∪Gn,
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where In = I(P n) = P n∩S1, On = P n∩U 0, Bn = P n∩U qn , and R
n∪Gn ⊂ CrD is

the remaining subarc. By Lemma 3.3 of [P2], the following asymptotically universal
bounds hold:

`C rD(R
n ∪Gn) ³ 1, `Jn−(O

n) ³ 1, `Jn+(B
n) ³ 1.

(The last bound has the form `Jn0 (B
n) ³ 1 in [P2], but the same argument gives

the above bound.) The proper holomorphic map f ◦qn+1−1 : f−qn+1+1(CJn0
)→ CJn0

is
a covering, hence a local isometry by the Schwarz lemma. Let g denote the branch
of f−qn+1+1 which maps x−qn+1

to x−1, Jn0 diffeomorphically to Jnqn+1−1 and P n
0 iso-

morphically to P n
qn+1−1. Then, since f−qn+1+1(CJn0

) ( CJnqn+1−1
, for any open interval

J ⊂ Jn0 the map g is contracting for the hyperbolic metric of CJ on the domain and
the hyperbolic metric of Cg(J) on the range. Similarly, g contracts the hyperbolic

metric on C r D. This yields the following asymptotically universal bounds:

`C rD(g(R
n ∪Gn)) ≤ `C rD(R

n ∪Gn) ³ 1,

`g(Jn−)(g(O
n)) ≤ `Jn−(O

n) ³ 1,

`g(Jn+)(g(B
n)) ≤ `Jn+(B

n) ³ 1.

The lower bound dist(x−1, ∂P n
qn+1−1rS1) < |Inqn+1−1| now follows since ∂P n

qn+1−1rS1 =
g(On ∪Bn ∪Rn ∪Gn). ¤

Corollary 5.3. Let T := {rx−1 : r ≥ 1} be the radial line segment going from the
critical value out to infinity. Then we have the following asymptotically universal
bound:

diamCrT (D
n) ³ 1.

Proof. This easily follows from the above Lemma 5.2 sinceDn = ∆nr∆n+1, |Inqn+1−1| ³
|In+1qn+2−1|, and the hyperbolic metric of C r T at z is comparable to 1/ dist(z, T ). ¤

Since each g ◦ g0 for g ∈ G has a univalent extension to C r T , we obtain the
following result by applying Theorem 4.7 and Corollary 5.3:

Corollary 5.4. We have the asymptotically universal distortion bound

χ(g ◦ g0, Dn) ³ 1,

which holds uniformly in g ∈ G.
Proof of Theorem B. Choose positive constants C1, C2 and C3 (all depending on θ),
such that for all n ≥ 0 and all g ∈ G,

ν(Dn) ≤ C1 (area(D
n))β1 ,

χ(g ◦ g0, Dn) ≤ C2,

area(Dn) ≤ C3 δ
n.
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The existence of these constants is assured by Lemma 5.1, Corollary 5.4 and the
estimate (5.2), respectively. Fix a measurable set E ⊂ D and decompose it into the
disjoint union

E = E0 ∪ E1 ∪ E2 ∪ · · · ,
where En := Dn ∩ E for n ≥ 0. Then,

ν(En) = area(En) +
∑

g∈G
area(g ◦ g0(En))

≤ C22
area(En)

area(Dn)

(
area(Dn) +

∑

g∈G
area(g ◦ g0(Dn))

)

= C22
area(En)

area(Dn)
ν(Dn)

= C22
ν(Dn)

(area(Dn))β1

(
area(En)

area(Dn)

)1−β1

(area(En))β1 ,

which gives

(5.4) ν(En) ≤ C1C
2
2 (area(E

n))β1 for all n ≥ 0.

Choose any 0 < β < β1 and let β2 := β1−β. Then, it follows from (5.4) and Hölder’s
inequality that

ν(E) ≤ C1C
2
2

∞∑

n=0

(area(En))β+β2

≤ C1C
2
2

( ∞∑

n=0

(area(En))
β2

1−β

)1−β ( ∞∑

n=0

area(En)

)β

≤ C1C
2
2 C

β2

3

( ∞∑

n=0

δ
nβ2
1−β

)1−β
(area(E))β.

This completes the proof of Theorem B. 2

5.2. Main Theorem. Now we are ready to prove the main result of this work:

Theorem A. Let E denote the set of irrational numbers θ = [a1, a2, a3, . . .] which
satisfy the arithmetical condition

log an = O(
√
n) as n→∞.

