Pseudo-Automorphims with an invariant curve

Kyounghee Kim
Florida State University
Joint Work with E. Bedford and J. Diller

Problem

Let $f: \mathbb{P}^k \dashrightarrow \mathbb{P}^k$ be a birational map. When is there a blowup $\pi: X \to \mathbb{P}^k$ such that

$$f_X := \pi^{-1} \circ f \circ \pi$$
 is a automorphism?

Dimension 2

Theorem (Noether)

Every birational map of \mathbb{P}^2 is a composition of J's and linear automorphisms on \mathbb{P}^2 where J is the cremona involution

$$J:[x_0:x_1:x_2]\mapsto [1/x_0:1/x_1:1/x_2].$$

Question

What are linear automorphisms $S_i \in PGL(3, \mathbb{C})$ i = 1, ..., n such that $f := S_1 \circ J \circ S_2 \circ J \circ \cdots \circ J \circ S_n$ is equivalent to an automorphism?

The Cremona involution $J: \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$

$$J: [x_0: x_1: x_2] \mapsto [1/x_0: 1/x_1: 1/x_2].$$

1. The indeterminacy locus

$$\operatorname{Ind}(J) = \bigcup_i e_i \quad \text{where } e_i = \{x_j = 0, j \neq i\}$$

2. The exceptional locus

$$\operatorname{Exc}(J) = \bigcup_i \Sigma_i \quad \text{where } \Sigma_i = \{x_i = 0\}$$

3. Let X be a blowup of \mathbb{P}^2 along $\{e_0, e_1, e_2\}$. The induced map J_X is an automorphism.

$$f = S \circ J \circ T^{-1}$$

- 1. $\operatorname{Ind}(f) = \{T(e_i), i = 0, 1, 2\}$
- 2. $\operatorname{Exc}(f) = \{T(\Sigma_i), i = 0, 1, 2\}$
- 3. Suppose there are positive integers n_0, n_1, n_2 and a permutation σ on $\{0, 1, 2\}$ such that

$$f: T(\Sigma_i) \mapsto S(e_i) \mapsto * \mapsto \cdots \mapsto * \mapsto f^{n_i} T(\Sigma_i) = e_{\sigma(j)}$$

 $f^k T(\Sigma_i) \not\in \operatorname{Ind}(f) \qquad 1 \le k \le n_i - 1$

4. Let X be a blowup of \mathbb{P}^2 along a set of points $\{f^jT(\Sigma_i), 0 \leq i \leq 2, 1 \leq j \leq n_i\}$. The induced map f_X is an automorphism.

- ▶ By requiring the existence of an invariant elliptic curve, McMullen showed how one can construct $L \circ J : \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$ with $n_0 = n_1 = 1, n_2 \ge 7$ and a cyclic permutation.
- ▶ Diller constructed all possible rational surface automorphisms with invariant elliptic curves that are obtained as lifts of quadratic birational maps.
- ▶ For each possible entropy, Uehara showed one can always construct a rational surface automorphism with an invariant elliptic curves whose entropy is the correct value.
- ▶ Assuming the existence of an invariant elliptic normal curve, Perroni and Zhang showed that one can construct pseudoautomorphisms with the dynamical degree > 1

Remark

There exist rational surface automorphism which doesn't have an invariant curve. (Bedford-K)

Dimension 3 or higher

Problem

Let $f: \mathbb{P}^k \dashrightarrow \mathbb{P}^k$ be a birational map.

When is there a blowup $\pi: X \to \mathbb{P}^k$ such that

$$f_X := \pi^{-1} \circ f \circ \pi$$
 is a automorphism?

Theorem (Truong, Bayracktar and Cantat)

If X is the iterated blowup of \mathbb{P}^3 along a finite sequence of points, then every automorphism on X has entropy zero.

If X is the iterated blowup of \mathbb{P}^k along a finite sequence of smooth varieties of dimension <(k-2)/2, then every automorphism on X has entropy zero.

Dimension 3

Problem

Let $f: (\mathbb{P}^k)^m \dashrightarrow (\mathbb{P}^k)^m$ be a birational map. When is there a blowup $\pi: X \to (\mathbb{P}^k)^m$ such that

 $f_X := \pi^{-1} \circ f \circ \pi$ is a pseudo-automorphism?

