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Notation: If A1By and AsBy are two vectors, then A1By A Ay By denotes their vector

product.

Let Oy be the incenter of the triangle A;BsCy, || - || be the Euclidean norm. Remark that
the area of the polygon A;0,B; B> is given by
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By using the same argument to the polygons Oy By AsC and OyC1CyA;, and the fact that
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HAlBl A OQBQH = ||BlCl A OQAQH = HCIAl N OQCQH we get
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Thus Area(A; By By AsC1Cy) is maximal if and only if (O9By) is orthogonal to (A By). Then
the maximum possible area of the polygon A; By B A;C1C5 is
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If A1 B; < 2A5Bs, then the maximum is the area of the big triangle.

Also Area(A;ByB1A;C1C5) is minimal if and only if the "angle” between (OyB5) and
(A1 By) is /6. Then the minimum possible area of the polygon A;BsB;A;C1Cy is
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