If θ ∈ E, then the Julia set of the quadratic polynomial Pθ : z 7→ e2πiθz+ z2 is locally-
connected and has Lebesgue measure zero. In particular, the Siegel disk ∆θ of Pθ is a
Jordan domain whose boundary contains the finite critical point of Pθ.
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Recall that E has full measure in [0, 1] by Corollary 2.2.

Proof. Fix an irrational θ ∈ E and consider the Blaschke product fθ in (3.1). By
Theorem C (see the end of subsection 2.6 as well as the appendix), there exists a
David homeomorphism H : D → D, with H ◦ fθ ◦H−1 = Rθ on S1, such that

area{z ∈ D : |µH |(z) > 1− ε} ≤M e−
α
ε for all 0 < ε < ε0.

Here M > 0 is universal, α > 0 depends on lim supn→∞(log an)/
√
n, and 0 < ε0 < 1

depends on θ. Let F = Fθ,H denote the Blaschke map modified by H as in (3.2). We
define an F -invariant measurable Beltrami differential µ on C as follows: First, on
the unit disk D, let

µ := µH =
∂H

∂H

dz

dz
be the pull-back of the standard (=zero) Beltrami differential by H. Then, pull µ|D
back to the union of all drops by the univalent branches g ◦ g0 for g ∈ G. Finally, on
the rest of the plane, define µ to be the standard Beltrami differential. By the very
construction, F ∗(µ) = µ. Also, the iterated branches g ◦ g0 of F−1 used to spread µ
around are all conformal, so they do not change |µ|. It follows that

area{z ∈ C : |µ|(z) > 1− ε} = ν{z ∈ D : |µ|(z) > 1− ε},
where ν is the measure we defined in (5.1). By Theorem B, there is a universal con-
stant 0 < β < 1 and a constant C > 0 depending on θ such that ν(E) ≤ C (area(E))β

for all E ⊂ D. It follows that for all 0 < ε < ε0,

area{z ∈ C : |µ|(z) > 1− ε} ≤ C (area{z ∈ D : |µ|(z) > 1− ε})β ≤ CMβ e−
αβ
ε .

One can actually get rid of the constants in front of the exponential by making ε0
smaller. In fact, choose any ω such that 0 < ω < αβ and define

ε1 := min

{
ε0,

α β − ω

log(CMβ)

}
.

Then a brief computation shows that if 0 < ε < ε1,

area{z ∈ C : |µ|(z) > 1− ε} ≤ e−
ω
ε .

This shows that µ is a David-Beltrami differential, thus integrable by Theorem 2.9.
Let ϕ : C → C be the solution to the Beltrami equation µϕ = µ, normalized by
ϕ(H−1(0)) = 0, ϕ(1) = −e2πiθ/2. Then the conjugate map P := ϕ ◦ F ◦ ϕ−1 is
a topological degree 2 branched covering of the sphere which preserves the standard
Beltrami differential of C, hence is holomorphic. It easily follows that P is a quadratic
polynomial with a Siegel disk ∆ = ϕ(D) of rotation number θ. By the way we
normalized ϕ, we must have P = Pθ. Local-connectivity of Jθ now follows from
Theorem 3.1 and the fact that ϕ is a homeomorphism. That area(Jθ) = 0 follows
from Theorem 3.2 and Theorem 2.8. ¤
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We would like to draw the reader’s attention to the following corollary which is
implicit in the above proof. It describes how the conjugating map in the above
construction depends on various parameters; this point may be of interest in the
possible future investigations, when one considers a family of such David conjugacies
as θ varies in E :
Corollary 5.5. Let θ ∈ E and let ϕ be the conjugating homeomorphism between Fθ
and Pθ given by Theorem A. Then ϕ is a David homeomorphism on C so that its
dilatation satisfies an exponential condition of the form (2.7). Moreover, the constant
M in (2.7) can be chosen to be 1, but in general α depends on lim supn→∞(log an)/

√
n

and ε0 depends on θ.

By [P5], the boundary of the Siegel disk of Pθ is a quasicircle containing the critical
point if and only if θ belongs to the class D2 of bounded type irrational numbers.

Corollary 5.6. Let θ belong to the full measure set E r D2. Then the boundary
of the Siegel disk of the quadratic polynomial Pθ is a Jordan curve of measure zero
containing the critical point, but it is not a quasicircle.

