Pseudo-Automorphims with an invariant curve

Kyounghee Kim
Florida State University
Joint Work with E. Bedford and J. Diller

Problem

Let $f: \mathbb{P}^{k} \rightarrow \mathbb{P}^{k}$ be a birational map. When is there a blowup $\pi: X \rightarrow \mathbb{P}^{k}$ such that

$$
f_{X}:=\pi^{-1} \circ f \circ \pi \quad \text { is a automorphism? }
$$

Dimension 2

Theorem (Noether)
Every birational map of \mathbb{P}^{2} is a composition of J 's and linear automorphisms on \mathbb{P}^{2} where J is the cremona involution

$$
J:\left[x_{0}: x_{1}: x_{2}\right] \mapsto\left[1 / x_{0}: 1 / x_{1}: 1 / x_{2}\right] .
$$

Question

What are linear automorphisms $S_{i} \in P G L(3, \mathbb{C}) i=1, \ldots, n$ such that $f:=S_{1} \circ J \circ S_{2} \circ J \circ \cdots \circ J \circ S_{n}$ is equivalent to an automorphism?

The Cremona involution $J: \mathbb{P}^{2} \longrightarrow \mathbb{P}^{2}$

$$
J:\left[x_{0}: x_{1}: x_{2}\right] \mapsto\left[1 / x_{0}: 1 / x_{1}: 1 / x_{2}\right]
$$

1. The indeterminacy locus

$$
\operatorname{Ind}(J)=\cup_{i} e_{i} \quad \text { where } e_{i}=\left\{x_{j}=0, j \neq i\right\}
$$

2. The exceptional locus

$$
\operatorname{Exc}(J)=\cup_{i} \Sigma_{i} \quad \text { where } \Sigma_{i}=\left\{x_{i}=0\right\}
$$

3. Let X be a blowup of \mathbb{P}^{2} along $\left\{e_{0}, e_{1}, e_{2}\right\}$. The induced map J_{X} is an automorphism.
$f=S \circ J \circ T^{-1}$
4. $\operatorname{Ind}(f)=\left\{T\left(e_{i}\right), i=0,1,2\right\}$
5. $\operatorname{Exc}(f)=\left\{T\left(\Sigma_{i}\right), i=0,1,2\right\}$
6. Suppose there are positive integers n_{0}, n_{1}, n_{2} and a permutation σ on $\{0,1,2\}$ such that

$$
\begin{gathered}
f: T\left(\Sigma_{i}\right) \mapsto S\left(e_{i}\right) \mapsto * \mapsto \cdots \mapsto * \mapsto f^{n_{i}} T\left(\Sigma_{i}\right)=e_{\sigma(j)} \\
f^{k} T\left(\Sigma_{i}\right) \notin \operatorname{Ind}(f) \quad 1 \leq k \leq n_{i}-1
\end{gathered}
$$

4. Let X be a blowup of \mathbb{P}^{2} along a set of points $\left\{f^{j} T\left(\Sigma_{i}\right), 0 \leq i \leq 2,1 \leq j \leq n_{i}\right\}$.
The induced map f_{X} is an automorphism.

- By requiring the existence of an invariant elliptic curve, McMullen showed how one can construct $L \circ J: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ with $n_{0}=n_{1}=1, n_{2} \geq 7$ and a cyclic permutation.
- Diller constructed all possible rational surface automorphisms with invariant elliptic curves that are obtained as lifts of quadratic birational maps.
- For each possible entropy, Uehara showed one can always construct a rational surface automorphism with an invariant elliptic curves whose entropy is the correct value.
- Assuming the existence of an invariant elliptic normal curve, Perroni and Zhang showed that one can construct pseudoautomorphisms with the dynamical degree >1

Remark

There exist rational surface automorphism which doesn't have an invariant curve. (Bedford-K)

Dimension 3 or higher

Problem
Let $f: \mathbb{P}^{k} \rightarrow \mathbb{P}^{k}$ be a birational map.
When is there a blowup $\pi: X \rightarrow \mathbb{P}^{k}$ such that

$$
f_{X}:=\pi^{-1} \circ f \circ \pi \quad \text { is a automorphism? }
$$

Theorem (Truong, Bayracktar and Cantat)
If X is the iterated blowup of \mathbb{P}^{3} along a finite sequence of points, then every automorphism on X has entropy zero.

