Matings of Cubic Polynomials with a Fixed Critical Point

Thomas Sharland

Institute of Mathematical Sciences
Stony Brook University
22nd August 2014
ICM Satellite Conference, Gyeongju
(1) Introduction

- Standard Definitions
- Matings

2 Known Results for matings
(3) Cubic polynomials with a fixed critical point

4 Matings of pairs of maps in \mathcal{S}_{1}

- Topological Matings
- Thurston Obstructions

Matings: a quick guide

Mating allows us to construct a rational map by gluing together two polynomials:

Matings: a quick guide

Mating allows us to construct a rational map by gluing together two polynomials:

Matings：a quick guide

Mating allows us to construct a rational map by gluing together two polynomials：

Definitions.

Let $f: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ be a rational map.

- The Julia set $J(f)$ is the closure of the set of repelling periodic points of f.
- The Fatou set $F(f)$ is $\widehat{\mathbb{C}} \backslash J(f)$.

Definitions.

Let $f: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ be a rational map.

- The Julia set $J(f)$ is the closure of the set of repelling periodic points of f.
- The Fatou set $F(f)$ is $\widehat{\mathbb{C}} \backslash J(f)$.

If f is a polynomial

- The point ∞ is a superattracting fixed point.
- The filled Julia set is $K(f)=\left\{z \in \widehat{\mathbb{C}} \mid f^{\circ n}(z) \nrightarrow \infty\right\}$, so that $J(f)=\partial K(f)$

Böttcher's theorem and external rays

There exists a map ϕ which is an analytic conjugacy between f on $\widehat{\mathbb{C}} \backslash K(f)$ and the map $z \mapsto z^{d}$ on $\widehat{\mathbb{C}} \backslash \overline{\mathbb{D}}$ and such that ϕ is asymptotic to the identity at ∞.

Böttcher's theorem and external rays

There exists a map ϕ which is an analytic conjugacy between f on $\widehat{\mathbb{C}} \backslash K(f)$ and the map $z \mapsto z^{d}$ on $\widehat{\mathbb{C}} \backslash \overline{\mathbb{D}}$ and such that ϕ is asymptotic to the identity at ∞.

- $R_{\theta}=\phi^{-1}\left\{r e^{2 \pi i \theta} \mid r \in(1, \infty)\right\}$ is called the external ray of angle θ.
- If $J(f)$ is locally connected, the landing point
$\gamma(\theta)=\lim _{r \rightarrow 1} \phi^{-1}\left(r e^{2 \pi i \theta}\right)$ exists for all θ and belongs to $J(f)$.
- We have the identities $f\left(R_{\theta}\right)=R_{d \theta}$ and $f(\gamma(\theta))=\gamma(d \theta)$.

Formal Matings

For $i=1,2$, let f_{i} be monic degree d polynomials. Define $\widetilde{\mathbb{C}}=\mathbb{C} \cup\left\{\infty \cdot e^{2 \pi i s} \mid s \in \mathbb{R} / \mathbb{Z}\right\}$.

Formal Matings

For $i=1,2$, let f_{i} be monic degree d polynomials. Define $\widetilde{\mathbb{C}}=\mathbb{C} \cup\left\{\infty \cdot e^{2 \pi i s} \mid s \in \mathbb{R} / \mathbb{Z}\right\}$.

- Extend f_{1} and f_{2} to the boundary circle at infinity, e.g. $f_{1}\left(\infty \cdot e^{2 \pi i s}\right)=\infty \cdot e^{2 d \pi i s}$.
- Define $S_{f_{1}, f_{2}}^{2}=\widetilde{\mathbb{C}}_{f_{1}} \uplus \widetilde{\mathbb{C}}_{f_{2}} /\left\{\left(\infty \cdot e^{2 \pi i s}, f_{1}\right) \sim\left(\infty \cdot e^{-2 \pi i s}, f_{2}\right)\right\}$.

Formal Matings

For $i=1,2$, let f_{i} be monic degree d polynomials. Define $\widetilde{\mathbb{C}}=\mathbb{C} \cup\left\{\infty \cdot e^{2 \pi i s} \mid s \in \mathbb{R} / \mathbb{Z}\right\}$.

