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Abstract

We give a complete classification of hyperbolic components in the space of iterated
maps z 7→ λ exp(z), and we describe a preferred parametrization of those components.
This leads to a complete classification of all exponential maps with attracting dynamics.
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1 Introduction

This paper is part of the program to describe the dynamics of exponential maps z 7→ λez and
the structure of parameter space, in the spirit of the well-developed body of knowledge about
polynomial dynamics. The polynomial theory was pioneered by Douady and Hubbard [DH]
who systematically investigated the Mandelbrot set as the simplest non-trivial example of a
holomorphic parameter space. Since then, there has been a lot of further work in this field.
The description of the exponential parameter space was begun in the 1980’s by Baker

and Rippon [BR], by Eremenko and Lyubich [EL1, EL2, EL3], and by Devaney, Goldberg
and Hubbard [DGH]. These papers discuss certain fundamental properties of hyperbolic
components and of bifurcations (in the case of [EL1, EL2, EL3] as an example of a study
of finite type entire maps), but a description of the global structure of parameter space
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was in terms of pictures and conjectures. In this paper, we give a complete description of
hyperbolic components of the exponential parameter space. This was part of Chapter III
of the author’s habilitation thesis [S1] (of May, 1999) which developed a description of the
exponential parameter space in analogy to Douady and Hubbard’s Orsay Notes [DH] about
the Mandelbrot set.
Our object is to classify hyperbolic components in the λ parameter plane, where λ ranges

over C \ {0}. It is known from the papers cited above that there is a unique hyperbolic
component which is bounded, having period 1, and a unique hyperbolic component which is
bounded to the right but unbounded to the left and in the imaginary direction, having period
2. All other hyperbolic components have period 3 or more, and are unbounded to the right.
Every hyperbolic component is simply connected, except that the period one component is
punctured at 0.
Here is our main result; it is illustrated in Figure 1.

Theorem 1.1 (Classification of Hyperbolic Components)
For every period n ≥ 3, there are countably many hyperbolic components in the space of
exponential maps parametrized by λ. Each of them is characterized by a sequence

s1, s2, . . . , sn−1

(its “intermediate external addresses”), where s1 = 0, s2, . . . , sn−2 ∈ Z and sn−1 ∈ (Z +
1
2
). Conversely, every such sequence is realized by a unique hyperbolic component of period
n. These hyperbolic components have a natural vertical order in which they stretch out to
+∞ along bounded imaginary parts, and this order is the same as the lexicographic order
of the sequences s1, s2, . . . , sn−1. In particular, between any pair of consecutive hyperbolic
components of period n, there are infinitely many hyperbolic components of period n + 1,
ordered like Z.

The numbers s1, s2, . . . , sn−1 characterizing any hyperbolic component of period n have
a dynamic meaning as follows. Let λ be any parameter in the given period n hyperbolic
component, and let

U1
≈→ U2

≈→ . . .
≈→ Un

be the unique cycle of periodic Fatou components for Eλ, where 0 ∈ U1, where λ ∈ U2, and
where Un contains a left half plane. Then for 1 ≤ k < n− 1 the points in Uk are asymptotic
to the line

L(sk) := {z ∈ C: Im(z) = 2πsk − c}
as Re(z)→∞; here c is the imaginary part of log(λ), choosing the branch with |c| < π. For
k = n− 1 the points of Un−1 form a neighborhood of the line L(Sn−1) for Re(z) sufficiently
large. Thus sk specifies precisely which branch of E

−1
λ carries Uk+1 to Uk.

Similarly, in the λ parameter plane, if n > 3 then the points in the hyperbolic component
are asymptotic to the line

Im(λ) = 2πs2 as Re(λ)→ +∞ ,

while for n = 3 they form a neighborhood of this line near +∞.
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Figure 1: The space of parameters λ for exponential maps λ, with hyperbolic com-
ponents indicated in white. Various hyperbolic components are labeled by their
intermediate external addresses, or briefly by their periods (in parentheses). The
picture has kindly been contributed by Jack Milnor: for every pixel, an approxi-
mate test is performed whether or not the corresponding map Eλ has an attracting
orbit (with λ at the center of the pixel); in addition, the boundaries of hyperbolic
components have been emphasized in order to show their shapes more clearly.
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Figure 2: The same space as in Figure 1, drawn differently by a special purpose pro-
gram of Günter Rottenfußer: this program traces out the boundaries of hyperbolic
components, which is possible with arbitrary precision for any given hyperbolic com-
ponent. Unlike for the Mandelbrot set, it makes no sense in the exponantial case to
test whether the singular orbit “escapes to∞”; instead, in pixel images it is usually
tested whether the singular orbit survives some fixed number N of iterations without
producing numbers too large to store. This is quite different from the existence of
an attracting orbit for the given value of λ, and logically independent. This picture
confirms that pixel test pictures like in Figure 1 are approximately correct.
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Furthermore, if H1 and H2 are hyperbolic components of any periods greater than 2, then
H1 lies above H2 if and only if its symbol sequence is greater, using lexicographic ordering.
In Section 2, we review necessary properties about exponential maps and state results

from earlier papers. In particular, we introduce dynamic rays. Then, in Section 3, we give
a combinatorial coding to every hyperbolic component in terms of “intermediate external
addresses”, and we show that each intermediate external address is realized by at least one
hyperbolic component. The converse needs a deeper understanding of exponential dynamics
and in particular the interplay between attracting Fatou components and dynamic rays.
In Section 4, we investigate the combinatorial properties periodic dynamic rays landing
at a common point and show that whenever at least three rays land together, the first
return map of the landing point permutes them cyclically. Section 5 proves the existence
of “dynamic roots” of periodic Fatou components for attracting cycles: these are boundary
points which are fixed under the first return map of the Fatou component such that at least
two periodic dynamic rays land at this point. Every periodic Fatou component (of period
n ≥ 2) has a unique dynamic root, which helps to break the symmetry of Fatou components
and makes a unique coding possible. Using these tools, we can prove uniqueness of the
hyperbolic component associated to any intermediate external address (Section 6), and we
get a preferred parametrization within each hyperbolic component. Finally, in Section 7, we
outline some further related results of [S1] which will be published separately.

Some notation. We write our exponential maps as z 7→ Eλ(z) := λez = exp(z + κ) with
λ = exp(κ), where λ ∈ C \ {0} and κ ∈ C. We will often need F (t) = et − 1, in particular
for t ∈ R. Let D := {z ∈ C : |z| < 1} and D∗ := D \ {0}. We write that a curve or sequence
in C converges to +∞ or to −∞ to indicate that the real parts converge to ±∞, while the
imaginary parts are bounded.

Acknowledgments. I would like to thank Misha Lyubich and Jack Milnor for many
helpful and inspiring discussions, and to the Institute for Mathematical Sciences at Stony
Brook for continued support and encouragement. I am also grateful for several helpful
comments from the audience at various seminars where these results were presented, in
particular in Stony Brook (spring 1999 and spring 2000) and at Boston University (spring
1999).

2 Exponential Dynamics

In this section, we will review known properties of exponential dynamics. Points z with
E◦kλ (z)→∞ are known as escaping points; they are completely classified [SZ2]: if the singular
value itself does not escape, then the escaping points are on disjoint curves called dynamic
rays (or hairs) labeled by external addresses s = s1s2s3 . . ., which are infinite sequences
over Z (if the singular value does escape, then there is a well-understood exception). The
dynamic ray at external address s is an injective curve gs: ]ts,∞[ → C (or gs: [ts,∞[ → C)
with Re(gs(t)) → +∞ as t → ∞, while Im(gs(t)) is bounded. Every point on a dynamic
ray is an escaping point, and every escaping point is on such a ray. We have the dynamic
relation

Eλ(gs(t)) = gσ(s)(F (t))
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where σ is the shift map on external addresses, dropping the first entry. The quantity ts ≥ 0
depends on s in a well-understood way. The meaning of the external address of a ray is the
following: the set E−1

λ (R
−) is a countable union of vertical lines, spaced at distance 2πiZ,

and C \ E−1
λ (R

−) are horizontal strips, labeled by Z so that the strip with label 0 contains
the singular value 0 (perhaps on its boundary). Then at least for sufficiently large t > ts, the
external address s of gs is the sequence s1s2s3 . . . of strips visited by the orbit of gs(t). Not
all possible sequences are allowed; the set of allowed sequences is completely understood,
and it contains all bounded sequences. In this paper, we need only rays gs for which s is
bounded; in this case, ts = 0. We say that such a ray lands at a point w ∈ C if limt↘0 gs(t)
exists and is equal to w.
If an exponential map has an attracting periodic point, then the singular value is in

a periodic Fatou component which we call the characteristic Fatou component. All peri-
odic points, except the unique attracting one, are repelling. We will need a construction
and results from [SZ1, Section 4.3]: let n ≥ 2 be the period of the attracting orbit, let
U1, U2, . . . , Un = U0 be the cycle of periodic Fatou components, labeled cyclically modulo
n so that U1 is the characteristic Fatou component, and let a1, a2, . . . , an be the attracting
periodic orbit labeled so that ak ∈ Uk for all k. Let Vn+1 be a closed neighborhood of a1

corresponding to a disk in linearizing coordinates, large enough so as to contain the singular
value in its interior. Let

V :=
n
⋃

k=0

{

z ∈ Uk : E
◦(n+1−k)
λ (z) ∈ Vn+1

}

.

