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STABLY CHAOTIC RATIONAL VECTOR FIELDS ON CPn.

Frank LORAY and Julio C. REBELO

Abstract: We construct an open set U of rational foliations of arbitrarily fixed degree d ≥ 2 by
curves in CPn such that any foliation F ∈ U has a finite number of singularities and satisfies
the following chaotic properties. Minimality: any leaf (curve) is dense in CPn. Ergodicity:
any Lebesgue measurable subset of leaves has zero or total Lebesgue measure. Entropy: the
topological entropy is strictly positive even far from singularities. Rigidity: if F is conjugate
to some F ′ ∈ U by a homeomorphism close to the identity, then they are also conjugate by a
projective transformation.

The main analytic tool employed in the construction of these foliations is the existence of
several pseudo-flows in the closure of pseudo-groups generated by perturbations of elements in
Diff(Cn, 0) on a fixed ball.

Introduction

Let X be a polynomial vector field on Cn namely,

X = P1(z)
∂

∂z1
+ · · ·+ Pn(z)

∂

∂zn
, z ∈ Cn.

The complex integral curves of X define a regular holomorphic foliation by Riemann Surfaces
away from the common zero set of the Pi. This foliation admits an analytic extension to a
(singular) holomorphic foliation, with singular set of complex codimension ≥ 2, on CPn: in
the affine chart z, after dividing the Pi by their common factor, we can suppose that the
set of their common zeroes has codimension at least 2; in any other chart of CPn, the vector
field X is rational and, after multiplication by a convenient polynomial, becomes polynomial
again. Conversely, it turns out that any regular one dimensional holomorphic foliation on
CPn \S (where S is an analytic set of codimension ≥ 2) is obtained as above (see [Si],p.243).

The (projective) degree d of F is the number of tangencies of F with a generic hyperplane.
Alternatively, d is the smallest integer for which, after dividing by the common factor, the
vector field X has the form

X = X0 +X1 + · · ·+Xd +Hd · (z1
∂

∂z1
+ · · ·+ zn

∂

∂zn
),

where Xi denotes the ith homogeneous component of X and Hd either vanishes identically
or is a homogeneous polynomial of degree d. The foliation F may equivalently be defined
as the radial projection of the one dimensional foliation F̃ defined in Cn+1 by a degree d
homogeneous vector field X̃ given by

X̃ =
n∑

i=0

Hi(Z0, Z)
∂

∂Zi
.
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In the main affine chart z = Z/Z0, the coefficients of the polynomial vector field X defined
on Cn are given by Pi(z) = Hi(1, z) − ziH0(1, z), which explains the “radial type” of the
homogeneous component of degree d+ 1 of X.

Note that two polynomial vector fields X and X ′ define the same foliation if and only if
X ′ = λX with λ ∈ C∗. Therefore the set Fd(CPn) consisting of one dimensional holomorphic
foliations of degree ≤ d on CPn is a Zariski open subset of the complex projective space of
dimension

(d+ n+ 1)
(d+ n− 1)!

d!(n− 1)!
− 1.

Consider Fd(CPn) equipped with the natural topology arising from the identification above.
A central question in the study of these foliations is to find dynamic properties (e.g. density
of leaves, ergodicity and so on) which are satisfied for “most of” the foliations in F d(CPn).
In his report to the Helsinki Conference (cf. [Il2,p.823]), Il’yashenko made some conjectures
concerning the global dynamical behavior of “most of” these foliations. The purpose of the
present work is to provide a partial (or local) affirmative answer to his conjectures by proving
the following theorem:

Main Theorem. For any d ≥ 2, there exists a non empty open subset U ⊂ F d(CPn) such
that any element F ∈ U has a finite number of singularities and is “chaotic”, i.e. satisfies:

- Minimality: each leaf is dense in CPn;
- Ergodicity: any measurable set of leaves has zero or total Lebesgue measure;
- Entropy: the geometric entropy of the regular foliation induced by F after deleting
small balls around singularities is strictly positive;

- Rigidity: there exists a neighborhood V of the identity in the space of homeomor-
phisms Φ : CPn → CPn such that if another foliation F ′ ∈ U is topologically conjugate
to F by some Φ ∈ V, then F and F ′ are also conjugate by a projective change of
coordinates.

For the definition of the geometric entropy of a foliation we refer to [Gh,La,Wa],p.110. In
any case we shall recall this definition at the beginning of section 6.

Even for n = 2 this result is new, as far as ergodicity and topological rigidity are concerned.
In high dimensions (n ≥ 3) no example of a foliation having all leaves dense was previously
known (cf. below).

It is interesting to remark that, since dimC PGL(n,C) < dimCFd(CPn), the topological
rigidity implies structural instability, i.e. the foliations in question are approximated by
non-topologically equivalent foliations.

The rest of the introduction is devoted to setting up the main ideas involved in the proof
of our theorem as well as situating it with regard to previous work.

Recall that Fd(CPn) has been equipped with a natural topology through its identification
with a Zarisky open set of a suitable complex projective space. A property will be said to be
generic in Fd(CPn) if it is satisfied for an open subset of Fd(CPn) having total Lebesgue mea-

sure. For instance, it is easy to check that a generic foliation has exactly dn+1−1
d−1 singularities

(in particular, S is finite).

In dimension n = 2, a great amount of work has been devoted to the dynamical behavior
of foliations in Fd(CP2) which are tangent to a projective line, say the line L∞ at infinity; let
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us denote by Fd(C2) ⊂ Fd(CP2) the class of these foliations. A combination of remarkable
results due to M.O. Hudai-Verenov and mainly to Yu.Il’yashenko in the 70’s yields the
theorem below:

Theorem ([HV],[Il]). For any d ≥ 2, there is a set Ad ⊂ Fd(C2) ⊂ Fd(CP2) such that
any foliation F belonging to Ad satisfies the following:

- (almost) Minimality: each leaf (apart from the invariant line at infinity) is dense
in C2;

- Ergodicity: any measurable set of leaves has full or null Lebesgue measure;
- Rigidity: there exists an open neighborhood U of F in F d(C2) and a neighborhood
V of the identity in the space of homeomorphisms Φ : CP(2) → CP(2) such that, if a
foliation F ′ ∈ U is topologically conjugate to F by some Φ ∈ V, then F and F ′ are
also conjugate by an affine change of coordinates.

Furthermore Ad ⊂ Fd(C2) ⊂ Fd(CP2) contains a relatively open dense set (of total
Lebesgue measure) of Fd(C2).

The fact that the class Ad can be considered open inside Fd(C2) is due to Shcherbakov
(cf. [Sh1] and [Sh2]).

Nonetheless a generic element of Fd(CPn) (n ≥ 2) possesses no algebraic invariant curve
(cf. [LN,So]). Thus the subclass of Fd(CP2) consisting of foliations admitting an algebraic
invariant curve is very small. In particular the class Ad has empty interior and null Lebesgue
measure inside Fd(CP2). In other words the results above fail to provide an open set of
foliations (with fixed degree) exhibiting “chaotic” behavior (a foliation will be called chaotic
if it is minimal, ergodic, has positive entropy and is topologically rigid). However, despite
being “small”, the class Fd(C2) is interesting in its own right and, restricted to this class,
the above mentioned results are rather precise. In dimension n = 2 further improvements
have also been made as one can check in [Sh1], [GM,OB], [GM] and [LN,Sa,Sc], always with
a strong additional hypothesis such as “tangent to an algebraic curve”.

In [Mj], B.Mjuller constructed an open set of minimal foliations in F d(CP2) (precisely,
the foliations constructed are almost minimal, i.e. excluding a finite number of algebraic
leaves, the remaining leaves are dense: however the main result of [LN,So] asserts that there
is an open dense set of foliation, with fixed degree, having no algebraic invariant curve, thus
intersecting these two open sets we obtain an open set of minimal foliations). B.Mjuller
has also obtained examples of foliations in CP3 tangent to the projective plane at infinity
but having all leaves dense in the affine part. Actually only recently B.Wirtz announced a
new construction of stably minimal foliations in dimension 2 having positive entropy. The
analogous questions concerning ergodicity and topological rigidity were not addressed as far
as we know.

The original approach of Il’yashenko to study elements of F d(C2) is based on studying the
holonomy group Hol(L∞) of the invariant line at infinity L∞. Indeed Hol(L∞) is in general
a “large” (e.g. non solvable) subgroup of Diff(C, 0) whose dynamics can be well understood.
Furthermore, since the complement of L∞ is Stein (in fact isomorphic to C2), every leaf of
the foliation F in question must accumulate on L∞ so that it is captured by the dynamics of
Hol(L∞). In this way it is possible to derive global properties of F from the local dynamics
of Hol(L∞).
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The generalization of this approach, however, involves some difficulties. First, for studying
generic foliations (even when n = 2), one should be able to handle leaves having only “small”
(e.g. cyclic) holonomy groups. In fact, since generic foliations have no algebraic invariant
curve, dealing with “small” holonomy groups will be necessary for instance to obtain an
open set of chaotic foliations.

On the other hand, for dimensions greater than 2, there is another additional difficulty: the
holonomy groups involved, regardless of being “small” or “large”, are subgroups of Diff(Cn, 0)
(n ≥ 2, or more generally, pseudo-groups acting on the unit ball of Cn) whose study is much
harder than the 1-dimensional case.

In this paper we study, first, the dynamics of certain pseudo-groups acting on the unit ball
Bn of Cn without a common fixed point which are obtained as “perturbations” of subgroups
of Diff(Cn, 0). These pseudo-groups will later embody pseudo-groups generated by the ho-
lonomy groups of several leaves taken together. Their dynamics is essentially investigated
through its affine part. Indeed, under some assumptions, we prove that the pseudo-groups
approximate affine “pseudo-flows” as if they were a non-discrete subgroup of a Lie group
(sections 2, 3, 4). Using these “pseudo-flows” it is easy to discuss the corresponding dynamics
(sections 5, 6).

After realizing the pseudo-groups considered above in the “holonomy groupoid” of a fo-
liation F in CPn+1, we shall get a good control of the dynamics of F in a certain region of
CPn+1. Unfortunately there is no an argument like the “maximum principle” available (since
the complement of a projective line in CPn+1, n ≥ 2, is not Stein) in order to ensure that
the leaves of F intersect this region. We then use an “induction trick” to deduce the global
behavior of F by means of these local data (section 7).

Finally we should say that our techniques of producing flows associated to pseudo-groups
acting on Bn also works for subgroups of Diff(Cn, 0) as was recently observed by S.Lamy
who adapted our method to Diff(C2, 0) in [La]. As a complement, we give the generalization
of his result to the higher dimensional case. This may be of interest for studying foliations
in Fd(CPn) possessing an algebraic invariant curve. Despite forming a “small” class these
foliations are also important and they might permit a more detailed picture of “generic”
properties (as it happens for CP2 in view of Hudai-Verenov and Il’yashenko’s results). Yet,
for these global questions, the techniques developed in section 7 might also be useful.

Most of this work has been carried out during a visit of the first author to IMPA/RJ and
a visit of the second author to the Université Lille I. We are grateful to CNPq-Brazil and
CNRS-France for the financial support which made these visits possible.

Finally the second author has partially conducted this research for the Clay Mathematics
Institute.

1- Preliminary constructions within linear group of Cn.

This section may be viewed as an illustration of some classical ideas which are going to
be generalized to the non-linear context of pseudo-groups on the unit ball Bn ⊂ Cn in the
next sections (§2, 3, 4, 5). In any case, some of these linear results will be needed latter.
We are going to prove that, close to the identity I ∈ GL(n,C), two generic matrices A and
B generate a large subgroup G, in particular accumulating the whole of SL(n,C).



STABLY CHAOTIC RATIONAL VECTOR FIELDS ON CPn. 5

Recall that two complex numbers λ, µ ∈ C∗ may generate a dense or a discrete subgroup Λ
of C∗ depending on their multiplicative Z-dependence. In particular, dense groups as well as
discrete groups occur arbitrarily close to any choice of the generators. In other words, groups
like Λ cannot be stably (persistently) discrete (resp. dense, non-discrete) under pertubation
of the generators. Nonetheless one should notice that for “most” (in the measure sense)
choices of the generators, the resulting group is dense in C∗.

Let us now consider subgroups G ⊂ GL(n,C), n ≥ 2, generated by two matrices A and
B. Due to the determinant projection det(G) = {λ = det(A) ; A ∈ G}, which is the
subgroup of C∗ generated by the scalars λ = det(A) and µ = det(B), it follows again that
A,B cannot “stably” generate a dense subgroup of GL(n,C). On the other hand, the so-

called Schottky groups give examples of groups G whose projectivization Ĝ = {Ĉ ; C ∈ G},
being the subgroup of PGL(n,C) generated by the projective transformations Â = Proj(A)

and B̂ = Proj(B), is stably discrete (or persistently discrete): any subgroup of PGL(n,C)
generated by matrices A′, B′ close to A,B, respectively, is discrete as well. On the other hand
the classical Zassenhaus Lemma (which holds for any finite-dimensional Lie group) ensures
the existence of a neighborhood U of the identity such that any non-nilpotent subgroup
G admitting a finite generating set contained in U is not discrete. Clearly this statement
enables us to find examples of groups G ⊆ PGL(n,C) which are persistently non-discrete.

Let us equip GL(n,C) with the distance

dist(M,N) = ‖M −N‖ = sup
‖z‖=1

‖Mz −Nz‖ .

The key ingredient of Zassenhaus Lemma may be presented as follows:

Lemma 1.0. There exist constants ε0, C0 > 0 such that any given matrices A,B satisfy

‖[A,B]− I‖ ≤ C0 · ‖A− I‖ · ‖B − I‖,

provided that A,B are ε0−close to the identity I.

Proof. The differentiable map (A,B) 7→ [A,B] equals I on GL(n,C) × {I} and on {I} ×
GL(n,C). Hence its differential at (I, I) vanishes identically. Taylor Formula gives the
desired inequality. ¤

Equip (GL(n,C))2 with the product distance arising from the distance in GL(n,C) intro-
duced above.

Corollary 1.1. There is ε1 > 0 and an open set U1 (having total Lebesgue measure) of the
ε1−neighborhood of (I, I) in GL(n,C)×GL(n,C) = (GL(n,C))2 (n ≥ 2) with the following
property: if a pair of matrices (A,B) belongs to U1, then A,B generate a non-discrete
subgroup G of GL(n,C) (i.e. the closure G of G contains a non-trivial real one-parameter
group).

Proof. Choose ε1 ≤ ε0 such that C0ε1 < 1/2. Thus the sequence of iterated brackets

B0 = B, Bk+1 = [A,Bk] = ABkA
−1B−1k for k ∈ N
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converges to the identity at least as ε1/2
k.

Now, assume that A has only simple eigenvalues and choose linear coordinates through
which A is diagonal. Clearly, BAB−1 is also diagonal if and only if B permutes the eigendi-
rections of A. We claim that, if ε1 has been chosen small enough, then B cannot permute
non trivially these directions (B has to be diagonal simultaneously with A). In particular,
[A,B] = I if and only if B is diagonal and, also, [A,B] is a diagonal if and only if B is so.
By induction, the sequence Bk is non trivial, i.e. Bk 6= I for every k.

Let us now prove the claim. If ε1 < 1/n, then any matrix B which is ε1-close to the
identity satisfies |tr(B)− n| < 1. On the other hand, given a basis of unit vectors vi which
are parallel to the permuted n directions, then clearly (these vectors are close to one another
and) we have by assumption B(vi) = λi · vσ(i) for a permutation σ and scalars λi which are
ε1-close to 1. In the basis (vi), the matrix B (may lie far from the identity but) has the
following special form: on each line and each column, all coefficients are zero except one
which equals λi. The number of λi appearing along the diagonal is equal to the number of
unpermuted directions. If this number is not n, say i0 ≤ n − 2, then |tr(B) − i0| < i0 · ε1
which gives a contradiction.