- Extend f_{1} and f_{2} to the boundary circle at infinity, e.g. $f_{1}\left(\infty \cdot e^{2 \pi i s}\right)=\infty \cdot e^{2 d \pi i s}$.
- Define $S_{f_{1}, f_{2}}^{2}=\widetilde{\mathbb{C}}_{f_{1}} \uplus \widetilde{\mathbb{C}}_{f_{2}} /\left\{\left(\infty \cdot e^{2 \pi i s}, f_{1}\right) \sim\left(\infty \cdot e^{-2 \pi i s}, f_{2}\right)\right\}$.
- The formal mating is the degree d branched covering $f_{1} \uplus f_{2}: S_{f_{1}, f_{2}}^{2} \rightarrow S_{f_{1}, f_{2}}^{2}$ given by
- $f_{1} \uplus f_{2}=f_{1}$ on $\widetilde{\mathbb{C}}_{f_{1}}$
- $f_{1} \uplus f_{2}=f_{2}$ on $\widetilde{\mathbb{C}}_{f_{2}}$

Topological Matings

For $i=1,2$, let f_{i} be monic degree d with locally connected filled Julia set $K_{i}=K\left(f_{i}\right)$.

Topological Matings

For $i=1,2$, let f_{i} be monic degree d with locally connected filled Julia set $K_{i}=K\left(f_{i}\right)$.

- We define a new map $f_{1} \Perp f_{2}$ on the topological space $K_{1} \Perp K_{2}$ as follows.

Topological Matings

For $i=1,2$ ，let f_{i} be monic degree d with locally connected filled Julia set $K_{i}=K\left(f_{i}\right)$ ．
－We define a new map $f_{1} \Perp f_{2}$ on the topological space $K_{1} \Perp K_{2}$ as follows．
－Take the disjoint union of K_{1} and K_{2} ．
－$K_{1} \Perp K_{2}$ is the quotient space formed by identifying $\gamma_{1}(\theta)$ with $\gamma_{2}(-\theta)$ ．
－The maps f_{i} on the K_{i} fit together to form a new map $f_{1} \Perp f_{2}$ ．

Topological Matings

For $i=1,2$, let f_{i} be monic degree d with locally connected filled Julia set $K_{i}=K\left(f_{i}\right)$.

- We define a new map $f_{1} \Perp f_{2}$ on the topological space $K_{1} \Perp K_{2}$ as follows.
- Take the disjoint union of K_{1} and K_{2}.
- $K_{1} \Perp K_{2}$ is the quotient space formed by identifying $\gamma_{1}(\theta)$ with $\gamma_{2}(-\theta)$.
- The maps f_{i} on the K_{i} fit together to form a new map $f_{1} \Perp f_{2}$.
- The map $f_{1} \Perp f_{2}$ is the topological mating of f_{1} and f_{2}. It is a branched cover of the topological space $K_{1} \Perp K_{2}$.

Topological Matings

For $i=1,2$, let f_{i} be monic degree d with locally connected filled Julia set $K_{i}=K\left(f_{i}\right)$.

- We define a new map $f_{1} \Perp f_{2}$ on the topological space $K_{1} \Perp K_{2}$ as follows.
- Take the disjoint union of K_{1} and K_{2}.
- $K_{1} \Perp K_{2}$ is the quotient space formed by identifying $\gamma_{1}(\theta)$ with $\gamma_{2}(-\theta)$.
- The maps f_{i} on the K_{i} fit together to form a new map $f_{1} \Perp f_{2}$.
- The map $f_{1} \Perp f_{2}$ is the topological mating of f_{1} and f_{2}. It is a branched cover of the topological space $K_{1} \Perp K_{2}$.
We say f_{1} and f_{2} are topologically mateable if this quotient $K_{1} \Perp K_{2}$ is a sphere.