Since E−1
λ (Vn+1) ⊂ Un contains a left half plane, V ∩Uk (for k = n−1, n−2, . . . , 1) contains

a band towards +∞, and V ∩U0 contains infinitely many bands towards +∞, spaced equally
at integer translates of 2πi. The construction assures that Eλ(V ) ⊂ V and that all V ∩ Uk

are connected and simply connected.
Let R := C\(V ∩U0); it consists of countably many connected components which we will

call “regions” and denote Rj: let R0 be the connected component containing the singular
value and Rj := R0 + 2πij, for j ∈ Z. Then R = ∪jRj. Any orbit (zk) within the Julia
set then has an associated itinerary u1, u2, u3, . . ., where uk = j iff zk ∈ Rj. We should
emphasize that this itinerary is different from the external address used for example in the
construction of dynamic rays: the external address is constructed using inverse images of
the negative real axis, which is dynamically not a natural concept; however, the itineraries
as defined here are dynamically natural; compare the discussion in [SZ1, Sections 4 and 5].
(Note the different fonts for external addresses s1s2 . . . and itineraries u1u2 . . ..)
For exponential dynamics with an attracting periodic orbit, it is shown in [SZ1] that every

periodic dynamic ray lands at a repelling periodic point (Theorem 3.1); that every repelling
periodic point is the landing point of a finite positive number of periodic rays (Theorem 5.3);
and that a periodic ray lands at a periodic point if and only if ray and point have identical
itineraries (Proposition 4.5). In particular, different periodic points have different itineraries,
while different rays have the same itinerary if and only if they land together.
The set of parameters λ or κ for which there is a (necessarily unique) attracting periodic

orbit is known to be open; a connected component where this happens will be called a
hyperbolic component (this is a slight abuse of notation: hyperbolic dynamics in a strict
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sense would require a uniformly expanding metric in a neighborhood of the Julia set, but
the Julia set is never compact for exponential maps).
The period of the attracting orbit is necessarily constant throughout any hyperbolic

component; we will show that (except for low periods) the number of hyperbolic components
for any given period is always countably infinite. The following results are known from
[EL2, EL3, BR, DGH]: in λ-space, there is a unique hyperbolic component of period 1
which is a bounded neighborhood of the puncture λ = 0 of parameter space; there is a
unique period 2 component which “almost” occupies a left half plane (in the sense that
for every ϑ ∈ ]π/2, 3π/2[ , there is an R > 0 such that for all r > R, the parameter
λ = r exp(iϑ) has an attracting orbit of period 2). All hyperbolic components of period
n ≥ 2 are simply connected. Similarly, in κ-space, all hyperbolic components are simply
connected, the unique period 1 component contains a left half plane, and there are countably
many period 2 components.
On any hyperbolic component W , there is an associated multiplier map µ:W → D∗,

which is a holomorphic covering map. Indeed, W is simply connected and µ is a universal
cover (except for the unique period 1 component in λ-space, for which µ is a conformal
isomorphism onto D∗).

Lemma 2.1 (Strong Attraction Only at Far Parameters)
For any period n and any r < 1, there is an R > 0 such that any parameter κ for which
there is an attracting orbit of multiplier |µ| ≤ r has |κ| > R.

For any hyperbolic component W of period n ≥ 2, there is a unique homotopy class of
curves γ( [0,∞[ ) → W with limt→∞ γ(t) = ∞ such that µ(γ(t)) → 0 as t → ∞ (where the
homotopy should fix the endpoint ∞ but need not fix the other endpoint).

Proof. If a1, a2, . . . , an is any periodic orbit of period n under λ exp, then (E◦nλ (am))
′ =

∏

k ak. If the orbit is attracting, then there is some |ak| < 1. Hence if |κ| ≤ R, then all |ak|
are bounded above in terms of R and n. Hence there is a ξ ∈ R such that all Re(ak) ≥ ξ,
but this implies that |ak+1| ≥ exp(ξ +Re(κ)). Hence we have a lower bound for all |ak| and
hence for |µ|.
Any curve γ ′: ( [0,∞[ )→ D∗ with limt→1 γ

′(t) = 0 lifts under any branch of the inverse
multiplier map to a curve γ: ( [0,∞[ ) → C with limt→1 γ(t) = ∞ by what we just proved.
Conversely, any two curves γ1, γ2: ( [0,∞[ ) → W which limit at ∞ project under µ to two
curves γ ′1, γ

′
2: [0,∞[ → D∗, and these are homotopic; hence γ1 and γ2 are also homotopic.

Remark. It would be conceivable that there are different homotopy types of curves within
any hyperbolic component which tend to ∞: some branch of µ−1( [eiϑ/2, eiϑ[ ) could tend
to ∞ as |µ| → 1. It was conjectured by Eremenko and Lyubich [EL2] that this does not
happen; a proof of this conjecture was given in [S1, Section V].

3 Classification of Attracting Components

Hyperbolic components of Multibrot sets have the helpful property that they have a unique
“center” in which the dynamics is postcritically finite. If an exponential map has an attract-
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ing orbit, it can never be postsingularly finite; the “center has disappeared to +∞”. Fair
enough, it turns out that hyperbolic components of exponential maps have another feature
unknown to the polynomial case: since they stretch out to +∞ like parameter rays, they
can be described by a slight generalization of external addresses: we need finite sequences of
integers, followed by a symbol ±∞.

Definition 3.1 (Intermediate External Address)
An intermediate external address of period n ≥ 2 is a sequence s1s2 . . . sn−2sn−1 with sk ∈ Z
for k ≤ n− 2 and sn−1 ∈ (Z+ 1

2
).

The lexicographic order on external addresses (infinite sequences over Z) extends natu-
rally to intermediate external addresses such as s = s1s2 . . . sn−1. Note that an intermediate
external address of period n has length n − 1 with exactly the last entry a half-integer;
it labels hyperbolic components which have an attracting orbit of period n, but it is not
periodic itself
As usual, we start with a dynamic consideration.

Definition 3.2 (Attracting Dynamic Ray)
Consider an exponential map Eλ with an attracting orbit of period n ≥ 2 and let s =
s1s2 . . . sn−1 be an intermediate external address of period n. We say Eκ has an attracting
dynamic ray at external address s if there is a curve γ: [0,∞[ → C within the characteristic
Fatou component such that the following hold:

• γ(0) is on the attracting periodic orbit;

• limt→∞E◦kλ γ(t) = +∞ for k = 0, 1, . . . , n− 2;

• limt→∞E
◦(n−1)
λ γ(t) = −∞;

• every dynamic ray at an external address s′ < s is below γ;

• every dynamic ray at an external address s′ > s is above γ.

Remark. Since γ is in a Fatou component, it must be disjoint from any dynamic ray. Since
γ and any dynamic ray both tend to +∞ at bounded imaginary parts, the ray must be
above or below γ in the following sense: for real ξ sufficiently large, γ cuts the half plane
{z ∈ C : Re(z) > ξ} into two unbounded parts, one above and one below γ, and any dynamic
ray must tend to +∞ within one of these two parts.

Lemma 3.3 (Attracting Dynamics Has External Addresses)
For every attracting exponential dynamics of period n ≥ 2, there is an intermediate external
address s = s1s2 . . . sn−1 of period n such that there is an attracting dynamic ray at this
external address. This external address is unique up to changing of the combinatorics (adding
a common constant to all sk), and it is the same for any parameter from the same hyperbolic
component.
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Remark. We can make the intermediate external address unique by choosing the combi-
natorics so that s1 = 0.