As a final remark, let us briefly sketch how to generalize Theorem A to the case of
Siegel disks of higher periods (we assume familiarity with the theory of polynomial-
like maps). Let P : z 7→ z2 + c be a quadratic polynomial with a Siegel disk ∆ of
period n > 1 and rotation number θ ∈ E . It follows from a separation lemma of
Kiwi [Ki] that P is renormalizable, i.e., there exists open topological disks U and V ,
with ∆ ⊂ U ⊂ U ⊂ V , such that P ◦n|U : U → V is a degree 2 proper holomorphic
map (compare [Z1], Theorem 4.2). According to Douady and Hubbard [DH2], P ◦n|U
is hybrid equivalent to the quadratic polynomial Pθ. In particular, the “little Julia
set” J := ∂{z ∈ U : P ◦nk(z) ∈ U for all k ≥ 1} is quasiconformally homeomorphic to
the Julia set Jθ. It follows from Theorem A that J is locally-connected and has
measure zero. From this, it is not hard to draw the same conclusions for the “big
Julia set” J(P ). The fact that local-connectivity of J implies that of J(P ) is standard
in renormalization theory (see for example [P3]). That J(P ) has measure zero follows
from the general principle (see [Ly] or [Mc1]) that the orbit of almost every z ∈ J(P )
converges to the postcritical set of P , which is the union ∆ ∪ · · · ∪ P ◦n−1(∆) in
this case. Thus, up to a set of measure zero, J(P ) =

⋃
k≥0 P

−k(J), which shows
area(J(P )) = 0.

6. Appendix: A proof of Theorem C

In this appendix we present a proof of Theorem C, which is substantially based
on Yoccoz’s work in the unpublished manuscript [Yo2]. The idea of the proof is
to construct two combinatorially equivalent dynamically-defined cell decompositions
for the upper half-plane using the critical circle map and the corresponding rigid
rotation. The cells in these decompositions have bounded geometry and are labeled
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by an integer, called their level. The closer the cell is chosen to the boundary of
H, the higher its level and the smaller its Euclidean diameter will be. The required
extension quasiconformally maps each cell of level n of the first decomposition to a
unique cell of level n of the second decomposition, with the dilatation depending only
on the (n+1)-st term an+1 of the continued fraction expansion of the rotation number
θ. The cell decompositions of bounded geometry, a fundamental inequality of Yoccoz
(Theorem 6.6 below), and a construction of Strebel (Lemma 6.10 below) are the main
ingredients of the proof.

6.1. Two cell decompositions for the upper half-plane. As in subsection 2.4,
let f : T → T be a critical circle map with a critical point at 0 and irrational rotation
number θ = [a1, a2, a3, . . .] with convergents pn/qn. We set xn := f−n(0) for all n ∈ Z.

Consider the dynamical partition Πn(f) as defined in subsection 2.4. It is easy
to see that the collection of endpoints of the intervals in Πn(f) is precisely the set
{xj : 0 ≤ j < qn+1 + qn}. By Theorem 2.5, these points chop the circle up into
comparable adjacent pieces. Unfortunately, this is not true for the corresponding
partition for the rigid rotation Rθ unless θ is of bounded type. To circumvent this
problem in our forthcoming arguments, we choose a slightly different partition as
follows.

For every integer n ≥ 0, consider the collection of points

Qn := {xj : 0 ≤ j < qn}
on T, so that Q0 = {0}. It is not hard to see that

T rQn =


 ⋃

0≤j<qn−qn−1

]xj+qn−1
, xj[


 ∪


 ⋃

0≤j<qn−1

]xj, xj+qn−qn−1
[


 .

Thus xj and xk, with j < k, are adjacent in Qn if and only if either k = j + qn−1 and
0 ≤ j < qn − qn−1, or k = j + qn − qn−1 and 0 ≤ j < qn−1. It follows that in the first
case

(6.1) [xk, xj] ∩Qn+1 = {xk, xk+qn , xk+2qn , . . . , xk+(an+1−1)qn = xj+qn+1−qn , xj},
and in the second case

(6.2) [xj, xk] ∩Qn+1 = {xj, xj+qn , xj+2qn , . . . , xj+an+1qn = xk+qn+1−qn , xk}.
As a result, we see that xj and xk, with j < k, are adjacent in both Qn and Qn+1 if
and only if an+1 = 1, k = j + qn−1, and 0 ≤ j < qn − qn−1.

