#### Hyperbolic Component Boundaries\*

#### John Milnor

Stony Brook University

Gyeongju, August 23, 2014

\*Revised version. The conjectures on page 16 were problematic, and have been corrected.

#### The Problem

Hyperbolic components, in a reasonable space of polynomial or rational maps, are well understood.

But their topological boundaries can be very complicated.

This talk will first describe a special case where the boundaries are very well behaved.

It will then speculate about the other cases.

**Definitions.** Let  $\operatorname{Rat}_n \subset \mathbb{P}^{2n+1}(\mathbb{C})$  be the space of all rational maps of degree  $n \geq 2$ :

$$\left(f(z) = \frac{\sum_{0}^{n} a_{j}z^{j}}{\sum_{0}^{n} b_{j}z^{j}}\right) \quad \longleftrightarrow \quad [a_{0}: \cdots: a_{n}: b_{0}: \cdots: b_{n}] \in \mathbb{P}^{2n+1}(\mathbb{C}).$$

For any algebraic variety  $V \subset \mathbb{P}^{2n+1}(\mathbb{C})$ , the intersection  $\mathcal{F} = V \cap \operatorname{Rat}_n$  will be described as an algebraic family of rational maps.

## Hyperbolic Components.

**Definitions:** A rational map is *hyperbolic* if the orbit of every critical point converges towards an attracting cycle.

In any algebraic family  $\ensuremath{\mathcal{F}}$  , the hyperbolic maps form an open subset.

Any connected component of this open subset is called a **hyperbolic component**  $\mathcal{H} \subset \mathcal{F}$ .

Two critical points will be called *Grand Orbit equivalent* if their forward orbits intersect.

**Theorem 1.** Suppose that the maps in  $\mathcal H$  have the property that the basin of every attracting cycle contains **exactly one** GO-equivalence class of critical points. Then the closure  $\overline{\mathcal H}$ , the topological boundary  $\partial\mathcal H$ , and  $\mathcal H$  itself are all **semi-algebraic sets**.

#### Example: The family $f_a(z) = a + 1/z^2$



Each  $f_a$  has critical points 0 and  $\infty$ , with  $f_a: 0 \mapsto \infty$ . Thus each  $f_a$  has **only one critical grand orbit**.  $\Longrightarrow$  every hyperbolic component is semi-algebraic.

A More Typical Example: The family  $z \mapsto (z+a)/z^2$ .



Critical points: z = 0 and z = -2a.

The periodic orbit  $0 \leftrightarrow \infty$  is always superattractive.

In the Blue and Yellow Regions:

the other critical point is eventually attracted to this orbit.

In the Red Regions: there is a disjoint periodic orbit.

Only the red (Mandelbrot-like) regions are semi-algebraic.

#### Semi-Algebraic Sets: the Definition.

Consider subsets of  $\mathbb{R}^n$  of the form either

$$\{x \in \mathbb{R}^n ; \ \rho(x) \ge 0\}$$
 or  $\{x \in \mathbb{R}^n ; \ \rho(x) \ne 0\}$ .

Here  $p: \mathbb{R}^n \to \mathbb{R}$  can be an arbitrary real polynomial.

**Definition:** Any finite intersection of such sets is called a **basic semi-algebraic set**.

Any finite union of basic semi-algebraic sets is called a **semi-algebraic set**.

[Note that we can obtain equalities by combining two inequalities: If  $p(x) \ge 0$  and  $-p(x) \ge 0$ , then p(x) = 0.]

This definition is applied to subsets of  $\mathbb{C}^n$  by simply ignoring the complex structure, identifying  $\mathbb{C}^n$  with  $\mathbb{R}^{2n}$ .

## Semi-algebraic Sets: Basic Properties

#### (Reference:

Bochnak, Coste, and Roy, "Real Algebraic Geometry".)

- Any finite union or intersection of semi-algebraic sets is itself a semi-algebraic set.
- The complement  $\mathbb{R}^n \setminus S$  of a semi-algebraic set is itself a semi-algebraic set.
- A semi-algebraic set has finitely many connected components, and each of them is semi-algebraic.
- The topological closure of a semi-algebraic set is semi-algebraic.
- (Tarski-Seidenberg Theorem.) The image of a semi-algebraic set under projection from  $\mathbb{R}^n$  to  $\mathbb{R}^{n-k}$  is semi-algebraic.
- Every semi-algebraic set can be triangulated, and hence is locally connected.

