Hyperbolic Component Boundaries* #### John Milnor Stony Brook University Gyeongju, August 23, 2014 *Revised version. The conjectures on page 16 were problematic, and have been corrected. #### The Problem Hyperbolic components, in a reasonable space of polynomial or rational maps, are well understood. But their topological boundaries can be very complicated. This talk will first describe a special case where the boundaries are very well behaved. It will then speculate about the other cases. **Definitions.** Let $\operatorname{Rat}_n \subset \mathbb{P}^{2n+1}(\mathbb{C})$ be the space of all rational maps of degree $n \geq 2$: $$\left(f(z) = \frac{\sum_{0}^{n} a_{j}z^{j}}{\sum_{0}^{n} b_{j}z^{j}}\right) \quad \longleftrightarrow \quad [a_{0}: \cdots: a_{n}: b_{0}: \cdots: b_{n}] \in \mathbb{P}^{2n+1}(\mathbb{C}).$$ For any algebraic variety $V \subset \mathbb{P}^{2n+1}(\mathbb{C})$, the intersection $\mathcal{F} = V \cap \operatorname{Rat}_n$ will be described as an algebraic family of rational maps. ## Hyperbolic Components. **Definitions:** A rational map is *hyperbolic* if the orbit of every critical point converges towards an attracting cycle. In any algebraic family $\ensuremath{\mathcal{F}}$, the hyperbolic maps form an open subset. Any connected component of this open subset is called a **hyperbolic component** $\mathcal{H} \subset \mathcal{F}$. Two critical points will be called *Grand Orbit equivalent* if their forward orbits intersect. **Theorem 1.** Suppose that the maps in $\mathcal H$ have the property that the basin of every attracting cycle contains **exactly one** GO-equivalence class of critical points. Then the closure $\overline{\mathcal H}$, the topological boundary $\partial\mathcal H$, and $\mathcal H$ itself are all **semi-algebraic sets**. #### Example: The family $f_a(z) = a + 1/z^2$ Each f_a has critical points 0 and ∞ , with $f_a: 0 \mapsto \infty$. Thus each f_a has **only one critical grand orbit**. \Longrightarrow every hyperbolic component is semi-algebraic. A More Typical Example: The family $z \mapsto (z+a)/z^2$. Critical points: z = 0 and z = -2a. The periodic orbit $0 \leftrightarrow \infty$ is always superattractive. In the Blue and Yellow Regions: the other critical point is eventually attracted to this orbit. In the Red Regions: there is a disjoint periodic orbit. Only the red (Mandelbrot-like) regions are semi-algebraic. #### Semi-Algebraic Sets: the Definition. Consider subsets of \mathbb{R}^n of the form either $$\{x \in \mathbb{R}^n ; \ \rho(x) \ge 0\}$$ or $\{x \in \mathbb{R}^n ; \ \rho(x) \ne 0\}$. Here $p: \mathbb{R}^n \to \mathbb{R}$ can be an arbitrary real polynomial. **Definition:** Any finite intersection of such sets is called a **basic semi-algebraic set**. Any finite union of basic semi-algebraic sets is called a **semi-algebraic set**. [Note that we can obtain equalities by combining two inequalities: If $p(x) \ge 0$ and $-p(x) \ge 0$, then p(x) = 0.] This definition is applied to subsets of \mathbb{C}^n by simply ignoring the complex structure, identifying \mathbb{C}^n with \mathbb{R}^{2n} . ## Semi-algebraic Sets: Basic Properties #### (Reference: Bochnak, Coste, and Roy, "Real Algebraic Geometry".) - Any finite union or intersection of