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1 Language as a mathematical problem

Every language follows certain rules of grammar. I do not mean the usual grammar-
nazi malarkey like “Do not split infinitives! Do not strand prepositions!”. Rather, there
are words and sentences that are correct, and others that have something wrong with
them.

Example 1

Consider the English word denaturalization. It is built up from discrete parts:

1. nature

2. nature + al = natural

3. natural + ize = naturalize

4. de + naturalize = denaturalize

5. denaturalize + ation = denaturalization

No other order of these parts produces a good word of English:

denaturizalation, ationalizenaturde, naturalizedeation, . . .

[Exercise 1] How many combinations are mathematically possible?

We see, then, that there must be a very strict system of rules that determines
the order in which parts of a word may appear. What can we say about this rule
system? Can we study it just like, say, the laws that determine how atoms combine
into molecules?

One strategy would be to look at the human brain. After all, language must involve
some kind of brain mechanisms that allow us to produce correct forms while avoiding
incorrect ones. But research in neurolinguistics has shown that this approach won’t get
us very far — the brain is just too complicated to be studied this way. Instead, we need
a more abstract model of these brain mechanisms. And math allows us to do just that!

mailto:mathcamp@thomasgraf.net
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2 Graphs for language: Finite-state automata

Our mathematical model are finite-state automata (FSA), which are a special case of
labeled graphs. Here is a simple example of an automaton representing denaturaliza-
tion:

0start 1 2 3 4 5
de nature al ize ation

• The circles are the vertices of the graph, which are called states.

• The arcs connecting the states all must have a label.

• The start arrow indicates the beginning point of the automaton, called the initial
state.

• The doubly circled state is a final state. It marks the end point of the automaton.

An FSA can be used to succinctly describe words and sentences. Every path through
the automaton that takes you from an initial state to a final state represents a well-
formed structure. In the automaton above, there is only one such path, which takes
us from 0 to 1, then to 2, 3, 4, and finally 5. But automata can have multiple paths
through them.

Example 2

Besides denaturalization, English also has the words

• nature,

• natural,

• naturalize,

• denaturalize,

• naturalization.

We can modify the previous automaton so that it also allows for these other forms.
Let’s do this step by step.

First we want to allow words to also end with nature, al, and ize, so we make the
states that are reached through those arcs final.

0start 1 2 3 4 5
de nature al ize ation

But every path must still start with de, so the automaton does not allow the patterns
nature, natural, or naturalize. To fix this, we make 1 an initial state, too.
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0start

1start 2 3 4 5
nature al ize ation

de

But this automaton is too general. It also allows for denature, which is actually a
good thing because that is a possible word of English. But it can also produce denatural,
which certainly isn’t a word of English. Fixing the problem with denatural requires a
trick: we add a few more states to keep track of the fact that after de, we cannot stop
after al.

0start 1’ 2’ 3’

1start 2 3 4 5
nature al ize ation

de nature al

ize

When you now try all possible paths from an initial state to a final state, you’ll see that
they are exactly

• nature,

• natural,

• naturalize,

• denaturalize,

• naturalization,

• denaturalization.

[Exercise 2] What change do we have to make to this automaton in order to also
make denature a possible path?

FSAs can be much more complex than this. As long as the number of states is
finite, pretty much any graph you can imagine is an FSA. You can have multiple arcs
leaving a node, multiple arcs leading to the same node, or arcs that lead back to a
previous node, possibly even the one they came from (loops). That is to say, you can
have convoluted automata like the one below:
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0start 1

2

3

John

Mary

Bill

left

thinks

John

Mary

Bill

[Exercise 3] What collection of sentences is described by the automaton above?

3 Some curious limits of language

Linguists put the parts that make up denaturalization into three distinct groups:

stem the base form, which can appear by itself; nature

prefix a part that can only appear before a stem; de-

suffix a part that can only appear after a stem; -al, -ize, -ation

[Exercise 4] Prefixes and suffixes can sometimes be iterated. Your grandfather’s
father is your great grandfather, whose father is your great great grandfather, whose
father is your great great great grandfather, and so on. Try to write an FSA that
produces grandfather, great grandfather, and so on. You may analyze grandfather as a
stem.

[Exercise 5] Of course we also have great grandmother, great great grandmother,
and so on. How could the automaton from the previous example be modified to also
allow these words?

Besides stems, prefixes, and suffixes, there are also circumfixes. An example of a
circumfix is German ge- -t, which is used to form the participle form of a verb. So
rauf-en ‘brawl-to’ can be turned into ge-rauf-t ‘(has) brawled’.

[Exercise 6] German actually has a split with respect to this circumfix. For some
verbs it is ge- -t, for others it is ge- -en. And for some verbs, the form is irregular.

