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The Hénon Map

The Hénon map was introduced by the astronomer and applied
mathematician Michel Hénon in the 1960’s. This is the automorphism
of R2 given by the following formula.

Definition (Hénon Family)

fc,δ(x, y) = (c+ δy − x2,−x).

The parameter δ is the Jacobian of the map and the map is invertible
when δ > 0.
For particular values of δ and c suggested by Hénon the
diffeomorphism seem to exhibit a strange attractor. In particular it
demonstrates expansion, contraction and folding on many scales.



The Hénon attractor



A Hénon horseshoe



The Complex Hénon Family

In the 1980’s Hubbard suggested that it would be profitable to study
the extensions of these polynomial diffeomorphisms to C2. This is the
complex Hénon family:

fc,δ : C2 → C2.

We allow the coefficients to be real or complex. Thus the parameter
space is also C2.
Hubbard was motivated in part by the successful theory of the family
z 7→ z2 + c and in part by the prominence of the (real) Hénon family
in the field of dynamical systems.



Hubbard’s Definitions

With the family z 7→ z2 + c in mind Hubbard defined analogs of Julia
sets and filled Julia sets for the complex Hénon family.

Definition

K± = {p ∈ C2 : fn(p) 9∞ as n→ ±∞}

Definition

J± = ∂K±

The set J contains all hyperbolic periodic points. The set J+ contains
stable manifolds of points in J . The set J− contains unstable
manifolds of points in J .



Dynamical systems

Definition
We say that fc,δ is Axiom A if f is hyperbolic on J .

Remark
In the Axiom A case the non-wandering set of f consists of J and
finitely many periodic sink or source orbits.



Hubbard’s Definitions

In one variable complex dynamics the rate of escape function

G(z) = lim
n→∞

1

dn
log+ |fn(z)|

plays a role.

Remark
The function G is subharmonic.



Hubbard’s definitions

For Hénon maps there are two rate of escape functions.

Definition
Let

G±(p) = lim
n→∞

1

dn
log+ ||f±n(p)||.

Remark
The functions G+ and G− are pluri-subharmonic which is to say that
its restriction to any one dimensional complex subvariety is
subharmonic.



Potential theory

One way to describe the harmonic measure or equilibrium measure
(or balanced measure) on a Julia set is as follows where d is the
exterior derivative and dc is the “twisted” exterior derivative rotated
using the complex structure.

Definition

µ = ddcG

Question
What is ddc?

It is a holomorphically invariant version of the in the Laplacian.
The Laplacian takes real functions to real functions but is not
holomorphically invariant. ddc takes the smooth real functions h to
the two form 4h dx ∧ dy. It can be extended to on operator taking
subharmonic functions to measures.



Potential theory

The operator ddc is defined in any complex manifold so it makes sense
in C2.

Definition

µ± = ddcG±

µ± are currents. We can think of them as transverse measures which
assign a measure to holomorphic transversals. They are analogous to
the Margulis transverse invariant measure in hyperbolic dynamics and
they are equal to Marguis measure in the Axiom A Hénon case.



Potential theory

Definition

µ = µ+ ∧ µ−

In the Axiom A case µ is the Bowen measure which is the unique
measure of maximal entropy.

Theorem (Bedford-Lyubich-S)
The measure µ is the unique measure of maximal entropy. It describes
the distribution of periodic points. The support of µ is the closure of
the set of periodic saddle points.



Definition Hubbard forgot to make

Definition
J∗ is the closure of hyperbolic periodic points.

Alternatively J∗ is the support of µ or the Shilov boundary of K.



The potential theory techniques in multidimensional complex
dynamics have been extensively developed and applied to a wide
range systems. That is nice but we should not lose sight of the fact
that most problems for the Hénon family remain unsolved.
Presumably potential theory is one of many tools which will be useful
in attacking these problems.



Good problems

How should one approach this family of examples? Here are some
possible questions:

I Give many concrete examples of structurally stable maps.

I Give a computationally effective way to tell if a particular
parameter corresponds to an Axiom A diffeomorphism and
construct a combinatorial model of it.

I Describe concrete mechanisms which produce instability.

I Understand the global behavior of structural stability and
instability.

I What is the topology of the horseshoe locus?
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Mechanisms for instability

There are two simple ways that stability can fail in one complex
dimension: Misiurewicz parameters and parabolic parameters. I will
describe one dimensional examples of both types of maps and then
look at two dimensional analogs.

Example
An example of parabolic behavior in dimension 1 is the map
z 7→ z2 + 1/4 where the map has a parabolic fixed point.

In this case the Julia set (the cauliflower) is a topological circle and
the map is topologically conjugate on J to the hyperbolic maps
z 7→ z2 + c for c < 1/4. The maps with c > 1/4 are not conjugate.



Semi-stability of semi-parabolic maps.

Definition
A point p ∈ C2 which is periodic of period n is semi-parabolic if
Dfn(p) has eigenvalues λ and µ where λ is a root of unity and |µ| < 1.