We have proven that the group G is non discrete as long as A has only simple eigenvalues
and at least one eigendirection which is not shared with B. These conditions on A and B
are Zariski open and hence open and of total measure. According to Cartan’s Theorem, the
closure, G, of G is a Lie group which, being not discrete, must have a non-trivial Lie algebra.
The lemma is proved. ¤

It is convenient to remind the reader how to construct a non-trivial real one-parameter
group (also called a real flow) contained in G (so that we can dispense with Cartan’s The-
orem). This construction may be outlined as follows: for a suitable sequence Nk ∈ N
(necessarily tending to +∞), the renormalized matrices Ck = BNk

k have distance to the
identity upper and lower bounded by positive constants, say ε1

10 < Ck < ε1. Hence, maybe
passing to a subsequence, it will converge to some C ∈ GL(n,C) which is the time-one map

of the one-parameter family C t = limk→∞B
[t·Nk]
k , t ∈ R, where [ · ] stands for the integral

part.

Using the preceding statements, it is rather easy to ensure that, under further generic
assumptions on the matrices A,B, the closure G is as large as possible, namely it maps onto
PGL(n,C). This will follow (Corollary 1.3) from:

Lemma 1.2. There exists an open subset U2 of GL(n,C)×GL(n,C) having total Lebesgue
measure and such that, if (A,B) ∈ U2, then the only real vector subspaces E ⊂ gl(n,C) in-
variant under conjugation by A and B, (s.t. AEA−1 = BEB−1 = E) either are homothetic,
E ⊂ C · I, or do contain sl(n,C).

Proof. In fact, we prove that, under generic assumptions on A and B, any non homothetic
(and in particular non zero) matrix M ∈ gl(n,C) along with its conjugates by A and B
generate a subspace E over R which contains sl(n,C) (E being closed by definition).

We first impose the condition of Corollary 1.1, namely that A has only simple eigenval-
ues λ1, . . . , λn and choose linear coordinates in which A is diagonal. The action of A by
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conjugation on gl(n,C),
gl(n,C)→ gl(n,C) ; M 7→ AMA−1,

is linear diagonal with eigenvalues λi,j = λi/λj in the Kronecker basis (δi,j) of the space
of matrix. Let us also request that the λi’s are pairwise distinct in norm and in argument
(thus λi,j = λi/λj does not belong to R for i 6= j). Furthermore no relation, other than
the obvious one, of the type |λiλj | = |λi′λj′| is verified. Finally we suppose that B (resp.

B−1) takes the n eigendirections of A to the complement of the n invariant hyperplanes of A
(in the coordinate in which A is represented by a diagonal matrix, the preceding condition
means that neither B nor B−1 have a vanishing entry). Obviously the pairs (A,B) fulfilling
the conditions above define a “full measure” open set of GL(n,C)×GL(n,C).

Notice that the action of B by conjugation is characterized by

Bδi0,j0B
−1 = (bi,i0 · b̃j0,j)

where B = (bi,j) and B
−1 = (b̃i,j).

We clearly have λi,j = 1 if and only if i = j. Denote by ∆A and ∆⊥A the complementary
subspaces of gl(n,C) respectively consisting of diagonal matrices and matrices with zero
entries on the diagonal. Denote by ΠA and Π⊥A the respective projections.

Claim: E contains a matrix M1 (M1 6= (0)) with vanishing entries on the diagonal.

Proof of the Claim. If M is not diagonal then it is enough to set M1 = AMA−1 − M
which obviously satisfies our needs. Let us therefore suppose that M is diagonal but non-
homothetic. In this case the matrix M0 = BMB−1 cannot be diagonal. Indeed suppose by
contradiction that M0 is also diagonal. Since M is not homothetic, it has at least 2 distinct
eigenvalues and hence non-trivial eigenspaces which are direct sums of eigendirections of A.
Because M,M0 are diagonal, it follows that B permutes these eigenspaces. Therefore B is
block-triangular (maybe after a permutation of the eigendirections of A) which gives us a
contradiction since all the entries of B are different from zero. We conclude that M0 is not
diagonal. Now the claim follows from setting M1 = BM0B

−1 −M0.
Notice that M1 ∈ ∆⊥A ∩ E and we can write M1 =

∑
(i,j)∈Smi,jδi,j where S is the subset

of {(i, j) ; i, j ∈ 1, . . . , n and i 6= j} corresponding to the pairs (i, j) for which mi,j 6= 0.
As we have seen S is not empty.

Let us now consider the sequence of conjugates AkM1A
−k (k ∈ N). Note that this se-

quence tends in direction towards the complex line C · δi0,j0 where (i0, j0) is the pair (i, j)
corresponding to the λi,j of maximum norm (note that the λi,j ’s are distinct in norm for
i 6= j). Recalling that no λi,j is real (for i 6= j), it results that the complex line C · δi0,j0 is

completely accumulated by the sequence of “conjugate real lines” R · AkM1A−k and thus it
is generated over R by their different limits.

Summarizing, we have proved that E ⊆ gl(n,C) contains the complex line through some
matrix M2 = δi0,j0 (i0 6= j0) (and hence the complex subspace generated by the conjugates
of this line under A,B). We shall deduce from these last conditions that sl(n,C) is contained
in E.

Since B and B−1 have no vanishing entry, the matrix M3 = BM2B
−1 = (bi,i0 .b̃j0,j)

also has all entries different from zero. Therefore M4 = AM3A
−1 − M3 has vanishing
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entries precisely on the diagonal. Hence the conjugates AkM4A
−k (k = 1, . . . , n2 − n) are

linearly independent and generate over C the whole ∆⊥A. Finally, in order to verify that
sl(n,C) ⊆ E, it is enough to show that the mapping from ∆⊥A ⊂ E to GL(n,C) given by

M̃ 7→ ΠA(BM̃B−1) has rank n − 1. Actually it suffices to consider the restriction of this
mapping to the space generated by δ1,2, . . . , δ1,n (which is clearly contained in ∆⊥A). Indeed

note that the corresponding (n− 1)× n−matrix (bi,1.b̃j,i)i=1,... ,n;j=2,... ,n, whose columns are
the coefficients of ΠA(Bδ1,jB

−1) in the basis (δi,j) of ∆A, is such that the subdeterminant

det(bi,1 · b̃j,i)i,j=2,... ,n equals
b1,1·····bn,1

det(B) which is not zero in view of the preceding assumptions

on B. This accomplishes the proof of the lemma. ¤

Corollary 1.3. There is an open subset U3 with total Lebesgue measure in the ε3-neigh-
borhood of (I, I) in GL(n,C) × GL(n,C) = (GL(n,C))2, ε3 > 0, such that the subgroup G
generated by any (A,B) ∈ U3 contains a dense subgroup of SL(n,C). In fact the closure G
of G has the form

G = Λ× SL(n,C) ,
where Λ ⊂ C∗ is a closed subgroup of scalar matrices.

Proof. Set U3 = U1 ∩ U2 so that any (A,B) ∈ U3 generates a non discrete subgroup G ⊆
GL(n,C) (Corollary 1.1) whose closure G, and hence whose associated Lie algebra G, are
both invariant by A and B. Since the non trivial element of G were constructed by means of
commutators, it clearly belongs to sl(n,C) (and hence is not homothetic). Therefore Lemma
1.2 implies that sl(n,C) ⊆ G and thus SL(n,C) ⊆ G. Since SL(n,C) is simple (i.e. it
has only trivial normal subgroups), we conclude that [G,G] is dense in SL(n,C). Finally a
simple argument involving the obvious short exact sequence shows that G/SL(n,C) can be

identified with Λ = n
√
det(G). Clearly, U3 is open and has total Lebesgue measure in the

ε1-neighborhood of (I, I) ∈ GL(n,C)×GL(n,C). ¤

If Λ is moreover neither real nor contained in the unit circle, then we say that G is rich.
This property is persistent (stable) and generic for matrices close to I as follows from:

Corollary 1.4. The subset U4 ⊂ (GL(n,C))2 of those (A,B) which generate a rich subgroup
G ⊆ GL(n,C) is an open set. Furthermore the intersection of U4 with a suitable neighborhood
of (I, I) has total Lebesgue measure in this neighborhood.

In this sense, rich subgroups are the largest stable subgroups of GL(n,C). Similarly,
the subsets U ′4 ⊂ (SL(n,C))2 and U ′′4 ⊂ (PGL(n,C))2 of those pairs which generate a
dense subgroup of SL(n,C) (resp. PGL(n,C)) are open sets and have “full measure” in a
neighborhood of (I, I).

Proof. Denoting by Ĉ the projectivization of a matrix C ∈ GL(nC), we clearly have:

{U ′4 = {(A,B) ∈ (SL(n,C))2 ; (Â, B̂) ∈ U ′′4 },
U4 = {(A,B) ∈ (GL(n,C))2 ; (Â, B̂) ∈ U ′′4 , det(A) 6∈ R ∪ S1 (resp. det(B))}.

Conversely

U ′′4 = Û4 = Û ′4.
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We easily deduce from Corollary 1.3 that all the above mentioned sets contain a “full
measure” open subset of the respective ε3-ball of (I, I). Thus, only the part involving
stability (i.e. the fact that these sets are open) needs further comments. Clearly it is enough

to show that only one of them is open, for instance U ′′4 . If the group Ĝ generated by (Â, B̂)

is dense in PGL(n,C), one can find words (Â′, B̂′) on the generators which “persistently
generate” a dense subgroup of PGL(n,C) (since U ′′4 contains an open set). Because these
words depend smoothly on the generators, one immediately concludes the desired stability.
¤

Finally, we derive the n-dimensional generalization of [La]’s Proposition 4:

Corollary 1.5. The subset U5 ⊂ (GL(n,C))2 of those (A,B) which generate a dense sub-
group G ⊂ GL(n,C) has total Lebesgue measure in a neighborhood of (I, I).

Proof. If we denote by U15 the subset formed by those (λ, µ) ∈ C∗×C∗ = (C∗)2 which generate
a dense subgroup Λ of C∗, then U5 does contain

{(A,B) ∈ U3 ; (det(A), det(B)) ∈ U15}.

The corollary is therefore established since U 15 has total Lebesgue measure in (C∗)2. ¤

2- Pseudo-groups on the unit ball Bn of Cn.

In what follows z = (z1, . . . , zn) stands for the usual variable of Cn and ‖z‖ for the usual
norm. Denote by Bnr the ball of radius r > 0 centered at the origin of Cn and set Bn = Bn1
where Bnr = {z ; ‖z‖ < r}; for a given mapping f : Bnr → Cn, ‖f‖r stands for supz∈Bn

r
‖f(z)‖.

By definition a pseudo-group G on Bn will be any collection of biholomorphic transfor-
mations f : U → V = f(U) within the ball, U, V ⊂ Bn, which is stable under restriction
of the domain of definition (if W ⊂ U then f |W ∈ G), inversion ((f−1 : V → U) ∈ G)
and composition (if (g : V → W ) ∈ G then (g ◦ f : U → W ) ∈ G). The pseudo-group G
generated by injective holomorphic transformations f1, . . . , fd : Bn ↪→ Cn will be the smallest
pseudo-group on Bn containing the fk|f−1

k (fk(Bn)∩Bn). In practice, we shall mainly work with

elements f ∈ G restricted to sub-balls Bnr .

A natural topology on G is given by uniform convergence on compact sets. Namely a
sequence fk : Uk → Vk, k ∈ N, is said to converge to an element f : U → V in G if for
any compact subset K ⊂ U , K is contained in Uk provided that k >> 0, and the sequence
fk|K restricted to K converges uniformly to f |K . We can then talk about the closure G of a
pseudo-group G. Actually we often consider elements h in G, which are defined on some sub-
ball Bnr and, obtained as uniform limit of elements fk ∈ G on Bnr , i.e. limk→∞ ‖f − fk‖r = 0.
Clearly, if G acts transitively on Bn, then G acts minimally on Bn; the converse need not be
true.

Let v denote a real vector field defined on an open set U ⊂ Bn and consider the pseudo-
flow ϕtv : Ut → Vt, t ∈ R and Ut, Vt ⊂ U , obtained by integration of v (note that Ut
might be empty for |t| >> 0). Clearly, this pseudo-flow is a pseudo-group of holomorphic
transformations if and only if v is the real part of a complex holomorphic vector field X (i.e.
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ϕtv is the restriction to real time of the complex one parameter pseudo-group ϕTX , T ∈ C).
More explicitly, in coordinates z = (z1, . . . , zn) with zi = xi +

√
−1 · yi, one has:

X =
n∑

i=1

fi
∂

∂zi
←→ v =

n∑

i=1

<e(fi)
∂

∂xi
+ =m(fi)

∂

∂yi

where the fi’s are holomorphic functions of z, fi = <e(fi) +
√
−1 · =m(fi). In this case, the

pseudo-flow ϕtv is a continuous path with respect to the topologies in question. Conversely,
it will be proved latter (Lemma 6.5) that any germ at 0 ∈ R of continuous homomorphism
from the additive group (R,+) to a pseudo-group of holomorphic transformations must be
as above (i.e. it can be represented by the pseudo-flow of a vector field like v).

This suggests to consider the real Lie pseudo-algebra (which will be often referred to simply
as the Lie algebra) G associated to a closed pseudo-group G as the collection G(U), for every
open set U ⊂ Bn, of the set of holomorphic vector fields X defined on U whose corresponding
real pseudo-flow ϕtX : Ut → Vt (t ∈ R small) is entirely contained in G. In other words, given
a pseudo-group G on Bn, the Lie pseudo-algebra G associated to its closure G consists of
the complex holomorphic vector fields X defined on some U ⊂ Bn possessing the following
property: every local diffeomorphism induced by the corresponding real pseudo-flow ϕtX ,
t ∈ R fixed, can be uniformly approximated by a sequence hk of elements of G on any
compact subset of Ut (on which ϕtX is defined).

It is easy to check that G inherits a structure of a presheaf of real Lie algebras, i.e. the
set of vector fields in G(U) is stable under restrictions and any G(U) is a real Lie algebra
with respect to the Lie brackets of vector fields. Finally, each G(U) is closed by uniform
convergence on compact subsets and the entire collection G is invariant under G (i.e. if
f : U → V belongs to G then G(V ) = f∗G(U)).

Remark. There is also an analogous definition for the complex Lie algebra GC of G: a holo-
morphic vector field X defined on U will belong to the complex Lie algebra of G (or to
GC(U)) if the pseudo-group ϕ

T
X : UT → VT (T ∈ C small in norm) is entirely contained in G.

It is important to point out that the real Lie algebra of a closed pseudo-group G as above
does not necessarily comes from a complex Lie algebra. Actually given a holomorphic vector
field X such that its real pseudo-flow ϕtX is contained in G (for t ∈ R small), there is no
reason why the complex iteration ϕitX should be also in G (for t ∈ R small). Thus it may
happen that a closed pseudo-group G has trivial complex Lie algebra but non-trivial real
Lie algebra. For instance, the pseudo-group generated on the Poincaré disc by two generic
automorphisms is a pseudo-group of conformal transformations with closure G = PSL(2,R)
and its Lie (pseudo-)algebra G = sl(2,R) is a totally real submanifold of the complex man-
ifold sl(2,C). On the other hand note that the “realification” of the complex Lie algebra of
G is always contained in the real Lie algebra GR of G. In particular, if GC is non-trivial then
so is GR. In this paper, we shall only deal with the real Lie algebra of G.