If X is the iterated blowup of \mathbb{P}^{k} along a finite sequence of smooth varieties of dimension $<(k-2) / 2$, then every automorphism on X has entropy zero.

Dimension 3

Problem
Let $f:\left(\mathbb{P}^{k}\right)^{m} \rightarrow\left(\mathbb{P}^{k}\right)^{m}$ be a birational map.
When is there a blowup $\pi: X \rightarrow\left(\mathbb{P}^{k}\right)^{m}$ such that

$$
f_{X}:=\pi^{-1} \circ f \circ \pi \quad \text { is a pseudo-automorphism? }
$$

Definition
A birational map $f: X \rightarrow X$ is a pseudo-automorphism if neither f nor f^{-1} contracts hypersurfaces,
i.e. there are sets $S_{1}, S_{2} \subset X$ of codimension ≥ 2 such that

$$
f: X \backslash S_{1} \rightarrow X \backslash S_{2} \text { is biregular. }
$$

For Dimension $k \geq 3$,
The standard Cremona involution $J: \mathbb{P}^{k} \rightarrow \mathbb{P}^{k}$:

$$
J:\left[x_{0}: x_{1}: \cdots: x_{k}\right] \mapsto\left[1 / x_{0}: 1 / x_{1}: \cdots: 1 / x_{k}\right]
$$

Question

What are linear automorphisms $S_{i} \in P G L(k+1, \mathbb{C}) i=1, \ldots, n$ such that $f:=S_{1} \circ J \circ S_{2} \circ J \circ \cdots \circ J \circ S_{n}$ is equivalent to a pseudo-automorphism?

For Dimension $k \geq 3$,
The standard Cremona involution $J: \mathbb{P}^{k} \rightarrow \mathbb{P}^{k}$:

$$
J:\left[x_{0}: x_{1}: \cdots: x_{k}\right] \mapsto\left[1 / x_{0}: 1 / x_{1}: \cdots: 1 / x_{k}\right]
$$

Question

What are linear automorphisms $S, T \in P G L(k+1, \mathbb{C})$ such that $f:=S \circ J \circ T^{-1}$ is equivalent to a pseudo-automorphism?

For Dimension $k \geq 3$,
The standard Cremona involution $J: \mathbb{P}^{k} \rightarrow \mathbb{P}^{k}$:

$$
J:\left[x_{0}: x_{1}: \cdots: x_{k}\right] \mapsto\left[1 / x_{0}: 1 / x_{1}: \cdots: 1 / x_{k}\right]
$$

Question

What are linear automorphisms $S, T \in P G L(k+1, \mathbb{C})$ such that $f:=S \circ J \circ T^{-1}$ is equivalent to a pseudo-automorphism on a blowup of \mathbb{P}^{k} along a finite set of points?

For Dimension $k \geq 3$,
The standard Cremona involution $J: \mathbb{P}^{k} \rightarrow \mathbb{P}^{k}$:

$$
J:\left[x_{0}: x_{1}: \cdots: x_{k}\right] \mapsto\left[1 / x_{0}: 1 / x_{1}: \cdots: 1 / x_{k}\right]
$$

Question

What are linear automorphisms $S, T \in P G L(k+1, \mathbb{C})$ such that $f:=S \circ J \circ T^{-1}$ is equivalent to a pseudo-automorphism on a blowup of \mathbb{P}^{k} along a finite set of distinct points?

For Dimension $k \geq 3$,
The standard Cremona involution $J: \mathbb{P}^{k} \rightarrow \mathbb{P}^{k}$:

$$
J:\left[x_{0}: x_{1}: \cdots: x_{k}\right] \mapsto\left[1 / x_{0}: 1 / x_{1}: \cdots: 1 / x_{k}\right]
$$

Question

Find linear automorphisms $S, T \in P G L(k+1, \mathbb{C})$ such that

- $f:=S \circ J \circ T^{-1}$ is equivalent to a pseudo-automorphism on a blowup of \mathbb{P}^{k} along a finite set of distinct points
- f has an invariant curve

The standard Cremona involution $J: \mathbb{P}^{k} \longrightarrow \mathbb{P}^{k}$:

$$
\begin{gathered}
J:\left[x_{0}: x_{1}: \cdots: x_{k}\right] \mapsto\left[1 / x_{0}: 1 / x_{1}: \cdots: 1 / x_{k}\right] \\
\operatorname{Ind}(J)=\cup_{i \neq j}\left\{x_{i}=x_{j}=0\right\}, \quad \operatorname{Exc}(J)=\cup_{i}\left\{x_{i}=0\right\}
\end{gathered}
$$

