

Critical points and Siegel disks

Pascale Rœsch

Institut of Mathematics of Marseille

2014

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● 三 ● ○へ⊙

A Siegel disk of a rational map f of degree ≥ 2 is a maximal domain on which an iterate of f is conjugated to the rotation

$$R_{ heta}(z) = e^{2i\pi\theta}z.$$

 $\boldsymbol{\theta}$ is called the rotation number.

▲ロト ▲掃 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● � � � �

Golden Mean rotation number: $f(z) = e^{2i\pi \frac{\sqrt{5}-1}{2}}z + z^2$.

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → の < ៚

Such a domain cannot contain a critical point.

One can wonder which phenomena at the boundary of a Siegel disk prevents f from having a larger domain of linearization.

$$f^k(p) = p, \quad (f^k)'(p) = \lambda \quad \text{ with } 0 < |\lambda| < 1,$$

<□> <@> < E> < E> E のQで

$$f^k(p) = p, \quad (f^k)'(p) = \lambda \quad \text{with } 0 < |\lambda| < 1,$$

the map f^k is locally conjugate to

 $z \mapsto \lambda z$

$$f^k(p)=p, \quad (f^k)'(p)=\lambda \quad ext{ with } 0<|\lambda|<1,$$

the map f^k is locally conjugate to

$$f^k(p)=p, \quad (f^k)'(p)=\lambda \quad ext{ with } 0<|\lambda|<1,$$

the map f^k is locally conjugate to

$$f^k(p)=p, \quad (f^k)'(p)=\lambda \quad ext{ with } 0<|\lambda|<1,$$

the map f^k is locally conjugate to

Also for a parabolic point: f'(p) = 1

◆ロト ◆母 ト ◆ 臣 ト ◆ 臣 ト ○臣 ・ のへぐ

Also for a parabolic point: f'(p) = 1

There is a critical point at the boundary of the linearizing domain.

イロト イロト イヨト イヨト

Does the boundary of a Siegel disk always contain a critical point?

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Does the boundary of a Siegel disk always contain a critical point?

NO.

<□> <圖> < E> < E> E のQ@

Does the boundary of a Siegel disk always contain a critical point?

NO.

Ghys and Herman gave the first examples of polynomials having a Siegel disk without a critical point on the boundary.

In those examples of Ghys and Herman, the Julia set is **NOT locally connected** .

In those examples of Ghys and Herman, the Julia set is **NOT locally connected** .

In fact, from Douady-Sullivan argument we get:

Lemma

If f is a polynomial with a Siegel disk Δ and locally connected Julia set, then there is a critical point on the boundary of Δ .

(日)、(型)、(E)、(E)、(E)、(O)(()

So,

• either there is a critical point on the boundary of Δ ;

• or the Julia set is not locally connected.

So,

- either there is a critical point on the boundary of Δ ;
- or the Julia set is not locally connected.

Both cases can occur simultaneously: in degree three take a golden mean Siegel disk and arrange a Cremer point in the Julia set...

(日)、(型)、(E)、(E)、(E)、(O)(()

So,

- either there is a critical point on the boundary of Δ;
- or the Julia set is not locally connected.

Both cases can occur simultaneously: in degree three take a golden mean Siegel disk and arrange a Cremer point in the Julia set...

Here we use

Theorem (Graczyk and Swiatek, 2003)

If a Siegel disk has a bounded type rotation number and is compactly contained in the domain of definition of the map, then its boundary contains a critical point.

(日)、(型)、(E)、(E)、(E)、(O)(()

when does the boundary of a Siegel disk contain a critical point?

when does the boundary of a Siegel disk contain a critical point?

If the Julia set is not locally connected, it does not imply that $\partial \Delta$ is not locally connected.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへで

when does the boundary of a Siegel disk contain a critical point?

If the Julia set is not locally connected, it does not imply that $\partial \Delta$ is not locally connected.

