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The Problem

Hyperbolic components, in a reasonable space of polynomial or
rational maps, are well understood.

But their topological boundaries can be very complicated.
This talk will first describe a special case where the boundaries
are very well behaved.

It will then speculate about the other cases.
—————

Definitions. Let Ratn ⊂ P2n+1(C) be the space of all rational
maps of degree n ≥ 2 :(

f (z) =
∑n

0 ajz j∑n
0 bjz j

)
←→ [a0 : · · · : an : b0 : · · · : bn] ∈ P2n+1(C) .

For any algebraic variety V ⊂ P2n+1(C) , the intersection
F = V ∩ Ratn will be described as an

algebraic family of rational maps.



Hyperbolic Components.

Definitions: A rational map is hyperbolic if the orbit of every
critical point converges towards an attracting cycle.

In any algebraic family F , the hyperbolic maps form an open
subset.

Any connected component of this open subset is
called a hyperbolic component H ⊂ F .

Two critical points will be called Grand Orbit equivalent
if their forward orbits intersect.

Theorem 1. Suppose that the maps in H have the
property that the basin of every attracting cycle
contains exactly one GO-equivalence class of critical
points. Then the closure H , the topological boundary
∂H , and H itself are all semi-algebraic sets.



Example: The family fa(z) = a + 1/z2

Each fa has critical points 0 and ∞ , with fa : 0 7→ ∞ .
Thus each fa has only one critical grand orbit.

=⇒ every hyperbolic component is semi-algebraic.



A More Typical Example: The family z 7→ (z + a)/z2 .

Critical points: z = 0 and z = −2a .
The periodic orbit 0↔∞ is always superattractive.

In the Blue and Yellow Regions:
the other critical point is eventually attracted to this orbit.

In the Red Regions: there is a disjoint periodic orbit.
Only the red (Mandelbrot-like) regions are semi-algebraic.



Semi-Algebraic Sets: the Definition.

Consider subsets of Rn of the form either

{x ∈ Rn ; p(x) ≥ 0} or {x ∈ Rn ; p(x) 6= 0} .

Here p : Rn → R can be an arbitrary real polynomial.

Definition: Any finite intersection of such sets
is called a basic semi-algebraic set.

Any finite union of basic semi-algebraic sets
is called a semi-algebraic set.

[Note that we can obtain equalities
by combining two inequalities:

If p(x) ≥ 0 and −p(x) ≥ 0 , then p(x) = 0 .]

This definition is applied to subsets of Cn by simply ignoring
the complex structure, identifying Cn with R2n .



Semi-algebraic Sets: Basic Properties

(Reference:
Bochnak, Coste, and Roy, “Real Algebraic Geometry”.)

• Any finite union or intersection of semi-algebraic sets is itself
a semi-algebraic set.
• The complement RnrS of a semi-algebraic set is itself a
semi-algebraic set.
• A semi-algebraic set has finitely many connected
components, and each of them is semi-algebraic.
• The topological closure of a semi-algebraic set is
semi-algebraic.

• (Tarski-Seidenberg Theorem.) The image of a semi-algebraic
set under projection from Rn to Rn−k is semi-algebraic.
• Every semi-algebraic set can be triangulated, and hence is
locally connected.



Proof of Theorem 1.
Recall the statement:
If the maps f ∈ H ⊂ F have only one grand-orbit-equivalence
class of critical points in the basin of each attracting cycle, then
H , ∂H , and H are all semi-algebraic.
First Step:
Let p1 , p2 , . . . , pm be the periods of the m attracting cycles.

Let F(p1 , p2 , . . . , pm) be the set of all
(f , z1, z2, . . . , zm) ∈ F × Cm

satisfying two conditions:

• Each zj should have period exactly pj under the map f ;
• and the orbits of the zj must be disjoint.

Lemma. This set F(p1 , p2 , . . . , pm) ⊂ F × Cm

is semi-algebraic.

The proof is an easy exercise. �



Proof (Continued)
Let U be the open set consisting of all

(f , z1, . . . , zm) ∈ F(p1 , p2 , . . . , pm)
such that the multiplier of the orbit for each zj satisfies

|µj |2 < 1 .

This set U is semi-algebraic.
Hence each component H̃ ⊂ U is semi-algebraic.

Hence the image of H̃ under the projection
F(p1 , p2 , . . . , pm)→ F is a semi-algebraic set H ,
which is clearly a hyperbolic component in F .

In fact any hyperbolic component H ⊂ F having
attracting cycles with periods p1 , p2 , . . . , pm
can be obtained in this way.

This proves that H , its closure H , and its boundary
∂H = H ∩ (FrH) are all semi-algebraic sets. �

——-—–—



Theorem 1 is not a best possible result.
k -plane for the family of maps fk (z) = k(z + z−1) .