#### Proof of Theorem 1.

Recall the statement:

If the maps  $f\in\mathcal{H}\subset\mathcal{F}$  have only one grand-orbit-equivalence class of critical points in the basin of each attracting cycle, then  $\mathcal{H}$ ,  $\partial\mathcal{H}$ , and  $\overline{\mathcal{H}}$  are all semi-algebraic.

First Step:

Let  $p_1$ ,  $p_2$ , ...,  $p_m$  be the periods of the m attracting cycles.

Let 
$$\mathcal{F}(p_1, p_2, ..., p_m)$$
 be the set of all  $(f, z_1, z_2, ..., z_m) \in \mathcal{F} \times \mathbb{C}^m$  satisfying two conditions:

- Each  $z_i$  should have period exactly  $p_i$  under the map f;
- and the orbits of the  $z_j$  must be disjoint.

**Lemma.** This set 
$$\mathcal{F}(p_1, p_2, ..., p_m) \subset \mathcal{F} \times \mathbb{C}^m$$
 is semi-algebraic.

The proof is an easy exercise.  $\Box$ 

#### **Proof (Continued)**

Let U be the open set consisting of all  $(f, z_1, \ldots, z_m) \in \mathcal{F}(p_1, p_2, \ldots, p_m)$  such that the multiplier of the orbit for each  $z_j$  satisfies  $|\mu_i|^2 < 1$ .

$$|\mu_j|^2 < 1$$

This set U is semi-algebraic.

Hence each component  $\widetilde{\mathcal{H}} \subset U$  is semi-algebraic.

Hence the image of  $\widetilde{\mathcal{H}}$  under the projection  $\mathcal{F}(p_1\ ,\ p_2\ ,\ \dots\ ,\ p_m) \to \mathcal{F}$  is a semi-algebraic set  $\mathcal{H}$ , which is clearly a hyperbolic component in  $\mathcal{F}$ .

In fact any hyperbolic component  $\mathcal{H} \subset \mathcal{F}$  having attracting cycles with periods  $p_1, p_2, \ldots, p_m$  can be obtained in this way.

This proves that  $\mathcal{H}$ , its closure  $\overline{\mathcal{H}}$ , and its boundary  $\partial \mathcal{H} = \overline{\mathcal{H}} \cap (\overline{\mathcal{F} \setminus \mathcal{H}})$  are all semi-algebraic sets.  $\square$ 

#### Theorem 1 is **not** a best possible result.

*k*-plane for the family of maps  $f_k(z) = k(z + z^{-1})$ .



This is a different kind of example with all hyperbolic components semi-algebraic.

Here the two critical points  $\pm 1$  are not GO-equivalent, but are bound together by the symmetry  $f_k(-z) = -f_k(z)$ .

## More General Hyperbolic Components.

Suppose that the maps  $f \in \mathcal{H}$  have an attracting cycle with two distinct **free** critical points in its attracting basin

Here "free" is to mean **completely independent**, so that there are at least two complex degrees of freedom.

#### Conjecture 1:

This implies that the boundary  $\partial \mathcal{H}$  is **not locally connected**.

This is a question in two complex dimensions pour real dimensions.

It cannot be answered by a 2-dimensional picture.

#### Added Remark (Generalized MLC Problem):

I do not know any example of an  $\mathcal{H}$  in a complex one parameter family for which  $\partial \mathcal{H}$  is not locally connected. Does such an example exist?

## Example: The family $f(z) = z^2(z - a)/(1 + bz)$ .

Let  $\,\mathcal{H}\subset\mathbb{C}^2\,$  be the hyperbolic component centered at

$$a = b = 0 \iff f(z) = z^3$$
.

Consider the **real plane**  $\mathcal{P} \cong \mathbb{R}^2 \subset \mathbb{C}^2$  defined by  $b = \overline{a}$ .



The central white region is  $\mathcal{H}_{\mathcal{P}} = \mathcal{H} \cap \mathcal{P} \,.$  Its complement is  $\mathcal{P} \backslash \mathcal{H}_{\mathcal{P}}$ .