semi-algebraic sets is itself a semi-algebraic set. - The complement $\mathbb{R}^n \setminus S$ of a semi-algebraic set is itself a semi-algebraic set. - A semi-algebraic set has finitely many connected components, and each of them is semi-algebraic. - The topological closure of a semi-algebraic set is semi-algebraic. - (Tarski-Seidenberg Theorem.) The image of a semi-algebraic set under projection from \mathbb{R}^n to \mathbb{R}^{n-k} is semi-algebraic. - Every semi-algebraic set can be triangulated, and hence is locally connected. #### Proof of Theorem 1. Recall the statement: If the maps $f\in\mathcal{H}\subset\mathcal{F}$ have only one grand-orbit-equivalence class of critical points in the basin of each attracting cycle, then \mathcal{H} , $\partial\mathcal{H}$, and $\overline{\mathcal{H}}$ are all semi-algebraic. First Step: Let p_1 , p_2 , ..., p_m be the periods of the m attracting cycles. Let $$\mathcal{F}(p_1, p_2, ..., p_m)$$ be the set of all $(f, z_1, z_2, ..., z_m) \in \mathcal{F} \times \mathbb{C}^m$ satisfying two conditions: - Each z_i should have period exactly p_i under the map f; - and the orbits of the z_j must be disjoint. **Lemma.** This set $$\mathcal{F}(p_1, p_2, ..., p_m) \subset \mathcal{F} \times \mathbb{C}^m$$ is semi-algebraic. The proof is an easy exercise. \Box #### **Proof (Continued)** Let U be the open set consisting of all $(f, z_1, \ldots, z_m) \in \mathcal{F}(p_1, p_2, \ldots, p_m)$ such that the multiplier of the orbit for each z_j satisfies $|\mu_i|^2 < 1$. $$|\mu_j|^2 < 1$$ This set U is semi-algebraic. Hence each component $\widetilde{\mathcal{H}} \subset U$ is semi-algebraic. Hence the image of $\widetilde{\mathcal{H}}$ under the projection $\mathcal{F}(p_1\ ,\ p_2\ ,\ \dots\ ,\ p_m) \to \mathcal{F}$ is a semi-algebraic set \mathcal{H} , which is clearly a hyperbolic component in \mathcal{F} . In fact any hyperbolic component $\mathcal{H} \subset \mathcal{F}$ having attracting cycles with periods p_1, p_2, \ldots, p_m can be obtained in this way. This proves that \mathcal{H} , its closure $\overline{\mathcal{H}}$, and its boundary $\partial \mathcal{H} = \overline{\mathcal{H}} \cap (\overline{\mathcal{F} \setminus \mathcal{H}})$ are all semi-algebraic sets. \square #### Theorem 1 is **not** a best possible result. *k*-plane for the family of maps $f_k(z) = k(z + z^{-1})$. This is a different kind of example with all hyperbolic components semi-algebraic. Here the two critical points ± 1 are not GO-equivalent, but are bound together by the symmetry $f_k(-z) = -f_k(z)$. ## More General Hyperbolic Components. Suppose that the maps $f \in \mathcal{H}$ have an attracting cycle with two distinct **free** critical points in its attracting basin Here "free" is to mean **completely independent**, so that there are at least two complex degrees of freedom. #### Conjecture 1: This implies that the boundary $\partial \mathcal{H}$ is **not locally connected**. This is a question in two complex dimensions pour real dimensions. It cannot be answered by a 2-dimensional picture. #### Added Remark (Generalized MLC Problem): I do not know any example of an \mathcal{H} in a complex one parameter family for which $\partial \mathcal{H}$ is not locally connected. Does such an example exist? ## Example: The family $f(z) = z^2(z - a)/(1 + bz)$. Let $\,\mathcal{H}\subset\mathbb{C}^2\,$ be the hyperbolic component centered at $$a = b = 0 \iff f(z) = z^3$$. Consider the **real plane** $\mathcal{P} \cong \mathbb{R}^2 \subset \mathbb{C}^2$ defined by $b = \overline{a}$. The central white region is $\mathcal{H}_{\mathcal{P}} = \mathcal{H} \cap \mathcal{P} \,.