Thurston's Theorem

Let $F: \Sigma \rightarrow \Sigma$ and $\widehat{F}: \widehat{\Sigma} \rightarrow \widehat{\Sigma}$ be postcritically finite orientation-preserving branched self-coverings of topological 2 -spheres. An equivalence is given by a pair of orientation-preserving homeomorphisms (Φ, Ψ) from Σ to $\widehat{\Sigma}$ such that

- $\left.\Phi\right|_{P_{F}}=\left.\Psi\right|_{P_{F}}$
- $\Phi \circ F=\widehat{F} \circ \Psi$
- Φ and Ψ are isotopic via a family of homeomorphisms $t \mapsto \Phi_{t}$ which is constant on P_{F}.

Thurston's Theorem

Let $F: \Sigma \rightarrow \Sigma$ and $\widehat{F}: \widehat{\Sigma} \rightarrow \widehat{\Sigma}$ be postcritically finite orientation-preserving branched self-coverings of topological 2 -spheres. An equivalence is given by a pair of orientation-preserving homeomorphisms (Φ, Ψ) from Σ to $\widehat{\Sigma}$ such that

- $\left.\Phi\right|_{P_{F}}=\left.\Psi\right|_{P_{F}}$
- $\Phi \circ F=\widehat{F} \circ \Psi$
- Φ and Ψ are isotopic via a family of homeomorphisms $t \mapsto \Phi_{t}$ which is constant on P_{F}.

Theorem (Thurston)

Let $F: \Sigma \rightarrow \Sigma$ be a postcritically finite branched cover with hyperbolic orbifold. Then F is equivalent to a rational map if and only if F has no Thurston obstructions. This rational map is unique up to Möbius transformation.

We say f_{1} and f_{2} are mateable if $f_{1} \Perp f_{2}$ is equivalent to a rational map on $\widehat{\mathbb{C}}$.

Thurston obstructions

Let $F: S^{2} \rightarrow S^{2}$ be a branched covering and $\Gamma=\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}$ a multicurve in $S^{2} \backslash P_{F}$.

Thurston obstructions

Let $F: S^{2} \rightarrow S^{2}$ be a branched covering and $\Gamma=\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}$ a multicurve in $S^{2} \backslash P_{F}$.

Definition

The Thurston linear transformation $F_{\Gamma}: \mathbb{R}^{\Gamma} \rightarrow \mathbb{R}^{\Gamma}$ is defined by

$$
F_{\Gamma}(\gamma)=\sum_{\gamma^{\prime} \subset F^{-1}(\gamma)} \frac{1}{\operatorname{deg}\left(F: \gamma^{\prime} \rightarrow \gamma\right)}\left[\gamma^{\prime}\right]_{\Gamma}
$$

where $\left[\gamma^{\prime}\right]_{\Gamma} \in \Gamma$ is isotopic to γ^{\prime}. Γ is a Thurston obstruction if its leading eigenvalue is greater than or equal to 1.

Thurston obstructions

Let $F: S^{2} \rightarrow S^{2}$ be a branched covering and $\Gamma=\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}$ a multicurve in $S^{2} \backslash P_{F}$.

Definition

The Thurston linear transformation $F_{\Gamma}: \mathbb{R}^{\Gamma} \rightarrow \mathbb{R}^{\Gamma}$ is defined by

$$
F_{\Gamma}(\gamma)=\sum_{\gamma^{\prime} \subset F^{-1}(\gamma)} \frac{1}{\operatorname{deg}\left(F: \gamma^{\prime} \rightarrow \gamma\right)}\left[\gamma^{\prime}\right]_{\Gamma}
$$

where $\left[\gamma^{\prime}\right]_{\Gamma} \in \Gamma$ is isotopic to $\gamma^{\prime} . \Gamma$ is a Thurston obstruction if its leading eigenvalue is greater than or equal to 1.

Definition

A multicurve is called a Levy cycle if for $i=1,2, \ldots, n$, the curve γ_{i-1} is homotopic (rel P_{F}) to a component γ_{i-1}^{\prime} of $F^{-1}\left(\gamma_{i}\right)$ and the map $F: \gamma_{i}^{\prime} \rightarrow \gamma_{i}$ is a homeomorphism

Quadratic Case

The quadratic (or bicritical) case is reasonably well understood:

Quadratic Case

The quadratic (or bicritical) case is reasonably well understood:

> Theorem (Rees, Shishikura, Tan)
> In the bicritical case, if f_{1} and f_{2} do not lie in conjugate limbs of \mathcal{M}, then $K_{1} \Perp K_{2}$ is homeomorphic to S^{2} and we can give this sphere a unique conformal structure to make $f_{1} \Perp f_{2}$ a holomorphic degree d rational map.

