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1 Introduction

In this paper, new techniques for studying the dynamics of families of surface homeomorphisms
are introduced. As its title indicates, it has three main purposes. Two dynamical deformation
theories are presented — one for surface homeomorphisms, called pruning, and another for

graph (and, more generally, dendrite) endomorphisms, called kneading — both giving con-

ditions under which all of the dynamics in an open set can be destroyed, while leaving the
dynamics unchanged elsewhere. These theories are then related to Thurston’s classification of
surface homeomorphisms up to isotopy.

One of the main underlying ideas used here was introduced by Williams [20]: by collapsing

segments of stable manifolds of a surface homeomorphism one obtains a graph endomorphism;
the surface homeomorphism can be recovered by taking the inverse limit. Many researchers
have found this interplay between 1- and 2-dimensional systems fruitful. The emphasis here
lies on using the correspondence to obtain results about the dynamics of families of surface
homeomorphisms.

The paper introduces a 2-dimensional version of Milnor and Thurston’s kneading theory

for unimodal endomorphisms of the interval [15], and a generalization of the same theory

for graph endomorphisms. These are then used to shed new light on the Bestvina-Handel

algorithmic proof [4] of Thurston’s classification theorem. The approach adopted clarifies

the mechanisms involved in their algorithm and improves some of its aspects. Like its 1-
dimensional counterpart, pruning theory enables one to give symbolic descriptions of the
dynamics of all of the maps in a family – the pruning family – in terms of a fixed underlying
subshift of finite type.

As an application of the techniques presented here, a generalization of the second author’s

work on the partial ordering of horseshoe braid types can be obtained: whereas in [9], a special

subset of horseshoe braid types is shown to be linearly ordered by the forcing relation, in a
forthcoming joint paper it will be shown that all pseudo-Anosov horseshoe braid types can be
partitioned into linearly ordered subsets which organize the mechanism of horseshoe creation.
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The original motivation for this work came from the Pruning Front Conjecture of Cvi-

tanović, Gunaratne, and Procaccia [6], which states that the dynamics of any map in the

Hénon family can be viewed as what remains from the dynamics of Smale’s horseshoe after

some orbits (namely those that fall into the pruning front) are destroyed. More will be said

about the Pruning Front Conjecture after a more detailed description of the constructions and
results contained in this paper.

The pruning theory presented here makes precise, and more general, a concept which was

described intuitively in [6] in the particular case of Smale’s horseshoe map [17]. The initial

surface homeomorphism F :S → S is taken to be one whose dynamics is well understood, in the
sense that all of the non-trivial dynamics is contained in an F -invariant thick graph G, which
has the property that F :G → G induces a graph endomorphism f :G→ G. The horseshoe is

a very simple thick graph map (whose induced graph endomorphism is a unimodal map of the

interval), and is a good example to keep in mind when studying the more general theory. In

Section 2, conditions are given under which all of the dynamics in a topological disk D, called

a pruning disk, can be destroyed by an isotopy supported in D (and an arbitrarily small region

in S \G). The first main goal of the paper is described by the following statement about thick

graph maps F with positive topological entropy, which is contained in Theorem 2.3 and the
definition preceding Example 2.

The Pruning Family: An uncountable family P(F ) of homeomorphisms of S is constructed.

The dynamics of maps in P(F ) can be understood as the dynamics of F less that which is

pruned away from a sequence of pruning disks.

Section 3 introduces generalized kneading theory. Its main purpose is to make it possible
to understand pruning of a thick graph homeomorphism F :S → S on the level of the induced

graph endomorphism f :G→ G. (Other authors have made use of the relationship between the

dynamics of one- and two-dimensional systems in an analogous way, notably Williams [20],

Thurston [19], Barge-Martin [2], Bestvina-Handel [4], and Franks-Misiurewicz [8].) When

F :S → S is the horseshoe, the simplest possible prunings project to kneadings of unimodal

maps of the type studied by Milnor and Thurston [15]. The kneading theory presented here

is a generalization of the topological aspects of their theory: M. Baillif has made progress
towards developing other aspects, such as the ζ-function and transfer operators, in this more

general context [1].

More precisely, given a graph endomorphism f :G → G, conditions are given on open
subsets K of G, called kneading sets, for which it is possible to modify both G and f to
obtain a graph endomorphism fK :GK → GK whose dynamics can be understood as being
the dynamics of the original endomorphism f less the dynamics which is contained in K. If
F :G → G projects to f :G → G, then each pruning of F induces a corresponding kneading
of f . The converse is not true in general, since thick graphs have more structure than graphs

(for example, the cyclic order of edges around a vertex). Generalized kneading theory may

have some independent interest in the study of graph endomorphisms: the approach taken in
this paper, however, is to place additional conditions on kneading sets which ensure that they
do indeed lift to pruning disks. The practical problem of finding pruning disks for a thick
graph map can then be approached by finding suitable kneading sets for the corresponding
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graph endomorphism. In summary, the second main goal of this paper is described by the
following statement about graph endomorphisms f with positive topological entropy:

The Kneading Family: An uncountable family K(f) of endomorphisms of one-dimensional

spaces can be constructed. The dynamics of maps in K(f) can be understood as the dynamics

of f less that which is pulled away from a sequence of kneading sets.

The pruning family and the kneading family are related by the following statement, which
expresses the interplay between the 1- and 2-dimensional systems.

Both Families: If f :G → G is induced by a thick graph map F :G → G, the kneading
family K(f) and the pruning family P(f) are in one-to-one correspondence (subject to obvious

compatibility conditions between the one- and two-dimensional structures): collapsing segments

of stable sets takes P(f) to K(f) and the inverse limit takes K(f) back to P(f).

In the body of the paper these two statements are not presented as theorems: there are
some technical problems in doing so which would lead too far afield. Since, as was mentioned
before, the emphasis here is on drawing conclusions about 2-dimensional dynamics from the
interplay between the two families, these technicalities are best avoided. This is discussed
further in Section 3. The main results of the paper which express the relationship between
the two families are Theorems 3.11 and 3.12.

The following is another precise statement relating the pruning family with 1-dimensional
dynamics. It follows easily from the constructions described in the paper, as explained in the
remark following Example 1.

The Pruning Family is Big: The pruning family of Smale’s horseshoe map F contains a

subfamily whose dynamics mimics that of a full1 family of unimodal maps of the interval. In

particular, P(F ) contains uncountably many distinct dynamical systems.

In Sections 4 and 5, the Bestvina-Handel algorithm for finding train tracks of surface

homeomorphisms [4] is rewritten in the language of pruning theory. Other train track algo-

rithms have been presented by Franks and Misiurewicz [8] and by Los [14]. There are certain

advantages, both practical and theoretical, in recasting the Bestvina-Handel algorithm in
terms of pruning. On the practical side, pruning is a more general operation than folding,
which is the principal move of the Bestvina-Handel algorithm, and long sequences of foldings
can often be replaced by a single pruning, with corresponding efficiency benefits. An example

is given in Section 4.3 in which several foldings (8 in one computer implementation [10]) can

be replaced with a single pruning. On the theoretical side, pruning makes it possible to carry
out the algorithm in such a way that new dynamics is never created at any stage: this makes
it possible to follow dynamics through an isotopy from the starting map to a Thurston repre-
sentative of its isotopy class. This is achieved by replacing Bestvina and Handel’s operation

of performing a valence two isotopy (which, although it never increases topological entropy,

may create new dynamics while destroying other dynamics) with a new operation, described

1A family of unimodal maps is said to be full if it presents all possible kneading sequences. The famous
example is the quadratic family fµ(x) = µx(1− x), for 0 < µ ≤ 4.
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in terms of pruning, called cleaning a valence two vertex. Cleaning is, in general, a more
complicated procedure than performing a valence two isotopy, and if the algorithm is being
applied simply to calculate a train track then it is more sensible to use valence two isotopies.
However, the fact that the algorithm can be carried out using no non-trivial isotopies other
than prunings has the following important corollary, which is the third main result in the

paper (see Theorem 4.3):

Pruning and Thurston Classification: For any pseudo-Anosov map isotopic to F relative

to some finite F -invariant set, there is a map in the pruning family P(F ) with the same

(non-trivial) dynamics.

The maps in the pruning family usually have many wandering domains: in the case of a
pseudo-Anosov isotopy class, collapsing these domains to points defines a semi-conjugacy to
the appropriate pseudo-Anosov map. In fact, the maps in the pruning family have invariant
laminations rather than invariant foliations.

Together with the results above, this provides evidence that P(F ) may indeed contain

enough topological models to be considered a full family of surface homeomorphisms. On the
one hand, it contains analogues of full families of 1-dimensional endomorphisms of the interval.

On the other hand, P(F ) contains representatives of all of the Thurston maps that is possible

for it to contain.
In a forthcoming paper, the process of pruning up to infinite F -invariant sets will be

considered. A treatment of pruning in a much more general context, where it is not assumed

that F is a thick graph map, is given in [5]. The more restricted approach here, besides

being more accessible, permits, as a consequence of the underlying one-dimensional structure,

a much more precise understanding of the space P(F ), and a more direct approach to the

Bestvina-Handel algorithm.
As has already been mentioned, an important motivation for this work was the Pruning

Front Conjecture (PFC) of Cvitanović, Gunaratne, and Procaccia [6]. It attempts to relate

the dynamics of maps in the Hénon family of diffeomorphisms of the plane,

Ha,b(x, y) = (a− by − x2, x),

to the family P(F ), where F is Smale’s horseshoe: it states that for every pair (a, b) with

0 < b < 1, the Hénon map Ha,b is semi-conjugate to some element of P(F ). Thus every Hénon

map can be viewed, up to semi-conjugacy, as a full horseshoe from which the dynamics in a

given region (the pruning front) has been destroyed. A proof of this conjecture would provide

a full understanding, on the topological level, of the dynamics of maps in the Hénon family.

In [6], PFC is also stated for the Lozi family

La,b(x, y) = (a− by − |x|, x).

Using methods different from the ones presented here, Ishii [13] has been able to prove

PFC for the Lozi family.

The Hénon family reduces to the standard quadratic family x 7→ a − x2 when b = 0.
A number of authors have explored the relationship between these two families, stressing
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similarities (notably in the work of Benedicks and Carleson [3]), differences (Holmes and

Whitley [11], Holmes and Williams [12]), or both (van Strien [18], Hall [9]). In the pruning

family, however, each map has a natural underlying one-dimensional structure: it can be

collapsed to a tree (or dendrite) endomorphism in a way which preserves the topological

dynamics of the original map: indeed, the two-dimensional map can be recovered simply by
taking the inverse limit of the one-dimensional map. Thus the Pruning Front Conjecture, if
true, provides a link between Hénon maps and 1-dimensional dynamics for any value of the

parameters with b ∈ (0, 1).

Acknowledgements: Both authors are grateful for hospitality and funding from the other’s
institution, and to Philip Boyland, who made many helpful comments on both early and late
drafts of this paper. The first author is also grateful to the Department of Mathematics of
the University of California at Berkeley, where part of this work was carried out; to Viviane
Baladi and the Fonds National Suisse pour la Recherche Scientifique who provided hospitality
and funding at the University of Geneva; and the EPSRC for visiting fellowship grant number

GR/M29702.

2 Pruning theory

2.1 Preliminary definitions

Pruning theory describes a way in which the dynamics of surface homeomorphisms can be
destroyed in a controlled manner by isotopies relative to a given compact invariant set. This
section contains a brief summary of some standard definitions which will be used in the
remainder of the paper.

Let X be a topological space, and f :X → X a continuous map. Dynamical systems theory

is concerned with asymptotic properties of the family {fn} of iterates of f , where fn denotes

the n-fold composition f ◦ · · · ◦ f of f with itself. If f is a homeomorphism, then n can be

either positive or negative (with f−n = (f−1)n).

Non-trivial dynamics requires some form of recurrence. In this paper, points of X will be
considered to be dynamically non-trivial if they are non-wandering.