- Each coordinate plane $\left\{x_{i}=0\right\}$ maps to a point

$$
J:\left\{x_{i}=0\right\} \mapsto e_{i}=\cap_{j \neq i}\left\{x_{j}=0\right\}
$$

- Suppose $I \subset\{0,1, \ldots, k\}$, each point in $\left\{x_{i}=0, x_{j} \neq 0: i \in I, j \notin I\right\}$ blows up to $\left\{x_{i} \neq 0, x_{j}=0: i \in I, j \notin I\right\}$.

We say a birational map $F: \mathbb{P}^{k} \longrightarrow \mathbb{P}^{k}$ is a basic cremona map if

$$
F=S \circ J \circ T^{-1}, \quad S, T \in P G L(k+1, \mathbb{C})
$$

- Exceptional hypersurfaces : $T\left(\Sigma_{j}\right), j=0,1, \ldots, k$

$$
F: T\left(\Sigma_{j}\right) \mapsto S\left(e_{j}\right)
$$

- Points of indeterminacy which blows up to hyper surfaces : $T\left(e_{j}\right), j=0,1, \ldots, k$

Observation

Let $\pi: X \rightarrow \mathbb{P}^{k}$ be a blowup of \mathbb{P}^{k} along a set of $k+1$ points e_{0}, \ldots, e_{k}. Then the induced map $J_{X}: X \rightarrow X$ is a pseudo-automorphism.

Observation

Let F be a basic cremona map. Suppose for each $0 \leq j \leq k$ there is a positive integer n_{j} such that

1. $F^{n_{j}-1}\left(S\left(e_{j}\right)\right)=T\left(e_{\ell}\right)$ for some $0 \leq \ell \leq k$
2. $F^{i}\left(T\left(e_{j}\right)\right) \notin \operatorname{Ind}(F)$ for all $0 \leq i \leq n_{j}-2$.

Then, there is a blowup space X of \mathbb{P}^{k} along a set of points such that the induced map F_{X} is a pseudo automorphism.

Remark
Note that $F^{i_{1}}\left(T\left(e_{j_{1}}\right)\right) \neq F^{i_{2}}\left(T\left(e_{j_{2}}\right)\right)$ for all $\left(i_{1}, j_{1}\right) \neq\left(i_{2}, j_{2}\right)$.

Question

what are the basic cremona maps on \mathbb{P}^{k} satisfying the followings?

1. $F^{n_{j}-1}\left(S\left(e_{j}\right)\right)=T\left(e_{\ell}\right)$ for some $0 \leq \ell \leq k$
2. $F^{i}\left(T\left(e_{j}\right)\right) \notin \operatorname{Ind}(F)$ for all $0 \leq i \leq n_{j}-2$.

Suppose $C \subset \mathbb{P}^{k}$

$$
\begin{aligned}
C & =\left\{\gamma(t)=\left[1: t: \cdots: t^{k-1}: t^{k+1}\right], t \in \mathbb{C}\right\} \cup\{[0: \cdots: 0: 1]\} \\
& =\text { a degree } k+1 \text { curve with a cusp }
\end{aligned}
$$

- For hyperplanes $H \subset \mathbb{P}^{k}$,

$$
C \cap H=\left\{\gamma\left(t_{1}\right), \gamma\left(t_{2}\right), \ldots, \gamma\left(t_{k+1}\right)\right\}
$$

- Let $H=\left\{\sum a_{i} x_{i}=0\right\}$ then t_{i} 's are the solution of

$$
a_{0}+a_{1} t+\cdots a_{k-1} t^{k-1}+a_{k} t^{k+1}=0
$$

Thus we have $\sum_{i=1}^{k+1} t_{i}=0$

- Similarly for any hypersurface $S \subset \mathbb{P}^{k}$,

$$
C \cap S=\left\{\gamma\left(t_{i}\right): i=1, \ldots,(\operatorname{deg} S)(k+1)\right\}, \quad \sum t_{i}=0
$$

Suppose $F=S \circ J \circ T^{-1}$ preserve C and

$$
C \cap \operatorname{Ind}(F) \subset\left\{T\left(e_{0}\right), T\left(e_{1}\right), \ldots, T\left(e_{k}\right)\right\}
$$

