Exploring the parameter space of an iterated function system

Sarah C. Koch

University of Michigan *

Joint work with:
D. Calegari and A. Walker

Quadratic polynomials $\quad p_{c}: z \mapsto z^{2}+c$

$\mathcal{M}:=\left\{c \in \mathbb{C} \mid K_{c}\right.$ is connected $\}$
subsets in
$\mathcal{M}^{\prime}:=\left\{c \in \mathbb{C} \mid K_{c} \ni 0\right\}$
parameter
$\mathcal{M}^{\prime \prime}:=\left\{c \in \mathbb{C} \mid K_{c}\right.$ is connected and full $\}$

Quadratic polynomials $\quad p_{c}: z \mapsto z^{2}+c$

The Mandelbrot set is

- compact
- connected and full
- $\operatorname{int}(\mathcal{M})=\mathcal{M}$
- ??? locally connected ???
hyperbolic components
(dis)continuity

Iterated Function Systems

X is a complete metric space
$\left\{f_{1}, \ldots, f_{n}\right\}$ contractions $X \rightarrow X$
\exists nonempty compact attractor $\Lambda \subseteq X$

$$
\begin{aligned}
& f_{1}(z)=\frac{(1+i) z}{2} \\
& f_{2}(z)=1-\frac{(1-i) z}{2}
\end{aligned}
$$

Parameterized family of similarities

$f_{c}, g_{c}: \mathbb{C} \rightarrow \mathbb{C}$
$f_{c}: z \mapsto c z+1 \quad g_{c}: z \mapsto c z-1, \quad 0<|c|<1$.

Remark: coordinates

Λ_{c} is the closure of the set of fixed points of $\left\langle f_{c}, g_{c}\right\rangle$.
Drawing the limit set

$$
\Lambda_{c}=\bigcap_{n} \bigcup_{w \in G_{n}} w(D)
$$

The dynamical plane

Certifying limit set is disconnected

The Limit Set: topology

- Λ_{c} connected iff $f_{c}\left(\Lambda_{c}\right) \cap g_{c}\left(\Lambda_{c}\right) \neq \emptyset$
- Λ_{c} disconnected iff \exists disk D so that $f_{c}(D), g_{c}(D) \subseteq D$, and $f_{c}(D) \cap g_{c}(D)=\emptyset$

Dichotomy: Λ_{c} is connected, or Λ_{c} is a Cantor set

"Critical point"

$c=0.354545+0.62 i$
Fixed point of f_{c} is $\alpha_{c}:=1 /(1-c)$
Fixed point of g_{c} is $\beta_{c}:=-1 /(1-c)$

Center of symmetry $\left(\alpha_{c}+\beta_{c}\right) / 2=0$

Parameter space

$$
f_{c}: z \mapsto c z+1 \quad g_{c}: z \mapsto c z-1, \quad 0<|c|<1 .
$$

Three subsets of interest:

- $M:=\left\{c \in \mathbb{D}^{*} \mid \Lambda_{c}\right.$ is connected $\}$
- $M^{\prime}:=\left\{c \in \mathbb{D}^{*} \mid \Lambda_{c} \ni 0\right\}$, and
- $M^{\prime \prime}:=\left\{c \in \mathbb{D}^{*} \mid \Lambda_{c}\right.$ is connected and full $\}$.

Zoom into M

Historical remarks

- 1985, Barnsley-Harrington; M has real whiskers
- 1988,1993 , Bousch; M connected and locally connected
- 2002, Bandt; M is NOT full - there is at least one exotic component of the complement

Conjecture. $\operatorname{int}(M)$ is dense away from \mathbb{R}

- 2003 Solomyak-Xu; M has dense interior in a neighborhood of $i \mathbb{R}$

Theorem. The interior of M is dense away from \mathbb{R}.

Theorem. There are infinitely many connected components of the complement of M.

Understand interior points

Proposition. (Bousch) M contains the annulus $\left\{\frac{1}{\sqrt{2}} \leqslant|c|<1\right\}$.

(Non)convexity

(Non)convexity

(Non)convexity

(Non)convexity

(Non)convexity

(Non)convexity

Traps

Lemma. If $d\left(f_{c}\left(\Lambda_{c}\right), g_{c}\left(\Lambda_{c}\right)\right) \leqslant \delta$, then $N_{\delta / 2}\left(\Lambda_{c}\right)$ is path-connected.