Verb stem Infinitival form Past participle form

lauf ‘run’ laufen gelaufen
rauf ‘brawl’ raufen gerauft
sauf ‘guzzle’ saufen gesoffen
tauf ‘baptize’ taufen getauft

Write an FSA that produces all the correct infinitival and past participle forms, and
only those. Try to keep the number of states as small as possible.

One would expect that languages can freely choose whether they use prefixes,
suffixes or circumfixes. But this does not seem to be the case. What we find is that
across languages, circumfixes do not seem to be iterable.
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Example 3 Saying ‘the day after tomorrow’ in German and Ilocano

German has a much simpler way than English to say ‘the day after tomorrow’. You just
take morgen (the word for ‘tomorrow’) and add the prefix über ‘over’. What makes
this even nicer is that über can be iterated.

1. morgen ‘tomorrow’

2. über-morgen ‘the day after tomorrow’

3. über-über-morgen ‘the day after the day after tomorrow’

4. . . .

Ilocano (an Austronesian language spoken in the Philippines) also has a single word
for ‘the day after tomorrow’, but it is built with the circumfix ka- -an instead of a prefix.

1. bigat ‘tomorrow’

2. ka-bigat-an ‘the day after tomorrow’

In contrast to German über-, however, Ilocano ka- -an cannot be freely iterated. So
you simply cannot say ka-ka-bigat-an-an, you need to paraphrase it. (This cool data
point was first brought to my attention by my students Alëna Aksënova and Sophie
Moradi, who now work in computational linguistics teams at Google and Amazon,
respectively.)

[Exercise 7] It is very easy to give an FSA for the German pattern — it’s just a
variation of the great · · · great grandfather pattern we saw before for English. Similarly,
an automaton for the Ilocano pattern is easy to come up with. But what if Ilocano
were also unbounded, so that we could also have words like ka-ka-ka-bigat-an-an-an,
i.e. words with the same number of ka- prefixes and -an suffixes. Can you write an
automaton for this?

The difference between German über- and Ilocano ka- -an is an interesting puzzle, and
it is part of a much larger observation: prefixes and suffixes can be freely iterated, but
circumfixes cannot. Why should languages work this way? FSAs provide an answer.

4 The limits of finite-state automata (aka the hard part)

FSAs are fairly powerful devices, and they have found many applications in the real
world. They control elevators, help biologists with genome sequencing, give you word
suggestions when you write a text message, and are even involved in the automatic
creation of subtitles for Youtube videos. Tons of technology uses FSAs, including
language technology.

But FSAs cannot do everything. There is a very strict bound on the complexity of
the patterns they can handle. And what we will see now is that even though FSAs can
iterate prefixes and suffixes (as you’ve already shown yourself with the FSA for great
· · · great grandfather), they cannot correctly iterate circumfixes.

Before we state the theorem, let us think about how FSAs actually work. In
particular, what do the states stand for? Suppose you have taken a path that leads to
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state 1 in the convoluted automaton from the previous section. How can you continue
to get a well-formed pattern? Well, by taking any path that leads you from 1 to a final
state. There may be multiple paths to choose from, but anyone will do. It does not
matter how you actually got into 1. Whether you came from 0 to 1 via John, Mary, or
Bill is completely irrelevant, the only thing that matters is that you are in state 1 now
and may take any path that gets you from 1 to 2.

Crucial Insight 1 If you have paths that take you from an initial state to the same
state, then those paths can be continued in exactly the same fashion towards a
final state.

FSAs have only finitely many states. Suppose we have some pattern, and we
compare all paths that could possibly arise in that pattern. We put two paths in the
same bin if they can be continued in exactly the same fashion. Then the pattern can
be handled by an FSA only if we end up with a finite number of distinct bins.

Example 4 Bins for the great · · · great grandfather Pattern

Consider the pattern grandfather, great grandfather, great great grandfather, and so
on. If the pattern starts with grandfather, then there is nothing else that can be added,
so there are no continuation paths at all. For great, one possible continuation path
is grandfather, producing great grandfather. But we could also continue with great
grandfather, great great grandfather, and so on. Here’s a table:

Incoming Path Continuation Paths

grandfather —
great grandfather, great grandfather, . . .

great great grandfather, great grandfather, . . .
great great great grandfather, great grandfather, . . .

...

So there’s only two bins for paths. One is for grandfather, which cannot be continued.
The other one is for any path that starts with great, as they can all be continued by an
arbitrary number of greats followed by grandfather. Since we only have two bins, the
pattern can be handled by an FSA.