Using the canonical projection R → T = R/Z, we lift the set Qn to the translation-

invariant set Q̃n := Qn + Z in R. By the above construction, for n ≥ 1, the closure
of each interval in T rQn is either an interval or the union of two adjacent intervals
in Πn(f). Hence, by lifting to R, Theorem 2.5(ii) implies the following:



34 C. L. PETERSEN AND S. ZAKERI

Lemma 6.1. Any two adjacent intervals in R r Q̃n have lengths comparable up to a
bound which is asymptotically universal. In other words,

max

{ |I|
|J | : I, J are adjacent in R r Q̃n

}
³ 1.

For n ≥ 0 and x ∈ Q̃n, let

Mn(x) :=
1

2
(xr − x`),

where xr and x` are the points in Q̃n immediately to the right and left of x. Evidently,

Mn(x) > Mn+1(x) unless xr and x` are adjacent to x in Q̃n+1 also, in which case

Mn(x) =Mn+1(x). Observe that M0(x) = 1 for all x ∈ Q̃0 = Z. Define

zn(x) := x+ iMn(x) n ≥ 0, x ∈ Q̃n.

Using the sequence {zn}, we shall define an imbedded graph Γ in the upper half-plane

H as follows: The vertices of Γ are the points {zn(x) : n ≥ 0 and x ∈ Q̃n}. Note that
zn(x) = zn+1(x) if and only if Mn(x) = Mn+1(x), in which case the corresponding
vertex of Γ is doubly labeled. The edges of Γ are the vertical segments

{[zn(x), zn+1(x)] : n ≥ 0 and x ∈ Q̃n with Mn(x) 6=Mn+1(x)}
as well as the non-vertical segments

{[zn(x), zn(y)] : n ≥ 0 and x, y are adjacent in Q̃n}.
By a cell of Γ we mean the closure of any bounded connected component of H r Γ.

Any cell γ of Γ is uniquely determined by a pair of adjacent points x < y in Q̃n with
the property that either Mn(x) 6= Mn+1(x) or Mn(y) 6= Mn+1(y). The integer n ≥ 0
will be called the level of γ, or we say that γ is an n-cell. The top of the n-cell γ is
formed by the non-vertical edge [zn(x), zn(y)] while its bottom is formed by the union
of non-vertical edges

[zn+1(t0), zn+1(t1)] ∪ [zn+1(t1), zn+1(t2)] ∪ . . . ∪ [zn+1(tk−1), zn+1(tk)],

where the points x = t0 < t1 < . . . < tk = y form the intersection [x, y] ∩ Q̃n+1. The
sides of γ are formed by the vertical edge [zn(x), zn+1(x)] (which collapses to a single
point if Mn(x) = Mn+1(x)) as well as [zn(y), zn+1(y)] (which similarly collapses to a

single point if Mn(y) = Mn+1(y)). If k = 1 so that x, y are also adjacent in Q̃n+1,
then γ is either a triangle or a trapezoid. Otherwise k ≥ 2 and by (6.1) or (6.2), γ is
a (k + 3)-gon, where k is either an+1 or an+1 + 1.

Note that for m ≥ n, any m-cell γ is contained in the horizontal strip

{z ∈ H : 0 ≤ Im(z) ≤ max
x∈Q̃n

Mn(x)}.

Hence, Lemma 2.7 implies the following
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xqn-1 - qn-2 3 xqn-1
x qn -12 0 xqn

xqn- qn-1
xqn -2

n

n+1

n -1

Figure 7. The imbedded graph Γ′ for the rigid rotation with selected

cells and points in Q′n. In this picture an = 3 and an+1 = 4. The labels

on cells denote their level.

Lemma 6.2. Fix any integer n ≥ 0. Then the union of all the m-cells of Γ for all
m ≥ n is contained in a horizontal strip {z ∈ H : 0 ≤ Im(z) ≤ `} whose height
satisfies an asymptotically universal bound ` 4 σn2 , where 0 < σ2 < 1 is the universal
constant given by Lemma 2.7.

The next lemma is a straightforward consequence of the construction of Γ and
Lemma 6.1:

Lemma 6.3. The cells of Γ have “bounded geometry” in the following sense: There is
a constant C > 1 such that the top, bottom, and sides of any n-cell γ of Γ have lengths
comparable up to C. Moreover, the slopes of non-vertical edges of γ are bounded by
C. The constant C is asymptotically universal.