Theorem (with Bonifant & Buff):  $\mathcal{H}_{\mathcal{P}}$  is simply connected, and contains infinitely many "fjords" leading out to infinity.

These are separated by infinitely many connected components of the complement  $X = \mathcal{P} \setminus \mathcal{H}_{\mathcal{P}}$ .

A large disk  $|a| \le r$  intersects infinitely many of these components.

**Corollary 1:**  $\partial \mathcal{H}_{\mathcal{P}}$  is not locally connected.

#### Proof of Corollary 1: non local-connectivity



Recall that any large disk  $\mathbb{D}_r$  intersects infinitely many connected components of the closed set  $X = \mathcal{P} \setminus \mathcal{H}_{\mathcal{P}}$ .

Let  $x_0 \in X \cap \mathbb{D}_r$  be any accumulation point for this collection of components.

Then X is not locally connected at  $x_0$ .

It follows that  $\partial X = \partial \mathcal{H}_{\mathcal{P}}$  is not locally connected.  $\square$ 

#### The full hyperbolic component $\mathcal{H} \subset \mathbb{C}^2$

**Corollary 2:** The boundary  $\partial \mathcal{H} \subset \mathbb{C}^2$  is not **locally contractible.** 

Note that the real plane  $\mathcal{P} \subset \mathbb{C}^2$  is the fixed point set of an involution  $\mathscr{I}: (a,b) \leftrightarrow (\overline{b}, \overline{a})$  of  $\mathbb{C}^2$ .

The region  $\mathcal{H} \cap \mathcal{P}$  contains arbitrarily thin "fjords":



Choose two points x and y which are arbitrarily close to each other, but lie on opposite banks of such a fjord.

Suppose that  $\partial \mathcal{H}$  is locally contractible.

A short path from x to y within  $\partial \mathcal{H}$  together with its image under  $\mathscr{I}$ , would form a small  $\mathscr{I}$ -invariant loop L.

Then *L* bounds a small disk *D* in  $\partial \mathcal{H}$ , and  $D \cup \mathscr{I}(D)$  is a small  $\mathscr{I}$ -invariant singular 2-sphere.

#### Non Local-Contractibility: outline proof continued.

We must show that this singular 2-sphere  $S^2 \mapsto \partial \mathcal{H}$  links a central curve within the fjord, and hence is not contractible within  $\mathbb{C}^2 \setminus \mathcal{H}$ .





This can be proved using the following.

**Topological Lemma.** If a map f from  $S^2$  to itself fixes both poles, and commutes with the 180° rotation about the poles, then it has odd degree.

Proved by approximating f by a smooth map  $\hat{f}$  satisfying the same conditions, which has the pole  $p_0$  as a regular value.

Then the number of preimages  $\hat{f}(x) = p_0$  is odd, and is congruent to the degree mod two.

## Further Conjectures (corrected page)

It is not hard to see that for any hyperbolic component  $\mathcal{H} \subset \mathcal{F}$  and for any  $f \in \partial \mathcal{H}$  either

- there is a critical point in the Julia set J(f), or else
- f has an **indifferent cycle**, that is a periodic orbit with multiplier satisfying  $|\mu| = 1$ .

#### Conjecture 2:

- (a) If every  $f \in \partial \mathcal{H}$  has an indifferent cycle, then  $\partial \mathcal{H}$  is semi-algebraic.
- **(b)** On the other hand, if some  $f \in \partial \mathcal{H}$  has no indifferent cycle, then  $\partial \mathcal{H}$  is a **fractal set**, in the sense that its Hausdorff dimension is greater than its topological dimension.
- (c) Now suppose that f has a post-critical parabolic cycle, which can be perturbed, within the family  $\mathcal{F}$ , to a parabolic cycle which is not post-critical. Then  $\partial \mathcal{H}$  is not locally connected.

Example: the family of maps  $f(z) = z^3 + az^2 + \mu z$ .

Let  $\mathcal{H} \subset \mathbb{C}^2$  be the hyperbolic component centered at  $a = \mu = 0 \iff f(z) = z^3$ .



Julia set for the map  $f(z) = z^3 + 2z^2 + z$  in  $\partial \mathcal{H}$ .