- Since no hyperplane contains C, each exceptional hypersurface, there is a regular point in $T\left(\left\{x_{i}=0\right\}\right) \cap C$. Thus

$$
S\left(e_{i}\right), T\left(e_{i}\right) \in C \quad \text { for all } \quad 0 \leq i \leq k
$$

- If F is equivalent to a pseudo-automorphism then $\left.F\right|_{C}$ is an automorphism fixing a singular point at $t=\infty$.

$$
\left.F\right|_{C}: \gamma(t) \mapsto \gamma(\delta t+\tau)
$$

- After rescaling parameter, we may choose $\tau=1-\delta$.

Constructing a Basic Cremona map $F=S \circ J \circ T^{-1}: \mathbb{P}^{3} \rightarrow \mathbb{P}^{3}$ such that

- F fixes $C=\left\{\gamma(t)=\left[1: t: t^{2}: t^{4}\right]\right\}$ and $F(\gamma(\infty))=(\gamma(\infty))$
- $C \cap \operatorname{Ind}(F)=\left\{T\left(e_{i}\right), i=0,1,2,3\right\}$
- $F: T\left(\left\{x_{i}=0\right\}\right) \mapsto S\left(e_{i}\right)=T\left(e_{i+1}\right)$ for $i=0,1,2$
- $F: T\left(\left\{x_{3}=0\right\}\right) \mapsto S\left(e_{3}\right) \rightarrow \cdots \rightarrow F^{n-1} S\left(e_{3}\right)=T\left(e_{0}\right)$.

Then on the blowup of \mathbb{P}^{3} along a set of points $\left\{T\left(e_{i}\right), i=0, \ldots, k\right.$ and $\left.F^{j}\left(S\left(e_{3}\right)\right), j=0, \ldots, n-2\right\}$, the induced map F_{X} is a pseudo-automorphism.

Let t_{i} be a parameter for $T\left(e_{i}\right)$, i.e. $T\left(e_{i}\right)=\gamma\left(t_{i}\right)$ and set

$$
\left.F^{-1}\right|_{C}: \gamma(t) \mapsto \delta t+1-\delta
$$

Consider the exceptional hyperplane $\Sigma_{1}:=T\left(\left\{x_{1}=0\right\}\right)$.

- $\Sigma_{1} \cap C$ has 4 distinct points.
- $T\left(e_{0}\right), T\left(e_{2},\right) T\left(e_{3}\right) \in \Sigma_{1} \cap C$
- Since $F: \Sigma_{1} \mapsto S\left(e_{1}\right)=T\left(e_{2}\right)$,

$$
F^{-1}\left(T\left(e_{2}\right)\right)=\left.F^{-1}\right|_{C}\left(\gamma\left(t_{2}\right)\right) \in \Sigma_{1} \cap C .
$$

Thus we have

$$
\begin{equation*}
t_{0}+t_{2}+t_{3}+\delta t_{2}+1-\delta=0 \tag{1}
\end{equation*}
$$

Similarly, with exceptional hyperplanes $T\left(\left\{x_{0}=0\right\}\right)$ and $T\left(\left\{x_{2}=0\right\}\right)$, we get

$$
\begin{equation*}
t_{1}+t_{2}+t_{3}+\delta t_{1}+1-\delta=0 \tag{0}
\end{equation*}
$$

and

$$
\begin{equation*}
t_{0}+t_{1}+t_{3}+\delta t_{3}+1-\delta=0 \tag{2}
\end{equation*}
$$

Now for $T\left(\left\{x_{3}=0\right\}\right)$, We have

$$
F^{n}: T\left(\left\{x_{3}=0\right\}\right) \mapsto T\left(e_{0}\right)
$$

Thus

$$
\begin{gather*}
T\left(e_{0}\right), T\left(e_{1}\right), T\left(e_{2}\right), \text { and } F^{-n}\left(T\left(e_{0}\right)\right) \in T\left(\left\{x_{3}=0\right\}\right) \\
t_{0}+t_{1}+t_{2}+\delta^{n} t_{0}+1-\delta^{n}=0 \tag{3}
\end{gather*}
$$

We need one more piece of information to determine t_{i} 's and δ.
Let H be a generic hyperplane in \mathbb{P}^{3}.