Clearly, if the pseudo-flows belonging to G act transitively on Bn (we also say that G acts
transitively on Bn), then G acts minimally on Bn; the converse need not be true. Actually the
transitivity of the Lie algebra G associated to a pseudo-group has many other consequences
for the dynamics of the pseudo-group as it will be shown in §6. This way of associating
vector fields to pseudo-group has already been introduced in [Sh], [Na], [Reb] and [Be,Li,Lo]
in order to study the dynamics of certain pseudo-groups in dimension 1.
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The purpose of the next two sections is to provide sufficient conditions for a pseudo-group
G, consisting of holomorphic transformations within the ball Bn, to have non-trivial (real)
Lie algebra. Our main result is:

Proposition 2.0. Let f0 : Bn ↪→ Bn be a contracting homothety, f0(z) = λ · z, 0 < |λ| < 1
and g0 be the identity map on Bn. If λ is sufficiently close to 1 (i.e. f0 close to identity),
then there exists 0 < ελ < |λ− 1| such that any ελ perturbations f, g : Bn ↪→ Cn of f0 and g0
which have no common fixed point anymore, i.e.

‖f − f0‖1 , ‖g − g0‖1 < ελ and f(z) = g(z) = z for no z ∈ Bn,

generate a pseudo-group G whose Lie algebra G(Bn) contains at least some non trivial vector
field X (there is X in G which does not vanish identically).

3- Catching non discrete pseudo-groups.

Let us first derive sufficient conditions on f, g : Bn ↪→ Cn so that the pseudo-group they
generate on Bn contains a sequence of non trivial elements converging to the identity Id
uniformly on some ball Bnr . We begin with an analogous, in our context, of Lemma 1.0
which can be found in [Gh].

Lemma 3.0. Assume that ε0, 0 < ε0 <
1
4 , is fixed and consider mappings f, g : Bn ↪→ Cn

which are ε0-close to the identity. Then the commutator [f, g] = f ◦ g ◦ f−1 ◦ g−1 induces
a mapping Bn1−4ε0 ↪→ Bn belonging to the pseudo-group generated by f, g. Furthermore the
estimate below does hold for any 0 < τ < 1− 4ε0

‖[f, g]− Id‖1−4ε0−τ ≤
2

τ
‖f − Id‖1‖g − Id‖1 .

In [Gh], the left side of the corresponding inequality is sup
(
|| f − id ||2Bn , || g − Id ||2Bn

)
.

Nonetheless our sharper inequality follows from similar arguments as the reader can check
below.

Proof. Denote by ∆f (resp. ∆g) the variation f − Id (resp. g − Id) which , by assumption,
is bounded by ε0 on Bn. Clearly f ◦ g is well defined as mapping Bn1−2ε0 ↪→ Bn and can be
written as

f ◦ g = Id+∆f +∆g + (∆f ◦ g −∆f ).

Cauchy Formula applied on small disks of radius τ , 0 < τ < 1, gives the following bound for
the partial derivatives ∥∥∥∥∥

∂∆f

∂zi

∥∥∥∥∥
1−τ

≤ 1

τ
‖∆f‖1 .

There is also an analogous estimate for Rg. By integration, one concludes that

‖∆f ◦ g −∆f‖1−2ε0−τ ≤ sup
i

∥∥∥∥∥
∂∆f

∂zi

∥∥∥∥∥
1−ε0−τ

‖∆g‖1−2ε0 ≤
1

τ
‖∆f‖1‖∆g‖1,
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where τ < 1− 2ε0. Therefore f ◦ g − g ◦ f , which is also well defined on Bn1−2ε0 , verifies

‖f ◦ g − g ◦ f‖1−2ε0−τ ≤ ‖∆f ◦ g −∆f‖+ ‖∆g ◦ f −∆g‖ ≤
2

τ
‖∆f‖1‖∆g‖1.

On the other hand, (g ◦ f)−1 takes the ball of radius 1 − 4ε0 − τ to the interior of the ball
of radius 1− 2ε0 − τ , so that [f, g]− Id = (f ◦ g − g ◦ f) ◦ (g ◦ f)−1 satisfies

‖[f, g]− Id‖1−τ−4ε0 ≤
2

τ
‖∆f‖1‖∆g‖1 .

¤

In [Gh], this lemma is used for proving the convergence of a variant of the derived sequences
hk to the identity.

Corollary 3.1 (Ghys). There is ε1 > 0 such that if f, g : Bn ↪→ Cn are ε1-close to the
identity, then any sequence hk ∈ Zk, k ∈ N, contained in the “derived” sequence of sets,
which is inductively defined by

Z0 = {f, f−1, g, g−1} and Zk+1 = {[hk, h′k];hk, h′k ∈ Zk},

is well defined on Bn1/2 as element of the pseudo-group G and converges to the identity uni-

formly on this sub-ball.

Proof. We prove that any hk ∈ Zk is well defined on the ball of radius rk = 1
2 +

1
4.2k

and

uniformly bounded from the identity by εk = ε0/2
k. The inequality of Lemma 3.0,

‖[hk, h′k]− Id‖rk−4εk−τk ≤
2εk
τk
εk ,

inductively yields the desired estimates with τk = εk/4 and εk = 1/4(4 + 1/4)2k. ¤

Nevertheless, it is a hard task to verify the non triviality of such sequence. The non
solvability of G (when it makes sense) is not enough in general. Moreover, the existence of
sequences accumulating uniformly the identity within G is still not sufficient to guarantee
the existence of pseudo-flows, as it is shown by the next example.

Example 3.2. For arithmetical reasons (see [Be,Ce,L-N], Cor.4.2, p.262), the subgroup of
Diff(C, 0) generated by

f(z) = z/(1− z) and g(z) = z/
√
1− z2,

where the determination
√
1 = 1 is chosen, is free (as group of germs fixing 0 ∈ C). In

particular, any sequence hk constructed as in Corollary 3.1 is non trivial. On the other
hand, since f, g are tangent to identity at their common fixed point 0, they become well
defined on the unit disc B1 and arbitrarily close to the identity after conjugation by a
contracting homothety. By virtue of Corollary 3.1, the sequences hk are non trivial sequences
accumulating the identity on a neighborhood of 0 (within the pseudo-group G generated by
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f and g). On the other hand, it follows from the composition and inversion rules of formal
power series that the Taylor coefficients of any word in f and g are integers, as well as for
f and g. Therefore the pseudo-group G cannot accumulate a non trivial one parameter
pseudo-group uniformly on a neighborhood of 0! Nevertheless, Nakai’s theorem (see [Na])
asserts the existence of (many!) such pseudo-flows in the closure of G at the neighborhood
of any point z0 6= 0 sufficiently close to 0.

Contrasting with the finite dimensional case (see §1), Lemma 3.0 is clearly not sufficient
(without further assumptions) to imply that the sequences hk ∈ Sk, k ∈ N, contained in the
“central” sequence of sets

S0 = {f, f−1, g, g−1} and Sk+1 = {[h0, hk];h0 ∈ S0, hk ∈ Sk},

are well defined as elements of the pseudo-group G and, furthermore, converge uniformly
towards the identity. Indeed, if one takes for f, g translations arbitrarily close to the identity,
then we clearly always find an integer k0 for which any word hk0 ∈ Sk0 has empty domain of
definition. Although this counterexample is somehow trivial (any Sk consists of the identity
transformation for k > 0) a small “non nilpotent” perturbation of it, within the affine
group, will have the same property and will provide serious obstructions to the existence of
a Zassenhaus Lemma for pseudo-groups.

In order to ensure that the pseudo-group G is not discrete, our idea is to require also
that f is a contraction. So, instead of dealing with the sequence g0 = g, gk+1 = [f, gk]
whose common domain of definition of the elements is shrinking, we will be able to “restore”
(i.e. “re-enlarge”) domains, little by little, working with an alternate sequence of the type
h0 = g, hk+1 = f−N [f, hk]f

N . This approach will be suceeded only if the distortion of f
can be bounded. More precisely, if we denote by 0 < λ− ≤ λ+ the lower and upper bounds
for directional derivatives of f given by

λ− = inf
‖v‖=1,‖z‖<1

‖ ∂
∂t
f(z + tv)|t=0‖ and λ+ = sup

‖v‖=1,‖z‖<1
‖ ∂
∂t
f(z + tv)|t=0‖ ,

then we will require that
(∗) 0 < (λ+)

2 < λ− ≤ λ+ < 1 .

The assumption above is strong but sufficient for our purpose. The reader may already
notice that perturbations f of f0(z) = λ.z considered in Proposition 2.0 satisfy this require-
ment. This (∗) condition will also imply that f can be linearized by holomorphic change of
coordinates at a neighborhood of its fixed point 0 (Poincaré’s Theorem, see Lemma 3.5).

Lemma 3.3. There is a ε3 > 0 such that, if f, g : Bn ↪→ Cn are ε3-close to the identity with
f fixing 0 and satisfying (∗), there exists a (uniform) N ∈ N, depending only on f , such that
the sequence of one-to-one holomorphic mappings inductively given by

g0 = g and gk+1 = f−N ◦ [f, gk] ◦ fN

is well defined on Bn1−2ε3 as element of the pseudo-group G. Moreover this sequence converges
uniformly towards the identity when k tends to infinity.

Further conditions, needed to guarantee in addition that gk 6= Id for every k, will be given
later on.
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Proof. Fix 0 < ε3 < ε0 so that Lemma 3.0 holds. Since ‖fN‖1 ≤ λN+ , for N ∈ N large
enough, one has

‖fN‖1 = 1− 4ε3 − τ, for some τ ∈]0, 1− 4ε3[ ,

so that fN contracts the unit ball into the ball Bn1−4ε3−τ ⊆ Bn1−4ε3 . In this smaller ball we
can apply Lemma 3.0 to obtain

‖[f, g]− Id‖1−4ε3−τ ≤
2ε3
τ
‖g − Id‖2 .

Hence

‖[f, g] ◦ fN − fN‖1 ≤
2ε3
τ
‖g − Id‖1 .

Suppose first that we are allowed to iterate N times f−1 from [f, g] ◦ fN (Bn). Then one has
the estimate below

‖f−N ◦ [f, g] ◦ fN − Id‖1 ≤
2ε3
τλN−
‖g − Id‖1 .

Since λ2+ < λ− and λN− ≤ ‖fN‖1 = 1− 4ε3 − τ , it results that

‖gk+1 − Id‖1 ≤
2ε3

τ(1− 4ε3 − τ)2
‖gk − Id‖1 .

The coefficient c(τ) = 2ε3
τ(1−4ε3−τ)2

attains its minimum for τ0 = 1
3(1 − 4ε3) which yields

c(τ0) =
ε3
2

(
3

1−4ε3

)3
. If ε3 was chosen small enough then c(τ0) < 1.

In order to deduce the proof of Lemma 3.3 from these estimates, we have to justify first
that we can choose N so that τ(N) = 1− 4ε3 − ‖fN‖1 ∼ τ0 and then c(τ(N)) ∼ c(τ0) < 1,
and secondly that, without loss of generality, f−1 can be supposed well defined (as element
of the pseudo-group) on the whole ball of radius 1 + ε3 (so that the iterations above make
sense).

First justification: for τ1 = 1
2(1 − 4ε3), ε3 can be chosen so that we still have c(τ1) =

2ε3
(

2
1−4ε3

)3
< 1. Let us verify that we can choose N so that τ0 ≤ τ(N) ≤ τ1, i.e.

1
2(1 −

4ε3) ≤ 1− 4ε3− τ(N) ≤ 2
3(1− 4ε3). Since λ

2
+ < λ− ≤ 1− 4ε3− τ(N) ≤ λ+, it is enough to

find N ∈ N satisfying

1

2
log

(
1

2
(1− 4ε3)

)
≤ N · log(λ+) ≤ log

(
2

3
(1− 4ε3)

)
.

Since |λ+ − 1| ≤ ε3, it is obvious that, as long as ε3 is very small, log(λ+) is close to 0 so
that there exists the desired integer N .

Second justification: starting with f and g satisfying the assumptions of Lemma 3.3, it is
clearly that f−1 is well defined on Bn1−ε3 as element of the pseudo-group as well as f and
g. After a homothety of ratio 1− 2ε3, so that the sub-ball of the statement is now the unit
ball, our pseudo-group is actually defined on the ball of radius 1

1−2ε3
> 1 and f , g and f−1

become well defined as element of G. Finally they are also ε̃3-close to the identity on the
intermediate ball of radius 1 + ε̃3 with ε̃3 =

ε3
1−2ε3

. ¤
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Remark. The condition (∗) means that the distortion coefficient

δ =
log(λ−)

log(λ+)

which is always ≥ 1 for a uniform contraction, is actually bounded by 2. The preceding
proof may be re-arranged so that it is possible to replace (∗) by δ < δ0 for a fixed δ0 >> 0.
Nonetheless notice that ε3 depends on this bound and asymptotically ε3(δ0) ∼ 1/δ0 so that
one certainly cannot avoid any hypothesis about distortion.

The sequence gk constructed in Lemma 3.3 is non trivial under generic assumptions on f
and g, due to:

Lemma 3.4. Let f, g : Bn ↪→ Cn be as in Lemma 2.3 and consider their differentials at 0

A = D0f and B = D0g .

The sequence gk constructed in Lemma 3.3 is non trivial, i.e. gk 6= Id for every k, provided
that one of the following conditions holds:

(i) g(0) 6= 0;
(ii) g(0) = 0, A has only simple eigenvalues and [A,B] 6= I (or equivalently A and B are

not simultaneously diagonalizable);
(iii) g(0) = 0, [A,B] = I and [f, g] 6= Id (or equivalently f and g are not simultaneously

linearizable).

Before proving Lemma 3.4, let us complete its statement with the following lemma.

Lemma 3.5. Suppose that f : Bn ↪→ Cn, f(0) = 0, satisfies (∗). Then f is linearizable by
a holomorphic change of coordinates. In other words, there exists a holomorphic embedding
Φ : Bn ↪→ Bn fixing 0 such that

Φ−1 ◦ f ◦ Φ(z) = A · z .

Moreover, Φ is unique up to right composition by a matrix commuting with A.

It follows that, in case (iii) of Lemma 2.4, g almost never commutes with f .

Proof of Lemma 3.5. Denote by λ1, . . . , λn the spectrum of the linear part A of f . Modulo
a permutation of indices, one has

0 < λ− ≤ |λ1| ≤ · · · ≤ |λn| ≤ λ+ < 1.

Furthermore (∗)-condition clearly implies that

0 < |λn|2 < |λ1| ≤ · · · ≤ |λn| < 1 .

In particular, there exists no Poincaré resonance between these eigenvalues, i.e.

|λi1λi2 · · ·λik | < |λi0 |
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as long as k ≥ 2. On the other hand, this spectrum obviously belongs to the Poincaré domain
since it consists only of contractions. Hence, due to Poincaré Theorem (see [Ar,Il], p.72), f
is linearizable by a holomorphic germ of diffeomorphism Φ at 0. Clearly, Φ is well defined up
to right composition by germ of diffeomorphism commuting with A and, in particular, after
composition by a convenient homothety, we can assume that Φ is defined on Bn. Finally the
formal part of the proof of Poincaré Theorem relies on the fact that absence of resonance
implies absence of non linear germ of diffeomorphism Ψ commuting with A. ¤

Proof of Lemma 3.4. Case (i): if g does not fix 0, then g−1(0) 6= 0 is not fixed by f ,
i.e. g−1 ◦ f−1(0) = g−1(0) 6= f−1 ◦ g−1(0), which implies that [f, g](0) 6= 0 and hence
f−N ◦ [f, g] ◦ fN (0) 6= 0. Using induction we see that gk(0) 6= 0 for every k.