Proof. There is a unique periodic Fatou component which contains a left half plane. By
simple connectivity, it contains a unique homotopy class of curves connecting an attracting
periodic point to −∞ eventually within a left half plane (or even eventually along R−). This
homotopy class of curves can be pulled back n−1 steps to a homotopy class of curves within
the characteristic Fatou component connecting the attracting periodic point to +∞. Choose
one such curve γ. This curve avoids dynamic rays, and it is easy to check that the supremum
of external addresses of rays below γ has well-defined n − 1 initial entries in Z (these rays
need not run below the entire Fatou component): the curve γ and its first n − 2 iterates
tend to +∞ (with bounded imaginary parts), so the first n− 1 entries in the supremum are
just the labels of the strips containing the iterates of γ (with respect to inverse images of R−
used in the construction of external addresses). Similarly, the infimum of external addresses
of dynamic rays above γ supplies n− 1 well-defined first entries which differ from the lower
external addresses only in the last entry and only by one. It is easy to confirm that the
external address does not depend on the choice of γ or on the parameter chosen from its
hyperbolic component.

We thus have a combinatorial coding for every hyperbolic component (except for the
unique component of period 1), and our goal is to show that each coding is realized by exactly
one hyperbolic component. This will be done in Theorem 3.5 (existence) and Corollary 6.3
(uniqueness).
First we need a lemma to prove the existence of an attracting orbit.

Lemma 3.4 (Singular Orbit in Horizontal Strip)
Suppose that for some parameter λ there is a real number h > 3 such Re(λ) > h and the initial
segment z1 = 0, z2 = λ, . . . , zn of the singular orbit has the property that |Im(zk)| < h for
1 ≤ k ≤ n. Suppose moreover that zn is the first point on the singular orbit with Re(zn) < 0.
Then the map Eλ has an attracting periodic orbit of exact period n, and the attracting basin
contains the left half plane Re(z) ≤ Re(zn) + 1. As Re(λ) → ∞ with fixed height h of the
strip, the multiplier tends to 0.

The proof needs a couple of unpleasant calculations, but its idea is very simple: the geometry
of the strip containing the singular orbit assures that absolute values of orbit points are
dominated by the real parts, and the real parts grow exponentially. Once the orbit reaches a
point with negative real part, its absolute value dominates the remaining orbit by far. The
contraction coming from the exponential map at this point is far greater than the expansion
along the previous orbit, starting at the singular value 0. Therefore, any sufficiently small
disk around 0 will map after n steps to a much smaller (almost-) disk close to the origin. In
order to map this disk into itself, its size has to be chosen so that it is neither too large (or
we would lose control in the estimates) nor too small (or it would not contain the images
after n steps). It turns out that it works if we choose the disk so that its image at zn has
radius 1.

Proof. The points z2, . . . , zn−1 of the orbit are contained within the strip S := {z ∈ C :
|Im(z)| < h} at positive real parts. We show that they all have real parts greater than h.
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Indeed, this is true for z2 = λ by assumption, and for the others it follows by induction using
|λ| > h > 1: |zk| = |λ| exp(Re(zk−1)) > heh, so |Re(zk)| > h. We also get Re(zn) < −h.
Now we show for n′ ≤ n

n′
∏

k=2

(|zk|+ 1) < (|zn′ |+ 1)2 . (1)

Indeed, for n′ = 1 the empty product on the left equals 1, while Re(z1) > 3 by assumption.
For the inductive step, we only need to prove (|zk|+ 1)2 < |zk+1| + 1. We will use the
inequality (

√
2x+ 1)2 < 3 exp(x) for all x ≥ 2 and estimate for Re(zk) > 0 as follows:

(|zk|+ 1)2 < (
√
2Re(zk) + 1)

2

< 3 exp(Re(zk)) < |λ|| exp(zk)| < |zk+1|+ 1 .

Our next claim is about zn, the first point with negative real part:

e|λ| exp(Re(zn)) < (|zn|+ 1)−2 . (2)

Indeed, we have |zn| = |λ| exp(Re(zn−1)) > heh > 3 exp(3) > 60, thus |Re(zn)| > heh/
√
2 >

40 and |zn|+ 1 <
√
2|Re(zn)|. Using the inequality 2ex3 < ex for all x ≥ 8, it follows

e|λ|(|zn|+ 1)2 ≤ 2e|λ||Re(zn)|2 ≤ 2e|Re(zn)|3 < exp(|Re(zn)|) .

Since the real part of zn is negative, the claim follows.
Now we can start the actual proof of the lemma. Let Dn be the open disk of radius 1

around the point zn. Pulling back by the dynamics, we obtain open neighborhoods Dn−1

around zn−1, . . . , D1 around z1 = 0. These pull-backs are contracting at every step: the
derivative of Eλ at a point z

′
k ∈ Dk is equal to Eλ(z

′
k), and its absolute value is bounded

above by |zk+1| + 1. The inverse map is thus contracting with contraction factor at most
1/(|zk+1| + 1), and the domain D1 contains a disk around the origin with radius at least
ρ =

∏n
k=2(|zk|+ 1)−1 > (|zn|+ 1)−2 by Equation (1) above.

On the other hand, all the points in Dn are contained in the left half plane Re(z) ≤
Re(zn) + 1. The image points of this half plane have distance to the origin at most
|λ| exp(Re(zn) + 1) = e|λ| exp(Re(zn)). All these image points are thus contained in D1

by Equation (2) above, and the n-th iterate of the dynamics sends D0 strictly into itself
(even injectively). Therefore, there is an attracting orbit of period at most n. The period
clearly cannot be smaller than n. If within the same strip with imaginary parts bounded by
h, Re(λ) becomes large, the size of the image of Dn within D1 gets much smaller compared
to the size of D1, and the multiplier tends to 0.

Now we come to the existence theorem. We restrict to periods n ≥ 3 because the
hyperbolic components of periods 1 and 2 are completely classified: in λ- and κ-space,
there is a unique hyperbolic component of period 1 which would be labeled by the empty
intermediate external address. For period 2, the unique hyperbolic component in λ-space.
It is labeled Z+ 1

2
and contains a left end of R−. Hence, in κ-space, for each n ∈ Z there is

a unique hyperbolic component of period 2 which contains a right end of the horizontal line
at imaginary part 2π(n+ 1

2
); it is labeled n+ 1

2
.
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Theorem 3.5 (Existence of Hyperbolic Components)
For every n ≥ 3 and every intermediate external address s = s1s2 . . . sn−1 of period n, there is
a hyperbolic component (in λ- or κ-space) in which every exponential map has an attracting
dynamic ray at external address s (up to relabeling the combinatorics).

In λ-space, this hyperbolic component contains an analytic curve tending to +∞ with
imaginary parts converging to 2πs2 such that along this curve the multipliers of the attracting
orbit tend to 0. In κ-space, the imaginary parts converge to 0.

Proof. We may relabel the combinatorics by adding −s1 to all entries, so that we may
assume s1 = 0. Let s

±
n−1 := sn−1± 1

2
∈ Z and define two periodic external addresses of period

n− 1 via s− := s1s2 . . . s
−
n−1 and s

+ := s1s2 . . . s
+
n−1. Let A := 1 + maxk{|sk|} and x := 1.

In [SZ2, Proposition 3.4], the existence of dynamic ray ends gs+ and gs− was shown for
any parameter κ ∈ C with |Im(κ)| ≤ π and for potentials t ≥ x + 2 log(|κ| + 3), together
with the bound

gs±(t) = t− κ+ 2πis1 + rs±(t) with |rs±(t)| < 2e−t(|κ|+ 3 + 2πAC ′) ,

where C ′ < 2.5 is a universal constant. The same statement with the same bound holds
also for all σk(s±) (replacing s1 by the appropriate entry, of course). In particular, if we let
t∗ := x+ 2 log(|κ|+ 3 + 2πAC ′), then

|gs±(t)− (t− κ+ 2πis1)| < e−(t−t∗) .