In Ghys-Herman example $\partial \Delta$ is locally connected and there are no critical points on $\partial \Delta$

(日)、(型)、(E)、(E)、(E)、(O)(()

Assume that $\partial \Delta$ is a JORDAN CURVE

- 《 ロ 》 《 団 》 《 豆 》 《 豆 》 「 豆 」 のの()

Assume that $\partial \Delta$ is a Jordan curve not containing a critical point.

- イロト イ理ト イヨト イヨト ヨー わら(

Assume that $\partial \Delta$ is a JORDAN CURVE NOT CONTAINING A CRITICAL POINT. $\mathbf{C} \setminus \overline{\Delta}$ is homeomorphic to $\mathbf{C} \setminus \overline{\mathbf{D}}$.

Assume that $\partial \Delta$ is a JORDAN CURVE NOT CONTAINING A CRITICAL POINT. $\mathbf{C} \setminus \overline{\Delta}$ is homeomorphic to $\mathbf{C} \setminus \overline{\mathbf{D}}$.

 ϕ

The pre-images of $\overline{\Delta}$ are at some distance

The map $g = \phi \circ f \circ \phi^{-1}$ is defined on a annulus around the unit circle by Schwarz reflection.

The map $g = \phi \circ f \circ \phi^{-1}$ is defined on a annulus around the unit circle by Schwarz reflection.

Assume that $\partial \Delta$ is a JORDAN CURVE NOT CONTAINING A CRITICAL POINT. $C \setminus \overline{\Delta}$ is homeomorphic to $C \setminus \overline{D}$.

The pre-images of $\overline{\Delta}$ are at some distance

The map $g = \phi \circ f \circ \phi^{-1}$ is defined on a annulus around the unit circle by Schwarz reflection.

The restriction of g to the unit circle (called external map) is an analytic diffeomorphism with rotation number θ .

The map $g = \phi \circ f \circ \phi^{-1}$ is defined on a annulus around the unit circle by Schwarz reflection.

The restriction of g to the unit circle (called external map) is an analytic diffeomorphism with rotation number θ . It is conjugated (by ψ) to the rotation R_{θ} on the unit circle.

The map $g = \phi \circ f \circ \phi^{-1}$ is defined on a annulus around the unit circle by Schwarz reflection.

The restriction of g to the unit circle (called external map) is an analytic diffeomorphism with rotation number θ . It is conjugated (by ψ) to the rotation R_{θ} on the unit circle. If ψ is analytic then it extends to a neighborhood of the unit circle. Then the rotation domain extends.

 $\rho(f) :=$ rotation number of f,

 $\mathcal{H} := \{ \theta \in \mathbf{R} \mid \forall f \in \mathcal{C}^{\omega}(\mathbf{S}^1) \text{ with } \rho(f) = \theta \text{ is conjugate to } R_{\theta} \text{ in } \mathcal{C}^{\omega}(\mathbf{S}^1) \}.$

 $\rho(f) :=$ rotation number of f,

 $\mathcal{H} := \{ \theta \in \mathbf{R} \mid \forall f \in \mathcal{C}^{\omega}(\mathbf{S}^1) \text{ with } \rho(f) = \theta \text{ is conjugate to } R_{\theta} \text{ in } \mathcal{C}^{\omega}(\mathbf{S}^1) \}.$

Theorem (Ghys)

Let f be a rational map of degree ≥ 2 , Δ a Siegel disk of period one with rotation number in \mathcal{H} .

 $\partial \Delta$ is a Jordan curve $\Longrightarrow \partial \Delta$ contains a critical point.

 $\rho(f) :=$ rotation number of f,

 $\mathcal{H} := \{ \theta \in \mathbf{R} \mid \forall f \in \mathcal{C}^{\omega}(\mathbf{S}^1) \text{ with } \rho(f) = \theta \text{ is conjugate to } R_{\theta} \text{ in } \mathcal{C}^{\omega}(\mathbf{S}^1) \}.$

Theorem (Ghys)

Let f be a rational map of degree ≥ 2 , Δ a Siegel disk of period one with rotation number in \mathcal{H} . $\partial \Delta$ is a Jordan curve $\Longrightarrow \partial \Delta$ contains a critical point.