- Essentially, this says that in the quadratic case, the quotient is a sphere if and only if the resulting map is equivalent to a rational map. All obstructions are Levy cycles.

Quadratic Case

The quadratic (or bicritical) case is reasonably well understood:

- Essentially, this says that in the quadratic case, the quotient is a sphere if and only if the resulting map is equivalent to a rational map. All obstructions are Levy cycles.
- The mating is obstructed if and only if the two α-fixed points belong to the same ray class.

Other obstructions

However, there exist other obstructions in higher degrees: Consider the following

Both polynomials are in \mathcal{S}_{3}. The quotient is a sphere, but the mating is not a rational map.

Levy cycles and external rays

There is a close link between Levy cycles and loops of external rays in the formal mating.

Theorem (Tan 1992, Shishikura-Tan 2000)

Let $F=f \Perp g$.

- Each Levy cycle Γ for F corresponds to a unique periodic cycle of ray classes (the "limit set"). In particular, if Γ is not a degenerate Levy cycle, then each ray class contains a closed loop.
- If a periodic ray class contains a closed loop then each boundary curve of a tubular neighbourhood generates a Levy cycle.

The space \mathcal{S}_{1}.

There is only one escape region in \mathcal{S}_{1}. In particular this means that the intersection of \mathcal{S}_{1} with the connectedness locus is combinatorially a tree.

The space \mathcal{S}_{1} ．

There is only one escape region in \mathcal{S}_{1} ．In particular this means that the intersection of \mathcal{S}_{1} with the connectedness locus is combinatorially a tree．

This is not true for $\mathcal{S}_{2}, \mathcal{S}_{3} \ldots$

Limbs in \mathcal{S}_{1}

Like the Mandelbrot set, \mathcal{S}_{1} has a main hyperbolic component \mathcal{H}_{0}. Its centre is $z \mapsto z^{3}$.

Limbs in \mathcal{S}_{1}

Like the Mandelbrot set， \mathcal{S}_{1} has a main hyperbolic component \mathcal{H}_{0} ．Its centre is $z \mapsto z^{3}$ ．

Attached to this component are various limbs．

Limbs in \mathcal{S}_{1}

Like the Mandelbrot set， \mathcal{S}_{1} has a main hyperbolic component \mathcal{H}_{0} ．Its centre is $z \mapsto z^{3}$ ．

Attached to this component are various limbs．

Limbs are characterised by the existence of α－periodic cycles．We will look at an example，one of the $\frac{2}{3}$－limbs in \mathcal{S}_{1} ．

Denote by U the Fatou component containing the fixed critical point a. Maps in the $\frac{p}{q}$-limb have a "dynamical limb" containing the free critical point attached to the landing point of the internal ray of angle $\frac{p}{q}$ in U.

Denote by U the Fatou component containing the fixed critical point a. Maps in the $\frac{p}{q}$-limb have a "dynamical limb" containing the free critical point attached to the landing point of the internal ray of angle $\frac{p}{q}$ in U.

This gives us a distinguished periodic cycle which we call the α-periodic cycle. Furthermore, the angles of the external rays landing at this periodic cycle persist in the limb.

Topological Mating

Let f_{1}, f_{2} be postcritically finite polynomials in \mathcal{S}_{1} with filled Julia sets K_{1} and K_{2} respectively.

Question

When is the quotient space $K_{1} \Perp K_{2}$ a sphere (when are f_{1} and f_{2} topologically mateable)?

Topological Mating

Let f_{1}, f_{2} be postcritically finite polynomials in \mathcal{S}_{1} with filled Julia sets K_{1} and K_{2} respectively.

Question

When is the quotient space $K_{1} \Perp K_{2}$ a sphere (when are f_{1} and f_{2} topologically mateable)?

In other words, when do the ray equivalence classes contain loops?

Topological Mating

Let f_{1}, f_{2} be postcritically finite polynomials in \mathcal{S}_{1} with filled Julia sets K_{1} and K_{2} respectively.

