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Matings: a quick guide

Mating allows us to construct a rational map by gluing together two
polynomials:

Tom Sharland (Stony Brook University) Cubic Matings ICM Satellite Conference 3 / 27



Matings: a quick guide

Mating allows us to construct a rational map by gluing together two
polynomials:

⊥⊥

Tom Sharland (Stony Brook University) Cubic Matings ICM Satellite Conference 3 / 27



Matings: a quick guide

Mating allows us to construct a rational map by gluing together two
polynomials:

⊥⊥

=

Tom Sharland (Stony Brook University) Cubic Matings ICM Satellite Conference 3 / 27



Definitions.

Let f : Ĉ→ Ĉ be a rational map.

The Julia set J(f) is the closure of the set of repelling periodic
points of f .
The Fatou set F (f) is Ĉ \ J(f).

If f is a polynomial
The point∞ is a superattracting fixed point.
The filled Julia set is K(f) = {z ∈ Ĉ | f◦n(z) 9∞}, so that
J(f) = ∂K(f)
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Böttcher’s theorem and external rays

There exists a map φ which is an analytic conjugacy between f on
Ĉ \K(f) and the map z 7→ zd on Ĉ \D and such that φ is asymptotic to
the identity at∞.

Rθ = φ−1{re2πiθ | r ∈ (1,∞)} is
called the external ray of angle θ.
If J(f) is locally connected, the
landing point
γ(θ) = limr→1 φ

−1(re2πiθ) exists for
all θ and belongs to J(f).
We have the identities f(Rθ) = Rdθ
and f(γ(θ)) = γ(dθ).
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Formal Matings

For i = 1, 2, let fi be monic degree d polynomials. Define
C̃ = C ∪ {∞ · e2πis | s ∈ R/Z}.

Extend f1 and f2 to the boundary circle at infinity, e.g.
f1(∞ · e2πis) =∞ · e2dπis.
Define S2

f1,f2
= C̃f1 ] C̃f2/{(∞ · e2πis, f1) ∼ (∞ · e−2πis, f2)}.

The formal mating is the degree d branched covering
f1 ] f2 : S2

f1,f2
→ S2

f1,f2
given by

f1 ] f2 = f1 on C̃f1

f1 ] f2 = f2 on C̃f2
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Topological Matings

For i = 1, 2, let fi be monic degree d with locally connected filled Julia
set Ki = K(fi).

We define a new map f1 ⊥⊥ f2 on the topological space K1 ⊥⊥ K2

as follows.
Take the disjoint union of K1 and K2.
K1 ⊥⊥ K2 is the quotient space formed by identifying γ1(θ) with
γ2(−θ).
The maps fi on the Ki fit together to form a new map f1 ⊥⊥ f2.

The map f1 ⊥⊥ f2 is the topological mating of f1 and f2. It is a
branched cover of the topological space K1 ⊥⊥ K2.

We say f1 and f2 are topologically mateable if this quotient K1 ⊥⊥ K2

is a sphere.
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Thurston’s Theorem

Let F : Σ→ Σ and F̂ : Σ̂→ Σ̂ be postcritically finite
orientation-preserving branched self-coverings of topological
2-spheres. An equivalence is given by a pair of orientation-preserving
homeomorphisms (Φ,Ψ) from Σ to Σ̂ such that

Φ|PF = Ψ|PF
Φ ◦ F = F̂ ◦Ψ

Φ and Ψ are isotopic via a family of homeomorphisms t 7→ Φt

which is constant on PF .

Theorem (Thurston)
Let F : Σ→ Σ be a postcritically finite branched cover with hyperbolic
orbifold. Then F is equivalent to a rational map if and only if F has no
Thurston obstructions. This rational map is unique up to Möbius
transformation.

We say f1 and f2 are mateable if f1 ⊥⊥ f2 is
equivalent to a rational map on Ĉ.
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Thurston obstructions

Let F : S2 → S2 be a branched covering and Γ = {γ1, . . . , γn} a
multicurve in S2 \ PF .

Definition
The Thurston linear transformation FΓ : RΓ → RΓ is defined by

FΓ(γ) =
∑

γ′⊂F−1(γ)

1

deg(F : γ′ → γ)
[γ′]Γ

where [γ′]Γ ∈ Γ is isotopic to γ′. Γ is a Thurston obstruction if its
leading eigenvalue is greater than or equal to 1.

Definition
A multicurve is called a Levy cycle if for i = 1, 2, . . . , n, the curve γi−1 is
homotopic (rel PF ) to a component γ′i−1 of F−1(γi) and the map
F : γ′i → γi is a homeomorphism
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Quadratic Case

The quadratic (or bicritical) case is reasonably well understood:

Theorem (Rees, Shishikura, Tan)
In the bicritical case, if f1 and f2 do not lie in
conjugate limbs ofM, then K1 ⊥⊥ K2 is
homeomorphic to S2 and we can give this
sphere a unique conformal structure to
make f1 ⊥⊥ f2 a holomorphic degree d
rational map.

Essentially, this says that in the quadratic case, the quotient is a
sphere if and only if the resulting map is equivalent to a rational
map. All obstructions are Levy cycles.
The mating is obstructed if and only if the two α-fixed points
belong to the same ray class.
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Other obstructions

However, there exist other obstructions in higher degrees: Consider
the following

⊥⊥

Both polynomials are in S3. The quotient is a sphere, but the mating is
not a rational map.
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Levy cycles and external rays

There is a close link between Levy cycles and loops of external rays in
the formal mating.

Theorem (Tan 1992, Shishikura-Tan 2000)
Let F = f ⊥⊥ g.