In a completely similar fashion, we can construct the above objects for the rigid
rotation Rθ, for which we choose similar but “primed” notations. Thus, we have the

backward iterate x′j of the point 0, the sets Q′n and Q̃′n, the functionsM ′
n(·) and z′n(·),

and the imbedded graph Γ′ with a typical cell γ ′ (compare Fig. 7). Note that in this

case any two (adjacent or not) intervals I and J of R r Q̃′n satisfy 1/2 < |I|/|J | < 2.
We thus obtain the following analogue of Lemma 6.3 for rigid rotations:

Lemma 6.4. The cells of Γ′ have “bounded geometry” in the following sense: There
is a universal constant C > 1 such that the top, bottom, and sides of any cell γ ′ of Γ′

have lengths comparable up to C. Moreover, the slopes of non-vertical edges of γ are
bounded by 1/2.

6.2. Constructing the extension. Now let h : T → T denote the conjugacy be-
tween the critical circle map f and the rigid rotation Rθ, normalized by h(0) = 0,

given by Yoccoz’s Theorem 2.4. Let h̃ : R → R be its lift with h̃(0) = 0. Note that h̃

fixes the integer points and h̃(Q̃n) = Q̃′n for all n ≥ 0. We shall extend h̃ to a homeo-

morphism H̃ between the imbedded graphs Γ and Γ′ by mapping each vertex of Γ to
the corresponding vertex of Γ′ and each edge of Γ affinely to the corresponding edge
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of Γ′. Strictly speaking, for each n ≥ 0 and x ∈ Q̃n, we define H̃(zn(x)) := z′n(h̃(x)).

Then [z, w] is an edge of Γ if and only if [H̃(z), H̃(w)] is an edge of Γ′. Thus we can

extend H̃ further to a homeomorphism Γ
'−→ Γ′ by mapping each such edge [z, w]

affinely to [H̃(z), H̃(w)]. Note that H̃ defined this way is the identity on the horizon-
tal line R + i so we can define H(z) = z for all z ∈ H with Im(z) ≥ 1. It is easy to

check that for each cell γ of Γ, the boundary ∂γ is mapped by H̃ homeomorphically
and edgewise affinely onto the boundary ∂γ ′ of a unique cell γ ′ of Γ′.

The following is the key result of this appendix:

Theorem 6.5 (Yoccoz). There exists a constant C > 0 with the following property:

For any n-cell γ of Γ, the edgewise affine boundary homeomorphism H̃ : ∂γ → ∂γ ′

extends to a quasiconformal homeomorphism H̃ : γ → γ ′ whose dilatation is at most
C(1 + (log an+1)

2). The constant C is asymptotically universal.

Assuming this result for a moment, let us show how Theorem C cited at the end
of subsection 2.6 follows:

Proof of Theorem C. Consider the extension H̃ : H → H obtained by gluing var-

ious extensions to cells given by Theorem 6.5. Clearly H̃ is ACL and satisfies

H̃(z + 1) = H̃(z) + 1 for all z ∈ H. Since log an = O(
√
n) by the assumption,

there is a constant C1 > 0 and an integer N1 ≥ 1, both depending on θ, such that
1 + (log an+1)

2 ≤ C1 n whenever n > N1. By Theorem 6.5, there is a universal con-
stant C2 > 0 and an integer N2 ≥ 1 depending on f such that the dilatation KH̃

in the interior of any n-cell of Γ is at most C2 (1 + (log an+1)
2) whenever n > N2.

Finally, by Lemma 6.2, there is a universal constant C3 > 0 and an integer N3 ≥ 1
depending on f such that if n > N3,

∞⋃

m=n

{γ : γ is an m -cell of Γ} ⊂ {z ∈ H : 0 < Im(z) ≤ C3σ
n
2 }.

Set N := max{N1, N2, N3} and define

K0 := max{KH̃(z) : z belongs to the interior of an m-cell of Γ with m ≤ N}.
If KH̃(z) > K > K0, then either z ∈ Γ (which has Lebesgue measure zero), or else z
belongs to the interior of an n-cell of Γ with n ≥ N , so that K < KH̃(z) ≤ C1C2 n,
or equivalently n > K/(C1C2). It follows that

area{z ∈ H : 0 ≤ Re(z) ≤ 1 and KH̃(z) > K} ≤ C3 σ
K

C1C2

2 = C3 e
− log σ2
C1C2

K
.