After n− 2 iterations, these two rays map to

E
◦(n−2)
λ (gs±( ]t

∗,∞[ )) = gσn−2(s±)( ]F
◦(n−2)(t∗),∞[ )

with
gσn−2(s±)(t) = t− κ+ 2πis±n−1 + r±

for t ≥ t∗ with |r±(t)| < e−(t−t∗). Define a curve

γ′κ: [F
◦(n−2)(t∗),∞[ → C via γ ′κ(t) = t− κ+ 2πisn−1 ;

it has the property that Eλ(γ
′
κ) ⊂ R−. The construction assures that the two ray ends

gσn−2(s±)( ]F
◦(n−2)(t∗),∞[ ) are above respectively below γ ′κ (asymptotically by iπ), and all

three curves are disjoint. Moreover, any dynamic ray gs′ with s
′ < sn−1 (that is, s

′
1 < sn−1)

is eventually below γ ′, and if s′ > sn−1 (that is, s
′
1 > sn−1), then the ray gs′ is eventually

above γ′.
Pulling back along the same branch of E

◦(−(n−2))
λ , it follows that there is a curve γκ: [t

∗,∞[
“between” gs± [t

∗,∞[ with E◦(n−2)
λ (γκ(t)) = γ ′κ(F

◦(n−2)(t)), where the “between” is defined
only for large t. More precisely,

if t ≥ t∗ + δ, then |gs+(t)− γκ(t)|+ |gs−(t)− γκ(t)| < ε (3)

because we have Re(Eλ(gs±(t
∗+δ))) = Re(gσ(s±)(F (t

∗+δ))) = F (t∗+δ)−Re(κ)+r± > δ, and

further iterates move much farther to the right, so
∣

∣

∣(E
◦(n−2)
λ )′(gs±(t

∗ + δ))
∣

∣

∣À 1; the ε-bound

now follows from the Koebe distortion theorem and our estimate |γ ′κ(t)−gσn−2(s±)(t)| < π+1.
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The curve γκ clearly satisfies the second and third conditions for attracting dynamic rays;
the last two are asymptotically satisfied in the sense that for every s′, the ray gs′ is above or
below γκ (as needed) for sufficiently large t depending on s

′. The first condition requires an
attracting orbit, which not every parameter κ has.
For any R ≥ 0, let IR := [κ−R, κ

+
R] with κ±R := R + 2πis1 ± iπ. Since s1 = 0, we have

|κ| ≤ R+ π for all κ ∈ IR. The ray ends gs± exist for potentials t ≥ tR := x+ 2 log(R+ π +
3+ 2πAC ′) > t∗. Fix ε := 1/2 and an appropriate δ from (3). We can then be sure that for
all t ≥ tR + δ, we have Im(γκ−

R
(t)) < 0 and Im(γκ+

R
(t)) > 0, while for all κ ∈ IR, we have

Re(gs±(tR + δ)) < (tR + δ)−R + 1/2 and

Re(γκ(tR + δ)) < (tR + δ)−R + 1 .

Now fix R large enough so that tR + δ −R+ 1 < 0; this is possible since tR = O(logR). As
κ moves from κ−R to κ

+
R, there must be an intermediate value κ

∗ where γκ∗(t) = 0 for some
t > tR + δ. The point of this construction is, of course, that κ∗ has an attracting periodic
orbit of period n with the required properties, at least when R is sufficiently large.
Indeed, with λ∗ := exp(κ∗), the first n postsingular points 0, Eλ∗(0), . . . , E

◦(n−1)
λ∗ (0) are

in the strip |Im(z)| ≤ 2πA + π + 1: the 2πA comes from the estimates on 2π|sk|; the π
is the bound on Im(κ), and the final 1 is the error bound for the rays. The postsingular

orbit Eλ∗(0) = λ∗,. . .E
◦(n−2)
λ∗ (0) has positive real parts, while Re(E

◦(n−1)
λ∗ (0)) ¿ 0. Now if

R is large enough, then Lemma 3.4 shows that there is an attracting orbit of exact period
n for κ∗, and E

◦(n−1)
λ∗ (γκ∗( [0,∞[ )) is in the attracting basin. Hence γκ∗( [0,∞[ ) is also in

the attracting basin with γκ∗(0) = 0, so it is in the characteristic Fatou component. By
Lemma 3.4, the multiplier tends to 0 as R gets large.
Connect γκ∗ to the attracting periodic point within the characteristic Fatou component

and call this resulting curve γ: ( [0,∞[ )→ C. It clearly satisfies the first three conditions for
attracting dynamic rays. We argued above that the last two conditions were satisfied at least
for large t. But since the curve γ is in the characteristic Fatou component, it is disjoint from
all dynamic rays, and it is indeed an attracting dynamic ray at external address s1s2 . . . sn−1.
The parameter κ∗ sits in a hyperbolic component with the required combinatorics, and

by Lemma 3.3 all parameters within this same component have attracting dynamic rays with
the same property.
To show the statement about the curve within the hyperbolic component, start with

γκ∗(t) = 0 = gs±(t)+o(1) = t−κ+o(1). If n ≥ 4, then Eλ∗(γκ∗(t)) = λ∗ = gσ(s±)(t)+o(1) =
F (t) − κ∗ + 2πis2 + o(1). In our construction, |Im(κ∗)| ≤ π, and Re(F (t)) À Re(κ∗)
for R large. Since n ≥ 4, then the next Eλ∗-image must again have large positive real
parts, so Im(κ∗) must tend to 0 and Im(λ∗) → 2πis2. If n = 3, then Eλ∗(γκ∗(t)) = λ∗ =
gσ(s−)(t)+ iπ+ o(1) = F (t)−κ∗+2πis2+ o(1) with s2 ∈ (Z+ 1

2
). This time, the next image

of λ∗ must have large negative real parts, so again Im(κ∗) → 0 and Im(λ∗) → 2πs2. In all
cases, since the multiplier tends to 0 as R → ∞, the existence of the curve follows from
Lemma 2.1.

We know from Lemma 2.1 that every hyperbolic component has a preferred homotopy
class of curves stretching out to∞ (that there are no other homotopy classes of such curves is
shown in [S1, Section V]). These preferred homotopy classes of curves give a natural vertical
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order to hyperbolic components, much as the order for dynamic or parameter rays: we say
that some hyperbolic component is above another hyperbolic component if the corresponding
homotopy classes of curves have the appropriate vertical order.

Corollary 3.6 (Relative Position of Hyperbolic Component)
The vertical order of hyperbolic components is the same as the lexicographic order of their
intermediate external addresses.

Proof. This follows from the previous proof as follows: if s′ > s′′ are two intermediate
external addresses, then there is a periodic external address s between them: s′ > s > s′′.
In the construction in the proof of Theorem 3.5, the attracting dynamic ray for s′ is always
above gs, and the attracting dynamic ray for s

′′ is always below gs.

Remark. This vertical order can also be expressed in terms of parameter rays [S1, S2]: with
the notation of the proof of Corollary 3.6, there is a parameter ray in the complex plane
associated to external address s, and the hyperbolic components for s′ and s′′ are above
respectively below this ray.
As this paper was being submitted, a manuscript by Devaney, Fagella and Jarque [DFJ]

was released which contains the same sufficient condition for the existence of hyperbolic
components as in our Theorem 3.5.

4 Characteristic Rays and Permutations

In this section, we investigate periodic points at which at least two periodic dynamic rays
land, and show that the first return map of the periodic points permutes its rays transitively.
This property is well known from quadratic polynomials; it depends on the fact that there
is a single singularity, not on the degree of the map.

Definition 4.1 (Essential Orbit, Characteristic Point & Rays)
A periodic orbit will be called essential if at least two dynamic rays land at each of its points.
Suppose that a point z on an essential orbit is the landing point of two dynamic rays which
separate the singular value from all the other points on the orbit of z; then the point z will
be called the characteristic point of its orbit. The characteristic rays of the orbit will be the
two dynamic rays landing at the characteristic point which separate the singular value from
all the other rays landing at the same orbit.

The following result describes the combinatorics of dynamic rays landing together. The
statement is the same as for polynomials, but the usual proof (using “widths of sectors”)
does not apply without modification. Still, essential ideas are borrowed from Milnor [M1].

Lemma 4.2 (Permutation of Dynamic Rays)
Every essential periodic orbit has exactly one characteristic point and exactly two character-
istic rays at this point. If more than two dynamic rays land at any periodic point, then the
first return map of the periodic point permutes these rays cyclically.
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Proof. Let z1, z2, . . . , zn = z0 be a periodic orbit of period n, labeled in the order of the
dynamics, and let r ≥ 2 be the number of dynamic rays at each of these points. This number
is constant along the orbit. The r rays landing at any point zk cut the complex plane into r
connected components which will be called the “sectors” at zk.

For any zk, consider any sector which does not contain a left half plane. Let m
′ be the

position of the first difference in the external addresses of the two rays bounding the sector
(with m′ = 1 if the first entries are different). We define the singular index of the sector to
be m := m′+1. For the sector which does contain a left half plane, we let the singular index
be m := 1. Clearly, any sector with index m ≥ 2 maps homeomorphically onto a sector with
index m−1 (for m = 2, it follows from the fact that the sector must contain a horizontal line
segment which stretches infinitely to the right and maps onto an infinite segment of R−). It
follows that for any sector not containing a left half plane, the index is one greater than the
number of iterations it takes for this sector to map over a left half plane.