Each Levy cycle Γ for F corresponds to a unique periodic cycle of
ray classes (the “limit set”). In particular, if Γ is not a degenerate
Levy cycle, then each ray class contains a closed loop.
If a periodic ray class contains a closed loop then each boundary
curve of a tubular neighbourhood generates a Levy cycle.
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The space S1.

There is only one escape region in
S1. In particular this means that
the intersection of S1 with the
connectedness locus is
combinatorially a tree.

This is not true for S2, S3. . .
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Limbs in S1

Like the Mandelbrot set, S1 has a
main hyperbolic component H0. Its
centre is z 7→ z3.

Attached to this component are
various limbs.

Limbs are characterised by the
existence of α-periodic cycles. We
will look at an example, one of the
2
3 -limbs in S1.
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Denote by U the Fatou component containing the fixed critical point a.
Maps in the p

q -limb have a “dynamical limb” containing the free critical
point attached to the landing point of the internal ray of angle p

q in U .

This gives us a distinguished periodic cycle which we call the
α-periodic cycle. Furthermore, the angles of the external rays
landing at this periodic cycle persist in the limb.
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Topological Mating

Let f1, f2 be postcritically finite polynomials in S1 with filled Julia sets
K1 and K2 respectively.

Question
When is the quotient space K1 ⊥⊥ K2 a sphere (when are f1 and f2

topologically mateable)?

In other words, when do the ray equivalence classes contain loops?

Recall that for quadratics, the ray classes contained loops precisely
when the fixed points α1 and α2 belong to the same ray class.
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Example

Let f1 be the period 2 map in the 2
3 -limb.
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Example

This map resides here in
parameter space. . .

. . . and the mating with the
conjugate map is obstructed. . .
. . . as is the mating with this
complementary map.

In both cases, the α-cycles are in the same ray class(es) and
these ray classes contain loops.
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Characterisation of topological obstructions

Conjecture
The mating f1 ⊥⊥ f2 is topologically obstructed if and only if one of the
following occurs.

f1 and f2 lie in conjugate limbs.
f1 and f2 lie in complementary limbs.

Clearly all limbs have a conjugate limb. But when does a limb have a
complementary limb?

Conjecture
Let Ct ⊂ S1 be a limb. Then Ct has a complementary limb if and only if
t has a non-zero rotation number under the map t 7→ 2t on R/Z.

Here t represents the internal angle of the limb with respect to
the type A component.
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Sketch Proof

A typical example looks like this.

Notice the gaps between
each dynamical limb also
form a rotational set,
corresponding to a limb with
rotation number p

q . We “fill”
these gaps with dynamical
limbs which correspond to
the conjugate limb in S1

which has rotation number
−p
q .

If the limb does not have a rotation number, no such pairing
of limbs exists.
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Main Theorem

Theorem
Let f1, f2 be postcritically finite polynomials in S1 with α-periodic
cycles 〈α1〉 and 〈α2〉 respectively. Then the mating is obstructed if and
only if [〈α1〉] = [〈α2〉] and this ray class contains a loop.

Remark
There exist non-obstructed matings where [〈α1〉] = [〈α2〉].
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Some general results for obstructions

To study Thurston obstructions, we need a couple of lemmas.

Lemma
Let Γ be an irreducible multicurve for a brached covering F which is
not a removable Levy cycle. Then there exists a disk component of
S2 \ Γ such that F−1(D) contains a non-disk component.

Topologically, it is easy to see that such a disk component must
contain (at least) two critical values of F .

Lemma
Any connected component of S2 \ F−1(Γ) is isotopically contained in a
connected component of S2 \ Γ.
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Matings in S1

The (formal) mating of two maps in S1 is a cubic branched covering
with two fixed critical points.

Suppose Γ is an irreducible obstruction which is not a removable Levy
cycle. Then there is a disk component D for which F−1(D) contains a
non-disk component. We have a dichotomy:

1 D contains a fixed critical point.
2 D contains both “free” critical values.

The first case is a “Newton-like” case, the second a “quadratic-like”
case. We will show in both cases that Γ must contain a Levy cycle.
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Case 1: Newton-like

This case is similar to the case of cubic Newton maps (Tan ’97).

Let Γ be an irreducible obstruction for F . Suppose D is a disk
component of S2 \ Γ and that

F−1(D) contains a non-disk component U
D contains a fixed critical point c.

~

U

γ′

~

D

F

γ = ∂D

c c

In particular, one
component U of F−1(D)
must contain c, and so is
isotopically contained in
D. Hence there is a
curve γ ⊂ F−1(γ)
isotopic to γ such that
F : γ′ → γ is a
homeomorphism.
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Case 2: Quadratic-like

This case has much in common with the case of quadratic matings
(Rees-Shishikura-Tan Theorem).

Let Γ be an irreducible obstruction for F . Suppose D is a disk
component of S2 \ Γ and that

F−1(D) contains a non-disk component U
D contains both free critical values.

By a generalised “Rees’
Lemma”, the set of disk
components of S2 \ Γ form
a sequence
D = D1, D2, . . . , Dp. . . and
we can construct a Levy
cycle by showing every
curve has 3 pre-images.
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Outline of proof (in progress)

Using the previous results, we argue (possibly?) as follows. There are
parallels with the proof in the quadratic case.

1 Every obstruction is a Levy cycle, and so has an associated limit
set which is a collection of ray classes.

These ray classes contain loops
These ray classes contain periodic points of J1 and J2.

2 We then show that
The ray classes are just loops (and have no endpoints)
The periodic points are precisely the points in α1 and α2.

Remarks
The result generalises to the case where the polynomials are of
degree d and have a fixed point of degree d− 1 (see Roesch ’07).
Presumably something similar can be done in the case where the
polynomials have two critical points and one is fixed.
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Thank you for listening!
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