Definition

A birational map $f: X \longrightarrow X$ is a pseudo-automorphism if neither f nor f^{-1} contracts hypersurfaces, i.e. there are sets $S_1, S_2 \subset X$ of codimension ≥ 2 such that

$$f: X \setminus S_1 \to X \setminus S_2$$
 is biregular.

The standard Cremona involution $J: \mathbb{P}^k \dashrightarrow \mathbb{P}^k$:

$$J: [x_0: x_1: \dots: x_k] \mapsto [1/x_0: 1/x_1: \dots: 1/x_k]$$

Question

What are linear automorphisms $S_i \in PGL(k+1,\mathbb{C})$ $i=1,\ldots,n$ such that $f:=S_1 \circ J \circ S_2 \circ J \circ \cdots \circ J \circ S_n$ is equivalent to a pseudo-automorphism?

The standard Cremona involution $J: \mathbb{P}^k \dashrightarrow \mathbb{P}^k$:

$$J: [x_0: x_1: \dots: x_k] \mapsto [1/x_0: 1/x_1: \dots: 1/x_k]$$

Question

What are linear automorphisms $S, T \in PGL(k+1, \mathbb{C})$ such that $f := S \circ J \circ T^{-1}$ is equivalent to a pseudo-automorphism?

The standard Cremona involution $J: \mathbb{P}^k \dashrightarrow \mathbb{P}^k$:

$$J: [x_0: x_1: \cdots: x_k] \mapsto [1/x_0: 1/x_1: \cdots: 1/x_k]$$

Question

What are linear automorphisms $S, T \in PGL(k+1, \mathbb{C})$ such that $f := S \circ J \circ T^{-1}$ is equivalent to a pseudo-automorphism on a blowup of \mathbb{P}^k along a finite set of points?

The standard Cremona involution $J: \mathbb{P}^k \dashrightarrow \mathbb{P}^k$:

$$J: [x_0: x_1: \dots: x_k] \mapsto [1/x_0: 1/x_1: \dots: 1/x_k]$$

Question

What are linear automorphisms $S, T \in PGL(k+1, \mathbb{C})$ such that $f := S \circ J \circ T^{-1}$ is equivalent to a pseudo-automorphism on a blowup of \mathbb{P}^k along a finite set of distinct points?

The standard Cremona involution $J: \mathbb{P}^k \dashrightarrow \mathbb{P}^k$:

$$J: [x_0: x_1: \cdots: x_k] \mapsto [1/x_0: 1/x_1: \cdots: 1/x_k]$$

Question

Find linear automorphisms $S, T \in PGL(k+1, \mathbb{C})$ such that

- $f := S \circ J \circ T^{-1}$ is equivalent to a pseudo-automorphism on a blowup of \mathbb{P}^k along a finite set of distinct points
- ▶ f has an invariant curve

The standard Cremona involution $J: \mathbb{P}^k \dashrightarrow \mathbb{P}^k$:

$$J: [x_0: x_1: \dots: x_k] \mapsto [1/x_0: 1/x_1: \dots: 1/x_k]$$
$$Ind(J) = \bigcup_{i \neq j} \{x_i = x_j = 0\}, \quad Exc(J) = \bigcup_i \{x_i = 0\}$$

▶ Each coordinate plane $\{x_i = 0\}$ maps to a point

$$J: \{x_i = 0\} \mapsto e_i = \cap_{j \neq i} \{x_j = 0\}$$

▶ Suppose $I \subset \{0, 1, ..., k\}$, each point in $\{x_i = 0, x_j \neq 0 : i \in I, j \notin I\}$ blows up to $\{x_i \neq 0, x_j = 0 : i \in I, j \notin I\}$. We say a birational map $F: \mathbb{P}^k \dashrightarrow \mathbb{P}^k$ is a basic cremona map if

$$F = S \circ J \circ T^{-1}, \qquad S, T \in PGL(k+1, \mathbb{C})$$

▶ Exceptional hypersurfaces : $T(\Sigma_j)$, j = 0, 1, ..., k

$$F: T(\Sigma_j) \mapsto S(e_j)$$

▶ Points of indeterminacy which blows up to hyper surfaces : $T(e_j), j = 0, 1, ..., k$

Observation

Let $\pi: X \to \mathbb{P}^k$ be a blowup of \mathbb{P}^k along a set of k+1 points e_0, \ldots, e_k . Then the induced map $J_X: X \dashrightarrow X$ is a pseudo-automorphism.