If the index of a sector equals 1 so that the sector contains a left half plane, then the
sector will not map forward homeomorphically, but the image sector at the image point will
contain the singular value. If the image sector also contains a left half plane, then the index
remains 1; otherwise, the image point separates the singular value from a left half plane, and
the index is strictly greater than 1. Each zk has exactly one sector with index 1 (the unique
sector containing a left half plane).

Every sector of every point zk is periodic (as a local sector near zk defined by the dynamic
rays bounding it, not as a subset of C), and so is the sequence of the indices. The index
sequence of any sector must of course contain at least one index 1, and it cannot be the
constant sequence: if all the entries of one cycle of sectors were equal to 1, then all the other
cycles of sectors could never have index 1, a contradiction.

Therefore, every sequence of indices contains one or several positions at which it increases
from 1 to a greater value. Associated to these positions are image sectors which contain the
singular value but no left half plane. These sectors are ordered by inclusion. Fix the smallest
such sector; it is bounded by two dynamic rays landing at one point zk. By relabeling
cyclically, let z1 be this landing point. This is the characteristic point of the orbit and
the two rays bounding the smallest sector are the characteristic rays. This shows the first
statement.

Let α1 > α2 > . . . > αr be the indices of the sectors at z1; no two of them can be
equal because otherwise the corresponding sectors would map forward homeomorphically
until they contained a left half plane at the same time. Of course, αr = 1 is the sector
containing a left half plane.

Consider any cycle C of sectors and let α be the largest index within its period. Since
indices are always decreasing unless they are equal to 1, the index α must occur for a sector
containing the singular value but not a left half plane. Let zk be the periodic point at which
this sector is based. If zk = z1, then the sector with index α is the sector at z1 containing the
singular value. Hence all sectors for which the maximum is realized at z1 are on the same
orbit. This is true even if the sequence of indices contains several maxima and one of them
is realized at z1.

If, however, zk 6= z1, then α ≤ αr−1 because the point z1 is in the sector with index α,
and so are all the sectors at z1 with indices α1 > . . . > αr−1. The cycle C of sectors must
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map through z1, but the only sector at z1 it can map through is the sector containing a left
half plane.
It follows that there are at most two cycles of sectors: their representatives at z1 must

include either the sector containing the singular value or the sector containing a left half
plane, or both. Suppose that not all sectors are on the same orbit. Then the sector at z1

containing a left half plane is fixed under the first return map of z1 and has period n, and all
the other r− 1 sectors at z1 are on the same orbit, so they are permuted transitively by the
first return map of the dynamics and have period (r − 1)n. But all sectors must have equal
periods because all dynamic rays have equal periods, and this is possible only if r = 2.

5 Dynamic Roots

For an understanding of the dynamics, the most important rays are those which land to-
gether. We will now show that such are associated to attracting Fatou components.

Theorem 5.1 (Two Rays at Boundary Fixed Point)
Every periodic Fatou component with attracting dynamics of period n ≥ 2 has a unique point
on its boundary which is fixed by the first return map of the component and which is the
landing point of at least two periodic dynamic rays.

Proof. First we prove uniqueness. Let U1 be the characteristic Fatou component and let
z1 ∈ ∂U1 be a boundary point which is periodic of period dividing n such that at least
two dynamic rays land at z1. We will need the two characteristic rays of this orbit (cf.
Definition 4.1 and Lemma 4.2): these are two dynamic rays which land at a common point
on the orbit of z1 and separate the singular value from the remaining periodic orbit of z1.
Since z1 cannot be separated from the singular value by such a ray pair, it must itself be the
landing point of these two characteristic rays. These two rays and their landing point z1 cut
C into two open parts; let V be the one containing the singular value.
Now suppose that there is another periodic point z ′1 ∈ ∂U1 which is fixed by the first

return map of U1 and which is the landing point of two periodic dynamic rays. We have
z′1 ⊂ V because V contains U 1 − {z1}. The two characteristic dynamic rays landing at z ′1
are then contained in V as well. But by symmetry between z1 and z′1, it also follows that
the two characteristic rays landing at z ′1 bound an open sector V

′ which contains z1 and all
its rays, and this is a contradiction. This proves the claim about uniqueness.
For existence, we need the partition constructed in [SZ1, Section 4.3] and reviewed in

Section 2. Let u1, u2, . . . , un−1 be the first n− 1 entries of the itinerary of the singular value
(such that the singular value 0 is in the region labeled u1, etc). By definition of the labels,
u1 = 0. The n-th label is not defined.
For a dynamic ray gs with bounded external address s, it may happen that there are

two curves within U1 which connect the singular value to +∞ such that they separate gs
from U0. In this case, we will say that the ray gs is surrounded by U1, and rays gs′ with
bounded external addresses s′ sufficiently close to s will also be surrounded by U1, so this
is an open property in the sequence space S. The Fatou component U1 contains infinitely
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many non-homotopic curves connecting the singular value to +∞, namely pull-backs of
curves connecting E

◦(n−1)
λ (0) to ∞ within the Fatou component Un containing a left half

plane. Hence any ray which is not surrounded by U1 is either above or below U1 in the sense
that the ray approaches +∞ above or below all such curves within U1. Similarly, we will say
that rays are above or below U2, . . . , Un−1 (but not U0).

Let s be the infimum of all bounded external addresses for which the dynamic ray gs is
above U1 with respect to the lexicographic order. The first entry is finite because U1 provides
a lower bound for the rays, and U1 itself is bounded above by the partition in U0.

Claim. The sequence s is a periodic external address of period n (without symbols ±∞),
and its itinerary starts u1u2 . . . un−1.

Proof of claim. The first entry must be u1 because there are dynamic rays above U1 in
the same region as U1.

Mapping forward one step, the external address σ(s) will be the infimum of all bounded
s′ such that the dynamic ray gs′ is above U2, and it follows that the second entry in the
itinerary of s is u2. This argument can be repeated for the k-th entry of the itinerary and
the external address σk−1(s) as long as the Fatou component Uk−1 does not surround Un−1:
in that case, Uk−1 and everything it surrounds will map homeomorphically into one of the
strips in the complement of U0 with real parts bounded below and imaginary parts bounded
above and below, and the vertical orders of dynamic rays in this region will be preserved.

However, if Uk−1 does surround Un−1, then the complement of Uk−1 is “turned inside
out”: the region surrounded by Uk−1 maps over a left half plane, while a sufficiently far
left half plane outside of Uk−1 map into U1, and Uk must surround U1. Then the external
address σk−1(s) will be the infimum of all bounded s′ such that the dynamic ray gs′ is below
U1 but not separated from U1 by a curve in Uk (compare Figure 3): roughly speaking, the
vertical order within the region containing Uk−1 is from bottom to top (1) the lower region
boundary (part of U0), then (2) curves in Uk−1 to +∞, (3) the component Un−1, (4) more
curves in Uk−1 to +∞, (5) dynamic rays at external addresses near σk−2(s), (6) the upper
region boundary (part of U0 again). The region boundaries map to U1, so a large circle in
C starting and ending at U1 will meet: (1) U1, (2) curves in Uk to +∞, (3) a left half plane,
(4) curves in Uk to +∞, (5) dynamic rays at external addresses near σk−1(s), (6) U1 again.
Since all of Uk must be contained within a single region of the partition, the component Uk

will surround U1 and the dynamic rays at external addresses near σ
k−1(s). We also see that

the k-th entry in the itinerary of gs is uk.

These arguments can be repeated if another Uk′−1 surrounds Un−1 (for k
′ > k). In the

special case that this happens in such a way that Un−1 is not separated from the dynamic
rays near σk−1(s) by curves in Uk, then the situation is restored to the initial configuration
so that σk−1(s) is the infimum of external addresses of dynamic rays above Uk. In any case,
the first n− 1 entries in the sequence s are finite, and the first n− 1 entries in the itinerary
of gs are equal to u1 . . . un−1.