Question

When is the quotient space $K_{1} \Perp K_{2}$ a sphere (when are f_{1} and f_{2} topologically mateable)?

In other words, when do the ray equivalence classes contain loops?

Recall that for quadratics, the ray classes contained loops precisely when the fixed points α_{1} and α_{2} belong to the same ray class.

Example

Let f_{1} be the period 2 map in the $\frac{2}{3}$-limb.

Example

Let f_{1} be the period 2 map in the $\frac{2}{3}$-limb.

Stony Brook
University

Example

This map resides here in parameter space...

Example

This map resides here in parameter space...
\ldots and the mating with the conjugate map is obstructed...

Example

This map resides here in parameter space...
... and the mating with the conjugate map is obstructed. . .

Example

This map resides here in parameter space...
... and the mating with the conjugate map is obstructed...
\ldots. as is the mating with this complementary map.

Example

This map resides here in parameter space...
\ldots and the mating with the conjugate map is obstructed... \ldots. as is the mating with this complementary map.

Example

This map resides here in parameter space...
... and the mating with the conjugate map is obstructed...
\ldots. as is the mating with this complementary map.

In both cases, the α-cycles are in the same ray class(es) and these ray classes contain loops.

Characterisation of topological obstructions

Conjecture

The mating $f_{1} \Perp f_{2}$ is topologically obstructed if and only if one of the following occurs.

- f_{1} and f_{2} lie in conjugate limbs.
- f_{1} and f_{2} lie in complementary limbs.

Clearly all limbs have a conjugate limb. But when does a limb have a complementary limb?

Characterisation of topological obstructions

Conjecture

The mating $f_{1} \Perp f_{2}$ is topologically obstructed if and only if one of the following occurs.

- f_{1} and f_{2} lie in conjugate limbs.
- f_{1} and f_{2} lie in complementary limbs.

Clearly all limbs have a conjugate limb. But when does a limb have a complementary limb?

Conjecture

Let $\mathcal{C}_{t} \subset \mathcal{S}_{1}$ be a limb. Then \mathcal{C}_{t} has a complementary limb if and only if t has a non-zero rotation number under the map $t \mapsto 2 t$ on \mathbb{R} / \mathbb{Z}.

Here t represents the internal angle of the limb with respect to the type A component.

Sketch Proof

A typical example looks like this.

Sketch Proof

A typical example looks like this.

Notice the gaps between each dynamical limb also form a rotational set, corresponding to a limb with rotation number $\frac{p}{q}$.

Sketch Proof

A typical example looks like this.

Notice the gaps between each dynamical limb also form a rotational set, corresponding to a limb with rotation number $\frac{p}{q}$. We "fill" these gaps with dynamical limbs

Sketch Proof

A typical example looks like this.

Notice the gaps between each dynamical limb also form a rotational set, corresponding to a limb with rotation number $\frac{p}{q}$. We "fill" these gaps with dynamical limbs which correspond to the conjugate limb in \mathcal{S}_{1} which has rotation number $-\frac{p}{q}$.

Sketch Proof

A typical example looks like this.

Notice the gaps between each dynamical limb also form a rotational set, corresponding to a limb with rotation number $\frac{p}{q}$. We "fill" these gaps with dynamical limbs which correspond to the conjugate limb in \mathcal{S}_{1} which has rotation number $-\frac{p}{q}$.

If the limb does not have a rotation number, no such pairing of limbs exists.

Main Theorem

Theorem

Let f_{1}, f_{2} be postcritically finite polynomials in \mathcal{S}_{1} with α-periodic cycles $\left\langle\alpha_{1}\right\rangle$ and $\left\langle\alpha_{2}\right\rangle$ respectively. Then the mating is obstructed if and only if $\left[\left\langle\alpha_{1}\right\rangle\right]=\left[\left\langle\alpha_{2}\right\rangle\right]$ and this ray class contains a loop.

Main Theorem

Theorem

Let f_{1}, f_{2} be postcritically finite polynomials in \mathcal{S}_{1} with α-periodic cycles $\left\langle\alpha_{1}\right\rangle$ and $\left\langle\alpha_{2}\right\rangle$ respectively. Then the mating is obstructed if and only if $\left[\left\langle\alpha_{1}\right\rangle\right]=\left[\left\langle\alpha_{2}\right\rangle\right]$ and this ray class contains a loop.