The bins are essentially the states in the automaton: two strings are in the same
bin because they take you to the same state in the automaton, and from there you
can proceed in a specific manner irrespective of how you got there. But a finite-state
automaton can only have a finite number of states, so it can only describe patterns
where the number of distinct bins is finite.

Crucial Insight 2 A pattern can be captured by an FSA only if its paths can be grouped
into finitely many bins.

This insight is known as the Myhill Nerode theorem, and it allows us to show
that unbounded circumfixation is impossible with FSAs.
[Exercise 8] Well, you heard the man, let’s show that unbounded circumfixation is
impossible with FSAs.
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5 Wrapping up

The iterability difference between prefixes and suffixes on the one hand and circumfixes
on the other is really puzzling from non-mathematical perspective. But once we look
at them from a mathematical perspective, we see that there is a huge complexity
difference: FSAs can iterate prefixes and suffixes, but not circumfixes. So if the
mechanisms our brain uses to handle word structure are similar to FSAs, then it is
not surprising that circumfixes are never iterated in any languages — the relevant
mechanisms simply cannot do it!

We have accomplished something that few people would consider possible: we
have studied language from a mathematical perspective, and we were able to explain
properties that are shared by all human languages by purely mathematical means.

The Take Home Message. Mathematics explains language!

[Exercise 9] Word structure indeed seems to be fully captured by FSAs. But there
are ways to show that the structure of English sentences is more complicated then
what FSAs can handle. Do you have an idea what the argument might be?

Hint: The sentences below play a crucial role.

• A man left.

• A man that a woman saw left.

• A man that a woman that a woman saw saw left.

• A man that a woman that a woman that a woman saw saw saw left.

Once you’ve figured out the answer, feel free to reach out to me to hear why English
sentences are still finite-state, it’s just that things are a bit more complicated than with
individual words.

6 I wanna learn more!

Cool, here’s a few pointers. I am also working on an interactive learning platform that
teaches mathematical techniques for linguistics, and I am looking for volunteers to
test it and provide feedback. If you are interested, or if you have any questions on
today’s material, shoot me a line: mail@thomasgraf.net

• Automata Theory

– Introduction to the Theory of Computation
undergraduate course at Stony Brook, Computer Science

– Michael Sipser. 2012. 3rd edition.
Introduction to the Theory of Computation. (yep, that’s the same name)

Pro tip: The 2nd edition is almost the same and used copies are much
cheaper. A decent scan can easily be found on the first Google page, I’m
not sure about its legality.

• Computational Linguistics

mailto:mail@thomasgraf.net
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– North American Computational Linguistics Olympiad
we have training sessions at Stony Brook

– Language and Technology
undergraduate course at Stony Brook, Linguistics

– Computational Linguistics
undergraduate course at Stony Brook, Linguistics

– Natural Language Processing
undergraduate course at Stony Brook, Computer Science

– Markus Dickinson, Chris Brew, and Detmar Meurers. 2012.
Language and Computers.

Used copies are available for 10 bucks on Amazon.

• Language from a Formal and Cognitive Perspective

– Check out my website, teaching materials can be found under Students

– Steven Pinker. The Language Instinct: How the Mind Creates Language.

• The Human Mind as a Computer

– Douglas Hofstadter. Gödel, Escher, Bach: An Eternal Golden Braid.

Addendum: Automata as matrix multiplication

We probably won’t have time to cover this in class, but I figured it’s too cool a thing
not to include on the handout. We will see that finite-state automata are just a nice
visual metaphor for specific instances of matrix multiplication.

Background: Matrix multiplication

You all probably know how to calculate the dot product of two vectors. First you
multiply their components to get a single vector, and then you calculate its magnitude
by summing. For example:
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Matrices are a generalization of vectors where we can have multiple columns in
addition to multiple rows.





5 2
3 1
0 2





Like vectors, matrices can also be multiplied, but things are slightly different. First,
the number of columns of the first matrix must match the number of rows of the
second matrix.





5 2
3 1
0 2



 ·
�

1 2 0 2
3 0 1 3

�

= alright, let’s do this!
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5 2
3 1
0 2



 ·





1 2 1
3 0 2
5 1 0



= sorry, no can do!

As long as that is the case, we can multiply two matrices as follows:

1. Write down the first row of the first matrix as a vector (top-down rather than
left-to-right).

2. Calculate the dot product of this vector and the first column of the second
matrix. Write it down.

3. Do the same with the second column of the second matrix, and put the result
next to the one you already wrote down.

4. Do the same with all other rows of the second matrix.

5. First cycle done. Now repeat the same steps with the second row of the first
matrix.

6. Continue until all rows are done. You’ve got yourself a shiny new matrix.

Example 5 Matrix multiplication

Let’s try the following matrix multiplication:




5 2
3 1
0 2



 ·
�

1 2 0 2
3 0 1 3

�

= ???

