Problem of the Month

September 2005 Solution by Roman Kogan

rkogan@ic.webmail.sunysb.edu

Theorem: Let F(n) denote the number of ways 2^n can be represented as a sum of squares of four integers, where n > 0. Then

$$F(n) = \begin{cases} 2, & \text{if } 2|n\\ 1, & \text{if } 2 \nmid n \end{cases}$$

Proof: Constructive proof.

Let $a_1^2 + a_2^2 + a_3^2 + a_4^2 = 2^n$ for some integers $a_1..a_4$, n where n > 0.

Let us consider all possible parities of $a_1..a_4$.

Only an even number of integers among $a_1..a_4$ can be odd, otherwise the sum of their squares will be odd as well. Therefore, we only need to consider the following three cases:

- 1. exactly two numbers among $a_1..a_4$ are odd;
- 2. all of the numbers $a_1..a_4$ are odd;
- 3. none of the numers $a_1..a_4$ is odd.

Since different permutations do not consitute different representations, it is up to our choice to pick which a_i are odd and which are even.

Case 1: WLOG, let a_1, a_2 be odd, and let a_3, a_4 be even.

Then $a_1 = (2k_1 + 1), a_2 = (2k_2 + 1), a_3 = (2k_3), a_4 = (2k_4)$ for some $k_1 ... k_4 \in \mathbb{Z}^+$. Hence,

$$2^{n} = (2k_{1} + 1)^{2} + (2k_{2} + 1)^{2} + (2k_{3})^{2} + (2k_{4})^{2};$$

$$2^{n} = 4k_{1}^{2} + 4k_{2}^{2} + 4k_{3}^{2} + 4k_{4}^{2} + 2;$$

$$2^{n-1} = 2(k_{1}^{2} + k_{2}^{2} + k_{3}^{2} + k_{4}^{2}) + 1,$$

which implies that 2^{n-1} is odd. This is only possible in the case when n = 1 so that $2^{n-1} = 2^0 = 1$ (in this case we have $2^1 = 0^2 + 0^2 + 1^2 + 1^2$). Consequently, for n > 1, 2^n cannot be represented as a sum of squares of two numbers, exactly two of which are odd.

Case 2: Let $a_1..a_4$ be all odd.

Then $a_i = (2k_i + 1), 1 \le i \le 4$ for some $k_1...k_4 \in \mathbb{Z}^+$. Hence,

$$2^{n} = \sum_{i=1}^{4} (2k_{i} + 1)^{2}$$

$$2^{n} = \sum_{i=1}^{4} 4k_{i}^{2} + 4k_{i} + 1;$$

$$2^{n} = \left[4 \sum_{i=1}^{4} k_{i}(k_{i} + 1)\right] + 4;$$

$$2^{n-2} = \left[\sum_{i=1}^{4} k_{i}(k_{i} + 1)\right] + 1.$$

Now, $\forall k \in \mathbb{Z}^+$: 2|k or $2|(k+1) \Rightarrow 2|k(k+1) \Rightarrow 2|\sum_{i=1}^4 k_i(k_i+1)$. Hence, 2^{n-2} is odd, which is only possible in the case when n=2 so that $2^{n-2}=2^0=1$. Then we have $2^2=1^2+1^2+1^2+1^2$; otherwise, for n>2, 2^n cannot be repesented as a sum of squares of four odd numbers. Therefore, we have proven that

For n > 2, 2^n can only be represented as a sum of squares of four *even* numbers. (I)

Case 3: Let $a_1..a_4$ be all even.

Then $a_i = 2k_i, 1 \le i \le 4$ for some $k_1..k_4 \in \mathbb{Z}^+$. Hence,

$$2^{n} = \sum_{i=1}^{4} (2k_{i})^{2} = 4\sum_{i=1}^{4} k_{i}^{2} \Rightarrow 2^{n-2} = \sum_{i=1}^{4} k_{i}^{2}.$$

Thus, any representation of 2^n as a sum of squares of four even integers corresponds to some representation of 2^{n-2} as a sum of squares of four integers. Combining this with (I) and noting that the converse is also true (i.e. any representation of 2^{n-2} as a sum of four squares yields a representation of 2^n as a sum of four squares), we set a one-to-one correspondence between representations of 2^n and 2^{n-2} as a sum of four integers. Therefore, $\forall n > 2$, F(n) = F(n-2). After finding empirically that F(1) = 1 where

$$2 = 0 + 0 + 1 + 1$$

and F(2) = 2, with

$$4 = 1 + 1 + 1 + 1$$
$$4 = 0 + 0 + 0 + 4$$

we establish

$$1 = F(1) = F(3) = F(5) = F(7) = \dots = F(2k+1), \forall k > 0;$$

$$2 = F(2) = F(4) = F(6) = F(8) = \dots = F(2k), \forall k > 0,$$

thus proving the theorem. \blacksquare

Note: we could have attained the same result by considering $a_1..a_4 \mod 8$; however, the proof presented above was chosen because it does not employ any number theory beyond divisibility by 2 (and is therefore simpler).