Case (ii): since the linear part of [f, g] is given by [A,B], this case promtly follows from the
proof of Corollary 1.1.

Case (iii): if g does not commute with f , it follows that [f, g], whose linear part is given by
[A,B] = I, should be a (non trivial) map which is tangent to the identity. In the coordinate
given by Lemma 3.5 where f = A is linear, it is clear that [f, g] is still a (non trivial) map
tangent to the identity and thus it is not linear. Employing again Lemma 3.5, it follows that
[f, g] does not commute with A = f and proof follows by induction. ¤

In the next section we shall work through the coordinate Φ given by Lemma 3.5 and
hence deal only with the linear contraction A and the sequence {hk = Φ−1 ◦ gk ◦ Φ} (which
is converging to the identity as well). All these mappings can be supposed defined on Bn

without loss of generality (just compose Φ to the right with a convenient homothety). Clearly,
any pseudo-flow uniformly accumulated at the neighborhood of 0 by words in A and hk will
give rise to a pseudo-flow in the closure of G which, after conjugation by a convenient iterate
of the contraction f , can be supposed defined on the whole ball Bn as well.

4- Catching pseudo-flows in the closure of non discrete pseudo-groups.

In this section, for the sake of notations, we shall make no distinction between A thought
of as a diagonal matrix

A =



λ1 0

. . .
0 λn


 ,

or as the induced map Bn ↪→ Cn. Recall that A is supposed to satisfy

(∗) 0 < |λn|2 < |λ1| ≤ · · · ≤ |λn| < 1 .

Furthermore hk : Bn ↪→ Cn will be a sequence of one-to-one holomorphic mappings converging
to the identity uniformly on the whole ball Bn. Note that we do not need anymore the fact
that A is close to the identity throughout the sequel.

In general, as shown by example 3.2, the fact that the hk’s converge uniformly to the
identity is not sufficient to derive pseudo-flows. For instance, the natural strategy would
consist of considering some sequences of iterates ϕk = (hk)

Nk for a suitable sequence of
integers Nk →∞, so that ϕk remains say ε-close to the identity and ε/2 far from the identity
on Bn1−ε. Modulo passing to a subsequence, Montel Theorem asserts that ϕk converges to a
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(ε-close to the identity) transformation ϕ uniformly on compact subsets. By construction,
ϕ is the time-one-map of the real pseudo-flow ϕt given, for each t ∈ [0, 1], by uniform

convergence on any compact subset of a convenient subsequence of ϕtk = (hk)
[t·Nk] where [·]

stands for the integral part. The only problem, occuring for instance in example 3.2, is that
{(hk)Nk} may converges to the identity on any compact subset of Bn1−ε, so that ϕt coincides
with the identity. Later on (see Proposition 4.6), we shall give useful additional sufficient
conditions on hk in order to avoid such phenomenon, but before, we propose an alternate
strategy to construct pseudo-flows by using again the contraction A so that the proof of
Proposition 2.0 can be quickly deduced.

Lemma 4.0. Let A be a diagonal matrix satisfying (∗) and hk : Bn ↪→ Cn be a sequence of
holomorphic mappings uniformly tending to Id. Suppose moreover that one of the following
conditions is satisfied:

(i) hk(0) 6= 0 for all k;
(ii) hk(0) = 0 for every k, |λ1| < · · · < |λn| and the linear part D0hk is not lower

triangular for any k.

Then, for any ε > 0, modulo passing to a subsequence of hk, there exists a sequence of
positive integers Nk such that the renormalized sequence

A−Nk ◦ hk ◦ ANk

is well defined on the ball Bn1−2ε for k >> 0 and converges uniformly to a non trivial affine
transformation h∞ which is ε-close to the identity on Bn1−2ε.

Proof. This Lemma relies on the following remark. The action of A by conjugation increases
the affine part of hk because of (i) or (ii) while it decreases its non linear part because of
(∗). Let us make precise and prove these facts. Let

hk = hAffk + h≥2k ,

where hAffk denotes the affine part of hk and h≥2k stands for the remaining non linear terms.

The sequence of affine mappings hAffk converges to the identity as one can see from estimating

their coefficients by means of Cauchy Formula. Hence the sequence h≥2k formed by the higher
order terms goes to zero and satisfies

‖h≥2k (z)‖ ≤ |z|2 · ‖h≥2k ‖1

for any z ∈ Bn and any k. Clearly (∗) condition implies:

‖A−1 ◦ h≥2k ◦ A(z)‖ ≤
|λn|2
|λ1|
|z|2 · ‖h≥2k ‖1 < ‖h

≥2
k ‖1 .

On the other hand, if hAff (z) = T + C · z is an affine transformation where T = (ti)i
denotes the translation part and C = (ci,j)i,j denote the linear part, then

A−1 ◦ hAff ◦ A = A−1T + A−1CA = (
ti
λi
)i + (

λj
λi
ci,j)i,j ,
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so that condition (i), as well as condition (ii), implies that at least one of the Taylor coeffi-

cients of A−N ◦hAffk ◦AN increases exponentially when N → +∞. Of course ‖A−N ◦hAffk ◦
AN‖Bn increases as well.

Equip Aff(Cn) with the metric induced by ‖ · ‖1 and, for ε > 0 small enough, denote by
Uε the ε-neighborhood of Id in this Lie group. The action by conjugation of A on Aff(Cn)
fixes Id so that there exists an open neighborhood Vε ⊂ Uε of the Id in Aff(Cn) such that
A−1VεA remains in Uε.

For k large enough hAffk belongs to Vε. For N sufficiently large, we have seen that

A−N ◦hAffk ◦AN lies on the complement of Uε, and hence away from Vε. Thus, if one defines

Nk as the smallest positive integer for which A−Nk ◦ hAffk ◦ ANk does not belong to Vε, the

sequence of affine mappings A−Nk ◦hAffk ◦ANk will remain in the relatively compact annulus

Uε \ Vε. Up to choosing a subsequence, the sequence A−Nk ◦ hAffk ◦ ANk converges towards

some affine transformation hAff∞ uniformly on Bn. Clearly hAff∞ is ε-close to the identity but
lies on the complement of Vε so that it is not trivial.

Therefore one gets

‖A−Nk ◦ hk ◦ ANk − hAff∞ ‖1 ≤
≤ ‖A−Nk ◦ hAffk ◦ ANk − hAff∞ ‖1 + ‖A−Nk ◦ h≥2k ◦ ANk‖1

≤ ‖A−Nk ◦ hAffk ◦ ANk − hAff∞ ‖1 + ‖h≥2k ‖1 .

The proposition immediately follows from the estimates above. ¤

Remark 4.1. Here, if we replace (∗) condition by

0 < |λn|δ < |λ1| ≤ · · · ≤ |λn| < 1 ,

for some δ > 2, then one should truncate hk = h<δk + h≥δk where h<δk denote the Taylor jet

of order δ − 1 of hk and h≥δk the remaining higher order terms which satisfy

‖h≥δk (z)‖ ≤ |z|δ · ‖h≥δk ‖1 .

Then the same proof shows that, under condition (i) or (ii), for any ε > 0, some subsequence
of the type A−Nk ◦ hk ◦ ANk tends uniformly to a polynomial transformation h<δ∞ of order
δ − 1. But h<δ∞ does not lie anymore on a Lie group contrary to the affine case above, and
the next arguments cannot immediately be adapted.

Corollary 4.2. Let A and hk as in Lemma 4.0. Then there exists some non trivial affine
pseudo-flow in the closure of the pseudo-group generated by A and the hk.

Proof. Applying Lemma 4.0 to a sequence εk → 0, we construct a non trivial sequence hAffk
of affine transformations tending to the identity uniformly on some fixed ball, say Bn, which
is in the closure of the pseudo-group. Then the usual strategy to derive one parameter
subgroups of non discrete Lie groups works here.

Equip again Aff(Cn) with the metric induced by ‖ · ‖1. For ε > 0 small enough, the
ε-neighborhood Uε of Id in this Lie group is diffeomorphic to a neighborhood of zero of the
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Lie algebra via the exponential map and hence is such that any element hAff ∈ Uε escapes
after a finite number of iterations, namely there is N ∈ N such that (hAff )N 6∈ Uε. Also
there exists an open neighborhood Vε ⊂ Uε of the Id in Aff(Cn) such that any hAff ∈ Vε
satisfies hAff ◦ hAff ∈ Uε.

For k large enough hAffk belongs to Vε. Define Nk as the smallest positive integer for

which (hAffk )Nk does not belong to Vε, so that this renormalized sequence of affine mappings
remains in the relatively compact annulus Uε \ Vε. Modulo passing to a subsequence, the

sequence (hAffk )Nk tends uniformly to some affine transformation hAff∞ on Bn which is ε-
close to identity and lies on the complement of Vε so that it does not coincide with the
identity. By construction, hAff∞ is the time-one-map of the real pseudo-flow ϕt given, for
each t ∈ [0, 1], by uniform convergence on any compact subset of an appropriate subsequence

of ϕtk = (hAffk )[t·Nk] where [·] stands for the integral part. ¤

Proof of Proposition 2.0. First, choose |λ − 1| ≤ ε0 with ε0 < ε3 given by Lemma 3.3. For
a given 0 < τ < 1, there clearly exists 0 < ελ < |λ− 1| such that, for any ελ-perturbation f
of f0, any directional derivative of f remains |λ− 1|2 close to λ on some ball Bn1−τ . Modulo
rescaling ε0, this implies that f satisfies condition (∗) on Bn1−τ . Thus we can apply lemmas

3.3 and 3.4 to f and g and derive some non trivial sequence gk+1 = f−N ◦ [f, g] ◦ fN
converging to the identity uniformly on a sub-ball and satisfying gk(0) 6= 0. On the other
hand, f is linear through the coordinate Φ given by Lemma 3.5. If the linear part A of f is
diagonalizable, we can suppose, without loss of generality, that Φ−1 ◦ f ◦ Φ = A is diagonal
and satisfies (∗). Moreover hk = Φ−1 ◦ gk ◦Φ converges to the identity uniformly on Bn and
satisfies condition (i) of Corollary 4.2 which finishes the proof.

To accomplish the proof of Proposition 2.0 in full generality, it remains to show that proofs
of Lemma 4.0 and Corollary 4.2 in the case (i) also hold when A is no more diagonal but
has Jordan blocks. This is rather easy and left to the reader. ¤

Remark 4.3. It is possible to improve the estimates of Lemma 3.3 and 4.0 so that we may
ensure that the vector field constructed is actually non singular at 0, and even is a translation.
This can be carried out by writing g = T ◦ g̃, where T stands for the translation part
of g and g̃ is the remaining part fixing 0. We then consider the same decomposition for
g′ = [A, g] = T ′ ◦ g̃′ with regard to the following formula

[A, T ◦ g̃] = [A, T ] ◦ [T, [A, g̃]] ◦ [A, g̃] .

It is possible to manage these terms so that the central double bracket [T, [A, g̃]] becomes
neglectable and T ′ ∼ [A, T ] and g̃′ ∼ [A, g̃]. So, considering the action by conjugation of A
on T ′ and g̃′, as in Lemma 4.0, we are able to find some sequence gk+1 = A−NK ◦ [A, g]◦ANK

uniformly tending to a translation (maybe passing to a subsequence). Anyway, this would
had led us to many more estimates, at least in order to control the domains of definition. In
the sequel we shall derive non singular vector fields just by considering conjugations under
A and g with additional generic assumptions (needed later) in Proposition 5.2.

In the following, we give complementary results that can be obtained from our work but
which are not strictly needed to our Main Theorem. The first one will be interpreted in
Corollary 5.3 as an analogous of Proposition 2.0 for the common fixed point case. Some of
these statements may be useful for other similar problems.
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Proposition 4.4. There is a ε > 0 such that if A,B ∈ Gl(n,C) are ε-close to the identity
matrices satisfying:

- A is diagonal with eigenvalues satisfying 0 < |λn|2 < |λ1| < · · · < |λn| < 1,
- B is not lower triangular,

then for any f, g ∈ Diff(Cn, 0) with respective linear parts A and B, there exists some ball
Bnr on which f and g are well defined, one-to-one and the pseudo-group G generated by them
has a non trivial linear pseudo-flow in its closure.

Proof. Fix ε > 0 and A, B, f and g as in the statement. Up to homothety, we can suppose
that f and g are well defined on the ball Bn and also arbitrarily close to A and B respectively.
In particular, if ε was chosen small enough, f and g are ε3-close to identity, one-to-one and f
is a contraction satisfying (∗). Therefore lemmas 3.3 and 3.4 do apply to provide a non trivial
sequence gk converging to the identity uniformly on some sub-ball. Notice that, if the linear
part of gk is not lower triangular for every k, then the proof is finished by using Corollary 4.2
(similarly to the proof of Proposition 2.0 above). In order to check that the linear part of
gk is not lower triangular note that if B is not lower triangular then the same holds for
[A,B]. Indeed if [A,B] = T were lower triangular, then one would have B−1(T−1A)B = A.
Employing an argument similar to the one used in the proof of Corollary 1.1 (replacing
invariant directions by invariants flags), the last claim implies that B is the product of a
lower triangular matrix and a permutation matrix. Actually B will be lower triangular
provided that ε is sufficiently small. This gives us the desired contradiction. ¤

The following may be found in [Gh] (Lemma 2.5).

Lemma 4.5 (Ghys). Fix ε satisfying 0 < ε < 1/k for a positive integer k ∈ N∗. Any given
transformation f = Id+∆f : Bn ↪→ Cn ε−close to the identity is such that the power f k is
well defined on Bn1−kε and the estimate below does hold

‖fk − Id− k∆f‖1−kε−τ ≤
k(k − 1)

2τ
(‖f − Id‖1)2 ,

for any 0 < τ < 1− kε.

Proof. It is similar to Lemma 3.0. Let

fk = Id+∆f +∆f ◦ f +∆f ◦ f2 + · · ·+∆f ◦ fk−1
= Id+ k∆f + (k − 1)(∆f ◦ f −∆f ) + (k − 2)(∆f ◦ f2 −∆f ◦ f) + · · ·

+(∆f ◦ fk−1 −∆f ◦ fk−2)

On the other hand, by Cauchy Formula:

‖∆f ◦ f −∆f‖1−2ε−τ ≤
1

τ

(
‖∆f‖1

)2
.

The result follows. ¤
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Proposition 4.6. Let hk : Bn ↪→ Cn be a sequence of injective holomorphic mappings
uniformly converging to the identity and consider the sequence of positive scalars εk = ‖∆k‖1,
∆k = hk − Id, which obviously tends to 0. Suppose that the bounded sequence of mappings
∆k
εk

is not uniformly tending to the constant map which equals 0. Then, for any τ, ε > 0,

τ + ε < 1, there exists a non trivial holomorphic vector field X on the ball Bn1−τ (which is
ε−close to 0) and a sequence of positive integers Nk →∞ such that, for any 0 < t < 1, the
associated (time-t) map exp(t · X) is uniformly approximated on Bn1−τ by a subsequence of

(hk)
[t·Nk] where [·] stands for the integral part.

Proof. Fix ε and τ as in the statement. Modulo passing to a subsequence, we can suppose
that ∆k

εk
converges to a non constant mapping ∆∞ uniformly on any compact set. We can

also suppose that εk ∼ ε
k for infinitely many k after deleting or doubling some element of

the sequence. For simplicity assume εk ∼ ε
k since the following arguments adapt without

any further difficult to the general case.