Observation

Let F be a basic cremona map. Suppose for each $0 \le j \le k$ there is a positive integer n_j such that

- 1. $F^{n_j-1}(S(e_j)) = T(e_\ell)$ for some $0 \le \ell \le k$
- 2. $F^i(T(e_j)) \notin Ind(F)$ for all $0 \le i \le n_j 2$.

Then, there is a blowup space X of \mathbb{P}^k along a set of points such that the induced map F_X is a pseudo automorphism.

Remark

Note that $F^{i_1}(T(e_{j_1})) \neq F^{i_2}(T(e_{j_2}))$ for all $(i_1, j_1) \neq (i_2, j_2)$.

Question

what are the basic cremona maps on \mathbb{P}^k satisfying the followings?

- 1. $F^{n_j-1}(S(e_j)) = T(e_\ell)$ for some $0 \le \ell \le k$
- 2. $F^i(T(e_j)) \not\in Ind(F)$ for all $0 \le i \le n_j 2$.

Suppose $C \subset \mathbb{P}^k$

$$C = \{ \gamma(t) = [1:t:\dots:t^{k-1}:t^{k+1}], t \in \mathbb{C} \} \cup \{ [0:\dots:0:1] \}$$

= a degree $k+1$ curve with a cusp

▶ For hyperplanes $H \subset \mathbb{P}^k$,

$$C \cap H = \{\gamma(t_1), \gamma(t_2), \dots, \gamma(t_{k+1})\}\$$

▶ Let $H = \{\sum a_i x_i = 0\}$ then t_i 's are the solution of

$$a_0 + a_1 t + \dots + a_{k-1} t^{k-1} + a_k t^{k+1} = 0$$

Thus we have $\sum_{i=1}^{k+1} t_i = 0$

▶ Similarly for any hypersurface $S \subset \mathbb{P}^k$,

$$C \cap S = \{ \gamma(t_i) : i = 1, \dots, (\deg S)(k+1) \}, \quad \sum t_i = 0$$

Suppose $F = S \circ J \circ T^{-1}$ preserve C and

$$C \cap \operatorname{Ind}(F) \subset \{T(e_0), T(e_1), \dots, T(e_k)\}\$$

▶ Since no hyperplane contains C, each exceptional hypersurface, there is a regular point in $T(\{x_i = 0\}) \cap C$. Thus

$$S(e_i), T(e_i) \in C$$
 for all $0 \le i \le k$

▶ If F is equivalent to a pseudo-automorphism then $F|_C$ is an automorphism fixing a singular point at $t = \infty$.

$$F|_C: \gamma(t) \mapsto \gamma(\delta t + \tau)$$

▶ After rescaling parameter, we may choose $\tau = 1 - \delta$.

Constructing a Basic Cremona map $F = S \circ J \circ T^{-1} : \mathbb{P}^3 \dashrightarrow \mathbb{P}^3$ such that

- ► F fixes $C = \{\gamma(t) = [1:t:t^2:t^4]\}$ and $F(\gamma(\infty)) = (\gamma(\infty))$
- $C \cap \operatorname{Ind}(F) = \{T(e_i), i = 0, 1, 2, 3\}$
- $F: T(\{x_i = 0\}) \mapsto S(e_i) = T(e_{i+1}) \text{ for } i = 0, 1, 2$
- $F: T(\{x_3=0\}) \mapsto S(e_3) \to \cdots \to F^{n-1}S(e_3) = T(e_0).$

Then on the blowup of \mathbb{P}^3 along a set of points $\{T(e_i), i = 0, \dots, k \text{ and } F^j(S(e_3)), j = 0, \dots, n-2\},$ the induced map F_X is a pseudo-automorphism.