Once we arrive at step n, it may or may not have happened that an earlier component
Uk−1 had surrounded Un−1, for some k = 3, 4, . . . , n−1. If this never happened, then σn−2(s)
is the infimum of external addresses of all dynamic rays above Un−1, and rays at external
addresses s′ near σn−2(s) are not separated from Un−1 by the region boundary in U0. In the
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σ    (s)k-2

Figure 3: Illustration of the construction of the dynamic root. Top: the dynamic
ray gs is just above the characteristic Fatou component. Middle: the situation after
k − 2 iterations, where the Fatou component Uk−1 surrounds Un−1. Bottom: one
step later.
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next step, dynamic rays at external addresses s′′ near σn−1(s) are below U1 and in the same
region as U1, so the n-th entry in the itinerary of s is u1 like the first entry, and σ

n−1(s) is
the infimum of all external addresses of rays below U1 in the same region as U1. Mapping
forward one last step, we see that σn(s) is the infimum of external addresses of all dynamic
rays above U1, so σ

n(s) = s. It follows that s is periodic of period n, all its entries are finite,
the first n entries of its itinerary are equal to u1u2 . . . un−1u1, and they repeat periodically.
This proves the claim.

If it does happen that a component Uk surrounds Un−1 for some k ≤ n − 2, then let k
be the last index for which this happens. We saw that Uk+1 surrounds U1, and σ

k(s) is the
infimum of external addresses of rays below U1 but not separated from U1 by Uk+1. Mapping
n − 2 − k steps further, it follows that Un−1 surrounds Un−1−k, and σ

n−2(s) is the infimum
of external addresses of rays below Un−1−k but not separated from Un−1−k by Un−1. In the
next step, σn−1(s) is the infimum of external addresses of rays below Un−k but not separated
from Un−k by Un = U0 or the region boundary. Hence the n-th entry in the itinerary of gs
is un−k with n − k ≥ 2. One more step forward, σn(s) is the infimum of external addresses
of rays below Un−k+1 but not separated from Un−k+1 by U1. In other words, σ

n(s) is the
infimum of external addresses of rays above U1. Again we have σ

n(s) = s, so s is periodic
of period n, all its entries are finite, the first n entries of its itinerary are u1u2 . . . un−1un−k,
and they repeat periodically.

We can argue similarly for the supremum s′ of external addresses of all dynamic rays
below U1. Exactly as above, it follows that this is a periodic external address of period n,
and the ray gs′ has the same itinerary as gs. By the results from [SZ1] mentioned in Section 2,
the two dynamic rays gs and gs′ land at a common repelling periodic point z, say. In order
to prove that z ∈ ∂U1, let ` be the hyperbolic distance of z to ∂U1 in the hyperbolic domain
consisting of C with the closure of the singular orbit removed. Assume that ` > 0. The
hyperbolic distance between the unique periodic inverse image of z and U0 = Un is then less
than `. We take n−1 further pull-back steps along the periodic orbit of z; since the itinerary
of z in those steps is the same as that of the singular orbit, the branches for the pull-back
of z are those mapping Un to Un−1, Un−2, . . . , U1, and hyperbolic distances are decreased in
every step. After n steps, z is mapped back to itself and its hyperbolic distance to U1 cannot
have decreased. This contradiction shows that ` = 0 and z ∈ U1.

This proves the statement for the periodic Fatou component U1, and for the others it
follows easily.

Remark. The same statement holds also for parabolic dynamics; the proof requires only
the same modifications as in [SZ1, Section 4.3].

Definition 5.2 (Dynamic Root)

In any exponential dynamics with attracting orbit of period n ≥ 2, the unique point of the
characteristic Fatou component which is fixed under the first return map of the component
and which is the landing point of at least two dynamic rays (as described in Theorem 5.1)
will be called the dynamic root of the characteristic Fatou component.
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Lemma 5.3 (Rays at Dynamic Root)
In attracting exponential dynamics, the two characteristic rays of the dynamic root of the
characteristic Fatou component separate this Fatou component from all other periodic Fatou
components.

Proof. Let U1 be the characteristic Fatou component and let z1 be its dynamic root. The
characteristic dynamic rays at z1 separate the singular value and thus U1 from all other
points on the orbit of z1. Any periodic Fatou component Ui has a point zi on its boundary.
If zi 6= z1, then Ui is separated from the singular value by the characteristic ray pair. Let
the periods of the attracting orbit and of z1 be n and k, respectively. By uniqueness of the
dynamic root (Theorem 5.1), each Ui has a unique zi on its boundary, so the number of
different periodic Fatou components with z1 on its boundary is exactly n/k and the first
return map of z1 must permute these k components cyclically. Hence the gaps between
cyclically adjacent periodic Fatou components at z1 are also permuted cyclically, and at
least one of the must contain a periodic dynamic ray landing at z1; hence all gaps do, and
all periodic Fatou components at z1 are separated by periodic dynamic rays landing at z1.
(Conversely, it follows from Lemma 4.2 that all the rays landing at z1 are separated by
periodic Fatou components provided at least two periodic Fatou components have z1 as
their common dynamic root.)

6 Uniqueness of the Classification

In this section, we will prove that the hyperbolic component associated to any intermediate
external address is unique. Using the dynamic roots of periodic Fatou components, we set
up a quasiconformal map between any two candidate dynamics and show that it can be
promoted to a conformal conjugacy.

Lemma 6.1 (Preferred Curve to Boundary Fixed Point)
For an exponential map Eλ with an attracting periodic orbit of period n, let U1 be the char-
acteristic Fatou component. If the multiplier of the attracting orbit is real and positive, then
there is a preferred invariant curve within U1 which contains the entire singular orbit of E

◦n
λ

and which lands at a well-defined point w ∈ ∂U1 with E◦nλ (w) = w.

Proof. Let U1 be the characteristic Fatou component, let n be its period and let a1 be
the attracting periodic point within U1. Then there is a unique closed neighborhood D of
a1 which corresponds to a round disk in linearizing coordinates of a1 and which contains the
singular value 0 on its boundary. Let γD ⊂ D be the curve corresponding to a diameter in
linearizing coordinates such that 0 ∈ γD. Then the first return map E◦nλ of U1 sends D into
itself and γD into itself.
The singular value 0 cuts γD into two radii; let γ+ be the one which ends at 0 and γ− the

other one (then γD = γ+ ∪ γ− ∪ {0}). There is a unique curve γ ⊂ U1 which extends γ− and
which satisfies E◦nλ (γ) = γ: such a curve can be constructed by an infinite sequence of pull-
backs, starting at γ− and always choosing the branch which extends γ−. Then E◦nλ : γ → γ
is a homeomorphism.
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The curve γ can easily be parametrized as γ:R→ U1 so that E
◦n
λ (γ(t)) = γ(t+ 1) (this

is far from unique). We have limt→+∞ γ(t) = a1. We want to show that limt→−∞ γ(t) exists
in ∂U1. We will use a modification of the known standard proofs for landing of external
dynamic rays of polynomials. Let

U ′ := U1 \
⋃

k≥0

E◦knλ (0) .

Then E◦nλ :U
′ → U ′ is a covering map, hence a local isometry with respect to the unique

normalized hyperbolic metric of U ′. Let (wk) ⊂ γ be a sequence of points such that
E◦nλ (wk) = wk−1 for k ≥ 1 (e.g. wk := γ(−k)). Then the hyperbolic length of the seg-
ment of γ between wk and wk−1 is the same for all k. By continuity, it follows that there is
an s > 0 such that the hyperbolic distance in U ′ between any z ∈ γ and E◦nλ (z) is at most
s. But since γ(t)→ ∂U1 as t→ −∞ (points γ(t) for large negative t need longer and longer
to iterate near a1), and the density of the hyperbolic metric tends to ∞ near ∂U1, it follows
that |γ(t) − E◦nλ (γ(t))| → 0 as t → −∞. Therefore, any limit point of γ is a fixed point of
E◦nλ . Since the limit set is connected and the set of fixed points is discrete, it follows that γ
lands indeed at a well-defined boundary point of U1 which is fixed under E

◦n
λ . The curve of

the claim is γ ∪ {0} ∪ γ+.

Remark. In fact, it is not difficult to show that γ is a hyperbolic isometry of U1 [S1]: this
is easier if the first return dynamics is conjugated to the map M ◦ exp:H− → H−, where H−

is the left half plane, exp:H− → D∗ is a universal cover and M : D → H− is any conformal
isomorphism.

Theorem 6.2 (Conformal Conjugation)
Suppose that two exponential maps have attracting orbits of equal period n ≥ 2 with positive
real multiplier which both have attracting dynamic rays at the same intermediate external
address s1s2 . . . sn−1. Suppose in addition that for both maps the preferred invariant curve
within the characteristic Fatou component lands at the dynamic root. Then both maps are
identical.