Satisfies the conditions of Conjecture 2(c). In particular, the critical point z = -1 maps to the parabolic point z = 0.

#### A small perturbation.

Now change the multiplier from  $\mu = 1$  to  $\mu = e^{.01 i} \approx 1$ .



Magnified image near z = 0 for  $f(z) = z^3 + 2z^2 + e^{.01i}z$ .

# Simpler Example: the "universal capture component".

Let  $\mathbb{C}_{(z)}\sqcup\mathbb{C}_{(w)}$  be the disjoint union of two copies of  $\mathbb{C}$ , with coordinates z and w respectively.

Let  $f_{\nu}: \mathbb{C}_{(z)} \to \mathbb{C}_{(w)}$  be the quadratic map  $f_{\nu}(z) = z^2 + \nu$  with critical value  $\nu \in \mathbb{C}_{(w)}$ , and let  $g_{\mu}: \mathbb{C}_{(w)} \to \mathbb{C}_{(w)}$  be the quadratic map

$$g_{\mu}(\mathbf{w}) = \mathbf{w}^2 + \mu \mathbf{w}$$

with a fixed point of multiplier  $\mu$  at w = 0.

Thus we obtain a two parameter family of maps  $(f_v, g_\mu)$ 

$$\mathbb{C}_{(z)} \stackrel{f_{\nu}}{\longrightarrow} \mathbb{C}_{(w)} \stackrel{\smile}{\smile} g_{\mu} ,$$

from  $\mathbb{C}_{(z)} \sqcup \mathbb{C}_{(w)}$  to itself.

Let  $\mathcal{H} \subset \mathbb{C}^2$  be the **hyperbolic component** consisting of all pairs  $(v, \mu) \in \mathbb{C}^2$  such that both critical orbits converge to w = 0

$$\iff |\mu| < 1 \qquad ext{and} \qquad \lim_{n \to \infty} g_{\mu}^{\circ n}(v) = 0 \; .$$

**Theorem 2.**  $\overline{\mathcal{H}}$  is not locally connected.

#### The closure of $\mathcal{H}$

The closure  $\overline{\mathcal{H}}$  consists of all  $(v,\mu)\in\mathbb{C}^2$  such that  $|\mu|\leq 1$ , and such that v belongs to the *filled Julia set*  $K(g_\mu)$  = the union of all bounded orbits for  $g_\mu$ .



Typical example of  $K(g_{\mu})$  for the case  $|\mu| < 1$ . (This is fractal—Compare Conjecture 2(b).)

## The Case $|\mu| = 1$

As  $\,\mu\,$  varies around the unit circle, the filled Julia set  $\,{\cal K}(g_\mu)\,$  jumps around wildly:



For **generic**  $\mu$  (the Cremer case):

 $K(g_{\mu})$  is **not locally connected**, and has no interior.

# Parabolic Implosion: the fundamental discontinuity.



Under an **arbitrarily small perturbation** of a parabolic map, the basin of infinity **and** the Julia set may explode inwards.

# Magnified Julia set for $\mu = e^{.04\,i}$



#### Foundational Paper:

Pierre Lavaurs, *Systèmes dynamiques holomorphes: explosion de points périodiques paraboliques,* Thèse, Université, Paris-Sud, Orsay 1989.

(Widely studied, but never published.)

Consider the family of maps  $F_{\eta}(z)=z^2+z+\eta^2$ , where  $\eta$  is close to zero and  $\Re(\eta)>0$ .

Thus  $F_{\eta}$  has fixed points  $\pm i \eta$ ,

with multipliers  $\mu = 1 \pm 2 i \eta$ .

Now pass to the limit as  $\eta$  tends to zero.

The Limit as  $\eta \to 0$ ,  $\eta \neq 0$ .

Let  $\mathcal{B}$  be the interior of the cauliflower, or in other words the parabolic basin for the map  $z\mapsto z^2+z$ .

Define the *phase function* 
$$\sigma(\eta) = -\frac{\pi}{\eta}$$
.