Theorem (Herman)

The set \mathcal{H} is non empty:

Diophantine $\subset \mathcal{H}$.
Recall that several people including Petersen, Inou-Shishikura, Zhang... proved that $\partial\Delta$ is locally connected under some hypothesis on the rotation number .

Recall that several people including Petersen, Inou-Shishikura, Zhang... proved that $\partial\Delta$ is locally connected under some hypothesis on the rotation number .

For the rest of the talk we do not assume $\partial \Delta$ locally connected.

(日)、(型)、(E)、(E)、(E)、(O)(()

Theorem (Herman)

 For all rational map f with degree ≥ 2 having a Siegel disk Δ of period one with rotation number in H, f cannot be injective in a neighborhood of ∂Δ.

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = ヨー の々ぐ

Theorem (Herman)

- For all rational map f with degree ≥ 2 having a Siegel disk Δ of period one with rotation number in H, f cannot be injective in a neighborhood of ∂Δ.
- Every unicritical polynomial f(z) = z^d + c having a Siegel disk Δ of period one and with rotation number in H, has a critical point on ∂Δ.

▲ロ ▶ ▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○

Theorem (Herman)

- For all rational map f with degree ≥ 2 having a Siegel disk Δ of period one with rotation number in H, f cannot be injective in a neighborhood of ∂Δ.
- Every unicritical polynomial f(z) = z^d + c having a Siegel disk Δ of period one and with rotation number in H, has a critical point on ∂Δ.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The Theorem holds also for periodic Siegel disks.

Conjecture

The boundaries of Siegel disks of rational maps contain a critical point as soon as the rotation number is in \mathcal{H} .

◆□▶ ◆□▶ ◆ 臣▶ ★ 臣▶ 三臣 - のへぐ

Conjecture

The boundaries of Siegel disks of rational maps contain a critical point as soon as the rotation number is in \mathcal{H} .

Theorem (Chéritat-R)

rr For all polynomials with two finite critical values, a Siegel disk Δ of arbitrary period and of rotation number in \mathcal{H} , there is an element in the cycle of Δ whose boundary contains a critical point.

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = ヨー の々ぐ

Important Remark

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

If the boundary $\partial \Delta$ is not locally connected then $\overline{\Delta}$ is not necessarily full any more.

Definition

The *filled Siegel disk* $\widehat{\Delta}$ is the union of $\partial \Delta$, Δ and all bounded connected components of **C** \ Δ .

Important Remark

If the boundary $\partial \Delta$ is not locally connected then $\overline{\Delta}$ is not necessarily full any more.

Definition

The *filled Siegel disk* $\widehat{\Delta}$ is the union of $\partial \Delta$, Δ and all bounded connected components of **C** \ Δ .

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへぐ

Theorem

If all critical orbits eventually enter $\widehat{\Delta}$ then there is a critical point on $\partial \Delta$.

(日)、(型)、(E)、(E)、(E)、(O)(()

Theorem

If all critical orbits eventually enter $\widehat{\Delta}$ then there is a critical point on $\partial \Delta$.

Proof.

P is our polynomial.

• $P^n(c) \in \partial \Delta$, for some recurrent critical point c and some $n \in \mathbf{N}$.

Theorem

If all critical orbits eventually enter $\widehat{\Delta}$ then there is a critical point on $\partial \Delta$.

Proof.

P is our polynomial.

• $P^n(c) \in \partial \Delta$, for some recurrent critical point c and some $n \in \mathbf{N}$.

Otherwise, $P^n(c)$ is in the interior of $\widehat{\Delta}$: in the Fatou set. Then $\omega(c) \cap J(P)$ is finite. Contradiction with the following:

Theorem (Mañé)

There exists a recurrent critical point c such that $\partial \Delta \subset \omega(c)$.

Theorem

If all critical orbits eventually enter $\widehat{\Delta}$ then there is a critical point on $\partial \Delta$.

Proof.

P is our polynomial.

• $P^n(c) \in \partial \Delta$, for some recurrent critical point c and some $n \in \mathbf{N}$.