- $\# H \cap C=4$. Let $H \cap C=\left\{\gamma\left(q_{1}\right), \gamma\left(q_{2}\right), \gamma\left(q_{3}\right), \gamma\left(q_{4}\right)\right\}$
- $q_{1}+q_{2}+q_{3}+q_{4}=0$.
- $\operatorname{deg} F^{-1} H=3$ and thus $\#\left(F^{-1} H\right) \cap C=12$.
- For $i=1, \ldots, 4$,

$$
\left.F^{-1}\right|_{C}\left(\gamma\left(q_{i}\right)\right)=\gamma\left(\delta q_{i}+1-\delta\right) \in\left(F^{-1} H\right) \cap C
$$

- For each $i=1, \ldots, 4, H \cap S\left(\left\{x_{i}=0\right\}\right)=$ a line, thus with multiplicity 2

$$
F^{-1} S\left(\left\{x_{i}=0\right\}\right)=\gamma\left(t_{i}\right) \in\left(F^{-1} H\right) \cap C
$$

For $\left(F^{-1} H\right) \cap C$, we found 12 points

$$
\sum_{i=1}^{4}\left(\delta q_{i}+1-\delta\right)+2 \sum_{j=0}^{3} t_{j}=0
$$

Since $q_{1}+q_{2}+q_{3}+q_{4}=0$, we see that

$$
\begin{equation*}
t_{0}+t_{1}+t_{2}+t_{3}=2(\delta-1) \tag{4}
\end{equation*}
$$

$$
\begin{gather*}
t_{1}+t_{2}+t_{3}+\delta t_{1}+1-\delta=0 \tag{0}\\
t_{0}+t_{2}+t_{3}+\delta t_{2}+1-\delta=0 \tag{1}\\
t_{0}+t_{1}+t_{3}+\delta t_{3}+1-\delta=0 \tag{2}\\
t_{0}+t_{1}+t_{2}+\delta^{n} t_{0}+1-\delta^{n}=0 \tag{3}
\end{gather*}
$$

and

$$
\begin{equation*}
t_{0}+t_{1}+t_{2}+t_{3}=2(\delta-1) \tag{4}
\end{equation*}
$$

It is not hard to get the solutions. For example δ is the root of

$$
\delta^{n}\left(\delta^{3}-\delta^{2}-\delta\right)+\delta^{3}+\delta-1=0
$$

- $\gamma(t)=\left[1: t: t^{2}: t^{4}\right]$
- $\gamma\left(t_{i}\right)=T\left(e_{i}\right)$, i.e. the i-th column of $T=\lambda_{i}\left(1, t_{i}, t_{i}^{2}, t_{i}^{4}\right)^{t}$.
- $S\left(e_{i}\right)=T\left(e_{i+1}\right)$ for $i=0,1,2$ and $S\left(e_{3}\right)=\left.F^{-(n-1)}\right|_{C} T\left(e_{0}\right)$

Thus we determine two automorphisms in \mathbb{P}^{3}, S, T "almost". Since F fixes the singular point, $\gamma(\infty)$, we can determine the λ_{i} by setting

$$
T[1: 1: 1: 1]=\gamma(\infty), \text { and } S[1: 1: 1: 1]=\gamma(\infty)
$$

$\left.F\right|_{C}$ determines F :
Suppose $\left.F\right|_{C}: \gamma(t) \mapsto \gamma(\delta t+1-\delta)$.
For each $p \in \mathbb{P}^{3} \backslash C$, we have

- either $p \in T\left(\left\{x_{i}=0\right\}\right)$ for some i : thus we have

$$
F: p \mapsto S\left(e_{i}\right)
$$

- or $p \in\left(\cup_{i} T\left(\left\{x_{i}=0\right\}\right)\right)^{c}$:
- H_{i} : the unique hyperplane containing $\left\{e_{j}, j \neq i\right\}$ and p.
\Rightarrow there is $\omega_{i} \in C$ such that $H_{i} \cap C=\left\{\omega_{i}, e_{j}, j \neq i\right\}$.
- Since H_{i} contains three points of indeterminacy, $F\left(H_{i}\right)$ will be again a hyperplane determined by the $\left.F\right|_{C}\left(e_{j}\right), j \neq i$ and $\left.F\right|_{C}\left(\omega_{i}\right)$.
- $F(p)=\cap F\left(H_{i}\right)$

Theorem

Suppose $\delta \in \mathbb{C}^{*}$ and $t_{j} \in \mathbb{C}, 0 \leq j \leq k$, are distinct parameters satisfying $\sum t_{j} \neq 0$. Then there exists a unique basic cremona map $F=S \circ J \circ T^{-1}$ and $\tau \in \mathbb{C}$ such that

- F properly fixes C with $\left.F\right|_{C}$ given by $F(\gamma(t))=\gamma(\delta t+\tau)$.
- $\gamma\left(t_{j}\right)=T\left(e_{j}\right)$ for each $0 \leq j \leq k$.