Definitions: A connected open subset U of X is a wandering domain if fn(U) ∩ U = ∅ for all

n > 0. The non-wandering set Ω(f) of f is the set of all points x which are not contained in

any wandering domain.

Ω(f) is a closed subset ofX with f(Ω(f)) ⊆ Ω(f). If f is a homeomorphism then f(Ω(f)) =

Ω(f) = Ω(f−1). A period n (or just periodic) point x of f is a fixed point of fn which is not

fixed by fk for 1 ≤ k < n: clearly all periodic points are in Ω(f).

Now suppose that f :X → X is a homeomorphism. Then f is said to be supported on a

subset U of X if f is the identity on X \ U . A second homeomorphism g:X → X is isotopic

to f if there is a continuous map F :X × [0, 1]→ X such that each map ft:X → X defined by

x 7→ F (x, t) is a homeomorphism, with f0 = f and f1 = g. The isotopy is said to be supported

on a subset U of X if the homeomorphisms ft are all equal on X \U , and is said to be relative

to U if it is supported on X \ U .
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2.2 Thick graph maps

Following the approach of [4, 8], the majority of the surface homeomorphisms in this paper

will be assumed to be of a particular type, called thick graph maps. This means that all
of their interesting dynamics is contained in a subsurface called a thick graph: intuitively,
as the name suggests, this is a graph in which each point has been thickened up, either to
a disk or an arc according as the point is a vertex or a regular point of the graph. The
homeomorphisms are assumed to act on the thick graph in such a way that they induce
endomorphisms of the underlying graph. The justification for taking this approach is that
every surface homeomorphism is isotopic to a thick graph map.

Definitions: A thick graph is a triple (S,G, A), where S is a closed orientable surface endowed

with a fixed metric compatible with its topology, G is a compact subsurface of S (with bound-

ary) which is partitioned into compact decomposition elements, and A is a compact subset of

G, such that

a) Each decomposition element of G is either a leaf homeomorphic to [0, 1], or a junction

homeomorphic to D2.

b) The boundary in G of each junction is a finite number of disjoint arcs: if there are k

such arcs, then the disk is called a k-junction.

c) There are only finitely many k-junctions for each k 6= 2.

d) There are local charts containing each decomposition element as shown in Figure 1.

Notice that the definition also permits accumulations of 2-junctions.

e) Each component of S \G is an open disk.

f) A ∩ ∂J = ∅ for each junction J .

If (S,G, A) is a thick graph, let ∼ be the equivalence relation on G given by x ∼ y if and only

if x and y lie in the same decomposition element. Then G = G/∼ is a graph, whose vertices

(which may have valence 2) correspond to the junctions of G: the canonical projection will be

denoted p:G → G. The vertex set of G will be denoted V , and the union of the junctions of

G will be denoted V: thus V = p−1(V ). The components of G \V are called strips: each strip

is therefore homeomorphic to (0, 1)× [0, 1].

Remarks:

a) A should be thought of as a set of punctures of S. It is assumed for the sake of simplicity

that S is a closed surface, but there is no difficulty in extending the theory to surfaces
with boundary: in this case, each boundary component should be treated like a point of
A. When A is empty or is not explicitly relevant it will usually be suppressed, and the

thick graph referred to as (S,G).

b) There are two cyclic orders on the set of strips incident to a given junction J , given by

the order in which they are encountered as one moves around ∂SJ in a chosen direction
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Figure 1: Charts in a thick graph

(strictly, these orders are on the set of initial segments of strips at the junction, since a

strip may begin and end at the same junction). A subset U of the strips at J is said to

be connected in the cyclic order at J if the strips of U are consecutive in one (and hence

both) of these orders. A set of edges incident to a vertex v of G is said to be connected

in the cyclic order at v if the corresponding set of strips is connected in the cyclic order

at p−1(v).

c) Where there is no potential ambiguity, and where it is convenient to do so, G itself will

be referred to as a thick graph.

d) In order to capture all the complexity of families of maps like the Hénon family it is

necessary to allow a thick graph to have infinitely many strips (i.e., the graph G to

have infinitely many edges). Otherwise, the discussion would be restricted to maps with

Markov partitions. Even in the third part of the paper, where the Bestvina-Handel
algorithm is considered and one might hope to be able to deal only with finite graphs,
infinitely many 2-junctions can occur: a discussion of this phenomenon can be found in
Section 5. On a first reading, however, it is helpful to concentrate on the case in which
G has finitely many junctions.

If (S,G, A) is a thick graph and F : (S,G, A) → (S,G, A) is a homeomorphism (i.e. a

homeomorphism S → S with F (G) ⊆ G and F (A) ⊆ A) under which the image of each

decomposition element of G is contained in a decomposition element, then F |G induces a

unique graph endomorphism f :G→ G such that p ◦ F |G = f ◦ p.

Definitions: A thick graph map of (S,G, A) is an orientation-preserving homeomorphism

F : (S,G, A)→ (S,G, A) such that:

a) F (G) ⊂ IntG.

b) If γ is a decomposition element of G, then F (γ) is contained in a decomposition element,

and diam(F n(γ)) → 0 as n → ∞. If γ is a junction, then F (γ) is disjoint from the

boundary of the junction which contains it.

c) The induced graph endomorphism f :G → G is piecewise monotone (that is, there is a

finite subset L of G such that f−1(x)∩U is connected for each x ∈ G and each component
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U of G \L); and is strictly monotone away from the preimages of vertices (that is, every

x ∈ G \ f−1(V ) has a neighbourhood on which f restricts to an embedding).

d) F (A) = A (i.e. F |A:A→ A is a homeomorphism).

e) For each component U of S \G there is some (least) integer nU > 0 such that F nU (U)∩

U 6= ∅. Moreover, U contains a period nU point pU of F , which is a source whose

immediate basin contains U : that is, F−knU (x)→ pU as k →∞ for all x ∈ U .

A homeomorphism F : (S,G, A) → (S,G, A) which satisfies conditions a) to d) is called a

pre-thick graph map of (S,G, A).

Remarks:

a) The dynamics of a thick graph map in S \G is easily understood and uninteresting. In

the case of finitely many junctions, the dynamics in G can be understood by standard
Markov partition techniques.

b) The reason for defining pre-thick graph maps is that condition e) is lost at intermediate

stages of some constructions. The full thick graph map structure is always recovered at
the end.

c) If F : (S,G, A) → (S,G, A) is a thick graph map, then so are all of its forward iterates

Fn (n ≥ 1), and the graph endomorphism induced by F n is fn:G→ G.

In Sections 2.3 and 2.4, a method for isotoping away the dynamics of a thick graph map
in a controlled manner is described. The isotopies which are used to accomplish this are

called prunings: all of the dynamics in the interior of a given closed disk (and hence in the

F -orbit of the interior) is destroyed by an isotopy which is supported in the union of the

disk and an arbitrarily small region which lies outside of G. It is also necessary to perform
some ‘adjusting’ operations, which have no effect on the dynamics of F . There are two
types of adjusting operations, namely thickening a decomposition element and splitting a

junction, which are described below. Thickening involves small isotopies of F (and, in the

case where the decomposition element being thickened is a junction, does not actually change

the decomposition element), while splitting modifies G and its decomposition elements but

leaves F unchanged.

Definition: Let F : (S,G, A)→ (S,G, A) be a pre-thick graph map, and let γ be a decomposi-

tion element of G. The following procedure is called thickening γ:

If γ is a junction, then postcompose F with a homeomorphism h supported in a small

neighbourhood N in G of ∂Gγ with N ∩ A = ∅, which satisfies h(∂Gγ) ⊂ Int (γ), and which

maps each decomposition element into a decomposition element.

If γ is a leaf then let γ0 = γ, and for i ≥ 1 let γi be the decomposition element which

contains F i(γ). If γI is a junction for some (least) I ≥ 1, then thicken each of the leaves

γ0, . . . , γI−1 into 2-junctions (in such a way that any points of A, which before lay in some γi,
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now lie in the interiors of the corresponding junctions), and extend F over each junction so

that F (γi) ⊂ Int S(γi+1).

If no γI is a junction and there are only finitely many distinct leaves γi, then let I be

least such that there is some (least) J > 0 with γI = γI+J . Thicken up each of the leaves

γ0, . . . , γI+J−1 into 2-junctions, and extend F as in the previous case.

If the γi are all distinct leaves, then thicken up each of them with decreasing thicknesses

tending to zero (that is, if the 2-junctions are regarded as rectangles, then the sides of the

rectangles which lie on ∂G are chosen to be shorter and shorter with lengths whose sum

converges), in such a way that F can be extended with F (γi) ⊂ Int S(γi+1) for each i. Notice

that in this case Int (γ0) becomes a wandering domain. (This is analogous to the construction

of a Denjoy circle homeomorphism.)

In each of the cases where γ is a leaf, complete the process by postcomposing with a
homeomorphism h as in the case where γ is a junction.

Thickening a decomposition element is a dynamically trivial operation which does not
create or destroy any dynamics. For convenience of notation, a pre-thick graph map which

is obtained from F : (S,G, A) → (S,G, A) by thickening a finite number of decomposition

elements will usually also be denoted F : (S,G, A) → (S,G, A). Observe that it is isotopic to

the original pre-thick graph map relative to A.

There are two ways of splitting a junction J of G. In each case, it is assumed that J is an
isolated n-junction of G, and that no strips of G have image contained entirely in J . Let Σ
be the union of J and the strips which are adjacent to it.

Type a) splitting Suppose that the oriented strips emanating from J can be partitioned into

two non-empty sets, U1 = {s1, . . . , sk} and U2 = {sk+1, . . . , sn}, each connected in the cyclic

order at J , with the property that each component of F (G)∩Σ is contained either in J ∪
⋃

U1

or in J ∪
⋃

U2 (note that it is possible for some si to be the same strip as sj (j 6= i) with the

opposite orientation). Let G′ be the thick graph obtained by choosing two disjoint arcs α1

and α2 in J with endpoints in ∂G which separate the two types of components of F (G) ∩ Σ,

and excising the subset of J between α1 and α2. Then G′ inherits the obvious thick graph

structure from G (in which there are now two junctions J1 and J2 corresponding to J), and

F : (S,G′, A) → (S,G′, A) is a pre-thick graph map (Figure 2). Notice that A ⊆ F (G) (since

F (A) = A), and hence is disjoint from the excised subset.

Type b) splitting Let s be one of the oriented strips emanating from J whose other end is ad-

jacent to a junction K (possibly equal to J), and suppose that the other strips emanating from

J can be partitioned into two non-empty sets U1 = {s1, . . . , sk} and U2 = {sk+1, . . . , sn−1},

each connected in the cyclic order of strips around J , with the property that each component

of F (G) ∩ Σ is contained either in J ∪ s ∪
⋃

U1 or in J ∪ s ∪
⋃

U2. Let α1 and α2 be disjoint

arcs in J ∪ s̄, each having one endpoint in K and one in J ∩ ∂G, which separate the two types

of components of F (G) ∩ Σ. Let G′ be obtained by excising the subset of J ∪ s between α1

and α2. Then G′ inherits the obvious thick graph structure from G (in which J has been split

into two junctions J1 and J2, and the number of strips adjacent to K has increased by one
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Figure 2: Type a) splitting

if K 6= J), and F : (S,G′, A) → (S,G′, A) is a pre-thick graph map (Figure 3). Notice that

A ⊆ F (G) is disjoint from the excised subset.

PSfrag replacements
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α2

Split

Figure 3: Type b) splitting

2.3 1-Pruning Disks

Definitions: Let F : (S,G, A) → (S,G, A) be a pre-thick graph map. A 1-pruning disk for F

is a closed topological disk D ⊂ S, whose boundary is the union of two arcs C and E which
intersect only at their endpoints, satisfying:

a) F (D) ⊂ IntG,

b) E ⊂ ∂G.

c) D and G are on the same side of E: that is, there is a neighbourhood N of E in S such

that D ∩N ⊆ G.

d) F (C) is contained in a single decomposition element, denoted γD.

e) A ∩ Int (D) = ∅.
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A 1-pruning disk D is non-trivial if D ∩Ω(F ) 6= ∅ and F (D) intersects more than one decom-

position element of G (and hence intersects uncountably many decomposition elements). The

arcs C and E will be referred to as the C-side and E-side of D. When D is a 1-pruning disk,
the symbols C and E will always be taken to denote its C-side and E-side.