Otherwise, $P^n(c)$ is in the interior of $\widehat{\Delta}$: in the Fatou set. Then $\omega(c) \cap J(P)$ is finite. Contradiction with the following:

Theorem (Mañé)

There exists a recurrent critical point c such that $\partial \Delta \subset \omega(c)$.

• $c \in \partial \Delta$.

Theorem

If all critical orbits eventually enter $\widehat{\Delta}$ then there is a critical point on $\partial \Delta$.

Proof.

P is our polynomial.

• $P^n(c) \in \partial \Delta$, for some recurrent critical point c and some $n \in \mathbf{N}$.

Otherwise, $P^n(c)$ is in the interior of $\widehat{\Delta}$: in the Fatou set. Then $\omega(c) \cap J(P)$ is finite. Contradiction with the following:

Theorem (Mañé)

There exists a recurrent critical point c such that $\partial \Delta \subset \omega(c)$.

• $c \in \partial \Delta$.

c is recurrent:
$$c \in \omega(c) = \omega(P^n(c))$$

 $P(\partial \Delta) = \partial \Delta \implies \omega(P^n(c)) \subset \partial \Delta.$

Strategy of the proof

The strategy is to understand the dynamics of P restricted to the filled Siegel disk $\widehat{\Delta}$:

- assume period 1 for simplicity,
- suppose the Julia set is connected: use a polynomial-like map to restrict to the connected component containing $\widehat{\Delta}$,
- prove that $\widehat{\Delta}$ is backward invariant : $\widehat{\Delta}$ is a connected component of $P^{-1}(\widehat{\Delta})$,
- study the external map:
 - if it is a homeomorphism then prove that $\theta \notin \mathcal{H}$,
 - if it has degree > 1
 - prove that it has no non-repelling periodic points,
 - built a quadratic-like map around $\widehat{\Delta}$ since the external map is expanding,

• reduce then to a uni-critical map and apply Herman's result.

Definition Let $\widetilde{\Delta}$ be the connected component of $P^{-1}(\widehat{\Delta})$ containing $\widehat{\Delta}$.

イロト 不得 トイヨト イヨト

Definition Let $\widetilde{\Delta}$ be the connected component of $P^{-1}(\widehat{\Delta})$ containing $\widehat{\Delta}$.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Let n_1, n_0 be the number of critical values, critical point respectively in $\widehat{\Delta}$, in $\widetilde{\Delta}$ respectively.

Definition Let $\widetilde{\Delta}$ be the connected component of $P^{-1}(\widehat{\Delta})$ containing $\widehat{\Delta}$.

Let n_1, n_0 be the number of critical values, critical point respectively in $\widehat{\Delta}$, in $\widetilde{\Delta}$ respectively.

Lemma

There exists U, V topological disks, $\widetilde{\Delta} \subset U, \ \widehat{\Delta} \subset V$ such that $P: U \to V$ is a covering ramified only over $\widehat{\Delta}$.

•
$$n_1 = 0 \implies n_0 = 0$$

P is a homeomorphism from *U* to *V* and $\widehat{\Delta} = \widetilde{\Delta}$,

Theorem

- 1 If $n_0 = 0$ then $\rho(P_{|_{\Delta}}) \notin \mathcal{H}$. (similar to Herman's proof)
- If n₀ = 1 and P has only two critical values then there is a critical point on ∂Δ.

(日)、(型)、(E)、(E)、(E)、(O)(()

This implies the original Theorem since $n_1 \in \{0, 1, 2\}$.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ / 圖 / のへぐ

 $\widehat{\Delta}=\widetilde{\Delta}.$

▲ロ ▶ ▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○

 $\widehat{\Delta} = \widetilde{\Delta}.$

Using the Rieman map $\phi : \mathbf{C} \setminus \widehat{\Delta} \to \mathbf{C} \setminus \overline{\mathbf{D}}$, we can defined the external map by Schwarz reflection :

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\widehat{\Delta}=\widetilde{\Delta}.$