In view of the preceding assumptions we have ‖k∆k‖1 = ε (which obviously does not
imply that ‖∆∞‖1 = ε). Therefore Lemma 4.4 gives

‖(hk)k − Id− k∆k‖1−τ−ε ≤
ε2

τ
.

Clearly, Nk = k is a suitable solution to our problem provided that that {(hk)k} does not
tend uniformly to the identity. However the triangular inequality yields

‖(hk)k − Id‖1−τ−ε ≥ ‖k∆k‖1−τ−ε − ‖(hk)k − Id− k∆k‖1−τ−ε ,

so that (hk)
k does not converge to the identity as long as ‖k∆k‖1−τ−ε, which tends to

‖∆∞‖1−τ−ε, is greater than, say, 2 ε
2

τ for k large enough. Thus setting ε∞ = ‖∆∞‖1−τ−ε it
is sufficient to check that 2 ε

2

τ < ε∞. We may rearrange our sequence in order to satisfy this
estimate in the following way.

Choose N >> 0. Since the subsequence (hkN )kN also satisfies ‖kN∆kN‖1 = ε with
kN∆kN converging to ∆∞ uniformly on compact subsets, the alternate sequence (hkN )k

automatically satisfies ‖k∆kN‖1 = ε
N with k∆kN converging to ∆∞

N uniformly on compact
subsets. On the other hand,

‖∆∞
N
‖1−τ−ε/N ≥ ‖

∆∞
N
‖1−τ−ε ≥

ε∞
N

.

Applying the above arguments to this new sequence with new data τ ′ = τ , ε′ = ε
N and

ε′∞ = ε∞
N , it results the new inequality 2ε2

τN2 < ε∞
N which is clearly satisfied for N large

enough. ¤

Remark 4.7. We may rather easily derive from the previous results that any pseudo-group
containing some linear diagonal contraction A as well as some sequence hk uniformly tending
to identity on Bn does contain pseudo-flows in its closure. In any case it seems to us that
the same should hold avoiding “linear diagonal” assumptions on A and such result could be
interesting. Nevertheless, this later statement needs much more work and is somehow out
of the subject of our paper.
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5- Obtaining several pseudo-flows from a given

pseudo-flow in the closure of a pseudo-group.

In this section, we think of A as a diagonal matrix

A =



λ1 0

. . .
0 λn


 ,

and we denote by f the induced map Bn ↪→ Cn (i.e. f(z) = Az), which is still supposed to
satisfy

(∗) 0 < |λn|2 < |λ1| ≤ · · · ≤ |λn| < 1 .

Let G be the pseudo-group generated by f and another mapping g : Bn ↪→ Cn whose closure
is already supposed to contain the real pseudo-flow generated by some holomorphic vector
field X on Bn. Hence, the pseudo-group G has non-trivial real Lie algebra G. The purpose
of this section is to show that actually G is “large” provided that A along with the linear
part B = D0g of g satisfy some further generic conditions. Let us be more precise.

Recall that the “richest” subgroups of GL(n,C) that can be stably generated by two
matrices A and B have closure of the type Λ × SL(n,C) where Λ is a (closed) group of
homotheties containing at least some contraction and some non real element. This class of
subgroups is characterized by the fact that the Lie algebra G contains sl(n,C) and furthermore
the determinant projection is neither contained in S1 nor in R. Also, we could show that the
“richest” subgroups of the affine group stably generated by two transformations do contain
rich linear groups as well as all the translations. This leads to the following:

Definition 5.0. Given a pseudo-group G of holomorphic transformations within Bn, we say
that G has rich affine part (resp. rich linear part) at 0 if, through an appropriate system of
coordinates, we have:

(i) the Lie algebra G contains a copy of sl(n,C) n Cn (resp. sl(n,C)) near 0,
(ii) the closure G contains some non real contracting homothety.

In order to show that the pseudo-group G generated by f and g as above has rich linear or
affine part, we now make additional requirements to the pair (A,B), where B = D0g denote
the linear part of g, namely the requirements used in Lemma 1.2:

(∗∗)





0 < |λn|2 < |λ1| < · · · < |λn| < 1 ,
the λi are pairwise distinct in argument, none being real,
no relation |λiλj | = |λi′λj′ |, other than the obvious ones, is verified,

neither B nor B−1 admits zero as entry.

We begin with a continuous analogous of Lemma 4.0 which will be useful in the sequel. In
any case it actually shows how simpler are the arguments of the proof when diffeomorphisms
are replaced by vector fields.

Lemma 5.1. Let A be a diagonal matrix satisfying (∗), G be a pseudo-group on Bn contain-
ing A and X be a holomorphic vector field defined on Bn and contained in the closure G of
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G. If X does not vanish at 0, then G also contains some non trivial translation pseudo-flow
on Bn. On the other hand, if X vanishes at 0 but if its linear part is not strictly lower
triangular, then G also contains some non lower triangular linear pseudo-flow on Bn.

Proof. Suppose first X(0) 6= 0. If one decomposes X accordingly to its translation, linear
and remaining part, X = X0+X1+X≥2, then the action of A by conjugation expands the
translation part of X i.e.

‖A−1X0‖1 ≥
1

|λn|
‖X0‖1 ,

faster than the linear part since

‖A−1X1A− Id‖1 ≤
|λn|
|λ1|
‖X1‖1 .

Because of (∗) assumption this action also decreases the higher order terms

‖A∗X≥2‖1 ≤
|λn|2
|λ1|
‖X≥2‖1 .

Therefore, there exists a sequence of positive scalars tk ∈ R+, such that the sequence of
holomorphic vector field defined on Bn by (tk · (Ak)∗X) has translation part of constant (non
vanishing) modulus although its linear along with the higher order part uniformly tend to
the identity. Hence some subsequence uniformly tends to a translation vector field which,
by construction, is contained in the closure of G.

Now, if X(0) = 0 but its linear part is not strictly lower triangular, then the action of A
is linear diagonal on the entries of X1, i.e. setting X1 = (v1i,j)i,j one has

A−1X1A = (
λj
λi
vi,j)i,j

with eigenvalues of modulus
|λj |
|λi|
≥ 1 for upper entries i ≤ j, while the other terms are

decreasing. Now the proof follows as above. ¤

Proposition 5.2. Let G be the pseudo-group generated on Bn by a linear diagonal matrix
A and some mapping g : Bn ↪→ Cn. Assume that A along with the linear part B of g satisfy
(∗∗). Let X be a non trivial holomorphic vector field defined on Bn and contained in the
closure G of G whose linear part M at 0 is not homothetic.

Then the associated Lie algebra G does contain a copy of sl(n,C) on Bn. Furthermore if
g(0) 6= 0, then G does also contain all the translations and hence a copy of the affine Lie
algebra sl(n,C) n Cn on Bn.

Notice that when det(A) = λ1 · · ·λn 6∈ R, G has rich linear (resp. affine) part.

Proof. Suppose first g(0) = 0 (and hence X(0) = 0). Assumption (∗∗) combined with
Lemma 1.2 implies that the linear part X1 of X along with a finite number of its conjugates
under A and B do generate sl(n,C) over R on some ball Bnr (on which the iterations A and B
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needed by this construction are well defined). Then, by a finite number of additional linear
operations over R, we can also find on Bnr a collection Xi,j of elements of G such that the
corresponding linear part is the Kronecker matrix X1i,j = δi,j . Now, we proceed as in proof
of Lemma 5.0 in order to linearize the elements Xi,j for which i ≤ j. Namely one has

A−kX1i,jA
k =

(
λj
λi

)k
δi,j .

On the other hand, ‖(Ak)∗X≥2i,j ‖r tends to 0 when k → +∞. Letting t = |λi|
|λj |
≤ 1, the

sequence of elements of G defined on Bn by (tk · (Ak)∗Xi,j) converges uniformly (maybe
passing to an appropriate subsequence) to the linear Kronecker matrix δi,j . The same con-
struction can be carried out with imaginary Kronecker matrices

√
−1 · δi,j . Thus G already

contains on Bnr the upper triangular complex Lie sub-algebra of sl(n,C). A conjugation by
a suitable power of A enables us to suppose that all these vector fields are defined on Bn.
In particular, G contains any diagonal element of SL(n,C) sufficiently close to identity. We

next replace A by some of these elements, say Ã, with eigenvalues λ̃i pairwise distinct in
norm and argument but now satisfying

0 < |λ̃1|2 < |λ̃n| ≤ · · · ≤ |λ̃1| < 1 .

Thus the previous construction shows that G contains lower triangular elements of sl(n,C)
as well.

Suppose now g(0) 6= 0 andX(0) 6= 0. The translation part ofX and its conjugates under A
generate a real subspace E ⊂ Cn invariant by A. Employing a procedure of renormalization
similar to the preocedure explained above, we can suppose that the translations by elements
in E also belong to G. If E 6= Cn, then E contains at least the translation along some
coordinate axis (A has only simple eigenvalues) which is taken, after conjugation by B, to a
vector field Y whose translation part lies away from any A-invariant hyperplane. Repeating
the same arguments, but using Y instead of X, we see that any translation pseudo-flow
actually belongs to G. We can then delete the translation part of g and X and conclude as
in the first case.

Finally, suppose g(0) 6= 0 and X(0) = 0. It is sufficient to show that we can replace
X by a convenient conjugate under A and g which does not vanish at 0. Suppose for a
contradiction that all such conjugates vanish at 0. Then Lemma 5.0 allows us to suppose
that X linear (non homothetic) and, by assumption, g∗X vanishes at 0 but its linear part
is given by B∗X. Hence, as in the common fixed point case, a finite number of conjugates
of X and g∗X under A have linear part generating sl(n,C). Employing again Lemma 5.0,
we conclude that sl(n,C) is contained in G. Therefore there exists an element Y ∈ sl(n,C)
which does not vanish on the direction g(0) so that g∗Y in turn does not vanish at 0. Now
we proceed as in the preceding case. ¤

The following technical corollary is strictly what is needed for our Main Theorem (along
with all the consequences settled in §6). In this corollary ελ should be thought of as being
much smaller than |λ− 1|.
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Corollary 5.3. Let f0 : Bn ↪→ Bn be a contracting homothety, f0(z) = λ · z, 0 < |λ| < 1
and g0 be the identity map on Bn. Suppose that λ is sufficiently close to 1 (i.e. f0 close to

identity). Then there exists 0 < ελ < |λ− 1| and some Zariski open subset U ⊂ (GL(n,C))2

such that any ελ perturbation f, g : Bn ↪→ Cn of the pair f0, g0 with f(0) = 0 and derivatives
(D0f,D0g) at 0 lying on U satisfies:

- either g(0) 6= 0 and G has large affine part,
- or g(0) = 0 and G has large linear part.

Proof. Choose U = U2 as in Lemma 1.2 (defined by (∗∗)). The first alternative follows from
the combination of Proposition 2.0, (which gives existence of pseudo-flows) and Proposition
5.2. In the second alternative, the existence of pseudo-flows follows from Proposition 4.4.
Again, we conclude with Proposition 5.1. ¤

As direct application we can also provide a generalization of Lamy’s result, [La], to any
dimension:

Corollary 5.4. Suppose we are given holomorphic transformations f1, . . . , fd : Bn ↪→ Cn

fixing 0 ∈ Cn. Denote by G the pseudo-group generated by the fi’s. Suppose that the deriva-
tives at 0 of the elements of G generate a subgroup D0G ⊂ GL(n,C) which is rich in the
sense of §1. Then G has rich linear part (in the sense of this section). In particular the
action of G on the punctured ball Bn \ {0} is ergodic (w.r.t. Lebesgue) and has all orbits
dense.

Recall that two elements f, g ∈ Diff(Cn, 0) will generate such pseudo-group G with rich
linear part provided that their respective linear part A,B ∈ GL(n,C) are sufficiently close
to I and generic (cf. Corollary 1.3).

Proof. First we find elements A,B ∈ D0G whose corresponding mappings A,B : Bn ↪→ Cn

fulfil the assumptions of Corollary 5.3 for a given λ. Consider the corresponding elements
f, g ∈ G (A = D0f and B = D0g). Up to a conjugation of f, g under an appropriate
homothety, these mappings are defined on the ball Bn and sufficiently close to A,B so that
they also fulfil the assumptions of Corollary 5.3. ¤

Corollary 5.5. Let f1, . . . , fd : Bn ↪→ Cn be as in Corollary 5.4. Then there is a εG > 0
such that for any εG perturbation g1, . . . , gd : Bn ↪→ Cn of the previous generators:

- either the gi have no more common fixed point and G has large affine part,
- or the gi have a common fixed point, say 0, and G has large linear part.

In the first case, the action of G near 0 is ergodic (w.r.t. Lebesgue) and has all orbits dense.

6- Chaotic pseudo-groups.

In this section we are going to complement the results of section 5 by showing that a
pseudo-group G defined on Bn and having large affine part possesses several “chaotic prop-
erties”. Throughout the sequel, G will be a pseudo-group on Bn with rich affine part in the
sense of Definition 5.0: the closure G contains at least some contracting non real homothety
as well as the restriction of any elements f ∈ SL(n,C) n Cn within the ball.

First, from the measure theoretic point of vue, one has:
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Property 6.1. 1) There does not exist any σ-finite measure µ on the ball which is preserved
by elements of the pseudo-group.

2) Ergodicity: any Lebesgue measurable subset which is invariant by G has null or total
Lebesgue measure.

The first property results from the existence of a contracting homothety (along with the
fact that 0 is not fixed by G) although the second part follows from the existence of pseudo-
flows acting transitively. Results of measurable rigidity (like in [Reb2]) may also be obtained,
but we prefer do not go further in this direction.

A notion of geometric entropy for foliations and pseudo-groups is defined in [Gh,La,Wa].
Let us recall this definition for a foliation.

Let (M,F , < . >) be a Riemannian manifold equipped with a foliation F . For x ∈M , we
denote by expF : TxLx → Lx the exponential map of the leaf Lx containing x. Let BF (0x, r)
(resp. BF (0x, r)) be the open (resp. closed) ball of center 0 and radius r contained in TxLx.
Similarly BF (x, r) (resp. BF (x, r)) stands for the open (resp. closed) ball of center x and
radius r contained in Lx. Finally given y ∈ Lx, we denote by dF (x, y) the distance between
x, y in Lx while dM (x, y) stands for the distance between x, y in M .

Given points x, y in M , let Ω(x, y, r) be the set of continuous maps from BF (0x, r) to Ly
sending 0x to y. For f ∈ Ω(x, y, r) we set:

δ(f) = sup { dM (expF v, f(v)) ; v ∈ BF (0x, r) },

δr(x, y) = inf { δ(f) ; f ∈ Ω(x, y, r) }+ inf { δ(f) ; f ∈ Ω(y, x, r) }.

A subset Λ ⊂ M is said (F , < . >, r, ε)−separated if δr(x, y) ≥ ε for every pair x, y of Λ
(x 6= y). Finally we define

N(F , < . >, r, ε) = max { ]Λ ; Λ is (F , < . >, r, ε)− separated },

h(F , < . >, ε) = lim sup
1

r
logN(F , < . >, r, ε) and

h(F , < . >) = lim
ε→0+

h(F , < . >, ε).

The number h(F , < . >) is called the geometric entropy of F (relative to < . >). It
is closely related to the entropy of certain holonomy pseudo-groups of F (see [Gh,La,Wa]
for details). Notice that it is very easy to adapt these definitions to our singular foliations.
Actually, since our singularities are isolated and hyperbolic, the foliation is transverse to the
boundaries of small balls around the singularities in question.