Let t_i be a parameter for $T(e_i)$, i.e. $T(e_i) = \gamma(t_i)$ and set

$$F^{-1}|_C: \gamma(t) \mapsto \delta t + 1 - \delta$$

Consider the exceptional hyperplane $\Sigma_1 := T(\{x_1 = 0\}).$

- ▶ $\Sigma_1 \cap C$ has 4 distinct points.
- ► $T(e_0), T(e_2,)T(e_3) \in \Sigma_1 \cap C$
- Since $F: \Sigma_1 \mapsto S(e_1) = T(e_2)$,

$$F^{-1}(T(e_2)) = F^{-1}|_C(\gamma(t_2)) \in \Sigma_1 \cap C.$$

Thus we have

$$t_0 + t_2 + t_3 + \delta t_2 + 1 - \delta = 0 \tag{1}$$

Similarly, with exceptional hyperplanes $T({x_0 = 0})$ and $T({x_2 = 0})$, we get

$$t_1 + t_2 + t_3 + \delta t_1 + 1 - \delta = 0 \tag{0}$$

and

$$t_0 + t_1 + t_3 + \delta t_3 + 1 - \delta = 0 \tag{2}$$

Now for $T({x_3 = 0})$, We have

$$F^n: T(\{x_3=0\}) \mapsto T(e_0)$$

Thus

$$T(e_0), T(e_1), T(e_2), \text{ and } F^{-n}(T(e_0)) \in T(\{x_3 = 0\})$$

$$t_0 + t_1 + t_2 + \delta^n t_0 + 1 - \delta^n = 0$$
 (3)

We need one more piece of information to determine t_i 's and δ .

Let H be a generic hyperplane in \mathbb{P}^3 .

- ▶ $\#H \cap C = 4$. Let $H \cap C = \{\gamma(q_1), \gamma(q_2), \gamma(q_3), \gamma(q_4)\}$
- $q_1 + q_2 + q_3 + q_4 = 0.$
- ▶ deg $F^{-1}H = 3$ and thus $\#(F^{-1}H) \cap C = 12$.
- ▶ For i = 1, ..., 4,

$$F^{-1}|_C(\gamma(q_i)) = \gamma(\delta q_i + 1 - \delta) \in (F^{-1}H) \cap C$$

For each i = 1, ..., 4, $H \cap S(\{x_i = 0\}) = a$ line, thus with multiplicity 2

$$F^{-1}S({x_i = 0}) = \gamma(t_i) \in (F^{-1}H) \cap C$$

For $(F^{-1}H) \cap C$, we found 12 points

$$\sum_{i=1}^{4} (\delta q_i + 1 - \delta) + 2 \sum_{j=0}^{3} t_j = 0$$

Since $q_1 + q_2 + q_3 + q_4 = 0$, we see that

$$t_0 + t_1 + t_2 + t_3 = 2(\delta - 1) \tag{4}$$

$$t_1 + t_2 + t_3 + \delta t_1 + 1 - \delta = 0 \tag{0}$$

$$t_0 + t_2 + t_3 + \delta t_2 + 1 - \delta = 0 \tag{1}$$

$$t_0 + t_1 + t_3 + \delta t_3 + 1 - \delta = 0 \tag{2}$$

$$t_0 + t_1 + t_2 + \delta^n t_0 + 1 - \delta^n = 0 (3)$$

and

$$t_0 + t_1 + t_2 + t_3 = 2(\delta - 1) \tag{4}$$

It is not hard to get the solutions. For example δ is the root of

$$\delta^n(\delta^3 - \delta^2 - \delta) + \delta^3 + \delta - 1 = 0$$

- $\gamma(t) = [1:t:t^2:t^4]$
- $ightharpoonup \gamma(t_i) = T(e_i)$, i.e. the *i*-th column of $T = \lambda_i (1, t_i, t_i^2, t_i^4)^t$.
- ► $S(e_i) = T(e_{i+1})$ for i = 0, 1, 2 and $S(e_3) = F^{-(n-1)}|_C T(e_0)$

Thus we determine two automorphisms in \mathbb{P}^3 , S, T "almost". Since F fixes the singular point, $\gamma(\infty)$, we can determine the λ_i by setting

$$T[1:1:1:1] = \gamma(\infty)$$
, and $S[1:1:1:1] = \gamma(\infty)$

$F|_C$ determines F:

Suppose $F|_C: \gamma(t) \mapsto \gamma(\delta t + 1 - \delta)$. For each $p \in \mathbb{P}^3 \setminus C$, we have

• either $p \in T(\{x_i = 0\})$ for some i: thus we have

$$F: p \mapsto S(e_i)$$

- or $p \in (\bigcup_i T(\{x_i = 0\}))^c$:
 - ▶ H_i : the unique hyperplane containing $\{e_j, j \neq i\}$ and p. ⇒ there is $\omega_i \in C$ such that $H_i \cap C = \{\omega_i, e_j, j \neq i\}$.
 - ▶ Since H_i contains three points of indeterminacy, $F(H_i)$ will be again a hyperplane determined by the $F|_{C}(e_j), j \neq i$ and $F|_{C}(\omega_i)$.
 - $F(p) = \cap F(H_i)$

Theorem

Suppose $\delta \in \mathbb{C}^*$ and $t_j \in \mathbb{C}$, $0 \leq j \leq k$, are distinct parameters satisfying $\sum t_j \neq 0$. Then there exists a unique basic cremona map $F = S \circ J \circ T^{-1}$ and $\tau \in \mathbb{C}$ such that

- ▶ F properly fixes C with $F|_C$ given by $F(\gamma(t)) = \gamma(\delta t + \tau)$.
- $ightharpoonup \gamma(t_j) = T(e_j) \text{ for each } 0 \leq j \leq k.$

Specifically,

- $au = \frac{k-1}{k+1} \delta \sum t_j$; and
- $S(e_j) = \gamma \left(\delta t_j \frac{2\tau}{k-1} \right).$

Theorem (Bedford-Diller-K)

Suppose F is a basic cremona map on \mathbb{P}^k such that

- ► F fixes $C = \{\gamma(t) = [1:t:t^2:\dots:t^{k-1}:t^{k+1}]\}$ and $F(\gamma(\infty)) = (\gamma(\infty))$
- $ightharpoonup C \cap Ind(F) = \{T(e_i), i = 0, 1, \dots, k\}$
- $ightharpoonup F: T(\{x_i=0\}) \mapsto S(e_i) = T(e_{i+1}) \text{ for } i=0,1,k-1$
- ► $F: T(\{x_k = 0\}) \mapsto S(e_k) \to \cdots \to F^{n-1}S(e_k) = T(e_0).$

Then F is linearly conjugate to $L \circ J$ where $L = T^{-1} \circ S$ and

Theorem

$$L = \begin{pmatrix} 0 & 0 & & & 0 & 1\\ \beta_1 & 0 & & & 0 & 1 - \beta_1\\ 0 & \beta_2 & 0 & & 0 & 1 - \beta_2\\ & & \ddots & \ddots & & \vdots\\ 0 & & 0 & \beta_{k-1} & 0 & 1 - \beta_{k-1}\\ 0 & & & 0 & \beta_k & 1 - \beta_k \end{pmatrix}$$

and $\beta_i = (\delta^i - 1)/(\delta(\delta^{k+1} - \delta^i))$ for i = 1, ..., k and δ is a valois conjugate of the largest real root of $\delta^n(\delta^{k+2} - \delta^{k+1} - \delta^k + 1) + \delta^{k+2} - \delta^2 - \delta + 1 = 0$

The same procedure works with other invariant curves:

▶ A rational normal curve with its tangent line.

$$\gamma_1(t) = [1:t:t^2:\dots:t^k], \quad \gamma_2(t) = [0:\dots:0:1:-t]$$

Every point of indeterminacy is in the rational normal curve $\{\gamma_1(t)\}$

 \triangleright k+1 concurrent lines in general position.

$$\gamma_0(t) = [-t:1:\dots:1], \gamma_i(t) = [t:0:\dots:1:\dots:0]$$

Each line contains exactly one point of indeterminacy.