Using the Rieman map $\phi : \mathbf{C} \setminus \widehat{\Delta} \to \mathbf{C} \setminus \overline{\mathbf{D}}$, we can defined the external map by Schwarz reflection :

The map $g = \phi \circ f \circ \phi^{-1}$ is defined on a annulus around the unit circle. The restriction of g to the unit circle is an analytic diffeomorphism with rotation number θ .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\widehat{\Delta}=\widetilde{\Delta}.$

Using the Rieman map $\phi : \mathbf{C} \setminus \widehat{\Delta} \to \mathbf{C} \setminus \overline{\mathbf{D}}$, we can defined the external map by Schwarz reflection :

The map $g = \phi \circ f \circ \phi^{-1}$ is defined on a annulus around the unit circle. The restriction of g to the unit circle is an analytic diffeomorphism with rotation number θ .

If $\theta \in \mathcal{H}$, it is conjugated by a analytic map ψ to the rotation R_{θ} on the unit circle.

 $\widehat{\Delta} = \widetilde{\Delta}.$

Using the Rieman map $\phi : \mathbf{C} \setminus \widehat{\Delta} \to \mathbf{C} \setminus \overline{\mathbf{D}}$, we can defined the external map by Schwarz reflection :

The map $g = \phi \circ f \circ \phi^{-1}$ is defined on a annulus around the unit circle. The restriction of g to the unit circle is an analytic diffeomorphism with rotation number θ .

If $\theta \in \mathcal{H}$, it is conjugated by a analytic map ψ to the rotation R_{θ} on the unit circle. Then ψ extends to a neighborhood of the unit circle. By analycity, ψ conjugate to the rotation. The Siegel domain extends.

(日)、(型)、(E)、(E)、(E)、(O)(()

We assume that $n_0 = 1$. Remark: If $P(c) \in \partial \Delta$ then $c \in \partial \Delta$.

The critical value $P(c) \in V$ has only c as preimage in $U(n_0 = 1)$ and $P(\partial \Delta) = \partial \Delta$ so $c \in \partial \Delta$.

P(c) belongs to a Fatou component in $\widehat{\Delta} \setminus \Delta$ since $P(c) \in Int(\widehat{\Delta})$

Recall the SKETCH OF THE PROOF

- **1** $\widehat{\Delta}$ is locally totally invariant by $P: \widetilde{\Delta} = \widehat{\Delta}$ (use Goldberg Milnor Poirier Kiwi separation result).
- **2** The external map is well defined by Schwarz reflection. It has degree > 1.
- S This circle map is hyperbolic (by Mané's Theorem) since there are no non repelling cycles on the circle.
- \bigcirc Then P has a polynomial-like restriction which is unicritical.
- **5** We apply Herman's theorem for uni-critical polynomials.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Claim: P(c) belongs to a Fatou component W which is eventually mapped to Δ under iteration of P.

Claim: P(c) belongs to a Fatou component W which is eventually mapped to Δ under iteration of P.

Otherwise, W is eventually periodic.

Claim: P(c) belongs to a Fatou component W which is eventually mapped to Δ under iteration of P.

Otherwise, W is eventually periodic. Then ∂W intersects $\partial \Delta$ in at most a point by the following

Theorem (Goldberg, Milnor, Poirier, Kiwi)

(日)、(型)、(E)、(E)、(E)、(O)(()

Claim: P(c) belongs to a Fatou component W which is eventually mapped to Δ under iteration of P.

Otherwise, W is eventually periodic. Then ∂W intersects $\partial \Delta$ in at most a point by the following

Theorem (Goldberg, Milnor, Poirier, Kiwi)

There exists m > 0 such that the union L of the closure of the external rays fixed by P^m cut the plane into regions, each of them containing at most one periodic Fatou component or Cremer point (and never both of them).

But $\partial W \subset \partial \Delta$. Contradiction.