This is a different kind of example with
all hyperbolic components semi-algebraic.

Here the two critical points ±1 are not GO-equivalent,
but are bound together by the symmetry fk (−z) = −fk (z) .



More General Hyperbolic Components.
Suppose that the maps f ∈ H have an attracting cycle with
two distinct free critical points in its attracting basin

Here “free" is to mean completely independent,
so that there are at least two complex degrees of freedom.

Conjecture 1:
This implies that the boundary ∂H is not locally connected.

This is a question in two complex dimensions
=⇒ four real dimensions.

It cannot be answered by a 2-dimensional picture.

Added Remark (Generalized MLC Problem):
I do not know any example of an H in a complex
one parameter family for which ∂H is not locally
connected. Does such an example exist ?



Example: The family f (z) = z2(z − a)/(1 + bz).
Let H ⊂ C2 be the hyperbolic component centered at

a = b = 0 ⇐⇒ f (z) = z3 .

Consider the real plane P ∼= R2 ⊂ C2 defined by b = a .

The central white region is
HP = H ∩ P .

Its complement is PrHP .

Theorem (with Bonifant
& Buff): HP is simply

connected, and contains
infinitely many “fjords”
leading out to infinity.

These are separated by
infinitely many connected

components of the
complement X = PrHP .

A large disk |a| ≤ r
intersects infinitely many

of these components.
Corollary 1: ∂HP is not

locally connected.



Proof of Corollary 1: non local-connectivity

Recall that any large disk
Dr intersects infinitely many
connected components of
the closed set X = PrHP .

Let x0 ∈ X ∩ Dr be any
accumulation point for this
collection of components.

Then X is not locally con-
nected at x0 .

It follows that ∂X = ∂HP is
not locally connected. �



The full hyperbolic component H ⊂ C2

Corollary 2: The boundary ∂H ⊂ C2

is not locally contractible.

Note that the real plane P ⊂ C2 is the fixed point set
of an involution I : (a,b)↔ (b, a) of C2 .

The region H ∩ P contains arbitrarily thin “fjords”:

Choose two points x and y which are arbitrarily close to each
other, but lie on opposite banks of such a fjord.

Suppose that ∂H is locally contractible.
A short path from x to y within ∂H together with its image
under I , would form a small I -invariant loop L .
Then L bounds a small disk D in ∂H , and D ∪I (D) is a
small I -invariant singular 2-sphere.



Non Local-Contractibility: outline proof continued.
We must show that this singular 2-sphere S2 7→ ∂H links
a central curve within the fjord, and hence is not contractible
within C2rH .

This can be proved using the following.

Topological Lemma. If a map f from S2 to itself
fixes both poles, and commutes with the 180◦

rotation about the poles, then it has odd degree.

Proved by approximating f by a smooth map f̂ satisfying the
same conditions, which has the pole p0 as a regular value.

Then the number of preimages f̂ (x) = p0 is odd, and is
congruent to the degree mod two.



Further Conjectures (corrected page)
It is not hard to see that for any hyperbolic component H ⊂ F
and for any f ∈ ∂H either

• there is a critical point in the Julia set J(f ) , or else
• f has an indifferent cycle, that is a periodic orbit
with multiplier satisfying |µ| = 1 .

Conjecture 2:

(a) If every f ∈ ∂H has an indifferent cycle, then ∂H
is semi-algebraic.
(b) On the other hand, if some f ∈ ∂H has no
indifferent cycle, then ∂H is a fractal set, in the
sense that its Hausdorff dimension is greater than its
topological dimension.
(c) Now suppose that f has a post-critical parabolic
cycle, which can be perturbed, within the family F , to
a parabolic cycle which is not post-critical. Then ∂H
is not locally connected.



Example: the family of maps f (z) = z3 + az2 + µz .
Let H ⊂ C2 be the hyperbolic component centered at

a = µ = 0 ⇐⇒ f (z) = z3 .

Julia set for the map f (z) = z3 + 2z2 + z in ∂H .

Satisfies the conditions of Conjecture 2(c). In particular, the
critical point z = −1 maps to the parabolic point z = 0 .



A small perturbation.

Now change the multiplier from µ = 1 to µ = e .01 i ≈ 1 .

Magnified image near z = 0 for f (z) = z3 + 2z2 + e .01 iz .



Simpler Example: the “universal capture component”.
Let C(z) t C(w) be the disjoint union of two copies of C , with
coordinates z and w respectively.

Let fv : C(z) → C(w) be the quadratic map fv (z) = z2 + v
with critical value v ∈ C(w) , and let gµ : C(w) → C(w) be
the quadratic map

gµ(w) = w2 + µw
with a fixed point of multiplier µ at w = 0 .
Thus we obtain a two parameter family of maps (fv , gµ)

C(z)
fv−→ C(w) gµ ,

from C(z) t C(w) to itself.