$ Its complement is $\mathcal{P} \backslash \mathcal{H}_{\mathcal{P}}$. Theorem (with Bonifant & Buff): $\mathcal{H}_{\mathcal{P}}$ is simply connected, and contains infinitely many "fjords" leading out to infinity. These are separated by infinitely many connected components of the complement $X = \mathcal{P} \setminus \mathcal{H}_{\mathcal{P}}$. A large disk $|a| \le r$ intersects infinitely many of these components. **Corollary 1:** $\partial \mathcal{H}_{\mathcal{P}}$ is not locally connected. #### Proof of Corollary 1: non local-connectivity Recall that any large disk \mathbb{D}_r intersects infinitely many connected components of the closed set $X = \mathcal{P} \setminus \mathcal{H}_{\mathcal{P}}$. Let $x_0 \in X \cap \mathbb{D}_r$ be any accumulation point for this collection of components. Then X is not locally connected at x_0 . It follows that $\partial X = \partial \mathcal{H}_{\mathcal{P}}$ is not locally connected. \square #### The full hyperbolic component $\mathcal{H} \subset \mathbb{C}^2$ **Corollary 2:** The boundary $\partial \mathcal{H} \subset \mathbb{C}^2$ is not **locally contractible.** Note that the real plane $\mathcal{P} \subset \mathbb{C}^2$ is the fixed point set of an involution $\mathscr{I}: (a,b) \leftrightarrow (\overline{b}, \overline{a})$ of \mathbb{C}^2 . The region $\mathcal{H} \cap \mathcal{P}$ contains arbitrarily thin "fjords": Choose two points x and y which are arbitrarily close to each other, but lie on opposite banks of such a fjord. Suppose that $\partial \mathcal{H}$ is locally contractible. A short path from x to y within $\partial \mathcal{H}$ together with its image under \mathscr{I} , would form a small \mathscr{I} -invariant loop L. Then *L* bounds a small disk *D* in $\partial \mathcal{H}$, and $D \cup \mathscr{I}(D)$ is a small \mathscr{I} -invariant singular 2-sphere. #### Non Local-Contractibility: outline proof continued. We must show that this singular 2-sphere $S^2 \mapsto \partial \mathcal{H}$ links a central curve within the fjord, and hence is not contractible within $\mathbb{C}^2 \setminus \mathcal{H}$. This can be proved using the following. **Topological Lemma.** If a map f from S^2 to itself fixes both poles, and commutes with the 180° rotation about the poles, then it has odd degree. Proved by approximating f by a smooth map \hat{f} satisfying the same conditions, which has the pole p_0 as a regular value. Then the number of preimages $\hat{f}(x) = p_0$ is odd, and is congruent to the degree mod two. ## Further Conjectures (corrected page) It is not hard to see that for any hyperbolic component $\mathcal{H} \subset \mathcal{F}$ and for any $f \in \partial \mathcal{H}$ either - there is a critical point in the Julia set J(f), or else - f has an **indifferent cycle**, that is a periodic orbit with multiplier satisfying $|\mu| = 1$. #### Conjecture 2: - (a) If