Specifically,

- $\tau=\frac{k-1}{k+1} \delta \sum t_{j} ;$ and
- $S\left(e_{j}\right)=\gamma\left(\delta t_{j}-\frac{2 \tau}{k-1}\right)$.

Theorem (Bedford-Diller-K)

Suppose F is a basic cremona map on \mathbb{P}^{k} such that

- F fixes $C=\left\{\gamma(t)=\left[1: t: t^{2}: \cdots: t^{k-1}: t^{k+1}\right]\right\}$ and $F(\gamma(\infty))=(\gamma(\infty))$
- $C \cap \operatorname{Ind}(F)=\left\{T\left(e_{i}\right), i=0,1, \ldots, k\right\}$
- $F: T\left(\left\{x_{i}=0\right\}\right) \mapsto S\left(e_{i}\right)=T\left(e_{i+1}\right)$ for $i=0,1, k-1$
- $F: T\left(\left\{x_{k}=0\right\}\right) \mapsto S\left(e_{k}\right) \rightarrow \cdots \rightarrow F^{n-1} S\left(e_{k}\right)=T\left(e_{0}\right)$.

Then F is linearly conjugate to $L \circ J$ where $L=T^{-1} \circ S$ and

Theorem

$$
L=\left(\begin{array}{cccccc}
0 & 0 & & & 0 & 1 \\
\beta_{1} & 0 & & & 0 & 1-\beta_{1} \\
0 & \beta_{2} & 0 & & 0 & 1-\beta_{2} \\
& & \ddots & \ddots & & \vdots \\
0 & & 0 & \beta_{k-1} & 0 & 1-\beta_{k-1} \\
0 & & & 0 & \beta_{k} & 1-\beta_{k}
\end{array}\right)
$$

and $\beta_{i}=\left(\delta^{i}-1\right) /\left(\delta\left(\delta^{k+1}-\delta^{i}\right)\right)$ for $i=1, \ldots, k$ and δ is a valois conjugate of the largest real root of $\delta^{n}\left(\delta^{k+2}-\delta^{k+1}-\delta^{k}+1\right)+\delta^{k+2}-\delta^{2}-\delta+1=0$

The same procedure works with other invariant curves:

- A rational normal curve with its tangent line.

$$
\gamma_{1}(t)=\left[1: t: t^{2}: \cdots: t^{k}\right], \quad \gamma_{2}(t)=[0: \cdots: 0: 1:-t]
$$

Every point of indeterminacy is in the rational normal curve $\left\{\gamma_{1}(t)\right\}$

- $k+1$ concurrent lines in general position.

$$
\gamma_{0}(t)=[-t: 1: \cdots: 1], \gamma_{i}(t)=[t: 0: \cdots: 1: \cdots: 0]
$$

Each line contains exactly one point of indeterminacy.

Let $\pi: X \rightarrow \mathbb{P}^{k}$ be a blowup of N points $\left\{\alpha_{1}, \ldots, \alpha_{N}\right\}$

1. E_{0} : the class of a generic hypersurface in X
2. E_{i} : the class of the exceptional divisor over $\alpha_{j}, 1 \leq j \neq N$
3. $\operatorname{Pic}(X)=\left\langle E_{0}, E_{1}, \ldots, E_{N}\right\rangle$

Let us define a symmetric bilinear form on $\operatorname{Pic}(X)$ as follows

$$
\langle\alpha, \beta\rangle:=\alpha \cdot \beta \cdot \Phi \quad \alpha, \beta \in \operatorname{Pic}(X)
$$

where

$$
\Phi=(k-1) E_{0}^{k-2}+(-1)^{k} \sum_{j} E_{j}^{k-2} \in H^{k-2, k-2}(X)
$$

and $D^{n}=D \cdot D \cdots D$ is a n-fold intersection product.