If D is a 1-pruning disk for F , then a D-arc is an arc α in F−1(G) which has the same

endpoints as E and which is disjoint from G away from its endpoints. An enlargement of D
is a closed disk ∆ whose boundary is the union of C and a D-arc.

Lemma 2.1 A 1-pruning disk D for F : (S,G, A)→ (S,G, A) contains all of the decomposition
elements of G which it intersects, with the possible exception of those whose image is contained
in γD if γD is a junction.

Proof. Since the decomposition elements are connected, and since E ⊆ ∂G, any decomposition

element γ which intersects D but is not contained in D must intersect C. Since F (C) ⊆ γD,

it follows that F (γ) ∩ γD 6= ∅, and hence F (γ) ⊆ γD. If γD is not a junction, then the local

strict monotonicity of f :G→ G implies that γ ⊆ C.

Given a 1-pruning disk D, it is possible to modify F by a preisotopy which only changes the

dynamics in
⋃∞
n=−∞ Fn(Int (D)), in such a way as to make every point of Int (D) wandering,

with the possible exception of a single periodic point.

Lemma 2.2 Let F : (S,G, A)→ (S,G, A) be a pre-thick graph map, D be a 1-pruning disk for
F , and ∆ be an enlargement of D. Then there exists a pre-thick graph map FD: (S,G, A) →
(S,G, A), which is obtained from F by thickening the decomposition element γD followed by

an isotopy supported in ∆, such that Ω(FD) ∩D is either empty or is a single periodic point.

Proof. First thicken γD: this ensures that F (C) ⊆ Int (γD). Let M :S → S be a homeo-

morphism supported in ∆ (and hence isotopic to the identity relative to A) with the property

that M(D) is contained in a small enough neighbourhood of C that F (M(D)) ⊆ γD, and

let FD = F ◦M . Since F has only been modified on decomposition elements which intersect

Int (D), and Lemma 2.1 guarantees that all such decomposition elements are mapped into γD

by FD, it follows that FD: (S,G, A) → (S,G, A) is still a pre-thick graph map, provided that

the diameter of F nD(γD) tends to zero as n → ∞. This may not be the case a priori if some

image F kD(γD) is contained in D: however, it can be ensured by taking the initial thickening

of γD to involve postcomposition by a homeomorphism h with h(γD) sufficiently small.

Either F nD(γD) ⊆ γD for some n, in which case γD contains a periodic point of FD whose

orbit attracts every point of D; or F n
D(γD) is disjoint from γD for all n > 0, in which case

every point of D is wandering under FD.

Definition: FD is said to have been obtained from F by pruning D away.
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Remarks:

a) FD is isotopic to F relative to A.

b) D is still a pruning disk for FD, but it is trivial since FD(D) is contained in the decom-

position element γD.

c) If F is a thick graph map, rather than a pre-thick graph map, then so is FD.

Example 1 One of the simplest interesting examples of a thick graph map is Smale’s horse-

shoe diffeomorphism [17]. Good detailed treatments of the horseshoe can be found in many

texts on dynamical systems (e.g. [7, 16]). In this example S = S2 = R2 ∪ {∞} and G consists

of a single strip Q = (0, 1)× [0, 1], foliated by leaves {x}× [0, 1], together with two 1-junctions

J0 and J1, which are semicircles of diameter 1 centred on (0, 1/2) and (1, 1/2) respectively.

The action of F |G is to stretch Q uniformly in the horizontal direction by a factor λ (which

must be greater than 2), to contract Q uniformly in the vertical direction by a factor 1/λ, to

bend the deformed Q into the shape of a horseshoe, and to map it into G as shown in Figure 4,
in such a way that not only is each decomposition element mapped into a decomposition ele-

ment, but also the foliation of Q by horizontal lines (0, 1)×{y} is preserved. Finally, the two

1-junctions J0 and J1 are contracted uniformly by a factor 1/λ. Outside of G, F has a fixed

point at ∞ with F−n(x)→∞ as n→∞ for all x ∈ S2 \G.

PSfrag replacements Q

F (J0)

F (J1)

J0 J1

`011 `0101 `110 `101

D

F (D)

Figure 4: A 1-pruning disk in the horseshoe

The non-wandering set Ω(F ) of F is the union of ∞, a fixed point in J0, and a Cantor set

Λ = {x ∈ Q : F n(x) ∈ Q for all n ∈ Z}.

The dynamics of F on Λ can be understood symbolically: let p:Q→ (0, 1) be projection onto

the first coordinate, and define a map h: Λ→ Σ = {0, 1}Z by

h(x)i =

{

0 if p(F i(x)) < 1/2
1 if p(F i(x)) > 1/2.
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Then h is a homeomorphism, and conjugates the action of F on Λ to that of the shift map

σ: Σ→ Σ, defined by σ(s)i = si+1: that is, F |Λ = h−1 ◦ σ ◦ h. Thus every point x of Λ has a

code h(x) ∈ Σ: it is often convenient to refer to x by its code, without explicitly invoking the

homeomorphism h. In particular, periodic points of F correspond one-to-one with periodic
codes of the same period. When writing elements s ∈ Σ, it is common to juxtapose a point
between s−1 and s0 to indicate the origin of the sequence, and to use an overbar to denote

infinite repetition of a given word either at the beginning or the end of s. When s is periodic,
and hence can be written in the form w for some word w, then the origin of the sequence is
taken to be at the first letter of w, i.e. w = . . . www · www . . ..

The horizontal and vertical ordering of points of Λ can be determined using the unimodal

order ¹ on Σ+ = {0, 1}N, which is defined as follows: if s = s0s1 . . . and t = t0t1 . . . are

distinct elements of Σ+, and k ∈ N is least such that sk 6= tk, then s ≺ t if and only if
∑k

i=0 si

is even. If s, t ∈ Σ+, then s ¹ t if and only if either s = t or s ≺ t. Now if (x1, y1), (x2, y2) ∈ Λ

with h(x1, y1) = . . . s−2s−1 · s0s1 . . . and h(x2, y2) = . . . t−2t−1 · t0t1 . . ., then

x1 < x2 ⇐⇒ s0s1s2 . . . ≺ t0t1t2 . . . and

y1 < y2 ⇐⇒ s−1s−2 . . . ≺ t−1t−2 . . . .

In particular, leaves which contain elements of Λ can be specified by an element of Σ+:

the leaf whose horizontal coordinate is given by s ∈ Σ+ will be written `s.

Let `101, `011, and `110 be the leaves containing the three points 101, 011, and 110, which

constitute a period 3 orbit of F , and consider the disk D whose E side is an arc along the lower

boundary of Q joining `0101 to `110, and whose C side is contained in F−1(`101) (see Figure 4).

This is clearly a 1-pruning disk for F : (S2,G) → (S2,G), with F (C) ⊆ γD = `101. The first

step in pruning D away is to thicken γD, as shown in Figure 5, in order to make room for

the pruning isotopy. Since F 3(γD) ⊆ γD, this requires thickening each of the leaves `101, `011,

and `110 into 2-junctions: these 2-junctions will be denoted γ101, γ011, and γ110 respectively.

Let α be a D-arc yielding an enlargement ∆ of D, and modify F by a preisotopy supported

in ∆ to the pruned map FD which satisfies FD(D) ⊆ γD, as shown in Figure 6 (recall that

γD = γ101). Observe that Ω(FD) ∩D consists of a single period 3 point.

On the symbolic level, the dynamics of FD is described by the subshift of σ: Σ → Σ in

which all semi-infinite words w Â 101 are excluded.

Remark: A similar pruning could be carried out up to any leaf in the horseshoe. By the

standard theory of unimodal maps (compare with Example 3 below), it follows that homeo-

morphisms with uncountably many distinct topological entropies can be obtained from the
horseshoe by 1-prunings.

2.4 n-Pruning Disks

Pruning away a 1-pruning disk is quite a simple operation: a more interesting situation occurs
when D is a 1-pruning disk for an iterate F n of F . Under an additional assumption, the
pruning condition, it will be shown that the thick graph G can be modified so as to turn such
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a disk D into a 1-pruning disk for F n−1. By repeating this process n− 1 times, D becomes a
1-pruning disk for F , which can then be pruned away.

Definitions: Let F : (S,G, A) → (S,G, A) be a pre-thick graph map, and suppose that D is

a 1-pruning disk for F n where n > 1. Then D is said to be an n-pruning disk for F if the

pruning condition is satisfied: that F k(D) does not intersect E away from its endpoints for

1 ≤ k < n. An n-pruning disk for F is non-trivial if it is a non-trivial 1-pruning disk for F n.

From now on, all pruning disks will be assumed non-trivial unless otherwise stated. The
main theorem of this section is the following:

Theorem 2.3 Let F : (S,G, A)→ (S,G, A) be a thick graph map, D be an n-pruning disk for
F , and ∆ be an enlargement of D. Then there exists a thick graph (S,GD, A) and a thick graph

map FD: (S,GD, A)→ (S,GD, A), which is obtained from F by thickening a finite number of

decomposition elements, performing an isotopy supported in ∆, and carrying out some type a)

splittings, such that Ω(FD) ∩D is either empty or is a single periodic point.

Proof. Let γD be the decomposition element of G which contains F n(C). The construction

starts by thickening γD (so in particular it is a junction).

Since Fn(D) is contained in the interior of G, it can be decomposed into disjoint arcs

and disks which are the components of the intersections of decomposition elements of G with

Fn(D). This decomposition of F n(D) can then be pulled back to a decomposition of F n−1(D).

Let G1 = G∪F n−1(D), and define a decomposition of G1 by amalgamating the decompositions

of G and F n−1(D): that is, the decomposition element containing a point p of G1 is the smallest

union of decomposition elements of G and F n−1(D) which contains p and all of the decompo-

sition elements (of either surface) which it intersects. Because γD is a junction, the decompo-

sition element containing F n−1(C) is a disk, and hence this decomposition gives (S,G1, A) the
structure of a thick graph (see Figure 10 for an example). Moreover, decomposition elements

are mapped into decomposition elements by construction, and so F : (S,G1, A)→ (S,G1, A) is
a pre-thick graph map (the circumstances in which F : (S,G1, A) → (S,G1, A) may not be a

thick graph map are discussed below). Finally, thicken the junction which contains F n−1(C).

The purpose of this construction is thatD is now an (n−1)-pruning disk for F : (S,G1, A)→
(S,G1, A). To see this, observe that:

a) Fn−1(D) doesn’t intersect E away from its endpoints by the pruning condition, so E ⊆

∂G1.

b) Fn−1(D) ⊆ Int (G1), since F n−1(E) ⊆ Int (G), and the final step of the construction

was to thicken the junction which contains F n−1(C).

c) Fn−1(C) is contained in this single junction.

d) The pruning condition holds since D is unchanged and F has only been modified by

thickenings.
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Let F : (S,Gn−1, A)→ (S,Gn−1, A) be the pre-thick graph map obtained by repeating the

above procedure n−1 times. Then D is a 1-pruning disk for F , which has been obtained from
the original thick graph map by thickening a finite number of decomposition elements. Let

FD: (S,Gn−1, A)→ (S,Gn−1, A) be the pre-thick graph map obtained by pruning D away.

FD will not be a thick graph map if some iterates F k(D) (1 ≤ k < n) of D intersect G in a

disconnected set (notice that this implies that D must also intersect G in a disconnected set).