Proof. Let Eλ and Eλ′ be two exponential maps satisfying the assumptions of the theorem.
Let a1, a2, . . . , an = a0 be the attracting orbit of Eλ with a1 in the characteristic Fatou
component U1, let U2, . . . , Un = U0 be the other periodic Fatou components labeled cyclically,
and let Vn+1 be a closed round disk with respect to linearizing coordinates of a1, large enough
so as to contain 0 in its interior. For k = n, n − 1, . . . , 2, 1, 0, let Vk ⊂ Uk be the domain
E
◦(k−(n+1))
λ (Vn+1) ∩ Uk. Then V1 ⊃ Vn+1 and V0 ⊃ Vn. For k = 0, 1, 2, . . . , n − 1, let Ṽk
consist of all translates of Vk under 2πiZ (where Ṽ0 = V0 is introduced only for notational
convenience). Denote the corresponding sets for Eλ′ as U

′
k, V

′
k , and Ṽ ′k , where the size of

V ′n+1 is chosen so that the dynamics on it is conformally conjugate to the dynamics on Vn+1,
respecting the singular value.
We will construct a quasiconformal homeomorphism ϕ:C→ C from the dynamic plane of

Eλ to the dynamic plane of Eλ′ which will eventually turn into a conformal conjugation. Since
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the multipliers at the attracting fixed points are the same, we can clearly define ϕ:Vk → V ′k
so that it respects the dynamics on Vk in the sense that for z ∈ Vk, we have

ϕ(Eλ(z)) = Eλ′(ϕ(z)) . (4)

It becomes unique on V1 by the requirement that ϕ(0) = 0, and in view of (4) it is unique
on all Vk. Extend the definition to ϕ: Ṽk → Ṽ ′k by translation, which is again unique and
respects (4).
All the connected components of Vk (for 1 ≤ k ≤ n − 1) extend to +∞ in a unique

homotopy class. The natural vertical order of these connected components at large real
parts is the same for Eλ and Eλ′ because each connected component is immediately above a
dynamic ray at known external address.
Clearly, by compactness, |ϕ(z)− z| is bounded on ∂Vn+1. But by translation symmetry,

|ϕ(z)− z| is then bounded on ∂Vn. This argument can be repeated along the finitely many
pull-back steps, and it shows that there is a global constant δ ≥ 0 such that |ϕ(z)− z| ≤ δ
on all ∂Vk.
The next step in the construction is to extend ϕ to a quasiconformal homeomorphism

from C to itself. We first do that at real parts greater than R, where R is a large positive
constant to be chosen depending on the two exponential parameters and s1s2 . . . sn−1. To
the right of real part R, the gaps between the connected components of the Ṽk are finite in
number, up to symmetry translation by 2πiZ. Let G by any such gap (bounded to the left by
the vertical line at real part R and above and below by two adjacent connected components
of the Ṽk). In general, the vertical width of this gap will decrease exponentially as the real
parts increase. Map G forward under Eλ until the vertical width becomes positive or one
of the two bounding components maps over a left half plane. This happens after a finite
number m < n of steps which is entirely encoded in s1s2 . . . sn−1 and the indices k of the
two components. In particular, it is the same for G and its counterpart G′ for Eλ′ . There
exists a quasiconformal homeomorphism ϕ′:E◦mλ (G) → E◦mλ′ (G

′) which extends the known
map ϕ on the E◦mλ -image of the upper and lower boundary of G because the vertical width
of E◦mλ (G) and E◦mλ′ (G

′) are bounded below, and |ϕ(z) − z| < δ for all z on the vertical
boundaries. Now ϕ can be defined on G as the natural pull-back of ϕ′ by the dynamics: we
set ϕ := E

◦(−m)
λ′ ◦ ϕ ◦E◦mλ on G, of course choosing the branch of E

◦(−m)
λ′ which lands in G′.

Doing this extension on finitely many gaps and translating by 2πiZ, we can define ϕ
for all real parts greater than R. The map ϕ is already defined on V0, and C \ V0 is the
2πiZ-image of a single connected piece. Each of these pieces contains finitely many domains
on which ϕ is already defined (one in each Ṽk for k = 1, 2, . . . , n− 1), and the vertical order
of these domains is the same for Eλ and Eλ′ . All of the domains on which ϕ is still undefined
are translates of each other under 2πiZ, and each of them is compact in C. Hence ϕ does
extend to a quasiconformal map from C to itself, and its distortion is bounded away from 1.
Note that we do not claim that the extension of ϕ away from the Ṽk respects the dynamics.
The next step is to promote ϕ to a conformal conjugation. Let ϕ1 := ϕ. The construction

assures that there is another quasiconformal homeomorphism ϕ2:C → C with ϕ1 ◦ Eλ =
Eλ′ ◦ ϕ2 and which coincides with ϕ1 on ∪kṼk: we set ϕ2 := E−1

λ′ ◦ ϕ1 ◦Eλ and only have to
choose the right branch of E−1

λ′ . On V0 we can do that by stipulating that ϕ2 coincides with
ϕ1 (this is just (4)); the other branches are then forced by continuity since each connected
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component of C\V0 is simply connected. In order to see that ϕ2 coincides with ϕ1 on Ṽk, all
we need to verify is that it maps the unique periodic component Vk onto the unique periodic
component V ′k . It is here that the assumption about the preferred invariant curves comes
in. For Eλ, this invariant curve is a diameter of Vn+1 with respect to linearizing coordinates:
it starts at the singular value 0 and traverses Vn+1, leaving Vn+1 on its way to the dynamic
root of U1; let γ be this invariant curve, and let γ

′ be the counterpart for Eλ′ .
The restriction γ ∩ Vn+1 is a diameter and extends to a curve in V1 ⊃ Vn+1 starting at

+∞ and ending at some v1 ∈ ∂V1, running through 0; we write V1∩γ = ]+∞, 0[ ∪ [0, v1] as
the union of two subcurves. Now E−1

λ ( ]∞, 0[ ) are countably many curves in V0 connecting
−∞ to +∞, and E−1

λ ( ]0, v1[ ) are curves connecting −∞ to the countably many connected
components of C\V0. Exactly one of these curves runs through the attracting periodic point
in V0, and this curve singles out a preferred connected component of C \ V0. Since we have
constructed ϕ so that ϕ(Vn+1) = V ′n+1 and ϕ(0) = 0 with 0 ∈ (∂Vn+1∩γ) and 0 ∈ (∂V ′n+1∩γ′),
we have ϕ(γ) = γ ′. Hence ϕ = ϕ1 maps the preferred connected component of C \ V0 to
the preferred connected component of C \ V ′0 : it is always the one containing the dynamic
root of V0 resp. V

′
0 . The map ϕ2 must have the same property. But this preferred connected

component of C \V0 is the connected component containing the singular value: the dynamic
root of Un−1 separates Un−1 from a left half plane, so the dynamic root of Un separates Un

from the image of a left half plane, which is a neighborhood of the singular value. Thus ϕ2

maps V1 onto V
′
1 and not onto one of its translates. For the other Vk this follows now because

the connected components of C \ V0 any Vk sits in is encoded in the attracting dynamic ray
and thus in s1s2 . . . sn−1. Therefore, ϕ1 and ϕ2 coincide on all Vk.
The same step can be continued, yielding a sequence of quasiconformal homeomorphisms

ϕj:C → C. All these coincide on ∪kṼk and all are quasiconformal with the same bound on
the dilatation. Every ϕj is conformal on E

−(j−1)
λ (∪kṼk). Now

⋃

j E
−(j−1)
λ (∪kṼk) fills up the

entire Fatou set, while the Julia set has measure zero by [EL1, EL3]. Hence the support
of the bounded quasiconformal dilatation of the ϕj converges to zero, so the ϕj converge
uniformly to a conformal isomorphism of C, up to postcomposition with an automorphism.
However, the point 0 is fixed, and so is the vertical translation symmetry by 2πi. Hence
the ϕj converge uniformly to the identity, and since ϕj ◦ Eλ = Eλ′ ◦ ϕj+1, it follows that
Eλ = Eλ′ . This is what we claimed.

Corollary 6.3 (Uniqueness of Classification)
For any intermediate external address s1s2 . . . sn−1 with s1 = 0, there is a unique hyperbolic
component of period n in λ-space at this address. In κ-space, this is true for any s1 ∈ Z
(resp. s1 ∈ (Z+ 1

2
) if n = 2).

Proof. Any hyperbolic component contains a parameter for which the attracting orbit has
multiplier +1/2, say (this is clear) and for which the preferred invariant curve lands at the
dynamic root (this can be achieved by a quasiconformal deformation, which connects the
initial dynamics to the desired one by a path in parameter space which must run within the
same hyperbolic component). The external address s1s2 . . . sn−1 is an invariant of the entire
component and unchanged in this procedure. If there were two hyperbolic components of
period n at the same intermediate external address, then they would contain an identical
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parameter by Theorem 6.2, and this is a contradiction. This finishes the claim in λ-space.
Since κ-space is a universal cover, we have classified all hyperbolic components of period
n ≥ 3 with |Im(κ)| < π, and the others are obtained simply by translation of κ by 2πin
(with n ∈ Z) and adding −n to all entries in the intermediate external address.