$$
\langle\alpha, \beta\rangle:=\alpha \cdot \beta \cdot \Phi \quad \alpha, \beta \in \operatorname{Pic}(X)
$$

where

$$
\Phi=(k-1) E_{0}^{k-2}+(-1)^{k} \sum_{j} E_{j}^{k-2} \in H^{k-2, k-2}(X)
$$

1. $\left\langle E_{0}, E_{0}\right\rangle=k-1,\left\langle E_{i}, E_{i}\right\rangle=-1$ for $i=1, \ldots, N$
2. $\left\langle E_{i}, E_{j}\right\rangle=0$ for $0 \leq i \neq j \leq N$

Let $F: X \rightarrow X$ be a pseudo-automorphism that is obtained as lifts of basic cremona map f.

- f has $k+1$ points of indeterminacy, $\alpha_{1}, \ldots, \alpha_{k+1}$
- Each exceptional hyperplane contains exactly k points of indeterminacy.

$$
F^{*} E_{i}=\left\{\begin{array}{ccc}
\text { either } & E_{j} & \text { for some } j \geq k+2 \\
\text { or } & E_{0}-\sum_{s=1}^{k} E_{j_{s}} &
\end{array}\right.
$$

- The degree of $f=k$.
- The pre-image of a generic hyperplane contains each point of indeterminacy with multiplicity $k-1$.

$$
F^{*} E_{0}=k E_{0}-(k-1) \sum_{i=1}^{k+1} E_{i}
$$

$$
\begin{gathered}
\left\langle F^{*} E_{0}, F^{*} E_{0}\right\rangle=\left\langle k E_{0}-(k-1) \sum_{i=1}^{k+1} E_{i}, k E_{0}-(k-1) \sum_{i=1}^{k+1} E_{i}\right\rangle \\
=k^{2}\left\langle E_{0}, E_{0}\right\rangle+(k-1)^{2} \sum_{i=1}^{k+1}\left\langle E_{i}, E_{i}\right\rangle=k-1 \\
\left\langle E_{0}-\sum_{s=1}^{k} E_{j_{s}}, E_{0}-\sum_{s=1}^{k} E_{j_{s}}\right\rangle=\left\langle E_{0}, E_{0}\right\rangle+\sum_{s=1}^{k}\left\langle E_{j_{s}}, E_{j_{s}}\right\rangle \\
=k-1-k=-1=\left\langle E_{i}, E_{i}\right\rangle
\end{gathered}
$$

Thus

$$
\left\langle F^{*} E_{i}, F^{*} E_{i}\right\rangle=\left\langle E_{i}, E_{i}\right\rangle
$$

For $i \neq j,\left\langle F^{*} E_{i}, F^{*} E_{j}\right\rangle$ is one of the followings

- $\left\langle k E_{0}-(k-1) \sum_{i=1}^{k+1} E_{i}, E_{0}-\sum_{1 \leq i \leq k+1, i \neq j} E_{i}\right\rangle$

$$
=k(k-1)-(k-1) k=\overline{0}
$$

- $\left\langle k E_{0}-(k-1) \sum_{i=1}^{k+1} E_{i}, E_{j}\right\rangle$ for some $j \geq k+2$ $=0$
- $\left\langle E_{0}-\sum_{1 \leq i \leq k+1, i \neq j} E_{i}, E_{j}\right\rangle$ for some $j \geq k+2$ $=0$

Thus

$$
\left\langle F^{*} E_{i}, F^{*} E_{j}\right\rangle=\left\langle E_{i}, E_{j}\right\rangle
$$

Theorem (Bedford-Diller-K)

Let $F: X \rightarrow X$ be a pseudo-automorphism that is obtained as lifts of basic cremona map on \mathbb{P}^{k}. Then

1. F^{*} preserves the bilinear form $\langle\cdot, \cdot\rangle$.
2. F^{*} belongs to the generalized Weyl group $W(2, k+1, N-k-1)$.

Remark

- F realizes an element in the generalized Weyl group.
- The one we constructed earlier realizes the coxeter element in $W(2, k+1, N-k-1)$. Thus this map has the smallest dynamical degree >1 among all pseudo-automorphisms on X which preserve the bilinear form we just defined.
- The dynamical degree of F is given by a Salem number.

