Every Triangle is Isosceles

Owen Mireles Briones

July 19th 2023

During the talk we saw the definition of the p-adic norm.
For a fraction m / n, it is given by

$$
\left\|\frac{m}{n}\right\|_{p}=\frac{1}{p^{\operatorname{ord}_{p}(m)-\operatorname{ord}_{p}(n)}}
$$

Since this is a metric, for any three rational numbers a, b, and c, we have the triangle inequality given by

$$
\|a-b\|_{p} \leq\|a-c\|_{p}+\|c-b\|_{p} .
$$

However, it can be further shown that we have something stronger for the p-adic norm. The following condition defines an ultra metric, and it is what the p-adic numbers have.

$$
\|a-b\|_{p} \leq \max \left(\|a-c\|_{p},\|c-b\|_{p}\right)
$$

We can now state and prove a small theorem that shows how and why the geometry of the p-adic numbers is vastly different to that of Euclidean numbers.
Theorem. Every p-adic triangle is isosceles.
Proof. Let x and y be two p-adic numbers. The three points of our triangle will then be $0, x$, and y. To obtain the side lengths, we have to take the difference between the points, and then apply the p-adic metric. The three side lengths of our triangle are thus

$$
\|x\|_{p}, \quad\|y\|_{p}, \quad \text { and } \quad\|x-y\|_{p}
$$

To show the triangle is isosceles, we must prove that two of the side lengths are equal. Suppose that $\|x\|_{p}$ and $\|y\|_{p}$ are not already equal. We may further assume that $\|x\|_{p}>\|y\|_{p}$.

By the ultra triangle inequality (we make $a=x, b=y, c=0$ in the above definition), we observe that

$$
\|x-y\|_{p} \leq \max \left(\|x\|_{p},\|y\|_{p}\right)=\|x\|_{p} .
$$

We note that both $\|y\|_{p}$ and $\|x-y\|_{p}$ are smaller than $\|x\|_{p}$. Finally,

$$
\|x\|_{p}=\|(x-y)+y\|_{p} \leq \max \left(\|x-y\|_{p},\|y\|_{p}\right) \leq\|x\|_{p} .
$$

Whether max $\left(\|x-y\|_{p},\|y\|_{p}\right)=\|x-y\|_{p}$ or $\max \left(\|x-y\|_{p},\|y\|_{p}\right)=\|y\|_{p}$ holds, the above inequality asserts that one of the side lengths must be equal to $\|x\|_{p}$. Hence, the triangle is isosceles.

Artist's conception of the 3-adic unit disk.
Drawing by A.T. Fomenko of Moscow State
University, Moscow, U.S.S.R.