The first example of a pseudo-group with strictly positive entropy is a Shottky configura-
tion (see [Gh,La,Wa],p.107); such dynamics are obviously contained in the affine case.

Property 6.2. In case G has rich affine part, G has strictly positive entropy.

We may expect from generic foliations or pseudo-groups more complicated dynamics than
affine dynamics. When n = 1 results of [Be,Li,Lo2] yield:
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Property 6.3. If n = 1 and G has rich affine part but is not conjugate to a subgroup of
Mœ̈bius transformations (which is the case provided that the generators have generic cubic
Taylor jet) then any conformal transformation within the unit disc B1 is uniformly approxi-
mated by elements of G. In particular, no differential-geometrico structure but the conformal
structure is preserved by G.

M.Belliart recently worked out a generalization of this property for any dimension n ≥ 2.

If the previous features are those expected by chaotic dynamics, less expected is the struc-
tural instability which immediately results (see Introduction) from the topological rigidity.
The remainder part of the section is devoted to the proof of this last property.

Proposition 6.4. Assume that G = G1 has rich affine part and consider an homeomor-
phism h : Bn ↪→ Cn onto its image conjugating G1 with an holomorphic pseudo-group G2
within h(Bn). Then h turns to be either a holomorphic or a anti-holomorphic diffeomorphism.

We begin our approach to this proposition by showing that h actually conjugates the
respective Lie algebras G1 and G2. Let us consider a holomorphic vector field X1 belonging to
G1 and denote by φt (t ∈ R) the corresponding pseudo-flow contained in G1. The assignement
ρ1 : t 7→ φt furnishes a pseudo-homomorphism from (R,+) to G1 (i.e. ρ1(t1 + t2) = ρ1(t1) ◦
ρ1(t2) provided that both members are defined). Furthermore ρ1 is continuous for the
topologies in question.

Given t ∈ R, we define a transformation ψt by setting ψt = h ◦ φt ◦ h−1. Note that ψt is
defined on h(Dom φt) where Dom φt stands for the domain of φt (recall that φt is defined
within Bn).

Observe that ψt, t ∈ R fixed, is a holomorphic transformation. Indeed by definition of φt,
there is a sequence of elements {f̃1,k} ⊂ G1, where each f̃1,k is defined on Dom φt, converging
uniformly to φt on Dom φt. Since h is a homeomorphism, we immediately conclude that
{h ◦ f̃1,k ◦ h−1} converges uniformly towards ψt on Dom ψt. However h ◦ f̃1,k ◦ h−1 belongs
to G2 so that it is holomorphic (for every k). It follows that ψt is holomorphic as uniform
limit of holomorphic transformations.

In view of the preceding, the assignement ρ2(t) = ψt gives a pseudo-homomorphism from
(R,+) to G2 which is also continuous. The next lemma shows that there exists a unique
holomorphic vector field X2 in G2 whose pseudo-flow induces ψt for every t ∈ R small.

Lemma 6.5. Let ψt : Bn ↪→ Cn, t ∈] − t0, t0[, t0 > 0, be a pseudo-homomorphism from
(R,+) to a holomorphic pseudo-group of transformations such that

- the mapping (t, z) 7→ ψt(z) is continuous,
- each mapping z 7→ ψt(z) is holomorphic,
- ψt1+t2 = ψt1 ◦ ψt2 whenever it makes sense and ψ0 = Id.

Then, there exists a holomorphic vector field X on Bn such that ψt = exp(tX) (whenever it
makes sense).

Proof. The proof consists of showing that X is unequivocally defined on compact sets as the
uniform limit

X = lim
t→0

ψt − Id
t

.
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In fact when the limit above exists, we can recover ψt from X by means of the formula

ψt = lim
n→∞

(
Id+

t

n
X
)n

.

To simplify the notations, let us write

ψt = Id+∆t and ‖∆t‖r = δtr.

Since the result is of local nature, it is enough to prove the convergence of X above on some
sub-ball, so that we can already suppose (up to a homothety) that the mapping (t, z) 7→ ψt(z)
is uniformly continuous and in particular δt1 → 0 when t → 0. Maybe reducing t0, it is
possible to find τ > 0 satisfying r + δ2t1 + τ < 1 for a given fixed 0 < r < 1 whenever
t ∈]− t0, t0[. Reasoning as in the proof of Lemma 3.0, one gets

‖∆2t − 2∆t‖r ≤
1

τ
δt1δ

t
r .

Hence 2δtr ≤ δ2tr + δt1δ
t
r/τ . Choosing t0 so that δt1 ≤ (1− r)/3 (with t ∈]− t0, t0[), we can set

τ = 2
3(1− r). It follows that

2δtr ≤ δ2tr +
δtr
2

and δtr ≤
2

3
δ2tr .

In particular δ
t/2n

r ≤ (23)
nδtr. Let us first obtain a uniform bound for δ

t/2
n

r
t/2n in order to

conclude that the family {(ψt − Id)/t} is uniformly bounded and thus compact (Montel
Theorem). Such a bound can effectively be found in a smaller ball. Actually we now

assume, without loss of generality by virtue of the last inequality above, that δ
t/2n

1 ≤ (23)
nδt1.

Replacing this estimate in the preceding inequalities, it results that

2δt/2
n+1

r ≤ δt/2
n

r + (
2

3
)n+1

δ
t/2n+1

r

2
and

δ
t/2n+1

r

t/2n+1

(
1− 1

4
(
2

3
)n+1

)
≤ δ

t/2n

r

t/2n
.

Denote by Cn the supremum of ‖ψ
t−Id
t ‖r for | t |∈ [t0/2

n+1, t0/2
n]. One has

lim sup
t→0

∥∥∥∥∥
ψt − Id

t

∥∥∥∥∥
r

≤ lim sup
n→∞

Cn ≤

lim sup

n→∞

n∏

k=0

(1− 1

4
(
2

3
)n+1)


C1.

Since the right side of the inequality above converges when n → ∞, we conclude that
{(ψt − Id)/t} forms a compact family as required. This accomplishes the proof. ¤

Proof of Proposition 6.4. First notice that there is a well-defined correspondence σ between
vector fields in G1 and vector fields in G2 obtained by means of Lemma 6.5. Precisely just
let σ(X1) = X2 and denote by φt, ψt the associated pseudo-flows, then ψt = h ◦ φt ◦ h−1 for
every t ∈ R.
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Now consider 2n translation (i.e. constant) vector fields X1,1, . . . , X1,2n in G1(Bn) which
are R-linearly independent on the ball. The neighborhood of any point p possesses a
parametrization given by

(R2n, 0)→ (Bn, p) ; (t1, . . . , t2n) 7→ φt11,1 ◦ · · · ◦ φt2n
1,2n(p) .

Similarly the image under h of the neighborhood in question admits the parametrization

(t1, . . . , t2n) 7→ ψt11,1 ◦ · · · ◦ ψt2n
1,2n ◦ h(p) .

Since h preserves the dimension as well as the commutativity of the pseudo-flows, the corre-
sponding vector fields X2,1, . . . , X2,2n in G2 turn to be also R-linearly independent at h(p).
Through these (real) analytic parametrizations, h is the identity mapping at (R2n, 0) by
construction. Hence, h is real analytic at p, and then at any point of the ball Bn since G1 is
locally transitive everywhere.

It remains to show that h has complex derivative at any point p. This is a standard
argument belonging to Linear Algebra. Denote by C ∈ GL(2n,R) the differential (derivative)
of h at p. Note that h induces a conjugacy between the isotropy subgroups G

{p}
1 = {φ ∈

G1 ; φ(p) = p} of G1 at p and the corresponding subgroup G
{h(p)}
2 of G2. In particular,

C induces a conjugacy between their linear part (which contains only complex matrices).

Because G1 has rich affine part, DpG
{p}
1 ∈ GL(n,C) contains at least SL(n,C) and some non

real homothety Λ whose image under C is formed by complex matrices of GL(2n,R). Denote
by J ∈ GL(2n,R) the pull back by C of the complex multiplication iI. By construction,
J2 = −I and J does commute with Λ and with any element of SL(n,C). Since J commutes
with Λ, it follows first that J is complex. Besides J is diagonal since it belongs to the center
of SL(n,C). Finally, since J2 = −I, one has J = iI or J = −iI. Hence, C is complex or
anti-complex. This accomplishes our proof. ¤

In order to derive absolute rigidity (i.e. the topological rigidity of the foliation without
assuming that we have a parametrized deformation), we will need the following complement:

Proposition 6.6. Suppose we are given a family fj : Uj ↪→ Bn of holomorphic transforma-
tions within the ball, j ∈ J , such that the pseudo-group G generated by them has rich affine
part on Bn. Consider now some holomorphic deformation fj,T : Uj ↪→ Bn parametrized by
T ∈ U ⊂ Cm: fj,T (z) is holomorphic in both variables (T, z) and fj,0 = fj for any j ∈ J .
Then, up to rescaling U and up to a holomorphic change of parameters and coordinates of
the type

Φ : U × Bnτ ↪→ Cm × Bn ; (T, z) 7→ (ϕ(T ), φϕ(T )(z)) ,

there exists some integer 0 ≤ r ≤ m such that the deformation possesses the following
property over U :

- fj,T = fj,T ′ for any j ∈ J if and only if Πr(T ) = Πr(T
′) where Πr stands for the

linear projection on r first coordinates (Πr(t1, . . . , tm) = (t1, . . . , tr));
- if a homeomorphism h : Bn1/2 ↪→ Bn induces a conjugacy between two sets of generators,

h−1 ◦ fj,T ◦ h = fj,T ′ for any j ∈ J , then Πr(T ) = Πr(T
′).
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Proof. First observe that for small T , the pseudo-group GT generated by the fi,T on Bn has
still rich affine part. In what follows we are allowed to reduce the domain of T . Choose some
element along the deformation fT such that f0 fixes some point p close to the origine of Cn

with differential at p having only contracting simple eigenvalues satisfying (∗). Modulo a
holomorphic change of coordinates of the type (T, z) 7→ (T, φT (z)), one can assume that fT
is linear diagonal, namely

fT =



λ1(T ) 0

. . .
0 λn(T )


 .

Here, the space of parameters T have been restricted so that the version of Poincaré Lin-
earization Theorem with holomorphic parameters holds as long as FT lies on the Poincaré do-
main without resonance and with simple eigenvalues. Clearly any analytic conjugacy between
two such diagonal transformations fT is necessarily diagonal as well. If λ1(0), . . . , λn(0) were
chosen sufficiently generic, then no anti-complex matrix can conjugate two such fT close to
0 ∈ Cm. Next Proposition 6.4 asserts that any topological conjugacy h between two sets
of generators (fj,T )j∈J will be holomorphic or anti-holomorphic. However since h induces
a conjugacy between the corresponding diagonal matrices fT , h will finally be C-linear and
diagonal. Now, choose an element gT along the deformation taking 0 ∈ Bn to the comple-
ment of all the coordinate hyperplanes. Modulo a new change of coordinates of the type
(T, z) 7→ (T, φT (z)) with φT linear, one can assume that gT (0) = p does not depend anymore
on T . Then, clearly, any topological conjugacy h between two sets of generators is necessarily
trivial i.e. it must coincide with the identity.

We are now able to distinguish topological classes of conjugacies just by comparing Taylor
coefficients of the generators. Actually let us denote by

fj,T =
∑

k

aj,k(z − pj)k

the Taylor series of the generators (at some arbitrarily fixed point pj ∈ Uj), where k denote
the multi-index k = (k1, . . . , kn) ∈ Nn. In this case (fj,T )j is topologically conjugate to
(fj,T ′)j if and only if all the holomorphic functions ∆j,k(T, T

′) = aj,k(T ) − aj,k(T ′) vanish
at (T, T ′). After Hilbert Basis Theorem, there exists a finite set ∆1, . . . ,∆K generating
all these conditions at a neighborhood of some point T0 ∈ U . In other words, there exists
some germ of holomorphic function a : (Cm, T0) → (CK , 0) such that the sets of generators
(fj,T )j and (fj,T ′)j do coincide if and only if a(T ) = a(T ′). Arbitrarily close to T0 ∈ Cm,
there exists a point T1 where the function a is well defined and regular. Modulo performing
a holomorphic change of parameters of the form (T, z) 7→ (ϕ(T ), z) around T1, a can be
decomposed into a = ã ◦ Πr where r stands for the rank of a at T1 and ã is a germ of
embedding (Cr, 0) ↪→ (CK , 0). By construction, near T1 (and under new coordinates and
parametrizations constructed above), the set of generators (fj,T )j fulfils the conclusions of
Proposition 6.6. ¤

7- Construction of stably chaotic rational vector fields.

A holomorphic one dimensional singular foliation F of degree d on CPn, n ≥ 2, d ≥ 1, is
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given either by a homogeneous vector field of degree d on Cn+1

X̃ =
n∑

i=1

Hi(Z, T )
∂

∂Zi
+Hn+1(Z, T )

∂

∂T

(where Hi are homogeneous polynomials of degree d), or, more commonly, by a polynomial
vector field

X =
n∑

i=1

Pi(z)
∂

∂zi

defined on Cn viewed as the image of the main affine chart (z) = (Z/T ). Actually the
expressions above are related by the equation Pi(z) = Hi(z, 1) − ziHn+1(z, 1). Since the
dimension of the set of homogeneous polynomials of degree d in n+1 variables, or equivalently

of arbitrary polynomials of degree d in n variables, has dimension (d+n)!
d!n! , it follows that the

space Fd(CPn) of holomorphic one dimensional singular foliations of degree d on CPn is a
Zariski open subset of a projective space of dimension

(d+ n+ 1)
(d+ n− 1)!

d!(n− 1)!
− 1.

Indeed for a “smaller” Zarisky open set of the mentioned projective space, the singular set

of F consists of d
n+1−1
d−1 isolated points of CPn.

Let X be a germ of vector field at 0 ∈ Cn with an isolated singularity at 0 and denote by
λ1, . . . , λn ∈ C the spectrum of its linear part. We say that X is hyperbolic at 0 if none of
the quotients λk/λl is real. A branch at 0 is any germ of irreducible analytic curve through 0
which is tangent to X on some neighborhood. It is proved in [LN,So] that, in the hyperbolic
case, 0 has exactly n distinct branches B0, . . . , Bn. More precisely, Bk is smooth and tangent
to the eigenspace of λk at 0.

Theorem [LN,So]. For any n, d ≥ 2, there exists a Zariski open subset of foliations F in
Fd(CPn) such that:

(i) F has exactly (d+n)!
d!n! hyperbolic singularities and is regular on the complement;

(ii) F has no invariant algebraic curve.

In particular, any leaf of F accumulates a non empty set of leaves.

It should be pointed out that the eigenvalues and the corresponding branches depend
holomorphically on the parameters (as it follows from the proof given in [LN,So]). For
instance, if a branch B0 at a hyperbolic singular point p0 of F0 is parametrized by φ :
(C, 0)→ CPn, then there also exists a germ of holomorphic map

φ̃ : (C, 0)× (Fd(CPn),F0)→ CPn

such that φ̃(.,F0) coincides with φ(.). Moreover for any F sufficiently close to F0, p = φ̃(0,F)
is a hyperbolic singularity of F and φ̃(.,F) parametrizes the corresponding branch B of F
through p.
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For the sake of notations, we shall work with CPn+1 (n ≥ 1) instead of CPn. Let us consider
the main affine chart Cn+1 of CPn+1, n ≥ 1, with coordinates (w, z) where z = (z1, . . . , zn)
(in order to specialize the first coordinate). For d ≥ 2, consider also the rational vector field

X(M1, . . . ,Md) =
∂

∂w
+

d∑

k=1

Mk

w − wk
z
∂

∂z
,

where w1, . . . , wd ∈ C are pairwise distinct and M1, . . . ,Md ∈ M(n,C). Here, the notation
Mz ∂

∂z has to be understood as
∑
i,jmi,jzi

∂
∂zj

where M = (mi,j). Denote by F(M1, . . . ,Md)

the induced foliation on CPn+1. We want to describe some dynamical features of foliations
close to F0 = F(I, . . . , I) where I denotes the identity matrix of GL(n,C).