More pseudo-automorphisms?
The cremona involution on multi-projective space $\left(\mathbb{P}^{k}\right)^{m}$

$$
J:\left(x^{(1)}, \ldots, x^{(m)}\right) \mapsto\left(1 / x^{(1)}, x^{(2)} / x^{(1)}, \ldots, x^{(m)} / x^{(1)}\right)
$$

where $x^{(j)} / x^{(1)}=\left[x_{0}^{(j)} / x_{0}^{(1)}: \cdots: x_{k}^{(j)} / x_{k}^{(1)}\right]$

Basic Cremona map $F=S \circ \rho \circ J \circ T^{-1}$ where

- $S=\left(S_{i}\right), T=\left(T_{i}\right) \in(P G L(k+1,(C)))^{m}$
- $\rho:\left(x^{(1)}, \ldots, x^{(m)}\right) \mapsto\left(x^{(p(1))}, \ldots, x^{(p(m))}\right)$ where p is a permutation of $\{1,2, \ldots, m\}$.

The Symmetric Bilinear from on $\left(\mathbb{P}^{k}\right)^{m}$
Let $\pi: X \rightarrow\left(P^{k}\right)^{m}$ be a blowup of N points $\left\{\alpha_{1}, \ldots, \alpha_{N}\right\}$

1. H_{i} : the class of $\mathbb{P}^{k} \times \cdots \times H \times \cdots \times \mathbb{P}^{k}$ where H is a generic hyperplane in \mathbb{P}^{k} and H is in the i-th slot.
2. E_{i} : the class of the exceptional divisor over $\alpha_{j}, 1 \leq j \neq N$
3. $\operatorname{Pic}(X)=\left\langle H_{1}, H_{2}, \ldots, H_{m}, E_{1}, \ldots, E_{N}\right\rangle$

Let us define a symmetric bilinear form on $\operatorname{Pic}(X)$ as follows

$$
\begin{gathered}
\langle\alpha, \beta\rangle:=\alpha \cdot \beta \cdot \Phi \quad \alpha, \beta \in \operatorname{Pic}(X) \\
\Phi=(k-1) \sum_{i=1}^{m}\left(H_{i}^{k-2} \prod_{j \neq i} H_{j}^{k-4}\right) \\
+k \sum_{1 \leq i \neq j \leq m}\left(H_{i}^{k-1} H_{j}^{k-1} \prod_{\ell \neq i, j} H_{\ell}^{k}\right)+(-1)^{k m} \sum_{j} E_{j}^{m k-2}
\end{gathered}
$$

and $D^{n}=D \cdot D \cdots D$ is a n-fold intersection product.

Theorem
Let $F: X \rightarrow X$ be a pseudo-automorphism that is obtained as lifts of basic cremona map on $\left(\mathbb{P}^{k}\right)^{m}$. Then

1. F^{*} preserves the bilinear form $\langle\cdot, \cdot\rangle$.
2. F^{*} belongs to the generalized Weyl group $W(m+1, k+1, N-k-1)$.

If $F: X \rightarrow X$ be a pseudo-automorphism that is obtained as lifts of basic cremona map $f=S \circ \rho \circ J \circ T^{-1}$ on $\left(\mathbb{P}^{k}\right)^{m}$, Then we see

$$
\begin{aligned}
& F^{*} H_{1}=k H_{p(1)}-(k-1) \sum_{i=1}^{k+1} E_{i} \\
& F^{*} H_{j}=k H_{p(1)}+H_{p(j)}-k \sum \sum_{i=1}^{k+1} E_{i}, \quad j \neq 1
\end{aligned}
$$

$f=L \circ \rho \circ J$ on $\left(\mathbb{P}^{k}\right)^{m}$ preserves $k+1$ concurrent lines and f lifts to a pseudo automorphism on a blowup of $\left(\mathbb{P}^{k}\right)^{m}$.

$$
L_{j}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & s_{j} \\
v & 0 & 0 & 0 & s_{j}-v \\
0 & v & 0 & 0 & s_{j}-v \\
0 & 0 & \ddots & 0 & s_{j}-v \\
0 & 0 & 0 & v & s_{j}-v
\end{array}\right),
$$

where

$$
v=-\alpha \frac{\alpha^{m}-1}{\alpha-1}, s_{j}=\frac{\left(\alpha^{m}-1\right)\left(\alpha^{j+1}-1\right)}{\alpha^{j}(\alpha-1)\left(\alpha^{m-j}-1\right)}
$$

for $j=0, \ldots, m-1$.