In this case the above construction alters the topology of G, creating additional components

of S \G. However, it is possible to split the thick graph Gn−1 to obtain a thick graph GD with

the same topology as G, so that FD: (S,GD, A)→ (S,GD, A) is a thick graph map. Figure 7

illustrates this process in a simple example, where D is a 2-pruning disk which intersects G
in two components. It is assumed that these two components are mapped by F into strips
s and t. Following the arrows around Figure 7, the first diagram shows D intersecting two

strips of G, and the second shows the image F (D), intersecting s and t, and the images of the

two strips which D intersects: it is assumed that the image of some other strip also passes

through t but is disjoint from F (D). The induced decomposition of F (D) is also marked on

this diagram: the back-hatched regions and the dotted lines indicate how this decomposition
will be amalgamated with that of G. The result of this amalgamation is shown in the third

diagram: two new junctions have been created, J (which contains F (C)), and J1, which is

connected to J by a strip u which is foliated by the leaves of F (D) amalgamated with those

of t. The strips s and t are each divided by J into two new strips: the new strips which come
from s are denoted s1 and s2, and those from t are denoted t1 and t2.

Let Σ = J ∪ s1 ∪ s2 ∪ t1 ∪ t2 ∪ u. It is clear that all of the components of F (G) ∩ s

correspond to components of F (G1) ∩ (Σ ∪ J1) which are disjoint from t1 ∪ t2; and similarly,

the components of F (G)∩ t correspond to components of F (G1)∩ (Σ∪ J1) which are disjoint

from s1∪s2. After pruning D away (which only affects the preimage of F (D)), the components

of F (G)∩ s correspond to components of FD(G1)∩Σ which are contained in s1∪ s2∪J , while

the components of F (G) ∩ t correspond to components of FD(G1) ∩ Σ which are contained

in t1 ∪ t2 ∪ u ∪ J (see the fourth diagram of Figure 7). Thus J can be split as shown in

the fifth diagram. For an n-pruning, this procedure must be carried out successively for

F (D), F 2(D), . . . , Fn−1(D).

The topology of the resulting thick graph GD is the same as that of G, and condition e) in

the definition of a thick graph map can be achieved by composing with an isotopy supported

in S \ G to ensure that each complementary component of G is a subset of the immediate

basin of the single periodic point which it contains.

Definition: It is said that FD: (S,GD, A)→ (S,GD, A) has been obtained from F : (S,G, A)→
(S,G, A) by pruning D away.

Remark: In the example of Figure 7, s and t are strips (containing no junctions). After

pruning and splitting, three junctions were created: the 1-junction J1, the 3-junction J3, and
the 2-junction J2. Since s was a strip, the 2-junction J2 between s1 and s2 cannot carry any
backtracking or contain the image of a junction. Thus it can be decomposed into leaves, as
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Figure 7: Splitting to restore a thick graph map
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shown in the sixth diagram of Figure 7, joining the two strips s1 and s2 back into a single
strip s.

It is easy to see that this is true in general: if F k(D) intersects G in j components, and

J is the junction which arises from thickening F k(C), then, after pruning D away, J splits

into j junctions. If one of these junctions corresponds to a strip in G, then it is a 2-junction
which can be decomposed into leaves, restoring the original strip of G. The significance of this
observation will become apparent in Section 4.3: the important point to be noticed is that no
new 2-junctions are created.

The family of all prunings of a thick graph map is now defined. By the remark at the end
of the previous subsection, it typically contains uncountably many distinct dynamical systems

(see also Section 3). It will be shown later (Section 4) that it also contains the family of

Thurston maps in the isotopy class of F relative to finite F -invariant sets. The dynamics of
each map in the family can be seen as the dynamics of F less that which has been pruned
away.

Definition: Let F : (S,G, A) → (S,G, A) be a thick graph map. Define the pruning family

P(F ) of F to be the set of all homeomorphisms which can be obtained from F by a finite

sequence, or as the limit of an infinite sequence, of prunings, cleanings2, and thickenings.

Example 2 Let F : (S2,G) → (S2,G) be the horseshoe map. G and its image under F 2 are

shown in Figure 8, together with a 2-pruning disk D and its images under F and F 2. The

marked point which lies on C, F (C), and F 2(C) is the fixed point 1. It is clear that D is a

1-pruning disk for F 2 and, since F (D) only intersects E at an endpoint, the pruning condition

is satisfied and hence D is a 2-pruning disk for F .

PSfrag replacements
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Figure 8: A 2-pruning disk in the horseshoe

The first step in pruning D away is to thicken the leaf γD = `1, to pull back the de-

composition of F 2(D) to F (D) (Figure 9), and then to amalgamate the decompositions of

G and F (D) to yield a new thick graph G1 (Figure 10). The dotted lines in Figure 9 de-

note the boundaries of the 2-junction which is obtained by thickening `1. The disk D is a

2A cleaning consists of a possibly infinite convergent sequence of prunings. A description is given in Section 5.
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1-pruning disk for F : (S2,G1) → (S2,G1), which can be pruned away to give the pruned

map FD: (S
2,GD) → (S2,GD) (see Figure 11, in which G1 has been drawn in a different

configuration).

On the symbolic level, the dynamics of FD is described by the subshift of finite type of

σ: Σ → Σ in which the words 1010 and 1110 are prohibited (it can easily be seen that the

points x ∈ Λ whose orbits intersect Int (D) are precisely those for which h(x) contains one of

these words).

PSfrag replacements
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Figure 9: The induced decomposition of F (D)

Figure 10: Amalgamating G and F (D)

The fact that F n(D) ⊆ IntG makes it possible to define decompositions on the disks

F k(D) for 0 ≤ k ≤ n: these decompositions will be important in Section 3.

Definition: Let D be an n-pruning disk for F : (S,G, A)→ (S,G, A). The induced decomposi-
tion on F n(D) is defined by taking as decomposition elements the connected components of

the intersections of decomposition elements of G with F n(D). The induced decomposition on

F k(D) for 0 ≤ k < n is defined by pulling back the induced decomposition of F n(D) using

Fn−k.
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Figure 11: Pruning away D

Lemma 2.4 Suppose that D is an n-pruning disk for F : (S,G, A)→ (S,G, A). Then for each
k with 0 ≤ k < n, D contains all of the decomposition elements of F k(D) which it intersects,

with the possible exception of those whose image under F n is contained in γD, if γD is a
junction.

Proof. Suppose conversely that γ is a decomposition element of F k(D) which intersects D but

is not contained in D. Since γ is connected, and by the pruning condition doesn’t intersect E

away from its endpoints, it follows that γ intersects C, and hence F n(γ) intersects γD. Now

Fn−k(γ) is contained in a single decomposition element of G, and hence F n(γ) is contained

in γD. If γD is not a junction, then this is prohibited by the local strict monotonicity of
f :G→ G.

In fact, it is possible to remove the exception clause of this lemma without significant loss
of generality, by restricting the n-pruning disk D.

Definition: An n-pruning disk for F : (S,G, A)→ (S,G, A) is said to be trimmed if F n(C) is a

connected component of F n(D) ∩ γD.

In particular, D is always trimmed if γD is a leaf. If γD is a junction, then it is possible to
replace D with a finite union of trimmed n-pruning disks Di such that the dynamics of FD is
the same as that of the homeomorphism FD1,...,Dk obtained by pruning each of the trimmed

disks Di in turn. To do this, let Σ be the component of F n(D) ∩ γD which contains F n(C),

and let Di be the components of F−n(Fn(D) \ Σ). Then each Di is clearly a trimmed n-

pruning disk (with C-side a component of (F n(D) \ Σ) \ (F n(D) \Σ)), and Ω(F )∩ (D \
⋃

Di)

is either empty, or consists of a single periodic point whose orbit attracts γD. In either case,
the non-wandering sets of FD and FD1,...,Dk are equal.

If D is a trimmed n-pruning disk, then Lemma 2.4 can be replaced by
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Lemma 2.5 Suppose that D is a trimmed n-pruning disk for F : (S,G, A)→ (S,G, A). Then
for each k with 0 ≤ k < n, D contains all of the decomposition elements of F k(D) which it

intersects. Moreover, each such decomposition element is contained either in the interior or
in the boundary of D.

The proof follows that of Lemma 2.4.

3 Kneading Sets

In this section a deformation theory for graph endomorphisms, called kneading theory, is devel-
oped. The theory is presented in such a way as to draw out the parallels with pruning theory:
although it applies to arbitrary piecewise monotone graph endomorphisms, the emphasis is
on graph endomorphisms which are induced by thick graph maps. The main results are The-
orem 3.11, which describes how n-pruning disks descend to n-kneading sets, and conversely
how n-kneading sets which are compatible with the two-dimensional structure can be lifted
to n-pruning disks; and Theorem 3.12, which states that pruning away an n-pruning disk is
equivalent to pulling away the corresponding n-kneading set.

3.1 1-Kneading sets

The results in this subsection are quite simple: its main purpose is to establish notation and
introduce some important definitions.

Let G be a (compact) graph, perhaps having infinitely many vertices of valence 2, and

f :G→ G be a piecewise monotone graph endomorphism.

Definitions: A 1-kneading set K for f is an open subset K of G with finitely many components

such that f |K factors through a tree, with all the points of ∂K factoring through the same

point of the tree: that is, there exist a tree T , piecewise monotone maps ψ:K ³ T and

ϕ:T → G, and a point t ∈ T , such that f |K = ϕ ◦ ψ and ψ(∂K) = {t}. (The double-headed

arrow in ψ:K ³ T means that ψ is onto). A 1-kneading set K for f is non-trivial if f(K)

contains more than one point of Ω(f).

Whenever K is a 1-kneading set, the symbols T , ψ, ϕ, and t will be interpreted according
to this definition. Notice that it is not required that K be connected.

If K is a 1-kneading set for f : G → G then a new graph endomorphism fK :GK → GK
can be constructed by defining GK to be G with new valence two vertices at all points of the

orbit of ϕ(t) which are not already vertices, and

fK(x) =

{

f(x) if x 6∈ K
ϕ(t) if x ∈ K.

For notational convenience, GK will be written simply as G.

Definition: fK is said to be obtained from f by pulling K away.
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Example 3 Consider the graph endomorphism f :G → G induced by the horseshoe map

described in Example 1: G is an interval [0, 1] (with valence 1 vertices at 0 and 1), and the

graph endomorphism f :G→ G is depicted in Figure 12. The non-wandering set Ω(f) of f is

the union of the fixed point 0 and a Cantor set

Λ = {x ∈ G : fn(x) ∈ (0, 1) for all n ∈ N},

which is the projection of the corresponding Cantor set in the horseshoe. As in that case, the

dynamics of f |Λ can be understood symbolically: define h: Λ→ Σ+ by

h(x)i =

{

0 if f i(x) < 1/2
1 if f i(x) > 1/2.

Then h is a homeomorphism, which conjugates f |Λ to the shift map σ: Σ+ → Σ+: that is,

f |Λ = h−1 ◦ σ ◦ h. The usual order of points of Λ as a subset of the interval is reflected by the

unimodal order on Σ+: if x, y ∈ Λ then x < y if and only if h(x) ≺ h(y).
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Figure 12: The graph endomorphism induced by the horseshoe

Let K = (0101, 110), T = [101, 1] ⊆ G, t = 101, ψ = f |K :K ³ T , and ϕ:T → G be the

inclusion. Then f |K = ϕ◦ψ and ψ(∂K) = {t}, so K is a 1-kneading set for f . Pulling K away

yields a graph endomorphism fK :G → G with fK(x) = 101 for all x ∈ K (see Figure 13).

Notice that, by the definition of pulling K away, the three points 011, 110, and 101 are now
valence 2 vertices of G.

Comparing this example with Example 1, observe that K = Int (p(D ∩ G)), and that

fK :G → G is the graph endomorphism induced by FD: (S
2,G) → (S2,G). The aim of the

following definitions and results is to show that a 1-pruning disk always projects to a 1-
kneading set in this way, and to give conditions on 1-kneading sets which imply that they lift
to 1-pruning disks.

Definition: Let G be a graph, and v be a valence one vertex of G. A thick graph above G trun-

cated at v is a thick graph (S,G, A) with projection p:G → G in which the 1-junction p−1(v)

is replaced by an arc. This arc is considered to be a leaf in the thick graph decomposition.