**Theorem of Lavaurs.** Suppose that a sequence of parameters  $\eta_j$  converges to zero in such a way that the phase  $\sigma(\eta_j)$  converges to a limit  $\sigma_0$  modulo  $\mathbb Z$ . In other words, suppose that there are integers  $k_j$  so that

$$\lim_{j\to\infty} \left(\sigma(\eta_j) + k_j\right) = \boldsymbol{\sigma}_0.$$

Then the sequence of functions  $F_{\eta_j}^{\circ k_j}$  converges locally uniformly on  $\mathcal{B}$  to a function  $\mathcal{L}_{\sigma_0}: \mathcal{B} \to \mathbb{C}$  which is holomorphic and effectively computable.

Plot of  $\mathcal{L}_{\sigma}:\mathcal{B} 
ightarrow \mathbb{C}$  , for fixed  $\sigma_0 = i\,\pi$  .



The color indicates the value of the **escape function**  $\operatorname{esc}(\sigma, z) = \min\{n; \mathcal{L}_{\sigma}^{\circ n}(z) \neq \mathcal{B}\}$  (reduced modulo 5).



## From the $\sigma$ -plane to the $\mu$ -plane

Lavaurs phase parameter  $\sigma(\eta) \longleftrightarrow \text{multiplier } \mu_{\eta}$ iπ

Here 
$$\sigma = -\pi/\eta$$
 and  $\mu_{\eta} = 1 + 2 i \eta$ .

Thus the half-plane  $\Im(\sigma) \ge \pi$  maps conformally onto  $\overline{\mathbb{D}} \setminus \{1\}$ .

#### Plot of $\sigma \mapsto \operatorname{esc}(\sigma, z_0)$ for fixed $z_0$ .



This shows the escape function  $esc(\sigma, z_0)$  for fixed  $z_0 = -.141i$  as the Lavaurs parameter  $\sigma$  varies over the cylinder  $[0,1] \times [3,9]$ .



Detail showing the cylinder  $\mathcal{R} = [-.1, .9] \times [3.05, 3.3]$ .

The analog of the hyperbolic component  $\mathcal{H}$  in these coordinates is the set  $\mathcal{H}_{\text{Lav}}$  consisting of all  $(\sigma, z) \in (\mathbb{C}/\mathbb{Z}) \times \mathbb{C}$  with  $\Im(\sigma) > \pi$  and  $\operatorname{esc}(\sigma, z) = \infty$ , **colored near-white.** 

LEMMA. For  $\sigma \in \partial \mathcal{R}$  and for z close to  $z_0$ , the pair  $(\sigma, z)$  does NOT belong to  $\overline{\mathcal{H}}_{\text{Lav}}$ .

$$z_0 = -.141 i$$
,

with  $\sigma$  in the rectangle  $[-.1, 3.9] \times [3.05, 3.3]$ .

Choose  $\sigma_0$  in the white region, and consider the sequence

$$\sigma_0$$
,  $\sigma_0 - 1$ ,  $\sigma_0 - 2$ , ... tending to  $-\infty$ .

Solving the equation

$$\sigma(\eta_k) = -\pi/\eta_k = \sigma_0 - k$$

we obtain

$$\eta_k = \pi/(k-\sigma_0) \rightarrow 0$$
.

Thus the corresponding quadratic functions

$$f_k(z) = z^2 + z + \eta_k$$

converge to the Lavaurs map  $\mathcal{L}_{\sigma_0}$  on  $\mathcal{B}$ .

For every  $\sigma \in \partial[-.1,.9] \times [3.05,3.3-]$ , for every  $\eta$  close to zero with  $\sigma(\eta) \equiv \sigma \pmod{\mathbb{Z}}$ , and for every z close to  $z_0$ , it follows that  $(z, \mu_\eta) \notin \overline{\mathcal{H}}$ .

#### Conclusion:



We have a sequence of pairs  $(z_0, \mu_{\eta_k}) \rightarrow (z_0, 1)$ , with  $(z_0, \mu_{\eta_k}) \in \mathcal{H}$  for large k.

But  $(z_0\,,\,\mu_{\eta_k})$  cannot be connected to  $(z_0,\,1)$  within  $\overline{\mathcal{H}}$  without changing  $z_0$  by some fixed  $\epsilon>0$ , which is independent of k.

 $\implies \overline{\mathcal{H}}$  is not locally connected.