The exponential map z 7→ e2πiz does not change the dilatation and has norm of the
derivative bounded by 2π when restricted to the upper half-plane H. Therefore, the
induced ACL homeomorphism H : D → D satisfies

area{z ∈ D : KH(z) > K} ≤ 4π2 C3 e
− log σ2
C1C2

K
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whenever K > K0. It follows that H is a David homeomorphism as in (2.8), with
M = 4π2C3, α = (log σ2)/(C1C2), andK0 defined as above. Moreover,M is universal,
α depends on C1 (which in turn depends on lim supn→∞(log an)/

√
n), andK0 depends

on f . 2

6.3. The proof of Yoccoz’s theorem. It remains to give the proof of Theorem 6.5.
Before we proceed, some preliminaries are in order.

Let n ≥ 1 and x, y be adjacent points in Qn. Let {x = t0, t1, . . . , tk−1, tk = y} =
[x, y] ∩Qn+1. Note that by (6.1) and (6.2), k = an+1 or an+1 + 1. By Lemma 6.1, we
know that each interval [tj−1, tj] in this cascade has length comparable to the next one
[tj, tj+1]. However, for large values of k, the action of f ◦qn on this cascade of intervals is
uniformly close to the action of a Möbius transformation on its fundamental domains
near a parabolic fixed point. This idea led Yoccoz to the following much sharper
statement about the relative size of these intervals, a proof of which can be found in
[Yo2] or [dFdM]:

Theorem 6.6 (Yoccoz’s almost-parabolic bound). The lengths of the intervals in the
above cascade satisfy

|[tj−1, tj]| ³
|[t0, tk]|

min{j, k − j + 1}2
uniformly in j, 1 ≤ j ≤ k.

Möbius transformations with two distinct fixed points on the real line will play a
basic role in the proof of Theorem 6.5. For our purposes, it will be convenient to put
them in the normal form

(6.3) ζa(z) :=
z

a− (a− 1)z
, a ≥ 2, z ∈ Ĉ.

Note that ζa preserves the real line, has an attracting fixed point at z = 0 with
multiplier Dζa(0) = a−1 and a repelling fixed point at z = 1 with multiplier Dζa(1) =
a. (Here and in what follows, D is the differentiation operator.)

Lemma 6.7. The derivative Dζa(x) is monotonically increasing from 1/a to a on
0 ≤ x ≤ 1. Moreover, for 0 ≤ x < x+ ε ≤ 1, we have the estimates

1 <
Dζa(x+ ε)

Dζa(x)
≤ (1 + εa)2,

ε3a

(1 + εa)2
1

(1− x)2
≤ ζa(x+ ε)− ζa(x) ≤

2ε

a

1

(1− x)2
.

In particular, if ε is comparable to 1/a so that 1/(Ca) ≤ ε ≤ C/a for some C ≥ 1,
then the above estimates take the form

(6.4) 1 <
Dζa(x+ ε)

Dζa(x)
≤ (1 + C)2,
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(6.5)
1

C3(1 + C)2
1

a2(1− x)2
≤ ζa(x+ ε)− ζa(x) ≤ 2C

1

a2(1− x)2
.

Proof. This is an elementary computation which will be left to the reader. For the
second set of inequalities, it is convenient to estimate Dζa and apply the Mean Value
Theorem. ¤

Finally, let us also recall the following standard result in quasiconformal theory:

Lemma 6.8. Let K > 1 and g : R → R be a piecewise differentiable homeomorphism
such that for all x ∈ R,

1

K
≤ Dg(x) ≤ K.

Then the homeomorphic extension G : H → H given by G(x + iy) := g(x) + iy is
K-quasiconformal.

The proof of Theorem 6.5 begins as follows. Throughout we may assume k ≥ 4, for
otherwise γ and γ ′ arem-gons of bounded geometry for somem ≤ 6 (compare Lemmas

6.3 and 6.4) and evidently there is an extension H̃ : γ → γ ′ with asymptotically
universal dilatation. It will be convenient to normalize both γ and γ ′ by mapping
them to the upper half-plane. Let H = H ∪ R ∪ {∞} and R = R ∪ {∞}. As before,
let the projections on R of the vertices of the n-cells γ and γ ′ consist of the points

t0 < t1 < . . . < tk and t′0 < t′1 < . . . < t′k,

where t′j = h̃(tj). Since k ≥ 4, we have Mn(t0) 6= Mn+1(t0) and Mn(tk) 6= Mn+1(tk).
It follows from Lemma 6.3 that the top of γ is bounded by the graph of a positive
affine map g1, with |Dg1| 4 1. The bottom of γ is bounded by the graph of a positive
piecewise affine map g2 with |Dg2| 4 1. Moreover,

sup
t0≤x≤tk

g1(x)− g2(x) ³ inf
t0≤x≤tk

g1(x)− g2(x) ³ tk − t0.