A map fc0 with a parabolic periodic point gives rise to a curve of
diffeomorphisms fc,δ with semi-parabolic fixed points where c = c(δ)
and c0 = c(0).

Theorem (Radu)
Given a map fc0 with a parabolic periodic point there is a constant
δ0 > 0 so that the diffeomorphisms fc,δ are topologically conjugate on
their Julia sets for |δ| < δ0.



Instability of semi-parabolic maps.

In their lectures here Milnor and Hubbard described the phenomenon
of parabolic implosion. This phenomenon shows that the Julia sets Jc
and filled Julia sets Kc do not vary continuously with the parameter
c. This phenomenon occurs in the Hénon family as well.

Theorem (Bedford-S-Ueda)
At at a parameter value with a semi-parabolic fixed point with
eigenvalues 1 and δ the sets J∗, J , J+, K and K+ vary
discontinuously with the parameters.

Remark
The remaining sets J− and K− vary continuously with the parameter.



Two dimensional parabolic implosion



Two dimensional parabolic implosion



Misiurewicz type behavior

Example
The Ulam-Von Neuman map z 7→ z2 − 2 can be thought of either as a
real or complex dynamical system. It demonstrates Misiurewicz
behavior in 1 dimension.

The critical point 0 is pre-periodic but not periodic, it maps to the
fixed point 2. This map is expanding but not uniformly expanding
and not structurally stable.
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Misiurewicz type behavior

Theorem (Bedford-S)
Let f be a Hénon diffeomorphism on the boundary of the horseshoe
locus. Let p be the non-flipping fixed point. Over the set J − {p} there
are stable and unstable metrics which are uniformly expanding. These
metrics blow up at p.

Remark
At each point the unstable metric expands by a factor greater than 2.

Remark
There is a unique orbit along which stable and unstable manifolds are
tangent.



Misiurewicz type behavior

The proof of this result exploits some very tight connections between
real diffeomorphisms with maximal entropy and the measure µ. A
diffeomorphism on the boundary of the horseshoe locus has the
property that the entropy of its restriction to R2 is maximal. Since µ
is the unique measure of maximal entropy it must be supported on
R2. We know that the support of µ is the Shilov boundary of K. It
follows that K which is a priori a subset of C2 is in fact a subset of
R2.



Misiurewicz type behavior

Remark
Just as the Ulam-Von Neuman map is a very special example of a
Misurewicz parameter, real maps of maximal entropy are very special
examples of Misurewicz type behavior in the Hénon family.

We are also interested in developing techniques which could apply
more generally to understanding Misurewicz type behavior in the
Hénon family. To this end we have defined a notion of
quasi-hyperbolicity which captures some of the properties of these real
maximal entropy examples. Quasi-hyperbolicity is defined in terms of
a locally bounded area condition for stable and unstable manifolds.
On the other hand we are not finished with the horseshoe.



We also have looked at limits of horseshoe maps using tools which
have the potential to be used more widely. The idea is to make an
assumption analogous to assuming that our parameter is real and lies
in the “period 2 wake”. We do not know how to define wakes in
general. These assumptions imply that the fixed point labeled α is
real, a flipping saddle point and that the stable manifold of β cuts
through the box shown.



Horseshoe degeneration

This allows us to define a coding of points relative to the local stable
manifold of α. We define a “right-left” coding of an itinerary, with
“0” to the left and “1” on the right. The four white dots have the
coding 01010.



Horseshoe degeneration

These two schematic pictures show the situation where the number of
points with the coding 01010 is 3 on the left and less than 3 on the
right.



Theorem (Bedford-S 2014)
Let f be an orientation-preserving real Hénon map satisfying the a
priori parameter restrictions. Consider the collection of (real) points
with coding sequence 01010. There are at most 4 such points, and:

1. If there are exactly 4 such points, then f is a hyperbolic
horseshoe, by which we mean that it is hyperbolic and conjugate
to the full 2-shift.

2. If there are 3 such points, then f has a quadratic tangency but
entropy log 2.

3. If there are less than 3 such points, then f has entropy less than
log 2.
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Theorem (Bedford-S 2014)
If f is as in case (ii) above, then f is topologically conjugate to the
shift map on Σ2/ ∼, which is the quotient of the full shift on two
symbols {a, b}, modulo the identification ababa ∼ abbba.

Remark
The problem with proving this is finding a natural map from a 2-shift
to J . We cannot construct such a map by coding. The solution is to
take advantage of the complex structure and define a landing map
from J− − J to K. This map will not be defined everywhere since
certain external rays hit critical points. It turns out that the rays that
hit critical points correspond to dyadic angles and thus have two
binary codings. If we code the solenoid by the full 2-shift using dyadic
expansion then when a ray hits a critical point we have two
continuations, a right continuation and a left continuation. These
correspond to two different dyadic codings. Thus we get a map from
dyadic codings to J . This map is generically two to one. If we mod
out by complex conjugation we get the map we seek which is
generically one to one.