Remark

There exist non-obstructed matings where $\left[\left\langle\alpha_{1}\right\rangle\right]=\left[\left\langle\alpha_{2}\right\rangle\right]$.

Main Theorem

Theorem

Let f_{1}, f_{2} be postcritically finite polynomials in \mathcal{S}_{1} with α-periodic cycles $\left\langle\alpha_{1}\right\rangle$ and $\left\langle\alpha_{2}\right\rangle$ respectively. Then the mating is obstructed if and only if $\left[\left\langle\alpha_{1}\right\rangle\right]=\left[\left\langle\alpha_{2}\right\rangle\right]$ and this ray class contains a loop.

Remark

There exist non-obstructed matings where $\left[\left\langle\alpha_{1}\right\rangle\right]=\left[\left\langle\alpha_{2}\right\rangle\right]$.

k

Some general results for obstructions

To study Thurston obstructions, we need a couple of lemmas.

Lemma

Let Γ be an irreducible multicurve for a brached covering F which is not a removable Levy cycle. Then there exists a disk component of $S^{2} \backslash \Gamma$ such that $F^{-1}(D)$ contains a non-disk component.

Some general results for obstructions

To study Thurston obstructions, we need a couple of lemmas.

Lemma

Let Γ be an irreducible multicurve for a brached covering F which is not a removable Levy cycle. Then there exists a disk component of $S^{2} \backslash \Gamma$ such that $F^{-1}(D)$ contains a non-disk component.

Topologically, it is easy to see that such a disk component must contain (at least) two critical values of F.

Some general results for obstructions

To study Thurston obstructions, we need a couple of lemmas.

Lemma

Let Γ be an irreducible multicurve for a brached covering F which is not a removable Levy cycle. Then there exists a disk component of $S^{2} \backslash \Gamma$ such that $F^{-1}(D)$ contains a non-disk component.

Topologically, it is easy to see that such a disk component must contain (at least) two critical values of F.

Lemma

Any connected component of $S^{2} \backslash F^{-1}(\Gamma)$ is isotopically contained in a connected component of $S^{2} \backslash \Gamma$.

Matings in \mathcal{S}_{1}

The (formal) mating of two maps in \mathcal{S}_{1} is a cubic branched covering with two fixed critical points.

Matings in \mathcal{S}_{1}

The (formal) mating of two maps in \mathcal{S}_{1} is a cubic branched covering with two fixed critical points.
Suppose Γ is an irreducible obstruction which is not a removable Levy cycle. Then there is a disk component D for which $F^{-1}(D)$ contains a non-disk component. We have a dichotomy:

Matings in \mathcal{S}_{1}

The (formal) mating of two maps in \mathcal{S}_{1} is a cubic branched covering with two fixed critical points.
Suppose Γ is an irreducible obstruction which is not a removable Levy cycle. Then there is a disk component D for which $F^{-1}(D)$ contains a non-disk component. We have a dichotomy:
(1) D contains a fixed critical point.
(2) D contains both "free" critical values.

Matings in \mathcal{S}_{1}

The (formal) mating of two maps in \mathcal{S}_{1} is a cubic branched covering with two fixed critical points.
Suppose Γ is an irreducible obstruction which is not a removable Levy cycle. Then there is a disk component D for which $F^{-1}(D)$ contains a non-disk component. We have a dichotomy:
(1) D contains a fixed critical point.
(2) D contains both "free" critical values.

The first case is a "Newton-like" case, the second a "quadratic-like" case. We will show in both cases that Γ must contain a Levy cycle.

Case 1: Newton-like

This case is similar to the case of cubic Newton maps (Tan '97).

Case 1: Newton-like

This case is similar to the case of cubic Newton maps (Tan '97).
Let Γ be an irreducible obstruction for F. Suppose D is a disk component of $S^{2} \backslash \Gamma$ and that

- $F^{-1}(D)$ contains a non-disk component U
- D contains a fixed critical point c.