Define a homeomorphism p : γ
'−→ SQ := {x+ iy : |x| ≤ 1 and 0 ≤ y ≤ 2} by

p(x, y) :=

(
−1 + 2

x− t0
tk − t0

, 2
y − g2(x)

g1(x)− g2(x)

)
.

Note that p is affine in the x-coordinate, is fiberwise affine in the y-coordinate, and
maps the corners zn(t0), zn(tk), zn+1(t0) and zn+1(tk) to −1 + 2i, 1 + 2i, −1 and 1,
respectively (see Fig. 8). Since γ has bounded geometry as seen in the above condi-
tions on g1 and g2, it is not hard to check that p is a quasiconformal homeomorphism
whose maximum dilatation is asymptotically universal.

Similarly, map γ ′ onto the square SQ by a quasiconformal homeomorphism p′ which
is affine in the x-coordinate and is fiberwise affine in the y-coordinate as above. Then,
by Lemma 6.4, the maximum dilatation of p′ will be bounded by a universal constant.
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Figure 8. Normalizing the cells γ and γ ′, where k = 9.

To finish the normalization process, we should map the square SQ to H in an

appropriate way. Let p1 : SQ
'−→ H be the unique conformal isomorphism, which

fixes −1, 0, 1. A brief computation shows that p1 maps the corners ±1 + 2i to ±3.
Postcompose p1 with the quasiconformal homeomorphism p2 : H → H given by

HH

p2(z) :=





1 + (z − 1)(1− p−11 (1− |z − 1|)) if |z − 1| < 1
−1 + (z + 1)(1 + p−11 (−1 + |z + 1|)) if |z + 1| < 1
z otherwise

It is easy to check that the composition p2 ◦ p1 is a quasiconformal homeomorphism
SQ→ H with p2 ◦ p1(t) = t for all −1 ≤ t ≤ 1 (note that both p1 and p2 are common
for all cells and thus universal). The quasiconformal homeomorphisms

φ := p2 ◦ p1 ◦ p : γ → H and φ′ := p2 ◦ p1 ◦ p′ : γ′ → H
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have maximum dilatations which are asymptotically universal and universal, respec-
tively. They give the required normalizations of γ and γ ′.

Define a new homeomorphism Ĥ := φ′◦H̃ ◦φ−1 : R → R, and set sj := φ(zn+1(tj)),

s′j := φ′(z′n+1(t
′
j)) = Ĥ(sj). Note that Ĥ is the identity when |x| ≥ 1, and maps the

interval [sj−1, sj] affinely onto the interval [s′j−1, s
′
j] for every 1 ≤ j ≤ k. From

Theorem 6.6 and the explicit form φ = p and φ′ = p′ on the bottoms of the cells γ
and γ′, it follows that there is an asymptotically universal constant C0 > 1 and a
universal constant C1(= 2) such that for every 1 ≤ j ≤ k,

(6.6)
1

C0 min{j, k − j + 1}2 ≤ sj − sj−1 ≤
C0

min{j, k − j + 1}2
and

(6.7)
1

C1 k
≤ s′j − s′j−1 ≤

C1
k
.

Thus, we have reduced Theorem 6.5 to the situation described in the following

Lemma 6.9. Let Ĥ : R → R be a homeomorphism such that Ĥ(x) = x when |x| ≥ 1.
Suppose that k ≥ 4 and there are points s0 = −1 < s1 < . . . < sk−1 < sk = 1

mapping to Ĥ(sj) = s′j such that Ĥ is affine on each interval [sj, sj−1]. If {sj} and

{s′j} satisfy (6.6) and (6.7), then there exists a quasiconformal extension of Ĥ to H
whose dilatation is at most C (1+ (log k)2), where C > 0 depends only on C0 and C1.