Lemma 7.1. Assume that M1, . . . ,Md 6= (0) and M1 + · · · +Md 6= I. Then the foliation
F = F(M1, . . . ,Md) has projective degree d, is tangent to the projective line L0 : {z = 0}
and has d+ 1 isolated singularities pk = (wk, 0), k = 1, . . . , d, and pd+1 = (∞, 0) belonging
to L0. Furthermore in a neighborhood of any singularity pk, the foliation is defined by a
holomorphic vector field whose linear part at pk is respectively given (in matricial notation)
by (

1 0
0 M1

)
, · · · ,

(
1 0
0 Md

)
,

(
1 0
0 I −M1 − · · · −Md

)
.

Finally the hyperplanes {w = w1}, . . . , {w = wd} and the hyperplane at infinity {w = ∞}
are all tangent to the foliation and intersect along a degenerate codimension 2 singularity at
infinity. There are no other singularity.

Denote by V the dn2-dimensional smooth complex submanifold of Fd(CPn+1) given by the
parametrization (M1, . . . ,Md) 7→ F(M1, . . . ,Md).

Proof. The conditions M1, . . . ,Md 6= 0 and M1 + · · · +Md 6= I imply that the degree d
polynomial vector field (Πdk=1w − wk) ·X, where X = X(M1, . . . ,Md), is irreducible. Also
the homogeneous part of degree d of the polynomial in question is not tangent to the radial
vector field w∂/∂w + z∂/∂z. Using new projective coordinates (t = 1/w, z̃ = z/w), the
foliation is defined by the rational vector field

t
∂

∂t
+ (I −

d∑

k=1

Mk

1− wkt
)z̃
∂

∂z̃
}.

This proves the lemma. ¤

Consider F1 ∈ V and let us recall the classical construction of the holonomy pseudo-group
associated to the special leaf L∗0 = L0 \ {p1, . . . , pd+1}.

Fix a point p0 = (w0, 0) ∈ L∗0 and note that the affine hyperplane {w = w0} is transversal
to F1. Denote by Σ the embedding

Σr : Bnr ↪→ CPn+1

induced by the embedding z 7→ (w0, z) of the ball of radius r > 0, Bnr , in {w = w0} ⊂ Cn+1.
Since no misunderstanding is possible, we sometimes denote by Σr the image Σr(Bnr ) ⊂ Cn+1

of the mentioned embedding as well.
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Choose a collection γ1, . . . , γd : [0, 1] → L∗0 of generators for the fundamental group
π1(L

∗
0, p0) so that γk has index 1 around pk and 0 around the other singularities (k =

1, . . . , d). Next we want to define the return map associated to each singularity pk. First
notice that, given any foliation F close to F1 and belonging to V , the vertical hyperplanes
{w = cte} are transversal to F (excepted those hyperplanes over the corresponding singu-
larities on L0). However for a general foliation (i.e. a foliation which may not belong to V)
F close to F1, the corresponding transversality condition can only be ensured in a compact
part of the hyperplane in question.

In any case, for F1 ∈ V , the desired return maps are defined as follows. Given R > 0,
the “hypersurfaces” {(w, z) ; w = γk(t), z ∈ BnR} are transversal to F1 for t ∈ [0, 1] and
k = 1, . . . , d (indeed R can be chosen arbitrarily large). Hence for a sufficiently small r
(0 < r < R) and any point p ∈ Σr, the path γk can be lifted in the leaf through p (and
w.r.t. the transverse “fibration” by hyperplanes) to a path γk,p verifying γk,p(0) = p and
γk,p(1) ∈ ΣR. This allows us to define the return map fk around the singularity pk (relative
to the choices of the homotopy classes γ1, . . . , γd and r, R) without ambiguity by

fk : Σr → ΣR ; p 7→ γk,p(1) .

As it is well-known, the map fk is holomorphic and one-to-one for r small enough (we
shall see later that, if F1 ∈ V , then fk is defined in the whole hyperplane {w = w0} and
is globally one-to-one). Finally let us observe that the preceding construction also applies
to any foliation F close to F1 (regardless whether or not F belongs to V) maybe choosing
r, R small. In the sequel, we fix r, R so that all the fk (k = 1, . . . , d) are well defined and
injective mappings from Bnr to BnR.

The holonomy pseudo-group GF1
of L∗0 relative to F1 will be the pseudo-group generated

by the return maps fk on Bnr . If a leaf L of F intersects Σr at a point p, then the pseudo-orbit
of p under GF1

is contained in L ∩ Σr, so that if the pseudo-orbit is dense, then L is dense
in a neighborhood of Σr. This last remark will be often used to settle the density of given
leaves.

As we have observed, maybe choosing r, R small, the previous construction remains valid
for any sufficiently small pertubation F of F1 since we can control the dependence of the
slope of the leaves (w.r.t. the parameters) on compact tubular-neighborhoods (where the
foliation is regular) of the γk’s. Let us point out that, if F does not belong to V , the
γk’s are not necessarily invariant under F , however our construction does not require this
fact. For such a general F , the associated “holonomy pseudo-group” GF , generated by the
corresponding maps with parameters

fk,F : Bnr ↪→ BnR ,

may have no common fixed point in Bnr . In other words GF will be in fact a pseudo-group
generated by “holonomy maps” which are however associated to different leaves (i.e. GF is
contained in the “holonomy groupoid” of F). By some abuse of notation we shall say that
GF is a holonomy pseudo-group. Finally it is clear that the “maps with parameters” fk,F
depend holomorphically on F .

The next proposition allows us to arbitrarily choose the linear part of the initial fk.
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Proposition 7.2. For F ∈ V, the return maps f1, . . . , fd : Bnr ↪→ BnR are linear, respec-
tively denoted by A1, . . . , Ad ∈ GL(n,C). Furthermore the holomorphic mapping from V to
GL(n,C) given by {F = F(M1, . . . ,Md) 7→ (A1, . . . , Ad) ;

F0 = F(I, . . . , I) 7→ (I, . . . , I) ,

is a local diffeomorphism at F0.

The authors have discovered later that the proposition above is a variant of the famous
1920’s Lappo-Danilevskii’s affirmative answer to the Riemann-Hilbert problem in the case
in which the monodromy representation is close to the identity.

Proof. The return map fk are clearly obtained by integration of the non-autonomous vector
field

Y (t) =
d∑

k=1

Mk

γk(t)− wk
z
∂

∂z

along t ∈ [0, 1]. Since this vector field is always in the linear group (for t ∈ [0, 1]), the
resulting transformation fk is linear.

Because the Mk’s are close to I, each of the d + 1 singularities of the initial vector field
X = X(M1, . . . ,Md) lying on the projective line L0 are non resonant in the Poincaré domain
(see [Ar,Il], p.72) and hence can be linearized by local holomorphic change of coordinates.
Using these linearizations, it becomes clear that each fk is locally conjugate to the (local)
holonomy of the corresponding linear vector field. In other words, there is gk ∈ Diff(Cn, 0)
such that fk = g−1k e2iπMkgk. However, since fk is linear, the previous equation still holds
when gk is replaced by its linear part D0gk = Bk ∈ GL(n,C). Thus

fk = Ak = B−1k e2iπMkBk for a suitable Bk ∈ GL(n,C), k = 1, . . . , d.

It should be noted that the transition matrices Bk are generally distinct, each of them
depending on all the coefficients (entries) of Mk so that they cannot be explicited. In fact
the subgroup of GL(n,C) generated by the return maps Ak cannot be determined even up to
conjugation. Actually the restriction of the associated foliation to C× (Cn \ {0}) is invariant
by homotheties on the variable z and therefore induces (via projectivization on z) a one-
dimensional foliation on C×CPn−1. When n = 2, the resulting foliation on C×CP1 is defined
by a Ricatti equation. Finally it has been well-known since Liouville that Ricatti equations
hardly ever can be integrated explicitly in terms of its coefficients.

Nevertheless, when only one of the Mk differs from the identity by exactly one of its
entries, the Ak are computable as follows. Let k0 ∈ {1, . . . , d} and i0, j0 ∈ {1, . . . , n}. Let
alsoMk = I for k 6= k0 andMk0 = I+tδi0,j0 where δi0,j0 stands for the Kronecker matrix. In
the main affine chart and away from the poles {w = wk}, k = 1, . . . , d, the integral curves
of the vector field X(M1, . . . ,Md) are locally parametrized by w 7→ (w, z(w)) where the
functions zi(w) satisfy the following system of differential equations:





dzi
dw =

d∑
k=1

zi
w−wk

, i 6= i0

dzi0
dw =

d∑
k=1

zi0
w−wk

+ t
zj0

w−wk0

.



STABLY CHAOTIC RATIONAL VECTOR FIELDS ON CPn. 35

Beginning with initial data p = (w0, z(w0)), a direct integration gives (for i 6= i0)

zi(w) = zi(0) ·
d∏

k=1

(
w − wk
w0 − wk

),

and, when i0 = j0,

zi0(w) = zi0(0) · (
∏

k 6=k0

(
w − wk
w0 − wk

)) · ( w − wk0
w0 − wk0

)1+t.

In this last case (i.e. i0 = j0), we obtain by continuation along γk:





Ak = I, k 6= k0

Ak0 =



Ii0−1 0

e2iπt

0 In−i0


 .

However, if j0 6= i0, then the differential equation satisfied by zi0(w) becomes

dzi0
dw

=
d∑

k=1

zi0
w − wk

+ t
zj0(0)

w − wk0

d∏

k=1

(
w − wk
w0 − wk

).

Replacing zi0(w) = c(w) ·∏dk=1( w−wk
w0−wk

) in the last equation with initial value c(0) = zi0(0),

the function c(w) may be computed by a direct integration providing

zi0(w) = [zi0(0) + tzj0(0) log(
w − wk0
w0 − wk0

)]
d∏

k=1

(
w − wk
w0 − wk

).

Therefore by analytic continuation along γk, we obtain:

{
Ak = I, k 6= k0,
Ak0 = I + 2iπtδi0,j0 .

These computations mean that the two holomorphic maps

(M1, . . . ,Md) 7→ (A1, . . . , Ad)
(M1, . . . ,Md) 7→ (e2iπM1 , . . . , e2iπMd)

turn to coincide near F0 along the coordinate axis (relative to the parametrization given by
Kronecker matrices) and then are tangent at F0. ¤

Corollary 7.3. The germ of holomorphic mapping:

{
(Fd(CPn+1),F0) → (GL(n,C))d

F 7→ (A1, . . . , Ad) = (D0f1, . . . , D0fd)

defined by the return maps is a germ of submersion at F0. ¤

The corollary above is an immediate consequence of the Proposition 7.2. These two
statements mean that for F sufficiently close to F0 within V , or more generally within
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Fd(CPn+1), the linear parts of the d return maps fk,F may be deformed arbitrarily and
independently by a deformation of F .

Notice that the return maps f1, . . . , fd of a foliation F1 in V are linear and hence globally
defined (i.e. we can choose r = R = ∞), in particular they are also globally one-to-one.
Therefore it is easy to construct, for n ≥ 2, foliations in V such that any leaf, apart from
L0 and those contained in the vertical hyperplanes Hk = {w = wk}, k = 1, . . . , d + 1,
is everywhere dense. Indeed it is enough to choose (A1, A2) ∈ U where U is given by
Corollary 1.4.

Now, consider F1 = F(M1, . . . ,Md) where M1 = · · · = Md = M is diagonal. In this
case the associated return maps can be computed by explicitly integration and all of them
coincide with the linear map A = e2iπM . Moreover, we choose F1 such that A is “weakly”
contracting, as needed by Proposition 2.0. Hereafter let us suppose that such a F1, which
in addition is close to F0 in the domain of submersion given by Corollary 5.3, is fixed. For
F close enough to F1, the corresponding return maps fk,F are defined and injective at least
on Bn (i.e. r = 1). Then, we can identify the pseudo-groups generated by the return maps
with pseudo-groups defined on Bn. In what follows, we shall make no distinction between
these two points of view, moreover the pseudo-group in question will be denoted by GF .
When GF acts minimally on Bn, any leaf of F intersecting the transversal Σ has to be dense
in a neighborhood of Σ. In this way, we want to construct a “plug” for producing “local
minimality”.

Proposition 7.4. For F1 as before and F sufficiently close to F1, we have the following
alternative:

- either GF has a common fixed point (which corresponds to an invariant projective line
L0,F close to L0),

- or GF accumulates some non trivial (real) pseudo-flow on Bn.

Proof. The d+1 singular points p1, . . . , pd+1 of F1 along L0 are hyperbolic. At each of these
points pk, the foliation admits exactly n + 1 transversal branches. For a sufficiently small
ball Wk centered at pk, denote by Lk = L0 ∩Wk the local branch contained in L0.

Given a foliation F sufficiently close to F1, those d+1 hyperbolic singularities correspond
to singularities p1,F , . . . , pd+1,F of F (since the initial singularities are “persistent”). The

persistent fixed point of the kth return map fk,F within Bnr corresponds to the intersection
with ΣF of the leaf which, in Wk, induces the persistent branch Lk,F of pk,F ∈ Wk close
to Lk. Then, if the unique fixed point of f1,F , is also fixed by the other return maps, this
means that the branches Lk,F are parts of a common leaf which turns to be an embedded
sphere close to L0 and hence a projective line.

On the other hand, if one of the return maps fk,F does not fix anymore the unique fixed

point of f1,F , we then apply Proposition 2.0 to f = f1,F and g = (fk,F )
−1 ◦ f1,F . ¤

Lemma 7.5. For any d ≥ 2, there exists an open subset W ⊂ F d(CP2) approximating F1
such that any foliation F ∈ W satisfies:

(i) F has exactly (d+2)(d+1)
2 hyperbolic singularities and is regular on the complement,

(ii) any leaf of F is dense in CP2,
(iii) the holonomy pseudo-group GF has large affine part.
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Proof. We keep the notations of the proof of Proposition 5.5. Let us consider the compact
part of L0 given by L0 \ (∪d+1k=1Lk). We also consider a neighborhood W0 of L0 \ (∪d+1i=kLk)
such that any leaf intersecting W0 will also meet the transversal Σ on which all the return
maps are well defined (the existence ofW0 can easily be established, for instance by rescaling
a finite covering by trivialization boxes).

Because of the hyperbolicity of pk,F , the horizontal and vertical branches Lk,F and Bk,F
in Wk depend holomorphically on F (where Lk,F1

= L0 ∩Wk and Bk,F1
= {w = wk}∩Wk).

Hence we can assume that Lk,F intersects W0. Since pk,F is non resonant in the Poincaré
domain, one can also suppose that this singularity is linearizable in the wholeWk for F close
to F1. Thus any leaf other than Bk,F in Wk will accumulate Lk,F and hence intersect W0
(and finally meet ΣF ). Denote by W the neighborhood W = W0 ∪ (∪d+1k=1Wk) of L0.