$\widetilde{\Delta}=\widehat{\Delta}.$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ / 圖 / のへぐ

• The ramified covering $P: U \rightarrow V$ is equivalent to $z^d: \mathbf{D} \rightarrow \mathbf{D}$

$\widetilde{\Delta} = \widehat{\Delta}.$

◆□▶ ◆□▶ ◆ 臣▶ ★ 臣▶ 三臣 - のへぐ

- The ramified covering P: U o V is equivalent to $z^d: \mathbf{D} o \mathbf{D}$
- $W \neq \Delta$ otherwise $c \in \Delta$

$\widetilde{\Delta}=\widehat{\Delta}.$

(日)、(型)、(E)、(E)、(E)、(O)(()

- The ramified covering P: U o V is equivalent to $z^d: \mathbf{D} o \mathbf{D}$
- $W \neq \Delta$ otherwise $c \in \Delta$
- Let G be the cyclic group of automorphisms of the covering generated by ρ

$\widetilde{\Delta} = \widehat{\Delta}.$

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = ヨー の々ぐ

- The ramified covering P: U o V is equivalent to $z^d: \mathbf{D} o \mathbf{D}$
- $W \neq \Delta$ otherwise $c \in \Delta$
- Let G be the cyclic group of automorphisms of the covering generated by ρ
- $\{\rho^n\Delta\mid n\in\}$ are the preimages of Δ

$\widetilde{\Delta} = \widehat{\Delta}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- The ramified covering P: U o V is equivalent to $z^d: \mathbf{D} o \mathbf{D}$
- $W
 e \Delta$ otherwise $c \in \Delta$

•

- Let G be the cyclic group of automorphisms of the covering generated by ρ
- $\{
 ho^n\Delta\mid n\in\}$ are the preimages of Δ

 $\exists g \in G \mid g(\Delta) \subset \widehat{\Delta}$

since $P^{r}(W)$ is a preimage of Δ , $P^{r}(W) = g\Delta$ for some $g \in G$; $W \subset \widehat{\Delta}$ implies $P^{r}(W) \subset \widehat{\Delta}$.
$\widetilde{\Delta} = \widehat{\Delta}.$

- The ramified covering P: U o V is equivalent to $z^d: \mathbf{D} o \mathbf{D}$
- $W
 eq \Delta$ otherwise $c \in \Delta$
- Let G be the cyclic group of automorphisms of the covering generated by ρ
- $\{
 ho^n\Delta\mid n\in\}$ are the preimages of Δ

 $\exists g \in G \mid g(\Delta) \subset \widehat{\Delta}$

since $P^{r}(W)$ is a preimage of Δ , $P^{r}(W) = g\Delta$ for some $g \in G$; $W \subset \widehat{\Delta}$ implies $P^{r}(W) \subset \widehat{\Delta}$.

• Using that G is cyclic we can prove that

 $\forall g \in G \mid g(\Delta) \subset \widehat{\Delta}$

• It "follows" that $\widetilde{\Delta} = \widehat{\Delta}$.

Let H be the stabilizer of $\widehat{\Delta}$: the set of $h \in G$ such that $h(\widehat{\Delta}) = \widehat{\Delta}$.

Claim: H = G.

Otherwise, $\rho \notin H$ and neither $\widehat{\Delta} \subset \rho \widehat{\Delta}$ nor $\widehat{\rho} \widehat{\Delta} \subset \widehat{\Delta}$ Then $\rho \widehat{\Delta} \cap \Delta = \emptyset$ and $\widehat{\Delta} \cap \rho \Delta = \emptyset$ since $\rho \Delta \cap \Delta = \emptyset$. Take a point $z_0 \in \partial \Delta \setminus \rho \widehat{\Delta}$, a ball $B \subset U$, $z_0 \in B$, $B \cap \rho \widehat{\Delta} = \emptyset$, $c \notin B$. Take a curve in Δ joining a point $z_1 \in B \cap \Delta$ to a point

 $z_2 \in bB \cap \Delta$ where *b* is a generator of *H*.

Complete this curve with a segment in *B* joining z_0 and z_1 , a segment in *bB* joining bz_0 and z_2 . Let γ_0 be this curve.