Corollary 6.4 (Preferred Coordinates in Hyperbolic Component)
Any hyperbolic component of period n ≥ 2 can uniquely be parametrized by the multiplier µ
of the attracting orbit, together with the label of the sector above or below the central line of
the component. The label of the sector is naturally an element of Z \ {0}.

Proof. Let W be the given hyperbolic component. We know that the multiplier map
µ:W → D∗ is a universal cover, so every κ ∈ W is uniquely specified by µ, together with the
data on which sheet of the cover it is on. The sectors of W are bounded by µ−1( ]0, 1[ ), and
exactly one sector boundary is such that the preferred invariant curve lands at the dynamic
root. This property is preserved along the entire branch of µ−1( ]0, 1[ ) by continuity, and
uniqueness of the sector boundary is Theorem 6.2.
We label the sectors “to the right” of this preferred sector boundary by the positive

integers and the sectors “to the left” by the negative integers (omitting the integer 0 as
a sector number: this integer corresponds to the exterior of the component; compare [LS,
Section 12]). The choice of “right” and “left” are determined so that the “right sector” near
the preferred boundary has multipliers r exp(2πiϑ) with ϑ small positive.

External addresses for internal rays. An internal ray at angle ϑ ∈ S1 of a hy-
perbolic component W is any branch of µ−1( ]0, e2πiϑ[ ), and there are countably many rays
with the same angle. In fact, by Corollary 6.4, an internal ray is canonically labeled by
a unique real number ϑ so that the fractional part of ϑ is the angle and the integer part
distinguishes the sectors: all we need to require is that the internal ray for ϑ = 0 is the
ray between sectors −1 and 1; then if ϑ > 0 (resp. ϑ < 0) is an integer, the corresponding
internal ray is between sectors ϑ and ϑ+1 (resp. between sectors ϑ and ϑ−1). Theorem 7.1
extends this parametrization to ∂W . This way, the external address s1, s2, . . . , sn−1 of the
hyperbolic component W (with s1, . . . , sn−2 ∈ Z and sn−1 ∈ (Z + 1

2
) ) extends naturally to

an external address s1, s2, . . . , sn−1, ϑ of internal rays. Note that if ϑ > ϑ′, then the internal
ϑ-ray approaches +∞ below the ϑ′-ray: this reflects the fact that within hyperbolic compo-
nents of period n, the n-th image of the dynamics is “upside down” in a left half plane. The
space of parameter rays [S2] and internal rays of hyperbolic components is totally ordered
by the vertical order of the horizontal approach to +∞, and this vertical order is the same
as the lexicographic order of the corresponding external addresses of parameter rays and
intermediate external addresses for internal rays, with the extra rule that the order for the
real value ϑ after the half-integer is reversed.

7 Further Results

In this section, we give a more complete description of hyperbolic components of the expo-
nential family by stating relevant further results from [S1]; these will be published separately.



24 Dierk Schleicher

Theorem 7.1 (Boundary of Hyperbolic Components)
For any hyperbolic component W of period n ≥ 2, there is a canonical homeomorphism
hW :R→ ∂W , which is uniquely defined by the following conditions

• for any ϑ ∈ R, the parameter hW (ϑ) has an indifferent orbit with multiplier exp(2πihW (ϑ));

• the curve hW is smooth and analytic for ϑ ∈ (R \ Z) and has cusps for ϑ ∈ (Z \ {0});

• for every branch of µ−1, the image of ]0, e2πit[ lands (as |µ| → 1) at a boundary point
in ∂W which equals hW (ϑ+ n) for some n ∈ Z;

• there is a unique branch of µ−1( ]0, 1[ ) for which the preferred invariant curve of the
characteristic Fatou component lands at the dynamic root; for this branch, the image
of ]0, 1[ lands (as |µ| → 1) at the point hW (0).

In particular, the boundary of any hyperbolic component is connected, and the component
contains a unique homotopy class of curves connecting an arbitrary point to +∞. Two
hyperbolic components can have a common boundary point only if one period strictly divides
the other.

All these statements are true in λ-space and in κ-space alike.

The unique boundary point hW (0) is called the root of W .
In [EL2], Eremenko and Lyubich stated three conjectures about the exponential parame-

ter space. Two of these are: density of hyperbolic dynamics in the space of exponential maps
and connectedness of the boundary of any hyperbolic component. To state the third, we say
that two hyperbolic components are adjacent if they have a common boundary point, and
they are on the same tree if they can be connected by a finite sequence of adjacent hyperbolic
components. The conjecture then says that there are infinitely many such trees. The second
and third conjectures are now proved (the second one being contained in Theorem 7.1); the
first is still an open problem.
There is an interesting interplay between hyperbolic components and parameter rays:

these are curves in parameter space for which the singular value escapes on given dynamic
rays. They are uniquely labeled by external addresses, like dynamic rays. From the point of
view of hyperbolic components, the most interesting parameter rays are those with periodic
external addresses.

Theorem 7.2 (Landing of Periodic Parameter Rays)
Every parameter ray of some period n lands at a parabolic parameter, which is on the bound-
ary of some hyperbolic component of period n. Every parabolic parameter κ is the landing
point of one or two periodic parameter rays. If the parabolic orbit has period k and the period
of the Fatou components is n, then

• if k < n, then κ is on the boundary of exactly one hyperbolic component W of period
k and W ′ of period n, exactly two periodic parameter rays land at κ, both of period n,
and κ = hW ′(0) = hW (ϑ) with ϑ ∈ ((Z/k) \ Z);
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• if k = n, then κ is on the boundary of a unique hyperbolic component W of period n,
κ = hW (n) for the homeomorphism hW from Theorem 7.1 with n ∈ Z, and κ is the
landing point of two parameter rays iff n = 0.

Our combinatorial coding of hyperbolic components so far has been in terms of intermedi-
ate external addresses; this is a concept which has no direct counterpart for the Mandelbrot
set. We can also code the component by the external addresses of the two parameter rays
landing at its root (which are the same as the external addresses of the two characteristic
rays landing at the dynamic root of the characteristic Fatou component, for any parameter
within the component): this says something about how components are nested, but in order
to relate the external addresses of a componentW to those of a component directly attached
to it, more information is needed (the external addresses of the rays landing at the bound-
ary points hW (n) with n ∈ Z \ {0}). A different coding can be given in terms of kneading
sequences.

Definition 7.3 (Kneading Sequence of Hyperbolic Components)
For any hyperbolic component of period n ≥ 2, pick any of its parameters and let u1u2 . . . un−1un
be the common itinerary of the two characteristic rays landing at the dynamic root of the
characteristic Fatou component (where un ∈ {u1, . . . , un−1} as in Theorem 5.1). Then we
say that u1u2 . . . un−1un is the kneading sequence of the hyperbolic component.

The hyperbolic component consists of countably many sectors, labeled by non-zero integers
as in Corollary 6.4. Then to the sector labeled m, we associate the periodic kneading sequence
u1u2 . . . un−1(un + m).

This way, all sectors have kneading sequence which are different from each other and from
the kneading sequence of the component. It turns out that for any hyperbolic component
bifurcating from sector m, the kneading sequence starts with the first n entries of the kneading
sequence of the sector, in analogy to the finite degree unicritical case [LS, Section 12] (a
related result has been announced independently by Fagella and Jarque as work in progress).
In fact, these kneading sequence can naturally be converted into internal addresses as in [LS],
and they contain a lot of information about the exponential parameter space.
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Astérisque 261 (2000), 277–333.

[S1] Dierk Schleicher: On the dynamics of iterated exponential maps. Habilitationsschrift, Tech-
nische Universität München (1999).

[S2] Dierk Schleicher: Exponential maps with escaping singular orbit. In preparation.

[SZ1] Dierk Schleicher and Johannes Zimmer: Dynamic rays for exponential maps. Preprint,
Institute for Mathematical Sciences at Stony Brook 9 (1999).

[SZ2] Dierk Schleicher and Johannes Zimmer: Escaping points for exponential maps. Manuscript
(2000).

Dierk Schleicher, Institute for Mathematical Sciences, SUNY SB, Stony Brook, NY 11794-3660,
USA, dierk@math.sunysb.edu.