Let $\pi: X \to \mathbb{P}^k$ be a blowup of N points $\{\alpha_1, \dots, \alpha_N\}$

- 1. E_0 : the class of a generic hypersurface in X
- 2. E_i : the class of the exceptional divisor over $\alpha_j, 1 \leq j \neq N$
- 3. $\operatorname{Pic}(X) = \langle E_0, E_1, \dots, E_N \rangle$

Let us define a symmetric bilinear form on Pic(X) as follows

$$\langle \alpha, \beta \rangle := \alpha \cdot \beta \cdot \Phi \qquad \alpha, \beta \in \text{Pic}(X)$$

where

$$\Phi = (k-1)E_0^{k-2} + (-1)^k \sum_j E_j^{k-2} \in H^{k-2,k-2}(X)$$

and $D^n = D \cdot D \cdots D$ is a *n*-fold intersection product.

$$\langle \alpha, \beta \rangle := \alpha \cdot \beta \cdot \Phi \qquad \alpha, \beta \in \operatorname{Pic}(X)$$

where

$$\Phi = (k-1)E_0^{k-2} + (-1)^k \sum_j E_j^{k-2} \in H^{k-2,k-2}(X)$$

1.
$$\langle E_0, E_0 \rangle = k - 1, \ \langle E_i, E_i \rangle = -1 \text{ for } i = 1, \dots, N$$

2.
$$\langle E_i, E_j \rangle = 0$$
 for $0 \le i \ne j \le N$

Let $F: X \dashrightarrow X$ be a pseudo-automorphism that is obtained as lifts of basic cremona map f.

- ▶ f has k+1 points of indeterminacy, $\alpha_1, \ldots, \alpha_{k+1}$
- ightharpoonup Each exceptional hyperplane contains exactly k points of indeterminacy.

$$F^*E_i = \begin{cases} \text{either} & E_j & \text{for some } j \ge k+2 \\ \text{or} & E_0 - \sum_{s=1}^k E_{j_s} \end{cases}$$

- ▶ The degree of f = k.
- ▶ The pre-image of a generic hyperplane contains each point of indeterminacy with multiplicity k-1.

$$F^*E_0 = kE_0 - (k-1)\sum_{i=1}^{k+1} E_i$$

$$\langle F^* E_0, F^* E_0 \rangle = \langle k E_0 - (k-1) \sum_{i=1}^{k+1} E_i, k E_0 - (k-1) \sum_{i=1}^{k+1} E_i \rangle$$

$$= k^2 \langle E_0, E_0 \rangle + (k-1)^2 \sum_{i=1}^{k+1} \langle E_i, E_i \rangle = k-1$$

$$\langle E_0 - \sum_{s=1}^k E_{j_s}, E_0 - \sum_{s=1}^k E_{j_s} \rangle = \langle E_0, E_0 \rangle + \sum_{s=1}^k \langle E_{j_s}, E_{j_s} \rangle$$

$$= k - 1 - k = -1 = \langle E_i, E_i \rangle$$

Thus

$$\langle F^*E_i, F^*E_i \rangle = \langle E_i, E_i \rangle$$

For $i \neq j$, $\langle F^*E_i, F^*E_j \rangle$ is one of the followings

$$\langle kE_0 - (k-1) \sum_{i=1}^{k+1} E_i, E_0 - \sum_{1 \le i \le k+1, i \ne j} E_i \rangle$$

$$= k(k-1) - (k-1)k = 0$$

$$\langle kE_0 - (k-1) \sum_{i=1}^{k+1} E_i, E_j \rangle \text{ for some } j \ge k+2$$

$$= 0$$

Thus

$$\langle F^*E_i, F^*E_j \rangle = \langle E_i, E_j \rangle$$

Theorem (Bedford-Diller-K)

Let $F: X \dashrightarrow X$ be a pseudo-automorphism that is obtained as lifts of basic cremona map on \mathbb{P}^k . Then

- 1. F^* preserves the bilinear form $\langle \cdot, \cdot \rangle$.
- 2. F^* belongs to the generalized Weyl group W(2, k+1, N-k-1).

Remark

- \triangleright F realizes an element in the generalized Weyl group.
- ▶ The one we constructed earlier realizes the coxeter element in W(2, k+1, N-k-1). Thus this map has the smallest dynamical degree > 1 among all pseudo-automorphisms on X which preserve the bilinear form we just defined.
- \triangleright The dynamical degree of F is given by a Salem number.