Let $\gamma = \gamma_0 \cup b\gamma_0 \cup b^2\gamma_0 \cup \dots$

🕨 🗄 🔊 ଏ. ତ

For $z'_0 \in \partial \rho \Delta \setminus \widehat{\Delta}$, $z'_0 \in B' \subset U$, $B' \cap \widehat{\Delta} = \emptyset$, $c \notin B'$. So

$$\gamma \subset \mathcal{H}\Delta \cup \mathcal{H}\mathcal{B}, \quad \gamma' \subset \rho \mathcal{H}\Delta \cup \mathcal{H}\mathcal{B}' \implies \gamma \cap \gamma' = \emptyset$$

 γ separates c from ∞ , γ' separates c from ∞ suppose that γ' is in the unbounded component X of $\mathbf{C} \setminus \gamma$ then $\partial \rho(\Delta) \subset X$.

Join z_0 to the boundary of U by δ_0 disjoint from $\rho(\Delta)$.

 $\partial \rho(\Delta)$ is invariant by H so is in a connected component of $U \setminus C$ invariant by H: the one containing c. Contradiction.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 | のへぐ

$\boldsymbol{C}\setminus\widehat{\boldsymbol{\Delta}} \text{ is homeomorphic to } \boldsymbol{C}\setminus\overline{\boldsymbol{D}}.$

<ロ> (四) (四) (三) (三) (三) (三)

$\boldsymbol{C}\setminus\widehat{\boldsymbol{\Delta}} \text{ is homeomorphic to } \boldsymbol{C}\setminus\overline{\boldsymbol{D}}.$

Let $\phi : \mathbf{C} \setminus \widehat{\Delta} \to \mathbf{C} \setminus \overline{\mathbf{D}}$ be the Riemann map.

$\boldsymbol{C}\setminus\widehat{\boldsymbol{\Delta}} \text{ is homeomorphic to } \boldsymbol{C}\setminus\overline{\boldsymbol{D}}.$

Let $\phi : \mathbf{C} \setminus \widehat{\Delta} \to \mathbf{C} \setminus \overline{\mathbf{D}}$ be the Riemann map. The map $\tilde{g} = \phi \circ f \circ \phi^{-1}$ is defined on a annulus around the unit circle by Schwarz reflection.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$\boldsymbol{C}\setminus\widehat{\boldsymbol{\Delta}} \text{ is homeomorphic to } \boldsymbol{C}\setminus\overline{\boldsymbol{D}}.$

Let $\phi : \mathbf{C} \setminus \widehat{\Delta} \to \mathbf{C} \setminus \overline{\mathbf{D}}$ be the Riemann map.

The map $\tilde{g} = \phi \circ f \circ \phi^{-1}$ is defined on a annulus around the unit circle by Schwarz reflection.

The restriction g of \tilde{g} to the unit circle (the external map) is an analytic covering of degree m > 1.

A non repelling periodic point for the external map g on S^1 gives an attracting or parabolic point for f.

A non repelling periodic point for the external map g on S^1 gives an attracting or parabolic point for f.

Its basin has to contain a critical point.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A non repelling periodic point for the external map g on S^1 gives an attracting or parabolic point for f.

Its basin has to contain a critical point.

There are only two critical points, none is free:

- one eventually maps into Δ
- the other one satisfies $\Delta \subset \omega(c')$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A non repelling periodic point for the external map g on S^1 gives an attracting or parabolic point for f.

Its basin has to contain a critical point.

There are only two critical points, none is free:

- one eventually maps into Δ
- the other one satisfies $\Delta \subset \omega(c')$.

By Mané's Theorem the map g is hyperbolic on S^1 .

A non repelling periodic point for the external map g on S^1 gives an attracting or parabolic point for f.

Its basin has to contain a critical point.

There are only two critical points, none is free:

- one eventually maps into Δ
- the other one satisfies $\Delta \subset \omega(c')$.

By Mané's Theorem the map g is hyperbolic on S^1 .

For an expanding map, we can then construct by hand a polynomial-like restriction. It is uni-critical.

Thank you for your attention