Corollary. If $u \in G_{n}$, then $N_{|c|^{n} \delta / 2}\left(u\left(\Lambda_{c}\right)\right)$ is path-connected.
Definition. A trap is a pair $u, v \in G_{n}, u=f_{c} u^{\prime}$ and $v=g_{c} v^{\prime}$, so that $N_{|c|^{n} \delta / 2}\left(u\left(\Lambda_{c}\right)\right)$ and $N_{|c|^{n} \delta / 2}\left(v\left(\Lambda_{c}\right)\right)$ cross transversely.

$$
\begin{aligned}
& \text { * } d\left(f_{c}\left(\Lambda_{c}\right), g_{c}\left(\Lambda_{c}\right)\right) \leqslant d\left(u\left(\Lambda_{c}\right), v\left(\Lambda_{c}\right)\right) \\
& d\left(u\left(\Lambda_{c}\right), v\left(\Lambda_{c}\right)\right) \leqslant|c|^{n} d\left(f_{c}\left(\Lambda_{c}\right), g_{c}\left(\Lambda_{c}\right)\right) \\
& \Longrightarrow d\left(f_{c}\left(\Lambda_{c}\right), g_{c}\left(\Lambda_{c}\right)\right)=0 \\
& \Longrightarrow c \in M
\end{aligned}
$$

In fact, $c \in \operatorname{int}(M)$.

$$
c^{-n}(u(0)-v(0))^{2}
$$

Finding traps

Find balls B_{1}, \ldots, B_{k} so that if there were words $u, v, \in G_{n}$ with

$$
c^{-n}(u(0)-v(0)) \in B_{i} \text { for some } i
$$

then there would be a trap for Λ_{c}.

Finding exotic components in the complement

Infinitely many exotic components

Interior is dense away from real axis

If Λ_{c} is not convex, then there are trap-like vectors. Since $c \in M, f_{c}\left(\Lambda_{c}\right) \cap g_{c}\left(\Lambda_{c}\right) \neq \emptyset$, there are $u, v \in G_{n}$ with $d(u(0), v(0))$ small, and we can perturb c so that $c^{-n}(u(0)-v(0))$ will be trap-like.

Convex limit sets

Lemma. Λ_{c} is convex iff $c=r e^{\pi i p / q}$, where $r \geqslant 2^{-1 / q}$.

Goal: Classify connected components

Polynomials and power series

$$
w=l_{0} l_{1} \cdots l_{n-1}, \quad \text { where } l_{i} \in\left\{f_{c}, g_{c}\right\}
$$

$w: z \mapsto a_{0}+a_{1} c+\cdots+a_{n-1} c^{n-1}+c^{n} z, \quad a_{i} \in\{1,-1\}$
$\Lambda_{c}=\{$ values at c of power series with coefficients in $\{-1,1\}\}$
$M=\left\{c \in \mathbb{D}^{*} \mid f_{c}\left(\Lambda_{c}\right) \cap g_{c}\left(\Lambda_{c}\right) \neq \emptyset\right\}$
$=\{$ zeros of power series with coefficients in $\{-1,0,1\}\}$
$=$ closure of \{roots of polynomials with coefficients in $\{-1,0,1\}\}$
$M^{\prime}:=\left\{c \in \mathbb{D}^{*} \mid \Lambda_{c} \ni 0\right\}$
$=\{$ roots of power series with coefficients in $\{-1,1\}\}$
$=$ closure of \{roots of polynomials with coefficients in $\{-1,1\}\}$

Bill Thurston entropy

Thurston:
Derbyshire: entropy roots

Sets have the same closure in \mathbb{D} (Tiozzo).

Odlyzko, Poonen
zeros of 0,1 polynomials of degrees $<=16$

Quadratic polynomials

$$
p_{c}: \mathbb{C} \rightarrow \mathbb{C}, \quad p_{c}: z \mapsto z^{2}+c, \quad c \in \mathbb{C}
$$

distinguished point: the unique critical point $z_{0}=0$
Gleason polynomials: $G_{n}(c):=p_{c}^{n}(0) \in \mathbb{Z}[c]$

$$
\begin{gathered}
G_{1}(c)=c \\
G_{2}(c)=c^{2}+c \\
G_{3}(c)=\left(c^{2}+c\right)^{2}+c=c^{4}+2 c^{3}+c^{2}+c \\
G_{4}(c)=c^{8}+4 c^{7}+6 c^{6}+6 c^{5}+5 c^{4}+2 c^{3}+c^{2}+c
\end{gathered}
$$

Galois conjugates in parameter space

COEX Conference Center

Seoul, Korea.
Photo credit: C. McMullen