Let H ⊂ C2 be the hyperbolic component consisting of all
pairs (v , µ) ∈ C2 such that both critical orbits converge to
w = 0

⇐⇒ |µ| < 1 and lim
n→∞

g◦nµ (v) = 0 .

Theorem 2. H is not locally connected.



The closure of H
The closure H consists of all (v , µ) ∈ C2 such that |µ| ≤ 1 ,

and such that v belongs to the filled Julia set K (gµ)
= the union of all bounded orbits for gµ .

Typical example of K (gµ) for the case |µ| < 1 .
(This is fractal—Compare Conjecture 2(b).)



The Case |µ| = 1
As µ varies around the unit circle, the filled Julia set K (gµ)
jumps around wildly:

Root of unity case

µ = e−2πi/5

For almost every µ

Siegel disk

For generic µ (the Cremer case):
K (gµ) is not locally connected, and has no interior.



Parabolic Implosion: the fundamental discontinuity.

µ = 1

z 7→ z2 + z

µ = e.01 i

z 7→ z2 + e.01 iz
Under an arbitrarily small perturbation of a parabolic map,
the basin of infinity and the Julia set may explode inwards.



Magnified Julia set for µ = e.04 i



Foundational Paper:

Pierre Lavaurs, Systèmes dynamiques holomorphes:
explosion de points périodiques paraboliques,
Thèse, Université, Paris-Sud, Orsay 1989.

(Widely studied, but never published.)

Consider the family of maps Fη(z) = z2 + z + η2 , where η is
close to zero and R(η) > 0 .

Thus Fη has fixed points ±i η ,

with multipliers µ = 1± 2 i η .

Now pass to the limit as η tends to zero.



The Limit as η → 0 , η 6= 0 .

Let B be the interior of the cauliflower, or in other words the
parabolic basin for the map z 7→ z2 + z .

Define the phase function σ(η) = − π
η
.

Theorem of Lavaurs. Suppose that a sequence of
parameters ηj converges to zero in such a way that
the phase σ(ηj) converges to a limit σ0 modulo Z .
In other words, suppose that there are integers kj so
that

lim
j→∞

(
σ(ηj) + kj

)
= σ0 .

Then the sequence of functions F ◦kj
ηj converges

locally uniformly on B to a function Lσ0 : B → C
which is holomorphic and effectively computable.



Plot of Lσ : B → C , for fixed σ0 = i π .

The color indicates the value of the escape function
esc(σ, z) = min{n ; L◦nσ (z) 6= B} (reduced modulo 5).

0 1 2 3 4 · · · ∞



From the σ-plane to the µ-plane
Lavaurs phase parameter σ(η) ←→ multiplier µη

iπ

Here σ = −π/η and µη = 1 + 2 i η .

Thus the half-plane =(σ) ≥ π maps conformally onto Dr{1} .



Plot of σ 7→ esc(σ, z0) for fixed z0 .
This shows the escape function esc(σ, z0) for
fixed z0 = −.141 i as the Lavaurs parameter
σ varies over the cylinder [0,1]× [3, 9] .

Detail showing the cylinder
R = [−.1, .9]× [3.05, 3.3] .

The analog of the hyperbolic component H in
these coordinates is the set HLav consisting of

all (σ, z) ∈ (C/Z)× C with =(σ) > π and
esc(σ, z) =∞ , colored near-white.

LEMMA. For σ ∈ ∂R and for z close to z0 ,
the pair (σ, z) does NOT belong to HLav .



This shows the escape function esc(σ, z0) for fixed
z0 = −.141 i ,

with σ in the rectangle [−.1, 3.9]× [3.05,3.3] .

Choose σ0 in the white region, and consider the sequence
σ0 , σ0 − 1 , σ0 − 2 , . . . tending to −∞ .

Solving the equation
σ(ηk ) = −π/ηk = σ0 − k

we obtain
ηk = π/(k − σ0) → 0 .

Thus the corresponding quadratic functions
fk (z) = z2 + z + ηk

converge to the Lavaurs map Lσ0 on B .

For every σ ∈ ∂[−.1, .9]× [3.05,3.3−] ,
for every η close to zero with σ(η) ≡ σ (mod Z) ,

and for every z close to z0 , it follows that (z, µη) 6∈ H .



Conclusion:

z = -.141 i

µ=1
We have a sequence of pairs (z0 , µηk ) → (z0, 1) ,

with (z0 , µηk ) ∈ H for large k .

But (z0 , µηk ) cannot be connected to (z0, 1) within H
without changing z0 by some fixed ε > 0 ,

which is independent of k .

=⇒ H is not locally connected.
——-—–—
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