It will be shown in Theorem 3.1 below that for any trimmed 1-pruning disk D, the pro-

jection Int (p(D ∩G)) is a 1-kneading set for the induced graph endomorphism. The converse
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Figure 13: The graph endomorphism obtained by pulling K away

is not generally true: an additional compatibility condition between the 1- and 2-dimensional
structures is required. This is the motivation for the following definition:

Definition: Let F : (S,G) → (S,G) be a thick graph map with induced graph endomorphism

f :G→ G. A 1-kneading set K for f is F -compatible if it is the projection of a 1-pruning disk

D for F , i.e. if K = Int (p(D ∩G)).

The aims of the following discussion and results are: a), to show that (trimmed) 1-pruning

disks and F -compatible 1-kneading sets are in one-to-one correspondence; and b), to derive

a sufficient condition for a 1-kneading set to be F -compatible which can easily be checked:
this means that, in applications, pruning disks can readily be found by searching for kneading
sets which satisfy this condition. The essential compatibility requirement is that the kneading
set must correspond to an ‘innermost’ pruning disk. Specifically, suppose that a pruning disk
D is such that D ∩ G has more than one component. Then any union of the corresponding

components of the kneading set K = Int (p(D ∩ G)) may also be a kneading set, but the

only such unions which can be projections of pruning disks are those which correspond to

collections of innermost components of F (D∩G) (see Figure 15 for an explanatory example).

Suppose, then, that F : (S,G) → (S,G) is a thick graph map, and that D is a trimmed

1-pruning disk for F . Then F (D) ⊆ G, and hence there is an induced decomposition on

F (D), where the decomposition elements are connected components of the intersections of

decomposition elements of G with F (D). Since F (D) is a disk, this decomposition gives it

the structure of a thick tree T, which is truncated at the decomposition element F (C) ⊆ γD.

Moreover, F |D can be factored as F |D = Φ ◦ Ψ, where Ψ = F |D:D → T and Φ:T → G
is inclusion. By construction, Ψ and Φ are thick graph maps (i.e. they send decomposition

elements into decomposition elements), and F (D ∩G) = Φ(T) ∩ F (G).

Notice that the induced decompositions on D,F (D), . . . , F n−1(D) described in section 2

(obtained by pulling back the decomposition of F n(D)) can be defined equivalently by pushing

forward a decomposition of D which is obtained by identifying it with T using Ψ.

Given this structure, it is easy to see that D projects to a 1-kneading set for the induced
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graph endomorphism f :G→ G: the converse is immediate from the definition.

Theorem 3.1 Let F : (S,G)→ (S,G) be a pre-thick graph map with induced graph endomor-

phism f :G→ G.

a) Let D be a trimmed 1-pruning disk for F . Then K = Int (p(D ∩G)) is an F -compatible

1-kneading set for f , and the graph endomorphism induced by FD: (S,G) → (S,G) is

fK :G→ G.

b) Let K be an F -compatible 1-kneading set for f . Then there exists a 1-pruning disk D

for F such that K = Int (p(D ∩G)).

Proof.

Part a): Using the construction before the statement of the theorem, let T be the tree

obtained by collapsing decomposition elements of T, and let π:T → T be the canonical

projection. Define ψ = π◦Ψ◦(p|D∩G)−1:K → T , which is well-defined since if x, y ∈ D∩G with

p(x) = p(y), then they lie in the same decomposition element of G, and hence Ψ(x) = F (x)

and Ψ(y) = F (y) lie in the same component of the intersection of the image decomposition

element with F (D). Similarly, ϕ = p◦Φ◦π−1 is well defined, since if x, y ∈ T with π(x) = π(y),

then Φ(x) = x and Φ(y) = y lie in the same decomposition element of T, and hence of G.

Now f |K = ϕ ◦ ψ, and ψ(∂K) = π(Ψ(C ∩ G)) = π(γD ∩ Ψ(C)) is a point t. Thus K is a

1-kneading set for f :G→ G: that it is F -compatible follows immediately from the definition,

since K = Int (p(D ∩G)).

Finally, observe that FD is equal to F on G \ D, and FD(D) ⊆ γD. Thus it induces a

graph endomorphism G → G which is equal to f on G \K, and which maps all points of K

to p(γD) = ϕ(t). This graph endomorphism is exactly fK .

Part b): is just a restatement of the definition of F -compatibility.

Notice that the definitions have been set up precisely so that

D ∩G Ψ
−−−→ T Φ

−−−→ G

p





y

π





y

p





y

K
ψ

−−−→ T
ϕ

−−−→ G

(1)

commutes.

The final result in this section gives an easily verifiable condition for a 1-kneading set K
to be F -compatible. As stated earlier, the issue is that the image of a 1-pruning disk must be

‘innermost’ in F (G), but no corresponding notion exists for abstract graph endomorphisms.

Suppose, then, that K is a 1-kneading set for f :G→ G, the graph endomorphism induced

by F : (S,G)→ (S,G). Then p−1(K) is a union of subdisks of G, each of which has boundary

composed of arcs of ∂G, and the same number of arcs contained in decomposition elements of

G (if any such decomposition element is a junction, then the corresponding arc is contained

in the boundary of the junction in G). Each of the arcs contained in a decomposition element
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has image contained in the decomposition element γ = p−1(ϕ(t)). Let A ⊆ γ be the union of

these images.

Definition: K is said to be innermost if

a) There is an arc α in γ such that F (G) ∩ α = A.

b) There is a neighbourhood N of ∂K in K such that g(N) is (the image of) an arc with

endpoint ϕ(t).

(Condition b) just says that the images of all of the ‘ends’ of K leave ϕ(t) in the same

direction).

Lemma 3.2 An innermost 1-kneading set K is F -compatible.

Proof. Let α be an arc as in the definition of innermost, and choose a subarc if necessary

so that the boundary of α is contained in A, and hence in F (∂G). By condition b), there

is an arc β in F (∂G) with the same endpoints as α, such that the disk ∆ bounded by α

and β contains F (p−1(K)). By condition a), and the fact that β is contained in F (∂G), it

follows that ∆ ∩ F (G) = F (p−1(K)), and hence D = F−1(∆) is a 1-pruning disk for F with

p(Int (D ∩G)) = K.

3.2 n-Kneading Sets

As with 1-pruning, the process of pulling away a 1-kneading set for f is straightforward, and
a more interesting situation arises when K is a 1-kneading set for some iterate f n of f . In this

section it is shown that, provided K satisfies an additional condition (the kneading condition),

it is possible to carry out some identifications on G to yield a new graph endomorphism

f1:G1 → G1, such that the subset of G1 corresponding to K is a 1-kneading set for fn−11 ,

which also satisfies the kneading condition. Repeating the process n − 1 times thus yields a
1-kneading set which can be pulled away. The main point of this construction, as expressed
by Theorems 3.11 and 3.12, is that this iterative process corresponds exactly to that by which
an n-pruning disk is pruned away.

Suppose that K is a 1-kneading set for fn:G → G. For each k ∈ {0, . . . , n − 1}, define

an equivalence relation ∼k on G by x ∼k y if and only if x = y or there exist z, w ∈ K with

fk(z) = x, fk(w) = y, and ψ(z) = ψ(w). Notice that if x 6= y and x ∼k y then x, y ∈ fk(K).

Lemma 3.3 If x ∼k y then f
n−k(x) = fn−k(y).

Proof. If z, w ∈ K with ψ(z) = ψ(w), then fn(z) = fn(w), since fn|K = ϕ ◦ ψ. The result

follows immediately from the definition.

Lemma 3.4 For each k ∈ {0, . . . , n− 1}, each equivalence class of ∼k has only finitely many
components.
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Proof. Every non-trivial equivalence class of ∼0 is a set of the form ψ−1(x) for some x ∈ T ,

and hence has only finitely many components since ψ is piecewise monotone. The equivalence

classes of ∼k are the images of those of ∼0 under f
k.

Definitions: A 1-kneading set K for fn is said to be an n-kneading set for f if the kneading
condition is satisfied: that if x ∈ K and x ∼k y, then y ∈ K and x ∼0 y. If f :G → G is

induced by a thick graph map F : (S,G, A) → (S,G, A), then an n-kneading set for f is said

to be F -compatible if it is an F n-compatible 1-kneading set for fn (i.e., it is p(Int (D∩G)) for

some 1-pruning disk D for F n), and non-trivial if it is a non-trivial 1-kneading set for fn.

From now on, all n-kneading sets will be assumed to be non-trivial unless otherwise stated.
Notice that when checking whether or not the kneading condition is satisfied, it can clearly

be assumed that x, y ∈ fk(K) and x 6= y.

By Lemma 3.3, if x ∼n−1 y, then f(x) = f(y) (it is important to note that the converse

is not generally true). Thus it is possible to take the quotient of f :G → G by ∼n−1 yielding

a graph endomorphism f1:G1 → G1. Write q:G → G1 for the canonical projection, and

K1 = q(K).

The following simple lemma is the essential consequence of the kneading condition:

Lemma 3.5 K = q−1(K1).

Proof. Suppose that there exists y ∈ G \K with q(y) ∈ K1. Pick x ∈ K with q(x) = q(y).

Then x and y lie in the same ∼n−1-equivalence class: that is, x ∈ K and x ∼n−1 y. It follows

from the kneading condition that y ∈ K, which is a contradiction.

The aim of the following results is to show that K1 is an (n− 1)-kneading set for f1:G1 →

G1.

Lemma 3.6 f1:G1 → G1 is a piecewise monotone graph endomorphism, and K1 is an open
subset of G1.

Proof. That G1 is a graph and f1 is piecewise monotone follows from Lemma 3.4, while

the openness of K1 in G1 is immediate from Lemma 3.5 (and the definition of the quotient

topology).

Now define ψ1 = ψ ◦ q|−1
K

:K1 → T . To check that ψ1 is well defined, it is necessary to

show that if x, y ∈ K with q(x) = q(y), then ψ(x) = ψ(y). If either x or y is in K, then it

follows by the kneading condition that both lie in K and that x ∼0 y: i.e. ψ(x) = ψ(y). If

both lie in ∂K, then ψ(x) = ψ(y) = t.

Lemma 3.7 ψ1:K1 → T is onto and piecewise monotone, and ψ1(∂K1) = {t}.
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Proof. Surjectivity follows from that of ψ, and ψ1 is piecewise monotone by Lemma 3.4 and the

piecewise monotonicity of ψ. Since K = q−1(K1) (Lemma 3.5), it follows that ∂K1 = q(∂K),

and hence ψ1(∂K1) = ψ(∂K) = {t}.

Next define ϕ1 = q◦fn−1◦ψ−1:T → G1. To check that ϕ1 is well defined, it is necessary to

show that if x, y ∈ K with ψ(x) = ψ(y), then q(fn−1(x)) = q(fn−1(y)). However ψ(x) = ψ(y)

means exactly that x ∼0 y, and hence fn−1(x) ∼n−1 f
n−1(y): that is, q(fn−1(x)) = q(fn−1(y))

as required.

Lemma 3.8 ϕ1:T → G1 is piecewise monotone, and ϕ1 ◦ ψ1 = fn−11 |K1
.

Proof. Piecewise monotonicity follows by Lemma 3.4 and the piecewise monotonicity of ψ and

f . If x ∈ K1, then ϕ1 ◦ ψ1(x) = q ◦ fn−1 ◦ ψ−1 ◦ ψ ◦ q−1(x) = (q ◦ f ◦ q−1)n−1(x) = fn−11 (x).

Theorem 3.9 K1 is an (n− 1)-kneading set for f1:G1 → G1, with factor maps ψ1 and ϕ1.

Proof. It follows from Lemmas 3.6, 3.7, and 3.8 that K1 is a 1-kneading set for fn−11 : thus

it only remains to verify the kneading condition: that if x1 ∈ K1 and if x1 ∼k y1 for some

k ∈ {0, . . . , n − 2}, then y1 ∈ K1 and ψ1(x1) = ψ1(y1) (in this proof, elements of G1 are

denoted with a subscript 1, while elements of G have no subscript: the equivalence relations
∼k pertain either to f :G → G or to f1:G1 → G1, depending on which graph the elements

which are being compared belong to).