Case 1: Newton-like

This case is similar to the case of cubic Newton maps (Tan '97). Let Γ be an irreducible obstruction for F. Suppose D is a disk component of $S^{2} \backslash \Gamma$ and that

- $F^{-1}(D)$ contains a non-disk component U
- D contains a fixed critical point c.

> In particular, one component U of $F^{-1}(D)$ must contain c, and so is isotopically contained in D.

Case 1: Newton-like

This case is similar to the case of cubic Newton maps (Tan '97). Let Γ be an irreducible obstruction for F. Suppose D is a disk component of $S^{2} \backslash \Gamma$ and that

- $F^{-1}(D)$ contains a non-disk component U
- D contains a fixed critical point c.

In particular, one component U of $F^{-1}(D)$ must contain c, and so is isotopically contained in
D. Hence there is a
curve $\gamma \subset F^{-1}(\gamma)$
isotopic to γ such that
$F: \gamma^{\prime} \rightarrow \gamma$ is a
homeomorphism.

Stony Brook University

Case 2: Quadratic-like

This case has much in common with the case of quadratic matings (Rees-Shishikura-Tan Theorem).

Case 2: Quadratic-like

This case has much in common with the case of quadratic matings (Rees-Shishikura-Tan Theorem).
Let Γ be an irreducible obstruction for F. Suppose D is a disk component of $S^{2} \backslash \Gamma$ and that

- $F^{-1}(D)$ contains a non-disk component U
- D contains both free critical values.

Case 2: Quadratic-like

This case has much in common with the case of quadratic matings (Rees-Shishikura-Tan Theorem).
Let Γ be an irreducible obstruction for F. Suppose D is a disk component of $S^{2} \backslash \Gamma$ and that

- $F^{-1}(D)$ contains a non-disk component U
- D contains both free critical values.

By a generalised "Rees'
Lemma", the set of disk components of $S^{2} \backslash \Gamma$ form a sequence
$D=D_{1}, D_{2}, \ldots, D_{p} \ldots$

Case 2: Quadratic-like

This case has much in common with the case of quadratic matings (Rees-Shishikura-Tan Theorem).

Let Γ be an irreducible obstruction for F. Suppose D is a disk component of $S^{2} \backslash \Gamma$ and that

- $F^{-1}(D)$ contains a non-disk component U
- D contains both free critical values.

By a generalised "Rees' Lemma", the set of disk components of $S^{2} \backslash \Gamma$ form a sequence
$D=D_{1}, D_{2}, \ldots, D_{p} \ldots$ and we can construct a Levy cycle by showing every curve has 3 pre-images.

Outline of proof (in progress)

Using the previous results, we argue (possibly?) as follows. There are parallels with the proof in the quadratic case.

Outline of proof (in progress)

Using the previous results, we argue (possibly?) as follows. There are parallels with the proof in the quadratic case.
(1) Every obstruction is a Levy cycle, and so has an associated limit set which is a collection of ray classes.

- These ray classes contain loops
- These ray classes contain periodic points of J_{1} and J_{2}.

Outline of proof (in progress)

Using the previous results, we argue (possibly?) as follows. There are parallels with the proof in the quadratic case.
(1) Every obstruction is a Levy cycle, and so has an associated limit set which is a collection of ray classes.

- These ray classes contain loops
- These ray classes contain periodic points of J_{1} and J_{2}.
(2) We then show that
- The ray classes are just loops (and have no endpoints)
- The periodic points are precisely the points in α_{1} and α_{2}.

Outline of proof (in progress)

Using the previous results, we argue (possibly?) as follows. There are parallels with the proof in the quadratic case.
(1) Every obstruction is a Levy cycle, and so has an associated limit set which is a collection of ray classes.

- These ray classes contain loops
- These ray classes contain periodic points of J_{1} and J_{2}.
(2) We then show that
- The ray classes are just loops (and have no endpoints)
- The periodic points are precisely the points in α_{1} and α_{2}.

Remarks

- The result generalises to the case where the polynomials are of degree d and have a fixed point of degree $d-1$ (see Roesch '07).
- Presumably something similar can be done in the case where the polynomials have two critical points and one is fixed.

Thank you for listening!