More pseudo-automorphisms?

The cremona involution on multi-projective space $(\mathbb{P}^k)^m$

$$J:(x^{(1)},\ldots,x^{(m)})\mapsto (1/x^{(1)},x^{(2)}/x^{(1)},\ldots,x^{(m)}/x^{(1)})$$

where
$$x^{(j)}/x^{(1)} = [x_0^{(j)}/x_0^{(1)} : \dots : x_k^{(j)}/x_k^{(1)}]$$

Basic Cremona map $F = S \circ \rho \circ J \circ T^{-1}$ where

- $ightharpoonup S = (S_i), T = (T_i) \in (PGL(k+1,(C)))^m$
- $\rho: (x^{(1)}, \dots, x^{(m)}) \mapsto (x^{(p(1))}, \dots, x^{(p(m))})$ where p is a permutation of $\{1, 2, \dots, m\}$.

The Symmetric Bilinear from on $(\mathbb{P}^k)^m$

Let $\pi: X \to (P^k)^m$ be a blowup of N points $\{\alpha_1, \dots, \alpha_N\}$

- 1. H_i : the class of $\mathbb{P}^k \times \cdots \times H \times \cdots \times \mathbb{P}^k$ where H is a generic hyperplane in \mathbb{P}^k and H is in the i-th slot.
- 2. E_i : the class of the exceptional divisor over $\alpha_j, 1 \leq j \neq N$
- 3. $Pic(X) = \langle H_1, H_2, \dots, H_m, E_1, \dots, E_N \rangle$

Let us define a symmetric bilinear form on Pic(X) as follows

$$\begin{split} \langle \alpha, \beta \rangle &:= \alpha \cdot \beta \cdot \Phi \qquad \alpha, \beta \in \mathrm{Pic}(X) \\ \Phi &= (k-1) \sum_{i=1}^m \left(H_i^{k-2} \prod_{j \neq i} H_j^{k-4} \right) \\ &+ k \sum_{1 \leq i \neq j \leq m} \left(H_i^{k-1} H_j^{k-1} \prod_{\ell \neq i, j} H_\ell^k \right) + (-1)^{km} \sum_j E_j^{mk-2} \end{split}$$

and $D^n = D \cdot D \cdots D$ is a *n*-fold intersection product.

Theorem

Let $F: X \dashrightarrow X$ be a pseudo-automorphism that is obtained as lifts of basic cremona map on $(\mathbb{P}^k)^m$. Then

- 1. F^* preserves the bilinear form $\langle \cdot, \cdot \rangle$.
- 2. F^* belongs to the generalized Weyl group W(m+1, k+1, N-k-1).

If $F: X \dashrightarrow X$ be a pseudo-automorphism that is obtained as lifts of basic cremona map $f = S \circ \rho \circ J \circ T^{-1}$ on $(\mathbb{P}^k)^m$, Then we see

$$F^*H_1 = kH_{p(1)} - (k-1)\sum_{i=1}^{k+1} E_i$$
$$F^*H_j = kH_{p(1)} + H_{p(j)} - k\sum_{i=1}^{k+1} E_i, \quad j \neq 1$$

 $f = L \circ \rho \circ J$ on $(\mathbb{P}^k)^m$ preserves k+1 concurrent lines and f lifts to a pseudo automorphism on a blowup of $(\mathbb{P}^k)^m$.

$$L_{j} = \begin{pmatrix} 0 & 0 & 0 & 0 & s_{j} \\ v & 0 & 0 & 0 & s_{j} - v \\ 0 & v & 0 & 0 & s_{j} - v \\ 0 & 0 & \ddots & 0 & s_{j} - v \\ 0 & 0 & 0 & v & s_{j} - v \end{pmatrix},$$

where

$$v = -\alpha \frac{\alpha^m - 1}{\alpha - 1}, \ s_j = \frac{(\alpha^m - 1)(\alpha^{j+1} - 1)}{\alpha^j (\alpha - 1)(\alpha^{m-j} - 1)}$$

for j = 0, ..., m - 1.