Suppose then that x1 ∈ K1 and x1 ∼k y1. Thus there exist z1, w1 ∈ K1 with f
k
1 (z1) = x1,

fk1 (w1) = y1, and ψ1(z1) = ψ1(w1). Pick z, w ∈ K with q(z) = z1 and q(w) = w1. Since

ψ1 = ψ ◦ q−1, it follows from Lemma 3.5 that z ∼0 w, and hence fk(z) ∼k f
k(w). Moreover,

q(fk(z)) = fk1 (q(z)) = fk1 (z1) = x1, and similarly q(fk(w)) = y1.

Now fk(z) ∈ K by Lemma 3.5, and so fk(w) ∈ K and fk(z) ∼0 f
k(w) by the kneading

property for the original n-kneading set for f :G → G. Hence y1 = q(fk(w)) ∈ K1, and

ψ1(y1) = ψ(fk(w)) = ψ(fk(z)) = ψ1(x1), so x1 ∼0 y1 as required.

Definition: Suppose that K is an n-kneading set for f :G → G. Let fK :GK → GK be the
piecewise monotone graph endomorphism obtained by applying the above process n−1 times,
and then pulling away the resulting 1-kneading set. It is said that fK has been obtained from
f by pulling K away.

Example 4 This example of a 2-kneading mirrors the 2-pruning described in Example 2. Let
f :G→ G be the graph endomorphism induced by the horseshoe, as described in Example 3,

and let K = (1, 101) ⊆ G. Let T = [1, 1] ⊆ G and t = 1 ∈ T . Let ψ = f 2|K :K ³ T , and

ϕ:T → G be inclusion. Then f2|K = ϕ ◦ ψ, and ψ(∂K) = {t}, so K is a 1-kneading set for
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f2. Since f(K) = [01, 1] is disjoint from K, the kneading condition is satisfied trivially, and

hence K is a 2-kneading set for f .

The graph endomorphism f1:G1 → G1 (shown in Figure 14) is obtained by identifying

each pair of points x, y ∈ f(K) with x ∼1 y. Since ψ = f2, this is equivalent to f(x) = f(y):

in general, of course, this need not be the case. Notice that K1 is a 1-kneading set for f1.
Pulling K away yields the graph endomorphism fK :GK → GK , also depicted in Figure 14.
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Figure 14: Pulling away a 2-kneading set

Comparing with Example 2, observe that K = Int (p(D ∩ G)), and that fK :GK → GK

is the graph endomorphism induced by FD: (S
2,GD) → (S2,GD). The aim of the following

discussion and results is to show that there is a one-to-one correspondence between (trimmed)

n-pruning disks and F -compatible n-kneading sets, and that pruning an n-pruning disk is
equivalent to pulling away the corresponding n-kneading set.

Suppose, then, that D is a trimmed 1-pruning disk for F n. Recall that F n(D) can be

given the structure of a thick tree T, and that F n|D factors as F n|D = Φ◦Ψ, where Ψ:D → T
and Φ:T → G are thick graph maps. Define an equivalence relation ≈0 on the decomposition

elements of G by ξ ≈0 η if and only if either ξ = η, or both ξ and η intersect D and Ψ(ξ) and

Ψ(η) are contained in the same decomposition element of T. Then define equivalence relations

≈k on the set of decomposition elements of G for 0 < k < n by ξ ≈k η if and only if there

exist decomposition elements ζ, ω with ζ ≈0 ω and F k(ζ) ⊆ ξ, F k(ω) ⊆ η. It is an immediate

consequence of the commutativity of (1) that each ≈k corresponds to the equivalence relation

∼k defined by the 1-kneading set K = Int (p(D ∩ G)) for fn: that is, x ∼k y if and only if

p−1(x) ≈k p
−1(y).

Theorem 3.10 Let F : (S,G)→ (S,G) be a pre-thick graph map, and f :G→ G be the induced

graph endomorphism. Let D be a trimmed 1-pruning disk for F n, and K = Int (p(D∩G)) the

corresponding 1-kneading set for fn. Then D is an n-pruning disk for F if and only if K is
an n-kneading set for f .

Proof. It is necessary to show that D satisfies the pruning condition if and only if K satisfies
the kneading condition.
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Suppose first that the pruning condition holds: i.e., F k(D) doesn’t intersect E away from

its endpoints for 0 < k < n. Let x 6= y and k < n be such that x ∼k y and x ∈ K. It is
necessary to show that y ∈ K and x ∼0 y.

Let ξ = p−1(x) and η = p−1(y). Then ξ ⊆ G ∩ (D \ C), and ξ and η are distinct

decomposition elements with ξ ≈k η: that is, there are (distinct) decomposition elements ζ

and ω such that ζ ≈0 ω and F k(ζ) ⊆ ξ, F k(ω) ⊆ η. Now ζ ≈0 ω means exactly that ζ

and ω are decomposition elements of G which intersect D, and Ψ(ζ), Ψ(ω) are contained in

the same decomposition element of T. It follows that there is a decomposition element γ

of F k(D) which contains both F k(ζ) and F k(ω), and hence intersects both ξ and η. Since

ξ ⊆ G ∩ (D \ C), it follows from Lemma 2.5 that γ ⊆ Int (D), and hence y = p(η) ∈ K.

Moreover, ξ and η are contained in the same decomposition element of D, so that ξ ≈0 η. It

follows that p(ξ) ∼0 p(η), i.e. x ∼0 y as required.

For the converse, suppose that the kneading condition holds. If the pruning condition is
violated, then there is some k with 0 < k < n and a leaf γ in the induced decomposition of

F k(D) which intersects E away from its endpoints: let α be such a point of intersection. Since

both endpoints of γ lie on F k(E) ⊆ Int (G), it follows that γ intersects ∂G in at least one other

point: choose such an intersection β so that the subarc ξ of γ between α and β only intersects

G at its endpoints. Let x = p(α) ∈ K and y = p(β). Since p−1(x) and p−1(y) are contained in

the same decomposition element of F k(D), it follows that p−1(x) ≈k p
−1(y), and hence that

x ∼k y. By the kneading condition, y ∈ K and x ∼0 y. Thus β ∈ E and p−1(x) ≈0 p
−1(y),

so α and β lie in the same element η of the induced decomposition of D. Therefore F n(ξ ∪ η)

is contained in a single decomposition element of G, which must be a junction since ξ ∪ η is
homotopically non-trivial. It follows that η is a junction, whose intersection with E contains
both α and β.

Since D is non-trivial, it must contain leaves: this implies that F k(E) is entirely contained

in a junction contained in E, which is again impossible given the non-triviality of D.

The following two theorems, which are the main results of this section, now follow easily

from Theorems 3.1 and 3.10. For Theorem 3.11, recall that F : (S,G1) → (S,G1) is the pre-

thick graph map obtained by amalgamating G with F n−1(D), and f1:G1 → G1 is the graph

endomorphism obtained on factoring f :G→ G by ∼n−1.

Theorem 3.11 Let F : (S,G) → (S,G) be a pre-thick graph map with induced graph endo-

morphism f :G→ G.

a) Let D be a trimmed n-pruning disk for F . Then K = Int (p(D ∩G)) is an F -compatible

n-kneading set for f , and the graph endomorphism induced by F : (S,G1) → (S,G1) is
f1:G1 → G1 (see the remark above regarding notation).

b) Let K be an F -compatible n-kneading set for f . Then there exists a 1-pruning disk D

for F such that K = Int (p(D ∩G)).
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Proof. The only part of the statement which is not an immediate consequence of Theorems 3.1

and 3.10 is that the graph endomorphism induced by F : (S,G1) → (S,G1) is f1:G1 → G1.

This follows directly from the observation that two decomposition elements ξ and η of G are

identified under amalgamation with F n−1(D) if and only if ξ ≈n−1 η.

For the final result, recall that FD: (S,Gn−1) → (S,Gn−1) is the pre-thick graph map

obtained by amalgamating F n−1(D), . . . , F (D) with G and pruning away the resulting 1-

pruning disk D; GD is obtained from Gn−1 by splitting in order to restore the structure of the

complementary components.

Theorem 3.12 Let F : (S,G)→ (S,G) be a thick graph map, f :G→ G be the induced graph

endomorphism, D be an n-pruning disk for F , and K = Int (p(D ∩ G)) be the corresponding

n-kneading set for f . Then the graph endomorphism induced by FD: (S,Gn−1)→ (S,Gn−1) is

fK :GK → GK .

Proof. Immediate from Theorems 3.1 and 3.11

If it is necessary to split Gn−1 to obtain GD, then the homotopy types of GK and G are

correspondingly different, but GK can be split at a number of its vertices (corresponding to

the splittings of Gn−1) in order to restore the homotopy type of G.

Remark: At this point it would be natural to define the kneading family K(f). In order that

it correspond to the pruning family P(f) defined in Section 2 using Theorem 3.11 above,

however, it would be necessary to make precise the convergence of a sequence of kneadings,
and hence of the sequence of spaces on which the maps are defined. Since a formal definition

of K(f) is not required in what follows, it is unnecessary to consider the technical difficulties

which this involves.

4 Pruning up to an invariant set

4.1 Basic definitions

Definitions: Let F : (S,G, A) → (S,G, A) be a thick graph map inducing f :G → G. Then F

is said to be Markov if

a) G has only finitely many vertices, and

b) f :G→ G is onto, and does not collapse any edges to points.

Let F : (S,G, A)→ (S,G, A) be a Markov thick graph map, and write E(G) = {e1, . . . , er}

for the set of edges of the corresponding graph G, each endowed with a fixed orientation. The

set of oriented edges of G is defined to be OE(G) = {e1, . . . , er, ē1, . . . , ēr}, where ēi denotes

the edge ei with the opposite orientation. By convention, general elements of E(G) will be

denoted with lower case letters, and those of OE(G) with upper case letters.
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For each vertex v of G, define Lk(v) ⊂ OE(G) to be the set of oriented edges whose

initial vertex is v. Since f doesn’t collapse any edges and is strictly monotone away from the

preimages of vertices, there is for each n > 0 a well-defined derivative map Dfn:OE(G) →

OE(G) which maps each E ∈ Lk(v) to the element of Lk(f(v)) which is the first oriented edge

traversed by the image fn(E) (see [4]).

If x ∈ G is not a vertex (so x lies in the interior of some edge e), then write Lk(x) = {0, 1}.

If fn(x) is a vertex v for some n > 0, then define Dfn: Lk(x)→ Lk(v) by setting Dfn(0) to be

the first edge traversed by the nth iterate of the segment of e which starts at x, and Df n(1)

to be the first edge traversed by the nth iterate of the segment of ē which starts at x.

A point x ∈ G is said to be n-preturning (to the vertex v) if fn(x) = v, and Dfn is constant

on Lk(x). It is said to be n-turning (to v) if in addition

a) fk(x) is not (n− k)-preturning for 1 ≤ k < n, and

b) x is not k-preturning to v for 1 ≤ k < n.

Notice that this does not preclude the possibility that x is k-turning to some other vertex

for some k < n. If x is n-turning to v and Dfn(Lk(x)) = {E}, then it is also said that x is

n-turning to (v,E).

Lemma 4.1 If x is n-turning, then f(x) is a vertex.

Proof. If x is itself a vertex, then there is nothing to prove. If both x and f(x) were not

vertices, then it would follow from the strict monotonicity of f away from the preimages of

vertices that f(x) would be (n− 1)-preturning, contradicting the fact that x is n-turning.

4.2 Finding pruning disks

Suppose that F : (S,G, A) → (S,G, A) is a Markov thick graph map, with induced graph

endomorphism f :G→ G. The following definition is illustrated by Figure 15.