Since CP2 \L0 is Stein, any leaf L 6= L0 of F has to accumulate L0 and therefore intersects
W . If L ∩W consists only of vertical branches Bk,F , then its closure L of L is a proper

analytic subset in the neighborhoodW of L0 and thus it is algebraic (since CP2\L0 is Stein).
Summarizing, we have the following alternative: any leaf L of F either has algebraic closure
or meets Σ.

Now choose F in the open set given by [LN,So]. Since there is no invariant algebraic
curve, any leaf L of F meets Σ and thus is captured (“trapped”) by the dynamics generated
by the return maps f1,F , . . . , fd,F on ΣF . Furthermore, we are in the second alternative of

Proposition 7.4 namely GF accumulates some non trivial pseudo-flow on B1. If we choose F
so that, in addition, the linear part of f1,F is not real at its fixed point, then one can ensure
the minimality of GF on B1 by Corollary 5.3 and hence of any leaf L in a neighborhhod of Σ.
Minimality propagates everywhere in CP2 because, given any leaf L and any point p ∈ CP2

regular for F , denoting by L′ the leaf passing through p and by γ(t) a path in L′ joining
γ(0) = p to γ(1) ∈ L′∩Σ, we see that L must accumulate γ(1). By using a simple argument
involving flow-boxes along γ, one easily conclude that L accumulates p as well.

By construction, such a F lies on an open set of the parameters accumulating F1. ¤

The only one reason for which the previous proof cannot be adapted to the general case is
that, for n ≥ 2, the complement of L0 in CPn+1 is not anymore Stein. Thus we cannot ensure
that an arbitrary leaf will accumulate L0 and hence meet Σ. Hidden behind the recursive
proof below (Theorem 7.7) is the idea that, for a foliation in CPn+1 tangent to a projective
flag

L0 = H1 ⊂ H2 ⊂ · · · ⊂ Hn

(where H i stands for some i−dimensional linear projective space), we can ensure (modulo
a few restrictions) that any leaf has to accumulate Hn. Actually the complement of Hn is
Stein. On the other hand, if a leaf L is contained in Hn, then it will accumulate Hn−1 since
Hn \ Hn−1 is again Stein. Proceeding inductively we eventually conclude that every leaf
accumulates L0.

However before presenting the argument sketched above, we shall need a last easy lemma:

Lemma 7.6. Let A be a hyperbolic matrix. Consider R > r > 0 such that, for every
point x ∈ Bnr (x 6= 0) there exists nx ∈ Z such that Anxx belongs to BnR \ Bnr . Assume that
g : Bnr ↪→ BnR is sufficiently (C1) close to A in Bnr . Then the following holds:

1. g has a unique fixed point in Bnr which will be denoted by pg.
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2. If x ∈ Bnr is distinct from pg, then there exists nx ∈ Z such that gnx(x) belongs to
BnR \ Bnr .

Proof. The existence and uniqueness of a fixed point for g is rather well known. Thus we
just need to prove assertion 2. One could employ a linearization theorem (e.g. Grobman-
Hartman) however we prefer to proceed directly. Note that the differential Dpgg of g at pg
is close to A. Hence Dpgg is hyperbolic and satisfies the same assumption as A (where the
origin should be replaced by pg in the obvious sense). Since g is close to Dpgg, we conclude
that there is no loss of generality in supposing that pg coincides with the origin. In other
words we can suppose that g fixes the origin 0 and also that the differential of g at 0 is the
matrix A.

Therefore let g(0) = 0. If g is very close to A then, for every point x ∈ Bnr \Bnr/2, there exists
nx ∈ Z such that gnx(x) belongs to BnR \ Bnr . Next observe that the function x 7→ 2g(x/2) is
closer than g to A. In particular the orbit of any point in Bnr \ Bnr/2 under this new function

also leaves Bnr . Nonetheless the last claim means that any point in Bnr/2 \ Bnr/4 leaves Bnr/2
under iteration by g. In view of the conclusions above, it results that any point in Bnr \ Bnr/4
will leave Bnr under a suitable power of g. Continuing this procedure, we finally establish the
lemma. ¤

Theorem 7.7. For any n ≥ 1 and d ≥ 2, there exists an open subset W ⊂ F d(CPn+1)
approximating F0 such that any foliation F ∈ W satisfies:

(i) F has exactly (d+n)!
d!n! hyperbolic singularities and is regular on the complement,

(ii) any leaf of F is dense in CPn+1,
(iii) the holonomy pseudo-group GF has large affine part.

Proof. Assume that the degree d ≥ 2 and the dimension n ≥ 2 are fixed. Let us consider

the (d+n)!
d!n! -codimensional subspace Fd(CPn+1, H) consisting of those foliations of degree d

in CPn+1 which are tangent to the horizontal hyperplane H : {zn = 0}. We also have the
natural restriction map

{Fd(CPn+1, H) → Fd(H ' CPn)
F 7→ F̂ = F|H .

In the sequel, any object relative to F will be assigned with a hat to denote its restriction
to H. For instance F1 ∈ Fd(CPn+1, H) (in fact recall that F1 = F(M, . . . ,M) with M

diagonal) and F̂1 = F(M̂, . . . , M̂) is a foliation (in lower dimension) possessing properties
similar to those of F1. We now make our induction assumption namely, we suppose that
arbitrarily close to F̂1 in Fd(CPn), we have already constructed a stably chaotic foliation

F̂ . Next consider a foliation F in Fd(CPn+1, H), close to F1, whose restriction F̂ to H
coincides with the mentioned chaotic foliation (the existence of the foliation F is clear after
the characterization of foliations in CPn by means of homogeneous polynomial vector fields
in Cn+1, cf. the introduction or the beginning of the present section). Furthermore by a

small pertubation, fixing F̂ , of F in Fd(CPn+1, H), one can also assume that F has only
isolated singularities which are hyperbolic. Notice that the importance of our “induction
assumption” lies on the fact that every leaf of F contained in H must accumulate L0 while
H contains no algebraic leaf (in particular L0 is not anymore a leaf).
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We divide our proof into 3 steps. The main difficulty of the proof is to establish the
assertion contained in the Step A below:

Step A A generic perturbation F ′ of F is such that any leaf L′ of F ′ is non-algebraic,
intersects Σ and is therefore captured (“trapped”) by the dynamics of the pseudo-group
GF ′ .

By a generic perturbation, we mean that the set of foliations close to F and satisfying
the conclusion above form an open subset of total Lebesgue measure contained in a small
neighborhood of F in Fd(CPn+1).

Denote by ps the singularities lying on H while s runs over s = 1, . . . , d
n+1−1
d−1 and let Bs

be the corresponding germ of branch which is transversal to H. Notice that any leaf L of
F accumulates H (since CPn+1 \H is Stein); if L accumulates only singular points ps, then
L consists of finitely many branches Bs (in a neighborhood of H) and thus it has algebraic
closure. On the other hand, a non-algebraic leaf L must accumulate a leaf L1 which is dense
in H (induction assumption) and therefore both leaves intersect Σ. Hence the following
alternative holds: a given leaf L of F either is contained in an algebraic curve transversal
to H or intersects Σ. Denote by L1, . . . , Lr the irreducible invariant algebraic curves of F .
Claim 1: The preceding alternative is verified for every foliation F ′ sufficiently close to F
in Fd(CPn+1) (i.e. if F ′ is sufficiently close to F , then any leaf of F ′ either has algebraic
closure or intersects ΣF ′).

In order to demonstrate Claim 1, let ps denote also the singularities of F which do not lie

on H while s runs over dn+1−1
d−1 + 1, . . . , d

n+2−1
d−1 . Consider also a small ball Ws centered at

ps. Finally denote by Vl, for l = 1, . . . , r, a suitable tubular neighborhood of the compact
part of Ll given by Ll \ ∪ps∈Ll

Ll ∩Ws.

First we construct a neighborhood U of the compact set K = CPn+1 \ (⋃sWs ∪
⋃
l Vl) so

that, for F ′ sufficiently close to F , any leaf intersecting U will also meet Σ. Observe that,
for any given point p ∈ K, there is a path γp contained in the leaf through p and joining
γp(0) = p to γp(1) ∈ Σ. It is then easy to find a tubular neighborhood Up of γp on which F is
regular and such that any leaf intersecting Up will meet Σ. Now the required neighborhood
U can be obtained by choosing a finite sub-covering from the open covering

⋃
p∈K Up.

Claim 1 is now an easy consequence of the

Claim 2: If Vl was chosen sufficiently small then, for F ′ very close to F , any leaf in Vl
(excepted a possible persistent invariant curve) will escape and intersect K.

Before proving Claim 2, we want to point out that it implies Claim 1. Actually it is
enough to observe that a leaf in Ws will necessarily leave Ws (by the maximum principle)
and therefore it will meet K or some Vl.

To prove Claim 2, note that any algebraic invariant curve Ll contains at least one singu-
larity Ps which is hyperbolic. Furthermore the associated return map fl : Br ↪→ BR, defined
through a parametrization il : BnR ↪→ Σl of a transversal Σl, is also hyperbolic; in other words,
fl has a unique fixed point 0 = (il)

−1(Σl ∩ Ll) and the corresponding differential Al = D0fl
has no eigenvalue of modulo one (obviously by choosing all the pertubations very small, we
can also suppose that fl is arbitrarily close to Al = D0fl). It results from Lemma 7.6 that
fl as well as any sufficiently small pertubation of fl possesses the following property: any
point of Bnr other than the unique (persistent) fixed point reaches BnR \ Bnr either by positive
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or negative iteration of f .

The proof of Claim 2 is now easy. Choose a neighborhood Vl of Ll \ ∪ps∈Ll
Ll ∩Ws so

that, for any small pertubation F ′ of F , (Vl ∩ Σl) is contained in il(Bnr ) (which is in turn
contained in the “stably repelling” part of the dynamics of fl in view of the discussion above).
Thus il(BnR \ Bnr ) is contained in the compact K. Furthermore any leaf in Vl intersects the
transversal Σl. In particular every leaf excepted the one corresponding to the fixed point
0 (' psl) of fl (i.e. the one inducing the “horizontal” branch of psl) necessarily “escapes”
from Vl and meets K. However the special leaf inducing the “horizontal” branch of psl ' 0
either is “fixed” by all the other return maps (i.e. 0 is a common fixed point for the return
maps) and hence it compactfies into an invariant algebraic curve, or it cuts Σl away from 0
and “escapes” too. Claim 2 and Claim 1 are proved.

Step A now follows immediately from the combination of the claim with [LN,So] theorem.

Step B Assume that F is very close to F1. In this case, for an open choice in Fd(CPn+1) of
the pertubation F ′ of F , the pseudo-group GF ′ has large affine part.

Since F has no algebraic invariant curve within H, it follows from Proposition 7.4 that
GF does not fix any point and hence accumulates some pseudo-flow within Bn. We point out
that, even though ĜF has large affine part, GF (and in particular the previous pseudo-flow)
preserves the horizontal hypersurface Bn−1 = Bn∩{zn = 0} corresponding to the transversal

Σ̂F on which ĜF acts minimally.

Moreover this translation pseudo-flow persists for small pertubations F ′ of F . Let us
observe that F ′ can be chosen so that GF ′ satisfies the assumptions of Corollary 5.3 in order
to conclude that it has large affine part; indeed, assumptions (∗∗) needed to apply Corollary
5.3 relie on the genericity of the linear part of f1,F ′ and f−11,F ′ ◦ f2,F ′ at the fixed point of

f1,F ′ . Corollary 7.3 enables us to a find a deformation such that f1,F ′ and f
−1
1,F ′ ◦f2,F ′ satisfy

the desired generic conditions.

Step C: conclusion Let F ′ be as in steps A and B; then any leaf L of F ′ is “trapped” by
the “rich” dynamics of the pseudo-group GF ′ on Σ and hence is dense on a neighborhood
of this transversal. The density of the leaves propagates to the whole CPn+1 by the same
arguments as in the end of the proof of Lemma 7.5. ¤

Proof of the Main Theorem. Obviously the foliations constructed above lie on an open set U
of foliations which are minimal and ergodic w.r.t Lebesgue (see Property 6.1). Furthermore,
Property 6.2 shows that these foliations has strictly positive entropy at least near L0, even
after deleting some balls around the singularities, simply by using the return maps fi,F .

Now, let us prove the rigidity property up to rescaling U . First of all, fix F0 ∈ U and

W ⊂ CPn+1 a small tubular neighborhood of the singular locus of F0: W consists of d
n+2−1
d−1

disjoint balls and we can suppose that CPn+1 is the holomorphic hull of CPn+1 \W .

Modulo rescaling U , we can suppose that the singular set of F remains in W for any
F ∈ U . Furhtermore there is no loss of generality in supposing the existence of a finite
trivialization covering of CPn+1 \W for the smooth foliation F̂ induced by restriction of F
to CPn+1 \W which depends holomorphically on the parameter F ∈ U . Actually such a

trivialization can be constructed just by using the compactness of CPn+1 \W . In particular,

the pseudo-group G
F̂

induced by F̂ on Σ (may be strictly smaller than the pseudo-group
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GF induced by the whole foliation F but) is generated by a finite collection of return maps
fj,F : Uj ↪→ Bn, Uj ⊂ Bn, j ∈ J finite, which depend holomorphically both on z and on the
parameter F . Clearly, G

F̂
does contain at least the dynamics of the d return maps near L0

considered all along this section. Therefore G
F̂

has rich affine part.

On the other hand, any homeomorphism H : CPn+1 → CPn+1, sufficiently close to the
identity, conjugating two elements F0,F1 ∈ U should induce (by a classical argument that
can be found in [Il]) a conjugacy between the respective finite sets of return maps fj,F0

and
fj,F1

by some “restriction” homeomorphism h : Bn1/2 ↪→ Bn.

Next we notice that Proposition 6.6 applied to the finite family (fj,F )j∈J implies that (up
to rescaling U) the existence of such a conjugacy H guarantees the existence of a smooth
holomorphic one parameter family of foliations Ft, t ∈ U ⊂ C, joining F0 to F1 along with the
existence of a smooth holomorphic one parameter family of diffeomorphisms ht : Bn1/2 ↪→ Bn

conjugating fj,F0
to fj,Ft for any j ∈ J and any t ∈ U .

Now, using this fact, we construct a complex two dimensional regular foliation G on
U × CPn+1 transversal to the vertical hyperplanes Πt : {t} × CPn+1 inducing the given

foliation Ft on Πt. First, we construct the restriction Ĝ of G to CPn+1 \ W ; the whole
(singular) foliation G will be deduced from some extension theorem.

The leaves of Ĝ are defined as follows: (t, p) and (t′, p′) belong to the same leaf if the
respective intersections q (resp. q′) between Σ1/2 and the leaf passing through p (resp. p′)

satisfy h−1t (q) = h−1t′ (q′). This is well defined for p and p′ close to Σ since the intersections
of the corresponding leaves with Σ is defined without ambiguity. Because ht conjugates
the respective return maps generating the respective pseudo-groups of F̂t and F̂0 on Σ
implies that this way of analytically gluing the one dimensional leaves of the Ft into 2-
dimensional leaves extends analytically to CPn+1\W . It is a classical result that the complex

2-dimensional foliation Ĝ constructed by this way is well defined, regular and holomorphic
on CPn+1 \ W and satisfies the required property, namely Ĝ is transversal to the vertical

hyperplanes Πt (its restriction to CPn+1 \W induces the given foliation F̂t on Πt). Now it
suffices to use an extension theorem to extend G̃ to W .

Finally the main result of [GM] (first part of the Rigidity Theorem) asserts that the
deformation Ft is actually projectively trivial. The Main Theorem is proved. ¤
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