every $f \in \partial \mathcal{H}$ has an indifferent cycle, then $\partial \mathcal{H}$ is semi-algebraic. - **(b)** On the other hand, if some $f \in \partial \mathcal{H}$ has no indifferent cycle, then $\partial \mathcal{H}$ is a **fractal set**, in the sense that its Hausdorff dimension is greater than its topological dimension. - (c) Now suppose that f has a post-critical parabolic cycle, which can be perturbed, within the family \mathcal{F} , to a parabolic cycle which is not post-critical. Then $\partial \mathcal{H}$ is not locally connected. Example: the family of maps $f(z) = z^3 + az^2 + \mu z$. Let $\mathcal{H} \subset \mathbb{C}^2$ be the hyperbolic component centered at $a = \mu = 0 \iff f(z) = z^3$. Julia set for the map $f(z) = z^3 + 2z^2 + z$ in $\partial \mathcal{H}$. Satisfies the conditions of Conjecture 2(c). In particular, the critical point z = -1 maps to the parabolic point z = 0. #### A small perturbation. Now change the multiplier from $\mu = 1$ to $\mu = e^{.01 i} \approx 1$. Magnified image near z = 0 for $f(z) = z^3 + 2z^2 + e^{.01i}z$. # Simpler Example: the "universal capture component". Let $\mathbb{C}_{(z)}\sqcup\mathbb{C}_{(w)}$ be the disjoint union of two copies of \mathbb{C} , with coordinates z and w respectively. Let $f_{\nu}: \mathbb{C}_{(z)} \to \mathbb{C}_{(w)}$ be the quadratic map $f_{\nu}(z) = z^2 + \nu$ with critical value $\nu \in \mathbb{C}_{(w)}$, and let $g_{\mu}: \mathbb{C}_{(w)} \to \mathbb{C}_{(w)}$ be the quadratic map $$g_{\mu}(\mathbf{w}) = \mathbf{w}^2 + \mu \mathbf{w}$$ with a fixed point of multiplier μ at w = 0. Thus we obtain a two parameter family of maps (f_v, g_μ) $$\mathbb{C}_{(z)} \stackrel{f_{\nu}}{\longrightarrow} \mathbb{C}_{(w)} \stackrel{\smile}{\smile} g_{\mu} ,$$ from $\mathbb{C}_{(z)} \sqcup \mathbb{C}_{(w)}$ to itself. Let $\mathcal{H} \subset \mathbb{C}^2$ be the **hyperbolic component** consisting of all pairs $(v, \mu) \in \mathbb{C}^2$ such that both critical orbits converge to w = 0 $$\iff |\mu| < 1 \qquad ext{and} \qquad \lim_{n \to \infty} g_{\mu}^{\circ n}(v) = 0 \; .$$ **Theorem 2.** $\overline{\mathcal{H}}$ is not locally connected. #### The closure of \mathcal{H} The closure $\overline{\mathcal{H}}$ consists of all $(v,\mu)\in\mathbb{C}^2$ such that $|\mu|\leq 1$, and such that v belongs to the *filled Julia set* $K(g_\mu)$ = the union of all bounded orbits for g_μ . Typical example of $K(g_{\mu})$ for the case $|\mu| < 1$. (This is fractal—Compare Conjecture 2(b).) ## The Case $|\mu| = 1$ As $\,\mu\,$ varies around the unit circle, the filled Julia set $\,{\cal K}(g_\mu)\,$ jumps around wildly: For **generic** μ (the Cremer case): $K(g_{\mu})$ is **not locally connected**, and has no interior. # Parabolic Implosion: the fundamental discontinuity. Under an **arbitrarily small perturbation** of a parabolic map, the basin of infinity **and** the Julia set may explode inwards. # Magnified Julia set for $\mu = e^{.04\,i}$ #### Foundational Paper: Pierre Lavaurs, *Systèmes dynamiques holomorphes: explosion de points périodiques paraboliques,* Thèse, Université, Paris-Sud, Orsay 1989. (Widely studied, but never published.) Consider the family of maps $F_{\eta}(z)=z^2+z+\eta^2$, where η is close to zero and $\Re(\eta)>0$. Thus F_{η} has fixed points $\pm i \eta$, with multipliers $\mu = 1 \pm 2 i \eta$. Now pass to the limit as η tends to zero. The Limit as $\eta \to 0$, $\eta \neq 0$. Let \mathcal{B} be the interior of the cauliflower, or in other words the parabolic basin for the map $z\mapsto z^2+z$. Define the *phase function* $$\sigma(\eta) = -\frac{\pi}{\eta}$$. **Theorem of Lavaurs.