Definition: Suppose that x is n-turning to (v, L). If J = p−1(x) is a junction, let E1, . . . , Er

be the elements of Lk(x) in their correct cyclic order (i.e. each pair {Ei, Ei+1} and {Er, E1}

is connected in the cyclic order at x), and let s1, . . . , sr be the corresponding (oriented) strips

in G. Now F (J) ⊆ p−1(v), and the images of the initial segments of the strips si leave p
−1(v)

along the strip p−1(L). Amongst these initial segments there are two, connected in the cyclic

order, whose images are outermost in p−1(L): suppose without loss of generality that these

are s1 and sr. For each y ∈ L, define ∆(·, y) to be the disk bounded by the smallest segment

of p−1(y) which disconnects both of these images of initial segments, together with the arc of

Fn(∂G∩ (s1 ∪ sr ∪J)) which has the same endpoints and is contained in p−1(v)∪ p−1(L). Let

D(·, y) = F−n(∆(·, y)), a disk with boundary the union of the arcs E(·, y) ⊆ ∂G and C(·, y)

with Fn(C(·, y)) ⊆ p−1(y). (The reason for the · will become apparent shortly).
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If p−1(x) is not a junction, then ∆(·, y) and D(·, y) can be defined analogously, replacing

the strips s1, . . . , sr with the two oriented strip segments emanating from the leaf p−1(x).
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Figure 15: Opening out a pruning disk

Lemma 4.2 Suppose that x is n-turning to (v, L) and A∩p−1(v) = ∅. If y ∈ L is sufficiently

close to v (following the orientation of L), then D(·, y) is an n-pruning disk.

Proof.

It is clear from the construction that D(·, y) is a 1-pruning disk for F n provided y is close

enough to v that ∆(·, y) is disjoint from A. Thus it is only necessary to show that D(·, y)

satisfies the pruning condition for y sufficiently close to v: that is, that F k(D(·, y)) does not

intersect E(·, y) away from its endpoints for 1 ≤ k < n. Equivalently (replacing k with n−k),

it is necessary to show that F k(E(·, y) \ {endpoints}) ∩ ∆(·, y) = ∅ for 1 ≤ k < n and y

sufficiently close to v.

By continuity, it is enough to show that F k(E) ∩ ∆ = ∅ for 1 ≤ k < n, where ∆ is the

limiting disk ∆(·, v) ⊆ p−1(v), and E = E(·, v).

Suppose, then, that F k(E)∩∆ 6= ∅ for some k. WriteK = p−1(v), C = C(·, v), e = F n(E),

and c = F n(C) (so ∂∆ = c∪e). Notice first that F k(E) ⊆ ∂F k(G), and F n(∂G) ⊆ Int (F k(G)),

so F k(E)∩ e = ∅. Second, F k(E) cannot be contained in ∆, since ∆ ⊆ K and hence F n−k(∆)

is contained in the interior of a junction, but F n(E) intersects ∂K. Finally, L is not contained

in p(F k(E)), since F n(E) ⊆ K and F does not collapse any edges to points. Thus F k(E) \∆

consists of two components, each of which is contained in p−1(L).
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It follows that Dfk(E1) = Dfk(Er) = L, and that Dfn−k(L) = L. Since F is orientation-

preserving, this means that the relative positions of the initial segments of F k(s1) and F
k(sr)

in p−1(L) are the same as those of F n(s1) and F
n(sr); and this, again using the fact that F is

orientation-preserving, implies that Df k(si) = L for all i. Hence x is k-preturning to v, which

is a contradiction.

Definition: An n-turning point x to (v, L) is said to be a prunable n-turning point if D(·, y) is

an n-pruning disk for all y ∈ L sufficiently close to v.

Remark: If A ∩ p−1(v) = ∅, then Lemma 4.2 says that any n-turning point to v is prunable.

Suppose that the conditions of Lemma 4.2 are satisfied, so there exists a pruning disk

D(·, y) = F−n(∆(·, y)). It is clear that ∆(·, y) is a disk for all y ∈ L, and hence that there is a

well-defined disk ∆(·, u1), where u1 is the terminal vertex of L. Whether or not it is possible

to extend the disk beyond u1 depends on the behaviour of the segments of F n(∂G) which arise

from the F n-image of E(·, y). If both of them leave p−1(u1) through the same strip, which

is distinct from p−1(L), or if both leave through p−1(L) on the same side of ∆(·, u1), then it

is said that ∆(·, u1) can be extended through u1 (Figure 16). Otherwise (Figure 17) ∆(·, u1)

cannot be extended through u1.
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Figure 16: Extending ∆ through a junction
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If ∆(·, u1) can be extended through u1, and the segments of F n(∂G) leave p−1(u1) along

an oriented strip p−1(L1), then again, ∆(·, u1) can be extended all the way along p−1(L1) to

the junction p−1(u2) at the other end of the strip. Write ∆(·, u1) = ∆(L, u1), and denote by

∆(L, y) the disk obtained by extending to the leaf p−1(y) for each y ∈ L1.

Continuing in this way, there is some sequence u1, . . . , un−1 of vertices through which

∆ can be extended, followed by a vertex un through which it cannot be extended: and
a corresponding sequence L,L1, L2, . . . , Ln−1 of oriented edges corresponding to the strips

along which ∆ is extended. Let αk denote the edge-path LL1L2 · · ·Lk−1. The disk obtained

by extending through u1, u2, . . . , uk to the leaf p−1(y) in p−1(Lk) is denoted ∆(αk, y), and

its preimage F−n(∆(αk, y)) by D(αk, y). The arc of ∂D(αk, y) which lies on ∂G is denoted

E(αk, y), while the arc in F−n(p−1(y)) is denoted C(αk, y).

In the above discussion, the only question is whether or not the disk ∆(αk, y) can be

extended, not whether the disk D(αk, y) remains a pruning disk. There are three reasons why

it may become impossible to extend D(αk, y) further while it remains an n-pruning disk:

a) That the pruning condition would be violated if D(αk, y) were extended further. If this

is the case then F j(C(αk, y)) intersects C(αk, y) for some j < n.

b) That the interior of the pruning disk would intersect A if D(αk, y) were extended further.

If this is the case then A ∩ C(αk, y) 6= ∅.

c) That k = n and y = un: that is, that ∆(αn, un) cannot be extended as a disk.

Since these are all closed conditions, it follows from Lemma 4.2 that there is a unique

maximal n-pruning disk D(αk, y). This pruning disk is denoted D(n)(x).

4.3 The Bestvina-Handel algorithm

Algorithms for computing train tracks for surface homeomorphisms have been given by Bestvina-

Handel [4], Franks-Misiurewicz [8], and Los [14]. In this section it is explained how the

Bestvina-Handel algorithm can be recast in such a way that the only isotopies which it in-
volves are prunings and thickenings: in particular, this means that no new dynamics can be
created at any point during the algorithm. The essential observation is that pruning is a more

general operation than folding (the driving operation of Bestvina-Handel) — every folding can

be interpreted as a pruning, but not vice-versa: in particular, it often requires several foldings
to destroy the dynamics which can be removed with a single pruning.

Rather than give a formal description of the algorithm, (thereby duplicating the work of

Bestvina and Handel), a list is given below of the operations involved in the Bestvina-Handel

algorithm, and how they should be reinterpreted in terms of pruning. Before this, however, an

example is given. It is hoped that the algorithm (repeatedly finding and pruning non-trivial

pruning disks) will be clear before the details of the translation are given.

Example 5 This is an example in which a single 4-pruning (and two trivial 1-prunings) pro-

duce a pseudo-Anosov map: applying the Bestvina-Handel algorithm to the same example
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requires many more moves (eight successive foldings and tightenings in one computer imple-

mentation [10]).

Consider the horseshoe map F : (S2,G, A) → (S2,G, A), where A is the period 8 orbit

with code 10011010. The Thurston representative of the isotopy class of F relative to A
will be computed. The initial thick graph map, the invariant set A, and the induced graph
endomorphism f :G→ G are shown in Figure 18. The points of A are labelled 1 to 8.
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Figure 18: A period 8 orbit in the horseshoe, and two 1-pruning disks

The first, and essentially trivial, step, is to prune away the 1-pruning disks D0 and D1
depicted in Figure 18. On the level of the graph endomorphism, this corresponds, in the
language of Bestvina-Handel, to tightening the graph endomorphism with respect to A. The
result of these prunings can be seen in Figure 19.

The remainder of the algorithm will be demonstrated first by using kneading theory on
the graph endomorphism: this is the way that one would carry out the algorithm in practice.

At the end, pictures will be given of the relevant pruning disks and their images in S2.

In the graph endomorphism f :G → G of Figure 19, there is a unique prunable turning
point, namely p which is 4-turning to the vertex 8. The algorithm proceeds by finding the
largest connected 4-kneading set containing p which is disjoint from A: this corresponds to

the maximal 4-pruning disk D(4)(p) described in Section 4.2. Observe that there is a period

3 point α in e1, with the property that β = f(α) ∈ e3 and γ = f(β) ∈ e7. The periodic point

α lies to the right of p in e1.

Let K be the connected 1-kneading set for f 4 which contains p and has α as its right
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Figure 19: The thick graph and graph maps after the 1-prunings

endpoint. This interval, together with its first 4 iterates, is shown in Figure 20.

Because G is a tree and K is connected, the kneading condition is satisfied if and only if

fk(K) ∩K = ∅ for 1 ≤ j ≤ 3, which is clearly the case (notice that K is as large as it could

be while satisfying the kneading conditions, since if α ∈ K then f 3(K) ∩K 6= ∅). Thus K is

a 4-kneading set. Drawing f 4(G) taking into account the thick graph structure is a tedious

exercise which shows that K is an innermost 4-kneading set, and hence is F -compatible by

Lemma 3.2. Hence, by Theorem 3.11, there is a 4-pruning diskD for F : (S2,G, A)→ (S2,G, A)
with p(Int (D ∩ G)) = K: and by Theorem 3.12, pruning away D is equivalent to pulling

away K.

The first step in pulling away K is to identify points which lie in the same ∼3 equivalence

class: in this case, as in Example 4, these are exactly points of f 3(K) which have the same

image under f . The identifications are illustrated in Figure 21, in which lines have been drawn
joining pairs of points which have the same image. This yields a new graph endomorphism

f1:G1 → G1, where G1 = G/∼3, with a 3-kneading set K1 = K/∼3. For the sake of notational

clarity, suffices will be dropped after this and every stage of the procedure. This new graph
endomorphism is depicted in Figure 22, together with the identifications arising from ∼2.
Carrying out this second identification gives the graph endomorphism of Figure 23, for which
K is a 2-kneading set: the identifications arising from ∼1 are shown on this figure.

Carrying out the final identifications yields the graph endomorphism of Figure 24: observe
that K is now a 1-kneading set, which can be pulled away as in the figure. The resulting
graph endomorphism f :G → G is now efficient in the terminology of Bestvina and Handel:
that is, there are no prunable turning points. An invariant train track for the isotopy class

can now be calculated as described in [4]: it, and its image, are shown in Figure 25.
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Figure 20: A maximal 4-kneading set and its iterates

Figure 21: Identifications under ∼3
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Figure 22: Identifications under ∼2

Figure 23: Identifications under ∼1
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Figure 24: Pulling away the resulting 1-kneading set

Figure 25: An invariant train track
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The remaining figure in this example illustrates the pruning which corresponds to this
kneading. In order to simplify the diagram, the gaps in the invariant Cantor set Λ have been

collapsed (another way of viewing this is that the initial thick graph map F :G → G has been

chosen in such a way that F (S) very nearly fills S, and the two 1-junctions J1 and J2 are so

narrow as to be indiscernible). Figure 26 shows the 4-pruning disk D, together with its images

F (D), F 2(D), F 3(D), and F 4(D), which project to K and its images. The period 8 orbit A

is shown with small squares, and the period 3 orbit whose points lie in p−1(α), p−1(β), and

p−1(γ) with larger squares.

Notice that F 4(C) is contained in a single decomposition element. The thick graph map

obtained by pruning away D has trivial dynamics in
⋃∞
i=−∞ F i(D), and is equal to the horse-

shoe elsewhere. The induced graph endomorphism is the efficient graph endomorphism which
was obtained by pulling away K. The pseudo-Anosov map in the isotopy class of F relative
to A can be obtained by collapsing the closures of the wandering domains of FD to points.
Symbolic dynamics, as a subshift of the full 2-shift, can be introduced as in Examples 1 and 2:
note that this is different from introducing symbolic dynamics using the train track, where 10
symbols are required. This makes it possible to compare this pseudo-Anosov representative
with other maps in the pruning family of the horseshoe.