The idea of the proof is to change Ĥ up to a quasiconformal factor to make it into
a piecewise Möbius transformation on [−1, 1] for which the result is easier to prove.
Write k = a + b, where a, b are integers such that 2 ≤ a ≤ b ≤ a + 1. Let ζ− and ζ+
be the Möbius transformations defined by

ζ−(z) := s′a − (1 + s′a) ζa

(−z + s′a
1 + s′a

)
,

ζ+(z) := s′a + (1− s′a) ζb

(
z − s′a
1− s′a

)
.

Here ζa and ζb are the Möbius transformations defined by (6.3). Define a homeomor-
phism ψ1 : R → R by

ψ1(x) :=





ζ−(x) −1 ≤ x ≤ s′a

ζ+(x) s′a ≤ x ≤ 1

x otherwise.

Then by (6.5) and (6.7) there exists a constant C2 > 1 depending only on C1 such
that for all 1 ≤ j ≤ k,

(6.8)
1

C2min{j, k − j + 1}2 ≤ ψ1(s
′
j)− ψ1(s

′
j−1) ≤

C2
min{j, k − j + 1}2 .
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Moreover, let ψ2 : R → R be the piecewise affine map which is the identity when
|x| ≥ 1 and satisfies ψ2(s

′
j) = ψ1(s

′
j). Then by (6.4) there exists a constant C3 > 1

depending only on C1 such that the homeomorphism ψ3 := ψ1 ◦ ψ−12 : R → R
is piecewise differentiable, with 1/C3 ≤ Dψ3(x) ≤ C3 for all x ∈ R. Finally, let
ψ4 : R → R be the piecewise affine map which is the identity when |x| ≥ 1 and
satisfies ψ4(sj) = ψ1(s

′
j). Then by (6.6) and (6.8) there exists a constant C4 > 1

depending only on C0 and C2 such that 1/C4 ≤ Dψ4(x) ≤ C4 for all x ∈ R. Note
that

Ĥ = ψ−12 ◦ ψ4 = ψ−11 ◦ ψ3 ◦ ψ4,
because Ĥ is piecewise affine. By Lemma 6.8, ψ3 and ψ4 have quasiconformal ex-
tensions whose dilatations are bounded by C3 and C4, hence depend only on C0 and
C1. Thus the proof of Lemma 6.9 will be complete once we show that the piecewise
Möbius map ψ1 has an extension to H with the bound 2(1+(log k)2) on its dilatation.
But this is a special case of the following lemma due to K. Strebel:

Lemma 6.10. Let ψ : R → R be an orientation-preserving homeomorphism which is
piecewise Möbius in the following sense: There exist n ≥ 2 fixed points x1 = xn+1 <
x2 < · · · < xn and n Möbius transformations ζ1, ζ2, . . . , ζn preserving R such that
ψ|[xj ,xj+1] = ζj for 1 ≤ j ≤ n. Let k > 1 be the largest among the multipliers of the

repelling fixed points of the ζ j. Then ψ has a quasiconformal extension Ψ : H → H
whose dilatation is bounded by 2(1 + (log k)2).

Proof. Let us first consider a related but easier problem on the horizontal strip S :=
{z ∈ C : 0 ≤ Im(z) ≤ π/2} with ψ(z) = z on the bottom edge R and ψ(z) =
z + log λ on the top edge R + iπ/2, where λ > 1. In this case, we can extend ψ to a
quasiconformal self-homeomorphism Ψ of S by interpolating linearly:

Ψ(z) = z +
2

π
Im(z) log λ.

It is easy to verify that the dilatation of this Ψ is less than 2(1 + (log λ)2). (As an
exercise, the reader can show that this is the best possible extension.)

Back to the original situation, consider the hyperbolic convex set Dj bounded by

the interval [xj, xj+1] ⊂ R and the hyperbolic geodesic Υj in H with endpoints xj
and xj+1. Each Dj is conformally isomorphic to the strip S above, with [xj, xj+1]

mapping to R+ iπ/2 and Υj mapping to R. The action of ψ on [xj, xj+1] corresponds
to z 7→ z ± log λj, where λj > 1 is the multiplier of the repelling fixed point of ζ j.
Thus, by the initial construction, ψ can be extended to a quasiconformal homeo-
morphism Ψ : Dj → Dj which interpolates between ψ|[xj ,xj+1] and the identity on

Υj, with dilatation less that 2(1 + (log λj)
2). On H r

⋃n
j=1Dj, an ideal hyperbolic

n-gon, extend Ψ as the identity map. Evidently the dilatation of Ψ on H is less than
2(1 + (log(maxj λj))

2) = 2(1 + (log k)2). ¤
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