** Suppose that a sequence of parameters η_j converges to zero in such a way that the phase $\sigma(\eta_j)$ converges to a limit σ_0 modulo $\mathbb Z$. In other words, suppose that there are integers k_j so that $$\lim_{j\to\infty} \left(\sigma(\eta_j) + k_j\right) = \boldsymbol{\sigma}_0.$$ Then the sequence of functions $F_{\eta_j}^{\circ k_j}$ converges locally uniformly on \mathcal{B} to a function $\mathcal{L}_{\sigma_0}: \mathcal{B} \to \mathbb{C}$ which is holomorphic and effectively computable. Plot of $\mathcal{L}_{\sigma}:\mathcal{B} ightarrow \mathbb{C}$, for fixed $\sigma_0 = i\,\pi$. The color indicates the value of the **escape function** $\operatorname{esc}(\sigma, z) = \min\{n; \mathcal{L}_{\sigma}^{\circ n}(z) \neq \mathcal{B}\}$ (reduced modulo 5). ## From the σ -plane to the μ -plane Lavaurs phase parameter $\sigma(\eta) \longleftrightarrow \text{multiplier } \mu_{\eta}$ iπ Here $$\sigma = -\pi/\eta$$ and $\mu_{\eta} = 1 + 2 i \eta$. Thus the half-plane $\Im(\sigma) \ge \pi$ maps conformally onto $\overline{\mathbb{D}} \setminus \{1\}$. #### Plot of $\sigma \mapsto \operatorname{esc}(\sigma, z_0)$ for fixed z_0 . This shows the escape function $esc(\sigma, z_0)$ for fixed $z_0 = -.141i$ as the Lavaurs parameter σ varies over the cylinder $[0,1] \times [3,9]$. Detail showing the cylinder $\mathcal{R} = [-.1, .9] \times [3.05, 3.3]$. The analog of the hyperbolic component \mathcal{H} in these coordinates is the set \mathcal{H}_{Lav} consisting of all $(\sigma, z) \in (\mathbb{C}/\mathbb{Z}) \times \mathbb{C}$ with $\Im(\sigma) > \pi$ and $\operatorname{esc}(\sigma, z) = \infty$, **colored near-white.** LEMMA. For $\sigma \in \partial \mathcal{R}$ and for z close to z_0 , the pair (σ, z) does NOT belong to $\overline{\mathcal{H}}_{\text{Lav}}$. $$z_0 = -.141 i$$, with σ in the rectangle $[-.1, 3.9] \times [3.05, 3.3]$. Choose σ_0 in the white region, and consider the sequence $$\sigma_0$$, $\sigma_0 - 1$, $\sigma_0 - 2$, ... tending to $-\infty$. Solving the equation $$\sigma(\eta_k) = -\pi/\eta_k = \sigma_0 - k$$ we obtain $$\eta_k = \pi/(k-\sigma_0) \rightarrow 0$$. Thus the corresponding quadratic functions $$f_k(z) = z^2 + z + \eta_k$$ converge to the Lavaurs map \mathcal{L}_{σ_0} on \mathcal{B} . For every $\sigma \in \partial[-.1,.9] \times [3.05,3.3-]$, for every η close to zero with $\sigma(\eta) \equiv \sigma \pmod{\mathbb{Z}}$, and for every z close to z_0 , it follows that $(z, \mu_\eta) \notin \overline{\mathcal{H}}$. #### Conclusion: We have a sequence of pairs $(z_0, \mu_{\eta_k}) \rightarrow (z_0, 1)$, with $(z_0, \mu_{\eta_k}) \in \mathcal{H}$ for large k. But $(z_0\,,\,\mu_{\eta_k})$ cannot be connected to $(z_0,\,1)$ within $\overline{\mathcal{H}}$ without changing z_0 by some fixed $\epsilon>0$, which is independent of k. $\implies \overline{\mathcal{H}}$ is not locally connected.