Figure 26: The 4-pruning disk and its images

Example 6 The same algorithm can be carried out for other invariant sets A in the horseshoe.

Figure 27 shows a 2-pruning disk D for the horseshoe map F : (S2,G, A)→ (S2,G, A), where
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A consists of the homoclinic orbit 010110 and the fixed point 0, together with the images F (D)

and F 2(D). Once this 2-pruning has been carried out, there are no more non-trivial pruning

disks. In fact, this is precisely the 2-pruning disk of Example 2. A forthcoming paper treats
the problem of pruning up to homoclinic and heteroclinic orbits in general. The remainder of
this section deals only with pruning up to finite invariant sets.

Figure 27: Pruning up to a homoclinic orbit

Remark: For the sake of simplicity and brevity, all of the examples in this paper have been

of homeomorphisms of S2. However, the theory applies equally to orientable surfaces of any
genus.

The remainder of this section describes the steps which are needed to convert the Bestvina-
Handel algorithm to a pruning algorithm in the general case. It is assumed that S is a closed
orientable surface, that B ⊆ S is a finite non-empty set of punctures, and that α is an isotopy

class of orientation-preserving homeomorphisms of S relative to B (the extension to the case

where S is unpunctured is described in Section 5 of [4]). As in [4], it is possible to find a thick

graph (S,G, B), whose induced graph G can also be considered as a subset of S, and an initial

thick graph map F : (S,G, B)→ (S,G, B) which is in the isotopy class α.

a) There are two ways to deal with the puncture set B. In the first, described in detail

in [4], choose one of the orbits of B under α, and designate a peripheral subgraph P of

G which consists of a circle surrounding each of the punctures which does not belong

to the chosen orbit: the remainder of G is chosen so that each component of S \ G
contains exactly one puncture (which is the unique periodic point in that component).

The initial thick graph map F (S,G)→ (S,G) is chosen so that f :G→ G restricts to a
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homeomorphism of P , and this condition is required to be maintained throughout the
algorithm.

The second approach is again to choose one of the orbits of B, and to let A be the

set of punctures not in this orbit. Choose (S,G, A) so that each component of S \ G
contains exactly one point of B \ A, and such that the points of A are contained in

distinct decomposition elements of G. The initial thick graph map is then taken to be

F : (S,G, A)→ (S,G, A).

The advantage of the second approach is that two of the more complicated operations of
the Bestvina-Handel algorithm, namely absorbing into P and making irreducible, can be
avoided: these operations ensure that the entries of the transition matrix of f :G → G

which are decreased by folding correspond to main edges (i.e. those edges e such that

fn(e) is not contained in P for any n). The disadvantage is that it is necessary to keep

track, throughout the algorithm, of how the points of A lie relative to the image F (G).

It is also possible to adopt a combination of these approaches, surrounding some punc-
tures with peripheral loops and choosing others to constitute the invariant set A. Here
it is assumed that the second approach has been adopted, since the first is discussed

in [4].

b) The Bestvina-Handel operation pulling tight can be accomplished by 1-prunings.

c) The Bestvina-Handel operation collapsing an invariant forest disjoint from P is inter-

preted as follows: if f :G → G has an invariant forest, each component T of which
contains at most one point of A, then collapse this invariant forest. In terms of the

thick graph map, redeclare the decomposition elements of G so that each set p−1(T ) is

a single junction: thicken these junctions if necessary to ensure that diam(F n(J)) → 0

as n→∞ for each junction J .

d) Suppose that F : (S,G, A) → (S,G, A) is tight, and that there are no invariant forests

whose components contain no more than one point of A. If the transition matrix for
f :G→ G is reducible, then there exists a corresponding reduction of the isotopy class α.

e) It is possible to replace the Bestvina-Handel operation performing a valence 2 isotopy

with a new operation called cleaning a valence 2 vertex, which can be implemented by

a (perhaps infinite) sequence of prunings. This has the advantage that it enables the

whole algorithm to be carried out with prunings and thickenings, and in particular in
such a way that dynamics is monotonically destroyed. It also avoids the need to calculate
eigenvalues and eigenvectors of transition matrices. Cleaning is, however, a complicated
procedure: it is described in Section 5. In practice, if the aim is to calculate a train
track, it is more straightforward to perform valence 2 isotopies.

f) The Bestvina-Handel operation Folding to decrease λ should be replaced by finding (as

described in section 4.2) and pruning a non-trivial pruning disk.

Rewriting the Bestvina-Handel algorithm in this way makes it clear that all Thurston
representatives can be obtained by pruning. More precisely
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Theorem 4.3 Let F : (S,G) → (S,G) be a thick graph map. Then the pruning family P(F )

of F contains maps semi-conjugate to the Thurston representatives of each isotopy class of F
relative to a finite F -invariant set.

The semi-conjugacy mentioned in the statement of the theorem above consists in collapsing
the wandering domains of the pruned map. This is quite a mild operation – in particular,

the fibres of the semi-conjugacy carry no entropy. Maps in P(F ) have invariant laminations

instead of foliations as is the case with pseudo-Anosov maps.

5 Cleaning a valence two vertex

The main modification necessary to the algorithms of Bestvina-Handel and Franks-Misiurewicz,
if they are to be carried out entirely in the language of pruning, arises from the need to avoid

performing valence two isotopies (dragging, in the terminology of Franks-Misiurewicz). It is

necessary to avoid the proliferation of valence two vertices in order that the number of edges
in the underlying graph remains bounded: this ensures that the set of possible spectral radii
of transition matrices is discrete, and hence that if the spectral radius continually decreases
the algorithm is guaranteed to terminate.

Valence two isotopies, while they remove valence two vertices and never increase the spec-

tral radius, may create dynamics (periodic orbits for example) which didn’t exist before. This

is incompatible with pruning, in which dynamics is only ever destroyed. Thus an alternative
to performing valence two isotopies, called cleaning a valence two vertex, is presented here.
The technicalities involved in giving a formal description of this operation, and in showing
that it terminates, are very intricate and degenerate into a plethora of cases: they are also
quite tedious, and do not introduce any new techniques which make the effort worthwhile.

In practice, however, it is relatively easy to clean valence two vertices: an informal de-
scription of the operation follows. Moreover, the use of pruning rather than folding in the way

described by Bestvina-Handel (which requires frequent subdivision of edges and subsequent

erasure of the resulting valence two vertices) makes valence two vertices much rarer. It is also

worth noting that cleaning does not require the calculation of eigenvalues and eigenvectors of
transition matrices, in which respect it can be easier to carry out by hand than a valence two
isotopy.

Suppose, then, that a valence two vertex v (corresponding to a 2-junction J in G) is created

during the course of the algorithm. If there are no turning points to v, then it is possible to
split the junctions corresponding to all vertices of valence other than two in its backward

orbit (this requires type b) splittings). This ensures that all vertices which eventually map to

v have valence two. Since there are no turning points to v, there are no turning points to any

of the vertices which eventually map to it: thus all of these vertices can be erased (and the

corresponding 2-junctions decomposed into leaves).

If there are turning points to v, then the aim is to prune them away and proceed as above.
There can only be finitely many turning points to v so v can be erased after finitely many
prunings, decreasing the total number of valence two vertices, provided that no new turning
points to v, or valence two vertices which are not preimages of v, are created during pruning.

It is always possible to carry out the prunings without introducing new turning points
or valence two vertices, with the exception of one important case: a prototypical example of
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this case will now be described. It is possible to have much more complicated situations (for

example, with vertices of valence greater than three), but they are treated in exactly the same
way.

Suppose, then, that under some iterate of f :G → G the situation depicted in Figure 28
arises. Here, and in subsequent figures, the upper part shows segments of G, and the lower
part the images of these segments under the endomorphism in question.

Figure 28: Prototypical situation leading to an infinite sequence of prunings

The point p ∈ d is 2-turning to v: assume that K is a 2-kneading set about p which is

as large as this situation allows: namely K is an open interval with f 2(K) = a. Pulling K

away yields the graph endomorphism shown in Figure 29. Thus in attempting to pull away

Figure 29: The result of kneading the graph endomorphism of Figure 28

the 2-turning point p to v, this same point has become a 3-turning point to v. This leads to

an infinite sequence of kneadings (with a corresponding infinite sequence of prunings), which

at each step turns an n-turning point to v into an (n+ 1)-turning point to v.

Notice that, by the Markov assumption, f(b) strictly contains b and f(c) strictly contains

c. It follows that f has fixed points in b and c: let q1 ∈ b and q2 ∈ c be those which are closest
to v1. The sequence of kneadings converges to give a graph endomorphism in which q1 and q2
are identified to the same point q. The limiting graph endomorphism is shown in Figure 30.

In the limit, v has an infinite backward orbit consisting of valence two vertices, but there
is no longer any turning point to v. This orbit of valence two vertices can therefore be erased
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Figure 30: The limit of an infinite sequence of kneadings

to obtain the graph endomorphism shown in Figure 31.

Figure 31: The graph endomorphism after erasing the orbit of valence two vertices

Notice in particular that Df : Lk(q)→ Lk(q) is the identity map. This is the main mecha-

nism whereby fixed prong singularities of pseudo-Anosov maps are created.

There is also another, more complicated, situation which might lead to an infinite sequence
of prunings. Here again, the resulting sequence of graph endomorphisms converges to one in
which it is possible to erase all of the infinitely many valence two vertices which are created.
However, by contrast with the previous case, this situation is inessential in that the infinite
sequence can be avoided altogether by a clever choice of pruning disk. In the particular

example described below (which again, could be made much more complicated but shows the

only essential point of the process) it is shown that, instead of choosing a 2-pruning disk to be

as ‘long’ as possible, it is more sensible to choose a 3-pruning disk which must be ‘shorter’, but

is, however, ‘thicker’. (The interpretation of these terms will become clear from the example).

Suppose then that f :G → G is a graph endomorphism (perhaps an iterate of another

graph endomorphism) with the behaviour indicated in Figure 32. In this figure, p is 2-turning

to (v1, e1), and q is 3-turning to (v1, e1). Suppose that it is decided to prune a maximal 2-

pruning disk about p (or to pull away a maximal interval about p). Then q becomes a valence

three vertex, since a maximal kneading set K about p satisfies f 2(K) = e1, with the left-hand
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Figure 32: A situation leading to an inessential infinite sequence of prunings

endpoint of K, as shown in Figure 32, mapping to q (under a single iterate). Thus pulling

K away yields the endomorphism shown in Figure 33. Here e is the new edge caused by the
identification of the segment of e4 between q and v3 with a segment of e5, as dictated by the

equivalence relation ∼1 on f(K).

Figure 33: The result of kneading a maximal 2-kneading set

Now both p and q are no longer turning to (v1, e1). However, a new point q1 ∈ e1 has been

created which is 4-turning to (v1, e1): this leads to an infinite sequence of prunings. There

is a way to avoid this, however, by pulling both p and q away at the same time, instead of
starting with p, which made it impossible to pull away q afterwards. The following argument
establishes that there exists a 3-kneading set which contains q and all preimages of p.

Notice that there is a period 2 orbit, one of whose two points x1, x2 lie in e1 and e4
respectively, x2 lying between q and v3. Let K ′ ⊆ e4 be the symmetric interval about q with

right hand endpoint x2 (Figure 34). It is not hard to see that K ′ is a 3-kneading set for f .
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By Theorem 3.11, there exists a 3-pruning disk which projects to a kneading set containing

K ′. After pruning it away (Figure 35) there are no longer any turning points to (v1, e1).

Figure 34: A better choice of kneading set

Figure 35: No remaining turning points to v

The common feature in the two examples described in this section is that pulling away an

n-turning point to (v, e) creates a new (n+1)-turning point to (v, e). It has been explained that

both situations give rise to infinite sequences of prunings: however, these sequences converge,
and in the second example can in fact be dealt with by a finite sequence of prunings.
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