We write down the first row of the first matrix as a vector.
�

5
2

�

Next we have to calculate the dot products for each column of the second matrix.
�

5
2

�

·
�

1
3

�

= 11

�

5
2

�

·
�

2
0

�

= 10

�

5
2

�

·
�

0
1

�

= 2

�

5
2

�

·
�

2
3

�

= 16

So the first row for the new matrix is (11 10 2 16). Repeating the same procedure
with the second and third row, we can solve the full equation.





5 2
3 1
0 2



 ·
�

1 2 0 2
3 0 1 3

�

=





11 10 2 16
6 6 1 9
6 0 2 6
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Boolean matrix multiplication for FSAs

Boolean matrices are a special case where all matrices can only have 0 and 1 as their
components. So Boolean is just another term for binary. Boolean matrix multiplication
works almost exactly like normal matrix multiplication, except that the value of a dot
product can never exceed 1:





0
1
1



 ·





1
1
1



= 1 (not 2)

Every FSA can be represented as a collection of matrices. This is best explained
with an example.

Here’s an automaton we’ve seen before.

0start 1

2

3

John

Mary

Bill

left

thinks

John

Mary

Bill

We already know that it accepts John thinks Mary left, but not John thinks Mary
left Bill. We can get the very same result through matrix multiplication.

First, every one of the symbols John, Mary, Bill, thinks, and left is associated with
a matrix that encodes whether one can go from some state to another state with this
symbol. This works as follows. Imagine that we identify each state with a row and
with a column as in the template below.

0 1 2 3
0
1
2
3













We put a 1 in a cell in row x and column y iff it is possible to go from state x to state
y with the symbol we’re building the matrix for.

Here’s how this works for John. With John we cannot go from state 0 to state 0, so
we put a 0 in the very first cell. But we can go from 0 to state 1, so the next cell gets a
1. John by itself cannot take us from state 0 to state 2 or 3, so the next two cells are
also 0.

0 1 2 3
0
1
2
3







0 1 0 0






We could in fill the other rows step by step, too, but there’s a smarter way. Looking at
the automaton, we can see immediately that John can only take us from 0 to 1 and
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from 3 to 1. The first one we’ve already kept track of in the first row, leaving only the
move from 3 to 1. To capture this, we just put a 1 in the second column of the last
row. All other cells are filled with 0.

0 1 2 3
0
1
2
3







0 1 0 0
0 0 0 0
0 0 0 0
0 1 0 0







Repeating the same procedure for the other symbols, we get the following matrices:

John/Mary/Bill thinks left






0 1 0 0
0 0 0 0
0 0 0 0
0 1 0 0













0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0













0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0







We’re almost done, only two more matrices are needed. One records which states we
can go to from the start.

0 1 2 3
start
�

1 0 0 0
�

And the other records from which states we can move to the exit.

exit
0
1
2
3







0
0
1
0







Now we’re finally able to compute for any given string whether it is accepted by
the automaton. Let’s do the calculation for the accepted John thinks Mary left.
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start · John · thinks ·Mary · left · exit

=
�

1 0 0 0
�

·







0 1 0 0
0 0 0 0
0 0 0 0
0 1 0 0






·







0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0






·







0 1 0 0
0 0 0 0
0 0 0 0
0 1 0 0






·







0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0






·







0
0
1
0







=
�

0 1 0 0
�

·







0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0






·







0 1 0 0
0 0 0 0
0 0 0 0
0 1 0 0






·







0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0






·







0
0
1
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�

0 0 0 1
�

·







0 1 0 0
0 0 0 0
0 0 0 0
0 1 0 0






·







0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0






·







0
0
1
0







=
�

0 1 0 0
�

·







0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0






·







0
0
1
0







=
�

0 0 1 0
�

·







0
0
1
0







=1

We got a 1. If you do the calculation with the bad sentence John thinks Mary, instead,
you’ll get a 0. So good sentences always result in a 1, bad sentences in a 0.

[Exercise 10] Calculate the values for the following strings:

1. John

2. John thinks Mary left Bill.

3. John thinks Bill thinks Mary left.

[Exercise 11] Consider the automaton below.

0start 1 2

3start

a d

b

a c

Represent it with Boolean matrices and the calculate the values of the following strings:

1. a
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2. b

3. aa

4. ad

5. bd

6. accccc

Bottom-line: FSAs ≈ specific kind of matrix multiplication
This never fails to blow my mind. FSAs and matrix multiplication look completely

different, yet there is a principled connection that we can unearth with the power of
math!
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